WO2023238760A1 - 電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置 - Google Patents

電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置 Download PDF

Info

Publication number
WO2023238760A1
WO2023238760A1 PCT/JP2023/020407 JP2023020407W WO2023238760A1 WO 2023238760 A1 WO2023238760 A1 WO 2023238760A1 JP 2023020407 W JP2023020407 W JP 2023020407W WO 2023238760 A1 WO2023238760 A1 WO 2023238760A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
sensor controller
pen signal
lcx
pen
Prior art date
Application number
PCT/JP2023/020407
Other languages
English (en)
French (fr)
Inventor
比呂志 水橋
聡 伊藤
義久 杉山
ジュフン リ
Original Assignee
株式会社ワコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワコム filed Critical 株式会社ワコム
Publication of WO2023238760A1 publication Critical patent/WO2023238760A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means

Definitions

  • An electromagnetic induction method is known as one of the methods for detecting the position of an electromagnetic induction pen within the panel surface of a tablet terminal or the like.
  • An EMR-based tablet terminal includes a pen detection sensor (hereinafter referred to as "EMR sensor") disposed within the panel surface and a sensor controller connected to the EMR sensor.
  • the EMR sensor includes a plurality of Tx coils arranged in a row in the y direction and a plurality of Rx coils arranged in a row in the x direction.
  • the sensor controller sequentially transmits an alternating magnetic field from multiple Tx coils, and each time receives a reflected signal (hereinafter referred to as "pen signal") transmitted by the electromagnetic induction pen at each Rx coil, thereby controlling the electromagnetic induction pen. It detects the position and receives the data sent by the induction pen.
  • Patent Document 1 discloses an example of an EMR sensor.
  • the S/N ratio of the pen signal received by the sensor controller is as large as possible.
  • There are several possible ways to improve the S/N ratio one of which is to configure the electromagnetic induction pen so that the pen signal transmission period is longer. This is because when the pen signal detection period in the sensor controller increases N times, the level of the received pen signal increases N times, while the level of the received noise remains at N 1/2 times.
  • the pen signal transmission period is simply lengthened, another problem will occur: a decrease in the frequency of position detection.
  • the sensor controller receives pen signals in parallel using multiple Rx coils, it is possible to lengthen the pen signal transmission period without reducing the frequency of position detection. This time, receiving circuits corresponding to the number of parallel receiving circuits are required, resulting in an increase in the circuit scale of the sensor controller.
  • one of the objects of the present invention is to improve the S/N ratio of pen signals received in a sensor controller without reducing the frequency of position detection and without increasing the circuit scale of the sensor controller.
  • An object of the present invention is to provide a method, a sensor controller, and a position detection device that can be executed by an electromagnetic induction type sensor controller.
  • the method according to the present invention is a method executed by an electromagnetic induction sensor controller, in which the plurality of coils are connected in a connection configuration in which the connection polarity is different for each pen signal detection period in each of the plurality of pen signal detection periods.
  • a result value indicating the level of a pen signal is detected via the plurality of coils, and restoration is performed according to the connection polarity for the plurality of result values detected in each of the plurality of pen signal detection periods.
  • the level of the pen signal corresponding to each of the plurality of coils is separately obtained by performing calculations.
  • a position detecting device includes a sensor including a plurality of coils, and a plurality of coils connected in a connection form in which the connection polarity is different for each pen signal detection period in each of the plurality of pen signal detection periods. by detecting a result value indicating the level of the pen signal through the coil, and performing a restoration operation according to the connection polarity on the plurality of result values detected in each of the plurality of pen signal detection periods. , and a sensor controller that separately acquires the level of the pen signal corresponding to each of the plurality of coils.
  • pen signals received by a plurality of coils are simultaneously received by one receiving circuit in each of a plurality of pen signal detection periods, and the received signals (pen signals received by a plurality of coils
  • the S of the pen signal received at the sensor controller can be separated for each coil without reducing the frequency of position detection or increasing the circuit scale of the sensor controller. /N ratio can be improved.
  • FIG. 1 is a diagram showing the configuration of a position detection system 1 according to a first embodiment of the present invention.
  • 2 is a diagram showing the internal configuration of the switch section 30 shown in FIG. 1.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 3 is a diagram illustrating a received signal Rx supplied from a differential amplifier 30h to a sensor controller 31.
  • FIG. 6 is a diagram illustrating a received signal Rx according to a first comparative example.
  • FIG. 7 is a diagram illustrating a received signal Rx according to a second comparative example.
  • FIG. 7 is a diagram showing the results of simulating the level of a pen signal received by each loop coil LCx in the vicinity when the electromagnetic induction pen P is located on the loop coil LCx n . It is a figure which shows the internal structure of the switch part 30 arrange
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 15 is a diagram showing the internal configuration of the switch section 30 shown in FIG. 14.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the finger F.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 7 is a diagram showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • FIG. 1 is a diagram showing the configuration of a position detection system 1 according to a first embodiment of the present invention.
  • the position detection system 1 includes an electromagnetic induction pen P and a position detection device 3.
  • the electromagnetic induction pen P is a pen compatible with position detection using the EMR method, and is configured to have a resonant circuit including a coil and a capacitor inside.
  • the position detection device 3 is a device that supports position detection of the electromagnetic induction pen P using the EMR method, and includes a plurality of loop coils LCx, a plurality of loop coils LCy, a switch section 30, a sensor controller 31, and a host processor 32. configured.
  • a typical example of the position detecting device 3 is a tablet terminal or a notebook computer whose display screen also serves as a touch screen, but the position detecting device 3 may be configured with a digitizer or the like that does not have a display screen.
  • the illustrated x and y directions are both directions within the touch surface and are orthogonal to each other.
  • the plurality of loop coils LCx are each formed to extend in the y direction (first direction), and are arranged side by side in the x direction (second direction). Both ends of each loop coil LCx are connected to the switch section 30.
  • the plurality of loop coils LCy are each formed to extend in the x direction and are arranged side by side in the y direction. One end of each loop coil LCy is connected to the switch section 30, and the other end is grounded.
  • FIG. 2 is a diagram showing the internal configuration of the switch unit 30. For simplicity, only five loop coils LCx and five loop coils LCy (loop coils LCx n-2 to LCx n+2 and loop coils LCy m-2 to LCy m+2 ) are shown in the figure. As shown in the figure, the switch section 30 includes two types of switches 30a and 30b, a wiring section 30c, and a differential amplifier 30d.
  • the switch 30a is configured to supply an alternating current Tx for generating an alternating magnetic field on the touch surface to the loop coil LCy, and is connected to each input pin to which the alternating current Tx is supplied from the sensor controller 31 and for each loop coil LCy. and an output pin provided.
  • the switch 30a serves to connect an input pin to any output pin under the control of the sensor controller 31.
  • the switch 30b and the wiring section 30c are configured to supply the pen signal (transmitted by the electromagnetic induction pen P in response to the alternating magnetic field) received by each loop coil LCx to the differential amplifier 30h.
  • the switch 30b is configured to have an input pin provided for each end of the loop coil LCx, and four output pins provided for each input pin.
  • the switch 30b serves to connect each input pin to one of the four corresponding output pins under the control of the sensor controller 31.
  • the wiring section 30c is configured with four wirings L1 to L4. Four output pins for each input pin of the switch 30b are provided corresponding to these four wires L1 to L4, and are connected to the corresponding wires, respectively.
  • 3 to 5 are diagrams each showing the state of the switch section 30 when the sensor controller 31 detects the position of the electromagnetic induction pen P.
  • the sensor controller 31 is configured to sequentially send out an alternating magnetic field from each of the plurality of loop coils LCy by supplying an alternating current Tx while switching the switch 30a.
  • the sensor controller 31 While transmitting an alternating magnetic field from one loop coil LCy m , the sensor controller 31 sequentially selects each set of three adjacent loop coils LCx as one set, and configures the selected set each time. Processing is performed to control the switch 30b so that the three loop coils LCx are connected in series to the differential amplifier 30d in three connection configurations with different connection polarities. Through this process, the differential amplifier 30d detects a result value indicating the level of the pen signal based on the potential across the composite coil consisting of three loop coils LCx connected in series, and detects the result value indicating the level of the pen signal as the received signal Rx. It will be output to the controller 31.
  • loop coil LCx n-1 when viewed from the non-inverting input terminal of the differential amplifier 30d, the loop coil LCx n-1 is connected clockwise, then the loop coil LCx n is connected counterclockwise, and finally the loop Coil LCx n+1 is connected around the left.
  • loop coil LCx n-1 when viewed from the non-inverting input terminal of the differential amplifier 30d, loop coil LCx n-1 is connected counterclockwise, then loop coil LCx n is connected counterclockwise, and finally loop coil LCx n+1 is connected around the right.
  • FIG. 6 is a diagram illustrating the received signal Rx supplied from the differential amplifier 30d to the sensor controller 31 as a result of making the connections as described above.
  • the illustrated pen signal detection periods T1 to T3 correspond to the connection states shown in FIGS. 3 to 5, respectively. Note that, although the sending time of the alternating magnetic field is actually arranged in the first half of each pen signal detection period, it is omitted in FIG. Furthermore, although the actual received signal Rx attenuates over time, the attenuation is not depicted in FIG. 6 for ease of understanding. These points also apply to FIGS. 7 and 8, which will be described later.
  • the pen signal received during the pen signal detection period T1 has an opposite phase between the loop coil LCx n and the loop coils LCx n-1 and LCx n+1 .
  • the loop coil LCx n rotates clockwise, and the loop coils LCx n-1 and LCx n+1 rotate counterclockwise.
  • the sensor controller 31 is generating an alternating magnetic field in the loop coil LCy m
  • the levels of the pen signals received by the loop coils LCx n-1 to LCx n+1 are set to levels E m and n-1 to E m , respectively.
  • n+1 as shown in FIG.
  • the received signal Rx (result value) supplied from the differential amplifier 30d to the sensor controller 31 during the pen signal detection period T1 is -E m,n-1 +E It will be expressed as m,n -E m,n+1 .
  • the pen signal detection periods T2 and T3 which are expressed as +E m,n-1 -E m,n -E m,n+1 and -E m,n-1 -E m,n +E m,n+1 , respectively. That will happen.
  • the vector d series shown in the following equation (1) is a vector representation of the received signal Rx received in each of the pen signal detection periods T1 to T3. As shown in the last row of equation (1), the vector d series is composed of a 3 ⁇ 3 matrix F (first matrix) indicating the connection polarity in each pen signal detection period, and levels E m,n ⁇ 1 to E It can be transformed into a product of vectors representing m and n+1 . Note that the matrix F shown in equation (1) is a 3 ⁇ 3 Walsh code.
  • the sensor controller 31 calculates the , separately obtain the pen signal levels E m,n-1 to E m ,n +1 received by each of the loop coils LCx n-1 to LCx n +1 when an alternating magnetic field is sent from the m-th loop coil LCy m. You will be able to do that.
  • FIG. 8 is a diagram illustrating the received signal Rx according to the second comparative example.
  • the sensor controller 31 according to this comparative example connects three adjacent loop coils LCx in series to the differential amplifier 30d, similarly to the present embodiment.
  • the sensor controller 31 according to this comparative example connects all the loop coils LCx in the same direction (clockwise or counterclockwise).
  • the sensor controller 31 separates the received signals Rx obtained through the three loop coils LCx into three
  • the position of the electromagnetic induction pen P can be derived by assuming that the position is obtained by the loop coil LCx located at the center of the loop coil LCx.
  • the pen signal detection period that can be used to obtain the pen signal received by each loop coil LCx is longer than that in the first and second comparative examples. This is due to the fact that it is three times as large.
  • the pen signal detection period of the pen signal in the sensor controller 31 increases by N times, the level of the received pen signal increases by N times, while the level of the received noise increases by N 1/2 Stay double. Therefore, it can be said that according to the pen signal receiving method according to the present embodiment, it is possible to improve the S/N ratio of the pen signal received by the sensor controller 31.
  • the received signal Rx acquired in the k-th pen signal detection period is X k and its variance is expressed as V (X k ), then due to the additive nature of the variance, The variance V TOTAL of a signal obtained by adding N received signals X 1 to It is expressed as the total variance of the received signal Rx during the detection period.
  • the amount of noise appearing in the summed signal is represented by the standard deviation ⁇ TOTAL of the summed signal. From equation (4), this standard deviation ⁇ TOTAL is expressed as the following equation (5), so when the pen signal detection period of the pen signal in the sensor controller 31 increases by N times, the noise level increases. It is understood that it remains at N 1/2 times.
  • the sensor controller 31 can receive signals without reducing the frequency of position detection and without increasing the circuit scale of the sensor controller 31. It becomes possible to improve the S/N ratio of pen signals.
  • equation (7) a column in which all elements have a value of 1 is added to the beginning of the matrix F, and the value is +E m,n-1 +E m,n +E m,n- 2 to the beginning of the vector d series , and then multiplying the vector d series by the matrix F, we obtain a result that linearly (specifically, 4 times) amplifies the calculation result of equation (6). It will be done.
  • the levels E m,n-1 to E m,n+1 can be obtained separately, as in the case of performing a restoration operation using the inverse matrix F -1 of the matrix F.
  • vector d series when the matrix F is a 4 ⁇ 4 Walsh code is expressed as the following equation (8).
  • vector e is a vector indicating the level of the pen signal received by each of the four loop coils LCx.
  • FIG. 11 to 13 are diagrams each showing the state of the switch section 30 when the sensor controller 31 according to the present embodiment detects the position of the electromagnetic induction pen P. While transmitting an alternating magnetic field from the loop coil LCy m , the sensor controller 31 according to the present embodiment sequentially selects each set of three adjacent loop coils LCx as one set, and selects the selected set each time. Processing is performed to control the switch 30b so that the three loop coils LCx forming the configuration are connected in parallel to the operational amplifier 30e in three connection configurations with different connection polarities.
  • the operational amplifier 30e detects a result value indicating the level of the pen signal based on the potential at one end of the composite coil (potential with respect to the grounded end) consisting of three loop coils LCx connected in parallel, and detects the result value indicating the level of the pen signal. It will be output to the sensor controller 31 as Rx.
  • the received signal Rx supplied from the operational amplifier 30e to the sensor controller 31 is expressed by the vector dparallel shown in the following equation (11).
  • the meanings of the levels E m,n-1 to E m,n+1 shown in equation (11) are as explained in the first embodiment.
  • the vector dparallel is also composed of a 3 ⁇ 3 matrix F indicating the connection polarity in each pen signal detection period, similar to the vector dseries described in the first embodiment. , and vectors representing levels E m,n-1 to E m,n+1 .
  • the sensor controller 31 in this embodiment also multiplies the vector d parallel by the inverse matrix F ⁇ 1 of the matrix F.
  • the levels E m, n-1 to E m,n +1 of the pen signals received by the loop coils LCx n-1 to LCx n+1, respectively, can be separately acquired. Therefore, the pen signal reception method according to the present embodiment also allows the pen signal received by the sensor controller 31 to It can be said that it becomes possible to improve the /N ratio.
  • the inductance is smaller than when connected in series, so in this embodiment, the level of the pen signal is lower than in the first embodiment. Become. Therefore, it can be said that the effect of improving the S/N ratio of the pen signal is higher in the first embodiment than in the present embodiment.
  • FIG. 14 is a diagram showing the configuration of the position detection system 1 according to this embodiment.
  • the position detection system 1 according to the present embodiment is characterized in that the position detection device 3 also supports position detection of the finger F using a capacitance method, and that the position detection device 3 uses a plurality of wires instead of the plurality of loop coils LCy.
  • the position detection system 1 differs from the position detection system 1 according to the first embodiment in that it has a shaped electrode EL and in the internal configuration of the switch section 30.
  • the position detection system 1 according to the present embodiment is similar to the position detection system 1 according to the first embodiment, so the differences from the position detection system 1 according to the first embodiment will be described below. Continue the explanation by focusing on
  • the plurality of linear electrodes EL are each formed to extend in the x direction and are arranged side by side in the y direction. Each linear electrode EL is connected to the switch section 30 at both ends.
  • the switch unit 30 includes a plurality of switches for switching connections between the plurality of loop coils LCx and switching connections between the plurality of loop coils LCx and the plurality of linear electrodes EL and the sensor controller 31. It is a collection of switches composed of
  • FIG. 15 is a diagram showing the internal configuration of the switch section 30 according to this embodiment. Similar to FIG. 2 above, for the sake of simplicity, the figure shows five loop coils LCx and five linear electrodes EL (loop coils LCx n-2 to LCx n+2 , linear electrodes EL m-2 to EL). m+2 ) is shown. As shown in the figure, the switch section 30 according to the present embodiment includes switches 30f to 30j and an operational amplifier 30k in addition to a switch 30b, a wiring section 30c, and a differential amplifier 30d. The switch 30a shown in FIG. 2 is not included in the switch section 30 according to this embodiment.
  • the switch 30g is configured to supply a touch detection signal Tx_TP for detecting the position of the finger F to a plurality of linear electrodes EL, and has a set of input pins and output pins provided for each linear electrode EL. It is composed of A touch detection signal Tx_TP is supplied from the sensor controller 31 to each input pin. Each output pin is connected to one end of the corresponding linear electrode EL in the x direction.
  • the switch 30g serves to connect each input pin to a corresponding output pin under the control of the sensor controller 31.
  • the switch 30j is configured to switch the other end of the linear electrode EL in the x direction (longitudinal direction) between a grounded state and a floating state where it is not connected to anything.
  • Each input pin of the switch 30j is connected to the other end of the corresponding linear electrode EL in the x direction (longitudinal direction).
  • each ground pin of the switch 30j is connected to a ground terminal to which a ground potential is supplied. The reason why the switch 30j is provided is that when the sensor controller 31 detects the position of the electromagnetic induction pen P, it is preferable to set the other end of each linear electrode EL in the x direction to the ground potential as described above.
  • the switch 30j plays a role of switching the connection state between each input pin and the corresponding ground pin according to the control of the sensor controller 31.
  • the switches 30b, 30h, 30i and the wiring section 30c supply the pen signal received by each loop coil LCx (transmitted by the electromagnetic induction pen P in response to the alternating magnetic field) to the differential amplifier 30d, and also supply the pen signal received by each loop coil LCx to the differential amplifier 30d.
  • This configuration is for supplying the touch detection signal Tx_TP received by the LCx to the operational amplifier 30k.
  • the specific configurations of the switch 30b and the wiring section 30c are the same as in the first embodiment.
  • the switch 30h is a switch that connects the wiring L1 to the non-inverting input terminal of the differential amplifier 30d and the wiring L2 to the inverting input terminal of the differential amplifier 30d, respectively, under the control of the sensor controller 31.
  • the switch 30i is a switch that connects the wiring L4 to the input terminal of the operational amplifier 30k under the control of the sensor controller 31.
  • the initial state of the switches 30h and 30i is both off (non-connected state).
  • the differential amplifier 30d is the same as the differential amplifier 30d described in the first embodiment. However, in this embodiment, the signal generated by the differential amplifier 30d is referred to as a received signal Rx_EMR.
  • the operational amplifier 30k is a circuit that generates a capacitive reception signal Rx_TP by amplifying the voltage difference between the input terminal and the ground terminal, and together with the sensor controller 31 constitutes a reception circuit for the touch detection signal Tx_TP.
  • the input terminal of the operational amplifier 30k is connected to the wiring L4 of the wiring section 30c via the switch 30i, so that the received signal Rx_TP is an amplified signal appearing on the wiring L4.
  • the operational amplifier 30k is provided with a parallel capacitor for removing high frequency noise.
  • the received signal Rx_EMR generated by the differential amplifier 30d and the received signal Rx_TP generated by the operational amplifier 30k are both supplied to the sensor controller 31.
  • the sensor controller 31 has the functions described in the first embodiment (detects the position of the electromagnetic induction pen P within the touch surface using the EMR method, and demodulates the pen signal transmitted by the electromagnetic induction pen P). By doing so, in addition to the function of acquiring data transmitted by the electromagnetic induction pen P, it is configured to have a function of detecting the position of the finger F on the touch surface using a capacitance method. Detection of the position of the electromagnetic induction pen P, acquisition of data from the electromagnetic induction pen P, and detection of the position of the finger F are performed in a time-sharing manner. The sensor controller 31 is configured to sequentially supply detected positions and acquired data to the host processor 32. The processing performed by the host processor 32 that receives this supply is the same as in the first embodiment.
  • the specific content of the touch detection signal Tx_TP generated by the sensor controller 31 can be expressed by matrix A (second matrix) shown in equation (12) below.
  • the matrix A is a square matrix having a plurality of rows in one-to-one correspondence with the plurality of linear electrodes EL, and the left side of the subscript added to each element of the matrix A ( A11, etc.)
  • the output order is shown on the right side, and the serial number of the linear electrode EL is shown on the right side.
  • M is the total number of linear electrodes EL.
  • the specific value of each element is either 1 or -1.
  • matrix A is preferably an orthogonal matrix, it does not have to be an orthogonal matrix.
  • the four linear electrodes EL which are excluded from the execution of the process, are preferably arranged at positions outside the touch surface so that the position of the electromagnetic induction pen P can be detected over the entire touch surface.
  • an alternating current is passed through two linear electrodes EL on each side of the linear electrode ELm that sends out an alternating magnetic field, but one on each side, or three or more on each side.
  • An alternating current may be passed through the linear electrode EL.
  • the sensor controller 31 maintains the switch 30h in the connected state while transmitting an alternating magnetic field from the linear electrode ELm , and sets each set of three adjacent loop coils LCx as one set. Each time, the switch 30b is connected so that the three loop coils LCx constituting the selected set are connected in series to the differential amplifier 30d in three connection forms with different connection polarities. Perform the processing to control. This process is the same as the process of the sensor controller 31 described in the first embodiment, except that control of the switch 30h is added. Therefore, similarly to the first embodiment, the differential amplifier 30d detects a result value indicating the level of the pen signal based on the potential across the composite coil made up of the three loop coils LCx connected in series. Then, it is output to the sensor controller 31 as a received signal Rx_EMR.
  • the sensor controller 31 sequentially executes the three connection configurations described above while changing the linear electrode ELm that sends out an alternating magnetic field, and performs the first operation on the received signal Rx_EMR obtained as a result.
  • the sensor controller 31 sequentially executes the three connection configurations described above while changing the linear electrode ELm that sends out an alternating magnetic field, and performs the first operation on the received signal Rx_EMR obtained as a result.
  • the pen signal reception method according to the present embodiment also allows the pen signal received by the sensor controller 31 to It can be said that it becomes possible to improve the /N ratio.
  • the coil LCx may be used as one set, or four or more adjacent loop coils LCx may be used as one set. Alternatively, all the loop coils LCx may be used as one set.
  • the matrix F when n loop coils LCx (n ⁇ 2) are used as one set is an n ⁇ n matrix.
  • Position detection system 3 Position detection device 30 Switch section 30a, 30b, 30f to 30j Switch 30c Wiring section 30d Differential amplifier 30e, 30k Operational amplifier 31 Sensor controller 32 Host processor EL Linear electrode F Finger L1 to L4 Wiring LCx, LCy Loop Coil P Electromagnetic induction pen T1 to T3 Pen signal detection period Tx, Tx_EMR AC current Tx_TP Touch detection signal Rx, Rx_EMR Received signal Rx_TP Received signal

Abstract

【課題】位置検出の頻度を低下させることなく、かつ、センサコントローラの回路規模を増大させることなく、センサコントローラにおいて受信されるペン信号のS/N比を向上させる。 【解決手段】本発明による方法は、電磁誘導方式のセンサコントローラにより実行される方法であって、複数のペン信号検出期間T1~T3のそれぞれにおいて、ペン信号検出期間ごとに接続極性が異なる接続形態で3本のループコイルLCxn-1~LCxn+1を接続するとともに、該3本のループコイルLCxn-1~LCxn+1を介してペン信号のレベルを示す結果値を検出し、複数のペン信号検出期間のそれぞれで検出された複数の結果値に対して接続極性に応じた復元演算を行うことで、3本のループコイルLCxn-1~LCxn+1のそれぞれに対応するペン信号のレベルを分離取得する、方法である。

Description

電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置
 本発明は、電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置に関する。
 タブレット端末などのパネル面内における電磁誘導ペンの位置を検出するための方式の1つとして、電磁誘導方式(EMR方式)が知られている。EMR方式によるタブレット端末は、パネル面内に配置されたペン検出用のセンサ(以下「EMRセンサ」という)と、EMRセンサに接続されたセンサコントローラとを有している。EMRセンサは、y方向に並べて配置された複数のTxコイルと、x方向に並べて配置された複数のRxコイルとを含んで構成される。センサコントローラは、複数のTxコイルから順次交番磁界を送出し、その都度、各Rxコイルにて電磁誘導ペンが送信した反射信号(以下「ペン信号」という)を受信することにより、電磁誘導ペンの位置を検出するとともに、電磁誘導ペンが送信したデータを受信する。特許文献1には、EMRセンサの一例が開示されている。
特許第6698386号
 ところで、センサコントローラにおいて受信されるペン信号のS/N比は、できるだけ大きいことが好ましい。S/N比を向上させるための方法はいくつか考えられるが、そのうちの1つに、ペン信号の送信期間が長くなるように電磁誘導ペンを構成するという方法がある。センサコントローラにおけるペン信号の検出期間がN倍になると、受信されるペン信号のレベルがN倍になる一方、受信されるノイズのレベルはN1/2倍に留まるからである。しかしながら一方で、ペン信号の送信期間を単純に長くしたとすると、位置検出の頻度の低下という別の問題が発生する。これに対し、センサコントローラにおいて複数のRxコイルで並行してペン信号を受信することとすれば、位置検出の頻度を低下させることなくペン信号の送信期間を長くすることも可能であるが、そうすると今度は、並行受信分の数の受信回路が必要になり、センサコントローラの回路規模が増大してしまうことになる。
 したがって、本発明の目的の一つは、位置検出の頻度を低下させることなく、かつ、センサコントローラの回路規模を増大させることなく、センサコントローラにおいて受信されるペン信号のS/N比を向上させることのできる、電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置を提供することにある。
 本発明による方法は、電磁誘導方式のセンサコントローラにより実行される方法であって、複数のペン信号検出期間のそれぞれにおいて、ペン信号検出期間ごとに接続極性が異なる接続形態で前記複数のコイルを接続するとともに、該複数のコイルを介してペン信号のレベルを示す結果値を検出し、前記複数のペン信号検出期間のそれぞれで検出された複数の前記結果値に対して前記接続極性に応じた復元演算を行うことで、前記複数のコイルのそれぞれに対応する前記ペン信号のレベルを分離取得する、方法である。
 本発明によるセンサコントローラは、複数のコイルを含むセンサに接続されるセンサコントローラであって、複数のペン信号検出期間のそれぞれにおいて、ペン信号検出期間ごとに接続極性が異なる接続形態で前記複数のコイルを接続するとともに、該複数のコイルを介してペン信号のレベルを示す結果値を検出し、前記複数のペン信号検出期間のそれぞれで検出された複数の前記結果値に対して前記接続極性に応じた復元演算を行うことで、前記複数のコイルのそれぞれに対応する前記ペン信号のレベルを分離取得する、センサコントローラである。
 本発明による位置検出装置は、複数のコイルを含むセンサと、複数のペン信号検出期間のそれぞれにおいて、ペン信号検出期間ごとに接続極性が異なる接続形態で前記複数のコイルを接続するとともに、該複数のコイルを介してペン信号のレベルを示す結果値を検出し、前記複数のペン信号検出期間のそれぞれで検出された複数の前記結果値に対して前記接続極性に応じた復元演算を行うことで、前記複数のコイルのそれぞれに対応する前記ペン信号のレベルを分離取得するセンサコントローラと、を含む位置検出装置である。
 本発明によれば、複数のコイルで受信されるペン信号を複数のペン信号検出期間のそれぞれにおいて1つの受信回路で同時に受信し、かつ、受信された信号(複数のコイルで受信されたペン信号が重畳されたもの)をコイルごとに分離することができるので、位置検出の頻度を低下させることなく、かつ、センサコントローラの回路規模を増大させることなく、センサコントローラにおいて受信されるペン信号のS/N比を向上させることが可能になる。
本発明の第1の実施の形態による位置検出システム1の構成を示す図である。 図1に示したスイッチ部30の内部構成を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 差動増幅器30hからセンサコントローラ31に供給される受信信号Rxを説明する図である。 第1の比較例による受信信号Rxを説明する図である。 第2の比較例による受信信号Rxを説明する図である。 電磁誘導ペンPがループコイルLCx上に位置している場合に、その近傍の各ループコイルLCxで受信されるペン信号のレベルをシミュレーションした結果を示す図である。 本発明の第2の実施の形態による位置検出システム1を構成する位置検出装置3内に配置されるスイッチ部30の内部構成を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 本発明の第3の実施の形態による位置検出システム1の構成を示す図である。 図14に示したスイッチ部30の内部構成を示す図である。 センサコントローラ31が指Fの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。 センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。
 以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。
 図1は、本発明の第1の実施の形態による位置検出システム1の構成を示す図である。同図に示すように、位置検出システム1は電磁誘導ペンP及び位置検出装置3を有して構成される。このうち電磁誘導ペンPは、EMR方式による位置検出に対応するペンであり、内部にコイル及びコンデンサを含む共振回路を有して構成される。
 位置検出装置3は、EMR方式による電磁誘導ペンPの位置検出に対応する装置であり、複数のループコイルLCx、複数のループコイルLCy、スイッチ部30、センサコントローラ31、及びホストプロセッサ32を含んで構成される。典型的な例による位置検出装置3は、表示面がタッチ面を兼ねるタブレット端末又はノートパソコンであるが、表示面を有しないデジタイザなどにより位置検出装置3を構成してもよい。
 図示したx,y方向はいずれもタッチ面内の方向であり、互いに直交している。複数のループコイルLCxは、それぞれy方向(第1の方向)に延在するように形成され、x方向(第2の方向)に並べて配置される。各ループコイルLCxの両端は、スイッチ部30に接続される。一方、複数のループコイルLCyは、それぞれx方向に延在するように形成され、y方向に並べて配置される。各ループコイルLCyの一端はスイッチ部30に接続され、他端は接地される。
 スイッチ部30は、複数のループコイルLCx相互の接続を切り替えるとともに、複数のループコイルLCx及び複数のループコイルLCyとセンサコントローラ31との間の接続を切り替えるための複数のスイッチにより構成されるスイッチの集合体である。スイッチ部30は、専用の回路基板又は集積回路内に設けられることとしてもよいし、センサコントローラ31と同じ集積回路内に設けられることとしてもよい。スイッチ部30の切り替え状態は、センサコントローラ31により制御される。
 図2は、スイッチ部30の内部構成を示す図である。簡単のため、同図には、ループコイルLCx及びループコイルLCyをそれぞれ5本ずつ(ループコイルLCxn-2~LCxn+2、ループコイルLCym-2~LCym+2)のみを図示している。同図に示すように、スイッチ部30は、2種類のスイッチ30a,30bと、配線部30cと、差動増幅器30dとを含んで構成される。
 スイッチ30aは、タッチ面上に交番磁界を発生させるための交流電流TxをループコイルLCyに供給するための構成であり、センサコントローラ31から交流電流Txが供給される入力ピンと、ループコイルLCyごとに設けられる出力ピンとを有して構成される。スイッチ30aは、センサコントローラ31の制御に応じて、入力ピンをいずれかの出力ピンに接続する役割を果たす。
 スイッチ30b及び配線部30cは、各ループコイルLCxで受信されたペン信号(交番磁界に応じて電磁誘導ペンPが送信したもの)を差動増幅器30hに供給するための構成である。スイッチ30bは、ループコイルLCxの端部ごとに設けられる入力ピンと、入力ピンごとに設けられる4つの出力ピンとを有して構成される。スイッチ30bは、センサコントローラ31の制御に応じて、各入力ピンを、対応する4つの出力ピンのいずれかに接続する役割を果たす。
 配線部30cは、4本の配線L1~L4を有して構成される。スイッチ30bの入力ピンごとの4つの出力ピンはこれら4本の配線L1~L4に対応して設けられているもので、それぞれ対応する配線に接続される。
 差動増幅器30dは、配線L1に接続された非反転入力端子と、配線L2に接続された反転入力端子の間の電圧差を増幅することによって受信信号Rxを生成する回路であり、センサコントローラ31とともにペン信号の受信回路を構成する。差動増幅器30hにより生成された受信信号Rxは、センサコントローラ31に供給される。
 図1に戻る。センサコントローラ31は、タッチ面内における電磁誘導ペンPの位置をEMR方式により検出する機能を有する集積回路である。センサコントローラ31は、電磁誘導ペンPが送信したペン信号を復調することにより、電磁誘導ペンPが送信したデータを取得する機能も有して構成される。センサコントローラ31は、検出した位置及び取得したデータをホストプロセッサ32に逐次供給するよう構成される。
 ホストプロセッサ32は、センサコントローラ31から供給された位置及びデータを用いて、表示面に表示しているカーソルの移動、タッチ面内における電磁誘導ペンPの軌跡を示すストロークデータの生成などの処理を行う。このうちストロークデータに関して、ホストプロセッサ32は、生成したストロークデータをレンダリングして表示する処理、生成したストロークデータを含むデジタルインクを生成して記録する処理、ユーザの指示に応じて、生成したデジタルインクを外部装置に送信する処理なども行う。
 以下、図3~図5を参照しながら、センサコントローラ31が行う電磁誘導ペンPの位置検出処理について、具体的に説明する。
 図3~図5はそれぞれ、センサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。センサコントローラ31は、スイッチ30aを切り替えながら交流電流Txを供給することにより、複数のループコイルLCyのそれぞれから順次交番磁界を送出するよう構成される。
 センサコントローラ31は、1つのループコイルLCyから交番磁界を送出している間に、隣接する3本のループコイルLCxを1セットとして各セットを順に選択し、その都度、選択したセットを構成する3本のループコイルLCxが接続極性の異なる3通りの接続形態で差動増幅器30dに対して直列に接続されることとなるよう、スイッチ30bを制御する処理を行う。この処理により、差動増幅器30dは、直列に接続された3本のループコイルLCxからなる複合コイルの両端間の電位に基づいてペン信号のレベルを示す結果値を検出し、受信信号Rxとしてセンサコントローラ31に出力することになる。
 図3~図5は、上記3通りの接続形態での接続を示している。具体的に説明すると、図3の例では、差動増幅器30dの非反転入力端子から見て、ループコイルLCxn-1を左回り(図中に「-1」と表記)で接続し、次にループコイルLCxを右回り(図中に「1」と表記)で接続し、最後にループコイルLCxn+1を左周りで接続している。また、図4の例では、差動増幅器30dの非反転入力端子から見て、ループコイルLCxn-1を右回りで接続し、次にループコイルLCxを左回りで接続し、最後にループコイルLCxn+1を左周りで接続している。図5の例では、差動増幅器30dの非反転入力端子から見て、ループコイルLCxn-1を左回りで接続し、次にループコイルLCxを左回りで接続し、最後にループコイルLCxn+1を右周りで接続している。
 図6は、以上のような接続を行うことの結果として、差動増幅器30dからセンサコントローラ31に供給される受信信号Rxを説明する図である。図示したペン信号検出期間T1~T3は、それぞれ図3~図5の接続状態に対応している。なお、実際には各ペン信号検出期間の前半に交番磁界の送出時間が配置されるが、図6では省略している。また、実際の受信信号Rxは時間とともに減衰していくが、理解を容易にするために、図6では減衰の描写をしていない。これらの点は、後掲する図7及び図8でも同様である。
 図6を参照すると、ペン信号検出期間T1において受信されるペン信号は、ループコイルLCxとループコイルLCxn-1,LCxn+1とで逆位相になることが理解される。これは、上述したように、ループコイルLCxが右回り、ループコイルLCxn-1,LCxn+1が左回りとなることによるものである。その結果、センサコントローラ31がループコイルLCyにおいて交番磁界を生成しているときにループコイルLCxn-1~LCxn+1で受信されるペン信号のレベルをそれぞれレベルEm,n-1~Em,n+1と記すことにすると、図6に示すように、ペン信号検出期間T1において差動増幅器30dからセンサコントローラ31に供給される受信信号Rx(結果値)は、-Em,n-1+Em,n-Em,n+1と表されることになる。ペン信号検出期間T2,T3についても同様であり、それぞれ+Em,n-1-Em,n-Em,n+1、-Em,n-1-Em,n+Em,n+1と表されることになる。
 図3~図5に戻る。次の式(1)に示すベクトルdseriesは、ペン信号検出期間T1~T3のそれぞれで受信される受信信号Rxをベクトル形式で記載したものである。ベクトルdseriesは、式(1)の最終行に示すように、各ペン信号検出期間における接続極性を示す3×3の行列F(第1の行列)と、レベルEm,n-1~Em,n+1を表すベクトルとの積の形に変形することができる。なお、式(1)に示す行列Fは、3×3のWalsh符号になっている。
Figure JPOXMLDOC01-appb-M000001
 センサコントローラ31は、ベクトルdseriesに対して次の式(2)の左辺に示す演算を行うことにより、レベルEm,n-1~Em,n+1を分離取得する。ただし、式(2)の中に示す行列F-1は行列Fの逆行列であり、したがって式(2)の左辺に示す演算は、上述した各接続形態におけるループコイルLCxの接続極性に応じた復元演算となっている。式(2)にも示すように行列Fに行列F-1を乗算すると単位行列Iになることから、センサコントローラ31は、この復元演算を行うことによって、式(2)の右辺に示すように、m番目のループコイルLCyから交番磁界を送出した場合にループコイルLCxn-1~LCxn+1のそれぞれで受信されるペン信号のレベルEm,n-1~Em,n+1を分離取得することができることになる。
Figure JPOXMLDOC01-appb-M000002
 センサコントローラ31は、式(2)と同様の演算をループコイルLCxの各セットについて実行することにより、m番目のループコイルLCyから交番磁界を送出した場合に複数のループコイルLCxのそれぞれで受信されるペン信号のレベルを分離取得する。センサコントローラ31はまた、交番磁界を送出するループコイルLCyを変えながら同様の処理を行うことにより、複数のループコイルLCyのそれぞれから交番磁界を送出した場合に複数のループコイルLCxのそれぞれで受信されるペン信号のレベルを取得する。そしてセンサコントローラ31は、こうして取得したペン信号のレベルのタッチ面内における分布に基づいて、電磁誘導ペンPの位置を導出する。具体的には、分布の頂点に相当する位置を電磁誘導ペンPの位置として導出すればよい。
 ここで、本実施の形態とは異なる方法でペン信号の受信を行う比較例を取り上げ、本実施の形態を用いることの効果の1つを説明する。
 図7は、第1の比較例による受信信号Rxを説明する図である。本比較例によるセンサコントローラ31は、各ペン信号検出期間において、1つのループコイルLCxを差動増幅器30dに接続する。この場合、各ペン信号検出期間において1つのループコイルLCxで受信されるペン信号のレベルが得られるので、センサコントローラ31は、上記のような演算を行うことなく、各ループコイルLCxで受信されるペン信号のレベルを取得できる。
 図8は、第2の比較例による受信信号Rxを説明する図である。本比較例によるセンサコントローラ31は、各ペン信号検出期間において、本実施の形態と同様、隣接する3本のループコイルLCxを直列に差動増幅器30dに接続する。ただし、本比較例によるセンサコントローラ31は、すべてのループコイルLCxを同じ向き(右回り又は左回り)で接続する。この場合、上記のような演算では各ループコイルLCxで受信されるペン信号のレベルを分離することはできないが、センサコントローラ31は、3本のループコイルLCxを通じて得られた受信信号Rxを3本のループコイルLCxの中心に位置するループコイルLCxで得られたものと看做して、電磁誘導ペンPの位置の導出を行うことができる。
 図9は、電磁誘導ペンPがループコイルLCx上に位置している場合に、その近傍の各ループコイルLCxで受信されるペン信号のレベル(分離取得する場合には分離後のレベル)をシミュレーションした結果を示す図である。同図には、本実施の形態(図6)、第1の比較例(図7)、第2の比較例(図8)それぞれの結果を示している。同図に示すように、本実施の形態によるペン信号の受信方法によれば、第1及び第2の比較例に比べて、ペン信号の受信レベルが大幅に高くなるという効果を得ることができる。これは、本実施の形態によるペン信号の受信方法によれば、個々のループコイルLCxで受信されるペン信号を得るために用いることのできるペン信号検出期間が第1及び第2の比較例に比べて3倍になることによるものである。ここで、上述したように、センサコントローラ31におけるペン信号のペン信号検出期間がN倍になると、受信されるペン信号のレベルはN倍になる一方、受信されるノイズのレベルはN1/2倍に留まる。したがって、本実施の形態によるペン信号の受信方法によれば、センサコントローラ31において受信されるペン信号のS/N比を向上させることが可能になると言える。
 加えて、本実施の形態によるペン信号の受信方法によれば、複数のループコイルLCxで受信されるペン信号を複数のペン信号検出期間のそれぞれにおいて1つの受信回路で同時に受信し、かつ、受信信号RxをループコイルLCxごとの成分に分離することができるので、S/N比を向上させるためにペン信号の送信期間を長くする必要もなく、複数のループコイルLCxで並行してペン信号を受信するために受信回路を増設する必要もない。したがって、本実施の形態によるペン信号の受信方法によれば、位置検出の頻度を低下させることなく、かつ、センサコントローラ31の回路規模を増大させることなく、センサコントローラ31において受信されるペン信号のS/N比を向上させることが可能になると言える。
 ここで、センサコントローラ31におけるペン信号のペン信号検出期間がN倍になったときにノイズのレベルがN1/2倍に留まる点について、詳しく説明する。
 k回目のペン信号検出期間で取得される受信信号RxをXとし、その分散をV(X)と表すこととすると、分散の加法性により、1~N回目のペン信号検出期間で取得されるN回分の受信信号X~Xを加算してなる信号(以下、単に「加算信号」と称する)の分散VTOTALは、次の式(3)に示すように、個々のペン信号検出期間における受信信号Rxの分散の合計で表される。
Figure JPOXMLDOC01-appb-M000003
 受信信号Rxに含まれるノイズの成分のみに着目すると、すべてのペン信号検出期間でノイズは同じ値になると考えられることから、加算信号の分散VTOTALは、さらに次の式(4)のように表される。ただし、V、σはそれぞれ、個々のペン信号検出期間における分散及び標準偏差である。
Figure JPOXMLDOC01-appb-M000004
 加算信号に現れるノイズの量は、加算信号の標準偏差σTOTALにより表される。式(4)より、この標準偏差σTOTALは次の式(5)のように表されることから、センサコントローラ31におけるペン信号のペン信号検出期間がN倍になったときにノイズのレベルがN1/2倍に留まることが理解される。
Figure JPOXMLDOC01-appb-M000005
 以上説明したように、本実施の形態による位置検出システム1によれば、位置検出の頻度を低下させることなく、かつ、センサコントローラ31の回路規模を増大させることなく、センサコントローラ31において受信されるペン信号のS/N比を向上させることが可能になる。
 また、本実施の形態による位置検出システム1によれば、受信信号Rxを受信するために差動増幅器30dを用いているので、ループコイルLCx間で抵抗値がバラついたとしても、ペン信号のレベルのバラツキを抑えることが可能になる。これは、例えばメタルメッシュなどの高インピーダンスな素材によりループコイルLCxを構成する場合に特に有効である。
 なお、本実施の形態においては、式(1)に示した行列Fが3×3のWalsh符号により表される行列である例を説明したが、OVSF符号、M系列符号、Baker符号など、Walsh符号以外の符号により表される行列も、行列Fとして好適に用いること(すなわち、行列Fがこれらの符号となるように、各ペン信号検出期間におけるループコイルLCxの接続形態を設定すること)が可能である。
 また、本実施の形態では、行列Fの逆行列F-1を用いて復元演算を行う例を説明したが、逆行列でない行列を用いて復元演算を行うことも可能である。以下、式(1)に示したベクトルdseriesが得られている場合を例に取り、行列Fの逆行列でない行列として行列Fそのものを用いる復元演算の一例を説明する。
 この例では、まず、復元用の行列Fと、ペン信号検出期間T1~T3における受信信号Rxのレベル-Em,n-1+Em,n-Em,n+1、+Em,n-1-Em,n-Em,n+1、-Em,n-1-Em,n+Em,n+1とを用いて、行列Fの列がすべて1である場合に相当する受信信号Rxのレベルを導出する。具体的には、以下の式(6)に示す連立方程式を解いてa,b,cを求め、a+b+cを導出することにより、行列Fの列がすべて1である場合に相当する受信信号Rxのレベルを導出すればよい。こうして導出されるレベルは、+Em,n-1+Em,n+Em,n-2となる。
Figure JPOXMLDOC01-appb-M000006
 次に、以下の式(7)に示すように、すべての要素の値が1である列を行列Fの先頭に加えるとともに、値が+Em,n-1+Em,n+Em,n-2である行をベクトルdseriesの先頭に加えたうえで、行列Fをベクトルdseriesに乗算すると、式(6)の演算結果を線形(具体的に4倍)に増幅してなる結果が得られる。
Figure JPOXMLDOC01-appb-M000007
 このように、行列Fの逆行列F-1でない行列を用いて復元演算を行う場合には、行列Fの列がすべて1である場合に相当する受信信号Rxのレベルを導出する必要があるものの、行列Fの逆行列F-1を用いて復元演算を行う場合と同様、レベルEm,n-1~Em,n+1を分離取得することができる。
 なお、式(7)では、式(2)の演算結果を4倍に増幅してなる結果が得られているが、このように演算結果が大きくなることは、後段の演算の精度が向上することにつながるので、好ましいことである。行列Fの逆行列F-1を用いて復元演算を行う場合についても同様のことが言える。以下、具体的な例を挙げて説明する。
 行列Fが4×4のWalsh符号である場合のベクトルdseriesは、次の式(8)のように表される。ただし、ベクトルeは、4本のループコイルLCxのそれぞれで受信されるペン信号のレベルを示すベクトルである。
Figure JPOXMLDOC01-appb-M000008
 式(8)に示す行列Fの逆行列F-1は、式(9)のように表される。
Figure JPOXMLDOC01-appb-M000009
 したがって、ベクトルeの復元演算を行う際、以下の式(10)に示すように逆行列F-1に4を乗算しておけば、逆行列F-1による復元演算を行いつつも、本来のベクトルeの4倍のレベルを有するベクトルを得ることが可能になる。
Figure JPOXMLDOC01-appb-M000010
 次に、本発明の第2の実施の形態による位置検出システム1について、説明する。
 図10は、本発明の第2の実施の形態による位置検出システム1を構成する位置検出装置3内に配置されるスイッチ部30の内部構成を示す図である。本実施の形態によるスイッチ部30は、配線部30cが配線L1,L2を有しておらず、スイッチ30bも配線L1,L2に対応する出力ピンを有しない点、配線L3が接地されている点、差動増幅器30dに代え、配線L4に接続された入力端子を有するオペアンプ30eを有する点で、第1の実施の形態によるスイッチ部30と相違する。また、本実施の形態によるセンサコントローラ31は、電磁誘導ペンPの位置検出を行うために、3本のループコイルLCxを、直列ではなく並列にオペアンプ30eに対して接続する点で、第1の実施の形態によるセンサコントローラ31と相違する。その他の点では、本実施の形態による位置検出システム1は第1の実施の形態による位置検出システム1と同様であるので、以下では、第1の実施の形態による位置検出システム1との相違点に着目して説明を続ける。
 図11~図13はそれぞれ、本実施の形態によるセンサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。本実施の形態によるセンサコントローラ31は、ループコイルLCyから交番磁界を送出している間、隣接する3本のループコイルLCxを1セットとして各セットを順に選択し、その都度、選択したセットを構成する3本のループコイルLCxが接続極性の異なる3通りの接続形態でオペアンプ30eに対して並列に接続されることとなるよう、スイッチ30bを制御する処理を行う。この処理により、オペアンプ30eは、並列に接続された3本のループコイルLCxからなる複合コイルの一端の電位(接地端に対する電位)に基づいてペン信号のレベルを示す結果値を検出し、受信信号Rxとしてセンサコントローラ31に出力することになる。
 図11~図13は、上記3通りの接続形態での接続を示している。具体的に説明すると、図11の例では、オペアンプ30eの入力端子から見て、ループコイルLCxn-1,LCxn+1を左回り(図中に「-1」と表記)で接続し、ループコイルLCxを右回り(図中に「1」と表記)で接続している。また、図12の例では、オペアンプ30eの入力端子から見て、ループコイルLCxn-1を右回りで接続し、ループコイルLCx,LCxn+1を左回りで接続している。図13の例では、オペアンプ30eの入力端子から見て、ループコイルLCxn-1,LCxを左回りで接続し、ループコイルLCxn+1を右周りで接続している。
 以上のような接続を行うことの結果として、オペアンプ30eからセンサコントローラ31に供給される受信信号Rxは、次の式(11)に示すベクトルdparallelで表されることになる。式(11)の中に示すレベルEm,n-1~Em,n+1の意味は、第1の実施の形態で説明したとおりである。式(11)の最終行に示すように、ベクトルdparallelも、第1の実施の形態で説明したベクトルdseriesと同様に、各ペン信号検出期間における接続極性を示す3×3の行列Fと、レベルEm,n-1~Em,n+1を表すベクトルとの積の形に変形することができる。
Figure JPOXMLDOC01-appb-M000011
 ベクトルdparallelがベクトルdseriesと同じ形になっていることから理解されるように、本実施の形態においてもセンサコントローラ31は、ベクトルdparallelに行列Fの逆行列F-1を乗算することによって、ループコイルLCxn-1~LCxn+1のそれぞれで受信されるペン信号のレベルEm,n-1~Em,n+1を分離取得することができる。したがって、本実施の形態によるペン信号の受信方法によっても、位置検出の頻度を低下させることなく、かつ、センサコントローラ31の回路規模を増大させることなく、センサコントローラ31において受信されるペン信号のS/N比を向上させることが可能になると言える。ただし、複数のループコイルLCxを並列に接続する場合、直列に接続する場合に比べてインダクタンスが小さくなることから、本実施の形態では、第1の実施の形態に比べてペン信号のレベルが小さくなる。したがって、ペン信号のS/N比を向上させる効果は、本実施の形態よりも第1の実施の形態の方が高いと言える。
 次に、本発明の第3の実施の形態による位置検出システム1について、説明する。
 図14は、本実施の形態による位置検出システム1の構成を示す図である。本実施の形態による位置検出システム1は、位置検出装置3が静電容量方式による指Fの位置検出にも対応している点、位置検出装置3が複数のループコイルLCyに代えて複数の線状電極ELを有する点、及び、スイッチ部30の内部構成の点で、第1の実施の形態による位置検出システム1と相違する。その他の点では、本実施の形態による位置検出システム1は第1の実施の形態による位置検出システム1と同様であるので、以下では、第1の実施の形態による位置検出システム1との相違点に着目して説明を続ける。
 複数の線状電極ELは、それぞれx方向に延在するように形成され、y方向に並べて配置される。各線状電極ELは、両端でスイッチ部30に接続される。
 本実施の形態によるスイッチ部30は、複数のループコイルLCx相互の接続を切り替えるとともに、複数のループコイルLCx及び複数の線状電極ELとセンサコントローラ31との間の接続を切り替えるための複数のスイッチにより構成されるスイッチの集合体である。
 図15は、本実施の形態によるスイッチ部30の内部構成を示す図である。上掲した図2と同様、簡単のため、同図には、ループコイルLCx及び線状電極ELをそれぞれ5本ずつ(ループコイルLCxn-2~LCxn+2、線状電極ELm-2~ELm+2)のみを図示している。同図に示すように、本実施の形態によるスイッチ部30は、スイッチ30b、配線部30c、差動増幅器30dに加え、スイッチ30f~30j、オペアンプ30kを含んで構成される。図2に示したスイッチ30aは、本実施の形態によるスイッチ部30には含まれない。
 スイッチ30fは、タッチ面上に交番磁界を発生させるための交流電流Tx_EMRを複数の線状電極ELに供給するための構成であり、センサコントローラ31から交流電流Tx_EMRが供給される2つの入力ピンと、交流電流Tx_EMRの位相を反転させてなる電流が供給される2つの入力ピンと、線状電極ELごとに設けられる出力ピンとを有して構成される。各出力ピンは、対応する線状電極ELのx方向(長手方向)の一端に接続される。スイッチ30fは、センサコントローラ31の制御に応じて、各入力ピンをいずれかの出力ピンに接続する役割を果たす。
 スイッチ30gは、指Fの位置検出を行うためのタッチ検出用信号Tx_TPを複数の線状電極ELに供給するための構成であり、線状電極ELごとに設けられる入力ピンと出力ピンのセットを有して構成される。各入力ピンには、センサコントローラ31からタッチ検出用信号Tx_TPが供給される。各出力ピンは、対応する線状電極ELのx方向の一端に接続される。スイッチ30gは、センサコントローラ31の制御に応じて、各入力ピンを、対応する出力ピンに接続する役割を果たす。
 スイッチ30jは、線状電極ELのx方向(長手方向)の他端について、接地された状態と、どこにも接続されないフローティング状態とを切り替えるための構成である。スイッチ30jの各入力ピンは、対応する線状電極ELのx方向(長手方向)の他端に接続される。一方、スイッチ30jの各接地ピンは、接地電位が供給される接地端に接続される。スイッチ30jを設けているのは、センサコントローラ31が電磁誘導ペンPの位置検出を行う際には、上述したように各線状電極ELのx方向の他端を接地電位にすることが好ましい一方、センサコントローラ31が指Fの位置検出を行う際には、各線状電極ELのx方向の他端をフローティング状態にする必要があるためである。スイッチ30jは、センサコントローラ31の制御に応じて、各入力ピンと、対応する接地ピンとの間の接続状態を切り替える役割を果たす。
 スイッチ30b,30h,30i及び配線部30cは、各ループコイルLCxで受信されたペン信号(交番磁界に応じて電磁誘導ペンPが送信したもの)を差動増幅器30dに供給するとともに、各ループコイルLCxで受信されたタッチ検出用信号Tx_TPをオペアンプ30kに供給するための構成である。このうちスイッチ30b及び配線部30cの具体的な構成は、第1の実施の形態と同様である。
 スイッチ30hは、センサコントローラ31の制御に応じて、配線L1を差動増幅器30dの非反転入力端子に、配線L2を差動増幅器30dの反転入力端子に、それぞれ接続するスイッチである。スイッチ30iは、センサコントローラ31の制御に応じて、配線L4をオペアンプ30kの入力端子に接続するスイッチである。スイッチ30h,30iの初期状態は、ともにオフ(非接続状態)である。
 差動増幅器30dは、第1の実施の形態で説明した差動増幅器30dと同じものである。ただし、本実施の形態においては、差動増幅器30dにより生成される信号を受信信号Rx_EMRと称する。オペアンプ30kは、入力端子と接地端子の間の電圧差を増幅することによって静電容量方式の受信信号Rx_TPを生成する回路であり、センサコントローラ31とともにタッチ検出用信号Tx_TPの受信回路を構成する。オペアンプ30kの入力端子は、スイッチ30iを介して配線部30cの配線L4に接続されており、これにより受信信号Rx_TPは、配線L4に現れた信号を増幅したものとなる。オペアンプ30kには、高周波ノイズを除去するための並列コンデンサが設けられる。差動増幅器30dにより生成された受信信号Rx_EMR、及び、オペアンプ30kにより生成された受信信号Rx_TPは、ともにセンサコントローラ31に供給される。
 図14に戻る。本実施の形態によるセンサコントローラ31は、第1の実施の形態で説明した機能(タッチ面内における電磁誘導ペンPの位置をEMR方式により検出するとともに、電磁誘導ペンPが送信したペン信号を復調することにより、電磁誘導ペンPが送信したデータを取得する機能)に加え、タッチ面における指Fの位置を静電容量方式により検出する機能を有して構成される。電磁誘導ペンPの位置の検出及び電磁誘導ペンPからのデータの取得と、指Fの位置の検出とは、時分割で実行される。センサコントローラ31は、検出した位置及び取得したデータをホストプロセッサ32に逐次供給するよう構成される。この供給を受けたホストプロセッサ32が行う処理は、第1の実施の形態と同様である。
 以下、図16~図19を参照しながら、センサコントローラ31が行う電磁誘導ペンP及び指Fの位置検出の処理について、具体的に説明する。
 初めに、図16は、本実施の形態によるセンサコントローラ31が指Fの位置検出を行う場合におけるスイッチ部30の状態を示す図である。同図に示すように、この場合のセンサコントローラ31は、各入力ピンと対応する出力ピンとが接続されるようスイッチ30bを制御する。これにより、センサコントローラ31から各線状電極ELのx方向の一端に対し、タッチ検出用信号Tx_TPが供給されることになる。また、センサコントローラ31は、各入力ピンが対応する接地ピンから切り離されるようにスイッチ30jを制御することにより、各線状電極ELのx方向の他端をフローティング状態とする。
 センサコントローラ31によって生成されるタッチ検出用信号Tx_TPの具体的な内容は、以下の式(12)に示す行列A(第2の行列)によって表され得る。行列Aは、複数の線状電極ELと一対一に対応する複数の行を有する正方行列であり、行列Aの各要素(A11など)に付している添え字の左側はセンサコントローラ31からの出力順を、右側は線状電極ELの通番をそれぞれ示している。Mは、線状電極ELの総数である。各要素の具体的な値は、1又は-1のいずれかである。行列Aは直交行列であることが好ましいが、直交行列でなくてもよい。
Figure JPOXMLDOC01-appb-M000012
 センサコントローラ31は、行列Aの列ごとにタッチ検出用信号Tx_TPを生成し、各線状電極ELに供給する。典型的な例によるタッチ検出用信号Tx_TPは、対応する行列Aの要素が1である場合にハイ、1である場合にローとなる2値のパルス信号である。以下では、行列Aの1つの列に対応するタッチ検出用信号Tx_TPを「部分タッチ検出用信号Tx_TP」と称する。
 センサコントローラ31は、1つの部分タッチ検出用信号Tx_TPを各線状電極ELに供給している間、スイッチ30iを接続状態に維持しつつ、各ループコイルLCxを順にオペアンプ30kに接続する処理を行う。具体的には、各ループコイルLCxが順に両端で配線L4に接続されることとなるよう、スイッチ30bを制御する。なお、図16には、ループコイルLCxが配線L4に接続されている場合の例を示している。
 ここで、m番目の線状電極ELと、n番目のループコイルLCxとの間に形成される静電容量をCmnとすると、行列Aのx番目の列に対応する部分タッチ検出用信号Tx_TPが各線状電極ELに供給されており、かつ、n番目のループコイルLCxがオペアンプ30kに接続されているとき、オペアンプ30kからセンサコントローラ31に供給される受信信号Rx_TPは、次の式(13)に示す値となる。
Figure JPOXMLDOC01-appb-M000013
 したがって、行列Aの各列に対応する部分タッチ検出用信号Tx_TPの供給が実行される間にn番目のループコイルLCxについて得られる受信信号Rx_TPは、全体として、次の式(14)に示すベクトルbで表されることになる。なお、式(14)のAは、行列Aの転置行列である。
Figure JPOXMLDOC01-appb-M000014
 センサコントローラ31は、このベクトルbに対して次の式(15)の左辺に示す演算を行うことにより、線状電極ELごとの静電容量Cmnを分離取得する。ただし、式(15)の中に示す行列(A-1は、行列Aの逆行列である。式(15)にも示すように行列Aに行列(A-1を乗算すると単位行列Iになることから、センサコントローラ31は、この演算を行うことによって、式(15)の右辺に示すように、n番目のループコイルLCxについて、各線状電極ELとの交点の静電容量Cmnを分離取得することができることになる。
Figure JPOXMLDOC01-appb-M000015
 センサコントローラ31は、式(15)と同様の演算を各ループコイルLCxについて実行することにより、線状電極ELとループコイルLCxの各交点について静電容量Cmnを導出する。そしてセンサコントローラ31は、導出した各静電容量Cmnのタッチ面内における分布に基づき、位置を指Fの位置を導出する。具体的には、EMR方式における電磁誘導ペンPの位置検出と同様、分布の頂点に相当する位置を指Fの位置として導出すればよい。
 次に、図17~図19は、本実施の形態によるセンサコントローラ31が電磁誘導ペンPの位置検出を行う場合におけるスイッチ部30の状態を示す図である。同図に示すように、本実施の形態によるセンサコントローラ31は、1本の線状電極ELを挟んで一方側に隣接する2本の線状電極ELm-1,ELm-2に交流電流Tx_EMRが供給され、他方側に隣接する2本の線状電極ELm+1,ELm+2に交流電流Tx_EMRの反転信号が供給されることとなるよう、スイッチ30fを制御する。また、センサコントローラ31は、各入力ピンと、対応する接地ピンとが接続されるようにスイッチ30jを制御することにより、各線状電極ELのx方向の他端を接地状態とする。
 この制御により、線状電極ELを中心とする擬似的なコイルが形成され、タッチ面上(特に線状電極ELの上方)に交番磁界が生成されることになる。以下では、このようにして交番磁界を生成することを「線状電極ELから交番磁界を送出する」という。センサコントローラ31は、全線状電極ELの両端に位置する4本の線状電極ELを除く線状電極ELを順に線状電極ELとして同様の処理を実行することにより、これらの線状電極ELから順次同様の交番磁界を送出するよう構成される。
 なお、タッチ面の全体で電磁誘導ペンPの位置検出を行うことができるよう、上記処理の実行から除かれる上記4本の線状電極ELは、タッチ面外の位置に配置されることが好ましい。また、本実施の形態では、交番磁界の送出を行う線状電極ELの両側2本ずつの線状電極ELに交流電流を流しているが、両側1本ずつや、両側3本以上ずつの線状電極ELに交流電流を流すこととしてもよい。
 本実施の形態によるセンサコントローラ31は、線状電極ELから交番磁界を送出している間、スイッチ30hを接続状態に維持しつつ、隣接する3本のループコイルLCxを1セットとして各セットを順に選択し、その都度、選択したセットを構成する3本のループコイルLCxが接続極性の異なる3通りの接続形態で差動増幅器30dに対して直列に接続されることとなるよう、スイッチ30bを制御する処理を行う。この処理は、スイッチ30hの制御が追加されている点を除くと、第1の実施の形態において説明したセンサコントローラ31の処理と同じものである。したがって、差動増幅器30dは、第1の実施の形態と同様、直列に接続された3本のループコイルLCxからなる複合コイルの両端間の電位に基づいてペン信号のレベルを示す結果値を検出し、受信信号Rx_EMRとしてセンサコントローラ31に出力することになる。
 図17~図19は、上記3通りの接続形態での接続を示している。これらの接続形態の具体的な内容は、図5~図7に示したものと同様である。本実施の形態によるセンサコントローラ31は、交番磁界を送出する線状電極ELを変えながら上記3通りの接続形態を順に実行し、その結果として得られた受信信号Rx_EMRに対して第1の実施の形態と同様の復元演算を行うことにより、各線状電極ELから交番磁界を送出した場合に複数のループコイルLCxのそれぞれで受信されるペン信号のレベルを分離取得することができる。したがって、本実施の形態によるペン信号の受信方法によっても、位置検出の頻度を低下させることなく、かつ、センサコントローラ31の回路規模を増大させることなく、センサコントローラ31において受信されるペン信号のS/N比を向上させることが可能になると言える。
 また、本実施の形態による位置検出システム1によれば、y方向に並べて配置された1組の線状電極ELと、x方向に並べて配置された1組のループコイルLCxとによって、EMRセンサとタッチセンサ(指Fによるタッチを静電容量方式により検出するためのセンサ)の両方を実現することができるので、1つの位置検出装置の中にEMRセンサとタッチセンサを個別に設ける場合に比べ、位置検出装置の軽量化及びコスト削減を実現することが可能になる。
 なお、本実施の形態においても、第2の実施の形態で説明したように、各ループコイルLCxを並列に接続することとしてもよいのは勿論である。
 以上、本発明の好ましい実施の形態について説明したが、本発明はこうした実施の形態に何等限定されるものではなく、本発明が、その要旨を逸脱しない範囲において、種々なる態様で実施され得ることは勿論である。
 例えば、第1及び第3の実施の形態では、直列に接続された3本のループコイルLCxからなる複合コイルの両端間の電位に基づいて受信信号Rx(又は受信信号Rx_EMR)を生成する例を説明し、第2の実施の形態では、並列に接続された3本のループコイルLCxからなる複合コイルの一端の電位(接地端に対する電位)に基づいて受信信号Rxを生成する例を説明したが、3本のループコイルLCxを直列に接続する場合に、該3本のループコイルLCxからなる複合コイルの一端の電位(接地端に対する電位)に基づいて受信信号Rx(又は受信信号Rx_EMR)を生成することとしてもよいし、3本のループコイルLCxを並列に接続する場合に、該3本のループコイルLCxからなる複合コイルの両端間の電位に基づいて受信信号Rx(又は受信信号Rx_EMR)を生成することとしてもよい。
 また、第1~第3の実施の形態では、電磁誘導ペンPの位置を検出するために、隣接する3本のループコイルLCxを1セットとして用いる例を説明したが、隣接する2本のループコイルLCxを1セットとして用いてもよいし、隣接する4本以上のループコイルLCxを1セットとして用いてもよい。或いは、すべてのループコイルLCxを1セットとして用いてもよい。n本(n≧2)のループコイルLCxを1セットとして用いる場合の行列Fは、n×nの行列となる。
 また、第1~第3の実施の形態では、スイッチ30bを用いて複数のループコイルLCxの相互の接続形態を変えながら受信信号Rx(又は受信信号Rx_EMR)を生成する例を説明したが、各ループコイルLCxと演算回路の接続を変えながら受信信号Rx(又は受信信号Rx_EMR)を生成することとしてもよい。例えば、図6に示したペン信号検出期間T1では、ループコイルLCxn-1,LCxn+1を減算回路へ、ループコイルLCxを加算回路へそれぞれ接続し、ペン信号検出期間T2では、ループコイルLCx,LCxn+1を減算回路へ、ループコイルLCxn-1を加算回路へそれぞれ接続し、ペン信号検出期間T3では、ループコイルLCxを減算回路へ、ループコイルLCxn-1,LCxn+1を加算回路へそれぞれ接続することとすればよい。
 また、本発明の技術を応用し、ループコイルLCxの任意の接続形態に応じた受信信号Rx(又は受信信号Rx_EMR)を生成することとしてもよい。例えば、ループコイルLCxとループコイルLCxの差分Em,1-Em,2や、ループコイルLCxとループコイルLCxの加算信号からループコイルLCxとループコイルLCxの加算信号を減じてなる信号(Em,1+Em,2)-(Em,3+Em,4)を生成することとしてもよい。こうすることで、ループコイルLCxの任意の接続形態に応じたペン信号のレベルを取得することが可能になる。
1       位置検出システム
3       位置検出装置
30      スイッチ部
30a,30b,30f~30j スイッチ
30c     配線部
30d     差動増幅器
30e,30k オペアンプ
31      センサコントローラ
32      ホストプロセッサ
EL      線状電極
F       指
L1~L4   配線
LCx,LCy ループコイル
P       電磁誘導ペン
T1~T3   ペン信号検出期間
Tx,Tx_EMR 交流電流
Tx_TP   タッチ検出用信号
Rx,Rx_EMR 受信信号
Rx_TP   受信信号

Claims (16)

  1.  電磁誘導方式のセンサコントローラにより実行される方法であって、
     複数のペン信号検出期間のそれぞれにおいて、ペン信号検出期間ごとに接続極性が異なる接続形態で前記複数のコイルを接続するとともに、該複数のコイルを介してペン信号のレベルを示す結果値を検出し、
     前記複数のペン信号検出期間のそれぞれで検出された複数の前記結果値に対して前記接続極性に応じた復元演算を行うことで、前記複数のコイルのそれぞれに対応する前記ペン信号のレベルを分離取得する、
     方法。
  2.  前記接続形態は、前記複数のコイルを直列に接続する形態であり、
     前記センサコントローラは、直列に接続された前記複数のコイルからなる複合コイルの少なくとも一端の電位に基づいて前記結果値を検出する、
     請求項1に記載の方法。
  3.  前記センサコントローラは、前記複合コイルの両端間の電位差に基づいて前記結果値を検出する、
     請求項2に記載の方法。
  4.  前記接続形態は、前記複数のコイルを並列に接続する形態であり、
     前記センサコントローラは、前記複数のコイルそれぞれの少なくとも一端の電位に基づいて前記結果値を検出する、
     請求項1に記載の方法。
  5.  前記復元演算は、前記複数のペン信号検出期間のそれぞれにおける前記接続極性を示す第1の行列の逆行列による演算である、
     請求項1に記載の方法。
  6.  前記複数のコイルは、それぞれ第1の方向に延在するように形成され、前記第1の方向に直交する第2の方向に並べて配置される、
     請求項1に記載の方法。
  7.  前記複数のコイルは、前記第2の方向に隣接して配置される、
     請求項6に記載の方法。
  8.  前記複数のコイルは、少なくともそれぞれの一端でスイッチに接続され、
     前記センサコントローラは、前記スイッチの接続状態を制御することにより、前記複数のコイルの接続形態を切り替える、
     請求項1に記載の方法。
  9.  前記スイッチは、回路基板又は集積回路内に設けられる、
     請求項8に記載の方法。
  10.  前記スイッチは複数の入力ピンを含み、
     前記複数のコイルそれぞれの前記一端は、前記複数の入力ピンのいずれかに接続される、
     請求項9に記載の方法。
  11.  前記複数のコイルは、それぞれの両端で前記スイッチに接続される、
     請求項8に記載の方法。
  12.  前記複数のペン信号検出期間のそれぞれにおいて、それぞれ前記第2の方向に延在するように形成され、前記第1の方向に並べて配置される複数の線状電極のうちの1つ以上に第1の交流電流を供給し、前記複数の線状電極のうちの他の1つ以上に前記第1の交流電流と逆位相の第2の交流電流を供給することによって、交番磁界を送出する、
     請求項6に記載の方法。
  13.  前記複数のペン信号検出期間とは異なるタッチペン信号検出期間において、第2の行列に従うタッチ検出用信号を前記複数の線状電極に対して供給するとともに、前記複数のコイルにて該タッチ検出用信号を受信し、
     前記複数のペン信号検出期間のそれぞれで検出された複数の前記結果値に対して前記第2の行列の逆行列による演算を行うことで、前記複数のコイルのそれぞれに対応する前記タッチ検出用信号のレベルを分離取得する、
     請求項12に記載の方法。
  14.  前記第2の行列は、前記複数の線状電極と一対一に対応する複数の行を有する正方行列である、
     請求項13に記載の方法。
  15.  複数のコイルを含むセンサに接続されるセンサコントローラであって、
     複数のペン信号検出期間のそれぞれにおいて、ペン信号検出期間ごとに接続極性が異なる接続形態で前記複数のコイルを接続するとともに、該複数のコイルを介してペン信号のレベルを示す結果値を検出し、
     前記複数のペン信号検出期間のそれぞれで検出された複数の前記結果値に対して前記接続極性に応じた復元演算を行うことで、前記複数のコイルのそれぞれに対応する前記ペン信号のレベルを分離取得する、
     センサコントローラ。
  16.  複数のコイルを含むセンサと、
     複数のペン信号検出期間のそれぞれにおいて、ペン信号検出期間ごとに接続極性が異なる接続形態で前記複数のコイルを接続するとともに、該複数のコイルを介してペン信号のレベルを示す結果値を検出し、前記複数のペン信号検出期間のそれぞれで検出された複数の前記結果値に対して前記接続極性に応じた復元演算を行うことで、前記複数のコイルのそれぞれに対応する前記ペン信号のレベルを分離取得するセンサコントローラと、
     を含む位置検出装置。
PCT/JP2023/020407 2022-06-06 2023-06-01 電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置 WO2023238760A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022091360 2022-06-06
JP2022-091360 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238760A1 true WO2023238760A1 (ja) 2023-12-14

Family

ID=89118036

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/015528 WO2023238517A1 (ja) 2022-06-06 2023-04-18 センサ装置、集積回路、及び、指示体を検出する方法
PCT/JP2023/020407 WO2023238760A1 (ja) 2022-06-06 2023-06-01 電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015528 WO2023238517A1 (ja) 2022-06-06 2023-04-18 センサ装置、集積回路、及び、指示体を検出する方法

Country Status (1)

Country Link
WO (2) WO2023238517A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143224A (ja) * 1991-05-06 1993-06-11 Internatl Business Mach Corp <Ibm> 電磁式デジタイザ・タブレツト
JP4955116B1 (ja) * 2010-12-28 2012-06-20 シャープ株式会社 タッチパネルシステムおよび電子機器
US8982091B1 (en) * 2012-05-24 2015-03-17 Maxim Integrated Products, Inc. Hadamard matrix based projected mutual capacitance touch panel decoding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496974B2 (ja) * 1994-04-08 2004-02-16 株式会社ワコム 位置検出装置及び方法
JP6717673B2 (ja) * 2016-06-10 2020-07-01 株式会社ジャパンディスプレイ 入力検出装置および電子装置
JP2019016283A (ja) * 2017-07-10 2019-01-31 株式会社ジャパンディスプレイ 表示装置
JP2020030762A (ja) * 2018-08-24 2020-02-27 株式会社ジャパンディスプレイ 表示装置
JP2021103459A (ja) * 2019-12-25 2021-07-15 株式会社ジャパンディスプレイ 表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143224A (ja) * 1991-05-06 1993-06-11 Internatl Business Mach Corp <Ibm> 電磁式デジタイザ・タブレツト
JP4955116B1 (ja) * 2010-12-28 2012-06-20 シャープ株式会社 タッチパネルシステムおよび電子機器
US8982091B1 (en) * 2012-05-24 2015-03-17 Maxim Integrated Products, Inc. Hadamard matrix based projected mutual capacitance touch panel decoding

Also Published As

Publication number Publication date
WO2023238517A1 (ja) 2023-12-14

Similar Documents

Publication Publication Date Title
KR101749366B1 (ko) 오믹 심을 갖는 트랜스커패시티브 센서 디바이스
CN107924260B (zh) 多相指纹传感器布局和构建
CN104205025A (zh) 互电容触摸屏装置和用于创建互电容触摸屏装置的方法
CN107636566A (zh) 可穿戴装置和用于提供可穿戴装置的反馈的方法
CN102483673A (zh) 触摸和悬停感测
EP2600230B1 (en) Position detector and position detection method
US10698534B2 (en) Applying a signal to a touch sensor
CN106155356A (zh) 主动式触控笔及其位置信息校正方法
KR102160245B1 (ko) 촉각영상 표현방법 및 이를 수행하기 위한 터치스크린 장치
JP2011076265A (ja) 座標入力装置
KR102526460B1 (ko) 터치 입력 장치
CN107430468A (zh) 减少单层触摸传感器上的电极路径的方法
JPWO2016021356A1 (ja) 入力装置
WO2023238760A1 (ja) 電磁誘導方式のセンサコントローラにより実行される方法、センサコントローラ、及び、位置検出装置
US10782829B2 (en) Touch sensing system
EP2879031B1 (en) Touch input device control device, and touch input device control method
EP3980877A1 (en) Touch-sensitive apparatus and method
JP6952753B2 (ja) アクティブペンの位置検出方法及びセンサコントローラ
Miller et al. A glove for tapping and discrete 1D/2D input
JP2019061725A (ja) ポインタの位置検出方法
KR20190101854A (ko) 표시 장치, 상호 정전 용량 감지 시스템 및 방법
JP7209064B2 (ja) ポインタの位置検出方法
Takashina et al. Real-virtual bridge: Operating real smartphones from the virtual world
GB2607596A (en) Touch-sensitive apparatus and method
US20240086013A1 (en) Touch-sensitive apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819740

Country of ref document: EP

Kind code of ref document: A1