WO2023240522A1 - 显示面板组件及其驱动方法、显示装置 - Google Patents

显示面板组件及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2023240522A1
WO2023240522A1 PCT/CN2022/099099 CN2022099099W WO2023240522A1 WO 2023240522 A1 WO2023240522 A1 WO 2023240522A1 CN 2022099099 W CN2022099099 W CN 2022099099W WO 2023240522 A1 WO2023240522 A1 WO 2023240522A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
display panel
multiplexing
unit
signal generating
Prior art date
Application number
PCT/CN2022/099099
Other languages
English (en)
French (fr)
Inventor
廖成浩
吴国强
侯帅
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/099099 priority Critical patent/WO2023240522A1/zh
Priority to CN202280001787.6A priority patent/CN117730363A/zh
Publication of WO2023240522A1 publication Critical patent/WO2023240522A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure provides a display panel assembly, a driving method thereof, and a display device.
  • an embodiment of the present disclosure provides a display panel assembly, including a display panel and a plurality of driving modules; wherein,
  • the driving module includes a plurality of data signal generation units for generating data signals, a plurality of second multiplexing units corresponding to a plurality of the first multiplexing units, and a plurality of signal generation terminals;
  • the second multiplexing unit is connected to at least two signal generation terminals and at least four data signal generation units.
  • At least two of the signal generation terminals include a first signal generation terminal and a second signal generation terminal.
  • the signal generation unit includes two first data signal generation units corresponding to the first data line, a second data signal generation unit corresponding to the second data line, and a third data signal generation unit corresponding to the third data line.
  • the second multiplexing unit is used to control the electrical connection between the first signal generating end and one of the two first data signal generating units, and to control the second signal generating end and the third
  • the two data signal generating units or the third data signal generating unit are electrically connected;
  • the first load connection terminal and the second load connection terminal connected to the first multiplexing unit are respectively connected to the first signal generation terminal and the corresponding second multiplexing unit.
  • the second signal generating terminal is electrically connected.
  • the second multiplexing unit includes two first multiplexing switches, a second multiplexing switch, and a third multiplexing switch; the two first multiplexing switches are respectively connected to two between the first data signal generating unit and the two first signal generating terminals, and the second multiplexing switch is connected between the second data signal generating unit and the second signal generating terminal, so The third multiplexing switch is connected between the third data signal generating unit and the second signal generating end.
  • One of the multiplexing switches in each multiplexing group is controlled by a first switching control signal, and the other multiplexing switch is controlled by a second switching control signal.
  • the driving module further includes a data cache unit
  • the data cache unit is used to control each of the data signal generating units to generate corresponding data signals according to the display content data.
  • the driving module further includes a plurality of signal amplification units
  • the signal amplification unit is connected between the second multiplexing unit and the signal generation end.
  • the display panel assembly of embodiments of the present disclosure further includes a plurality of load switches
  • the load switch is connected between the signal generating end and the data line;
  • the load switch is used to control whether the signal generating end can be connected to the data line.
  • the load switch is connected between the signal generating terminal and the load connection terminal.
  • the driving module is a driving chip, and the load switch is provided in the driving chip;
  • the driver chip further includes a plurality of electrostatic discharge units
  • the load switch is provided in the display panel
  • the display panel includes a plurality of input connectors; the load connection end is connected to the input connectors through the load switch.
  • all of the load switches are controlled by one load control signal.
  • the first color is green
  • One of the second color and the third color is red and the other is blue.
  • the data lines extend along the column direction
  • a plurality of the data lines are arranged sequentially along the row direction;
  • the display panel is an organic light-emitting diode display panel.
  • an embodiment of the present disclosure provides a driving method for a display panel component, wherein the display panel component is any display panel component of the embodiment of the present disclosure; in the driving method, any of the sub-pixels is
  • the process of inputting data signals includes:
  • control the corresponding data signal generating unit to generate a data signal
  • the second multiplexing unit is controlled to electrically connect the data signal generating unit to the signal generating end
  • the first multiplexing unit is controlled to electrically connect the signal generating end to the data line of the sub-pixel. Electrical connection.
  • the load switch When or after the voltage of the signal generating terminal reaches the voltage of the data signal, the load switch is controlled to be turned on.
  • the data signal of any sub-pixel is input at a predetermined signal refresh moment
  • embodiments of the disclosure provide a display device, including any display panel assembly according to the embodiments of the disclosure.
  • Figure 1 is a block diagram of a display panel assembly according to an embodiment of the present disclosure
  • Figure 4 is a block diagram of another display panel assembly according to an embodiment of the present disclosure.
  • Figure 9 is a driving timing diagram of the first multiplexing unit in another display panel assembly according to an embodiment of the present disclosure.
  • Figure 13 is a block diagram of a display device according to an embodiment of the present disclosure.
  • the meanings of the reference numbers are: 1, sub-pixel; S1, first data line; S2, second data line; S3, third data line; N11, first load connection terminal; N12, second load connection terminal ; N21, first signal generation terminal; N22, second signal generation terminal; K, multiplexing switch; K1, first multiplexing switch; K2, second multiplexing switch; K3, third multiplexing switch; K9, load Switch; D1, first diode; D2, second diode; T1, first transistor; T2, second transistor; T3, third transistor; T4, fourth transistor; T5, fifth transistor; T6, Sixth transistor; T7, seventh transistor; Cst, storage capacitor; Reset, first reset terminal; Reset', second reset terminal; Vinit, initialization terminal; Gate, gate line terminal; Data, data line terminal; EM, control terminal; Vdd, anode signal terminal; Vss, cathode signal terminal.
  • the display panel is a device that can perform display driven by a driving signal.
  • the display panel assembly may also include a driver chip for providing other signals, such as a gate driver chip (Gate Driver IC) for providing gate drive signals to the gate lines.
  • a driver chip for providing other signals, such as a gate driver chip (Gate Driver IC) for providing gate drive signals to the gate lines.
  • the driver chip may include multiple output ports, such as multiple pins, and the output ports are connected to wires in the driver chip so as to output drive signals.
  • the display panel may include multiple input connectors, such as multiple pads, and the input connectors are connected to gate lines and data lines in the display panel. Therefore, when the driving chip is connected to the display panel, the driving signal generated by the driving chip can be provided to the display panel by electrically connecting the output port and the input connector.
  • the specific connection methods between the driver chip and the display panel are diverse.
  • the driver chip can be directly bonded to the display panel (such as the array substrate of the display panel), so that the output port of the driver chip is also directly electrically connected to the input connector of the display panel;
  • the display panel can It is bound to a flexible circuit board (FPC, Flexible Printed Circuit), and the driver chip is connected to the flexible circuit board, so that the output port of the driver chip is electrically connected to the input connector of the display panel through the lines on the flexible circuit board.
  • FPC Flexible Printed Circuit
  • the driving module in the embodiment of the present disclosure is not limited to the form of a driving chip.
  • the driving module can also be a circuit directly formed on the display panel (such as the array substrate of the display panel), but this does not affect the overall integrity of these circuits. as a driver module.
  • the display panel includes a plurality of data lines, a plurality of sub-pixels 1, a plurality of first multiplexing units, and a plurality of load connection terminals;
  • the first multiplexing unit connects at least two Load connection terminals (for example, two) and at least four data lines (for example, four).
  • the at least two load connection terminals include a first load connection terminal N11 and a second load connection terminal N12.
  • the at least four data lines include two connections to the first load connection terminal N11 and a second load connection terminal N12.
  • the first data line S1 of the sub-pixel 1 of one color is connected to the second data line S2 of the sub-pixel 1 of the second color, and the third data line S3 is connected to the sub-pixel 1 of the third color.
  • the first multiplexing unit is used for Control the first load connection terminal N11 to be electrically connected to one of the two first data lines S1, and control the second load connection terminal N12 to be electrically connected to the second data line S2 or the third data line S3;
  • the driving module includes a plurality of data signal generation units for generating data signals, a plurality of second multiplexing units corresponding to the plurality of first multiplexing units, and a plurality of signal generation terminals; the second multiplexing unit
  • the unit is connected to at least two signal generating terminals (for example, two) and at least four data signal generating units (for example, four).
  • the at least two signal generating terminals include a first signal generating terminal N21 and a second signal generating terminal N22.
  • the at least four data signal generating units include two first data signal generating units corresponding to the first data line S1, a second data signal generating unit corresponding to the second data line S2, and a third data signal generating unit corresponding to the third data line S3.
  • the second multiplexing unit is used to control the first signal generation terminal N21 to be electrically connected to one of the two first data signal generation units, and to control the second signal generation terminal N22 to be electrically connected to the second data signal generation unit or the second data signal generation unit.
  • the three data signal generating units are electrically connected;
  • the first load connection terminal N11 and the second load connection terminal N12 connected to the first multiplexing unit are respectively electrically connected to the first signal generation terminal N21 and the second signal generation terminal N22 connected to the corresponding second multiplexing unit. connect.
  • the display panel of the embodiment of the present disclosure includes multiple data lines, and each data line is connected to multiple sub-pixels 1 of the same color.
  • the color of sub-pixel 1 refers to the color of the light it emits (display color). Specifically, it can be that sub-pixel 1 (such as an organic light-emitting diode) directly emits light of the corresponding color, or it can be that sub-pixel 1 (such as an organic light-emitting diode) directly emits light of the corresponding color.
  • the diode (diode) originally emits white light, which is then filtered by a color filter (Color Filter) of the corresponding color and converted into light of the corresponding color.
  • multiple sub-pixels 1 of different colors can be combined into one "pixel", and the pixel can achieve color display as a whole through light mixing.
  • the display panel of the embodiment of the present disclosure may also include other structures such as gate lines, which will not be described in detail here.
  • the display panel of the embodiment of the present disclosure also includes a plurality of first multiplexing units (MUX), and each first multiplexing unit is connected to four data lines (two first data lines S1, one second data line S1 line S2, a third data line S3) and two load connection terminals (a first load connection terminal N11, a second load connection terminal N12).
  • MUX first multiplexing units
  • the data lines can be divided into multiple "groups", each group includes four data lines, in which two first data lines S1 are connected to the sub-pixels 1 of the first color, and one second data line S2 is connected to the sub-pixel 1 of the second color, and a third data line S3 is connected to the sub-pixel 1 of the third color; and the four data lines serve as loads and are connected to two load connection terminals (the first load connection terminal N11 and the second load connection terminal N11).
  • the connection relationship between the connection terminals N12) is selected by the first multiplexing unit, so that each load connection terminal can supply power to one of the two specific data lines under the control of the first multiplexing unit.
  • the first color is green
  • One of the second color and the third color is red and the other is blue.
  • the above first color may be green (G), and the second color and the third color may be selected from red (R) and blue (B) respectively.
  • the specific color mode of the sub-pixel 1 is not limited to this.
  • the number of blue sub-pixels 1 or red sub-pixels 1 in each pixel may also be two;
  • it may also be sub-pixel 1 that directly adopts other color systems.
  • the data lines may extend along the column direction (correspondingly, the gate lines may extend along the row direction), so multiple data lines are arranged at once along the row direction, and each first plurality of data lines may extend along the row direction.
  • the road multiplexing unit can connect four adjacent data lines in the row direction to simplify the connection structure as much as possible.
  • the two first data lines S1 are arranged together, and the second data line S2 and the third data line S3 are arranged together; or, referring to FIG. 4 , the first data line S1 is arranged together.
  • the data line S1, the second data line S2, and the third data line S3 are arranged in a crosswise manner; of course, the second data line S2 and the third data line S3 can also be sandwiched between two first data lines S1, or two Other ways such as the first data line S1 being sandwiched between the second data line S2 and the third data line S3 will not be described in detail here.
  • each data signal generating unit can only be used to power the sub-pixels 1 of a specific color, or in other words, each data signal generating unit can only be connected to a specific type of data line.
  • the data signal generated by the first data signal generating unit in the embodiment of the present disclosure can only be used to provide the first data line S1
  • the data signal generated by the second data signal generating unit can only be used to provide the second data line S2
  • the data signal generated by the third data signal generating unit can only be used to provide the third data line S3.
  • the driving module of the embodiment of the present disclosure includes a plurality of second multiplexing units (MUX) that correspond one-to-one to the first multiplexing unit.
  • Each second multiplexing unit is connected to four data signal generation units (two first data signal generation units, one second data signal generation unit, one third data signal generation unit) and two signal generation terminals (one a first signal generating terminal N21 and a second signal generating terminal N22).
  • the first signal generating terminal N21 connected to a second multiplexing unit is electrically connected to a first load connection terminal N11, and the first load connection terminal N11 is the first signal corresponding to the second multiplexing unit.
  • the first load connection terminal N11 connected to the multiplexing unit; and the second signal generation terminal N22 connected to a second multiplexing unit is electrically connected to a second load connection terminal N12, and the second load connection terminal N12 is The second load connection terminal N12 is connected to the first multiplexing unit corresponding to the second multiplexing unit.
  • the data signal generation unit can be divided into multiple "groups", each group includes four data signal generation units, wherein the two first data signal generation units are based on the second multiplexing unit. selection, the generated data signal is output to the first signal generation terminal N21, and then transmitted to a first data line S1 through the first load connection terminal N11 and the first multiplexing unit; and the second data signal generation unit and The third data signal generating unit outputs the generated data signal to the second signal generating terminal N22 according to the selection of the second multiplexing unit, and transmits it to the second signal generating terminal N22 through the second load connection terminal N12 and the first multiplexing unit.
  • the second data line S2 for the data signal generated by the second data signal generating unit
  • the third data line S3 for the data signal generated by the third data signal generating unit.
  • a first data signal generating unit can be time-division multiplexed, and the data signals generated by it can be provided to two first data lines S1 in a time-division manner.
  • a second multiplexing unit is provided in the driving module, and a first multiplexing unit is provided in the display panel. Therefore, the second multiplexing unit can select a specific The data signal generated by the data signal generation unit enters the load connection terminal, and then the first multiplexing unit selects the data signal to enter the corresponding (corresponding to the same color) data line to charge the sub-pixel 1 of the corresponding color.
  • the input sequence of the data signals in each "group" of data lines can be freely rearranged (Data Remapping) as needed, that is, pairs of data signals can be freely combined and output in time-sharing, adapting to RGBG, GGRB and other various sub-pixel 1 color arrangement needs.
  • R represents the red sub-pixel 1 or the corresponding data signal
  • B represents the blue sub-pixel 1 or the corresponding data signal
  • G represents the green sub-pixel 1 or the corresponding data signal.
  • the second multiplexing unit includes two first multiplexing switches K1, a second multiplexing switch K2, and a third multiplexing switch K3; the two first multiplexing switches K1 are respectively connected to two Between the first data signal generating unit and the first signal generating terminal N21, the second multiplexing switch K2 is connected between the second data signal generating unit and the second signal generating terminal N22, and the third multiplexing switch K3 is connected between between the third data signal generating unit and the second signal generating terminal N22.
  • ENG1 and ENG2 in Figures 6 and 9 respectively represent the control signals corresponding to the two first multiplexing switches K1
  • ENR represents the control signal corresponding to the second multiplexing switch K2
  • ENB represents the control signal corresponding to the third multiplexing switch K3.
  • signal, CLOCK represents the clock signal for each cycle.
  • the first multiplexing unit includes two multiplexing groups, each multiplexing group includes two multiplexing switches K, wherein the two multiplexing switches K of one multiplexing group are respectively connected to the first multiplexing unit. Between the load connection terminal N11 and the two first data lines S1, two multiplex switches K of another multiplexing group are respectively connected between the second load connection terminal N12 and the second data line S2 and the third data line S3. ;
  • One multiplexing switch K in each multiplexing group is controlled by the first switching control signal, and the other multiplexing switch K is controlled by the second switching control signal.
  • the first multiplexing unit may also include four multiplexing switches K and be divided into two multiplexing groups.
  • the two data lines pass through the same multiplexing group respectively.
  • the two multiplex switches K are connected to a load connection terminal.
  • the difference from the second multiplexing unit is that the four multiplexing switches K of the first multiplexing unit are only controlled by two control signals (the first switching control signal and the second switching control signal). , that is, each control signal synchronously controls each multiplexing switch K in each multiplexing group (this is because the data signal input to the load connection end corresponding to each multiplexing group can already pass through the second multiplexing unit individual control).
  • each control signal synchronously controls each multiplexing switch K in each multiplexing group (this is because the data signal input to the load connection end corresponding to each multiplexing group can already pass through the second multiplexing unit individual control).
  • the gate of the transistor of the corresponding multiplexing switch K is connected to the corresponding signal line.
  • the above multiplexing switch K can be in the form of a transistor, so the control signal can be a signal connected to its gate.
  • multiplexing switch K is not limited to transistors, and will not be described in detail here.
  • the driver module further includes a data cache unit
  • the data cache unit is used to control each data signal generating unit to generate corresponding data signals according to the display content data.
  • the driver module can also be provided with a data cache unit (Line Buffer), which can store the data of the image to be displayed in the current frame (display content data ) is processed to determine the content (such as gray scale) to be displayed by each sub-pixel 1.
  • the data cache unit can cache and data remapping (Data Remapping) the gray scale of each point in the image; thus, the data
  • the cache unit can output a corresponding control signal (such as a grayscale signal) to the corresponding data signal generating unit (such as a Gamma voltage dividing circuit) to control the data signal generating unit to perform analog-to-digital conversion.
  • the required data signal (data voltage VDATA) is generated and input to the corresponding data line and sub-pixel 1.
  • the specific way in which the data cache unit rearranges data can be determined based on the specific arrangement of the sub-pixels 1 in the display panel and the specific format of the display content data, which will not be described in detail here.
  • the driving module further includes a plurality of signal amplification units
  • the signal amplifying unit is used to amplify the data signal generated by the data signal generating unit.
  • the driving module may also be provided with a signal amplifying unit for amplifying the data signal generated by the data signal generating unit and then inputting it to the data line.
  • the signal amplification unit is connected between the second multiplexing unit and the signal generation end.
  • the signal amplification unit can be disposed between the output of the second multiplexing unit and the signal generation end, that is, the data signal output by the second multiplexing unit needs to be amplified by the signal amplification unit Only then can it enter the signal generation end and continue to transmit to the data line; thus, the signal amplification unit processes the data signal selected by the second multiplexing unit, so for the two data signal generation units (and the two data lines ), only one signal amplification unit is required, thereby reducing the number of signal amplification units and simplifying the product structure.
  • each signal generating end may be provided with a corresponding signal amplification unit to ensure that all data signals output by the driving module can be amplified; however, if there is no signal amplification unit in the driving module unit, or some signal generation ends do not have corresponding signal amplification units, it is also feasible.
  • the display panel assembly of the embodiment of the present disclosure further includes a plurality of load switches K9;
  • Load switch K9 is connected between the signal generating end and the data line;
  • Load switch K9 is used to control whether the signal generating end can be connected to the data line.
  • the display panel assembly may also include multiple load switches K9, and the load switches K9 are connected between the signal generation end and the data line for controlling signal generation. Whether the terminal is electrically connected to the data line.
  • the data signal generation unit when the signal generation end is always connected to the data line, the data signal generation unit outputs the data signal to the signal generation end. That is, the data signal generation unit directly generates data from the initial voltage (such as the residual voltage of the previous sub-pixel 1). data voltage) begins to charge the entire data line so that it reaches the voltage of the data signal.
  • a load switch K9 is provided between the signal generating end and the data line, and the load switch K9 can be turned off when (or slightly before) the data signal generating unit starts to output the data signal, so that the data signal The generation unit only charges the signal generation end at the beginning, and does not charge the main load (data line).
  • the charging process can be regarded as It is carried out "without load” and can be completed quickly; when the signal generating end is charged to the voltage of the data signal (or slightly later), the load switch K9 can be turned on again and the signal generating end is connected to the load (data line) , that is, the data signal generating unit starts to charge the data line "with load", but since the data signal generating unit is equivalent to starting charging from the voltage of the data signal at this time, the charging process can also be completed quickly.
  • the actual charging time (Tr) of the sub-pixel 1 can be greatly shortened, which provides a basis for improving the refresh rate and resolution of the display device.
  • the above load switch K9 can be in the form of a transistor, so the load switch K9 can be controlled by a signal connected to its gate.
  • the charging time (Tr) for one sub-pixel 1 is greater than 600ns; and when the load switch K9 is first turned off and then turned on (refer to EN2 and Charge2 in Figure 10), it is equivalent to "first "No-load” charging and then “load” charging.
  • the "no-load” charging time is only about 150ns (that is, the time when the load switch K9 is turned off), and the "load” charging time is only less than 300ns. Therefore, the total charging time for sub-pixel 1 is also greatly shortened.
  • EN1 and EN2 respectively represent the control signals of the load switch K9 when the load switch K9 is not used or used;
  • Charge1 and Charge2 respectively represent the change in the voltage (charging situation) in the sub-pixel when the load switch K9 is not used or used;
  • GCK represents the gate line signal;
  • SYNC represents the initialization signal that triggers charging (the signal at the signal refresh moment).
  • the curves of the “Embodiments of the Present Disclosure” and the “Related Art” respectively represent changes in voltage over time (charging conditions) in charged sub-pixels.
  • the data signal generating unit can actually start outputting the data signal corresponding to the current sub-pixel 1 "in advance", for example, it can be while charging the previous sub-pixel 1 During the switching period after charging is completed, the data signal generating unit begins to output the data signal corresponding to this sub-pixel 1, and when it is really necessary to charge this sub-pixel 1, it turns on the load switch K9 and immediately starts charging sub-pixel 1. Charge.
  • the actual total charging time for each sub-pixel 1 can be less than 300 ns, which is less than half of the charging time required in the related art.
  • all load switches K9 are controlled by one load control signal.
  • each signal generating end of the driving module usually charges multiple sub-pixels 1 synchronously. Therefore, in order to facilitate management, all load switches K9 can pass a control signal (load control signal Control) control, for example, referring to Figure 8, the gates of all transistors of the load switch K9 are connected to a signal line.
  • load control signal Control load control signal Control
  • each signal generating end may be provided with a corresponding load switch K9 to ensure that all data signals output by the driving module can be “empty” and then “loaded” as described above. Charging process; but if there is no load switch in the drive module, or some signal generation terminals do not have corresponding load switches, it is also feasible.
  • the load switch K9 is connected between the signal generating terminal and the load connection terminal.
  • the load switch K9 can be provided between the signal generating end and the load connection end, so that each load switch K9 can correspond to two data lines to reduce the number of data lines.
  • the number of load switches K9 simplifies the product structure.
  • the load switch K9 is disposed in other positions, for example, if a load switch K9 is disposed between each data line and the corresponding load connection terminal.
  • the drive module is a drive chip, and the load switch K9 is located in the drive chip;
  • the driver chip includes multiple output ports; the signal generating end is connected to the output ports through the load switch K9.
  • the load switch K9 can be directly integrated inside the driving chip, that is, the load switch K9 is provided at the signal generation end and the driving chip. Between the actual output ports (such as pins) (of course also between the signal amplification unit and the output port).
  • the output port of the above driver chip should be electrically connected to the input connector (such as the pad) of the display panel (for example, directly bound and electrically connected, or indirectly electrically connected through a flexible circuit board (FPC)) , thereby realizing the electrical connection between the corresponding signal generating end and the load connecting end, so the load switch K9 is located at the above position, that is, between the signal generating end and the load connecting end.
  • the input connector such as the pad
  • FPC flexible circuit board
  • the driver chip further includes a plurality of electrostatic discharge units
  • the electrostatic discharge unit is used to prevent the signal from the output port from being transmitted back to the load switch K9.
  • the electrostatic discharge unit includes a first diode D1 and a second diode D2; the anode of the first diode D1 is connected to the low voltage signal (represented by GND in Figure 8), and the cathode is connected to the output port; The cathode of the second diode D2 is connected to the high voltage signal (indicated by AVDD in Figure 8), and the anode is connected to the output port.
  • each electrostatic discharge unit may include two diodes (a first diode D1, a second diode D2), wherein the anode of the first diode D1 is connected to the low voltage signal, The cathode is connected to the output port of the driver chip, the cathode of the second diode D2 is connected to the high voltage signal, and the anode is connected to the output port of the driver chip (of course it is also connected to the anode of the first diode D1).
  • ESD electrostatic discharge unit
  • the load switch K9 is provided in the display panel; the display panel includes a plurality of input connectors; the load connection end is connected to the input connectors through the load switch K9.
  • the load switch K9 may also be provided in the display panel (such as on the array substrate of the display panel). That is, the load switch K9 may be provided on the display panel. Between the input connector of the panel (such as the pad) and the load connection end, of course, it is located between the signal generation end and the load connection end.
  • the load switch K9 is disposed on a flexible circuit board (FPC) or other locations, as long as it is connected between the signal generating end and the data line.
  • FPC flexible circuit board
  • embodiments of the present disclosure provide a method for driving a display panel assembly, wherein the display panel assembly is any display panel assembly according to the embodiments of the disclosure.
  • Embodiments of the present disclosure provide a method for driving the above display panel assembly to achieve display.
  • the process of inputting a data signal to any sub-pixel 1 includes:
  • a data signal needs to be input to each sub-pixel 1 so that the sub-pixel 1 can continue to display the required content in the frame based on the data signal.
  • the display content data of the sub-pixel 1 (such as the gray value of the sub-pixel 1 in this frame) can be first level), control the corresponding data signal generating unit (the data signal generating unit of the same color connected to the sub-pixel 1) to generate the corresponding data signal.
  • the data cache unit can cache and data remapping the grayscales of each point in the image to be displayed in this frame to determine the grayscale of sub-pixel 1 and send it to When the sub-pixel 1 is charged, the gray scale is input as a control signal to the data signal generating unit (such as a Gamma voltage divider circuit), so that the data signal generating unit generates a data signal.
  • the data signal generating unit such as a Gamma voltage divider circuit
  • the second multiplexing unit can also be controlled to electrically connect the data signal generating unit to the signal generating end
  • the first multiplexing unit can be controlled to electrically connect the signal generating end to the data line connected to the sub-pixel 1. connection, so that the data signal generated by the data signal generating unit passes through the second multiplexing unit, the signal generating end (output port), the load connection end (input connector), the first multiplexing unit, and the data line in sequence. Transmitted to sub-pixel 1, charging sub-pixel 1 to achieve display.
  • the above description is the process of inputting a data signal to a sub-pixel 1.
  • the display panel component In order to form a complete picture and continuous display, the display panel component usually needs to display multiple frames continuously, and each frame needs to send different signals to different signals at different times.
  • Sub-pixels 1 (such as sub-pixels 1 in different rows) input data signals, and at each moment, data signals usually need to be input to multiple sub-pixels 1 (such as multiple sub-pixels 1 in a row) at the same time; it should be understood that, among them, to any The process of inputting data signals to sub-pixel 1 can be carried out in the above manner.
  • step S201 and step S202 does not represent the necessary order of execution of the two. As long as each step of the driving method of the embodiment of the present disclosure is actually executed during the process of inputting the data signal to any sub-pixel 1. The steps are feasible (for example, step S201 and step S202 can actually be performed simultaneously).
  • the display panel assembly is a display panel assembly with a load switch K9; the driving method of the embodiment of the present disclosure also includes:
  • the load switch K9 When or after the voltage at the signal generating end reaches the voltage of the data signal, the load switch K9 is controlled to be turned on.
  • the load switch K9 can also be controlled to be turned off when the data signal generating unit starts to generate the data signal (or slightly before), and when the data signal generating unit starts to generate the data signal, the load switch K9 can be turned off.
  • the signal generating terminal is charged to the voltage of the data signal in the "no-load” state (or slightly later), the load switch K9 is turned on, and the "loaded” charging of the data line and sub-pixel 1 begins.
  • the data signal of any sub-pixel 1 is input at a predetermined signal refresh moment
  • the data signal generating unit starts generating the data signal at a predetermined time before the signal refresh time, so that the voltage at the signal generation end reaches the voltage of the data signal at or before the signal refresh time.
  • the data signal can be controlled "in advance” by a predetermined time before actually starting to charge the sub-pixel 1 (signal refresh moment).
  • the generation unit starts to generate the data signal and charges the signal generation terminal for "no-load” charging (of course the load switch K9 should be controlled to be turned off during the predetermined time) to further shorten the actual charging time (Tr) of the sub-pixel 1.
  • the above predetermined time can be selected according to needs. It should be neither too long to affect the charging process of the previous sub-pixel 1 nor too short to cause "no-load" charging to be incomplete when the signal refresh time arrives.
  • the predetermined time may be the predetermined "no-load” charging time, such as the above 150 ns.
  • an embodiment of the present disclosure provides a display device, including any display panel assembly according to the embodiment of the present disclosure.
  • the display panel assembly of the embodiment of the present disclosure can be combined with other components such as a housing and a power supply to form a fully functional, independent display device product.
  • the display panel in the display device can be an organic light-emitting diode (OLED) display panel, a liquid crystal display panel (LCD), or any other form; and the display device can be electronic paper, a mobile phone, a tablet computer, a television, a monitor, a notebook, etc. Computers, digital photo frames, navigators and other products or components with display functions.
  • OLED organic light-emitting diode
  • LCD liquid crystal display panel
  • the display device can be electronic paper, a mobile phone, a tablet computer, a television, a monitor, a notebook, etc.

Abstract

显示面板组件包括显示面板和多个驱动模块;其中,显示面板包括多条数据线(S1,S2,S3)、多个子像素(1)、多个第一多路复用单元、多个负载连接端;第一多路复用单元连接两个负载连接端和四条数据线,两个负载连接端包括第一负载连接端、第二负载连接端,四条数据线包括两条连接第一颜色的子像素(1)的第一数据线(S1)、连接第二颜色的子像素(1)第二数据线(S2)、连接第三颜色的子像素(1)第三数据线(S3),第一多路复用单元用于控制第一负载连接端(N11)与两条第一数据线(S1)中的一条电连接,以及控制第二负载连接端(N12)与第二数据线(S2)或第三数据线(S3)电连接;驱动模块包括多个用于产生数据信号的数据信号产生单元、与多个第一多路复用单元对应的多个第二多路复用单元、多个信号产生端(N21,N22);第二多路复用单元连接两个信号产生端(N21,N22)和四个数据信号产生单元,两个信号产生端包括第一信号产生端(N21)、第二信号产生端(N22),四个数据信号产生单元包括两个对应第一数据线(S1)的第一数据信号产生单元、对应第二数据线(S2)的第二数据信号产生单元、对应第三数据线(S3)的第三数据信号产生单元;第二多路复用单元用于控制第一信号产生端(N21)与两个第一数据信号产生单元中的一个电连接,以及控制第二信号产生端(N22)与第二数据信号产生单元或第三数据信号产生单元电连接;第一多路复用单元连接的第一负载连接端(N11)、第二负载连接端(N12),分别与对应的第二多路复用单元连接的第一信号产生端(N21)、第二信号产生端(N22)电连接。

Description

显示面板组件及其驱动方法、显示装置 技术领域
本公开属于显示技术领域,具体涉及一种显示面板组件及其驱动方法、显示装置。
背景技术
随着显示装置的刷新率(每秒显示的帧数)和分辨率(显示装置中的像素数)的提高,每帧显示的时间越来越短,每帧中留给每行像素(如连接一条栅极线的子像素)的充电时间也越来越短。例如,对1440*3200分辨率的显示装置,在120Hz的刷新率下,单行子像素的理论充电时间只有2.6μs,而考虑到数据处理(Panel Loading)等因素,实际允许的充电时间则更短。
由此,在一些相关技术中,驱动模块(如数据驱动芯片)的驱动能力不足,难以在如此短的时间内为子像素充分充电。
发明内容
本公开提供一种显示面板组件及其驱动方法、显示装置。
第一方面,本公开实施例提供一种显示面板组件,包括显示面板和多个驱动模块;其中,
所述显示面板包括多条数据线、多个子像素、多个第一多路复用单元、多个负载连接端;所述第一多路复用单元连接至少两个负载连接端和至少四条所述数据线,至少两个所述负载连接端包括第一负载连接端、第二负载连接端,至少四条所述数据线包括两条连接第一颜色的所述子像素的第一数据线、连接第二颜色的所述子像素第二数据线、连接第三颜色的所述子像素第三数据线,所述第一多路复用单元用于控制所述第一负载连接端与两条所述第一数据线中的一条电连接,以及控制所述第二负载连接端与所述第二数据线或所述第三数据线电 连接;
所述驱动模块包括多个用于产生数据信号的数据信号产生单元、与多个所述第一多路复用单元对应的多个第二多路复用单元、多个信号产生端;所述第二多路复用单元连接至少两个信号产生端和至少四个数据信号产生单元,至少两个所述信号产生端包括第一信号产生端、第二信号产生端,至少四个所述数据信号产生单元包括两个对应所述第一数据线的第一数据信号产生单元、对应所述第二数据线的第二数据信号产生单元、对应所述第三数据线的第三数据信号产生单元;所述第二多路复用单元用于控制所述第一信号产生端与两个所述第一数据信号产生单元中的一个电连接,以及控制所述第二信号产生端与所述第二数据信号产生单元或所述第三数据信号产生单元电连接;
所述第一多路复用单元连接的所述第一负载连接端、所述第二负载连接端,分别与对应的所述第二多路复用单元连接的所述第一信号产生端、第二信号产生端电连接。
在一些实施例中,所述第二多路复用单元包括两个第一复用开关、第二复用开关、第三复用开关;两个所述第一复用开关分别连接在两个所述第一数据信号产生单元和两个所述第一信号产生端之间,所述第二复用开关连接在所述第二数据信号产生单元和所述第二信号产生端之间,所述第三复用开关连接在所述第三数据信号产生单元和所述第二信号产生端之间。
在一些实施例中,所述第一多路复用单元包括两个复用组,每个所述复用组包括两个复用开关,其中一个所述复用组的两个所述复用开关分别连接在所述第一负载连接端与两条所述第一数据线之间,另一个所述复用组的两个复用开关分别连接在所述第二负载连接端与所述第二数据线、所述第三数据线之间;
每个所述复用组中的一个所述复用开关受第一切换控制信号控制,另一个所述复用开关受第二切换控制信号控制。
在一些实施例中,所述驱动模块还包括数据缓存单元;
所述数据缓存单元用于根据显示内容数据,控制各所述数据信号 产生单元产生对应的数据信号。
在一些实施例中,所述驱动模块还包括多个信号放大单元;
所述信号放大单元用于放大所述数据信号产生单元产生的数据信号。
在一些实施例中,所述信号放大单元连接在所述第二多路复用单元与所述信号产生端之间。
在一些实施例中,本公开实施例的显示面板组件还包括多个负载开关;
所述负载开关连接在所述信号产生端与所述数据线之间;
所述负载开关用于控制所述信号产生端是否能与所述数据线导通。
在一些实施例中,所述负载开关连接在所述信号产生端与所述负载连接端之间。
在一些实施例中,所述驱动模块为驱动芯片,所述负载开关设于所述驱动芯片内;
所述驱动芯片包括多个输出端口;所述信号产生端通过所述负载开关连接所述输出端口。
在一些实施例中,所述驱动芯片还包括多个静电释放单元;
所述静电释放单元用于阻止所述输出端口的信号反向传输至所述负载开关。
在一些实施例中,所述静电释放单元包括第一二极管和第二二极管;所述第一二极管的阳极连接低电压信号,阴极连接所述输出端口;所述第二二极管的阴极连接高电压信号,阳极连接所述输出端口。
在一些实施例中,所述负载开关设于所述显示面板内;
所述显示面板包括多个输入接头;所述负载连接端通过所述负载开关连接所述输入接头。
在一些实施例中,所有所述负载开关通过一个负载控制信号控制。
在一些实施例中,所述第一颜色为绿色;
所述第二颜色和所述第三颜色中的一者为红色,另一者为蓝色。
在一些实施例中,所述数据线沿列方向延伸;
多条所述数据线沿行方向依次设置;
所述第一多路复用单元连接的四条所述数据线为四条相邻的所述数据线。
在一些实施例中,所述显示面板为有机发光二极管显示面板。
第二方面,本公开实施例提供一种显示面板组件的驱动方法,其中,所述显示面板组件为本公开实施例的任意一种显示面板组件;所述驱动方法中,向任意所述子像素输入数据信号的过程包括:
根据该子像素的显示内容数据,控制对应的所述数据信号产生单元产生数据信号;
控制所述第二多路复用单元使该数据信号产生单元与所述信号产生端电连接,控制所述第一多路复用单元使该信号产生端与该子像素连接的所述数据线电连接。
在一些实施例中,所述显示面板组件为具有负载开关的显示面板组件;本公开实施例的所述驱动方法还包括:
在所述数据信号产生单元开始产生数据信号之时或之前,控制所述负载开关关断;
在所述信号产生端的电压达到所述数据信号的电压之时或之后,控制所述负载开关导通。
在一些实施例中,任意所述子像素的数据信号在预定的信号刷新时刻输入;
所述数据信号产生单元在所述信号刷新时刻前的预定时间开始产生数据信号,以使所述信号产生端的电压在所述信号刷新时刻之时或之前达到所述数据信号的电压。
第三方面,本公开实施例提供一种显示装置,包括本公开实施例的任意一种显示面板组件。
附图说明
图1为本公开实施例的一种显示面板组件的组成框图;
图2为本公开实施例的一种显示面板组件中的像素电路的电路图;
图3为本公开实施例的另一种显示面板组件的组成框图;
图4为本公开实施例的另一种显示面板组件的组成框图;
图5为本公开实施例的另一种显示面板组件的组成框图;
图6为本公开实施例的另一种显示面板组件中第二多路复用单元的电路图;
图7为本公开实施例的另一种显示面板组件中第一多路复用单元的电路图;
图8为本公开实施例的另一种显示面板组件中负载开关和静电释放单元的电路图;
图9为本公开实施例的另一种显示面板组件中对第一多路复用单元的驱动时序图;
图10为本公开实施例的另一种显示面板组件中对子像素充电时的驱动时序图;
图11为本公开实施例和相关技术中的显示面板组件的充电效果图;
图12为本公开实施例的一种显示面板组件的驱动方法的流程图;
图13为本公开实施例的显示装置的组成框图;
其中,附图标记的意义为:1、子像素;S1、第一数据线;S2、第二数据线;S3、第三数据线;N11、第一负载连接端;N12、第二负载连接端;N21、第一信号产生端;N22、第二信号产生端;K、复用开关;K1、第一复用开关;K2、第二复用开关;K3、第三复用开关;K9、负载开关;D1、第一二极管;D2、第二二极管;T1、第一晶体管;T2、第二晶体管;T3、第三晶体管;T4、第四晶体管;T5、第五晶体 管;T6、第六晶体管;T7、第七晶体管;Cst、存储电容;Reset、第一重置端;Reset’、第二重置端;Vinit、初始化端;Gate、栅极线端;Data、数据线端;EM、控制端;Vdd、阳极信号端;Vss、阴极信号端。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
可以理解的是,此处描述的具体实施例和附图仅仅用于解释本公开,而非对本公开的限定。
可以理解的是,在不冲突的情况下,本公开的各实施例及实施例中的各特征可相互组合。
可以理解的是,为便于描述,本公开的附图中仅示出了与本公开实施例相关的部分,而与本公开实施例无关的部分未在附图中示出。
第一方面,参照图1至图11,本公开实施例提供一种显示面板组件,包括显示面板和多个驱动模块。
参照图1,本公开实施例的显示面板组件包括能进行显示的显示面板,以及多个与显示面板连接的驱动模块。
其中,显示面板是能在驱动信号的驱动下进行显示的器件。
显示面板可包括多个排成阵列的子像素1(亚像素,Sub-Pixel),每个子像素1可以是一个能独立显示所需内容的最小单元。
示例性的,显示面板中可包括多条数据线(Source Line)和多条栅极线(Gate Line),例如:每个子像素1连接一条数据线和一条栅极线。
示例性的,在每帧中,各栅极线可轮流导通以控制其所连接的子像素1能否与数据线导通,而数据线则可在与子像素1导通时将对应的数据信号(VDATA,或称数据电压)写入子像素1,使子像素1根据数据信号在本帧中进行显示。
示例性的,各条数据线沿列方向延伸,各条栅极线可沿行方向延伸,从而数据线与栅极线相互交叉,并分别与交叉处的子像素1连接,即每条数据线可与阵列中的一列子像素1连接,而每条栅极线可与阵列中的一行子像素1连接。
示例性的,行方向与列方向可以是相互垂直的。
应当理解,本公开实施例中,行方向、列方向仅表示两个相互交叉的相对方向,故行方向、列方向与显示面板的放置方式等没有关系,且行方向与列方向也并不必然相互垂直。
在一些实施例中,显示面板为有机发光二极管显示面板。
作为本公开实施例的一种方式,本公开实施例的显示面板组件中的显示面板可以是有机发光二极管显示面,即,显示面板的每个子像素1中设有一个有机发光二极管(OLED,Organic Light-Emitting Diode)作为发光(显示)器件。
其中,每个子像素1中还可包括用于驱动有机发光二极管发光的像素电路。例如,参照图2,像素电路可为7T1C结构(即包括7个晶体管和1个电容),其具体包括第一晶体管T1、第二晶体管T2、第三晶体管T3(即驱动晶体管)、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7、存储电容Cst,以及用于与其它信号线连接的第一重置端Reset、第二重置端Reset’、初始化端Vinit、栅极线端Gate(连接栅极线)、数据线端Data(连接数据线)、控制端EM、阳极信号端Vdd、阴极信号端Vss等结构。其中,各晶体管均为同类型的晶体管,如均为P型晶体管(如PMOS)或N型晶体管(如NMOS);或者晶体管可以一部分为P型晶体管(如PMOS),一部分为N型晶体管(如NMOS)。
应当理解,本公开实施例中,子像素1的像素电路不限于以上形式;且本公开实施例中的显示面板也不限于有机发光二极管显示面板的形式,例如显示面板也可为液晶显示面板(LCD)等其它的形式。
其中,驱动模块是与显示面板连接,并用于向显示面板提供驱动信号的模块。
例如,作为本公开实施例的一种方式,驱动模块可为驱动(Driver IC)的形式,即可连接在显示面板上的芯片(IC)。
本公开实施例中的驱动芯片包括用于向子像素1(数据线)提供数据信号的驱动芯片,故也可称为数据驱动芯片(DIC,Data Driver IC)。
应当理解,显示面板组件中还可包括用于提供其它信号的驱动芯片,如用于向栅极线提供栅极驱动信号的栅极驱动芯片(Gate Driver IC)等。
其中,驱动芯片可包括多个输出端口,例如是多个引脚(Pin),输出端口与驱动芯片内的走线连接,从而可输出驱动信号。而显示面板可包括多个输入接头,例如是多个焊盘(Pad),输入接头与显示面板中的栅极线、数据线连接。由此,当驱动芯片与显示面板连接时,通过使输出端口与输入接头电连接,即可将驱动芯片产生的驱动信号提供给显示面板。
其中,驱动芯片与显示面板的具体连接方式是多样的。例如,可以是驱动芯片直接绑定(Bonding)在显示面板(如显示面板的阵列基板)上,从而驱动芯片的输出端口也直接与显示面板的输入接头电连接;再如,也可以是显示面板与柔性线路板(FPC,Flexible Printed Circuit)绑定连接,而驱动芯片则连接在柔性线路板上,从而驱动芯片的输出端口通过柔性线路板上的线路与显示面板的输入接头电连接。
应当理解,本公开实施例中的驱动模块不限于驱动芯片的形式,例如,驱动模块也可为直接形成在显示面板(如显示面板的阵列基板)上的电路,但这不影响这些电路的整体作为驱动模块。
本公开实施例的显示面板组件中,显示面板包括多条数据线、多个子像素1、多个第一多路复用单元、多个负载连接端;第一多路复用单元连接至少两个负载连接端(例如就是两个)和至少四条数据线(例如就是四条),至少两个负载连接端包括第一负载连接端N11、第二负载连接端N12,至少四条数据线包括两条连接第一颜色的子像素1的第一数据线S1、连接第二颜色的子像素1第二数据线S2、连接第三颜色的子像素1第三数据线S3,第一多路复用单元用于控制第一 负载连接端N11与两条第一数据线S1中的一条电连接,以及控制第二负载连接端N12与第二数据线S2或第三数据线S3电连接;
驱动模块包括多个用于产生数据信号的数据信号产生单元、与多个第一多路复用单元对应的多个第二多路复用单元、多个信号产生端;第二多路复用单元连接至少两个信号产生端(例如就是两个)和至少四个数据信号产生单元(例如就是四个),至少两个信号产生端包括第一信号产生端N21、第二信号产生端N22,至少四个数据信号产生单元包括两个对应第一数据线S1的第一数据信号产生单元、对应第二数据线S2的第二数据信号产生单元、对应第三数据线S3的第三数据信号产生单元;第二多路复用单元用于控制第一信号产生端N21与两个第一数据信号产生单元中的一个电连接,以及控制第二信号产生端N22与第二数据信号产生单元或第三数据信号产生单元电连接;
第一多路复用单元连接的第一负载连接端N11、第二负载连接端N12,分别与对应的第二多路复用单元连接的第一信号产生端N21、第二信号产生端N22电连接。
参照图3,本公开实施例的显示面板中包括多条数据线,而每条数据线连接多个颜色相同的子像素1。
其中,子像素1的颜色是指其发出的光的颜色(显示的颜色),具体可以是子像素1(如有机发光二极管)直接发出相应颜色的光,也可以是子像素1(如有机发光二极管)原本发出白光,再通过相应颜色的彩色滤光膜(Color Filter)的滤光转变为相应颜色的光。
其中,多个不同颜色的子像素1可组合为一个“像素”,而像素通过混光可整体上实现彩色显示。
应当理解,本公开实施例的显示面板中还可包括栅极线等其它结构,在此不再详细描述。
本公开实施例的显示面板中还包括多个第一多路复用单元(MUX),而每个第一多路复用单元连接四条数据线(两条第一数据线S1,一条第二数据线S2,一条第三数据线S3)和两个负载连接端(一个第一负载连接端N11,一个第二负载连接端N12)。
第一多路复用单元用于切换其所连接的负载连接端、数据线之间的连接关系,具体是,第一多路复用单元选择两条第一数据线S1中的一条与第一负载连接端N11导通,并选择第二数据线S2和第三数据线S3中的一条与第二负载连接端N12导通。
即,本公开实施例的显示面板中,数据线可分为多“组”,每组包括四条数据线,其中两条第一数据线S1连接第一颜色的子像素1,一条第二数据线S2连接第二颜色的子像素1,一条第三数据线S3连接第三颜色的子像素1;而该四条数据线作为负载,与两个负载连接端(第一负载连接端N11、第二负载连接端N12)之间的连接关系由第一多路复用单元选择,从而每个负载连接端可在第一多路复用单元的控制下向两条特定数据线中的一条供电。
在一些实施例中,第一颜色为绿色;
第二颜色和第三颜色中的一者为红色,另一者为蓝色。
作为本公开实施例的一种方式,以上第一颜色可以是绿色(G),而第二颜色和第三颜色可分别选自红色(R)和蓝色(B)。
本公开实施例的显示面板可采用子像素1呈现(SPR,Sub-Pixel Rendering)技术,即,显示面板的每个像素(或者说显示单元)包括的不是三个三原色(如RGB)的子像素1,而是每个像素由四个子像素1构成,具体是两个绿色(G)子像素1,一个蓝色(B)子像素1,一个红色(R)子像素1,而通过这些不同颜色的子像素1的组合,可实现更好的彩色显示效果。
应当理解,本公开实施例的显示面板中,子像素1的具体颜色方式不限于此,例如,也可以是每个像素中,蓝色子像素1或红色子像素1的个数为两个;例如,也可以是直接采用其它颜色体系的子像素1。
在一些实施例中,数据线沿列方向延伸;
多条数据线沿行方向依次设置;
第一多路复用单元连接的四条数据线为四条相邻的数据线。
作为本公开实施例的一种方式,数据线可以是沿列方向延伸的(相应的,栅极线可沿行方向延伸),故多条数据线沿行方向一次排列,而每个第一多路复用单元可连接四条在行方向上相邻的数据线,以尽量简化连接结构。
进一步的,每条数据线可连接同列中的所有子像素1,即,同列子像素1的颜色可相同,且四列相邻子像素1中两列为第一颜色(如绿色),一列为第二颜色(如红色),一列为第三颜色(如蓝色),它们对应一个第一多路复用单元,且其中每行的四个相邻子像素1为一个像素。
应当理解,本公开实施例中,数据线的延伸方向、每个第一多路复用单元对应的数据线的排列方式、与每条数据线连接的子像素1的位置等,均不限于以上形式。
例如,可以是参照图3、图5,两条第一数据线S1排列在一起,而第二数据线S2、第三数据线S3则排列在一起;或者,也可以是参照图4,第一数据线S1、第二数据线S2、第三数据线S3交叉排列;当然,也可以是第二数据线S2、第三数据线S3被夹在两条第一数据线S1之间,或两条第一数据线S1被夹在第二数据线S2、第三数据线S3之间等其它方式,在此不再详细描述。
例如,可以是与一条数据线相邻的子像素1位于不同列中,从而不同行中各颜色子像素1的排列顺序可不同。
参照图3,本公开实施例的驱动模块(如数据驱动芯片DIC)中包括多个用于产生数据信号(即数据电压VDATA)的数据信号产生单元。
其中,由于不同颜色的子像素1的结构、材料、亮度需求等不同,故在相同灰阶下(即显示亮度相同时),不同颜色子像素1所需的数据信号的具体电压值是不同的。因此,每个数据信号产生单元只能用于为一种特定颜色的子像素1供电,或者说,每个数据信号产生单元只能连接特定种类的数据线。
例如,本公开实施例中的第一数据信号产生单元产生的数据信号只能用于提供给第一数据线S1,第二数据信号产生单元产生的数据信 号只能用于提供给第二数据线S2,第三数据信号产生单元产生的数据信号只能用于提供给第三数据线S3。
其中,数据信号产生单元具体可为伽马(Gamma)分压电路。
示例性的,Gamma分压电路包括多个串联的电阻,电阻串的两端分别连接该颜色的gamma高电压信号和gamma低电压信号;而对应不同颜色的Gamma分压电路中的各电阻的阻值分布不同,gamma高电压信号和gamma低电压信号的具体值也可不同,从而不同电阻之间可通过分压产生不同灰阶下该颜色的子像素1所需的数据信号;由此,只要确定当前要充电的子像素1的灰阶(显示内容数据),Gamma分压电路即可据此输出该灰阶对应的数据信号。
应当理解,Gamma分压电路的具体结构不限于此(如其可包括多级分压电阻),且数据信号产生单元也不限于Gamma分压电路的形式,只要其能产生对应颜色的子像素1所需的数据信号即可。
参照图3,本公开实施例的驱动模块中包括与第一多路复用单元一一对应的多个第二多路复用单元(MUX)。每个第二多路复用单元连接四个数据信号产生单元(两个第一数据信号产生单元,一个第二数据信号产生单元,一个第三数据信号产生单元)和两个信号产生端(一个第一信号产生端N21,一个第二信号产生端N22)。
其中,与一个第二多路复用单元连接的第一信号产生端N21电连接一个第一负载连接端N11,该第一负载连接端N11是与该第二多路复用单元对应的第一多路复用单元连接的第一负载连接端N11;而与一个第二多路复用单元连接的第二信号产生端N22电连接一个第二负载连接端N12,该第二负载连接端N12是与该第二多路复用单元对应的第一多路复用单元连接的第二负载连接端N12。
第二多路复用单元用于切换其所连接的信号产生端、数据信号产生单元之间的连接关系,具体是选择两个第一数据信号产生单元中的一个与第一信号产生端N21导通,并选择第二数据信号产生单元和第三数据信号产生单元中的一个与第二信号产生端N22导通。
即,本公开实施例的驱动模块中,数据信号产生单元可分为多“组”, 每组包括四个数据信号产生单元,其中两个第一数据信号产生单元根据第二多路复用单元的选择,将产生的数据信号输出至第一信号产生端N21,进而通过第一负载连接端N11、第一多路复用单元传输至一条第一数据线S1;而第二数据信号产生单元和第三数据信号产生单元根据第二多路复用单元的选择,将产生的数据信号输出至第二信号产生端N22,并通过第二负载连接端N12、第一多路复用单元传输至第二数据线S2(针对由第二数据信号产生单元产生的数据信号)或第三数据线S3(针对由第三数据信号产生单元产生的数据信号)。
在一些相关技术中,可通过对一个第一数据信号产生单元进行分时复用,将其产生的数据信号分时的提供给两条第一数据线S1。
显然,得到对数据信号产生单元的控制信号,以及数据信号产生单元根据控制信号实际产生数据信号均需要一定的时间,故相关技术中,由于对第一数据信号产生单元进行分时复用,导致其实际产生数据信号的总处理时间较长,无法在很短的充电时间(Tr)内为第一颜色的子像素1充分充电。
可见,参照图3,本公开实施例中,对显示面板中的每两条第一数据线S1,驱动模块中有两个第一数据信号产生单元为其产生数据信号,即,本公开实施例中不再有对第一数据信号产生单元的分时复用,可降低实际的处理时间(理论上可降低为原有处理时间的一半),保证对子像素1,尤其是对第一颜色的子像素1的充分充电,改善显示效果,为显示装置的刷新率和分辨率的提高提供基础。
同时,参照图3,本公开实施例中,在驱动模块中设有第二多路复用单元,显示面板中则有第一多路复用单元,故第二多路复用单元可选择特定数据信号产生单元产生的数据信号进入负载连接端,进而,第一多路复用单元再选择该数据信号进入相应的(对应相同颜色的)数据线,以对相应颜色的子像素1充电。
由此可见,相对相关技术中,只能配置R/B、G/G一种数据信号输出组合的方式。
而本公开实施例对每“组”数据线中的数据信号的输入顺序可按 照需要进行自由的数据重排(Data Remapping),即,可将两两的数据信号自由组合并分时输出,适应RGBG、GGRB等各种子像素1颜色排布顺序的需要。
其中,以上R代表红色子像素1或对应的数据信号,B代表蓝色子像素1或对应的数据信号,G代表绿色子像素1或对应的数据信号。
在一些实施例中,第二多路复用单元包括两个第一复用开关K1、第二复用开关K2、第三复用开关K3;两个第一复用开关K1分别连接在两个第一数据信号产生单元和所述第一信号产生端N21之间,第二复用开关K2连接在第二数据信号产生单元和第二信号产生端N22之间,第三复用开关K3连接在第三数据信号产生单元和第二信号产生端N22之间。
作为本公开实施例的一种方式,参照图6,第二多路复用单元可包括四个开关,即两个第一数据信号产生单元分别通过两个第一复用开关K1连接第一信号产生端N21;而第二数据信号产生单元和第三数据信号产生单元分别通过第二数据信号产生单元、第三复用开关K3连接第二信号产生端N22;由此,通过四个控制信号,分别控制各开关的状态,即可实现第二多路复用单元的相应功能。
应当理解,在任意时刻,两个第一复用开关K1中应该是一个导通而另一个关断的,而第二复用开关K2和第三复用开关K3中也是一个导通而另一个关断的。
其中,参照图6,以上各开关可为晶体管的形式,故控制信号可为连接其栅极的信号;进而参照图9,通过各控制信号的电压高低,即可控制各开关的状态。
其中,图6和图9中ENG1和ENG2分别表示对应两个第一复用开关K1的控制信号,ENR表示对应第二复用开关K2的控制信号,ENB表示对应第三复用开关K3的控制信号,CLOCK表示每个周期的时钟信号。
应当理解,以上各开关的具体形式不限于晶体管,在此不再详细描述。
在一些实施例中,第一多路复用单元包括两个复用组,每个复用组包括两个复用开关K,其中一个复用组的两个复用开关K分别连接在第一负载连接端N11与两条第一数据线S1之间,另一个复用组的两个复用开关K分别连接在第二负载连接端N12与第二数据线S2、第三数据线S3之间;
每个复用组中的一个复用开关K受第一切换控制信号控制,另一个复用开关K受第二切换控制信号控制。
作为本公开实施例的一种方式,参照图7,第一多路复用单元也可包括四个复用开关K,并分为两个复用组,两条数据线分别通过同复用组的两个复用开关K连接一个负载连接端。
而与第二多路复用单元的区别在于,第一多路复用单元的中四个复用开关K仅通过两个控制信号(第一切换控制信号控制、第二切换控制信号控制)控制,即,每个控制信号同步的控制每个复用组中的各一个复用开关K(这是因为输入至每个复用组对应的负载连接端的数据信号已经可通过第二多路复用单元单独的控制)。例如,可以是参照图7,相应复用开关K的晶体管的栅极连接相应的信号线。
其中,参照图7,以上复用开关K可为晶体管的形式,故控制信号可为连接其栅极的信号。
应当理解,以上复用开关K的具体形式不限于晶体管,在此不再详细描述。
在一些实施例中,驱动模块还包括数据缓存单元;
数据缓存单元用于根据显示内容数据,控制各数据信号产生单元产生对应的数据信号。
作为本公开实施例的一种方式,参照图4、图5,驱动模块中还可设有数据缓存单元(Line Buffer),该数据缓存单元可对当前帧所要显示的图像的数据(显示内容数据)进行处理,以确定出每个子像素1要显示的内容(如灰阶),例如,数据缓存单元可对图像中各点的灰阶进行缓存和数据重排(Data Remapping);由此,数据缓存单元可在要为任意子像素1充电时,向相应的数据信号产生单元(如Gamma 分压电路)输出相应的控制信号(如灰阶信号),以控制数据信号产生单元进行模数转换,产生所需的数据信号(数据电压VDATA),并输入至相应的数据线和子像素1。
例如,数据缓存单元对数据进行重排的过程可参照下表,其中RGB表示相应颜色子像素的数据,后边的数字表示数据的顺序,N21和N22表示对应相应信号产生端的数据
表1、数据重排过程示意图
Figure PCTCN2022099099-appb-000001
其中,数据缓存单元进行数据重排的具体方式可根据显示面板中子像素1的具体排布方式,以及显示内容数据的具体格式确定,在此不再详细描述。
在一些实施例中,驱动模块还包括多个信号放大单元;
信号放大单元用于放大数据信号产生单元产生的数据信号。
参照图4、图5,为提高驱动能力,驱动模块中还可设有信号放大单元,用于对数据信号产生单元产生的数据信号进行放大后再输入至数据线。
其中,信号放大单元可采用放大器等已有器件,在此不再详细描述。
在一些实施例中,信号放大单元连接在第二多路复用单元与信号产生端之间。
作为本公开实施例的一种方式,信号放大单元可设于第二多路复用单元的输出和信号产生端之间,即第二多路复用单元输出的数据信号需要经过信号放大单元放大后才可进入信号产生端并继续传输至数据线;由此,信号放大单元处理的是经过第二多路复用单元选择的数据信号,故针对两个数据信号产生单元(以及两条数据线),只要设 置一个信号放大单元即可,从而可减少信号放大单元的个数,简化产品结构。
应当理解,本公开实施例中,可以是每个信号产生端均设有一个对应的信号放大单元,以保证对驱动模块输出的所有数据信号均能进行放大;但若驱动模块中没有设置信号放大单元,或者是部分信号产生端没有对应的信号放大单元,也都是可行的。
在一些实施例中,本公开实施例的显示面板组件还包括多个负载开关K9;
负载开关K9连接在信号产生端与数据线之间;
负载开关K9用于控制信号产生端是否能与数据线导通。
参照图4、图5,作为本公开实施例的一种方式,显示面板组件中还可包括多个负载开关K9,而负载开关K9连接在信号产生端与数据线之间,用于控制信号产生端是否与数据线电连接。
由于数据信号要通过数据线输入至子像素1,故数据信号对子像素1充电时,实际也要对该子像素1连接的整条数据线进行充电,即要让整条数据线达到数据信号的电压。
在一些相关技术中,是在信号产生端与数据线一直相连的情况下,数据信号产生单元向信号产生端输出数据信号,即,数据信号产生单元要直接从初始电压(如上一个子像素1残留的数据电压)开始对整条数据线进行充电,以使其达到数据信号的电压。
但是,由于数据线的长度较大,故其负载(Load)也较大,因此,从初始电压开始直接将数据线充电至数据信号的电压所需的时间也比较长,从而导致对子像素1的充电时间(Tr)很长,充电速度慢,无法满足高刷新率和分辨率的要求。
而本公开实施例中,在信号产生端与数据线之间设置有负载开关K9,而负载开关K9可在数据信号产生单元开始输出数据信号之时(或略微之前)关断,从而使数据信号产生单元开始时仅对信号产生端充 电,而不对主要负载(数据线)充电,由于数据信号产生单元与信号产生端之间的电路结构很少,负载几乎可忽略,故该充电过程可视为是“空载”进行的,能迅速完成;而在将信号产生端充电至数据信号的电压之时(或略微之后),负载开关K9可再导通而使信号产生端连接负载(数据线),即数据信号产生单元开始对数据线进行“带载”充电,但由于此时数据信号产生单元相当于从数据信号的电压开始充电,故该充电过程也可迅速完成。
由此,通过设置以上的负载开关K9,可大大缩短对子像素1的实际充电时间(Tr),为显示装置的刷新率和分辨率的提高提供基础。
其中,以上负载开关K9可为晶体管的形式,故可通过连接其栅极的信号实现对负载开关K9的控制。
示例性的,参照图10、图11,在一种显示面板组件中,当负载开关K9一直导通(即相当于没有负载开关K9)时(参照图10中的EN1和Charge1),相当于一直进行“带载”充电,其对一个子像素1的充电时间(Tr)大于600ns;而当负载开关K9先关断再导通时(参照图10中的EN2和Charge2),则相当于先“空载”充电后“带载”充电,此时,“空载”充电的时间只有约150ns(也就是负载开关K9关断的时间),而“带载”充电的时间也只小于300ns,由此,对子像素1的总充电时间也大大缩短。
图10中,EN1和EN2分别表示不使用或使用负载开关K9时对负载开关K9的控制信号;Charge1和Charge2分别表示不使用或使用负载开关K9时,子像素中电压的变化(充电情况);GCK表示栅极线信号;SYNC表示触发充电的初始化信号(信号刷新时刻的信号)。
图11中,“本公开实施例”和“相关技术”的曲线,分别表示被充电的子像素中的电压随时间的变化(充电情况)。
应当理解,以上负载开关K9的具体形式不限于晶体管,在此不再详细描述。
进一步的,根据以上方式可知,负载开关K9关断时,数据信号产生单元不论输出什么信号,对数据线都没有实际的影响。
因此,具有以上负载开关K9是,在每个子像素1的充电过程中,数据信号产生单元实际还可“提前”开始输出本子像素1对应的数据信号,例如,可以是在对上一个子像素1充电完成后的切换时间段内,数据信号产生单元就开始输出本子像素1对应的数据信号,并在确实要对本子像素1充电时,再使负载开关K9导通,立即开始对子像素1的充电。
也就是说,以上“空载”充电的时间,实际可以并不包括在对子像素1的总充电时间(Tr)之内,即,对每个子像素1的总充电时间实际可就是其中“带载”充电的时间,从而更大程度的缩短充电时间。
例如,根据以上图10的例子,对每个子像素1的实际总充电时间可小于300ns,不到相关技术中所需充电时间的一半。
在一些实施例中,所有负载开关K9通过一个负载控制信号控制。
作为本公开实施例的一种方式,驱动模块的各信号产生端通常是同步的对多个子像素1进行充电的,故为方便管理,可以是所有负载开关K9均通过一个控制信号(负载控制信号控制)控制,例如是参照图8,所有负载开关K9的晶体管的栅极连接一条信号线。
应当理解,本公开实施例中,可以是每个信号产生端均设有一个对应的负载开关K9,以保证对驱动模块输出的所有数据信号均能进行以上先“空载”后“带载”的充电过程;但若驱动模块中没有设置负载开关,或者是部分信号产生端没有对应的负载开关,也都是可行的。
在一些实施例中,负载开关K9连接在信号产生端与负载连接端之间。
作为本公开实施例的一种方式,参照图4、图5,负载开关K9可以是设于信号产生端与负载连接端之间的,从而每个负载开关K9可对应两条数据线,以减少负载开关K9的数量,简化产品结构。
应当理解,若负载开关K9设于其它位置,例如是每条数据线与相应负载连接端之间均设有负载开关K9,也是可行的。
在一些实施例中,驱动模块为驱动芯片,负载开关K9设于驱动芯 片内;
驱动芯片包括多个输出端口;信号产生端通过负载开关K9连接输出端口。
参照图4,作为本公开实施例的一种方式,当驱动模块采用驱动芯片的形式时,负载开关K9可以是直接集成在驱动芯片内部的,即,负载开关K9设于信号产生端和驱动芯片实际输出端口(如引脚Pin)之间(当然也是位于信号放大单元与输出端口之间)。
如前,以上驱动芯片的输出端口应当是与显示面板的输入接头(如焊盘Pad)电连接的(例如是直接绑定而电连接,或者是通过柔性线路板(FPC)间接的电连接),从而实现对应的信号产生端与负载连接端之间的电连接,故负载开关K9设于以上位置也就是设于信号产生端与负载连接端之间。
在一些实施例中,驱动芯片还包括多个静电释放单元;
静电释放单元用于阻止输出端口的信号反向传输至负载开关K9。
作为本公开实施例的一种方式,参照图4,在驱动芯片内设有负载开关K9时,为了防止负载开关K9导通的瞬间,因静电积累而使显示面板中的信号从输出端口“反灌”到驱动芯片内部而损坏驱动芯片的电路结构,可在驱动芯片内设置静电释放单元(ESD,Electro-Static Discharge)。
在一些实施例中,静电释放单元包括第一二极管D1和第二二极管D2;第一二极管D1的阳极连接低电压信号(图8中用GND表示),阴极连接输出端口;第二二极管D2的阴极连接高电压信号(图8中用AVDD表示),阳极连接输出端口。
进一步的,参照图8,每个静电释放单元的结构可包括两个二极管(第一二极管D1、第二二极管D2),其中,第一二极管D1的阳极连接低电压信号,而阴极则连接驱动芯片的输出端口,而第二二极管D2的阴极连接高电压信号,阳极则连接驱动芯片的输出端口(当然也是连接第一二极管D1的阳极)。
应当理解,静电释放单元(ESD)的具体形式不限于以上的例子,其也可为其它任何能防止信号“反灌”的电路结构。
在一些实施例中,负载开关K9设于显示面板内;显示面板包括多个输入接头;负载连接端通过负载开关K9连接输入接头。
或者,参照图5,作为本公开实施例的另一种方式,负载开关K9也可以是设于显示面板中(如设于显示面板的阵列基板上)的,即,负载开关K9可设于显示面板的输入接头(如焊盘Pad)与负载连接端之间,当然也就是设于信号产生端与负载连接端之间。
应当理解,若是负载开关K9设于柔性线路板(FPC)等其它位置,也是可行的,只要其连接在信号产生端与数据线之间即可。
第二方面,参照图1至图12,本公开实施例提供一种显示面板组件的驱动方法,其中,显示面板组件为本公开实施例的任意一种显示面板组件。
本公开实施例提供一种对以上的显示面板组件进行驱动,从而实现显示的方法。
参照图12,本公开实施例的显示面板组件的驱动方法中,向任意子像素1输入数据信号的过程包括:
S201、根据该子像素1的显示内容数据,控制对应的数据信号产生单元产生数据信号。
S202、控制第二多路复用单元使该数据信号产生单元与信号产生端电连接,控制第一多路复用单元使该信号产生端与该子像素1连接的数据线电连接。
显示面板组件进行显示时,在每帧中,需要向每个子像素1输入数据信号,以使子像素1根据该数据信号在该帧中持续显示所需内容。
根据本公开实施例的显示面板组件的驱动方法,在向任意一个子像素1输入数据信号的过程中,可先根据该子像素1的显示内容数据(如该子像素1在本帧中的灰阶),控制对应的数据信号产生单元(与 该子像素1连接的同颜色的数据信号产生单元)产生相应的数据信号。例如,可以是由数据缓存单元(Line Buffer)对本帧要显示的图像中各点的灰阶进行缓存和数据重排(Data Remapping),以确定出该子像素1的灰阶,并要要向该子像素1充电时,将灰阶作为控制信号输入至数据信号产生单元(如Gamma分压电路),使数据信号产生单元产生数据信号。
相应的,还可控制第二多路复用单元使该数据信号产生单元与信号产生端电连接,并控制第一多路复用单元使该信号产生端与该子像素1连接的数据线电连接,从而使数据信号产生单元产生的数据信号,依次经过第二多路复用单元、信号产生端(输出端口)、负载连接端(输入接头)、第一多路复用单元、数据线而传输至子像素1,对子像素1进行充电,实现显示。
以上描述的是对一个子像素1输入数据信号的过程,而为形成完整的画面和持续的显示,故显示面板组件通常需进行多帧连续的显示,而每帧中都需要在不同时刻向不同的子像素1(如不同行的子像素1)输入数据信号,且在每个时刻,通常需要同时向多个子像素1(如同行的多个子像素1)输入数据信号;应当理解,其中向任意子像素1输入数据信号的过程均可按照以上的方式进行。
应当理解,以上步骤S201和步骤S202的编号顺序,并不代表二者必然的执行先后顺序,只要在向任意子像素1输入数据信号的过程中,确实执行了本公开实施例的驱动方法的各步骤就是可行的(例如步骤S201和步骤S202可实际上同时进行)。
在一些实施例中,显示面板组件为具有负载开关K9的显示面板组件;本公开实施例的驱动方法还包括:
在数据信号产生单元开始产生数据信号之时或之前,控制负载开关K9关断;
在信号产生端的电压达到数据信号的电压之时或之后,控制负载开关K9导通。
如前,参照图9,当显示面板组件中具有以上负载开关K9时,还 可控制负载开关K9在数据信号产生单元开始产生数据信号之时(或略微之前)关断,并在数据信号产生单元于“空载”状态下将信号产生端充电至数据信号的电压之时(或略微之后)使负载开关K9导通,开始对数据线和子像素1进行和“带载”的充电。
在一些实施例中,任意子像素1的数据信号在预定的信号刷新时刻输入;
数据信号产生单元在信号刷新时刻前的预定时间开始产生数据信号,以使信号产生端的电压在信号刷新时刻之时或之前达到数据信号的电压。
如前,作为本公开实施例的一种方式,当显示面板组件中具有以上负载开关K9时,可在实际开始对子像素1充电(信号刷新时刻)之前,即“提前”预定时间控制数据信号产生单元开始产生数据信号并对信号产生端充电进行“空载”充电(当然预定时间中应控制负载开关K9关断),以进一步缩短对子像素1的实际充电时间(Tr)。
应当理解,以上预定时间可根据需要选择,其既不能太长而影响对上一个子像素1的充电过程,也不能太短而导致信号刷新时刻到来时“空载”充电仍未完成。例如,该预定时间可以就是预定的“空载”充电的时间,例如为以上150ns。
第三方面,参照图13,本公开实施例提供一种显示装置,包括本公开实施例的任意一种显示面板组件。
可将本公开实施例的显示面板组件继续与外壳、电源等其它器件组合,形成具有完整功能的、独立存在的显示装置的产品。
示例性的,显示装置中的显示面板可为有机发光二极管(OLED)显示面板、液晶显示面板(LCD)等任意形式;而显示装置可为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种显示面板组件,包括显示面板和多个驱动模块;其中,
    显示面板包括多条数据线、多个子像素、多个第一多路复用单元、多个负载连接端;第一多路复用单元连接至少两个负载连接端和至少四条数据线,至少两个负载连接端包括第一负载连接端、第二负载连接端,至少四条数据线包括两条连接第一颜色的子像素的第一数据线、连接第二颜色的子像素第二数据线、连接第三颜色的子像素第三数据线,第一多路复用单元用于控制第一负载连接端与两条第一数据线中的一条电连接,以及控制第二负载连接端与第二数据线或第三数据线电连接;
    驱动模块包括多个用于产生数据信号的数据信号产生单元、与多个第一多路复用单元对应的多个第二多路复用单元、多个信号产生端;第二多路复用单元连接至少两个信号产生端和至少四个数据信号产生单元,至少两个信号产生端包括第一信号产生端、第二信号产生端,至少四个数据信号产生单元包括两个对应第一数据线的第一数据信号产生单元、对应第二数据线的第二数据信号产生单元、对应第三数据线的第三数据信号产生单元;第二多路复用单元用于控制第一信号产生端与两个第一数据信号产生单元中的一个电连接,以及控制第二信号产生端与第二数据信号产生单元或第三数据信号产生单元电连接;
    第一多路复用单元连接的第一负载连接端、第二负载连接端,分别与对应的第二多路复用单元连接的第一信号产生端、第二信号产生端电连接。
  2. 根据权利要求1的显示面板组件,其中,
    第二多路复用单元包括两个第一复用开关、第二复用开关、第三复用开关;两个第一复用开关分别连接在两个第一数据信号产生单元和所述第一信号产生端之间,第二复用开关连接在第二数据信号产生 单元和第二信号产生端之间,第三复用开关连接在第三数据信号产生单元和第二信号产生端之间。
  3. 根据权利要求1的显示面板组件,其中,
    第一多路复用单元包括两个复用组,每个复用组包括两个复用开关,其中一个复用组的两个复用开关分别连接在第一负载连接端与两条第一数据线之间,另一个复用组的两个复用开关分别连接在第二负载连接端与第二数据线、第三数据线之间;
    每个复用组中的一个复用开关受第一切换控制信号控制,另一个复用开关受第二切换控制信号控制。
  4. 根据权利要求1的显示面板组件,其中,驱动模块还包括数据缓存单元;
    数据缓存单元用于根据显示内容数据,控制各数据信号产生单元产生对应的数据信号。
  5. 根据权利要求1的显示面板组件,其中,驱动模块还包括多个信号放大单元;
    信号放大单元用于放大数据信号产生单元产生的数据信号。
  6. 根据权利要求5的显示面板组件,其中,
    信号放大单元连接在第二多路复用单元与信号产生端之间。
  7. 根据权利要求1的显示面板组件,其中,还包括多个负载开关;
    负载开关连接在信号产生端与数据线之间;
    负载开关用于控制信号产生端是否能与数据线导通。
  8. 根据权利要求7的显示面板组件,其中,
    负载开关连接在信号产生端与负载连接端之间。
  9. 根据权利要求8的显示面板组件,其中,
    负载开关设于驱动芯片内;
    驱动芯片包括多个输出端口;信号产生端通过负载开关连接输出端口。
  10. 根据权利要求9的显示面板组件,其中,
    驱动芯片还包括多个静电释放单元;
    静电释放单元用于阻止输出端口的信号反向传输至负载开关。
  11. 根据权利要求10的显示面板组件,其中,
    静电释放单元包括第一二极管和第二二极管;第一二极管的阳极连接低电压信号,阴极连接输出端口;第二二极管的阴极连接高电压信号,阳极连接输出端口。
  12. 根据权利要求8的显示面板组件,其中,
    负载开关设于显示面板内;
    显示面板包括多个输入接头;负载连接端通过负载开关连接输入接头。
  13. 根据权利要求7的显示面板组件,其中,
    所有负载开关通过一个负载控制信号控制。
  14. 根据权利要求1的显示面板组件,其中,
    第一颜色为绿色;
    第二颜色和第三颜色中的一者为红色,另一者为蓝色。
  15. 根据权利要求1的显示面板组件,其中,
    数据线沿列方向延伸;
    多条数据线沿行方向依次设置;
    第一多路复用单元连接的四条数据线为四条相邻的数据线。
  16. 根据权利要求1的显示面板组件,其中,
    显示面板为有机发光二极管显示面板。
  17. 一种显示面板组件的驱动方法,其中,显示面板组件为权利要求1至16中任意一项的显示面板组件;驱动方法中,向任意子像素输入数据信号的过程包括:
    根据该子像素的显示内容数据,控制对应的数据信号产生单元产生数据信号;
    控制第二多路复用单元使该数据信号产生单元与信号产生端电连接,控制第一多路复用单元使该信号产生端与该子像素连接的数据线电连接。
  18. 根据权利要求17的驱动方法,其中,显示面板组件为权利要求7至13中任意一项的显示面板组件;驱动方法还包括:
    在数据信号产生单元开始产生数据信号之时或之前,控制负载开关关断;
    在信号产生端的电压达到数据信号的电压之时或之后,控制负载开关导通。
  19. 根据权利要求18的驱动方法,其中,
    任意子像素的数据信号在预定的信号刷新时刻输入;
    数据信号产生单元在信号刷新时刻前的预定时间开始产生数据信号,以使信号产生端的电压在信号刷新时刻之时或之前达到数据信号的电压。
  20. 一种显示装置,其中,包括权利要求1至16中任意一项的显示面板组件。
PCT/CN2022/099099 2022-06-16 2022-06-16 显示面板组件及其驱动方法、显示装置 WO2023240522A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/099099 WO2023240522A1 (zh) 2022-06-16 2022-06-16 显示面板组件及其驱动方法、显示装置
CN202280001787.6A CN117730363A (zh) 2022-06-16 2022-06-16 显示面板组件及其驱动方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099099 WO2023240522A1 (zh) 2022-06-16 2022-06-16 显示面板组件及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023240522A1 true WO2023240522A1 (zh) 2023-12-21

Family

ID=89192783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099099 WO2023240522A1 (zh) 2022-06-16 2022-06-16 显示面板组件及其驱动方法、显示装置

Country Status (2)

Country Link
CN (1) CN117730363A (zh)
WO (1) WO2023240522A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047122A (zh) * 2015-09-08 2015-11-11 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
CN106710502A (zh) * 2016-12-26 2017-05-24 武汉华星光电技术有限公司 一种显示面板及用于驱动显示面板的多路复用驱动电路
US20170309230A1 (en) * 2016-04-25 2017-10-26 Samsung Display Co., Ltd. Pixel and a display device including the pixel
CN208970143U (zh) * 2018-11-07 2019-06-11 惠科股份有限公司 显示面板的驱动选择电路、显示面板及显示装置
CN110060650A (zh) * 2019-05-28 2019-07-26 武汉华星光电技术有限公司 多路复用型液晶显示驱动电路
CN110716658A (zh) * 2018-07-12 2020-01-21 乐金显示有限公司 显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047122A (zh) * 2015-09-08 2015-11-11 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
US20170309230A1 (en) * 2016-04-25 2017-10-26 Samsung Display Co., Ltd. Pixel and a display device including the pixel
CN106710502A (zh) * 2016-12-26 2017-05-24 武汉华星光电技术有限公司 一种显示面板及用于驱动显示面板的多路复用驱动电路
CN110716658A (zh) * 2018-07-12 2020-01-21 乐金显示有限公司 显示装置及其驱动方法
CN208970143U (zh) * 2018-11-07 2019-06-11 惠科股份有限公司 显示面板的驱动选择电路、显示面板及显示装置
CN110060650A (zh) * 2019-05-28 2019-07-26 武汉华星光电技术有限公司 多路复用型液晶显示驱动电路

Also Published As

Publication number Publication date
CN117730363A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
US11837162B2 (en) Pixel circuit and driving method thereof, display panel
US10199000B2 (en) Source driver IC chip
EP3174042B1 (en) Organic light emitting diode display
US11244609B2 (en) Display device and OLED display panel thereof
US11373597B2 (en) Organic light emitting diode display device and method of driving the same
US20180329546A1 (en) Touch display panel, a driving method thereof, and touch display device
WO2021237874A1 (zh) 阵列基板、显示面板、显示装置及驱动方法
CN104919900A (zh) 智能像素照明和显示微控制器
KR101080350B1 (ko) 표시 장치 및 그 구동 방법
US20220366854A1 (en) Pixel array, array substrate and display device
CN107170793B (zh) 阵列基板及其驱动方法、显示面板及显示装置
CN108447441B (zh) 像素电路及其驱动方法、显示基板、显示装置
US20180341160A1 (en) Display device and display panel with novel pixel and data line configurations
WO2023231384A1 (zh) 显示面板的像素驱动电路、驱动方法以及显示装置
CN109637380B (zh) 一种显示面板及显示装置
WO2023240522A1 (zh) 显示面板组件及其驱动方法、显示装置
KR20150073482A (ko) 영상 표시장치의 구동장치와 그 구동방법
US20170316747A1 (en) Display apparatus
JP2015232590A (ja) 電気光学装置、電子機器、及び電気光学装置の制御方法
KR20220092180A (ko) 게이트 구동 회로 및 표시 장치
KR102368950B1 (ko) 표시 패널, 표시 장치, 및 표시 장치의 동작 방법
JP7300496B2 (ja) マルチプレクサを含む表示装置
US8411001B2 (en) Display device with floating bar
KR102511310B1 (ko) 백라이트유닛 및 이를 이용한 액정표시장치
KR102458522B1 (ko) 표시장치용 게이트 구동회로 및 그를 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946216

Country of ref document: EP

Kind code of ref document: A1