WO2023240527A1 - 电极组件、电池单体、电池及用电装置 - Google Patents

电极组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023240527A1
WO2023240527A1 PCT/CN2022/099127 CN2022099127W WO2023240527A1 WO 2023240527 A1 WO2023240527 A1 WO 2023240527A1 CN 2022099127 W CN2022099127 W CN 2022099127W WO 2023240527 A1 WO2023240527 A1 WO 2023240527A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
active material
cathode
current collector
material layer
Prior art date
Application number
PCT/CN2022/099127
Other languages
English (en)
French (fr)
Inventor
柴志生
迟庆魁
金海族
谷慧
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/099127 priority Critical patent/WO2023240527A1/zh
Priority to CN202280060652.7A priority patent/CN117916943A/zh
Publication of WO2023240527A1 publication Critical patent/WO2023240527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks

Definitions

  • the present application relates to the field of battery technology, and in particular to an electrode assembly, a battery cell, a battery and an electrical device.
  • lithium-ion and other batteries have the advantages of high energy density, high power density, multiple cycles, and long storage time, they have been widely used in electric vehicles.
  • the purpose of this application is to improve the safety of batteries during use.
  • an electrode assembly including:
  • the anode plate includes an anode current collector and an anode active material layer.
  • the anode current collector includes an anode main body part and anode tabs led out from the anode main body part.
  • the anode active material layer is provided on at least part of the surface of the anode main part;
  • the cathode pole piece is stacked with the anode pole piece along the first direction, and the cathode pole piece includes a cathode current collector;
  • At least one of the anode current collector and the cathode current collector is provided with a reinforcement layer on the lead-out side of the anode tab.
  • the strength of the anode pole piece and/or the cathode pole piece on the lead-out side of the anode tab can be improved, so that When the electrode assembly is vibrated up and down by external force, it can reduce the deformation of the end of the anode body close to the anode tab, prevent the anode body from bending, thereby reducing damage or shedding of the anode active material layer.
  • the lithium ions in the anode plate diffuse to both sides, it can prevent the lithium ions from precipitating in the area where the anode active material layer is located, improving the safety of the battery cells during use.
  • the anode tab is led out in a second direction relative to the anode body, and the second direction is perpendicular to the first direction; in the second direction, the reinforcement layer exceeds the anode active material layer.
  • the reinforcement layer exceeds the anode active material layer in the second direction.
  • the reinforcement layer can first bear the force transmitted by the anode tab to prevent the anode active material from approaching the anode tab.
  • the part plays a protective role, thereby reducing the deformation of the end of the anode body close to the anode tab, preventing the anode body from being bent, thereby reducing damage or shedding of the anode active material layer, and improving the safety of the battery cells during operation. sex.
  • At least part of the surface of the cathode current collector is provided with a cathode active material layer; the reinforcement layer provided on the anode current collector is connected to the anode active material layer, and/or the reinforcement layer provided on the cathode current collector is connected to the cathode Active material layer connection.
  • the reinforcement layer and the active material layer are connected, so that the reinforcement layer and the active material layer form an integral structure, which can increase the strength of the anode current collector or the end of the cathode current collector close to the anode tab and improve the reinforcement effect.
  • the active material layer may be an anode active material layer or a cathode active material layer.
  • the anode tab is led out in a second direction relative to the anode body, and the second direction is perpendicular to the first direction; in the second direction, the reinforcement layer does not extend beyond the edge of the free end of the anode tab.
  • the reinforcing layer does not exceed the edge of the free end of the anode tab in the second direction, which not only leaves sufficient electrical connection length for the anode tab, but also leaves a length for bending the anode tab, thereby
  • the flattening process is performed when welding the anode connector to the anode tab, thereby ensuring the reliability of the electrical connection between the anode tab and the anode connector, thereby reducing the impact of the reinforcement layer on the operating performance of the battery cell.
  • the electrode assembly further includes a separator, the separator is used to separate the anode tab and the cathode tab, the anode tab is led out in a second direction relative to the anode body, and the second direction is perpendicular to the anode body.
  • the separator is used to separate the anode tab and the cathode tab
  • the anode tab is led out in a second direction relative to the anode body, and the second direction is perpendicular to the anode body.
  • the first direction at least part of the surface of the cathode current collector is provided with a cathode active material layer; in the second direction, the edge of the separator exceeds the edge of the anode active material layer and the edge of the cathode active material layer, and the reinforcement layer does not exceed the separator. The edge on the anode side of the electrode assembly.
  • the reinforcing layer does not exceed the edge of the separator on the anode side of the electrode assembly, further leaving sufficient electrical connection length for the anode tab, and leaving a length for the anode tab to be bent, so that it can be used with
  • the anode connector is flattened during welding to ensure the reliability of the electrical connection between the anode tab and the anode connector, thereby reducing the impact of the reinforcement layer on the operating performance of the battery cell.
  • the cathode current collector includes a cathode body part and cathode tabs led out from the cathode body part, and the anode tabs and cathode tabs are led out in opposite directions.
  • the anode tab and the cathode tab are drawn out in opposite directions. If a reinforcement layer is provided on the anode current collector, the reinforcement layer can be prevented from being bulged or uneven along the first direction and causing damage to the cathode tab and cathode active material layer.
  • a reinforcing layer can be provided to improve support for the end of the anode main body by extending the width of the cathode current collector in the second direction. Therefore, this structure makes it easier to install a reinforcing layer and can achieve a better effect of deforming the end of the anode main body.
  • At least part of the surface of the cathode current collector is provided with a cathode active material layer; the anode current collector is provided with a reinforcement layer at least on the side where the anode active material layer is provided, and/or the cathode current collector is at least provided with a cathode active material layer.
  • a reinforcement layer is provided on the side of the material layer.
  • a reinforcement layer is provided at least on the side of the current collector with the active material layer, which facilitates the connection between the reinforcement layer and the active material layer, strengthens the effect of increasing the strength of the end of the current collector, and prevents the deformation of the active material layer due to deformation of the current collector. It can easily protect the edge of the active material layer and prevent the active material layer from falling off after long-term use of the battery cells.
  • the anode tab is drawn out in a second direction relative to the anode body, the second direction is perpendicular to the first direction, and at least part of the surface of the cathode current collector is provided with a cathode active material layer; in the second direction, the anode The active material layer extends beyond the cathode active material layer.
  • This embodiment enables that during use of the electrode assembly, lithium ions in the area where the cathode active material layer of the cathode plate is located pass through the separator and are embedded in the anode active material layer of the adjacent anode plate. Since the anode active material layer exceeds the cathode activity The material layer can ensure that lithium ions are embedded in the anode active material layer as much as possible, reducing the risk of lithium precipitation, while also allowing the cathode active material layer to fully function.
  • the strength of the reinforcement layer exceeds the strength of the anode active material layer.
  • This embodiment can improve the strength of the anode current collector or the end of the cathode current collector by increasing the strength of the reinforcement layer itself.
  • the thickness of the reinforcement layer can be minimized to prevent damage to the adjacent pole pieces.
  • the added weight of the electrode assembly can be minimized.
  • the material of the reinforcing layer includes a binder and ceramic particles.
  • a reinforcing layer is formed by an adhesive and ceramic particles.
  • the adhesive can provide better adhesion between the reinforcing layer and the current collector or active material layer, preventing the reinforcing layer from falling off.
  • Strength can be increased by mixing in adhesives.
  • the reinforcement layer is disposed on the anode current collector, the reinforcement layer includes a first reinforcement section, and the first reinforcement section is in contact with the surface of the anode current collector.
  • the strength of the anode current collector at the outer end of the anode active material layer can be increased when the electrode assembly is vibrated in the second direction.
  • the vibration force will first act on the first reinforced section, thereby protecting the anode active material layer, and by increasing the end strength of the anode current collector, the deformation of the anode current collector can be reduced, thereby preventing the anode active material layer from If the battery is damaged or falls off, the safety of the battery cell will be improved.
  • the reinforcing layer further includes a second reinforcing section, the second reinforcing section is connected to the first reinforcing section, and the second reinforcing section is covered in the edge area of the anode active material layer, so that the second reinforcing section passes through the anode active material layer.
  • the material layer is provided on the anode current collector.
  • the size of the reinforcement layer in the second direction can be increased, the strength of the end of the anode main body can be increased as much as possible, and the deformation of the end of the anode main body can be reduced. amount; furthermore, the first reinforcing section is located in the edge area of the anode active material layer along the second direction.
  • the second reinforcing section can form protection for the outside of the anode active material layer along the first direction, and can form a limit constraint on the anode active material layer to prevent the anode active material layer from falling off due to arching. Since the first reinforcing section and the second reinforcing section completely surround the end of the anode active material layer close to the anode tab, the effect of increasing the strength can be optimized and the safety of the electrode assembly during operation can be greatly improved.
  • the outer surface of the first reinforcing section does not protrude from the outer surface of the second reinforcing section.
  • This embodiment considers that the second reinforcement section is arranged on the outer surface of the anode active material layer and has a larger thickness, while the thickness of the empty foil area of the anode plate is smaller, so that the outer surface of the first reinforcement section is lower than the second reinforcement section.
  • the outer surface of the segment can achieve thickness transition and reduce stress concentration.
  • the anode tab is drawn out in a second direction relative to the anode body, the second direction is perpendicular to the first direction, and at least part of the surface of the cathode current collector is provided with a cathode active material layer; in the second direction, the The width dimension b of the two reinforced sections does not exceed the third distance a.
  • the third distance a is the edge of the cathode active material layer located on the anode side of the electrode assembly and the edge of the anode active material layer located on the anode side of the electrode assembly in the second direction. the distance between.
  • This embodiment allows the lithium ions detached from the cathode plate to directly reach the anode active material layer during the charging process, so as to prevent the reinforcement layer from affecting the movement of lithium ions to the anode active material layer for attachment, and prevent lithium precipitation from causing the battery cell capacity. Fast decay, thus ensuring the performance of the battery cells and improving the safety of use.
  • anode active material layers are provided on both sides of the anode current collector along the first direction, and a second reinforcement section is provided on the outside of the anode active material layer on each side.
  • the outer surfaces of the anode active material layers on both sides The following relationship is satisfied between the first distance d1 between the two sides and the second distance d2 between the outer surfaces of the second reinforced sections on both sides: d1 ⁇ d2 ⁇ 1.3*d1.
  • This embodiment can protect the anode active material layers on both sides and improve the strength of the end of the anode body by arranging second reinforcing sections on the outsides of the anode active material layers on both sides. Moreover, by making the first distance d1 and the second distance d2 satisfy the above relationship, and matching the thickness of the reinforcement layer with the thickness of the main area of the anode plate, the thickness of the reinforcement layer can not only meet the requirements for increasing strength, but also prevent the reinforcement layer from Too thick will cause the separator to bulge too much, and even affect the adjacent cathode pole pieces, ensuring the performance of the electrode assembly; in addition, it can prevent the anode pole pieces from being rolled into rolls during the production process and the edges of the rolls will bulge during production. phenomenon to avoid cracking of the anode pole piece.
  • the reinforcement layer is disposed on the cathode current collector, and the entire reinforcement layer is in contact with the surface of the cathode current collector.
  • the strength of the cathode current collector at the outer end of the cathode active material layer can be increased.
  • the reinforcing layer exceeds the anode active material in the second direction At the end of the layer, a stable supporting effect can be formed.
  • the vibration force will first act on the reinforcement layer, and the reinforcement layer will bear the vibration force, thereby preventing the end of the anode current collector close to the anode tab from deforming and causing damage to the anode active material layer. Protection, thereby preventing the anode active material layer from being damaged or falling off, and improving the safety of the battery cell.
  • At least part of the surface of the cathode current collector is provided with a cathode active material layer, and in the first direction, the outer surface of the reinforcement layer does not protrude from the outer surface of the cathode active material layer.
  • This embodiment considers that in order to avoid the lithium evolution phenomenon, the anode active material layer exceeds the cathode active material layer in the second direction, so that the reinforcement layer and the anode active material layer are arranged adjacent to each other and are only separated by a spacer, so that the reinforcement layer
  • the outer surface does not protrude from the outer surface of the cathode active material layer, which can prevent the reinforcement layer from exerting force on the anode active material layer, prevent the anode current collector and cathode current collector from bending and cause the active material to fall off, and improve the performance of the battery cell. security.
  • both the anode current collector and the cathode current collector are provided with reinforcement layers on the lead-out sides of the anode tabs, and the anode tabs lead out in a second direction relative to the anode body, and the second direction is perpendicular to the first direction. In the second direction, the reinforcement layer provided on the anode current collector exceeds the reinforcement layer provided on the cathode current collector.
  • reinforcing layers are provided in the areas of the anode current collector and cathode current collector close to the anode tab.
  • the strength of the end of the anode body close to the anode tab can be improved.
  • the increase in the strength of the end of the anode body can reduce the deformation, thereby reducing the damage or shedding of the anode active material layer; on the other hand, the reinforcement layer exceeds the anode active material layer
  • a stable support structure can be formed.
  • the reinforcement layer exceeds the anode active material layer to form a stable support structure, preventing the vibration from being transmitted to the end of the anode body, and preventing the anode body from deforming and causing damage. Cause the anode active material layer to be damaged or fall off. Therefore, this structure can maximize the safety of the battery cell operation.
  • the reinforcement layer provided on the anode current collector exceeds the reinforcement layer provided on the cathode current collector.
  • the vibration can be preferably endured by the reinforcement layer provided on the anode current collector.
  • the acting force is used to directly protect the end of the anode main body.
  • the reinforcement layer provided on the cathode current collector plays a supporting role to improve the compressive strength requirements of the electrode assembly.
  • a battery cell including:
  • the electrode assembly of the above embodiment is provided in the housing;
  • End cap assembly for closing opening.
  • a battery including:
  • the battery cell is arranged in the box assembly.
  • an electrical device including the battery cell of the above embodiment, the battery cell being used to provide electric energy to the electrical device; or the battery of the above embodiment, the battery being used to provide power to the user. Electrical devices provide electrical energy.
  • Figure 1 is a schematic structural diagram of some embodiments of the present application in which a battery is installed on a vehicle.
  • Figure 2 is an exploded view of some embodiments of the battery of the present application.
  • Figure 3 is an outline view of some embodiments of a battery cell of the present application.
  • Figure 4 is an exploded view of some embodiments of battery cells of the present application.
  • Figure 5 is a schematic structural diagram of some embodiments of electrode assemblies in battery cells of the present application.
  • Figure 6 is a cross-sectional view of the anode side of the electrode assembly according to the first embodiment of the present application.
  • Figure 7 is a cross-sectional view of the anode side of the electrode assembly according to the second embodiment of the present application.
  • Figure 8 is a cross-sectional view of the anode side of the electrode assembly according to the third embodiment of the present application.
  • Figure 9 is a cross-sectional view of the cathode side of the electrode assembly according to some embodiments of the present application.
  • Cathode pole piece 21. Cathode current collector; 211. Cathode main body; 212. Cathode tab; 22. Cathode active material layer; 23. Insulating layer;
  • Electrode assembly 100’, electrode body; K, winding axis; x, first direction; y, second direction;
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least some embodiments of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • Current battery cells usually include a casing and an electrode assembly housed in the casing, and the casing is filled with electrolyte.
  • the electrode assembly is mainly formed by laminating or winding a first pole piece and a second pole piece with opposite polarities, and usually a separator is provided between the first pole piece and the second pole piece.
  • the parts of the first pole piece and the second pole piece coated with active material constitute the electrode body of the electrode assembly, and the parts of the first pole piece and the second pole piece that are not coated with active material constitute the first pole tab and the second pole tab respectively.
  • the first pole piece may be a cathode pole piece, including a cathode current collector and cathode active material layers disposed on both sides of the cathode current collector.
  • the material of the cathode current collector may be, for example, aluminum, and the cathode active material may be, for example, Lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.;
  • the second pole piece can be an anode pole piece, including an anode current collector and an anode active material layer located on both sides of the anode current collector, and the material of the anode current collector
  • it may be copper
  • the anode active material may be, for example, graphite or silicon.
  • the first pole piece may be an anode pole piece
  • the second pole piece may be a cathode pole piece.
  • the first tab and the second tab can be located together at one end of the main body or respectively at both ends of the electrode body.
  • the anode tabs and cathode tabs are led out from both ends of the electrode body, and then pass through After the flattening process, it is welded with the current collector.
  • the electrode assembly When a cylindrical battery is used as a power battery in a vehicle, the electrode assembly will also vibrate up and down due to the bumps and vibrations that occur when the vehicle is driving, thereby experiencing upward or downward squeezing force.
  • the current collector connected to the anode tab will be bent, and in severe cases, yield deformation will occur. Then the external force is transmitted to the anode tab through the current collector, causing the anode tab to produce Slight bending. After long-term use, the anode plate will bend, causing the active material layer to be damaged or even fall off.
  • lithium ions in the anode plate will diffuse to both ends of the anode plate along the width direction.
  • lithium ions may fall off in the anode active material. Regional precipitation may cause safety risks.
  • the inventor thought that if the battery cell is to be operated safely, it is necessary to reduce the degree of deformation of the anode plate on the side close to the anode tab, so as to prevent the anode active material from being damaged or falling off.
  • this application proposes an electrode assembly, including: an anode pole piece and a cathode pole piece superimposed along the anode direction.
  • the anode pole piece includes an anode current collector and an anode active material layer
  • the anode current collector includes an anode main body part and anode tabs led out from the anode body part
  • the anode active material layer is arranged on at least part of the surface of the anode body part
  • the cathode pole piece It includes a cathode current collector; wherein at least one of the anode current collector and the cathode current collector is provided with a reinforcement layer on the lead-out side of the anode tab.
  • the strength of the anode pole piece or cathode pole piece on the lead-out side of the anode tab can be improved, so that when the electrode assembly vibrates up and down , which can prevent the anode current collector from being bent, thereby reducing damage or falling off of the anode active material and improving the safety of the battery cells during use.
  • the battery cells in the embodiments of the present application are suitable for batteries and electrical devices using such battery cells, and the batteries are also suitable for electrical devices.
  • Electrical devices can be mobile phones, portable devices, laptops, battery cars, electric cars, ships, spacecraft, electric toys and power tools, etc.
  • spacecraft include airplanes, rockets, space shuttles, spaceships, etc.
  • electric toys Including fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools.
  • the electrical device can be a vehicle 400, such as a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.; or the electrical device can also be a drone or a ship, etc.
  • the vehicle 400 may include an axle 401, wheels 402 connected to the axle 401, a motor 403, a controller 404 and a battery 300.
  • the motor 403 is used to drive the axle 401 to rotate, and the controller 404 is used to control the operation of the motor 403.
  • the battery 300 may be disposed at the bottom, head, or tail of the vehicle 400 to provide electrical energy for the operation of the motor 403 and other components in the vehicle.
  • the battery 300 includes a box assembly 301 and a battery cell 200 .
  • the battery 300 there may be one battery cell 200 or a plurality of battery cells 200. If there are multiple battery cells 200, the multiple battery cells 200 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 200 are both connected in series and in parallel, and they can be multiple battery cells. 200 are first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box assembly 301. It is also possible that all the battery cells 200 are directly connected in series or in parallel or mixed together, and then the whole battery cells 200 are accommodated in the box assembly 301 .
  • the box assembly 301 can be a part of the battery pack, and the box assembly 301 can be detachably installed on the electrical device; or the box assembly 301 can also be a structural member in the electrical device for accommodating battery cells.
  • the space of the body 200 for example, when the battery cell 200 is used in the vehicle 400 , the box assembly 301 is a space formed by the vehicle frame for accommodating the battery cell 200 .
  • the box assembly 301 is hollow inside and is used to accommodate one or more battery cells 200.
  • the box assembly 301 may also have different shapes and sizes according to the shape, quantity, combination method and other requirements of the battery cells 200 accommodated.
  • the box assembly 301 may include: a receiving portion 301A, a first cover 301B and a second cover 301C. Opposite ends of the receiving portion 301A have openings, and the first cover 301B and the second cover 301C are respectively used for The openings at both ends of the accommodating part 301A are closed.
  • the accommodating part 301A has a rectangular tubular structure according to the arrangement of the plurality of battery cells 200 .
  • the battery cell 200 may be, for example, a lithium ion secondary battery, a lithium ion primary battery, a lithium sulfur battery, a sodium lithium ion battery, a magnesium ion battery, or the like.
  • FIG. 3 is a schematic diagram of the appearance of some embodiments of a battery cell 200 .
  • the battery unit 200 includes a housing 210 and an end cover assembly 220.
  • the housing 210 has an opening 211.
  • the end cover assembly 220 closes the opening 211 and is connected with the housing 210 to form the outer shell of the battery unit 200.
  • the end cap assembly 220 includes an end cap body 221 and an electrode terminal 222.
  • the electrode terminal 222 is provided on the end cap body 221.
  • Figure 3 illustrates a cylindrical battery cell 200. Subsequent embodiments will also take the cylindrical battery cell 200 as an example.
  • the battery cell 200 of the present application can also be a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 4 is an exploded view of some embodiments of a battery cell 200.
  • the battery cell 200 also includes an electrode assembly 100, an anode connector 230, and a cathode connector 240.
  • the electrode assembly 100 is located in a casing 210, and the casing 210 is filled with electrolyte. According to actual usage requirements, the electrode assembly 100 can be provided as a single or multiple electrodes.
  • the electrode assembly 100 is formed by stacking or winding anode and cathode plates, and usually a separator is provided between the anode and cathode plates.
  • the electrode assembly 100 in FIG. 4 is rolled to form a cylindrical shape, or may also be formed into a flat shape.
  • the coated portions of the anode and cathode plates respectively constitute the electrode body 100′ of the electrode assembly 100, and the uncoated portions of the anode and cathode plates constitute the anode tabs 112 and cathode tabs 212, respectively.
  • the anode tab 112 can be electrically connected to the casing 210 through the anode connector 230, and the casing 210 serves as the anode output electrode; the cathode tab 212 can be electrically connected through the cathode connector 240 and the electrode terminal 222, which serves as the cathode output electrode.
  • openings 211 are provided at both ends of the housing 210, and the openings 211 at both ends are closed by end cover assemblies 220.
  • Each end cover assembly 220 is provided with an electrode terminal 222, anode tab 112 and a cathode.
  • the tabs 212 are respectively electrically connected to the electrode terminals 222 on the corresponding side.
  • Figure 5 is a front view of some embodiments of the electrode assembly of Figure 4.
  • the anode tab 112 and the cathode tab 212 can be respectively led out from the two ends of the electrode body 100' along the winding axis K, or they can also be led out from the same end of the electrode body 100' along the winding axis K.
  • the structure of the electrode assembly 100 will be described in detail below.
  • the electrode assembly 100 includes an anode electrode piece 1 and a cathode electrode piece 2 .
  • the anode plate 1 includes an anode current collector 11 and an anode active material layer 12.
  • the anode current collector 11 includes an anode main body part 111 and anode tabs 112 led out from the anode main body part 111.
  • the anode active material layer 12 is disposed on the anode main body part 111.
  • At least part of the surface; the cathode pole piece 2 is superimposed on the anode pole piece 1 along the first direction x, and the cathode pole piece 2 includes a cathode current collector 21.
  • at least one of the anode current collector 11 and the cathode current collector 21 is provided with a reinforcement layer 13 on the lead-out side of the anode tab 112 .
  • both the anode pole piece 1 and the cathode pole piece 2 can adopt a long strip structure.
  • the cathode pole piece 2 and the anode pole piece 1 are superimposed along a first direction x, and the first direction x may be the thickness direction of the anode pole piece 1 or the cathode pole piece 2 .
  • the electrode assembly 100 may further include a separator 3 for isolating the anode electrode piece 1 and the cathode electrode piece 2 to achieve insulation between the anode electrode piece 1 and the cathode electrode piece 2 .
  • the anode pole piece 1 and the cathode pole piece 2 and the separator 3 can be wound around the winding axis K to form a winding structure, and the separator 3 is located between the anode pole piece 1 and the cathode pole piece 2 .
  • the electrode assembly 100 may also adopt a laminate structure.
  • the first direction x is the normal direction of the arc-shaped cathode pole piece 2 or the anode pole piece 1; for the flat electrode assembly 100, this structure is not shown in the figure.
  • the first direction x is the direction perpendicular to the flat segment.
  • the first direction x is the normal direction of the arc segment.
  • the anode tab 112 is led out in a second direction y relative to the anode main body 111 , where the second direction y is a unidirectional direction, and the second direction y is the lead-out direction of the anode tab 112 .
  • the anode tab 112 may be provided at an end of the anode body 111 along the second direction y, the second direction y is perpendicular to the first direction x, and the second direction y is consistent with the width direction of the anode pole piece 1 or the cathode pole piece 2 .
  • the anode tabs 112 drawn out from the anode main body 111 can be continuously extended along the length direction of the anode tab 1 without punching to form full tabs; or punching can be performed on the basis of continuous tabs to form a complete tab.
  • the anode tab 1 forms a zigzag structure in the length direction, and the punching position can coincide with the position where the anode tab 112 is connected to the anode body part 111, or it can be along the third direction relative to the position where the anode tab 112 is connected to the anode body part 111. Offset y by a preset distance in both directions.
  • the anode current collector 11 can be copper, and the anode active material layer 12 can be graphite or silicon, and can be attached to the anode current collector 11 by coating, spraying, or other methods.
  • the cathode plate 2 includes a cathode current collector 21 and a cathode active material layer 22.
  • the cathode current collector 21 includes a cathode main body part 211 and cathode tabs 212 led out from the cathode main body part 211.
  • the cathode active material layer 22 is disposed on the anode main body part 111. At least part of the surface.
  • the cathode tabs 212 drawn out from the cathode main body 211 may extend continuously along the length direction of the cathode pole piece 2, or may have a zigzag structure.
  • the cathode plate 2 may be disposed at an end of the cathode main body 211 along the second direction y, and be drawn out along the second direction y.
  • the cathode current collector 21 can be made of aluminum, and the cathode active material layer 22 can be made of lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, and can be attached to the cathode current collector 21 by coating, spraying or other methods.
  • the reinforcing layer 13 may be provided solely on the anode current collector 11 , or solely on the cathode current collector 21 , or simultaneously provided on the anode current collector 11 and the cathode current collector 21 .
  • the reinforcement layer 13 provided on the anode current collector 11 may be provided on the anode main body 111
  • the reinforcement layer 13 provided on the cathode current collector 21 may be provided on the cathode main body 211 .
  • the reinforcement layer 13 is used to increase the strength of the end of the anode current collector 11 or the cathode current collector 21 close to the anode tab 112 along the second direction y, so as to reduce the deformation of the anode current collector 11 and thereby reduce the damage or shedding of the anode active material layer 12 .
  • the reinforcement layer 13 provided on the anode current collector 11 is used to increase the strength of the end of the anode body 111 close to the anode tab 112 to reduce the deformation of the anode current collector 11; the reinforcement layer 13 provided on the cathode current collector 21 It is used to provide stable supporting force to protect the anode current collector 11 and reduce the amount of deformation by increasing the strength of the end of the cathode body 211 close to the anode tab 112 .
  • the anode current collector 11 and the cathode current collector 21 since at least one of the anode current collector 11 and the cathode current collector 21 is provided with the reinforcement layer 13 on the lead-out side of the anode tab 112, it can improve the strength of the anode pole piece 1 and/or the cathode pole piece 2 on the anode tab 112.
  • the strength of the lead side can reduce the deformation of the end of the anode body 111 close to the anode tab 112 when the electrode assembly 100 is vibrated up and down by an external force, preventing the anode body 111 from being bent, thereby reducing the amount of anode active material. Layer 12 is damaged or falls off.
  • the lithium ions in the anode plate 1 diffuse to both sides during the cycle of the battery cell 200, it can prevent the lithium ions from precipitating in the area where the anode active material layer 12 is located, improving the performance of the battery cell 200 during use. security in.
  • the anode tab 112 is drawn out along a second direction y relative to the anode body 111 , and the second direction y is perpendicular to the first direction x; in the second direction y, the reinforcement layer 13 exceeds the anode active material layer 12 .
  • the outer end of the reinforcement layer 13 close to the anode tab 112 exceeds the outer end of the anode active material layer 12 close to the anode tab 112 .
  • the reinforcement layer 13 provided on the anode current collector 11 at least part of the reinforcement layer 13 is provided on the anode main body 111 and is located at the outer end of the anode active material layer 12 in the second direction y, so that Improve the strength of the end of the anode body 111 close to the anode tab 112.
  • the electrode assembly 100 is vibrated in the second direction y, even if the vibration force is transmitted to the end of the anode body 111, the strength of the end of the anode body 111 will be reduced.
  • the increase can reduce the amount of deformation, and allow the reinforcement layer 13 to transmit the force transmitted by the anode tab 112 first, preventing the anode main body 111 from deforming and causing the anode active material layer 12 to be damaged or peeled off.
  • the outer end of the reinforcement layer 13 close to the anode tab 112 exceeds the outer end of the anode active material layer 12 close to the anode tab 112 . end, so that when the electrode assembly 100 is vibrated along the second direction y, the reinforcement layer 13 exceeds the anode active material layer 12 to form a stable support structure, so that the reinforcement layer 13 first transmits the force transmitted by the anode tab to prevent the vibration effect from being transmitted to The end of the anode main body part 111 prevents the anode main body part 111 from deforming and causing the anode active material layer 12 to be damaged or peeled off.
  • the reinforcement layer 13 provided on the cathode current collector 21 may not exceed the anode active material layer 12 , and the length of the cantilevered portion of the anode body 111 may also be shortened, thereby reducing the end deformation of the anode body 111 to a certain extent. Effect.
  • the reinforcing layer 13 exceeds the anode active material layer 12 in the second direction y.
  • the reinforcing layer 13 can first bear the force transmitted by the anode tab 112 to strengthen the anode.
  • the portion of the active material layer 12 close to the anode tab 112 plays a protective role, thereby reducing the deformation of the end of the anode main body 111 close to the anode tab 112 and preventing the anode main body 111 from being bent, thereby reducing the anode active material layer. 12 is damaged or falls off, improving the safety of the battery cell 200 during operation.
  • At least part of the surface of the cathode current collector 21 is provided with a cathode active material layer 22; the reinforcement layer 13 provided on the anode current collector 11 is connected to the anode active material layer 12, and/or is provided on the cathode current collector 21 The upper reinforcement layer 13 is connected to the cathode active material layer 22 .
  • connection means that the reinforcement layer 13 and the active material layer have contact portions, so that the reinforcement layer 13 and the active material layer form an integrated layer structure.
  • the active material layer may be the anode active material layer 12 or the cathode active material layer 22; for example, the reinforcement layer 13 is connected to the end surface of the anode active material layer 12 or the cathode active material layer 22 along the second direction y; and/or reinforcement The layer 13 is connected to the side of the anode active material layer 12 or the cathode active material layer 22 along the first direction x.
  • the reinforcing layer 13 may be in contact with the edge of the active material layer when coating or spraying, or the edge of the active material layer may be covered.
  • the reinforcement layer 13 is connected to the active material layer so that the reinforcement layer 13 and the active material layer form an integral structure, which can increase the strength of the end of the anode current collector 11 or the cathode current collector 21 close to the anode tab 112 and improve the reinforcement effect.
  • the active material layer may be the anode active material layer 12 or the cathode active material layer 22 .
  • a preset gap may also be retained between the reinforcement layer 13 and the active material layer, so that the reinforcement layer 13 and the active material layer are independent of each other.
  • the anode tab 112 is drawn out along a second direction y relative to the anode body 111 , and the second direction y is perpendicular to the first direction x; in the second direction y, the reinforcement layer 13 does not exceed the anode tab 112 The edge of the free end.
  • the reinforcement layer 13 provided on the anode current collector 11 does not exceed the edge of the anode current collector 11, that is, the reinforcement layer 13 does not exceed the free end edge of the anode tab 112, so that The uncoated portion of the anode current collector 11 located outside the reinforcement layer 13 along the second direction y forms an anode tab 112 .
  • the free end of the anode tab 112 refers to the end of the anode tab 112 away from the anode main body 111 along the second direction y.
  • the reinforcement layer 13 provided on the cathode current collector 21 does not exceed the edge of the anode current collector 11 , that is, the reinforcement layer 13 does not exceed the edge of the anode tab 112 , so that in the second direction y In the direction y, a length is left for the anode tab 112 to be bent, so that it can be flattened when welded to the anode connector 230 .
  • the reinforcement layer 13 does not exceed the edge of the free end of the anode tab 112 in the second direction y, which not only leaves sufficient electrical connection length for the anode tab 112, but also leaves space for bending the anode tab 112.
  • the folded length can be flattened when welding with the anode connector 230, thereby ensuring the reliability of the electrical connection between the anode tab 112 and the anode connector 230, thereby reducing the work of the battery cell 200 caused by the reinforcement layer 13. Performance impact.
  • the electrode assembly 100 further includes a separator 3, which is used to separate the anode tab 1 and the cathode tab 2.
  • the anode tab 112 is drawn out along the second direction y relative to the anode body portion 111, The second direction y is perpendicular to the first direction x, and at least part of the surface of the cathode current collector 21 is provided with the cathode active material layer 22; in the second direction y, the edge of the separator 3 exceeds the edge of the anode active material layer 12 and the cathode active material layer 22.
  • the edges of the material layer 22 and the reinforcing layer 13 do not exceed the edge of the separator 3 on the anode side of the electrode assembly 100 .
  • the separator 3 can be a diaphragm. After the rolled structure is flattened, the separator 3 can be a long strip structure.
  • the separator 3 includes a membrane base layer and a functional layer.
  • the membrane base layer can be at least one of polypropylene, polyethylene, ethylene-propylene copolymer, polybutylene terephthalate, etc.
  • the functional layer can be ceramic oxide. and adhesive layer.
  • the distance of the reinforcing layer 13 beyond the end surface of the anode active material layer 12 is c, and the distance between the end surface of the anode active material layer 12 and the edge of the separator 3 is e, c ⁇ e.
  • the reinforcing layer 13 does not exceed the edge of the separator 3 on the anode side of the electrode assembly 100, further leaving sufficient electrical connection length for the anode tab 112, and leaving space for bending the anode tab 112. length, so that it can be flattened when welding with the anode connector 230, thereby ensuring the reliability of the electrical connection between the anode tab 112 and the anode connector 230, thereby reducing the impact of the reinforcement layer 13 on the working performance of the battery cell 200. Influence. Moreover, it is also possible to avoid providing the reinforcing layer 13 to increase the height of the electrode assembly 100 and ensure that the capacity of the battery cell 200 is not affected.
  • the cathode current collector 21 includes a cathode body part 211 and a cathode tab 212 drawn out from the cathode body part 211 , and the anode tab 112 and the cathode tab 212 are led out in opposite directions.
  • the anode tab 112 and the cathode tab 212 can be respectively drawn out from two ends of the electrode body 100'.
  • the end area of the battery cell 200 is small. If two electrode terminals 222 with opposite polarity are provided at the same end, and a pressure relief component or other electrical connection component needs to be provided, the layout will be affected. It is difficult to lead the anode tab 112 and the cathode tab 212 from opposite directions, which can reduce the structural complexity inside the battery cell 200 and make the layout easier.
  • the anode tab 112 and the cathode tab 212 are drawn out in opposite directions. If the reinforcement layer 13 is provided on the anode current collector 11, the reinforcement layer 13 can be prevented from protruding or being uneven with respect to the cathode tab along the first direction x.
  • the reinforcing layer 13 can be provided to improve support for the end of the anode body 111 by extending the width of the cathode current collector 21 in the second direction y. Therefore, this structure makes it easier to install the reinforcement layer 13 and can achieve a better effect of deforming the end of the anode main body 111 .
  • At least part of the surface of the cathode current collector 21 is provided with a cathode active material layer 22; the anode current collector 11 is provided with a reinforcement layer 13 at least on the side where the anode active material layer 12 is provided, and/or the cathode current collector 21
  • the reinforcing layer 13 is provided at least on the side where the cathode active material layer 22 is provided.
  • a reinforcing layer 13 may optionally be provided on the side with the anode active material layer 12 .
  • the cathode current collector 21 is provided with a cathode active material layer 22 on one side, the reinforcing layer 13 is provided at least on the side of the cathode current collector 21 provided with the cathode active material layer 22, and on the side of the cathode current collector 21 not provided with the cathode active material layer 22.
  • a reinforcing layer 13 is optionally provided.
  • the anode active material layer 12 is provided on both sides of the anode current collector 11, and the reinforcement layer 13 can also be provided on both sides of the anode current collector 11 to achieve a better effect of increasing the strength, or the reinforcement layer 13 can be selectively provided. on either side of the anode current collector 11.
  • the cathode current collector 21 is provided with cathode active material layers 22 on both sides.
  • the reinforcement layer 13 can also be provided on both sides of the cathode current collector 21 to achieve a better effect of increasing the strength, or the reinforcement layer 13 can be selectively provided on the cathode. either side of the current collector 21.
  • the reinforcement layer 13 and the active material layer may also be located on opposite sides of the current collector.
  • the current collector may refer to the anode current collector 11 or the cathode current collector 21 .
  • the active material layer refers to the anode active material layer 12 provided on the anode current collector 11 or the cathode active material layer 22 on the cathode current collector 21 .
  • a reinforcing layer 13 is provided at least on the side of the current collector with the active material layer, which facilitates the connection between the reinforcing layer 13 and the active material layer, strengthens the effect of increasing the end strength of the current collector, and prevents the active material from being deformed due to current collector deformation.
  • the layer will fall off, and it is easy to protect the edge portion of the active material layer to prevent the active material layer from falling off after the battery cell 200 is used for a long time.
  • the anode tab 112 is drawn out along the second direction y relative to the anode body part 111, the second direction y is perpendicular to the first direction x, and at least part of the surface of the cathode current collector 21 is provided with the cathode active material layer 22; In the second direction y, the anode active material layer 12 exceeds the cathode active material layer 22 .
  • This embodiment enables, during use of the electrode assembly 100, lithium ions in the area where the cathode active material layer 22 of the cathode plate 2 is located passes through the separator 3 and is embedded in the anode active material layer 12 of the adjacent anode plate 1. Since the anode The active material layer 12 extends beyond the cathode active material layer 22 to ensure that lithium ions are embedded in the anode active material layer 12 as much as possible, reducing the risk of lithium precipitation, and at the same time allowing the cathode active material layer 22 to fully function.
  • the strength of the reinforcement layer 13 exceeds the strength of the anode active material layer 12 .
  • the "strength” here mainly refers to the cohesive strength of the coating structure, that is, the strength of the coating structure itself.
  • the strength is related to the chemical composition of the coating, the residual stress in the coating, and the size of the grains in the coating.
  • the porosity of the coating is related to factors such as the uniformity of the coating structure, and its unit is Pa, that is, Pa.
  • the cohesive strength of a coating structure can be measured in any manner known in the art.
  • This embodiment can increase the strength of the anode current collector 11 or the end of the cathode current collector 21 by increasing the strength of the reinforcement layer 13 itself.
  • the thickness of the reinforcement layer 13 can be minimized to prevent damage to adjacent The influence of the pole pieces is prevented, so that the setting of the reinforcing layer 13 does not affect the weight of the electrode assembly 100, and the increased weight of the electrode assembly 100 can be minimized.
  • the material of the reinforcing layer 13 includes adhesive and ceramic particles.
  • the adhesive may include at least one of epoxy resin, acrylate, styrene-butadiene rubber, polytetrafluoroethylene and polyvinylidene fluoride; the ceramic particles may include boehmite, alumina, silicon oxide and zirconia. of at least one.
  • the reinforcing layer 13 may also contain a small amount of color identifying agent, such as conductive carbon or Prussian blue.
  • the thickness of the reinforcing layer 13 after drying can be 0.01 mm to 0.1 mm.
  • the reinforcing layer 13 should have good toughness and strength to prevent it from falling off after winding and bending.
  • the reinforcing layer 13 is formed by an adhesive and ceramic particles.
  • the adhesive can provide better adhesion between the reinforcing layer 13 and the current collector or active material layer, preventing the reinforcing layer 13 from falling off, and the ceramic particles are hardened due to the hardness of the reinforcing layer 13 .
  • Higher, strength can be increased by mixing in adhesives.
  • the reinforcement layer 13 is provided on the anode current collector 11 .
  • the reinforcement layer 13 includes a first reinforcement section 131 , and the first reinforcement section 131 is in contact with the surface of the anode current collector 11 .
  • the first reinforced section 131 is directly attached to the anode current collector 11, specifically can be provided on the anode main body 111. In the second direction y, the first reinforced section 131 can be located between the anode active material layer 12 and the anode tab 112. Between them, the first reinforcing section 131 and the anode active material layer 12 are connected in the second direction y.
  • the strength of the anode current collector 11 at the outer end of the anode active material layer 12 can be increased.
  • the vibration force will first act on the first reinforcing section 131, thereby forming protection for the anode active material layer 12, and by increasing the end strength of the anode current collector 11, the anode current collector can be reduced.
  • the deformation amount is 11, thereby preventing the anode active material layer 12 from being damaged or falling off, and improving the working safety of the battery cell 200.
  • the reinforcement layer 13 further includes a second reinforcement section 132 , the second reinforcement section 132 is connected to the first reinforcement section 131 , and the second reinforcement section 132 is covered on the anode active material layer 12
  • the edge region is such that the second reinforcing section 132 is disposed on the anode current collector 11 through the anode active material layer 12 .
  • the second reinforcing section 132 and the first reinforcing section 131 can be integrally formed.
  • the thickness of the second reinforcing section 132 may be smaller than the thickness of the first reinforcing section 131. Since the second reinforcing section 132 covers the edge area of the anode active material layer 12, the thinner thickness can be reduced by designing it. Little impact on the separator 3 and the adjacent cathode plate 2.
  • the second reinforcement section 132 since the second reinforcement section 132 is in direct contact with the isolation member 3 , the second reinforcement section 132 can be designed as a layer structure with uniform thickness.
  • the size of the reinforcing layer 13 in the second direction y can be increased, the strength of the end of the anode main body 111 can be increased as much as possible, and the anode main body 111 can be reduced in size.
  • the amount of deformation that occurs at the end of A reinforcing section 131 will not directly act on the anode active material layer 12, and the second reinforcing section 132 can protect the outside of the anode active material layer 12 along the first direction x, and can form a limit constraint on the anode active material layer 12. , to prevent the anode active material layer 12 from falling off due to arching.
  • first reinforcing section 131 and the second reinforcing section 132 completely surround the end of the anode active material layer 12 close to the anode tab 112, the effect of increasing the strength can be optimized and the safety of the electrode assembly 100 during operation can be greatly improved.
  • the outer surface of the first reinforcing section 131 does not protrude from the outer surface of the second reinforcing section 132 .
  • This embodiment considers that the second reinforcing section 132 is disposed on the outer surface of the anode active material layer 12 and has a larger thickness, while the anode tab 112 is an empty foil area with a smaller thickness, so that the outer surface of the first reinforcing section 131 is not Protruding from the outer surface of the second reinforcing section 132 can realize thickness transition and reduce stress concentration.
  • the anode tab 112 is drawn out in a second direction y relative to the anode body 111 , the second direction y is perpendicular to the first direction x, and at least part of the surface of the cathode current collector 21 is provided with Cathode active material layer 22; in the second direction y, the width dimension b of the second reinforcing section 132 does not exceed the third distance a.
  • the third distance a is in the second direction y.
  • the cathode active material layer 22 is located on the electrode assembly 100 The distance between the edge of the anode side and the edge of the anode active material layer 12 on the anode side of the electrode assembly 100 .
  • b ⁇ a In order to achieve better results, b ⁇ 0.8a. Because when b>a, the lithium ions detached from the cathode plate 2 during the charging process will bypass the reinforcement layer 13 and precipitate at the interface between the anode active material layer 12 and the second reinforcement section 132. The lithium precipitation will cause rapid capacity attenuation. It may even cause safety issues.
  • a is between 0.3mm and 3mm, and b is between 0 and 1.5mm.
  • This embodiment enables the lithium ions detached from the cathode plate 2 to directly reach the anode active material layer 12 during the charging process, so as to prevent the reinforcement layer 13 from affecting the movement of lithium ions to the anode active material layer 12 for attachment and preventing the occurrence of lithium precipitation.
  • the capacity of the battery cell 200 decays rapidly, thereby ensuring the performance of the battery cell 200 and improving the safety of use.
  • anode active material layers 12 are provided on both sides of the anode current collector 11 along the first direction x, and second reinforcement sections 132 are provided on the outside of the anode active material layer 12 on each side.
  • the first distance d1 between the outer surfaces of the active material layer 12 and the second distance d2 between the outer surfaces of the second reinforcement sections 132 on both sides satisfy the following relationship: d1 ⁇ d2 ⁇ 1.3*d1.
  • d2>1.3*d1 the total thickness of the reinforcement layer 13 provided in the anode pole piece 1 far exceeds the thickness of the main body area of the anode pole piece 1. This will cause the anode pole piece 1 to be transported and produced in rolls during the production process. The edge of the roll material bulges, causing the anode pole piece 1 to crack.
  • This embodiment can protect the anode active material layers 12 on both sides and improve the strength of the end of the anode main body 111 by providing second reinforcing sections 132 on the outsides of the anode active material layers 12 on both sides. Moreover, by making the first distance d1 and the second distance d2 satisfy the above relationship, the thickness of the reinforcing layer 13 matches the thickness of the main body region of the anode plate 1, so that the thickness of the reinforcing layer 13 can not only meet the requirements for increasing strength, but also This prevents the reinforcement layer 13 from being too thick, causing the separator 3 to bulge too much, and even affecting the adjacent cathode pole piece 2, ensuring the performance of the electrode assembly 100; in addition, it prevents the anode pole piece 1 from being transported and produced in rolls during the production process. When the edge of the roll material bulges, it is necessary to prevent the anode pole piece 1 from cracking.
  • the reinforcing layer 13 is provided on the cathode current collector 21 , and the entire reinforcing layer 13 is in contact with the surface of the cathode current collector 21 .
  • the reinforcing layer 13 can be a layer structure with uniform thickness.
  • the reinforcing layer 13 may extend beyond the end of the anode active material layer 12 in the second direction y and does not extend beyond the end of the separator 3 .
  • the distance between the end surface of the cathode active material layer 22 and the end surface of the reinforcement layer 13 is g
  • the distance between the end surface of the cathode active material layer 22 and the end surface of the separator 3 is f
  • the distance between the end surface of the cathode active material layer 22 and the end surface of the separator 3 is f.
  • the distance between the end surface of the active material layer 12 and the cathode active material layer 22 is a, and g, a and f satisfy the following relationship: a ⁇ g ⁇ f.
  • g ⁇ a the protective effect of the reinforcement layer 13 on the anode active material layer 12 is small.
  • g>f the capacity of the battery cell 200 will be affected.
  • the strength of the cathode current collector 21 at the outer end of the cathode active material layer 22 can be increased.
  • the reinforcing layer 13 is at the outer end of the cathode active material layer 22
  • the two directions y extend beyond the end of the anode active material layer 12
  • a stable supporting effect can be formed.
  • the electrode assembly 100 is vibrated along the second direction y, the vibration force will first act on the reinforcement layer 13, and the reinforcement layer 13 will bear the vibration force, thereby preventing the end of the anode current collector 11 close to the anode tab 112 from deforming.
  • the anode active material layer 12 is protected, thereby preventing the anode active material layer 12 from being damaged or falling off, and improving the working safety of the battery cell 200 .
  • At least part of the surface of the cathode current collector 21 is provided with the cathode active material layer 22 , and in the first direction x, the outer surface of the reinforcement layer 13 does not protrude from the outer surface of the cathode active material layer 22 .
  • This embodiment considers that in order to avoid the lithium evolution phenomenon, the anode active material layer 12 exceeds the cathode active material layer 22 in the second direction y, so that the reinforcement layer 13 is arranged adjacent to the anode active material layer 12 with only the separator 3 in between. Separate, so that the outer surface of the reinforcement layer 13 does not protrude from the outer surface of the cathode active material layer 22, which can prevent the reinforcement layer 13 from exerting force on the anode active material layer 12, and can prevent the anode current collector 11 and the cathode current collector 21 from occurring. The bending causes the active material to fall off, thereby improving the working safety of the battery cell 200 .
  • the anode current collector 11 and the cathode current collector 21 are each provided with a reinforcement layer 13 on the leading side of the anode tab 112 , and the anode tab 112 is along the second direction relative to the anode body 111 y is drawn, the second direction y is perpendicular to the first direction x, and in the second direction y, the reinforcement layer 13 provided on the anode current collector 11 exceeds the reinforcement layer 13 provided on the cathode current collector 21 .
  • the specific structure of the reinforcement layer 13 provided on the anode current collector 11 and the reinforcement layer 13 provided on the cathode current collector 21 may refer to the description of the above embodiment.
  • the reinforcing layer 13 is provided in the areas of the anode current collector 11 and the cathode current collector 21 close to the anode tab 112 at the same time.
  • the strength of the end of the anode main body 111 close to the anode tab 112 can be improved.
  • the increase in the strength of the end of the anode main body 111 can reduce the amount of deformation, thereby reducing damage or shedding of the anode active material layer 12;
  • the reinforcement layer 13 can form a stable support structure beyond the anode active material layer 12.
  • the reinforcement layer 13 can form a stable support structure beyond the anode active material layer 12 to prevent The vibration effect is transmitted to the end of the anode main body 111 to prevent the anode main body 111 from deforming and causing the anode active material layer 12 to be damaged or peeled off. Therefore, this structure can improve the operating safety of the battery cell 200 to the greatest extent.
  • the reinforcement layer 13 provided on the anode current collector 11 exceeds the reinforcement layer 13 provided on the cathode current collector 21.
  • the anode current collector can pass through it preferentially.
  • the reinforcement layer 13 provided on the cathode current collector 21 bears the vibration force to directly protect the end of the anode main body 111.
  • the reinforcement layer 13 provided on the cathode current collector 21 plays a supporting role. Increase the compressive strength requirements of the electrode assembly 100.
  • Electrode assembly 100 Some specific embodiments of the electrode assembly 100 are given below.
  • the cylindrical electrode assembly 100 includes an electrode body 100', anode tabs 112 and cathode tabs 212.
  • the anode tabs 112 and cathode tabs 212 are respectively led out from both ends of the electrode body 100'.
  • the anode pole pieces 1 and the cathode pole pieces 2 are alternately arranged at multi-layer intervals along the first direction x, and the anode pole pieces 1 and the cathode pole pieces 2 are separated by a separator 3 .
  • the anode plate 1 includes an anode current collector 11 and an anode active material layer 12.
  • the anode current collector 11 includes an anode main body part 111 and anode tabs 112 led out from the anode main body part 111.
  • the anode active material layer 12 is disposed on the anode main body part 111. At least part of the surface.
  • the cathode plate 2 includes a cathode current collector 21 and a cathode active material layer 22.
  • the cathode current collector 21 includes a cathode main body 211 and cathode tabs 212 led out from the cathode main body 211.
  • the cathode active material layer 22 is provided on the cathode main body 211. At least part of the surface.
  • the distance a between the anode active material layer 12 and the cathode active material layer 22 is a.
  • the component 230 is directly transferred to the anode main part 111 and the end of the anode active material layer 12 close to the anode tab 112, which may cause the anode main part 111 to bend and cause the anode active material layer 12 to fall off.
  • at least one of the anode body part 111 and the cathode body part 211 is provided with a reinforcing layer 13 at an end close to the anode tab 112.
  • the reinforcing layer 13 is provided on the anode current collector 11 , specifically on the end of the anode main body 111 close to the anode tab 112 .
  • Anode active material layers 12 are provided on both sides of the anode main body 111 along the first direction x.
  • reinforcement layers 13 are provided on both sides of the anode main body 111 along the first direction x.
  • the end surface of the reinforcing layer 13 does not exceed the edge of the separator 3, and the uncoated area outside the reinforcing layer 13 forms the anode tab 112; in the opposite direction of the second direction y, the reinforcing layer 13 does not exceed the cathode.
  • the reinforcement layer 13 on each side of the anode current collector 11 includes a first reinforcement section 131 and a second reinforcement section 132 that are connected to each other.
  • the first reinforcement section 131 is directly provided on the anode main body 111 and is connected with the second direction y in the second direction y.
  • the anode active material layer 12 is connected; the second reinforcement section 132 is covered in the edge area of the outer surface of the anode active material layer 12, the first reinforcement section 131 and the second reinforcement section 132 are provided with a tapered structure at the connection, and the tapered structure Located outside the end of the anode active material layer 12 along the second direction y, so that the outer surface of the first reinforcement section 131 is lower than the second reinforcement section 132 in the first direction x.
  • the anode electrode piece 1 is provided with a reinforcing layer 13 along the entire winding length direction.
  • each anode electrode piece 1 is provided with a reinforcing layer 13 .
  • the reinforcing layer 13 is provided on the cathode current collector 21 , specifically on the end of the cathode main body 212 close to the cathode tab 212 .
  • the cathode main body 211 is provided with cathode active material layers 22 on both sides along the first direction x.
  • the cathode main body 211 is provided with reinforcement layers 13 on both sides along the first direction x.
  • the end surface of the reinforcement layer 13 exceeds the end surface of the anode active material layer 12 and does not exceed the edge of the separator 3 .
  • the outer surface of the reinforcement layer 13 is lower than the outer surface of the cathode active material layer 22 .
  • a reinforcement layer 13 is provided on both the anode current collector 11 and the cathode current collector 21 .
  • the arrangement of the reinforcement layer 13 on each current collector can refer to the first embodiment and the second embodiment.
  • the end surface of the reinforcement layer 13 of the anode current collector 11 may exceed the end surface of the reinforcement layer 13 of the cathode current collector 21; or, the end surface of the reinforcement layer 13 of the cathode current collector 21 may exceed the end surface of the anode current collector 11.
  • the end surfaces of the reinforcing layer 13 or both end surfaces are flush.
  • FIG. 9 is a schematic diagram showing the structure of the electrode assembly 100 on the cathode tab 212 side. This arrangement is also applicable to any of the above embodiments.
  • an insulating layer 23 is provided at one end of the cathode current collector 21 close to the cathode tab 212. Specifically, the insulating layer 23 is provided on the surface of the cathode main body 211 and is located at the cathode active position in the second direction y. between the material layer 22 and the cathode tab 212.
  • the end surface of the anode active material layer 12 exceeds the end surface of the cathode active material layer 22
  • the insulating layer 23 is connected to the cathode active material layer 22
  • the end surface of the insulating layer 23 exceeds the anode active material layer 12 .
  • the end surface of the insulating layer 23 does not exceed the edge of the separator 3 to leave sufficient electrical connection length for the cathode tab 212 and reduce the impact on the capacity of the battery cell 200 .
  • the cathode current collector 21 is provided with cathode active material layers 22 on both sides along the first direction x.
  • the cathode current collector 21 is also provided with insulating layers 23 on both sides along the first direction x.
  • the insulating material includes inorganic fillers and adhesives.
  • the inorganic filler includes one of boehmite, alumina, magnesium oxide, titanium dioxide, zirconia, silicon dioxide, silicon carbide, boron carbide, calcium carbonate, aluminum silicate, calcium silicate, potassium titanate, barium sulfate, or Several kinds.
  • the binder includes one or more of polyvinylidene fluoride, polyacrylonitrile, polyacrylic acid, polyacrylate, polyacrylic acid-acrylate, polyacrylonitrile-acrylic acid, and polyacrylonitrile-acrylate.
  • the insulating layer 23 is provided on the cathode main body 211 and the end of the anode active material layer 12 close to the cathode tab 212 along the second direction y is located in the area where the insulating layer 23 is located, so that the anode active material layer 12 can be satisfied
  • the risk of a short circuit between the anode pole piece 1 and the cathode pole piece 2 after metal chips penetrate the separator 3 is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池单体、电池及用电装置,其中,电池单体(100)包括:阳极极片(1),包括阳极集流体(11)和阳极活性物质层(12),阳极集流体(11)包括阳极主体部(111)和从阳极主体部(111)引出的阳极极耳(112),阳极活性物质层(12)设置于阳极主体部(111)的至少部分表面;和阴极极片(2),与阳极极片(1)沿第一方向(x)叠加设置,阴极极片(2)包括阴极集流体(21);其中,阳极集流体(11)和阴极集流体(21)中的至少一个在阳极极耳(112)的引出侧设有加强层(13)。

Description

电极组件、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电极组件、电池单体、电池及用电装置。
背景技术
由于锂离子等电池具有能量密度高、功率密度高、循环使用次数多、存储时间长等优点,在电动汽车上面已普遍应用。
但是,提高电动汽车中电池在使用过程中的安全性,一直是业内的一个难题。
发明内容
本申请的目的在于提高电池在使用过程中的安全性。
根据本申请的第一方面,提供了一种电极组件,包括:
阳极极片,包括阳极集流体和阳极活性物质层,阳极集流体包括阳极主体部和从阳极主体部引出的阳极极耳,阳极活性物质层设置于阳极主体部的至少部分表面;和
阴极极片,与阳极极片沿第一方向叠加设置,阴极极片包括阴极集流体;
其中,阳极集流体和阴极集流体中的至少一个在阳极极耳的引出侧设有加强层。
该实施例由于阳极集流体和阴极集流体中的至少一个在阳极极耳的引出侧设有加强层,能够提高阳极极片和/或阴极极片在阳极极耳的引出侧的强度,这样在电极组件受到外力发生上下振动时,可减小阳极主体部靠近阳极极耳的端部的变形量,防止阳极主体部发生弯曲,从而减少阳极活性物质层损伤或脱落,在电池单体循环过程中阳极极片中的锂离子向两侧扩散时,可防止锂离子在阳极活性物质层所在区域析出,提高电池单体在使用过程中的安全性。
在一些实施例中,阳极极耳相对于阳极主体部沿第二方向引出,第二方向垂直于第一方向;在第二方向上,加强层超出阳极活性物质层。
该实施例使加强层在第二方向上超出阳极活性物质层,在电极组件受到外力发生上下振动时,能够使加强层首先承受阳极极耳传递的作用力,以对阳极活性物质靠近阳极极耳的部分起到保护作用,从而减小阳极主体部靠近阳极极耳的端部的变形量,防止阳极主体部被压弯,从而减少阳极活性物质层损伤或脱落,提高电池单体工作时的安全 性。
在一些实施例中,阴极集流体的至少部分表面设置有阴极活性物质层;设置于阳极集流体上的加强层与阳极活性物质层连接,和/或设置于阴极集流体上的加强层与阴极活性物质层连接。
该实施例将加强层与活性物质层连接,使加强层与活性物质层形成整体结构,可增加阳极集流体或阴极集流体靠近阳极极耳一端的强度,提高加固效果。活性物质层可以是阳极活性物质层,也可以是阴极活性物质层。
在一些实施例中,阳极极耳相对于阳极主体部沿第二方向引出,第二方向垂直于第一方向;在第二方向上,加强层不超出阳极极耳自由端的边缘。
该实施例使加强层在第二方向上不超出阳极极耳自由端的边缘,既能为阳极极耳留出足够的电连接长度,还能为阳极极耳留出可供弯折的长度,从而在与阳极连接件焊接时进行揉平处理,由此可保证阳极极耳与阳极连接件电连接的可靠性,从而减小设置加强层对电池单体工作性能的影响。
在一些实施例中,电极组件还包括隔离件,隔离件用于将阳极极片和阴极极片隔开,阳极极耳相对于所述阳极主体部沿第二方向引出,第二方向垂直于所述第一方向,阴极集流体的至少部分表面设置有阴极活性物质层;在第二方向上,隔离件的边缘超过阳极活性物质层的边缘和阴极活性物质层的边缘,加强层不超过隔离件位于电极组件的阳极侧的边缘。
该实施例通过使加强层不超过隔离件位于电极组件的阳极侧的边缘,进一步为阳极极耳留出足够的电连接长度,并为阳极极耳留出可供弯折的长度,从而在与阳极连接件焊接时进行揉平处理,由此可保证阳极极耳与阳极连接件电连接的可靠性,从而减小设置加强层对电池单体工作性能的影响。而且,还能避免设置加强层增加电极组件的高度,并保证电池单体的容量不受影响。
在一些实施例中,阴极集流体包括阴极主体部和从阴极主体部引出的阴极极耳,阳极极耳和阴极极耳的引出方向相反。
该实施例使阳极极耳和阴极极耳以相反的方向引出,若在阳极集流体上设置加强层,可避免加强层沿第一方向出现凸出或不平对阴极极耳和阴极活性物质层产生影响,以免加强层影响电池单体的性能,允许增加加强层的厚度,并降低对加强层尺寸精度的要求;若在阴极集流体上设置加强层,由于阴极极耳设置在远离阳极极耳的一侧,可通过延长阴极集流体在第二方向的宽度设置加强层对阳极主体部的端部提高支撑。因此,此种结构更容易设置加强层,且能够起到更优的放置阳极主体部端部变形的效果。
在一些实施例中,阴极集流体的至少部分表面设置有阴极活性物质层;阳极集流体至少在设有阳极活性物质层的侧面上设置加强层,和/或阴极集流体至少在设有阴极活性物质层的侧面上设置加强层。
该实施例至少在集流体设有活性物质层的侧面上设置加强层,易于实现加强层与活性物质层连接,可强化增加集流体端部强度的效果,防止由于集流体变形导致活性物质层发生脱落,且易于实现对活性物质层的边缘部分进行保护,防止活性物质层在电池单体长期使用后发生脱落。
在一些实施例中,阳极极耳相对于阳极主体部沿第二方向引出,第二方向垂直于第一方向,阴极集流体的至少部分表面设置有阴极活性物质层;在第二方向上,阳极活性物质层超出阴极活性物质层。
该实施例能够在电极组件使用过程中,阴极极片的阴极活性物质层所在区域的锂离子穿过隔离件并嵌入相邻阳极极片的阳极活性物质层中,由于阳极活性物质层超出阴极活性物质层,可保证锂离子尽可能地嵌入阳极活性物质层中,降低析锂风险,同时也能使阴极活性物质层充分发挥作用。
在一些实施例中,加强层的强度超过阳极活性物质层的强度。
该实施例能够通过增加加强层自身的强度来提高阳极集流体或阴极集流体端部的强度,在满足强度要求的基础上,可尽量减小加强层的厚度,防止对相邻的极片产生影响,以免加强层的设置影响电极组件的重量,而且可尽量减小电极组件增加的重量。
在一些实施例中,加强层的材料包括粘接剂和陶瓷颗粒。
该实施例通过粘接剂和陶瓷颗粒形成加强层,粘接剂能使加强层与集流体或活性物质层之间具有较好的附着力,防止加强层脱落,而且陶瓷颗粒由于硬度较高,通过混合在粘接剂中能够增加强度。
在一些实施例中,加强层设置于阳极集流体,加强层包括第一加强段,第一加强段与阳极集流体的表面接触。
该实施例中通过直接在阳极集流体上位于阳极活性物质层的外端附着第一加强段,可增加阳极集流体位于阳极活性物质层外端区域的强度,在电极组件沿第二方向受到振动时,振动作用力会首先作用于第一加强段,从而对阳极活性物质层形成保护,并通过增加阳极集流体的端部强度,可减小阳极集流体的变形量,从而防止阳极活性物质层发生损坏或脱落,提高电池单体工作的安全性。
在一些实施例中,加强层还包括第二加强段,第二加强段与第一加强段连接,第二加强段覆设于阳极活性物质层的边缘区域,以使第二加强段通过阳极活性物质层设置 于阳极集流体。
该实施例通过同时设置第一加强段和第二加强段,能够增大加强层在第二方向上的尺寸,尽量提高阳极主体部端部的强度,减小阳极主体部的端部发生的变形量;而且,第一加强段沿第二方向位于阳极活性物质层的边缘区域,在电极组件沿第二方向受到振动时,振动作用力首先作用于第一加强段,不会直接作用于阳极活性物质层,且第二加强段可对阳极活性物质层沿第一方向的外侧形成保护,可对阳极活性物质层形成限位约束,防止阳极活性物质层由于拱起而脱落。由于第一加强段和第二加强段将阳极活性物质层靠近阳极极耳的端部整体包围,可优化增加强度的效果,极大地提高电极组件工作过程中的安全性。
在一些实施例中,在第一方向上,第一加强段的外表面不凸出于第二加强段的外表面。
该实施例考虑导第二加强段设置在阳极活性物质层的外表面,具有较大的厚度,而阳极极片为空箔区厚度较小,使第一加强段的外表面低于第二加强段的外表面,可使实现厚度过渡,减小应力集中。
在一些实施例中,阳极极耳相对于阳极主体部沿第二方向引出,第二方向垂直于第一方向,阴极集流体的至少部分表面设置有阴极活性物质层;在第二方向上,第二加强段的宽度尺寸b不超过第三距离a,第三距离a为在第二方向上,阴极活性物质层位于电极组件的阳极侧的边缘与阳极活性物质层位于电极组件的阳极侧的边缘之间的距离。
该实施例能够在充电过程中,阴极极片脱出的锂离子直接到达阳极活性物质层,以免加强层影响锂离子运动至阳极活性物质层进行附着的过程,防止出现析锂现象导致电池单体容量快速衰减,由此保证电池单体的性能,并提高使用安全性。
在一些实施例中,阳极集流体沿第一方向的两侧均设有阳极活性物质层,每侧的阳极活性物质层的外侧均设有第二加强段,两侧的阳极活性物质层外表面之间的第一距离d1与两侧的第二加强段外表面之间的第二距离d2之间满足如下关系:d1≤d2≤1.3*d1。
该实施例能够通过在两侧阳极活性物质层的外侧均设置第二加强段,能够对两侧的阳极活性物质层形成保护,提高阳极主体部端部的强度。而且,通过使第一距离d1和第二距离d2满足上述关系,使加强层的厚度与阳极极片主体区域的厚度匹配,既能使加强层的厚度满足增加强度的要求,还能防止加强层太厚使隔离件鼓起太多,甚至影响相邻的阴极极片,保证电极组件的性能;此外,可防止阳极极片在生产过程中成卷料转运和生产时出现卷料边缘鼓起的现象,避免阳极极片开裂。
在一些实施例中,加强层设置于阴极集流体,加强层全部与阴极集流体的表面接 触。
该实施例中通过直接在阴极集流体上位于阴极活性物质层的外端附着加强层,可增加阴极集流体位于阴极活性物质层外端区域的强度,当加强层在第二方向超出阳极活性物质层的端部时,可形成稳定的支撑作用。在电极组件沿第二方向受到振动时,振动作用力会首先作用于加强层,由加强层承受振动作用力,从而防止阳极集流体靠近阳极极耳的端部发生变形,对阳极活性物质层形成保护,从而防止阳极活性物质层发生损坏或脱落,提高电池单体工作的安全性。
在一些实施例中,阴极集流体的至少部分表面设置有阴极活性物质层,在第一方向上,加强层的外表面不凸出于阴极活性物质层的外表面。
该实施例考虑到为了避免析锂现象,阳极活性物质层在第二方向上超出阴极活性物质层,由此加强层与阳极活性物质层相邻设置,中间仅通过隔离件隔开,使加强层的外表面不凸出于阴极活性物质层的外表面,能够避免加强层对阳极活性物质层产生作用力,可防止阳极集流体和阴极集流体发生弯折导致活性物质脱落,提高电池单体工作的安全性。
在一些实施例中,阳极集流体和阴极集流体在阳极极耳的引出侧均设有加强层,阳极极耳相对于阳极主体部沿第二方向引出,第二方向垂直于第一方向,在第二方向上,阳极集流体上设置的加强层超出阴极集流体上设置的加强层。
该实施例通过同时在阳极集流体和阴极集流体靠近阳极极耳的区域设置加强层,一方面,能够提高阳极主体部靠近阳极极耳一端的自身强度,在电极组件沿第二方向受到振动时,即使振动作用力传递到阳极主体部端部,也因为阳极主体部端部强度的增加可减小变形量,从而减少阳极活性物质层损伤或脱落;另一方面,加强层超出阳极活性物质层可形成稳定的支撑结构,在电极组件沿第二方向受到振动时,加强层超出阳极活性物质层可形成稳定的支撑结构,防止振动作用传递到阳极主体部端部,防止阳极主体部发生变形而导致阳极活性物质层损伤或脱落。由此,此种结构能够最大程度低提高电池单体工作的安全性。
而且,在第二方向上,阳极集流体上设置的加强层超出阴极集流体上设置的加强层,在电极组件沿第二方向受到振动时,可优先通过阳极集流体上设置的加强层承受振动作用力,以便直接对阳极主体部的端部进行保护,在振动力较大时,再通过阴极集流体上设置的加强层起到支撑作用,以提高电极组件的抗压强度要求。
根据本申请的第二方面,提供了一种电池单体,包括:
壳体,具有开口;
上述实施例的电极组件,设在壳体内;和
端盖组件,用于封闭开口。
根据本申请的第三方面,提供了一种电池,包括:
箱体组件;和
上述实施例的电池单体,电池单体设在箱体组件内。
根据本申请的第四方面,提供了一种用电装置,包括包括上述实施例的电池单体,电池单体用于为用电装置提供电能;或上述实施例的电池,电池用于为用电装置提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请将电池安装于车辆的一些实施例的结构示意图。
图2为本申请电池的一些实施例的分解图。
图3为本申请电池单体的一些实施例的外形图。
图4为本申请电池单体的一些实施例的分解图。
图5为本申请电池单体中电极组件的一些实施例的结构示意图。
图6为本申请第一实施例的电极组件阳极侧的剖视图。
图7为本申请第二实施例的电极组件阳极侧的剖视图。
图8为本申请第三实施例的电极组件阳极侧的剖视图。
图9为本申请一些实施例的电极组件阴极侧的剖视图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1、阳极极片;11、阳极集流体;111、阳极主体部;112、阳极极耳;12、阳极活性物质层;13、加强层;131、第一加强段;132、第二加强段;
2、阴极极片;21、阴极集流体;211、阴极主体部;212、阴极极耳;22、阴极活性物质层;23、绝缘层;
3、隔离件;
100、电极组件;100’、电极主体;K、卷绕轴线;x、第一方向;y、第二方向;
200、电池单体;210、壳体;211、开口;220、端盖组件;221、端盖本体;222、电极端子;230、阳极连接件;240、阴极连接件;
300、电池;301、箱体组件;301A、容纳部;301B、第一盖体;301C、第二盖体;
400、车辆;401、车桥;402、车轮;403、马达;404、控制器。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请采用了“上”、“下”、“顶”、“底”、“前”、“后”、“内”和“外”等指示的方位或位置关系的描述,这仅是为了便于描述本申请,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。
此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一些实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分 成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
目前的电池单体通常包括壳体和容纳于壳体内的电极组件,并在壳体内填充电解质。电极组件主要由极性相反的第一极片和第二极片层叠或卷绕形成,并且通常在第一极片与第二极片之间设有隔膜。第一极片和第二极片涂覆有活性物质的部分构成电极组件的电极主体,第一极片和第二极片未涂覆活性物质的部分各自构成第一极耳和第二极耳。在锂离子电池中,第一极片可以为阴极极片,包括阴极集流体和设于阴极集流体两侧的阴极活性物质层,阴极集流体的材料例如可以为铝,阴极活性物质例如可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等;第二极片可以为阳极极片,包括阳极集流体和设于阳极集流体两侧的阳极活性物质层,阳极集流体的材料例如可以为铜,阳极活性物质例如可以为石墨或硅等。或者,第一极片可以为阳极极片,第二极片为阴极极片。第一极耳和第二极耳可以共同位于主体部的一端或是分别位于电极主体的两端。在电池单体的充放电过程中,阴极活性物质和阳极活性物质与电解液发生反应,极耳连接端子以形成电流回路。
目前的电池在使用过程中,会出现安全性较差的问题,发明人通过研究发现,目前的圆柱形电池单体中,阳极极耳和阴极极耳分别从电极主体的两端引出,然后通过揉平工艺处理后与集流件焊接。当圆柱形电池作为动力电池应用于车辆中时,由于车辆在行驶过程中会发生颠簸和振动,此时电极组件也会随之发生上下振动,从而受到向上或向下的挤压力。对于阳极极耳一侧,在电极组件上下振动时,与阳极极耳连接的集流体会被压弯,严重时会产生屈服变形,接着外力通过集流体传导至阳极极片,使阳极极片产生轻微压弯,在长期使用之后,阳极极片产生折弯,致使活性物质层损伤甚至脱落。
由于圆柱形电池在循环过程中,阳极极片中的锂离子会向极片沿宽度方向的两端扩散,当阳极极片的阳极活性物质出现损伤或者脱落时,锂离子可能在阳极活性物质脱落区域析出,引发安全风险。
为了解决上述问题,发明人想到,若要提到电池单体工作安全性,需要减小阳极极片在靠近阳极极耳一侧的变形程度,从而避免阳极活性物质发生损伤或脱落。
基于这一改进思路,本申请提出了一种电极组件,包括:沿阳极方向叠加设置的阳极极片和阴极极片。其中,阳极极片包括阳极集流体和阳极活性物质层,阳极集流体包括阳极主体部和从阳极主体部引出的阳极极耳,阳极活性物质层设置于阳极主体部的至少部分表面;阴极极片包括阴极集流体;其中,阳极集流体和阴极集流体中的至少一个在阳极极耳的引出侧设有加强层。
由于阳极集流体和阴极集流体中的至少一个在阳极极耳的引出侧设有加强层,能 够提高阳极极片或阴极极片在阳极极耳引出侧的强度,这样在电极组件发生上下振动时,可防止阳极集流体被压弯,从而减少阳极活性物质损伤或脱落,提高电池单体在使用过程中的安全性。
本申请实施例的电池单体适用于电池以及使用这种电池单体的用电装置,电池也适用于用电装置。
用电装置可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
如图1所示,用电装置可以是车辆400,例如新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;或者用电装置也可以是无人机或轮船等。具体地,车辆400可包括车桥401、连接于车桥401的车轮402、马达403、控制器404和电池300,马达403用于驱动车桥401转动,控制器404用于控制马达403工作,电池300可以设置在车辆400的底部、头部或尾部,用于为马达403以及车辆中其它部件的工作提供电能。
如图2所示,电池300包括箱体组件301和电池单体200。在电池300中,电池单体200可以是一个,也可以是多个。若电池单体200为多个,多个电池单体200之间可串联或并联或混联,混联是指多个电池单体200中既有串联又有并联,可以是多个电池单体200先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体组件301内。也可以是所有电池单体200之间直接串联或并联或混联在一起,再将所有电池单体200构成的整体容纳于箱体组件301内。
其中,箱体组件301既可以是电池包的一部分,箱体组件301可拆卸地安装于用电装置;或者,箱体组件301也可以是用电装置中的结构件形成的用于容纳电池单体200的空间,例如,电池单体200用于车辆400时,箱体组件301为车架形成的用于容纳电池单体200的空间。
箱体组件301内部中空,用于容纳一个或多个电池单体200,根据所容纳电池单体200的形状、数量、组合方式以及其他要求,箱体组件301也可以具有不同形状的尺寸。例如,箱体组件301可包括:容纳部301A、第一盖体301B和第二盖体301C,容纳部301A相对的两端均具有开口,第一盖体301B和第二盖体301C分别用于封闭容纳部301A 的两端开口,图2中根据多个电池单体200的排列方式,容纳部301A呈矩形筒状结构。
电池单体200例如可以为锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池等。
图3为电池单体200的一些实施例的外形示意图。电池单体200包括壳体210和端盖组件220,壳体210具有开口211,端盖组件220封闭开口211,并与壳体210连接形成电池单体200的外壳。端盖组件220包括端盖本体221和电极端子222,电极端子222设在端盖本体221上。图3中示意出了圆柱形电池单体200,后续实施例也将也圆柱形电池单体200为例进行说明,当然本申请的电池单体200也可以是扁平体、长方体或其它形状等。
图4为电池单体200的一些实施例的分解图。电池单体200还包括电极组件100、阳极连接件230和阴极连接件240。电极组件100上在壳体210内,且壳体210内填充电解液。根据实际使用需求,电极组件100可设置为单个或多个。电极组件100由阳极极片和阴极极片层叠或卷绕形成,并且通常在阳极极片和阴极极片之间设有隔离件。图4中的电极组件100卷绕形成圆柱形,或者也可形成扁平状。阳极极片和阴极极片各自的涂覆部分构成电极组件100的电极主体100’,阳极极片和阴极极片未涂覆的部分各自构成阳极极耳112和阴极极耳212。
阳极极耳112可通过阳极连接件230与壳体210电连接,壳体210作为阳极输出极;阴极极耳212可通过阴极连接件240电极端子222电连接,电极端子222作为阴极输出极。可选地,壳体210的两端均设有开口211,且两端的开口211均通过端盖组件220封闭,每个端盖组件220上均设有一个电极端子222,阳极极耳112和阴极极耳212分别与相应侧的电极端子222电连接。
图5为图4中电极组件的一些实施例的主视图。阳极极耳112和阴极极耳212可从电极主体100’沿卷绕轴线K的两端分别引出,或者也可电极主体100’沿卷绕轴线K的同端引出。下面将详细描述电极组件100的结构。
在一些实施例中,如图6至图8所示,电极组件100包括阳极极片1和阴极极片2。阳极极片1包括阳极集流体11和阳极活性物质层12,阳极集流体11包括阳极主体部111和从阳极主体部111引出的阳极极耳112,阳极活性物质层12设置于阳极主体部111的至少部分表面;阴极极片2,与阳极极片1沿第一方向x叠加设置,阴极极片2包括阴极集流体21。其中,阳极集流体11和阴极集流体21中的至少一个在阳极极耳112的引出侧设有加强层13。
其中,阳极极片1和阴极极片2均可采用长条带状结构。阴极极片2与阳极极片1 沿第一方向x叠加设置,第一方向x可以为阳极极片1或阴极极片2的厚度方向。电极组件100还可包括隔离件3,用于将阳极极片1和阴极极片2隔开,以实现阳极极片1和阴极极片2的绝缘。例如,阳极极片1和阴极极片2和隔离件3可绕卷绕轴线K卷绕形成卷绕结构,隔离件3位于阳极极片1和阴极极片2之间。可选地,电极组件100也可采用叠片结构。
对于卷绕结构的电极组件100,第一方向x可以为阴极极片2与阳极极片1叠加的方向,或者为阴极极片2或阳极极片1表面的法向,对于阴极极片2和阳极极片1沿卷绕方向的不同位置,第一方向x会随卷绕方向的变化而改变。对于圆柱形的电极组件100,第一方向x为圆弧形阴极极片2或阳极极片1的法向;对于扁平状的电极组件100,此种结构图中未示出,对于扁平段,第一方向x为垂直于扁平段的方向,对于圆弧段,第一方向x为圆弧段的法向。
阳极极耳112相对于阳极主体部111沿第二方向y引出,其中,第二方向y为单向方向,第二方向y为阳极极耳112的引出方向。阳极极耳112可设在阳极主体部111沿第二方向y的端部,第二方向y垂直于第一方向x,第二方向y与阳极极片1或阴极极片2的宽度方向一致。可选地,阳极主体部111引出的阳极极耳112可沿阳极极片1的长度方向连续延伸,不进行冲切,形成全极耳;或者在连续极耳的基础上进行冲切,以在阳极极片1的长度方向上形成锯齿状结构,冲切位置可与阳极极耳112与阳极主体部111连接的位置重合,也可相对于阳极极耳112与阳极主体部111连接的位置沿第二方向y偏移预设距离。
例如,阳极集流体11可采用铜,阳极活性物质层12可以为石墨或硅等,可采用涂覆、喷涂等方式附着于阳极集流体11。
阴极极片2包括阴极集流体21和阴极活性物质层22,阴极集流体21包括阴极主体部211和从阴极主体部211引出的阴极极耳212,阴极活性物质层22设置于阳极主体部111的至少部分表面。阴极主体部211引出的阴极极耳212可沿阴极极片2的长度方向也可连续延伸,或者呈锯齿状结构。阴极极片2可设在阴极主体部211沿第二方向y的端部,并沿第二方向y引出。例如,阴极集流体21可采用铝,阴极活性物质层22可采用钴酸锂、磷酸铁锂、三元锂或锰酸锂等,可采用涂覆、喷涂等方式附着于阴极集流体21。
加强层13可单独设在阳极集流体11上,或者单独设在阴极集流体21上,或者同时设在阳极集流体11和阴极集流体21上。设在阳极集流体11上的加强层13可设在阳极主体部111上,设在阴极集流体21上的加强层13可设在阴极主体部211上。
加强层13用于增加阳极集流体11或阴极集流体21沿第二方向y靠近阳极极耳112 一端的强度,以减小阳极集流体11的变形量,从而减少阳极活性物质层12损坏或脱落。设在阳极集流体11上的加强层13用于增加阳极主体部111靠近阳极极耳112一端的自身强度,以减小阳极集流体11的变形量;设在阴极集流体21上的加强层13用于通过提高阴极主体部211靠近阳极极耳112一端的自身强度,以提供稳定的支撑力保护阳极集流体11减小变形量。
该实施例由于阳极集流体11和阴极集流体21中的至少一个在阳极极耳112的引出侧设有加强层13,能够提高阳极极片1和/或阴极极片2在阳极极耳112的引出侧的强度,这样在电极组件100受到外力发生上下振动时,可减小阳极主体部111靠近阳极极耳112的端部的变形量,防止阳极主体部111被压弯,从而减少阳极活性物质层12损伤或脱落,在电池单体200循环过程中阳极极片1中的锂离子向两侧扩散时,可防止锂离子在阳极活性物质层12所在区域析出,提高电池单体200在使用过程中的安全性。
在一些实施例中,阳极极耳112相对于阳极主体部111沿第二方向y引出,第二方向y垂直于第一方向x;在第二方向y上,加强层13超出阳极活性物质层12。
其中,在第二方向y上,加强层13靠近阳极极耳112的外端超出阳极活性物质层12靠近阳极极耳112的外端。
如图6所示,对于设在阳极集流体11上的加强层13,加强层13的至少部分设置在阳极主体部111上,且在第二方向y处于阳极活性物质层12的外端,以提高阳极主体部111靠近阳极极耳112一端的自身强度,在电极组件100沿第二方向y受到振动时,即使振动作用力传递到阳极主体部111端部,也因为阳极主体部111端部强度的增加可减小变形量,并使加强层13首先阳极极耳112传递的作用力,防止阳极主体部111发生变形而导致阳极活性物质层12损伤或脱落。
如图7所示,对于设在阴极集流体21上的加强层13,在第二方向y上,加强层13靠近阳极极耳112的外端超出阳极活性物质层12靠近阳极极耳112的外端,以便在电极组件100沿第二方向y受到振动时,加强层13超出阳极活性物质层12可形成稳定的支撑结构,使加强层13首先阳极极耳传递的作用力,防止振动作用传递到阳极主体部111端部,防止阳极主体部111发生变形而导致阳极活性物质层12损伤或脱落。可选地,设在阴极集流体21上的加强层13也可不超过阳极活性物质层12,也能缩短阳极主体部111悬臂部分的长度,从而起到一定的减小阳极主体部111端部变形的效果。
该实施例使加强层13在第二方向y上超出阳极活性物质层12,在电极组件100受到外力发生上下振动时,能够使加强层13首先承受阳极极耳112传递的作用力,以对阳极活性物质层12靠近阳极极耳112的部分起到保护作用,从而减小阳极主体部111靠近阳 极极耳112的端部的变形量,防止阳极主体部111被压弯,从而减少阳极活性物质层12损伤或脱落,提高电池单体200工作时的安全性。
在一些实施例中,阴极集流体21的至少部分表面设置有阴极活性物质层22;设置于阳极集流体11上的加强层13与阳极活性物质层12连接,和/或设置于阴极集流体21上的加强层13与阴极活性物质层22连接。
其中,“连接”是指加强层13与活性物质层具有接触部分,以使加强层13与活性物质层形成一体的层结构。活性物质层可以是阳极活性物质层12,也可以是阴极活性物质层22;例如,加强层13与阳极活性物质层12或阴极活性物质层22沿第二方向y的端面连接;和/或加强层13与阳极活性物质层12或阴极活性物质层22沿着第一方向x的侧面连接。可选地,为了实现加强层13与活性物质层连接,可以在涂覆或喷涂加强层13时与活性物质层的边缘接触,或者包覆活性物质层的边缘。
该实施例将加强层13与活性物质层连接,使加强层13与活性物质层形成整体结构,可增加阳极集流体11或阴极集流体21靠近阳极极耳112一端的强度,提高加固效果。活性物质层可以是阳极活性物质层12,也可以是阴极活性物质层22。可选地,加强层13与活性物质层之间也可保留预设间隙,使加强层13与活性物质层之间相互独立。
在一些实施例中,阳极极耳112相对于阳极主体部111沿第二方向y引出,第二方向y垂直于第一方向x;在第二方向y上,加强层13不超出阳极极耳112自由端的边缘。
如图6所示,在第二方向y上,设在阳极集流体11上的加强层13不超过阳极集流体11的边缘,即加强层13不超出阳极极耳112的自由端边缘,以使阳极集流体11沿第二方向y位于加强层13外侧的未涂覆部分形成阳极极耳112。其中,阳极极耳112的自由端是指沿第二方向y,阳极极耳112远离阳极主体部111的一端。
如图7所示,在第二方向y上,设在阴极集流体21上的加强层13不超过阳极集流体11的边缘,即加强层13不超出阳极极耳112的边缘,以便在第二方向y上为阳极极耳112留出可供弯折的长度,从而在与阳极连接件230焊接时进行揉平处理。
该实施例使加强层13在第二方向y上不超出阳极极耳112自由端的边缘,既能为阳极极耳112留出足够的电连接长度,还能为阳极极耳112留出可供弯折的长度,从而在与阳极连接件230焊接时进行揉平处理,由此可保证阳极极耳112与阳极连接件230电连接的可靠性,从而减小设置加强层13对电池单体200工作性能的影响。而且,还能避免设置加强层13增加电极组件100的高度,并保证电池单体200的容量不受影响。
在一些实施例中,电极组件100还包括隔离件3,隔离件3用于将阳极极片1和阴 极极片2隔开,阳极极耳112相对于阳极主体部111沿第二方向y引出,第二方向y垂直于第一方向x,阴极集流体21的至少部分表面设置有阴极活性物质层22;在第二方向y上,隔离件3的边缘超过阳极活性物质层12的边缘和阴极活性物质层22的边缘,加强层13不超过隔离件3位于电极组件100的阳极侧的边缘。
其中,隔离件3可以为隔膜,卷绕结构被展平后,隔离件3可以为长条带状结构。如,隔离件3包括隔膜基层和功能层,隔膜基层可以是聚丙烯、聚乙烯、乙烯—丙烯共聚物、聚对苯二甲酸丁二醇酯等的至少一种,功能层可以是陶瓷氧化物和粘结剂的混合物层。
如图6所示,在第二方向y上,加强层13超出阳极活性物质层12端面的距离为c,阳极活性物质层12的端面与隔离件3的边缘之间的距离为e,c<e。
该实施例通过使加强层13不超过隔离件3位于电极组件100的阳极侧的边缘,进一步为阳极极耳112留出足够的电连接长度,并为阳极极耳112留出可供弯折的长度,从而在与阳极连接件230焊接时进行揉平处理,由此可保证阳极极耳112与阳极连接件230电连接的可靠性,从而减小设置加强层13对电池单体200工作性能的影响。而且,还能避免设置加强层13增加电极组件100的高度,并保证电池单体200的容量不受影响。
在一些实施例中,如图9所示,阴极集流体21包括阴极主体部211和从阴极主体部211引出的阴极极耳212,阳极极耳112和阴极极耳212的引出方向相反。
例如,在第二方向y上,阳极极耳112和阴极极耳212可从电极主体100’的两端分别引出。对于圆柱形电池单体200,电池单体200端部面积较小,如果在同一端设置两个极性相反的电极端子222,再加上需要设置泄压部件或其它电连接部件,会导致布局困难,将阳极极耳112和阴极极耳212从相反的方向引出,可降低电池单体200内部的结构复杂程度,且易于布局。
该实施例使阳极极耳112和阴极极耳212以相反的方向引出,若在阳极集流体11上设置加强层13,可避免加强层13沿第一方向x出现凸出或不平对阴极极耳212和阴极活性物质层22产生影响,以免加强层13影响电池单体200的性能,允许增加加强层13的厚度,并降低对加强层13尺寸精度的要求;若在阴极集流体21上设置加强层13,由于阴极极耳212设置在远离阳极极耳112的一侧,可通过延长阴极集流体21在第二方向y的宽度设置加强层13对阳极主体部111的端部提高支撑。因此,此种结构更容易设置加强层13,且能够起到更优的放置阳极主体部111端部变形的效果。
在一些实施例中,阴极集流体21的至少部分表面设置有阴极活性物质层22;阳极集流体11至少在设有阳极活性物质层12的侧面上设置加强层13,和/或阴极集流体21 至少在设有阴极活性物质层22的侧面上设置加强层13。
例如,在第一方向x上,阳极集流体11在单侧设置阳极活性物质层12,加强层13至少设在阳极集流体11设有阳极活性物质层12的一侧,阳极集流体11未设有阳极活性物质层12的一侧可选择地设置加强层13。阴极集流体21在单侧设置阴极活性物质层22,加强层13至少设在阴极集流体21设有阴极活性物质层22的一侧,阴极集流体21未设有阴极活性物质层22的一侧可选择地设置加强层13。
例如,阳极集流体11在两侧均设置阳极活性物质层12,加强层13也可设在阳极集流体11的两侧,以达到较优的增加强度的效果,或者加强层13可选择地设在阳极集流体11的任意一侧。阴极集流体21在两侧均设置阴极活性物质层22,加强层13也可设在阴极集流体21的两侧,以达到较优的增加强度的效果,或者加强层13可选择地设在阴极集流体21的任意一侧。
可选地,在第一方向x上,加强层13与活性物质层也可位于集流体的异侧。集流体可以是指阳极集流体11,也可以是指阴极集流体21。对于的活性物质层是指设置于阳极集流体11上的阳极活性物质层12,或阴极集流体21上的阴极活性物质层22。
该实施例至少在集流体设有活性物质层的侧面上设置加强层13,易于实现加强层13与活性物质层连接,可强化增加集流体端部强度的效果,防止由于集流体变形导致活性物质层发生脱落,且易于实现对活性物质层的边缘部分进行保护,防止活性物质层在电池单体200长期使用后发生脱落。
在一些实施例中,阳极极耳112相对于阳极主体部111沿第二方向y引出,第二方向y垂直于第一方向x,阴极集流体21的至少部分表面设置有阴极活性物质层22;在第二方向y上,阳极活性物质层12超出阴极活性物质层22。
该实施例能够在电极组件100使用过程中,阴极极片2的阴极活性物质层22所在区域的锂离子穿过隔离件3并嵌入相邻阳极极片1的阳极活性物质层12中,由于阳极活性物质层12超出阴极活性物质层22,可保证锂离子尽可能地嵌入阳极活性物质层12中,降低析锂风险,同时也能使阴极活性物质层22充分发挥作用。
在一些实施例中,加强层13的强度超过阳极活性物质层12的强度。
其中,此处的“强度”主要是指涂层结构的内聚强度,即涂层结构本身的强度,强度与涂层的化学成分、涂层内的残余应力、涂层内的晶粒的尺寸、涂层的孔隙率和涂层结构的均匀性等因素相关,其单位为帕,即Pa。实际中,可采用现有技术中任意已知的方式测量涂层结构的内聚强度。
该实施例能够通过增加加强层13自身的强度来提高阳极集流体11或阴极集流体 21端部的强度,在满足强度要求的基础上,可尽量减小加强层13的厚度,防止对相邻的极片产生影响,以免加强层13的设置影响电极组件100的重量,而且可尽量减小电极组件100增加的重量。
在一些实施例中,加强层13的材料包括粘接剂和陶瓷颗粒。
其中,粘接剂可以包括环氧树脂、丙烯酸酯、丁苯橡胶、聚四氟乙烯和聚偏氟乙烯中的至少一种;陶瓷颗粒可以包括勃姆石、氧化铝、氧化硅和氧化锆中的至少一种。可选地,加强层13种还可以含有少量的颜色识别剂,例如导电炭或普鲁士蓝等。干燥后加强层13的厚度可以为0.01mm~0.1mm,加强层13应具备良好的韧性和强度,以免在卷绕和弯折后不会脱落。
该实施例通过粘接剂和陶瓷颗粒形成加强层13,粘接剂能使加强层13与集流体或活性物质层之间具有较好的附着力,防止加强层13脱落,而且陶瓷颗粒由于硬度较高,通过混合在粘接剂中能够增加强度。
在第一实施例中,如图6所示,加强层13设置于阳极集流体11,加强层13包括第一加强段131,第一加强段131与阳极集流体11的表面接触。
其中,第一加强段131直接附着在阳极集流体11,具体地可设在阳极主体部111上,在第二方向y上,第一加强段131可位于阳极活性物质层12与阳极极耳112之间,第一加强段131与阳极活性物质层12在第二方向y上连接。
该实施例中通过直接在阳极集流体11上位于阳极活性物质层12的外端附着第一加强段131,可增加阳极集流体11位于阳极活性物质层12外端区域的强度,在电极组件100沿第二方向y受到振动时,振动作用力会首先作用于第一加强段131,从而对阳极活性物质层12形成保护,并通过增加阳极集流体11的端部强度,可减小阳极集流体11的变形量,从而防止阳极活性物质层12发生损坏或脱落,提高电池单体200工作的安全性。
在一些实施例中,如图6所示,加强层13还包括第二加强段132,第二加强段132与第一加强段131连接,第二加强段132覆设于阳极活性物质层12的边缘区域,以使第二加强段132通过阳极活性物质层12设置于阳极集流体11。
其中,第二加强段132与第一加强段131可一体形成。在第一方向x上,第二加强段132的厚度可小于第一加强段131的厚度,由于第二加强段132覆盖在阳极活性物质层12的边缘区域,为其设计较薄的厚度可减小对隔离件3以及相邻阴极极片2的影响。此外,由于第二加强段132与隔离件3直接接触,可将第二加强段132设计为厚度均匀的层结构。
该实施例通过同时设置第一加强段131和第二加强段132,能够增大加强层13在 第二方向y上的尺寸,尽量提高阳极主体部111端部的强度,减小阳极主体部111的端部发生的变形量;而且,第一加强段131沿第二方向y位于阳极活性物质层12的端部,在电极组件100沿第二方向y受到振动时,振动作用力首先作用于第一加强段131,不会直接作用于阳极活性物质层12,且第二加强段132可对阳极活性物质层12沿第一方向x的外侧形成保护,可对阳极活性物质层12形成限位约束,防止阳极活性物质层12由于拱起而脱落。由于第一加强段131和第二加强段132将阳极活性物质层12靠近阳极极耳112的端部整体包围,可优化增加强度的效果,极大地提高电极组件100工作过程中的安全性。
在一些实施例中,如图6所示,在第一方向x上,第一加强段131的外表面不凸出于第二加强段132的外表面。
该实施例考虑导第二加强段132设置在阳极活性物质层12的外表面,具有较大的厚度,而阳极极耳112为空箔区厚度较小,使第一加强段131的外表面不凸出于第二加强段132的外表面,可使实现厚度过渡,减小应力集中。
在一些实施例中,如图6所示,阳极极耳112相对于阳极主体部111沿第二方向y引出,第二方向y垂直于第一方向x,阴极集流体21的至少部分表面设置有阴极活性物质层22;在第二方向y上,第二加强段132的宽度尺寸b不超过第三距离a,第三距离a为在第二方向y上,阴极活性物质层22位于电极组件100的阳极侧的边缘与阳极活性物质层12位于电极组件100的阳极侧的边缘之间的距离。
其中,b≤a。为了达到更优的效果,b≤0.8a。因为当b>a时,充电过程中阴极极片2脱出的锂离子会绕过加强层13在阳极活性物质层12和第二加强段132的交界位置析出,析锂后会导致容量快速衰减,甚至引发安全问题。可选地,a在0.3mm~3mm之间,b在0~1.5mm之间。
该实施例能够在充电过程中,阴极极片2脱出的锂离子直接到达阳极活性物质层12,以免加强层13影响锂离子运动至阳极活性物质层12进行附着的过程,防止出现析锂现象导致电池单体200容量快速衰减,由此保证电池单体200的性能,并提高使用安全性。
在一些实施例中,阳极集流体11沿第一方向x的两侧均设有阳极活性物质层12,每侧的阳极活性物质层12的外侧均设有第二加强段132,两侧的阳极活性物质层12外表面之间的第一距离d1与两侧的第二加强段132外表面之间的第二距离d2之间满足如下关系:d1≤d2≤1.3*d1。
为了达到较优的效果,d1≤d2≤1.1*d1。当d2>1.3*d1时,阳极极片1中设置的加强层13的总厚度远超过阳极极片1主体区域的厚度,这样会导致阳极极片1在生产过程中成卷料转运和生产时出现卷料边缘鼓起的现象,导致阳极极片1开裂。
该实施例能够通过在两侧阳极活性物质层12的外侧均设置第二加强段132,能够对两侧的阳极活性物质层12形成保护,提高阳极主体部111端部的强度。而且,通过使第一距离d1和第二距离d2满足上述关系,使加强层13的厚度与阳极极片1主体区域的厚度匹配,既能使加强层13的厚度满足增加强度的要求,还能防止加强层13太厚使隔离件3鼓起太多,甚至影响相邻的阴极极片2,保证电极组件100的性能;此外,可防止阳极极片1在生产过程中成卷料转运和生产时出现卷料边缘鼓起的现象,避免阳极极片1开裂。
在第二实施例中,如图7所示,加强层13设置于阴极集流体21,加强层13全部与阴极集流体21的表面接触。
其中,加强层13可以为厚度均匀的层结构。加强层13可在第二方向y超出阳极活性物质层12的端部,且不超出隔离件3的端部。
如图7所示,在第二方向y上,阴极活性物质层22端面与加强层13端面之间的距离为g,阴极活性物质层22端面与隔离件3端面之间的距离为f,阳极活性物质层12端面与阴极活性物质层22之间的距离为a,g与a和f满足如下关系:a≤g≤f。当g<a时,加强层13对阳极活性物质层12的保护作用较小,g>f时会影响电池单体200的容量。
该实施例中通过直接在阴极集流体21上位于阴极活性物质层22的外端附着加强层13,可增加阴极集流体21位于阴极活性物质层22外端区域的强度,当加强层13在第二方向y超出阳极活性物质层12的端部时,可形成稳定的支撑作用。在电极组件100沿第二方向y受到振动时,振动作用力会首先作用于加强层13,由加强层13承受振动作用力,从而防止阳极集流体11靠近阳极极耳112的端部发生变形,对阳极活性物质层12形成保护,从而防止阳极活性物质层12发生损坏或脱落,提高电池单体200工作的安全性。
在一些实施例中,阴极集流体21的至少部分表面设置有阴极活性物质层22,在第一方向x上,加强层13的外表面不凸出于阴极活性物质层22的外表面。
该实施例考虑到为了避免析锂现象,阳极活性物质层12在第二方向y上超出阴极活性物质层22,由此加强层13与阳极活性物质层12相邻设置,中间仅通过隔离件3隔开,使加强层13的外表面不凸出于阴极活性物质层22的外表面,能够避免加强层13对阳极活性物质层12产生作用力,可防止阳极集流体11和阴极集流体21发生弯折导致活性物质脱落,提高电池单体200工作的安全性。
在一些实施例中,如图8所示,阳极集流体11和阴极集流体21在阳极极耳112的引出侧均设有加强层13,阳极极耳112相对于阳极主体部111沿第二方向y引出,第二方向y垂直于第一方向x,在第二方向y上,阳极集流体11上设置的加强层13超出阴极集 流体21上设置的加强层13。
其中,阳极集流体11设置加强层13的具体结构、阴极集流体21设置加强层13的具体结构均可参考上述实施例的描述。
该实施例通过同时在阳极集流体11和阴极集流体21靠近阳极极耳112的区域设置加强层13,一方面,能够提高阳极主体部111靠近阳极极耳112一端的自身强度,在电极组件100沿第二方向y受到振动时,即使振动作用力传递到阳极主体部111端部,也因为阳极主体部111端部强度的增加可减小变形量,从而减少阳极活性物质层12损伤或脱落;另一方面,加强层13超出阳极活性物质层12可形成稳定的支撑结构,在电极组件100沿第二方向y受到振动时,加强层13超出阳极活性物质层12可形成稳定的支撑结构,防止振动作用传递到阳极主体部111端部,防止阳极主体部111发生变形而导致阳极活性物质层12损伤或脱落。由此,此种结构能够最大程度低提高电池单体200工作的安全性。
而且,在第二方向y上,阳极集流体11上设置的加强层13超出阴极集流体21上设置的加强层13,在电极组件100沿第二方向y受到振动时,可优先通过阳极集流体11上设置的加强层13承受振动作用力,以便直接对阳极主体部111的端部进行保护,在振动力较大时,再通过阴极集流体21上设置的加强层13起到支撑作用,以提高电极组件100的抗压强度要求。
下面给出电极组件100的一些具体实施例。
如图5至图9所示,圆柱形的电极组件100包括电极主体100’、阳极极耳112和阴极极耳212,阳极极耳112和阴极极耳212分别从电极主体100’的两端引出。阳极极片1和阴极极片2沿第一方向x以多层间隔交替设置,阳极极片1和阴极极片2之间通过隔离件3隔开。
阳极极片1包括阳极集流体11和阳极活性物质层12,阳极集流体11包括阳极主体部111和从阳极主体部111引出的阳极极耳112,阳极活性物质层12设置于阳极主体部111的至少部分表面。
阴极极片2包括阴极集流体21和阴极活性物质层22,阴极集流体21包括阴极主体部211和从阴极主体部211引出的阴极极耳212,阴极活性物质层22设置于阴极主体部211的至少部分表面。
如图6至图8所示,在第二方向y上,阳极活性物质层12超出阴极活性物质层22的距离为a,在电极组件100沿第二方向y受到振动作用时,会通过阳极连接件230直接传递到阳极主体部111和阳极活性物质层12靠近阳极极耳112的一端,可能造成阳极主体部111弯曲使阳极活性物质层12脱落。为此,阳极主体部111和阴极主体部211的至少一 个在靠近阳极极耳112的端部设有加强层13。
在第一实施例中,如图6所示,加强层13设在阳极集流体11上,具体地设在阳极主体部111靠近阳极极耳112的端部。阳极主体部111沿第一方向x的两侧均设有阳极活性物质层12,为此,阳极主体部111沿第一方向x的两侧均设有加强层13。在第二方向y上,加强层13的端面不超过隔离件3的边缘,加强层13以外的未涂覆区形成阳极极耳112;在第二方向y的反方向,加强层13不超过阴极活性物质层22的端面。阳极集流体11每一侧的加强层13均包括相互连接的第一加强段131和第二加强段132,第一加强段131直接设在阳极主体部111上,且在第二方向y上与阳极活性物质层12连接;第二加强段132覆设在阳极活性物质层12外表面的边缘区域,第一加强段131和第二加强段132在连接处设有渐缩结构,且渐缩结构位于阳极活性物质层12沿第二方向y端部的外侧,以便在第一方向x上,使第一加强段131的外表面低于第二加强段132。
对于卷绕结构的电极组件100,阳极极片1在整个卷绕长度方向上均设有加强层13,对于叠片结构的电极组件100,每片阳极极片1均设有加强层13。
在第二实施例中,如图7所示,加强层13设在阴极集流体21上,具体地设在阴极主体部212靠近阴极极耳212的端部。阴极主体部211沿第一方向x的两侧均设有阴极活性物质层22,为此,阴极主体部211沿第一方向x的两侧均设有加强层13。在第二方向y上,加强层13的端面超过阳极活性物质层12的端面,且不超过隔离件3的边缘。在第一方向x上,加强层13的外表面低于阴极活性物质层22的外表面。
在第三实施例中,如图8所示,阳极集流体11和阴极集流体21上均设有加强层13,每个集流体上加强层13的设置方式可参考第一实施例和第二实施例。例如,在第二方向y上,阳极集流体11的加强层13的端面可超出阴极集流体21的加强层13的端面;或者,阴极集流体21的加强层13的端面超出阳极集流体11的加强层13的端面,或者两者的端面平齐。
图9示意图出了电极组件100在阴极极耳212一侧的结构示意图,此种设置方式同时适用于上述任意实施例。在第二方向y上,阴极集流体21靠近阴极极耳212的一端设有绝缘层23,具体地,绝缘层23设在阴极主体部211的表面上,且在第二方向y上位于阴极活性物质层22和阴极极耳212之间。
可选地,在第二方向y上,阳极活性物质层12的端面超出阴极活性物质层22的端面,绝缘层23与阴极活性物质层22连接,且绝缘层23的端面超出阳极活性物质层12。
可选地,在第二方向y上,绝缘层23的端面不超出隔离件3的边缘,以便为阴极极耳212留出足够的电连接长度,并减少对电池单体200容量的影响。
可选地,阴极集流体21沿第一方向x的两侧均设有阴极活性物质层22,相应地,阴极集流体21沿第一方向x的两侧也均设有绝缘层23。
例如,所述绝缘物质包括无机填料和粘接剂。无机填料包括勃姆石、氧化铝、氧化镁、二氧化钛、氧化锆、二氧化硅、碳化硅、碳化硼、碳酸钙、硅酸铝、硅酸钙、钛酸钾、硫酸钡中的一种或几种。粘结剂包括聚偏氟乙烯、聚丙烯腈、聚丙烯酸、聚丙烯酸酯、聚丙烯酸-丙烯酸酯、聚丙烯腈-丙烯酸、聚丙烯腈-丙烯酸酯中的一种或几种。
该实施例通过在阴极主体部211上设置绝缘层23,并使阳极活性物质层12沿第二方向y靠近阴极极耳212的一端位于绝缘层23所在区域内,能够在满足阳极活性物质层12沿第二方向y的反方向超出相邻的阴极活性物质层22的基础上,降低金属屑刺破隔离件3后阳极极片1和阴极极片2发生短路的风险。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (21)

  1. 一种电极组件(100),包括:
    阳极极片(1),包括阳极集流体(11)和阳极活性物质层(12),所述阳极集流体(11)包括阳极主体部(111)和从所述阳极主体部(111)引出的阳极极耳(112),所述阳极活性物质层(12)设置于所述阳极主体部(111)的至少部分表面;
    阴极极片(2),与所述阳极极片(1)沿第一方向(x)叠加设置,所述阴极极片(2)包括阴极集流体(21);
    其中,所述阳极集流体(11)和所述阴极集流体(21)中的至少一个在所述阳极极耳(112)的引出侧设有加强层(13)。
  2. 根据权利要求1所述的电极组件(100),其中,所述阳极极耳(112)相对于所述阳极主体部(111)沿第二方向(y)引出,所述第二方向(y)垂直于所述第一方向(x);在所述第二方向(y)上,所述加强层(13)超出所述阳极活性物质层(12)。
  3. 根据权利要求1或2所述的电极组件(100),其中,所述阴极集流体(21)的至少部分表面设置有阴极活性物质层(22);
    设置于所述阳极集流体(11)上的所述加强层(13)与所述阳极活性物质层(12)连接,和/或设置于所述阴极集流体(21)上的所述加强层(13)与所述阴极活性物质层(22)连接。
  4. 根据权利要求1~3任一项所述的电极组件(100),其中,所述阳极极耳(112)相对于所述阳极主体部(111)沿第二方向(y)引出,所述第二方向(y)垂直于所述第一方向(x);在所述第二方向(y)上,所述加强层(13)不超出所述阳极极耳(112)自由端的边缘。
  5. 根据权利要求1~4任一项所述的电极组件(100),还包括隔离件(3),所述隔离件(3)用于将所述阳极极片(1)和所述阴极极片(2)隔开,所述阳极极耳(112)相对于所述阳极主体部(111)沿第二方向(y)引出,所述第二方向(y)垂直于所述第一方向(x),所述阴极集流体(21)的至少部分表面设置有阴极活性物质层(22);
    在所述第二方向(y)上,所述隔离件(3)的边缘超过所述阳极活性物质层(12)的边缘和所述阴极活性物质层(22)的边缘,且所述加强层(13)不超过所述隔离件(3)位于所述电极组件(100)的阳极侧的边缘。
  6. 根据权利要求1~5任一项所述的电极组件(100),其中,所述阴极集流体(21)包括阴极主体部(211)和从所述阴极主体部(211)引出的阴极极耳(212),所述阳极 极耳(112)和所述阴极极耳(212)的引出方向相反。
  7. 根据权利要求1~6任一项所述的电极组件(100),其中,所述阴极集流体(21)的至少部分表面设置有阴极活性物质层(22);
    所述阳极集流体(11)至少在设有所述阳极活性物质层(12)的侧面上设置所述加强层(13),和/或所述阴极集流体(21)至少在设有所述阴极活性物质层(22)的侧面上设置所述加强层(13)。
  8. 根据权利要求1~7任一项所述的电极组件(100),其中,所述阳极极耳(112)相对于所述阳极主体部(111)沿第二方向(y)引出,所述第二方向(y)垂直于所述第一方向(x),所述阴极集流体(21)的至少部分表面设置有阴极活性物质层(22);在所述第二方向(y)上,所述阳极活性物质层(12)超出所述阴极活性物质层(22)。
  9. 根据权利要求1~8任一项所述的电极组件(100),其中,所述加强层(13)的强度超过所述阳极活性物质层(12)的强度。
  10. 根据权利要求1~9任一项所述的电极组件(100),其中,所述加强层(13)的材料包括粘接剂和陶瓷颗粒。
  11. 根据权利要求1~10任一项所述的电极组件(100),其中,所述加强层(13)设置于所述阳极集流体(11),所述加强层(13)包括第一加强段(131),所述第一加强段(131)与所述阳极集流体(11)的表面接触。
  12. 根据权利要求11所述的电极组件(100),其中,所述加强层(13)还包括第二加强段(132),所述第二加强段(132)与所述第一加强段(131)连接,所述第二加强段(132)覆设于所述阳极活性物质层(12)的边缘区域。
  13. 根据权利要求12所述的电极组件(100),其中,在所述第一方向(x)上,所述第一加强段(131)的外表面不凸出于所述第二加强段(132)的外表面。
  14. 根据权利要求12或13所述的电极组件(100),其中,所述阳极极耳(112)相对于所述阳极主体部(111)沿第二方向(y)引出,所述第二方向(y)垂直于所述第一方向(x),所述阴极集流体(21)的至少部分表面设置有阴极活性物质层(22);在所述第二方向(y)上,所述第二加强段(132)的宽度尺寸b不超过第三距离a,所述第三距离a为在所述第二方向(y)上,所述阴极活性物质层(22)的位于电极组件(100)的阳极侧的边缘与所述阳极活性物质层(12)的位于电极组件(100)的阳极侧的边缘之间的距离。
  15. 根据权利要求12~14任一项所述的电极组件(100),其中,所述阳极集流体(11)沿第一方向(x)的两侧均设有所述阳极活性物质层(12),每侧的所述阳极活性物质层 (12)的外侧均设有所述第二加强段(132),两侧的所述阳极活性物质层(12)外表面之间的第一距离d1与两侧的所述第二加强段(132)外表面之间的第二距离d2之间满足如下关系:d1≤d2≤1.3*d1。
  16. 根据权利要求1~15任一项所述的电极组件(100),其中,所述加强层(13)设置于所述阴极集流体(21),所述加强层(13)全部与所述阴极集流体(21)的表面接触。
  17. 根据权利要求16所述的电极组件(100),其中,所述阴极集流体(21)的至少部分表面设置有阴极活性物质层(22),在所述第一方向(x)上,所述加强层(13)的外表面不凸出于所述阴极活性物质层(22)的外表面。
  18. 根据权利要求1~17任一项所述的电极组件(100),其中,所述阳极集流体(11)和所述阴极集流体(21)在所述阳极极耳(112)的引出侧均设有加强层(13),所述阳极极耳(112)相对于所述阳极主体部(111)沿第二方向(y)引出,所述第二方向(y)垂直于所述第一方向(x),在所述第二方向(y)上,所述阳极集流体(11)上设置的加强层(13)超出所述阴极集流体(21)上设置的加强层(13)。
  19. 一种电池单体(200),包括:
    壳体(210),具有开口(211);
    权利要求1~18任一项所述的电极组件(100),设在所述壳体(210)内;和
    端盖组件(220),用于封闭所述开口(211)。
  20. 一种电池(300),包括:
    箱体组件(301);和
    权利要求19所述的电池单体(200),所述电池单体(200)设在所述箱体组件(301)内。
  21. 一种用电装置,包括权利要求19所述的电池单体(200),所述电池单体(200)用于为所述用电装置提供电能;或权利要求20所述的电池(300),所述电池(300)用于为所述用电装置提供电能。
PCT/CN2022/099127 2022-06-16 2022-06-16 电极组件、电池单体、电池及用电装置 WO2023240527A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/099127 WO2023240527A1 (zh) 2022-06-16 2022-06-16 电极组件、电池单体、电池及用电装置
CN202280060652.7A CN117916943A (zh) 2022-06-16 2022-06-16 电极组件、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099127 WO2023240527A1 (zh) 2022-06-16 2022-06-16 电极组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2023240527A1 true WO2023240527A1 (zh) 2023-12-21

Family

ID=89192758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099127 WO2023240527A1 (zh) 2022-06-16 2022-06-16 电极组件、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN117916943A (zh)
WO (1) WO2023240527A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182157A1 (en) * 2005-08-09 2008-07-31 Polyplus Battery Company Compliant seal structures for protected active metal anodes
WO2013047402A1 (ja) * 2011-09-30 2013-04-04 三洋電機株式会社 積層式電池およびその製造方法
CN112310409A (zh) * 2019-08-14 2021-02-02 宁德时代新能源科技股份有限公司 电极组件和二次电池
CN216120370U (zh) * 2021-10-19 2022-03-22 厦门海辰新能源科技有限公司 一种二次电池的电芯及二次电池
CN216354300U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182157A1 (en) * 2005-08-09 2008-07-31 Polyplus Battery Company Compliant seal structures for protected active metal anodes
WO2013047402A1 (ja) * 2011-09-30 2013-04-04 三洋電機株式会社 積層式電池およびその製造方法
CN112310409A (zh) * 2019-08-14 2021-02-02 宁德时代新能源科技股份有限公司 电极组件和二次电池
CN216120370U (zh) * 2021-10-19 2022-03-22 厦门海辰新能源科技有限公司 一种二次电池的电芯及二次电池
CN216354300U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN117916943A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN212810367U (zh) 电极组件、电池单体、电池和用电装置
EP4075563A1 (en) Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
CN115224453B (zh) 电池单体、电池、用电装置以及焊接设备
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
WO2023134479A1 (zh) 电池和用电设备
CN216120372U (zh) 电极组件、电池单体、电池和用电装置
US20240088449A1 (en) Winding type electrode assembly, battery cell, battery and power consumption device
WO2023216727A1 (zh) 电极组件、电池单体、电池和用电设备
CN219303740U (zh) 电池单体、电池及用电装置
WO2023155555A1 (zh) 电池单体、电池和用电设备
WO2023240527A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023010479A1 (zh) 电极组件及加工方法和装置、电池单体、电池和用电装置
WO2023216223A1 (zh) 电芯、电池单体、电池和用电设备
WO2022236736A1 (zh) 电极组件、电池单体、电池以及用电装置
CN218414630U (zh) 极片、电极组件、电池单体、电池及用电装置
CN220510145U (zh) 电池、用电设备和储能设备
CN220934324U (zh) 电池、用电设备和储能设备
CN213692221U (zh) 电池单体、电池以及用电装置
CN117199729B (zh) 电池单体、电池以及用电装置
WO2024021066A1 (zh) 电池箱体、电池以及用电装置
WO2023220881A1 (zh) 端盖、电池单体、电池及用电设备
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
CN219696676U (zh) 电池单体、电池和用电设备
WO2024124586A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280060652.7

Country of ref document: CN