WO2023238742A1 - Smartphone-use fingerprint authentication function-equipped contactless ic card reading auxiliary circuit - Google Patents

Smartphone-use fingerprint authentication function-equipped contactless ic card reading auxiliary circuit Download PDF

Info

Publication number
WO2023238742A1
WO2023238742A1 PCT/JP2023/020153 JP2023020153W WO2023238742A1 WO 2023238742 A1 WO2023238742 A1 WO 2023238742A1 JP 2023020153 W JP2023020153 W JP 2023020153W WO 2023238742 A1 WO2023238742 A1 WO 2023238742A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint authentication
smartphone
fingerprint
contact
card
Prior art date
Application number
PCT/JP2023/020153
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 沖田
Original Assignee
有限会社ムーター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ムーター filed Critical 有限会社ムーター
Publication of WO2023238742A1 publication Critical patent/WO2023238742A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory

Definitions

  • the present invention relates to a non-contact IC card reading auxiliary circuit with a fingerprint authentication function for smartphones, which can add a fingerprint authentication function to a smartphone with a built-in non-contact IC card reader.
  • smartphones have been used in various fields.
  • smartphones are equipped with an identity verification function.
  • the device may be locked so that it cannot be operated after a certain period of time has elapsed since the start of the operation to prevent others from using it. Verify your identity to unlock.
  • you will be asked to enter a four-digit number to verify your identity. This includes fingerprint authentication and facial recognition.
  • the iPhone registered trademark
  • Apple Inc. which has a large share of the global market for smartphones, had a built-in fingerprint authentication function to verify the user's identity.
  • the latest iPhone models do not have a built-in fingerprint authentication function, except for some low-priced models.
  • the latest iPhone models only have a built-in facial recognition function.
  • PC personal computer
  • fingerprint authentication device If it is a personal computer (PC) or the like, it is easy to add a fingerprint authentication device as a retrofit. However, it is difficult to retrofit fingerprint authentication devices for PCs to smartphones, which are small mobile terminals, due to the size and interface.
  • a fingerprint authentication device Even if a fingerprint authentication device is developed specifically for smartphones, it is difficult to make it as easy to use as a built-in fingerprint authentication device. That is, if a wired connection is made to the external interface of the smartphone in order to supply power to the fingerprint authentication device and to communicate with the smartphone, not only does the cable get in the way, but it also becomes difficult to manage the smartphone itself. Furthermore, if the fingerprint authentication device is removed to use the external interface for another device or to charge a smartphone, the fingerprint authentication device cannot be used immediately when needed.
  • SIM swap attack that disables facial recognition and fingerprint authentication built into smartphones has caused large amounts of damage overseas, and it is expected that damage will increase rapidly in Japan in the future.
  • biometric authentication devices that are also effective against SIM swap attacks.
  • An object of the present invention is to provide a non-contact IC card reading auxiliary circuit with a fingerprint authentication function for smartphones that can add usability to a smartphone equivalent to that of a fingerprint authentication device built into a smartphone.
  • a further object of the present invention is to provide a contactless IC card reading auxiliary circuit for smartphones with a fingerprint authentication function that is compatible with multi-factor authentication that combines multiple authentication functions and is also effective against SIM swap attacks. be.
  • the above problem can be solved by: It is attached to a smartphone with a built-in non-contact IC card reader, and the smartphone can be operated while attached, A non-contact IC card reading auxiliary circuit with a fingerprint authentication function that enables a smartphone to use a non-contact IC card with a fingerprint authentication function or a fingerprint authentication function built in a fingerprint authentication function circuit board, The non-contact IC card with fingerprint authentication function or the fingerprint authentication function circuit board, a fingerprint sensor, A fingerprint authentication section, A memory for storing fingerprint data for verification, a first coil receiving power from the contactless IC card reader; A fingerprint authentication means including an IC chip having a function of NFC communication with the non-contact IC card reader, The fingerprint authentication means is a fingerprint data reading function that starts reading fingerprint data using the fingerprint sensor when the first coil receives power from the contactless IC card reader; a fingerprint data matching function for matching the read fingerprint data with the matching fingerprint data stored in the memory by the fingerprint authentication unit; It has a fingerprint authentication notification function that performs the
  • the non-contact IC card reading auxiliary circuit with fingerprint authentication function includes: an NFC chip different from the IC chip; comprising a second coil different from the first coil, When the second coil receives power from the contactless IC card reader, the second coil recognizes the other NFC chip in the initial response of the NFC communication, thereby causing the contactless IC card reader to receive power from the first coil.
  • the non-contact IC card reading auxiliary circuit with a fingerprint authentication function is applied to a smartphone in which continuous power cannot be supplied from the non-contact IC card reader to the coil using application software alone.
  • the NFC chip is recognized in an initial response of NFC communication. This recognition enables continuous power supply from the non-contact IC card reader to the coil, and fingerprint authentication begins. If the same fingerprint is authenticated, the non-contact IC card reader receives a fingerprint authentication notification from the IC chip. In this way, by installing a non-contact IC card reading auxiliary circuit with fingerprint authentication function, fingerprint authentication is performed, and by notifying the smartphone that the fingerprint has been authenticated, it is possible to perform fingerprint authentication function without wired connection. Can be used with smartphones.
  • the fingerprint authentication function circuit board that performs fingerprint authentication such as the circuit board of the non-contact IC card reading auxiliary circuit with fingerprint authentication function for smartphones, the fingerprint sensor, the fingerprint authentication unit, the memory, the coil, etc. can be constructed from a very thin printed circuit board, so it is suitable for smartphones.
  • the fingerprint authentication function circuit board can be incorporated into a case without increasing the thickness, and by laminating both sides of the fingerprint authentication function circuit board with thin plastic plates, it can be processed into an IC card shape to create a non-contact IC card with a fingerprint authentication function. is also possible. Furthermore, since it can operate wirelessly using NFC, it can provide the same usability as a built-in fingerprint authentication device.
  • high security is provided based on two-factor authentication by confirming on the smartphone side that the data using the unique data of the IC chip matches the registered data on the smartphone side.
  • the auxiliary circuit board and non-contact IC card with fingerprint authentication function or the fingerprint authentication function circuit board operate by wireless power supply from the non-contact IC card reader. There is no need to install a battery in the device, and there are no problems with maintenance such as charging or battery deterioration.
  • the IC chip that performs NFC communication built in the non-contact IC card with fingerprint authentication function or the fingerprint authentication function circuit board is activated only when the same fingerprint is authenticated. Without it, the IC chip that performs NFC communication will not operate.
  • the embodiments of the present invention can be used when a contactless IC card reader performs NFC communication with another IC card using another application software, or when performing NFC communication with various external devices including an external contactless IC card reader. can be used without interfering with NFC communication.
  • FIG. 1 is a block diagram of a fingerprint authentication system related to the present invention.
  • 2 is a flowchart for explaining an example of the operation of application software installed on a smartphone in order to control the fingerprint authentication system related to the present invention on the smartphone side.
  • FIG. 1 is an explanatory diagram of a first embodiment of the structure of a fingerprint authentication system related to the present invention.
  • 4 is a cross-sectional view of the structure shown in FIG. 3.
  • FIG. FIG. 2 is an explanatory diagram of a second embodiment of the structure of a fingerprint authentication system related to the present invention.
  • 6 is a cross-sectional view of the structure shown in FIG. 5.
  • FIG. It is a timing chart of the 1st example for explaining the electric power feeding state to a coil.
  • FIG. 1 is a block diagram of a fingerprint authentication system related to the present invention.
  • FIG. 3 is a cross-sectional view for explaining the relative positions of the smartphone and the second coil.
  • FIG. 3 is a cross-sectional view for explaining the relative positions of the smartphone and the second coil.
  • FIG. 14 is a cross-sectional view for explaining the fingerprint authentication system of FIG. 13.
  • FIG. 14 is a cross-sectional view for explaining the fingerprint authentication system of FIG. 13.
  • FIG. 14 is a cross-sectional view for explaining the fingerprint authentication system of FIG. 13.
  • FIG. 1 is a block diagram of a fingerprint authentication system related to the present invention.
  • the inventor of the present application first thought of incorporating a fingerprint authentication function into a smartphone case and connecting it via NFC.
  • reference numeral 1 is a case with a fingerprint authentication function for a smartphone.
  • 2 is a thin capacitive fingerprint sensor.
  • 3 is a fingerprint authentication section.
  • 4 is a memory that stores fingerprint data for verification.
  • 5 is a coil that receives power from the contactless IC card reader.
  • 6 is an IC chip having a function of NFC communication, and is typically a FeliCa (registered trademark) chip.
  • Reference numeral 7 indicates the user's finger whose fingerprint has been registered.
  • Reference numeral 8 is a smartphone.
  • a smartphone case 1 with a fingerprint authentication function is attached to a smartphone 8.
  • Reference numeral 9 is a non-contact IC card reader built into the smartphone 8.
  • the illustrated fingerprint authentication system includes devices mounted on a smartphone case 1 with a fingerprint authentication function, that is, a fingerprint sensor 2, a fingerprint authentication unit 3, and a memory 4 for storing fingerprint data for comparison.
  • the coil 5, and the IC chip (Felica chip 6) constitute a fingerprint authentication means Fp.
  • the fingerprint authentication means Fp on the condition that power is supplied to the coil 5 from the non-contact IC card reader 9 built in the smartphone 8, the coil 5 that receives power is connected to the fingerprint sensor 2 and the fingerprint authentication unit 3. , the memory 4, etc., and fingerprint authentication is started.
  • the fingerprint authentication unit 3 controls the Felica chip 6 so that the Felica chip 6 does not operate, such as by stopping the power supply to the Felica chip 6.
  • the fingerprint authentication unit 3 uses the fingerprint data of the finger 7 read from the fingerprint sensor 2 and the verification fingerprint data stored in the memory 4. Compare with. If the same fingerprint is authenticated by this comparison, the Felica chip 6 is controlled to operate the Felica chip 6. Thereby, the non-contact IC card reader 9 is in a state where it can read the IDm data of the Felica chip 6. This state is maintained until the power supply to the coil 5 is stopped.
  • the fingerprint authentication unit 3 controls the Felica chip 6 so as not to operate, and the state in which the IDm data cannot be read is maintained.
  • the IDm data of the Felica chip 6 can be read by the non-contact IC card reader 9 only when the same fingerprint is authenticated. In other words, if the same fingerprint is not authenticated, the IDm data of the Felica chip 6 cannot be read by the non-contact IC card reader 9.
  • IDm data is a unique ID number recorded at the time of manufacturing the Felica chip. IDm data cannot be rewritten. Therefore, there are no other Felica chips with the same IDm data.
  • the IDm data of the Felica chip 6 can be read by the contactless IC card reader 9, and secondly, the IDm data registered in the smartphone 8 in advance and the IDm data of the Felica chip 6 match.
  • the smartphone 8 is configured to be able to recognize that "fingerprint authentication was successful using the smartphone case 1 with a fingerprint authentication function" only when two conditions are satisfied. In this case, the smartphone 8 is authenticated using two factors: the fingerprint and the IDm data of Felica, and can provide higher security than simple fingerprint authentication using only the fingerprint.
  • a Felica chip 6 is used as an IC chip that performs NFC (Near Field Communication) communication with a non-contact IC card reader 9.
  • NFC Near Field Communication
  • the contactless IC card reader 9 supports NFC standard wireless communication, so if it is an IC chip that can perform NFC communication, you can use another NFC standard IC chip such as Mifare (registered trademark). It's okay.
  • the method of notifying the non-contact IC card reader 9 when the fingerprint authentication unit 3 "authenticates the same fingerprint" is realized by making the IDm data readable. ing. As a modification, other data or a combination of IDm and other data may be made readable.
  • the method for realizing the above-mentioned notification method is to simply send predetermined data to the Felica chip 6 when the fingerprint authentication unit 3 authenticates the same fingerprint based on a predetermined command from the contactless IC card reader 9, and This can also be realized by the IC card reader 9 receiving the information.
  • the fingerprint authentication unit 3 does not authenticate the same fingerprint by transmitting the same data as the above-determined data to the card reader 9 by some other means, it will be recognized as "authenticated as the same fingerprint”. There is a risk that it may be misused as a way to break security, so you need to be careful about this abuse.
  • the notification method is realized by transmitting the IDm data of the Felica chip 6.
  • the IDm data of the Felica chip 6 since there are no Felica chips with the same IDm data, it is difficult to break security without performing fingerprint authentication as described above. That is, it is practically difficult to break security by using some means to make the smartphone 8 recognize that "the fingerprints have been authenticated as the same".
  • IDm is used for general security card authentication, but there are currently no major problems. However, there is an opinion that it is possible to forge IDm because the communication method etc. are disclosed. Another problem with general Felica cards is that IDm data can be easily read by skimming. In the fingerprint authentication system shown in FIG. 1, the fingerprint authentication unit 3 is controlled so that IDm data can be read only when the same fingerprint is authenticated. As a result, skimming is impossible unless the fingerprint is authenticated as the same, so the risk of skimming can be significantly reduced.
  • the IC chip (Felica chip 6) that performs NFC communication until the fingerprint authentication unit 3 authenticates the same fingerprint. is controlled so that it does not operate. This allows (i) when the contactless IC card reader 9 built into the smartphone 8 reads another contactless IC card, and (ii) when the contactless IC card reader 9 built into the smartphone 8 reads electronic money.
  • the fingerprint authentication unit 3 uses the IC chip (Felica chip 6) that performs the NFC communication. ) is controlled to not work. By controlling this IC chip (Felica chip 6) to not operate, it is possible to prevent interference with NFC communication of the non-contact IC card reader 9.
  • the smartphone 8 can be used for various purposes using the built-in non-contact IC card reader 9 without any problem.
  • the non-contact IC card reader 9 built into the smartphone 8 wants to perform NFC communication with various external devices such as electronic money payment immediately after the fingerprint authentication is successful, the message "The same fingerprint was authenticated" is displayed.
  • the smartphone 8 recognizes this, the power supply from the non-contact IC card reader 9 is temporarily stopped, so that the IC chip (Felica chip 6) that performs NFC communication inside the smartphone case 1 can be made inoperable.
  • a message "Please touch the fingerprint sensor” is displayed on the display of the smartphone 8 shown in FIG. 1, and then a built-in timer is started (S2). .
  • a command to turn on polling is sent to the non-contact IC card reader 9 (S3), and the non-contact IC card reader 9 starts polling and supplies power to the coil 5.
  • the coil 5 that receives power supplies power to the fingerprint sensor 2, fingerprint authentication section 3, memory 4, etc. This starts fingerprint authentication.
  • This software repeats polling until the timer reaches 0.5 seconds in the next step S4.
  • the polling execution time is set to be equal to or shorter than the time required for the fingerprint authentication unit 3 to output the authentication result at the shortest time. In a state in which polling is repeatedly performed, it is preferable to set the power supply time for one polling to a certain length by adjusting the parameters of the polling command. This allows continuous power supply.
  • step S6 a command to read the IDm data is sent to the non-contact IC card reader 9.
  • the non-contact IC card reader 9 replies to this software whether the reading of the IDm data was successful or unsuccessful.
  • the IDm data of the Felica chip 6 can be read by the non-contact IC card reader 9 only when the fingerprint authentication unit 3 authenticates the same fingerprint. If the reading of the IDm data is successful, the data registered in the smartphone 8 in advance is compared with the read IDm data (S7), and if they match, the "Case 1 with fingerprint authentication function for smartphones" is displayed. “Fingerprint authentication was successful” is notified to the system in the smartphone 8 (S8).
  • step S7 if the IDm data do not match, it is determined that the non-contact IC card reader 9 has read the IDm data of another Felica card. Then, the system in the smartphone 8 is notified that "fingerprint authentication has failed in the smartphone case 1 with fingerprint authentication function" (S9). If reading the IDm data fails, a command to turn on polling again is sent to the non-contact IC card reader 9, and a loop is created to return to the step of reading the IDm data (S6).
  • the time for supplying power with one polling command to the non-contact IC card reader 9 is set to be somewhat longer by adjusting command parameters and the like. This allows the coil 5 to always be in a state where it can continuously receive power.
  • step S5 if the timer exceeds 10 seconds in step S5, the system in the smartphone 8 is notified that "fingerprint authentication has failed in the smartphone case 1 with fingerprint authentication function" (S9). After notifying the system of the fingerprint authentication result, polling is turned off (S10) and this application software is terminated.
  • FIG. 3 is an explanatory diagram of the first embodiment regarding the structure.
  • FIG. 4 is a sectional view thereof. 3 and 4, the same elements as shown in FIG. 1 are given the same reference numerals.
  • reference numeral 10 shown in FIGS. 3 and 4 is the outer shell of the case 1.
  • Reference numeral 11 is a fingerprint authentication function circuit board, and 12 is a through hole.
  • the through hole 12 is provided in the outer shell 10 of the case 1.
  • the fingerprint authentication function circuit board 11 has a coil 5 formed of a printed pattern of copper foil.
  • the fingerprint authentication function circuit board 11 is equipped with electronic components such as the fingerprint authentication section 3, memory 4, and Felica chip 6 shown in FIG.
  • the fingerprint authentication function circuit board 11 on which these electronic components are mounted can be easily manufactured to be very thin, with a total thickness of 1 mm or less.
  • the outer shell 10 of the case 1 needs to match the shape of each model of the smartphone 8, but as shown in the cross-sectional view of FIG. 4, the fingerprint authentication function circuit board 11 is very thin compared to existing smartphone cases. It is only necessary to provide a through hole 12 for attaching the fingerprint sensor and exposing the fingerprint sensor. Therefore, the outer shell 10 of the case 1 can be easily designed and manufactured from existing smartphone case design data.
  • the shape of the outer shell 10 of the case 1 should be changed so that the fingerprint authentication function circuit board 11 does not move in the surface direction. It is not necessary to fix the fingerprint authentication function circuit board 11 to the outer shell 10 of the case 1, although it is necessary to devise some measures. Since the coil 5 formed by the printed pattern occupies most of the area of the fingerprint authentication function circuit board 11, it can be designed in a shape that can be applied to multiple smartphone models.
  • the fingerprint authentication function circuit board 11 itself does not depend on the OS. Therefore, the same fingerprint authentication function circuit board 11 can be used even in smartphones with different OS. Therefore, by designing the fingerprint authentication function circuit board 11 in a shape that can be stored in various smartphone cases, it is possible to mass-produce boards of the same shape and reduce costs.
  • FIG. 5 is an explanatory diagram of the second embodiment regarding the structure.
  • FIG. 6 is a sectional view thereof. 5 and 6, the fingerprint authentication function circuit board 11 has a coil 5 formed of a printed pattern of copper foil, and in addition to the fingerprint sensor 2, the fingerprint authentication section 3 and the memory 4 shown in FIG. , Felica chip 6, and other electronic components are mounted.
  • the fingerprint authentication function circuit board 11 on which these electronic components are mounted can be easily manufactured to be extremely thin with a total thickness of 1 mm or less.
  • the fingerprint authentication function circuit board 11 is shaped into, for example, the size of a credit card.
  • the fingerprint authentication function circuit board 11 can operate on systems other than the smartphone's OS.
  • Both sides of the fingerprint authentication function circuit board 11 are fabricated using common non-contact IC card manufacturing technology so that the fingerprint authentication function circuit board 11 alone can be used with a non-contact IC card reader connected to a PC. It may also be used as a contactless IC card with a fingerprint authentication function by laminating it with a thin plastic plate.
  • the inventor of the present application created application software according to the flowchart shown in FIG. 2, which is compatible with the iPhone of Apple Inc. in the United States, and verified its actual operation.
  • Recent iPhones have built-in contactless IC card readers.
  • application software was created using CoreNFC, which is a communication framework based on the NFC standard, to be compatible with iOS 13 or later OS.
  • CoreNFC is a communication framework based on the NFC standard, to be compatible with iOS 13 or later OS.
  • Using the iPhone's built-in non-contact IC card reader we were able to confirm reading and writing of NFC standard cards such as general Felica cards.
  • FIG. 7 shows the power supply state to the coil 5 when starting the iPhone application software based on the flowchart shown in FIG. 2.
  • FIG. 7 is a timing chart of the first example.
  • the cause was that the period during which power is supplied at one time using a polling command is short in the initial setting.
  • the timeSlot value of a parameter such as a CoreNFC Polling command
  • the actual power supply period does not change. From this, as can be seen from FIG. 7, supplying power to the coil 5 for a short period of time is repeated at regular intervals. Therefore, it has been found that application software alone cannot be used to bring an iPhone into a continuous power supply state so that the fingerprint authentication system shown in FIG. 1 can operate.
  • the card that is brought close to the contactless IC card reader 9 in order to change the timeSlot value is a My Fair card
  • the fingerprint authentication system shown in FIG. read the UID, which is the unique data of the My Fair Card, and could not read the IDm data of the Felica chip 6.
  • the built-in non-contact IC card reader 9 first performs NFC communication with My Fair Card and then tries to maintain communication with My Fair Card, so communication with Felica chip 6 is not performed.
  • the inventor of the present application thought that.
  • the non-contact IC card reader 9 of a smartphone needs to not only read cards, but also perform NFC communication with various external devices such as electronic money payments.
  • various external devices such as electronic money payments.
  • the contactless IC card reader 9 performs NFC communication with another IC card using another application software
  • Embodiments of the present invention need to be able to be used without interference when performing NFC communications with various external devices, including contact IC card readers.
  • the communication sequence between a contactless IC card reader and an NFC card consists of, first, an "initial response" that sets up a communication path between the contactless IC card reader and the target NFC card; 2. It consists of an "active state” in which information is exchanged according to the application.
  • the NFC card when power supply from the contactless IC card reader is started in an initial response, the NFC card enters a state of waiting for a communication path setting request (request command) from the contactless IC card reader.
  • a request command is sent from the contactless IC card reader, and the NFC card returns a response.
  • the contactless IC card reader exchanges parameters with the recognized NFC card and mutually confirms conditions such as communication speed.
  • the initial response transitions to the active state. In the active state, NFC communication is performed by selecting the NFC card recognized in the initial response and repeating responses from the NFC card to commands from the contactless IC card reader.
  • NFC cards include type A such as My Fair Card, type B such as Japanese driver's license, type F Felica card, etc. How to handle when multiple NFC cards of the same type are present at the same time in the initial response are defined for each type. If multiple NFC type cards exist, by specifying the type of card to be read, only the specified type of card can be recognized. If multiple types are specified, cards of multiple specified types can be recognized. However, there are restrictions that are not specified in the NFC communication standard, such as, for example, when My Fair Card and Felica Card are recognized at the same time, the UID of My Fair Card is read preferentially than IDm of Felica Card.
  • Type A cards such as My Fair Cards
  • My Fair Cards When multiple My Fair Cards are recognized during the initial response, they read the UIDs of all recognized My Fair Cards using a method called the bit collision method, and then: (ii) A contactless IC card reader specifies one of the read UIDs, and (iii) My Fair Cards with matching UIDs respond to select one from multiple My Fair Cards. are doing. Therefore, a My Fair card that does not respond in the initial response cannot be recognized.
  • the built-in non-contact IC card reader 9 can read the IDm data of the Felica chip 6 by specifying the system code of the Felica chip 6 on the case 1 side. I was able to confirm.
  • the Felica card that initially responded had a system code different from that of the Felica chip 6, so its IDm was unreadable, but it was confirmed that it was in a continuous power supply state.
  • FIG. 8 shows the power supply state to the coil 5 when starting the iPhone application software based on the flowchart shown in FIG. 2.
  • FIG. 8 is a timing chart of the second example.
  • Felica chip 6 when power is supplied to coil 5 to enable the change in the timeSlot value, Felica chip 6 is made operable for a short time with a slight delay from the start of power supply.
  • an initial response of NFC communication is performed between the built-in non-contact IC card reader 9 and the Felica chip 6 within the initial setting short polling period, and the timeSlot value change is valid. Become. Therefore, the actual polling period becomes longer, resulting in a state where continuous power supply is performed.
  • the Felica chip 6 is put into the operating state a little later than the power supply to the coil 5, but it may be put into the operating state at the same time.
  • the delay time is set when (i) an application software other than this software is started and the NFC card is read by the contactless IC card reader 9, and (ii) the contactless IC card built into the smartphone 8. This is because the order in which the Felica chip 6 is recognized is delayed so that the Felica chip 6 does not interfere when the reader 9 performs NFC communication with an external device for payment of electronic money or the like.
  • the IC chip on the case 1 side that has the function of NFC communication is controlled. Therefore, the IC chip does not have to be a Felica chip. Even with other NFC chips, the recognized NFC chip is temporarily stopped during the initial response, and after the fingerprint authentication is successful, the NFC chip is put into operation again and a notification that the fingerprint authentication has been successful is issued, so that the NFC chip can be operated without problems.
  • the IC chip on the case 1 side that has the function of NFC communication is operated by the power supply from the external non-contact IC card reader, and fingerprint authentication is performed. Even if it is not successful, communication becomes possible, and as a result, it becomes possible to skim the unique data etc. by easily reading it with an external non-contact IC card reader, which may weaken security.
  • FIG. 9 shows the power supply state to the coil 5 when starting the iPhone application software based on the flowchart shown in FIG. 2.
  • FIG. 9 is a timing chart of the third example.
  • the IDm of the Felica chip 6, which operates when the fingerprint authentication is successful is recognized in the initial response in order to prevent it from being read by an external non-contact IC card reader when the fingerprint authentication is not successful.
  • Another NFC chip has been added inside case 1. Then, when power is supplied to the coil 5, another NFC chip is made operational for a short time with a slight delay.
  • FIGS. 10 and 11 are timing charts of the fourth and fifth examples.
  • the timing charts of the fourth and fifth examples in the same way as explained with reference to the timing chart of the third example in FIG. 1, and when power is supplied to the coil 5, another NFC chip is activated with a slight delay.
  • another NFC chip is activated twice, and in the fifth example timing chart of FIG. 11, another NFC chip is activated until fingerprint authentication is successful. There is. This is to delay the timing of stopping another NFC chip with respect to the timing of the third example of FIG. 9 described above.
  • the NFC chip which is separate from the IC chip, to be able to change parameters such as delay time from the start of power supply to activation, operation time, repetition period, and number of repetitions according to the smartphone being used. good.
  • the iPhone software when maintaining the communication of the NFC chip until the fingerprint authentication is successful as shown in the timing chart of the fifth example in FIG. 11, the iPhone software based on the flowchart shown in FIG. Even if the IDm of an NFC chip is detected, this software stores the IDm of another NFC chip so that it does not end at step S7. When reading the IDm of another NFC chip, send a command to turn on polling again to the contactless IC card reader 9 in the same way as when reading the IDm fails, and return to the IDm data reading step, etc. as appropriate. Application software needs to be modified.
  • FIG. 12 shows the power supply state when the iPhone application software is started based on the flowchart shown in FIG. 2 in the fingerprint authentication system shown in FIG. 1.
  • FIG. 12 is a timing chart of the sixth example. Similar to the timing chart of the third example in FIG. 9, another NFC chip that is recognized by the initial response is added to the smartphone case 1 with a fingerprint authentication function, and when power is supplied to the coil 5, another NFC chip is activated. This operating state is maintained until the power supply to the coil 5 is stopped.
  • Felica can read multiple Felica chips if one Felica chip responds at the time of initial response.
  • IDm or system code
  • the corresponding Felica chips respond.
  • CoreNFC does not have a method for specifying IDm. Therefore, it is necessary to specify the system code and read the corresponding Felica chip. In this case, if you specify multiple system codes, you can read the corresponding Felica chips at the same time.
  • another NFC chip may be a Felica chip that has a different system code than the Felica chip 6.
  • Fingerprint authentication is started upon receiving power from the card reader 9, (iii) continuous power supply is established by recognizing the NFC chip in the initial response, and (iv) when fingerprint authentication is successful, the non-contact IC card reader By receiving the fingerprint authentication notification, the user can notify the smartphone 8 that "the same fingerprint has been authenticated.” Therefore, a fingerprint authentication function can be substantially added to the smartphone 8 without a wired connection to the smartphone.
  • the NFC chip recognized in the initial response is a Felica chip
  • the non-contact IC card reader 9 built into a smartphone performs NFC communication with an external device for electronic money payment, etc.
  • embodiments of the present invention can prevent interference. You can prevent it from happening.
  • FIG. 13 is a block diagram of a fingerprint authentication system related to the present invention, in which an independent circuit board performs the function of recognizing an NFC chip in an initial response.
  • Reference numeral 13 shown in FIG. 13 is an NFC chip recognized in the initial response.
  • Reference numeral 14 is a second coil different from the coil 5 described above.
  • Reference numeral 15 is an auxiliary circuit board.
  • Reference numeral 16 is a non-contact IC card with a fingerprint authentication function or a fingerprint authentication function circuit board. In order to distinguish it from the second coil 14, the coil with reference numeral 5 will be referred to as a "first coil.”
  • a fingerprint authentication means Fp devices mounted on the fingerprint authentication function-equipped non-contact IC card or the fingerprint authentication function circuit board 16, that is, the fingerprint sensor 2, the fingerprint authentication unit 3.
  • This fingerprint authentication means Fp operates in the same way as the fingerprint authentication means Fp in the smartphone case 1 with a fingerprint authentication function shown in FIG.
  • an NFC chip 13 and a second coil 14 are mounted on the auxiliary circuit board 15, and when power is supplied from the card reader 9 to the second coil 14, the second coil 14 that receives the power becomes an NFC chip.
  • Power is supplied to the chip 13, and the NFC chip 13 communicates with the card reader 9 and is recognized by an initial response.
  • the smartphone 8 is a model such as an iPhone in which it is not possible to continuously supply power from the built-in non-contact IC card reader using application software alone, the power supply from the card reader 9 becomes continuous.
  • the first coil 5 receives the power and supplies power to the fingerprint sensor 2, fingerprint authentication unit 3, memory 4, etc. to start fingerprint authentication, and the smartphone 8 allows you to use the fingerprint authentication function.
  • the NFC chip 13 mounted on the auxiliary circuit board 15 is a contactless IC card with a fingerprint authentication function or a Felica chip mounted on the fingerprint authentication function circuit board, a Felica chip with a different system code is used.
  • the NFC chip may be configured to operate constantly by power supply from the second coil 14 as shown in the timing chart in FIG.
  • a circuit for controlling the activation timing of the NFC chip 13 may be added to the auxiliary circuit board 15 so that the NFC chip operates.
  • 14 and 15 are cross-sectional views for explaining the relative positions of the smartphone 8 and the second coil 14. 14 and 15, the same elements as shown in FIG. 13 are given the same reference numerals.
  • the inventor of the present application confirmed the operation with a Felica card commercially available as the auxiliary circuit board 15 in the iPhone of Apple Inc. in the United States, as well as a seal and a flexible board module with equivalent functions. As shown in the timing chart of FIG. 12, in these Felica cards, the NFC chip 13 always operates due to power supply from the second coil 14, and there is no major difference other than the size of the coil. If these Felica cards and the like are placed on several iPhones as the auxiliary circuit board 15 so that they fit on the bottom of the iPhone as shown in FIG. 14, the auxiliary circuit board 15 will not operate and the It worked only when the auxiliary circuit board 15 protruded largely from the bottom of the iPhone near where the non-contact IC card reader 9 was built-in.
  • the reason why the auxiliary circuit board 15 does not operate unless the auxiliary circuit board 15 is protruding from the bottom of the iPhone as shown in FIG. 15 is that it is generated from the non-contact IC card reader 9 built into the iPhone.
  • the alternating magnetic field mainly comes out from the side of the iPhone, and unless the auxiliary circuit board 15 is arranged so that the magnetic flux of this alternating magnetic field passes through the second coil 14, it will not be enough to operate the NFC chip 13. This is because electricity cannot be supplied. Therefore, if the auxiliary circuit board 15 is a flat plate, it will protrude significantly from the bottom of the iPhone as shown in FIG. 15.
  • FIG. 16 is a diagram for explaining the arrangement of the second coil 14 with respect to the smartphone 8.
  • the same elements as shown in FIG. 13 are given the same reference numerals.
  • the auxiliary circuit board 15 is configured such that part or all of the board is made of a flexible printed circuit board or the like so that a part of the auxiliary circuit board 15 is bent to cover part of the bottom and side surfaces of the smartphone 8. has been done. This allows the magnetic flux of the alternating magnetic field generated from the non-contact IC card reader 9 to pass through the second coil 14. Further, the auxiliary circuit board 15 does not protrude significantly from the smartphone 8.
  • a commercially available Felica card so as not to break the internal wiring and attached it to the iPhone as the auxiliary circuit board 15 as shown in FIG. It was confirmed that the Felica chip (NFC chip 13) in the Felica card (auxiliary circuit board 15) was activated by power supply, the Felica chip was recognized by the non-contact IC card reader 9 in the initial response, and a continuous power supply state was established.
  • FIGS. 17 and 18 are cross-sectional views for explaining the fingerprint authentication system of FIG. 13. 17 and 18, the same elements as shown in FIG. 13 are given the same reference numerals.
  • Reference numeral 17 shown in FIGS. 17 and 18 is a smartphone case that is attached to the smartphone 8.
  • Reference numeral 18 is a non-contact IC card with a fingerprint authentication function, and the shape of the non-contact IC card with a fingerprint authentication function or the fingerprint authentication function circuit board 16 shown in FIG. 13 is shaped into the size of a credit card.
  • Reference numeral 19 is an LED, which is mounted on the non-contact IC card 18 with a fingerprint authentication function and constitutes a display section that displays the power supply status of the non-contact IC card with a fingerprint authentication function, success/failure of fingerprint authentication, etc.
  • the auxiliary circuit board 15 is partially bent by using a flexible printed circuit board or the like for part or all of the board, as shown in FIG. This bent portion covers the bottom and part of the sides of the smartphone 8 with the auxiliary circuit board 15.
  • the magnetic flux of the alternating magnetic field generated from the non-contact IC card reader 9 passes through the second coil 14. Thereby, the auxiliary circuit board 15 can be operated by wireless power supply from the non-contact IC card reader 9.
  • the auxiliary circuit board 15 is fixed to the smartphone case 17 with double-sided tape or the like.
  • the auxiliary circuit board 15 may be directly fixed to the smartphone 8 with double-sided tape or the like, it is preferable to fix it in such a way that it can be easily attached to and detached from the smartphone 8 in consideration of maintenance such as repair. Furthermore, by separating the auxiliary circuit board 15 from the smartphone 8 by the thickness of the case, the effective area of the second coil 14 through which the alternating magnetic field from the non-contact IC card reader 9 passes can be increased. Thereby, the auxiliary circuit board 15 can receive more stable power supply.
  • FIG. 17 a state is shown in which the non-contact IC card 18 with fingerprint authentication function is accessed near the non-contact IC card reader 9 with the auxiliary circuit board 15 attached to the smartphone 8 via the smartphone case 17.
  • FIG. 17 illustrates.
  • the NFC chip 13 in the auxiliary circuit board 15 is activated, the NFC chip 13 is recognized by the non-contact IC card reader 9 in an initial response, and the fingerprint is detected.
  • the non-contact IC card 18 with an authentication function is continuously supplied with power, and fingerprint authentication becomes possible.
  • the operation was confirmed by bending Felica cards of different sizes as the auxiliary circuit board 15, a seal having the same function, and a part of a flexible board module.
  • a mechanism for holding a card is added to the smartphone case 17.
  • the non-contact IC card 18 with a fingerprint authentication function can be stored in the smartphone case 17 when the non-contact IC card 18 with a fingerprint authentication function is not in use.
  • the non-contact IC card 18 with fingerprint authentication function is pulled out from the smartphone case 17 and fingerprint authentication is performed in a state as shown in FIG.
  • the fingerprint sensor 2 is located on the screen side of the smartphone 8, so by touching the fingerprint sensor 2 with the finger 7 while visually checking the position of the fingerprint sensor 2 and the fingerprint sensor 2, Fingerprint authentication can be performed reliably.
  • the LED 19 on the non-contact IC card 18 with a fingerprint authentication function makes it possible to perform fingerprint authentication while checking the power supply status and success/failure of fingerprint authentication.
  • the usage as shown in FIG. 18 can also be achieved by attaching a card holder for holding a commercially available credit card size card to the case 17 of FIG. 17.
  • FIGS. 17 and 18 by using multiple non-contact IC cards 18 with fingerprint authentication functions, it is possible to perform fingerprint authentication using separate cards for corporate use and personal use, thereby achieving higher security. Become. Further, with one non-contact IC card 18 with a fingerprint authentication function, the fingerprint authentication function can be used not only on the smartphone 8 but also on other terminals, increasing convenience.
  • the fingerprint authentication system illustrated in FIGS. 13, 17, and 18 it is possible to provide usability equivalent to that of a fingerprint authentication device built into a smartphone.
  • the criminal registers his or her biometric information on a new smartphone to which he has transferred his phone number, thereby disabling the smartphone's built-in facial recognition and fingerprint authentication. Security can also be ensured. In other words, the criminal cannot obtain the non-contact IC card 18 with a fingerprint authentication function in which a fingerprint is registered only by a SIM swap attack.
  • the fingerprint authentication system of the present invention is an effective authentication device even against SIM swap attacks. According to the fingerprint authentication system of the present invention, it is possible to provide higher security than a fingerprint authentication device built into a smartphone.
  • the auxiliary circuit board 15 shown in FIGS. 13, 17, and 18 is for a model such as an iPhone in which it is not possible to continuously supply power from the built-in non-contact IC card reader using application software alone. It is also attached to a smartphone so that continuous power supply can be achieved. In addition, as long as the smartphone is attached, the NFC chip 13 of the auxiliary circuit board 15 can be accessed from the smartphone at any time to check the unique number such as IDm, so it can be used as one type of multi-factor authentication. Authentication using the auxiliary circuit board 15 is not fingerprint authentication, so if the auxiliary circuit board 15 is stolen, it is ineffective against SIM swap attacks. However, if the auxiliary circuit board 15 is not stolen, it becomes an effective authentication device against SIM swap attacks.
  • authentication using the contactless IC card 18 with a fingerprint authentication function is required for large remittances through online banking, and authentication using the auxiliary circuit board 15 is required for logging in and checking balances through online banking. It is possible to perform smooth operation using .
  • the auxiliary circuit board 15 is not equipped with a fingerprint authentication function, so if the auxiliary circuit board 15 is stolen, it is ineffective against SIM swap attacks.
  • the auxiliary circuit board 15 and the fingerprint authentication function circuit board as one circuit board, like the fingerprint authentication function circuit board 11 in FIGS. 3 and 4, even in the case of theft, SIM swap attacks can be avoided. It becomes possible to prevent It should be noted that it is an easy design matter for those skilled in the art to design a circuit board in which one coil serves as both the first coil and the second coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Software Systems (AREA)
  • Telephone Function (AREA)

Abstract

[Problem] To provide a smartphone-use fingerprint authentication function-equipped contactless IC card reading auxiliary circuit that enables a fingerprint authentication function-equipped contactless IC card to be read on a smartphone and thereby makes it possible to use a fingerprint authentication function on the smartphone. [Solution] This auxiliary circuit is installed in a smartphone having a built-in contactless IC card reader, such that an NFC chip is recognized in an initial response in NFC communication of the contactless IC card reader, and power is thereby supplied continuously to a fingerprint authentication function-equipped contactless IC card, making it possible for the fingerprint authentication function to be used on the smartphone.

Description

スマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路Contactless IC card reading auxiliary circuit with fingerprint authentication function for smartphones
 本発明は、非接触ICカードリーダーを内蔵したスマートフォンに、指紋認証機能を追加できるスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路に関するものである。
背景技術
The present invention relates to a non-contact IC card reading auxiliary circuit with a fingerprint authentication function for smartphones, which can add a fingerprint authentication function to a smartphone with a built-in non-contact IC card reader.
Background technology
 近年様々な分野でスマートフォンが使用されている。他人によるスマートフォンの不正使用を防止するために、スマートフォンは本人確認機能を備えている。例えば、他人が使用できないように、操作開始から一定時間が経過した場合等に操作ができないようロックする。ロックを解除するために本人を確認する。様々な支払いをスマートフォンで行う場合に本人を確認するために、4桁の番号の入力を要求する。指紋認証や顔認証を行うなどである。 In recent years, smartphones have been used in various fields. To prevent unauthorized use of smartphones by others, smartphones are equipped with an identity verification function. For example, the device may be locked so that it cannot be operated after a certain period of time has elapsed since the start of the operation to prevent others from using it. Verify your identity to unlock. When making various payments using your smartphone, you will be asked to enter a four-digit number to verify your identity. This includes fingerprint authentication and facial recognition.
 スマートフォンで世界的に大きなシェアを持っている米国アップル社のiPhone(登録商標)には、過去、本人を確認する指紋認証機能が内蔵されていた。しかし、iPhoneの最新の機種は、一部の低価格モデルを除いて指紋認証機能を内蔵していない。iPhoneの最新の機種は、顔認証機能を内蔵しているだけである。 In the past, the iPhone (registered trademark) from Apple Inc., which has a large share of the global market for smartphones, had a built-in fingerprint authentication function to verify the user's identity. However, the latest iPhone models do not have a built-in fingerprint authentication function, except for some low-priced models. The latest iPhone models only have a built-in facial recognition function.
 顔認証機能は、顔認証アルゴリズムの特性に基づく次の問題が指摘されている。すなわち、本人と見た目が異なっていても親戚など特徴が近い人物を誤って本人と認証してしまう可能性がある。一昨年からの新型コロナウィルスの感染予防として特に日本ではマスク着用でのスマートフォン操作が日常となっている。マスク着用は顔認証を難しくしてしまう。顔認証機能はこのような欠点を備えていることから、スマートフォンに、顔認証に加えて指紋認証機能を使えるようにして欲しいという強い要求がある。 The following problems have been pointed out regarding the face recognition function based on the characteristics of the face recognition algorithm. In other words, there is a possibility that a person with similar characteristics, such as a relative, may be mistakenly authenticated as the person, even if the person looks different from the person. Since the year before last, people have been using their smartphones while wearing masks, especially in Japan, to prevent the spread of the new coronavirus. Wearing a mask makes facial recognition difficult. Because the face recognition function has such drawbacks, there is a strong demand for smartphones to be able to use a fingerprint recognition function in addition to face recognition.
 パーソナルコンピュータ(PC)などであれば後付けで指紋認証デバイスを追加することが容易である。しかし、PC用の後付け指紋認証デバイスではサイズやインターフェイスの関係で、小型携帯端末であるスマートフォンに後付けをすることは難しい。 If it is a personal computer (PC) or the like, it is easy to add a fingerprint authentication device as a retrofit. However, it is difficult to retrofit fingerprint authentication devices for PCs to smartphones, which are small mobile terminals, due to the size and interface.
 スマートフォン専用に指紋認証デバイスを開発しても、内蔵型の指紋認証デバイスと同等な使い勝手にすることは困難である。すなわち、指紋認証デバイスへの電力供給のために及びスマートフォンとの通信のために、スマートフォンの外部インターフェイスと有線接続すると、ケーブルが邪魔になるだけでなく、スマートフォン自体の取り回しが難しくなる。また、外部インターフェイスを他のデバイスに使用するため又はスマートフォンへ充電するために、指紋認証デバイスを取り外すと、指紋認証デバイスが必要なときにすぐに使えない。 Even if a fingerprint authentication device is developed specifically for smartphones, it is difficult to make it as easy to use as a built-in fingerprint authentication device. That is, if a wired connection is made to the external interface of the smartphone in order to supply power to the fingerprint authentication device and to communicate with the smartphone, not only does the cable get in the way, but it also becomes difficult to manage the smartphone itself. Furthermore, if the fingerprint authentication device is removed to use the external interface for another device or to charge a smartphone, the fingerprint authentication device cannot be used immediately when needed.
 周知のように、近年は、セキュリティを一層強化する観点から、複数の認証機能を組み合わせた多要素認証による認証が求められている。また、SIMスワップ攻撃と呼ばれるスマートフォン内蔵の顔認証や指紋認証が無効化される新しい方法で海外では高額の被害が出ており今後日本国内でも被害が急増することが予想される。喫緊の課題として、SIMスワップ攻撃に対しても有効な生体認証デバイスが求められている。 As is well known, in recent years, from the perspective of further strengthening security, there has been a demand for authentication using multi-factor authentication that combines multiple authentication functions. In addition, a new method called SIM swap attack that disables facial recognition and fingerprint authentication built into smartphones has caused large amounts of damage overseas, and it is expected that damage will increase rapidly in Japan in the future. As an urgent issue, there is a need for biometric authentication devices that are also effective against SIM swap attacks.
 生体認証デバイスとして指紋認証機能付き非接触ICカードを用いスマートフォンで指紋認証機能を使おうとする場合、インストールされたアプリケーション・ソフトウェアだけでは非接触ICカードリーダーからコイルへ連続した給電が行えないスマートフォンでは、指紋認証機能付き非接触ICカードを動作させようとしても、同一の指紋と認証された場合のみICチップから非接触ICカードリーダーへNFC通信を行うカードでは、非接触ICカードリーダーから連続した給電が行えず、指紋照合を完了させることが出来ない。そのため、スマートフォンで指紋認証機能付き非接触ICカードの指紋認証機能を使うことが出来なかった。 When trying to use the fingerprint authentication function on a smartphone using a contactless IC card with a fingerprint authentication function as a biometric authentication device, it is not possible to continuously supply power from the contactless IC card reader to the coil with the installed application software alone. Even if you try to operate a contactless IC card with a fingerprint authentication function, if the card performs NFC communication from the IC chip to the contactless IC card reader only when the same fingerprint is authenticated, continuous power supply from the contactless IC card reader will not be possible. The fingerprint verification cannot be completed. Therefore, it was not possible to use the fingerprint authentication function of a contactless IC card with a fingerprint authentication function on a smartphone.
 本発明の目的は、スマートフォンに内蔵された指紋認証デバイスと同等の使い勝手をスマートフォンに付加することができるスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路を提供することにある。本発明の更なる目的は、複数の認証機能を組み合わせた多要素認証に対応可能で、SIMスワップ攻撃に対しても有効なスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路を提供することにある。 An object of the present invention is to provide a non-contact IC card reading auxiliary circuit with a fingerprint authentication function for smartphones that can add usability to a smartphone equivalent to that of a fingerprint authentication device built into a smartphone. A further object of the present invention is to provide a contactless IC card reading auxiliary circuit for smartphones with a fingerprint authentication function that is compatible with multi-factor authentication that combines multiple authentication functions and is also effective against SIM swap attacks. be.
 前記の課題は、本発明によれば、
 非接触ICカードリーダーを内蔵したスマートフォンに装着し、装着した状態で前記スマートフォンを操作でき、
 指紋認証機能付き非接触ICカード又は指紋認証機能回路基板に内蔵された指紋認証機能をスマートフォンで使用可能とする指紋認証機能付き非接触ICカード読み取り補助回路であって、
 該指紋認証機能付き非接触ICカード又は指紋認証機能回路基板は、
 指紋センサと、
 指紋認証部と、
 照合用指紋データを保存するメモリと、
 前記非接触ICカードリーダーから電力を受け取る第1のコイルと、
 前記非接触ICカードリーダーとの間でNFC通信する機能を有するICチップとを含む指紋認証手段を備え、
 該指紋認証手段は、
 前記第1のコイルが前記非接触ICカードリーダーから電力を受け取ったときに、前記指紋センサを用いて指紋データの読み取りを開始する指紋データ読み取り機能と、
 前記読み取った指紋データと、前記メモリに保存された前記照合用指紋データとを前記指紋認証部により照合する指紋データ照合機能と、
 前記指紋認証部により同一の指紋と認証された場合のみ前記ICチップから前記非接触ICカードリーダーへ、前記NFC通信を行い、同一の指紋と認証されたことを通知する指紋認証通知機能とを有した前記指紋認証機能を内蔵し、
 前記指紋センサ、前記指紋認証部、前記メモリ、前記ICチップは、前記第1のコイルが受け取った電力のみで動作し、
 前記スマートフォンが、これにインストールされたアプリケーション・ソフトウェアだけでは前記非接触ICカードリーダーから前記第1のコイルへ連続した給電が行えない機種であり、
 前記指紋認証機能付き非接触ICカード読み取り補助回路は、
 前記ICチップとは別のNFCチップと、
 前記第1のコイルとは別の第2のコイルを備え、
 前記第2のコイルによって前記非接触ICカードリーダーから電力を受け取った場合に、前記NFC通信の初期応答で、前記別のNFCチップを認識させることにより、前記非接触ICカードリーダーから前記第1のコイルへ連続した給電を行い、
 前記指紋認証部による前記指紋認証を完了し、
 前記指紋認証が成功した場合には前記指紋認証通知を行うことを特徴とするスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路を提供することにより達成される。
According to the present invention, the above problem can be solved by:
It is attached to a smartphone with a built-in non-contact IC card reader, and the smartphone can be operated while attached,
A non-contact IC card reading auxiliary circuit with a fingerprint authentication function that enables a smartphone to use a non-contact IC card with a fingerprint authentication function or a fingerprint authentication function built in a fingerprint authentication function circuit board,
The non-contact IC card with fingerprint authentication function or the fingerprint authentication function circuit board,
a fingerprint sensor,
A fingerprint authentication section,
A memory for storing fingerprint data for verification,
a first coil receiving power from the contactless IC card reader;
A fingerprint authentication means including an IC chip having a function of NFC communication with the non-contact IC card reader,
The fingerprint authentication means is
a fingerprint data reading function that starts reading fingerprint data using the fingerprint sensor when the first coil receives power from the contactless IC card reader;
a fingerprint data matching function for matching the read fingerprint data with the matching fingerprint data stored in the memory by the fingerprint authentication unit;
It has a fingerprint authentication notification function that performs the NFC communication from the IC chip to the non-contact IC card reader only when the same fingerprint is authenticated by the fingerprint authentication unit, and notifies that the fingerprint has been authenticated as the same fingerprint. Built-in fingerprint authentication function,
The fingerprint sensor, the fingerprint authentication unit, the memory, and the IC chip operate only with the power received by the first coil,
The smartphone is a model that cannot continuously supply power from the contactless IC card reader to the first coil with only the application software installed on the smartphone,
The non-contact IC card reading auxiliary circuit with fingerprint authentication function includes:
an NFC chip different from the IC chip;
comprising a second coil different from the first coil,
When the second coil receives power from the contactless IC card reader, the second coil recognizes the other NFC chip in the initial response of the NFC communication, thereby causing the contactless IC card reader to receive power from the first coil. Continuously supplies power to the coil,
completing the fingerprint authentication by the fingerprint authentication unit;
This is achieved by providing a non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone, which is characterized in that the fingerprint authentication notification is sent when the fingerprint authentication is successful.
 本発明にかかる指紋認証機能付き非接触ICカード読み取り補助回路は、アプリケーション・ソフトウェアだけでは前記非接触ICカードリーダーからコイルへ連続した給電が行えないスマートフォンに適用される。補助回路の第2のコイルによって非接触ICカードリーダーから電力を受け取った場合に、NFC通信の初期応答でNFCチップを認識させる。この認識により非接触ICカードリーダーからコイルへ連続した給電を行うことが可能となり指紋認証を開始する。同一の指紋と認証された場合には、非接触ICカードリーダーがICチップから指紋認証通知を受け取る。このように、指紋認証機能付き非接触ICカード読み取り補助回路を装着することにより、指紋認証を行い、同一の指紋と認証されたことをスマートフォンに伝えることにより、有線接続することなく指紋認証機能をスマートフォンで使用できる。 The non-contact IC card reading auxiliary circuit with a fingerprint authentication function according to the present invention is applied to a smartphone in which continuous power cannot be supplied from the non-contact IC card reader to the coil using application software alone. When power is received from the contactless IC card reader by the second coil of the auxiliary circuit, the NFC chip is recognized in an initial response of NFC communication. This recognition enables continuous power supply from the non-contact IC card reader to the coil, and fingerprint authentication begins. If the same fingerprint is authenticated, the non-contact IC card reader receives a fingerprint authentication notification from the IC chip. In this way, by installing a non-contact IC card reading auxiliary circuit with fingerprint authentication function, fingerprint authentication is performed, and by notifying the smartphone that the fingerprint has been authenticated, it is possible to perform fingerprint authentication function without wired connection. Can be used with smartphones.
 スマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路の回路基板や指紋センサ、指紋認証部、メモリ、コイル等の指紋認証を行う指紋認証機能回路基板は、非常に薄いプリント基板で構成できることからスマートフォン用ケースに組み込んでも厚みも殆ど増やすことなく実装可能であり、指紋認証機能回路基板は両面をプラスチックの薄板でラミネートすることによりICカード形状に加工して指紋認証機能付き非接触ICカードにすることも可能である。また、NFCにより無線接続で動作可能なため内蔵された指紋認証デバイスと同等の使い勝手を提供することができる。 The fingerprint authentication function circuit board that performs fingerprint authentication such as the circuit board of the non-contact IC card reading auxiliary circuit with fingerprint authentication function for smartphones, the fingerprint sensor, the fingerprint authentication unit, the memory, the coil, etc. can be constructed from a very thin printed circuit board, so it is suitable for smartphones. The fingerprint authentication function circuit board can be incorporated into a case without increasing the thickness, and by laminating both sides of the fingerprint authentication function circuit board with thin plastic plates, it can be processed into an IC card shape to create a non-contact IC card with a fingerprint authentication function. is also possible. Furthermore, since it can operate wirelessly using NFC, it can provide the same usability as a built-in fingerprint authentication device.
 本発明の好ましい実施形態によれば、ICチップの固有データを用いたデータがスマートフォン側の登録済みのデータと一致することをスマートフォン側で確認することにより、二要素認証に基づいて高いセキュリティを提供できる。補助回路基板や指紋認証機能付き非接触ICカード又は指紋認証機能回路基板は非接触ICカードリーダーからの無線給電により動作するため補助回路基板や指紋認証機能付き非接触ICカード又は指紋認証機能回路基板に電池を搭載する必要が無く、充電等のメンテナンスや電池の劣化等の問題もない。 According to a preferred embodiment of the present invention, high security is provided based on two-factor authentication by confirming on the smartphone side that the data using the unique data of the IC chip matches the registered data on the smartphone side. can. The auxiliary circuit board and non-contact IC card with fingerprint authentication function or the fingerprint authentication function circuit board operate by wireless power supply from the non-contact IC card reader. There is no need to install a battery in the device, and there are no problems with maintenance such as charging or battery deterioration.
 近年スマートフォンの非接触ICカードリーダーはカードを読み取るだけではなく、電子マネーの支払い等様々な外部機器と通信を行う必要がある。本発明の実施例では同一の指紋と認証された場合のみ指紋認証機能付き非接触ICカード又は指紋認証機能回路基板に内蔵されたNFC通信を行うICチップを動作させるので、指紋センサに指を触れなければ、NFC通信を行うICチップは動作しない。 In recent years, contactless IC card readers in smartphones have to not only read cards, but also communicate with various external devices such as electronic money payments. In the embodiment of the present invention, the IC chip that performs NFC communication built in the non-contact IC card with fingerprint authentication function or the fingerprint authentication function circuit board is activated only when the same fingerprint is authenticated. Without it, the IC chip that performs NFC communication will not operate.
 別のアプリケーション・ソフトウェアで非接触ICカードリーダーが他のICカードとNFC通信を行う場合や、外部の非接触ICカードリーダーを含む様々な外部機器とNFC通信を行う場合に、本発明の実施例はNFC通信を妨害することなく使用可能である。 The embodiments of the present invention can be used when a contactless IC card reader performs NFC communication with another IC card using another application software, or when performing NFC communication with various external devices including an external contactless IC card reader. can be used without interfering with NFC communication.
本発明に関連した指紋認証システムのブロック図である。FIG. 1 is a block diagram of a fingerprint authentication system related to the present invention. 本発明に関連した指紋認証システムをスマートフォン側で制御するためにスマートフォンにインストールされたアプリケーション・ソフトウェアの動作の一例を説明するためのフローチャートである。2 is a flowchart for explaining an example of the operation of application software installed on a smartphone in order to control the fingerprint authentication system related to the present invention on the smartphone side. 本発明に関連した指紋認証システムの構造に関する第1実施例の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the structure of a fingerprint authentication system related to the present invention. 図3に図示の構造の断面図である。4 is a cross-sectional view of the structure shown in FIG. 3. FIG. 本発明に関連した指紋認証システムの構造に関する第2実施例の説明図である。FIG. 2 is an explanatory diagram of a second embodiment of the structure of a fingerprint authentication system related to the present invention. 図5に図示の構造の断面図である。6 is a cross-sectional view of the structure shown in FIG. 5. FIG. コイルへの給電状態を説明するための第1例のタイミングチャートである。It is a timing chart of the 1st example for explaining the electric power feeding state to a coil. コイルへの給電状態を説明するための第2例のタイミングチャートである。It is a timing chart of the 2nd example for explaining the electric power feeding state to a coil. コイルへの給電状態を説明するための第3例のタイミングチャートである。It is a timing chart of the 3rd example for explaining the electric power feeding state to a coil. コイルへの給電状態を説明するための第4例のタイミングチャートである。It is a timing chart of the 4th example for explaining the electric power feeding state to a coil. コイルへの給電状態を説明するための第5例のタイミングチャートである。It is a timing chart of the 5th example for explaining the electric power feeding state to a coil. コイルへの給電状態を説明するための第6例のタイミングチャートである。It is a timing chart of the 6th example for explaining the power supply state to a coil. 本発明に関連した指紋認証システムのブロック図である。FIG. 1 is a block diagram of a fingerprint authentication system related to the present invention. スマートフォンと第2のコイルの相対位置を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the relative positions of the smartphone and the second coil. スマートフォンと第2のコイルの相対位置を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining the relative positions of the smartphone and the second coil. スマートフォンに対する第2のコイルの配置を説明するための説明図である。It is an explanatory view for explaining arrangement of a 2nd coil with respect to a smartphone. 図13の指紋認証システムを説明するための断面図である。14 is a cross-sectional view for explaining the fingerprint authentication system of FIG. 13. FIG. 図13の指紋認証システムを説明するための断面図である。14 is a cross-sectional view for explaining the fingerprint authentication system of FIG. 13. FIG.
 図1は、本発明に関連した指紋認証システムのブロック図である。本願発明者は最初に指紋認証機能をスマートフォン用ケースに内蔵しNFCで接続することを考えた。図中、参照符号1はスマートフォン用指紋認証機能付きケースである。2は静電容量式の薄型形状の指紋センサである。3は指紋認証部である。4は照合用指紋データを保存するメモリである。5は非接触ICカードリーダーから電力を受け取るコイルである。6はNFC通信する機能を有するICチップであり、典型的には、フェリカ(FeliCa(登録商標))チップである。参照符号7は指紋登録したユーザの指を示す。参照符号8はスマートフォンである。スマートフォン8に、スマートフォン用指紋認証機能付きケース1が装着される。参照符号9はスマートフォン8に内蔵された非接触ICカードリーダーである。 FIG. 1 is a block diagram of a fingerprint authentication system related to the present invention. The inventor of the present application first thought of incorporating a fingerprint authentication function into a smartphone case and connecting it via NFC. In the figure, reference numeral 1 is a case with a fingerprint authentication function for a smartphone. 2 is a thin capacitive fingerprint sensor. 3 is a fingerprint authentication section. 4 is a memory that stores fingerprint data for verification. 5 is a coil that receives power from the contactless IC card reader. 6 is an IC chip having a function of NFC communication, and is typically a FeliCa (registered trademark) chip. Reference numeral 7 indicates the user's finger whose fingerprint has been registered. Reference numeral 8 is a smartphone. A smartphone case 1 with a fingerprint authentication function is attached to a smartphone 8. Reference numeral 9 is a non-contact IC card reader built into the smartphone 8.
 図1の本発明の実施例では、図示の指紋認証システムにおいて、スマートフォン用指紋認証機能付きケース1に搭載されたデバイス、つまり指紋センサ2、指紋認証部3、照合用指紋データを保存するメモリ4、コイル5、ICチップ(フェリカチップ6)が指紋認証手段Fpを構成する。指紋認証手段Fpにおいて、スマートフォン8に内蔵された非接触ICカードリーダー9からコイル5に対して給電が行われたことを条件に、給電を受けたコイル5は、指紋センサ2、指紋認証部3、メモリ4等へ電力を供給し、そして、指紋認証が開始される。このとき、指紋認証部3は、フェリカチップ6への給電を止める等の方法によりフェリカチップ6が動作しないようにフェリカチップ6を制御する。 In the embodiment of the present invention shown in FIG. 1, the illustrated fingerprint authentication system includes devices mounted on a smartphone case 1 with a fingerprint authentication function, that is, a fingerprint sensor 2, a fingerprint authentication unit 3, and a memory 4 for storing fingerprint data for comparison. , the coil 5, and the IC chip (Felica chip 6) constitute a fingerprint authentication means Fp. In the fingerprint authentication means Fp, on the condition that power is supplied to the coil 5 from the non-contact IC card reader 9 built in the smartphone 8, the coil 5 that receives power is connected to the fingerprint sensor 2 and the fingerprint authentication unit 3. , the memory 4, etc., and fingerprint authentication is started. At this time, the fingerprint authentication unit 3 controls the Felica chip 6 so that the Felica chip 6 does not operate, such as by stopping the power supply to the Felica chip 6.
 指紋認証開始後に、予め指紋登録されている指7が指紋センサ2に触れると、指紋認証部3は、指紋センサ2から読み取った指7の指紋データと、メモリ4に保存された照合用指紋データとを照合する。この照合によって同一の指紋と認証されると、フェリカチップ6を動作するようにフェリカチップ6を制御する。これにより、非接触ICカードリーダー9はフェリカチップ6のIDmデータを読み出せる状態となる。この状態は、コイル5への給電が止まる迄維持される。 After the start of fingerprint authentication, when the finger 7 whose fingerprint has been registered in advance touches the fingerprint sensor 2, the fingerprint authentication unit 3 uses the fingerprint data of the finger 7 read from the fingerprint sensor 2 and the verification fingerprint data stored in the memory 4. Compare with. If the same fingerprint is authenticated by this comparison, the Felica chip 6 is controlled to operate the Felica chip 6. Thereby, the non-contact IC card reader 9 is in a state where it can read the IDm data of the Felica chip 6. This state is maintained until the power supply to the coil 5 is stopped.
 他方、指紋認証前や同一の指紋と認証されない場合には、指紋認証部3はフェリカチップ6が動作しないように制御し、IDmデータが読み出せない状態が維持される。上述した制御によって、フェリカチップ6のIDmデータは、同一の指紋と認証された場合のみ、非接触ICカードリーダー9で読み出すことが可能となる。換言すれば、同一の指紋と認証されない場合、フェリカチップ6のIDmデータは、非接触ICカードリーダー9で読み出すことができない。 On the other hand, before the fingerprint is authenticated or when the same fingerprint is not authenticated, the fingerprint authentication unit 3 controls the Felica chip 6 so as not to operate, and the state in which the IDm data cannot be read is maintained. By the above-described control, the IDm data of the Felica chip 6 can be read by the non-contact IC card reader 9 only when the same fingerprint is authenticated. In other words, if the same fingerprint is not authenticated, the IDm data of the Felica chip 6 cannot be read by the non-contact IC card reader 9.
 IDmデータは、フェリカチップの製造時に記録された固有のID番号である。IDmデータは書き換えができない。よって、同じIDmデータのフェリカチップは他に存在しない。第1に、フェリカチップ6のIDmデータを非接触ICカードリーダー9で読み取ることができ、また第2に、事前にスマートフォン8に登録したIDmデータとフェリカチップ6のIDmデータとが一致したことの2つの条件を満足した場合に限り、「スマートフォン用指紋認証機能付きケース1で指紋認証が成功した」とスマートフォン8で認識できるように構成されている。この場合、スマートフォン8では、指紋と、フェリカのIDmデータの二要素で認証されることとなり、指紋だけの単純な指紋認証に比べてより高いセキュリティを提供できる。 IDm data is a unique ID number recorded at the time of manufacturing the Felica chip. IDm data cannot be rewritten. Therefore, there are no other Felica chips with the same IDm data. Firstly, the IDm data of the Felica chip 6 can be read by the contactless IC card reader 9, and secondly, the IDm data registered in the smartphone 8 in advance and the IDm data of the Felica chip 6 match. The smartphone 8 is configured to be able to recognize that "fingerprint authentication was successful using the smartphone case 1 with a fingerprint authentication function" only when two conditions are satisfied. In this case, the smartphone 8 is authenticated using two factors: the fingerprint and the IDm data of Felica, and can provide higher security than simple fingerprint authentication using only the fingerprint.
 図1に図示の指紋認証システムにおいて、非接触ICカードリーダー9との間でNFC(Near Field Communication)通信を行うICチップとしてフェリカチップ6を使用している。例えば、非接触ICカードリーダー9はNFC規格の無線通信をサポートしているので、NFC通信を行えるICチップであればマイフェア(Mifare:登録商標)などの他のNFC規格のICチップを使用しても良い。 In the fingerprint authentication system shown in FIG. 1, a Felica chip 6 is used as an IC chip that performs NFC (Near Field Communication) communication with a non-contact IC card reader 9. For example, the contactless IC card reader 9 supports NFC standard wireless communication, so if it is an IC chip that can perform NFC communication, you can use another NFC standard IC chip such as Mifare (registered trademark). It's okay.
 図1に図示の指紋認証システムにおいて、指紋認証部3が「同一の指紋と認証された」ときの非接触ICカードリーダー9への通知方法として、IDmデータを読み取り可能状態にすることで実現している。変形例として、別のデータや、IDmと別のデータとの組み合わせを読み取り可能状態にしても良い。 In the fingerprint authentication system shown in FIG. 1, the method of notifying the non-contact IC card reader 9 when the fingerprint authentication unit 3 "authenticates the same fingerprint" is realized by making the IDm data readable. ing. As a modification, other data or a combination of IDm and other data may be made readable.
 前記通知方法の実現方法は、単純に非接触ICカードリーダー9からの所定のコマンドにより指紋認証部3が同一の指紋と認証された場合にフェリカチップ6が決められたデータを送信し、非接触ICカードリーダー9が受け取ることで実現することもできる。ただし、カードリーダー9へ前記決められたデータと同じデータを何らかの別の手段で送信することで指紋認証部3が同一の指紋と認証されなくても、「同一の指紋と認証された」ものとしてセキュリティを破る方法として悪用される恐れがあり、この悪用を留意する必要がある。 The method for realizing the above-mentioned notification method is to simply send predetermined data to the Felica chip 6 when the fingerprint authentication unit 3 authenticates the same fingerprint based on a predetermined command from the contactless IC card reader 9, and This can also be realized by the IC card reader 9 receiving the information. However, even if the fingerprint authentication unit 3 does not authenticate the same fingerprint by transmitting the same data as the above-determined data to the card reader 9 by some other means, it will be recognized as "authenticated as the same fingerprint". There is a risk that it may be misused as a way to break security, so you need to be careful about this abuse.
 この悪用に関して、例えば別の指紋を登録した別のスマートフォン用指紋認証機能付きケース1をスマートフォン8に装着した場合に、スマートフォン側が「同一の指紋と認証された」として動作することを防ぐため、スマートフォン用指紋認証機能付きケース1側に固有のデータを持たせて、スマートフォン8側に登録されたデータと一致していることを指紋認証成功の追加の必須条件とする等の対策を取る方が好ましい。 Regarding this abuse, for example, if a case 1 with a fingerprint authentication function for a smartphone in which a different fingerprint has been registered is attached to the smartphone 8, in order to prevent the smartphone from operating as if "the fingerprint has been authenticated", the smartphone It is preferable to take measures such as providing unique data on the case 1 side with a fingerprint authentication function and making it an additional necessary condition for successful fingerprint authentication to match the data registered on the smartphone 8 side. .
 図1に図示の指紋認証システムにおいて、前記通知方法がフェリカチップ6のIDmデータを送信することで実現している。上述したように同じIDmデータのフェリカチップは存在しないため、前述のように指紋認証を行わないでセキュリティを破ることは難しい。すなわち、何らかの手段を用いて、「同一の指紋と認証された」とスマートフォン8側に認識させてセキュリティを破ることは実際上困難である。 In the fingerprint authentication system shown in FIG. 1, the notification method is realized by transmitting the IDm data of the Felica chip 6. As described above, since there are no Felica chips with the same IDm data, it is difficult to break security without performing fingerprint authentication as described above. That is, it is practically difficult to break security by using some means to make the smartphone 8 recognize that "the fingerprints have been authenticated as the same".
 IDmは、一般的なセキュリティカードの認証で採用されているが、今現在大きな問題は起きていない。しかし、IDmは通信方法等が開示されており偽造することは可能という意見がある。一般的なフェリカカードではIDmデータを簡単にスキミングで読み取られてしまうことも問題である。図1に図示の指紋認証システムでは指紋認証部3が同一の指紋と認証された場合のみIDmデータが読み出せるように制御している。これにより、同一の指紋と認証されない限りスキミングも不可能であるため、スキミングのリスクを大幅に減らすことができる。 IDm is used for general security card authentication, but there are currently no major problems. However, there is an opinion that it is possible to forge IDm because the communication method etc. are disclosed. Another problem with general Felica cards is that IDm data can be easily read by skimming. In the fingerprint authentication system shown in FIG. 1, the fingerprint authentication unit 3 is controlled so that IDm data can be read only when the same fingerprint is authenticated. As a result, skimming is impossible unless the fingerprint is authenticated as the same, so the risk of skimming can be significantly reduced.
 フェリカカードのIDm偽造対策としては、FeliCa Lite-Sチップでは秘密鍵によるMAC認証を行う方法や、FeliCa Standardチップではセキュア領域を利用する方法などが提案されている。このような方法を図1に図示の指紋認証システムの前記通知方法に適宜適用することができる。 As countermeasures against IDm counterfeiting of FeliCa cards, proposals have been made such as a method of performing MAC authentication using a secret key for the FeliCa Lite-S chip, and a method of using a secure area for the FeliCa Standard chip. Such a method can be appropriately applied to the notification method of the fingerprint authentication system shown in FIG.
 図1に図示の指紋認証システムでは、非接触ICカードリーダー9からの給電が開始されると、指紋認証部3が同一の指紋と認証される迄、NFC通信を行うICチップ(フェリカチップ6)が動作しないように制御している。これにより、(i)スマートフォン8に内蔵された非接触ICカードリーダー9で別の非接触ICカードを読み取る場合や、(ii)スマートフォン8に内蔵された非接触ICカードリーダー9が電子マネーの支払い等様々な外部機器との間でNFC通信を行う場合に、スマートフォンケース1内のコイル5にも給電される状態となっても、指紋認証部3によって、NFC通信を行うICチップ(フェリカチップ6)を動作しないように制御される。このICチップ(フェリカチップ6)を動作させない制御によって、非接触ICカードリーダー9のNFC通信を妨害することを防ぐことができる。 In the fingerprint authentication system shown in FIG. 1, when power supply from the non-contact IC card reader 9 starts, the IC chip (Felica chip 6) that performs NFC communication until the fingerprint authentication unit 3 authenticates the same fingerprint. is controlled so that it does not operate. This allows (i) when the contactless IC card reader 9 built into the smartphone 8 reads another contactless IC card, and (ii) when the contactless IC card reader 9 built into the smartphone 8 reads electronic money. When performing NFC communication with various external devices such as, even if power is also supplied to the coil 5 inside the smartphone case 1, the fingerprint authentication unit 3 uses the IC chip (Felica chip 6) that performs the NFC communication. ) is controlled to not work. By controlling this IC chip (Felica chip 6) to not operate, it is possible to prevent interference with NFC communication of the non-contact IC card reader 9.
 従って、指紋認証されない状態では、スマートフォン8は、これに内蔵された非接触ICカードリーダー9を使った様々な用途で問題なく使用可能である。非接触ICカードリーダー9を使った様々な用途で、スマートフォン8からスマートフォン用指紋認証機能付きケース1を取り外す必要はない。スマートフォン8に内蔵された非接触ICカードリーダー9が、指紋認証成功直後に電子マネーの支払い等様々な外部機器との間でNFC通信を行いたい場合には、「同一の指紋と認証された」とスマートフォン8が認識した後に、非接触ICカードリーダー9からの給電を一旦止めることによりスマートフォンケース1内のNFC通信を行うICチップ(フェリカチップ6)を動作しないようにすることができる。 Therefore, without fingerprint authentication, the smartphone 8 can be used for various purposes using the built-in non-contact IC card reader 9 without any problem. For various purposes using the non-contact IC card reader 9, there is no need to remove the smartphone case 1 with a fingerprint authentication function from the smartphone 8. When the non-contact IC card reader 9 built into the smartphone 8 wants to perform NFC communication with various external devices such as electronic money payment immediately after the fingerprint authentication is successful, the message "The same fingerprint was authenticated" is displayed. After the smartphone 8 recognizes this, the power supply from the non-contact IC card reader 9 is temporarily stopped, so that the IC chip (Felica chip 6) that performs NFC communication inside the smartphone case 1 can be made inoperable.
 図1に図示の指紋認証システムにおいて、スマートフォン用指紋認証機能付きケース1に内蔵された電子回路を、スマートフォン8によって制御する方法の一例を図2に図示のフローチャートに基づいて説明する。 In the fingerprint authentication system illustrated in FIG. 1, an example of a method for controlling the electronic circuit built in the smartphone case 1 with a fingerprint authentication function by the smartphone 8 will be explained based on the flowchart illustrated in FIG. 2.
 スマートフォン8にインストールされたアプリケーション・ソフトウェアを起動すると、最初のステップS1で図1のスマートフォン8のディスプレイに「指紋センサに触れて下さい」とメッセージを表示し、そして、内蔵タイマーをスタートする(S2)。このソフトウェアにおいて、ポーリングをオンするコマンドが非接触ICカードリーダー9に送信され(S3)、非接触ICカードリーダー9はポーリングを開始しコイル5への給電を行う。 When the application software installed on the smartphone 8 is started, in the first step S1, a message "Please touch the fingerprint sensor" is displayed on the display of the smartphone 8 shown in FIG. 1, and then a built-in timer is started (S2). . In this software, a command to turn on polling is sent to the non-contact IC card reader 9 (S3), and the non-contact IC card reader 9 starts polling and supplies power to the coil 5.
 給電を受けたコイル5は、指紋センサ2、指紋認証部3、メモリ4等へ電力を供給する。これにより指紋認証が開始される。このソフトウェアは、次のステップS4で、タイマーが0.5秒に達する迄ポーリングを繰り返す。ポーリング実行時間は、指紋認証部3が最短で認証結果を出す時間と同等かそれより短い時間に設定される。ポーリングを繰り返し行う状態で、1回のポーリングで給電する時間を、ポーリングコマンドのパラメータ等を調整することにより、ある程度長めに設定するのが良い。これにより、連続して給電する状態にすることができる。 The coil 5 that receives power supplies power to the fingerprint sensor 2, fingerprint authentication section 3, memory 4, etc. This starts fingerprint authentication. This software repeats polling until the timer reaches 0.5 seconds in the next step S4. The polling execution time is set to be equal to or shorter than the time required for the fingerprint authentication unit 3 to output the authentication result at the shortest time. In a state in which polling is repeatedly performed, it is preferable to set the power supply time for one polling to a certain length by adjusting the parameters of the polling command. This allows continuous power supply.
 ステップS6において、IDmデータを読み取るコマンドが、非接触ICカードリーダー9に送信される。非接触ICカードリーダー9は、IDmデータの読み取りを成功したか失敗したかを、このソフトウェアに返信する。 In step S6, a command to read the IDm data is sent to the non-contact IC card reader 9. The non-contact IC card reader 9 replies to this software whether the reading of the IDm data was successful or unsuccessful.
 前述したように、フェリカチップ6のIDmデータは、指紋認証部3が同一の指紋と認証された場合のみ非接触ICカードリーダー9で読み出すことが可能になる。IDmデータの読み取りが成功した場合には、事前にスマートフォン8に登録したデータと、読み取ったIDmデータとを比較して(S7)、一致した場合には、「スマートフォン用指紋認証機能付きケース1で指紋認証が成功した」と、スマートフォン8内のシステムに通知する(S8)。 As described above, the IDm data of the Felica chip 6 can be read by the non-contact IC card reader 9 only when the fingerprint authentication unit 3 authenticates the same fingerprint. If the reading of the IDm data is successful, the data registered in the smartphone 8 in advance is compared with the read IDm data (S7), and if they match, the "Case 1 with fingerprint authentication function for smartphones" is displayed. "Fingerprint authentication was successful" is notified to the system in the smartphone 8 (S8).
 他方、ステップS7において、IDmデータが一致しなかった場合には、非接触ICカードリーダー9が、別のフェリカカードのIDmデータを読み取ったと判断する。そして、「スマートフォン用指紋認証機能付きケース1で指紋認証が失敗した」とスマートフォン8内のシステムに通知する(S9)。IDmデータの読み取りが失敗した場合には、再度ポーリングをオンするコマンドを、非接触ICカードリーダー9に送信し、そして、IDmデータの読み取りステップに戻るループを作る(S6)。 On the other hand, in step S7, if the IDm data do not match, it is determined that the non-contact IC card reader 9 has read the IDm data of another Felica card. Then, the system in the smartphone 8 is notified that "fingerprint authentication has failed in the smartphone case 1 with fingerprint authentication function" (S9). If reading the IDm data fails, a command to turn on polling again is sent to the non-contact IC card reader 9, and a loop is created to return to the step of reading the IDm data (S6).
 指紋認証部3が指紋を認証するには1~2秒の演算時間が必要である。したがって、ループの期間中は常にコイル5が電力を継続して受け取れる状態にする必要がある。これに対応するために、非接触ICカードリーダー9への1回のポーリングコマンドで給電する時間を、コマンドのパラメータ等を調整することにより、ある程度長めに設定する。これにより、常にコイル5が電力を継続して受け取れる状態にすることができる。 It takes 1 to 2 seconds of calculation time for the fingerprint authentication unit 3 to authenticate a fingerprint. Therefore, it is necessary to keep the coil 5 in a state where it can receive power continuously during the loop period. In order to cope with this, the time for supplying power with one polling command to the non-contact IC card reader 9 is set to be somewhat longer by adjusting command parameters and the like. This allows the coil 5 to always be in a state where it can continuously receive power.
 このループにおいて、ステップS5でタイマーが10秒を経過した場合には、「スマートフォン用指紋認証機能付きケース1で指紋認証が失敗した」とスマートフォン8内のシステムに通知する(S9)。指紋認証の結果をシステムに通知した後、ポーリングをオフして(S10)、このアプリケーション・ソフトウェアを終了する。 In this loop, if the timer exceeds 10 seconds in step S5, the system in the smartphone 8 is notified that "fingerprint authentication has failed in the smartphone case 1 with fingerprint authentication function" (S9). After notifying the system of the fingerprint authentication result, polling is turned off (S10) and this application software is terminated.
 スマートフォン8内のシステムは、「スマートフォン用指紋認証機能付きケース1で指紋認証が成功した」と認識した場合に、ロックを解除したり、特定のネットワークへの接続を許可したりする。すなわち、図1に図示の指紋認証システムによれば、内蔵型の指紋認証デバイスと同等な使い勝手を実現できる。 When the system within the smartphone 8 recognizes that "fingerprint authentication was successful with the smartphone case 1 with fingerprint authentication function," it unlocks the smartphone or allows connection to a specific network. That is, according to the fingerprint authentication system shown in FIG. 1, it is possible to realize usability equivalent to that of a built-in fingerprint authentication device.
 図3は、構造に関する第1実施例の説明図である。図4はその断面図である。図3、図4において、図1に図示と同じ要素には同じ参照符号を付してある。なお、図3、図4に図示の参照符号10はケース1の外殻である。参照符号11は指紋認証機能回路基板、12は貫通穴である。貫通孔12は、ケース1の外殻10に設けられている。指紋認証機能回路基板11に実装された指紋センサ2を、貫通孔12を通じて露出させることにより、指7で指紋センサ2に触れることができる。 FIG. 3 is an explanatory diagram of the first embodiment regarding the structure. FIG. 4 is a sectional view thereof. 3 and 4, the same elements as shown in FIG. 1 are given the same reference numerals. Note that reference numeral 10 shown in FIGS. 3 and 4 is the outer shell of the case 1. Reference numeral 11 is a fingerprint authentication function circuit board, and 12 is a through hole. The through hole 12 is provided in the outer shell 10 of the case 1. By exposing the fingerprint sensor 2 mounted on the fingerprint authentication function circuit board 11 through the through hole 12, the fingerprint sensor 2 can be touched with the finger 7.
 図3、図4を参照して、指紋認証機能回路基板11には、コイル5が銅箔のプリントパターンで形成されている。指紋認証機能回路基板11には、指紋センサ2以外に図1に示した指紋認証部3、メモリ4、フェリカチップ6等の電子部品が搭載されている。これらの電子部品を搭載した指紋認証機能回路基板11は総厚で1ミリ以下と非常に薄く製造することが容易にできる。 Referring to FIGS. 3 and 4, the fingerprint authentication function circuit board 11 has a coil 5 formed of a printed pattern of copper foil. In addition to the fingerprint sensor 2, the fingerprint authentication function circuit board 11 is equipped with electronic components such as the fingerprint authentication section 3, memory 4, and Felica chip 6 shown in FIG. The fingerprint authentication function circuit board 11 on which these electronic components are mounted can be easily manufactured to be very thin, with a total thickness of 1 mm or less.
 ケース1の外殻10は、スマートフォン8の各モデルの形状に合わせる必要があるが、図4の断面図に示すように、既存のスマートフォン用ケースに対して、非常に薄い指紋認証機能回路基板11を取り付ける及び指紋センサを露出するための貫通穴12を設けるだけである。よって、既存のスマートフォン用ケース設計データから容易に、ケース1の外殻10を設計・製造することができる。 The outer shell 10 of the case 1 needs to match the shape of each model of the smartphone 8, but as shown in the cross-sectional view of FIG. 4, the fingerprint authentication function circuit board 11 is very thin compared to existing smartphone cases. It is only necessary to provide a through hole 12 for attaching the fingerprint sensor and exposing the fingerprint sensor. Therefore, the outer shell 10 of the case 1 can be easily designed and manufactured from existing smartphone case design data.
 また、スマートフォン8に、スマートフォン用指紋認証機能付きケース1を常時装着したままスマートフォン8を使用する場合は、指紋認証機能回路基板11が面方向で動かないようにケース1の外殻10の形状を工夫する必要があるが、指紋認証機能回路基板11をケース1の外殻10に固定する必要はない。指紋認証機能回路基板11の面積もプリントパターンで形成するコイル5が大部分を占めるため複数のスマートフォンのモデルに適用できるような形状に設計できる。 In addition, when using the smartphone 8 with the case 1 with fingerprint authentication function attached to the smartphone 8 at all times, the shape of the outer shell 10 of the case 1 should be changed so that the fingerprint authentication function circuit board 11 does not move in the surface direction. It is not necessary to fix the fingerprint authentication function circuit board 11 to the outer shell 10 of the case 1, although it is necessary to devise some measures. Since the coil 5 formed by the printed pattern occupies most of the area of the fingerprint authentication function circuit board 11, it can be designed in a shape that can be applied to multiple smartphone models.
 図1に図示の指紋認証システムの動作は、スマートフォンのOSに合わせてアプリケーション・ソフトウェアのソースコードが異なるものの、指紋認証機能回路基板11そのものはOSに依存していない。よって、異なるOSのスマートフォンでも同じ指紋認証機能回路基板11を使用できる。従って、様々なスマートフォン用ケースに収納可能な形状の指紋認証機能回路基板11を設計することにより同一形状の基板を大量生産してコストダウンを図ることができる。 Although the operation of the fingerprint authentication system shown in FIG. 1 differs in the source code of the application software depending on the OS of the smartphone, the fingerprint authentication function circuit board 11 itself does not depend on the OS. Therefore, the same fingerprint authentication function circuit board 11 can be used even in smartphones with different OS. Therefore, by designing the fingerprint authentication function circuit board 11 in a shape that can be stored in various smartphone cases, it is possible to mass-produce boards of the same shape and reduce costs.
 図5は、構造に関する第2実施例の説明図である。図6はその断面図である。図5、図6を参照して、指紋認証機能回路基板11には、コイル5が銅箔のプリントパターンで形成され、また、指紋センサ2以外に図1に示した指紋認証部3、メモリ4、フェリカチップ6等の電子部品が搭載されている。 FIG. 5 is an explanatory diagram of the second embodiment regarding the structure. FIG. 6 is a sectional view thereof. 5 and 6, the fingerprint authentication function circuit board 11 has a coil 5 formed of a printed pattern of copper foil, and in addition to the fingerprint sensor 2, the fingerprint authentication section 3 and the memory 4 shown in FIG. , Felica chip 6, and other electronic components are mounted.
 これらの電子部品を搭載した指紋認証機能回路基板11は総厚で1ミリ以下と非常に薄く製造することが容易にできる。図5で示すように、指紋認証機能回路基板11が例えばクレジットカードサイズの形状に形作られている。これにより、ケース1の外殻10にスマートフォンを装着した状態で、クレジットカードサイズの指紋認証機能回路基板11を容易に着脱できる。指紋認証機能回路基板11はスマートフォンのOS以外でも動作可能である。指紋認証機能回路基板11単体の状態で、PCに接続された非接触ICカードリーダー等でも使用できるように、一般的な非接触ICカードの製造技術を用いて、指紋認証機能回路基板11の両面をプラスチックの薄板でラミネートして指紋認証機能付き非接触ICカードとしても良い。 The fingerprint authentication function circuit board 11 on which these electronic components are mounted can be easily manufactured to be extremely thin with a total thickness of 1 mm or less. As shown in FIG. 5, the fingerprint authentication function circuit board 11 is shaped into, for example, the size of a credit card. Thereby, with the smartphone attached to the outer shell 10 of the case 1, the credit card-sized fingerprint authentication function circuit board 11 can be easily attached and detached. The fingerprint authentication function circuit board 11 can operate on systems other than the smartphone's OS. Both sides of the fingerprint authentication function circuit board 11 are fabricated using common non-contact IC card manufacturing technology so that the fingerprint authentication function circuit board 11 alone can be used with a non-contact IC card reader connected to a PC. It may also be used as a contactless IC card with a fingerprint authentication function by laminating it with a thin plastic plate.
 本願発明者は、米国アップル社のiPhoneに適合する、図2に図示のフローチャートに従ったアプリケーション・ソフトウェアを作成して、実際の動作を検証した。近年のiPhoneには非接触ICカードリーダーが内蔵されている。iPhoneにおいて、iOS13以降のOSに適合するように、NFC規格の通信フレームワークであるCoreNFCを使用してアプリケーション・ソフトウェアを作成した。そして、iPhoneに内蔵の非接触ICカードリーダーを使って一般的なフェリカカード等のNFC規格のカードの読み書きを確認できた。 The inventor of the present application created application software according to the flowchart shown in FIG. 2, which is compatible with the iPhone of Apple Inc. in the United States, and verified its actual operation. Recent iPhones have built-in contactless IC card readers. For iPhone, application software was created using CoreNFC, which is a communication framework based on the NFC standard, to be compatible with iOS 13 or later OS. Using the iPhone's built-in non-contact IC card reader, we were able to confirm reading and writing of NFC standard cards such as general Felica cards.
 CoreNFCを使って、図2に図示のフローチャートに従ったiPhone用アプリケーション・ソフトウェアを作成して動作を検証したところ、一般的なフェリカカードや、マイフェアカード等のNFC規格のカードのIDmや、UIDの読み取りができることは確認できた。しかし、図1に図示の指紋認証システムに対しては、連続給電が行えず、指紋認証やIDmの読み取りもできないという問題点が見つかった。 When we created an iPhone application software using CoreNFC according to the flowchart shown in Figure 2 and verified its operation, we found that the IDm and UID of NFC standard cards such as general Felica cards and My Fair cards were created. It was confirmed that the data could be read. However, the fingerprint authentication system shown in FIG. 1 has a problem in that it cannot be continuously supplied with power and cannot perform fingerprint authentication or IDm reading.
 図1に図示の指紋認証システムにおいて、図2に図示のフローチャートに基づくiPhone用アプリケーション・ソフトウェアを起動するときのコイル5への給電状態を図7に示す。図7は第1例のタイミングチャートである。上述した問題点つまり連続給電が行えない、という問題を検討した結果、ポーリングコマンドで1回に給電を行う期間が初期設定では短いのが原因であることを、本願発明者は突き止めた。この問題に対して、CoreNFCのPollingコマンド等のパラメータのtimeSlot値を変更して1回のポーリングを行う期間を長くしようとしても、実際の給電期間が変わらない。このことから、図7から分かるように、コイル5に短時間だけ給電することを一定周期で繰り返している。従ってiPhoneで図1に図示の指紋認証システムが動作するように連続給電状態にするにはアプリケーション・ソフトウェアだけではできないことが分かった。 In the fingerprint authentication system shown in FIG. 1, FIG. 7 shows the power supply state to the coil 5 when starting the iPhone application software based on the flowchart shown in FIG. 2. FIG. 7 is a timing chart of the first example. As a result of examining the above-mentioned problem, that is, the inability to perform continuous power supply, the inventor of the present invention found that the cause was that the period during which power is supplied at one time using a polling command is short in the initial setting. To deal with this problem, even if you try to lengthen the period for one polling by changing the timeSlot value of a parameter such as a CoreNFC Polling command, the actual power supply period does not change. From this, as can be seen from FIG. 7, supplying power to the coil 5 for a short period of time is repeated at regular intervals. Therefore, it has been found that application software alone cannot be used to bring an iPhone into a continuous power supply state so that the fingerprint authentication system shown in FIG. 1 can operate.
 iPhoneに内蔵の非接触ICカードリーダー9に、一般的なフェリカカードやマイフェアカード等のNFC規格のカードを近づけた状態、つまりNFC通信可能な状態では、timeSlot値の変更が有効となり給電期間も長くできる。しかし、図1に図示の指紋認証システムでは、ICチップ(フェリカチップ6)がNFC通信可能な状態になるのは、指紋認証が成功した後である。そして給電時間が長くできなければ指紋認証は完了しない。よって、timeSlot値の変更は有効にはならず、給電期間を長くすることができない。 When an NFC standard card such as a general Felica card or My Fair card is brought close to the non-contact IC card reader 9 built into the iPhone, that is, when NFC communication is possible, changing the timeSlot value becomes effective and the power supply period also changes. You can make it longer. However, in the fingerprint authentication system shown in FIG. 1, the IC chip (Felica chip 6) becomes capable of NFC communication only after fingerprint authentication is successful. Fingerprint authentication will not be completed unless the power supply time is extended. Therefore, changing the timeSlot value is not effective, and it is not possible to lengthen the power supply period.
 本アプリケーション・ソフトウェアでは、当該ソフトウェアを動作させた状態で、一般的なフェリカカードやマイフェアカード等のNFC規格のカードを、内蔵の非接触ICカードリーダー9へ近づけるとNFC通信が行われtimeSlot値の変更が有効となり、実際のポーリングの期間が長くなって連続給電が行われる状態となる。連続給電状態にすることで、図1に図示の指紋認証システムは指紋認証が可能となり、指紋認証成功後にはフェリカチップ6が動作する状態となることが確認できた。 In this application software, when the software is running and an NFC standard card such as a general Felica card or My Fair card is brought close to the built-in non-contact IC card reader 9, NFC communication is performed and the timeSlot value is The change becomes effective, and the actual polling period becomes longer, resulting in continuous power supply. By continuously supplying power, the fingerprint authentication system shown in FIG. 1 can perform fingerprint authentication, and it was confirmed that the Felica chip 6 becomes operational after successful fingerprint authentication.
 しかしながら、timeSlot値を変更するために、非接触ICカードリーダー9に近づけるカードがマイフェアカードの場合、図1に図示の指紋認証システムにおいて、指紋認証成功後も、内蔵の非接触ICカードリーダー9はマイフェアカードの固有データであるUIDを読み取ってしまい、フェリカチップ6のIDmデータを読み取ることができなかった。これは、内蔵の非接触ICカードリーダー9が、最初にマイフェアカードとのNFC通信を行い、そのままマイフェアカードとの通信を維持しようとするため、フェリカチップ6との通信が行われないためである、と本願発明者は考えた。 However, if the card that is brought close to the contactless IC card reader 9 in order to change the timeSlot value is a My Fair card, in the fingerprint authentication system shown in FIG. read the UID, which is the unique data of the My Fair Card, and could not read the IDm data of the Felica chip 6. This is because the built-in non-contact IC card reader 9 first performs NFC communication with My Fair Card and then tries to maintain communication with My Fair Card, so communication with Felica chip 6 is not performed. The inventor of the present application thought that.
 この問題を解消するには、内蔵の非接触ICカードリーダー9が連続給電状態にできるようにコイル5への給電開始後にNFC通信を行いtimeSlot値を変更が有効となるようにするとともに、連続給電状態でカードリーダーがフェリカチップ6のIDmを実際に読み込めるようにする必要がある。 To solve this problem, in order to enable the built-in non-contact IC card reader 9 to continuously supply power, perform NFC communication after starting power supply to the coil 5 so that the timeSlot value change becomes effective, and also It is necessary to enable the card reader to actually read the IDm of the Felica chip 6 in this state.
 さらに、近年スマートフォンの非接触ICカードリーダー9はカードを読み取るだけではなく、電子マネーの支払い等様々な外部機器とNFC通信を行う必要がある。図1に図示の指紋認証システムに含まれるケース1をスマートフォン8に装着した状態で、別のアプリケーション・ソフトウェアで非接触ICカードリーダー9が他のICカードとNFC通信を行う際や、外部の非接触ICカードリーダーを含む様々な外部機器とNFC通信を行う際に、本発明の実施例が妨害することなく使用可能である必要がある。 Furthermore, in recent years, the non-contact IC card reader 9 of a smartphone needs to not only read cards, but also perform NFC communication with various external devices such as electronic money payments. When the case 1 included in the fingerprint authentication system shown in Figure 1 is attached to the smartphone 8, when the contactless IC card reader 9 performs NFC communication with another IC card using another application software Embodiments of the present invention need to be able to be used without interference when performing NFC communications with various external devices, including contact IC card readers.
 NFC通信の規格では、非接触ICカードリーダーとNFCカード間での通信シーケンスは、第1に、非接触ICカードリーダーと、目的のNFCカードとの通信路を設定する「初期応答」と、第2に、アプリケーションに応じた情報の授受を行う「活性状態」とで構成される。 In the NFC communication standard, the communication sequence between a contactless IC card reader and an NFC card consists of, first, an "initial response" that sets up a communication path between the contactless IC card reader and the target NFC card; 2. It consists of an "active state" in which information is exchanged according to the application.
 先ず、初期応答で非接触ICカードリーダーからの給電が開始されると、NFCカードは,非接触ICカードリーダーからの通信路の設定要求(リクエストコマンド)を待機する状態になる。次に非接触ICカードリーダーからリクエストコマンドが送信され,NFCカードは応答を返す。これにより非接触ICカードリーダーの通信エリアに存在するNFCカードが認識される。その後、非接触ICカードリーダーは、認識したNFCカードとの間でパラメータを交換し,通信速度などの条件を相互に確認する。これを経て、初期応答から活性状態に遷移する。活性状態では、初期応答で認識したNFCカードを選択し、非接触ICカードリーダーからのコマンドに対するNFCカードからのレスポンスを繰り返すことでNFC通信を行う。 First, when power supply from the contactless IC card reader is started in an initial response, the NFC card enters a state of waiting for a communication path setting request (request command) from the contactless IC card reader. Next, a request command is sent from the contactless IC card reader, and the NFC card returns a response. This allows the NFC card present in the communication area of the non-contact IC card reader to be recognized. Thereafter, the contactless IC card reader exchanges parameters with the recognized NFC card and mutually confirms conditions such as communication speed. After this, the initial response transitions to the active state. In the active state, NFC communication is performed by selecting the NFC card recognized in the initial response and repeating responses from the NFC card to commands from the contactless IC card reader.
 NFCカードにはマイフェアカード等のタイプA、日本国内の運転免許証等のタイプB、フェリカカードのタイプF等があり、初期応答で複数の同じタイプのNFCカードが同時に存在した場合の処理方法が、タイプ毎に定められている。複数のNFCタイプのカードが存在する場合には、読み取るカードのタイプを指定することにより指定したタイプのカードのみを認識できる。複数のタイプを指定した場合には、指定した複数のタイプのカードを認識できる。しかし、例えばマイフェアカードとフェリカカードが同時に認識された場合に、フェリカカードのIDmよりもマイフェアカードのUIDを優先的に読むなど、NFC通信の規格には明記されていない制約がある。 NFC cards include type A such as My Fair Card, type B such as Japanese driver's license, type F Felica card, etc. How to handle when multiple NFC cards of the same type are present at the same time in the initial response are defined for each type. If multiple NFC type cards exist, by specifying the type of card to be read, only the specified type of card can be recognized. If multiple types are specified, cards of multiple specified types can be recognized. However, there are restrictions that are not specified in the NFC communication standard, such as, for example, when My Fair Card and Felica Card are recognized at the same time, the UID of My Fair Card is read preferentially than IDm of Felica Card.
 マイフェアカード等のタイプAのカードは、(i)初期応答の際に複数のマイフェアカードを認識した場合にビットコリジョン方式と呼ばれる方式で全ての認識したマイフェアカードのUIDを読み込み、次いで、(ii)読み込んだUIDの一つを非接触ICカードリーダーが指定し、(iii)UIDが一致したマイフェアカードが応答することで複数のマイフェアカードの中から一つを選択する方式を採用している。従って、初期応答で応答していないマイフェアカードは認識できない。 Type A cards such as My Fair Cards (i) When multiple My Fair Cards are recognized during the initial response, they read the UIDs of all recognized My Fair Cards using a method called the bit collision method, and then: (ii) A contactless IC card reader specifies one of the read UIDs, and (iii) My Fair Cards with matching UIDs respond to select one from multiple My Fair Cards. are doing. Therefore, a My Fair card that does not respond in the initial response cannot be recognized.
 (i)フェリカカードではIDmが分かっている場合にはIDmを指定して、IDmが一致したフェリカカードが応答する方法や、(ii)複数のフェリカカードのシステムコードが異なる場合には、カードを重ねていてもシステムコードを指定して対応するフェリカカードのIDmデータを読み取ることが可能である。初期応答時にtimeSlot値を変更するために、非接触ICカードリーダー9に近づけるフェリカカードを、図1に図示の指紋認証システムに含まれるフェリカチップ6のシステムコードと異なるフェリカカードに変えた場合、指紋認証成功後にフェリカカードがそのままであったとしても、内蔵の非接触ICカードリーダー9が、ケース1側のフェリカチップ6のシステムコードを指定することにより、フェリカチップ6のIDmデータを読み取ることができることを確認できた。初期応答したフェリカカードは、フェリカチップ6とは異なるシステムコードなので、そのIDmは読めない状態であったが、連続給電状態になることが確認できた。 (i) For Felica cards, if the IDm is known, specify the IDm and the Felica card with the matching IDm will respond; (ii) If the system codes of multiple Felica cards are different, select the card. Even if they overlap, it is possible to specify the system code and read the IDm data of the corresponding Felica card. In order to change the timeSlot value at the time of initial response, if the Felica card brought close to the non-contact IC card reader 9 is changed to a Felica card that has a different system code than the Felica chip 6 included in the fingerprint authentication system shown in FIG. Even if the Felica card remains as it is after successful authentication, the built-in non-contact IC card reader 9 can read the IDm data of the Felica chip 6 by specifying the system code of the Felica chip 6 on the case 1 side. I was able to confirm. The Felica card that initially responded had a system code different from that of the Felica chip 6, so its IDm was unreadable, but it was confirmed that it was in a continuous power supply state.
 iPhoneに内蔵された非接触ICカードリーダー9では、初期応答で何らかのNFCカードが認識されるとtimeSlot値の変更が有効となる。しかし、連続給電状態を維持して指紋認証成功後に、スマートフォン用指紋認証機能付きケース1側のNFC通信する機能を有するICチップ(フェリカチップ6)から、非接触ICカードリーダー9へ指紋認証が成功したことを通知できるようにするためには、初期応答で認識されるNFCカード機能の制御タイミングと、NFCチップの種類、スマートフォン用指紋認証機能付きケース1側のNFC通信する機能を有するICチップのNFCの種類をうまく組み合わせる必要がある。 In the non-contact IC card reader 9 built into the iPhone, when some NFC card is recognized in the initial response, the timeSlot value change becomes effective. However, after continuous power supply was maintained and fingerprint authentication was successful, fingerprint authentication was successfully performed from the IC chip (Felica chip 6) that has the function of NFC communication on the smartphone case 1 with fingerprint authentication function to the non-contact IC card reader 9. In order to be able to notify you of what has happened, the control timing of the NFC card function that is recognized in the initial response, the type of NFC chip, and the type of IC chip that has the function of NFC communication on the side of case 1 with fingerprint authentication function for smartphones. It is necessary to combine NFC types appropriately.
 図1に図示の指紋認証システムにおいて、図2に図示のフローチャートに基づくiPhone用アプリケーション・ソフトウェアを起動するときのコイル5への給電状態を図8に示す。図8は第2例のタイミングチャートである。図8を参照して、timeSlot値の変更を有効とするためコイル5に給電されると、この給電開始から少し遅れてフェリカチップ6を短時間だけ動作可能な状態にしている。これによりコイル5に給電されると初期設定の短いポーリング期間内に、内蔵の非接触ICカードリーダー9とフェリカチップ6との間でNFC通信の初期応答が行われ、timeSlot値の変更が有効となる。よって、実際のポーリングの期間が長くなり連続給電が行われる状態となる。 In the fingerprint authentication system shown in FIG. 1, FIG. 8 shows the power supply state to the coil 5 when starting the iPhone application software based on the flowchart shown in FIG. 2. FIG. 8 is a timing chart of the second example. Referring to FIG. 8, when power is supplied to coil 5 to enable the change in the timeSlot value, Felica chip 6 is made operable for a short time with a slight delay from the start of power supply. As a result, when power is supplied to the coil 5, an initial response of NFC communication is performed between the built-in non-contact IC card reader 9 and the Felica chip 6 within the initial setting short polling period, and the timeSlot value change is valid. Become. Therefore, the actual polling period becomes longer, resulting in a state where continuous power supply is performed.
 図8の第2例のタイミングチャートでは、コイル5への給電から少し遅れてフェリカチップ6を動作状態にしているが、同時に動作状態にしてもよい。遅延時間を設けているのは、(i)このソフトウェア以外のアプリケーション・ソフトウェアを起動して非接触ICカードリーダー9でNFCカードを読み取る場合や、(ii)スマートフォン8に内蔵された非接触ICカードリーダー9が電子マネーの支払い等で外部機器とNFC通信を行う場合等に、フェリカチップ6が妨害を行わないように、認識される順番を遅らせているためである。 In the timing chart of the second example in FIG. 8, the Felica chip 6 is put into the operating state a little later than the power supply to the coil 5, but it may be put into the operating state at the same time. The delay time is set when (i) an application software other than this software is started and the NFC card is read by the contactless IC card reader 9, and (ii) the contactless IC card built into the smartphone 8. This is because the order in which the Felica chip 6 is recognized is delayed so that the Felica chip 6 does not interfere when the reader 9 performs NFC communication with an external device for payment of electronic money or the like.
 図8の第2例のタイミングチャートで重要なことは、コイル給電が開始されフェリカチップ6が初期応答で認識された後にフェリカチップ6を一旦停止していることである。このアプリケーション・ソフトウェアは、図2に図示のフローチャートから分かるように、コイル給電が開始されてから0.5秒迄はIDmの読み取りを行っていない。この期間中に、フェリカチップ6が短時間動作状態となっても本アプリケーション・ソフトウェアの動作に影響はない。このソフトウェアでは、コイル給電が開始されてから0.5秒以降にIDmの読み取りを行っている。指紋認証部3が最短で認証結果を出す時間より前であるので、それ以前にフェリカチップ6を一旦停止しておくことにより、このソフトウェアは、フェリカチップ6のIDmを読み取ることで、指紋認証が成功したことをスマートフォン8内のシステムに確実に通知することができる。 What is important in the timing chart of the second example in FIG. 8 is that the Felica chip 6 is temporarily stopped after the coil power supply is started and the Felica chip 6 is recognized by the initial response. As can be seen from the flowchart shown in FIG. 2, this application software does not read IDm until 0.5 seconds after coil power supply is started. During this period, even if the Felica chip 6 is in an operating state for a short time, the operation of this application software is not affected. With this software, IDm is read 0.5 seconds after coil power feeding is started. Since this is before the time when the fingerprint authentication section 3 issues the authentication result at the earliest, by temporarily stopping the Felica chip 6 before that time, this software can perform fingerprint authentication by reading the IDm of the Felica chip 6. Success can be reliably notified to the system within the smartphone 8.
 図8の第2例のタイミングチャートでは、ケース1側のNFC通信する機能を有するICチップを制御する。よって、ICチップはフェリカチップでなくてもよい。他のNFCチップであっても、初期応答時に認識されたNFCチップを一旦停止し、指紋認証成功後に再度動作状態にして指紋認証が成功したことを通知するので問題なく動作させることができる。ただし、図8の第2例のタイミングチャートのように動作させる場合、ケース1側のNFC通信する機能を有するICチップが、外部の非接触ICカードリーダーの給電により動作して、仮に指紋認証が成功しなくても、通信可能となってしまい、その結果、固有データ等を簡単に外部の非接触ICカードリーダーで読み取るスキミングが可能になるため、セキュリティが弱くなってしまう可能性がある。 In the second example timing chart of FIG. 8, the IC chip on the case 1 side that has the function of NFC communication is controlled. Therefore, the IC chip does not have to be a Felica chip. Even with other NFC chips, the recognized NFC chip is temporarily stopped during the initial response, and after the fingerprint authentication is successful, the NFC chip is put into operation again and a notification that the fingerprint authentication has been successful is issued, so that the NFC chip can be operated without problems. However, when operating as shown in the timing chart of the second example in Figure 8, the IC chip on the case 1 side that has the function of NFC communication is operated by the power supply from the external non-contact IC card reader, and fingerprint authentication is performed. Even if it is not successful, communication becomes possible, and as a result, it becomes possible to skim the unique data etc. by easily reading it with an external non-contact IC card reader, which may weaken security.
 図1に図示の指紋認証システムにおいて、図2に図示のフローチャートに基づくiPhone用アプリケーション・ソフトウェアを起動するときのコイル5への給電状態を図9に示す。図9は第3例のタイミングチャートである。図9を参照して、指紋認証が成功した際に動作するフェリカチップ6のIDmが、指紋認証が成功しない場合に外部の非接触ICカードリーダーで読み取れないようにするために、初期応答で認識される別のNFCチップがケース1内に追加されている。そして、コイル5に給電されると、少し遅れて別のNFCチップを短時間だけ動作可能な状態にしている。 In the fingerprint authentication system shown in FIG. 1, FIG. 9 shows the power supply state to the coil 5 when starting the iPhone application software based on the flowchart shown in FIG. 2. FIG. 9 is a timing chart of the third example. Referring to FIG. 9, the IDm of the Felica chip 6, which operates when the fingerprint authentication is successful, is recognized in the initial response in order to prevent it from being read by an external non-contact IC card reader when the fingerprint authentication is not successful. Another NFC chip has been added inside case 1. Then, when power is supplied to the coil 5, another NFC chip is made operational for a short time with a slight delay.
 別のNFCチップがフェリカチップであれば、同一のIDmのチップは存在しないため、指紋認証が成功しなければ、外部の非接触ICカードリーダーで読み取れるIDmは、フェリカチップ6のIDmとは異なる。よってセキュリティを保つことができる。また、初期応答でフェリカチップが認識されると、その後は、2つのフェリカチップのシステムコードが異なる場合だけでなく、同時に動作しているフェリカチップが1個であれば、別のフェリカチップのシステムコードがフェリカチップ6のシステムコードと同じ場合でも活性状態に遷移した後にNFC通信が可能である。よって、低価格のFeliCa Lite-Sチップ2個をスマートフォン用指紋認証機能付きケース1内に実装しても、2個のチップが同時に動作しないように制御すれば問題なく動作できる。 If another NFC chip is a Felica chip, there is no chip with the same IDm, so if fingerprint authentication is not successful, the IDm that can be read by an external non-contact IC card reader is different from the IDm of the Felica chip 6. Therefore, security can be maintained. In addition, once a Felica chip is recognized in the initial response, the system code of another Felica chip can be recognized not only when the two Felica chips have different system codes, but also when only one Felica chip is operating at the same time. Even if the code is the same as the system code of the Felica chip 6, NFC communication is possible after transitioning to the active state. Therefore, even if two low-priced FeliCa Lite-S chips are installed in the smartphone case 1 with a fingerprint authentication function, they can operate without problems if controlled so that the two chips do not operate at the same time.
 さらに、スマートフォン8を外部の非接触ICカードリーダーに近づけるだけで、指紋認証を行わなくても別のIDmを送信できるため、セキュリティの厳しくない用途では積極的に別のIDmを指紋認証を行うことなしに手軽に使うこともできる。また、FeliCa Lite-Sチップは電子マネーなどに使われるFeliCa Standardチップとはシステムコードが異なるため、スマートフォン8に内蔵された非接触ICカードリーダー9が、電子マネーの支払い等で、外部機器とNFC通信を行う場合にも妨害することはない。 Furthermore, simply by bringing the smartphone 8 close to an external non-contact IC card reader, another IDm can be sent without performing fingerprint authentication, so in applications where security is not strict, it is possible to actively perform fingerprint authentication of another IDm. You can also easily use it without it. In addition, since the FeliCa Lite-S chip has a different system code from the FeliCa Standard chip used for electronic money, the contactless IC card reader 9 built into the smartphone 8 can communicate with external devices and NFC for electronic money payments, etc. There is no interference when communicating.
 図1に図示の指紋認証システムにおいて、図2に図示のフローチャートに基づくiPhone用アプリケーション・ソフトウェアを起動するときのコイル5への給電状態を図10、図11に示す。図10、図11は第4例、第5例のタイミングチャートである。第4例、第5例のタイミングチャートにおいて、図9の第3例のタイミングチャートを参照して説明したのと同様に、初期応答で認識される別のNFCチップをスマートフォン用指紋認証機能付きケース1内に追加し、コイル5に給電されると少し遅れて別のNFCチップを動作状態にしている。図10の第4例のタイミングチャートでは、別のNFCチップを2回動作状態にしており、図11の第5例のタイミングチャートでは、別のNFCチップを指紋認証が成功する迄動作状態にしている。これらは、前述した図9の第3例のタイミングに対して別のNFCチップを停止するタイミングを遅らせるためである。 In the fingerprint authentication system shown in FIG. 1, the power supply state to the coil 5 when starting the iPhone application software based on the flowchart shown in FIG. 2 is shown in FIGS. 10 and 11. 10 and 11 are timing charts of the fourth and fifth examples. In the timing charts of the fourth and fifth examples, in the same way as explained with reference to the timing chart of the third example in FIG. 1, and when power is supplied to the coil 5, another NFC chip is activated with a slight delay. In the fourth example timing chart of FIG. 10, another NFC chip is activated twice, and in the fifth example timing chart of FIG. 11, another NFC chip is activated until fingerprint authentication is successful. There is. This is to delay the timing of stopping another NFC chip with respect to the timing of the third example of FIG. 9 described above.
 iPhoneでは、初期応答でtimeSlot値の変更を有効にして連続給電を可能としているが、初期応答から活性状態に遷移した後に、NFCチップとの通信が停止すると、一定時間後に連続給電が解除される。(i)図10の第4例のタイミングチャートのようにNFCチップとの通信を停止後に再度短時間動作状態にすることや、(ii)図11の第5例のタイミングチャートのように指紋認証が成功する迄NFCチップの通信を維持することで、連続給電の最長時間を長くしている。この場合、使用するスマートフォンに合わせて、ICチップとは別のNFCチップを給電開始から動作状態にする迄の遅延時間、動作時間、繰り返し期間、繰り返し回数などのパラメータを変更可能なように構成すると良い。 In the iPhone, continuous power supply is enabled by enabling timeSlot value changes in the initial response, but if communication with the NFC chip stops after transitioning from the initial response to the active state, continuous power supply will be canceled after a certain period of time. . (i) As shown in the timing chart of the fourth example in Figure 10, communication with the NFC chip is stopped and then put into operation again for a short time; (ii) Fingerprint authentication is performed as shown in the timing chart of the fifth example in Figure 11. By maintaining NFC chip communication until the device is successful, the maximum continuous power supply time is extended. In this case, it is possible to configure the NFC chip, which is separate from the IC chip, to be able to change parameters such as delay time from the start of power supply to activation, operation time, repetition period, and number of repetitions according to the smartphone being used. good.
 なお、図11の第5例のタイミングチャートのように指紋認証が成功する迄NFCチップの通信を維持する場合には、図2に図示のフローチャートに基づくiPhone用ソフトウェアが、ICチップとは別のNFCチップのIDmを検出しても、このソフトウェアが、ステップS7で終了しないように別のNFCチップのIDmを記憶させる。別のNFCチップのIDmを読み込んだ場合には、IDmの読み取りを失敗した場合と同様に再度ポーリングをオンするコマンドを非接触ICカードリーダー9に送信し、IDmデータの読み取りステップに戻るなど、適宜アプリケーション・ソフトウェアを修正しておく必要がある。 In addition, when maintaining the communication of the NFC chip until the fingerprint authentication is successful as shown in the timing chart of the fifth example in FIG. 11, the iPhone software based on the flowchart shown in FIG. Even if the IDm of an NFC chip is detected, this software stores the IDm of another NFC chip so that it does not end at step S7. When reading the IDm of another NFC chip, send a command to turn on polling again to the contactless IC card reader 9 in the same way as when reading the IDm fails, and return to the IDm data reading step, etc. as appropriate. Application software needs to be modified.
 図1に図示の指紋認証システムにおいて、図2に図示のフローチャートに基づくiPhone用アプリアプリケーション・ソフトウェアを起動した場合の給電状態を図12に示す。図12は第6例のタイミングチャートである。図9の第3例のタイミングチャートと同様に初期応答で認識される別のNFCチップをスマートフォン用指紋認証機能付きケース1に追加し、そして、コイル5に給電されると別のNFCチップを動作状態にし、この動作状態を、コイル5への給電が停止する迄維持している。 FIG. 12 shows the power supply state when the iPhone application software is started based on the flowchart shown in FIG. 2 in the fingerprint authentication system shown in FIG. 1. FIG. 12 is a timing chart of the sixth example. Similar to the timing chart of the third example in FIG. 9, another NFC chip that is recognized by the initial response is added to the smartphone case 1 with a fingerprint authentication function, and when power is supplied to the coil 5, another NFC chip is activated. This operating state is maintained until the power supply to the coil 5 is stopped.
 図12を参照して、指紋認証成功後には、フェリカチップ6だけでなく別のNFCチップも同時に動作状態を維持している。この別のNFCチップの種類の選択において、初期応答をした別のNFCチップが動作している状態であっても、初期応答をしていないフェリカチップ6のIDmを読み取れるNFCチップの種類を選択する必要がある。 Referring to FIG. 12, after successful fingerprint authentication, not only the Felica chip 6 but also another NFC chip maintains its operating state at the same time. In selecting the type of another NFC chip, select the type of NFC chip that can read the IDm of the Felica chip 6 that has not made an initial response even if another NFC chip that has made an initial response is operating. There is a need.
 前述したように、フェリカは、初期応答時にフェリカチップが一つ応答していれば、複数のフェリカチップを読むことができる。複数のフェリカチップを読むためには、IDmを指定するか、又は、システムコードを指定することで、該当するフェリカチップは応答する。しかしながら、CoreNFCでは、IDmを指定する方法が無い。このため、システムコードを指定して、対応するフェリカチップを読むことが必要となる。この場合、複数のシステムコードを指定すれば、それぞれに対応するフェリカチップを同時に読むこともできる。 As mentioned above, Felica can read multiple Felica chips if one Felica chip responds at the time of initial response. In order to read multiple Felica chips, by specifying IDm or system code, the corresponding Felica chips respond. However, CoreNFC does not have a method for specifying IDm. Therefore, it is necessary to specify the system code and read the corresponding Felica chip. In this case, if you specify multiple system codes, you can read the corresponding Felica chips at the same time.
 同じシステムコードのフェリカチップが複数ある場合には、複数を同時に読み取ることはできないため、別のNFCチップはフェリカチップ6のシステムコードと異なるフェリカチップにすれば良い。ここで、iPhoneにおいて、電子マネーの支払い等で特定のシステムコードのフェリカチップとの通信を妨げないために、それらのシステムコードとは異なるシステムコードのフェリカチップを、別のNFCチップとして、選んでおく方が良い。 If there are multiple Felica chips with the same system code, it is not possible to read multiple Felica chips at the same time, so another NFC chip may be a Felica chip that has a different system code than the Felica chip 6. Here, in order to not interfere with communication with the Felica chip with a specific system code for electronic money payments etc. on the iPhone, select a Felica chip with a system code different from those system codes as another NFC chip. It's better to leave it alone.
 図12の第6例のタイミングチャートのように、システムコードが異なる2個のフェリカチップを組み込み、そして、一方のフェリカチップは指紋認証に関係なくコイル5への給電期間中継続して動作状態にする場合、指紋認証部3とタイミングを合わせる必要はない。よって、図1に図示の指紋認証システムにおいて、ケース1内にフェリカカード又は同等の機能を持つシールやフレキシブル基板モジュール等を、ケース1内の指紋認証機能回路基板11と有線接続しないで、ケース1内にそのまま組み込む方法が考えられる。もちろん指紋認証部3やフェリカチップ6を実装している指紋認証機能回路基板11に、システムコードが異なるフェリカチップを実装することで、コイル5を共有しコストダウンしてもよい。しかしながら、システムコードが同じフェリカチップ2個を使用できる図9、図10及び図11に図示のタイミングチャートの実施例の方が、一層のコストダウンが可能であり、フェリカチップの動作時間が短いため消費電力も少なくなる。 As shown in the timing chart of the sixth example in FIG. 12, two Felica chips with different system codes are incorporated, and one Felica chip remains in operation during the power supply period to the coil 5 regardless of fingerprint authentication. In this case, there is no need to synchronize the timing with the fingerprint authentication section 3. Therefore, in the fingerprint authentication system shown in FIG. One possible method is to incorporate it directly into the system. Of course, by mounting Felica chips with different system codes on the fingerprint authentication function circuit board 11 on which the fingerprint authentication unit 3 and Felica chip 6 are mounted, the coil 5 may be shared and costs can be reduced. However, the embodiments of the timing charts shown in FIGS. 9, 10, and 11, in which two Felica chips with the same system code can be used, can further reduce costs and the operating time of the Felica chips is shorter. Power consumption also decreases.
 以上のように、図8、図9、図10、図11及び図12に図示のタイミングチャートに基づいて説明した実施例によれば、本来のアプリケーション・ソフトウェアだけでは、スマートフォン8に内蔵された非接触ICカードリーダー9からの給電を連続状態にすることができないiPhone等のスマートフォンであっても、(i)指紋認証機能をケース1に搭載し、(ii)スマートフォン8に内蔵された非接触ICカードリーダー9からの給電を受けて指紋認証を開始し、(iii)初期応答でNFCチップを認識することにより給電を連続状態にし、(iv)指紋認証が成功した場合に、非接触ICカードリーダーが指紋認証通知を受け取ることで、「同一の指紋と認証された」ことをスマートフォン8に伝えることができる。よって、スマートフォンと有線接続することなく、スマートフォン8に指紋認証機能を実質的に追加できる。 As described above, according to the embodiment explained based on the timing charts shown in FIGS. 8, 9, 10, 11, and 12, it is not possible to use only the original application software. Even with smartphones such as iPhones that cannot continuously supply power from the contact IC card reader 9, (i) a fingerprint authentication function is installed in the case 1, and (ii) a non-contact IC built into the smartphone 8 is used. Fingerprint authentication is started upon receiving power from the card reader 9, (iii) continuous power supply is established by recognizing the NFC chip in the initial response, and (iv) when fingerprint authentication is successful, the non-contact IC card reader By receiving the fingerprint authentication notification, the user can notify the smartphone 8 that "the same fingerprint has been authenticated." Therefore, a fingerprint authentication function can be substantially added to the smartphone 8 without a wired connection to the smartphone.
 また、初期応答で認識されるNFCチップがフェリカチップの場合には、システムコードを適切に選ぶことにより、(i)本アプリケーション・ソフトウェア以外のアプリケーション・ソフトウェアを起動して、非接触ICカードリーダー9でNFCカードの読み取りを行う場合や、(ii)スマートフォンに内蔵された非接触ICカードリーダー9が電子マネーの支払い等で外部機器とNFC通信を行う場合等において、本発明の実施例が妨害をしないようにすることができる。 In addition, if the NFC chip recognized in the initial response is a Felica chip, by selecting an appropriate system code, you can (i) start an application software other than this application software and use the non-contact IC card reader 9 (ii) When the non-contact IC card reader 9 built into a smartphone performs NFC communication with an external device for electronic money payment, etc., embodiments of the present invention can prevent interference. You can prevent it from happening.
 図8、図9、図10、図11及び図12において、本来アプリケーション・ソフトウェアだけでは内蔵の非接触ICカードリーダーからの給電を連続状態にすることができないiPhone等のスマートフォンに対して、初期応答でNFCチップを認識させることで連続給電をアプリケーション・ソフトウェアで実現できる。よって、スマートフォン用指紋認証機能付きケース1だけでなく、連続給電しないと動作しない別の非接触ICカードを動作させることもできる。この初期応答でNFCチップを認識させる機能を独立した回路基板で実現し、この回路基板を、図5を参照して説明したケース1の外殻10内に組み込んでもよいし、スマートフォン8に内蔵されている非接触ICカードリーダー9の付近に張り付けることにより、連続給電しないと動作しない指紋認証機能付き非接触ICカードを動作させて、その指紋認証機能を使うこともできる。 In Figures 8, 9, 10, 11, and 12, the initial response for a smartphone such as an iPhone, which cannot maintain continuous power supply from the built-in non-contact IC card reader using application software alone. By recognizing the NFC chip, continuous power supply can be realized using application software. Therefore, it is possible to operate not only the smartphone case 1 with a fingerprint authentication function, but also another non-contact IC card that does not operate without continuous power supply. The function of recognizing the NFC chip using this initial response may be realized with an independent circuit board, and this circuit board may be incorporated into the outer shell 10 of the case 1 described with reference to FIG. 5, or may be built into the smartphone 8. By attaching the card near the non-contact IC card reader 9, it is possible to operate a non-contact IC card with a fingerprint authentication function, which cannot be operated without continuous power supply, and use the fingerprint authentication function.
 図13は、本発明に関連した指紋認証システムのブロック図であり、独立した回路基板で、初期応答でNFCチップを認識させる機能を実行する。図13において、図1に図示と同じ要素には同じ参照符号を付してある。図13に図示の参照符号13は初期応答で認識されるNFCチップである。参照符号14は上述したコイル5とは別の第2のコイルである。参照符号15は補助回路基板である。参照符号16は指紋認証機能付き非接触ICカード又は指紋認証機能回路基板である。第2のコイル14と区別するために参照符号5のコイルを「第1のコイル」と呼ぶ。 FIG. 13 is a block diagram of a fingerprint authentication system related to the present invention, in which an independent circuit board performs the function of recognizing an NFC chip in an initial response. In FIG. 13, the same elements as shown in FIG. 1 are given the same reference numerals. Reference numeral 13 shown in FIG. 13 is an NFC chip recognized in the initial response. Reference numeral 14 is a second coil different from the coil 5 described above. Reference numeral 15 is an auxiliary circuit board. Reference numeral 16 is a non-contact IC card with a fingerprint authentication function or a fingerprint authentication function circuit board. In order to distinguish it from the second coil 14, the coil with reference numeral 5 will be referred to as a "first coil."
 図13を参照して、本発明の実施例では、図示の指紋認証システムにおいて、指紋認証機能付き非接触ICカード又は指紋認証機能回路基板16に搭載されたデバイス、つまり指紋センサ2、指紋認証部3、照合用指紋データを保存するメモリ4、第1のコイル5、ICチップ(フェリカチップ6)は指紋認証手段Fpを構成する。この指紋認証手段Fpは図1のスマートフォン用指紋認証機能付きケース1内の指紋認証手段Fpと同じ動作をする。他方、補助回路基板15にはNFCチップ13、第2のコイル14が搭載され、カードリーダー9から第2のコイル14に対して給電が行われると、給電を受けた第2のコイル14はNFCチップ13に電力を供給し、NFCチップ13はカードリーダー9との通信が行われ初期応答によって認識される。この段階でスマートフォン8がiPhoneのようにアプリケーション・ソフトウェアだけでは内蔵の非接触ICカードリーダーからの給電を連続状態にすることができない機種であってもカードリーダー9からの給電が連続状態となる。第1のコイル5に対して連続給電が行われると、給電を受けた第1のコイル5は指紋センサ2、指紋認証部3、メモリ4等へ電力を供給して指紋認証が開始され、スマートフォン8で指紋認証機能を使うことができる。 Referring to FIG. 13, in the illustrated fingerprint authentication system, devices mounted on the fingerprint authentication function-equipped non-contact IC card or the fingerprint authentication function circuit board 16, that is, the fingerprint sensor 2, the fingerprint authentication unit 3. The memory 4 for storing verification fingerprint data, the first coil 5, and the IC chip (Felica chip 6) constitute a fingerprint authentication means Fp. This fingerprint authentication means Fp operates in the same way as the fingerprint authentication means Fp in the smartphone case 1 with a fingerprint authentication function shown in FIG. On the other hand, an NFC chip 13 and a second coil 14 are mounted on the auxiliary circuit board 15, and when power is supplied from the card reader 9 to the second coil 14, the second coil 14 that receives the power becomes an NFC chip. Power is supplied to the chip 13, and the NFC chip 13 communicates with the card reader 9 and is recognized by an initial response. At this stage, even if the smartphone 8 is a model such as an iPhone in which it is not possible to continuously supply power from the built-in non-contact IC card reader using application software alone, the power supply from the card reader 9 becomes continuous. When power is continuously supplied to the first coil 5, the first coil 5 receives the power and supplies power to the fingerprint sensor 2, fingerprint authentication unit 3, memory 4, etc. to start fingerprint authentication, and the smartphone 8 allows you to use the fingerprint authentication function.
 補助回路基板15に搭載されたNFCチップ13は指紋認証機能付き非接触ICカード又は指紋認証機能回路基板に搭載するICチップがフェリカチップである場合はシステムコードの異なるフェリカチップを使用することにより図12のタイミングチャートのように第2のコイル14の給電によりNFCチップが常に動作するように構成しても良いし、図9のタイミングチャートのように第2のコイル14の給電開始から短時間だけNFCチップが動作するように補助回路基板15にNFCチップ13の起動タイミングを制御する回路を追加するよう構成しても良い。 If the NFC chip 13 mounted on the auxiliary circuit board 15 is a contactless IC card with a fingerprint authentication function or a Felica chip mounted on the fingerprint authentication function circuit board, a Felica chip with a different system code is used. The NFC chip may be configured to operate constantly by power supply from the second coil 14 as shown in the timing chart in FIG. A circuit for controlling the activation timing of the NFC chip 13 may be added to the auxiliary circuit board 15 so that the NFC chip operates.
 図14、図15はスマートフォン8と第2のコイル14の相対位置を説明するための断面図である。図14、図15において、図13に図示と同じ要素には同じ参照符号を付してある。本願発明者は米国アップル社のiPhoneで補助回路基板15として市販されているフェリカカードや同等の機能を持つシールやフレキシブル基板モジュールで動作を確認した。これらのフェリカカード等は、図12のタイミングチャートのように、第2のコイル14の給電によりNFCチップ13が常に動作するものであり、コイルの大きさ以外に大きな差はない。これらのフェリカカード等を、補助回路基板15として、いくつかのiPhoneで、図14のようにiPhoneの底面に収まる様に置いた場合には、補助回路基板15は動作せず、図15のようにiPhoneの底面から補助回路基板15が非接触ICカードリーダー9が内蔵されている付近で大きくはみ出した場合のみ動作した。 14 and 15 are cross-sectional views for explaining the relative positions of the smartphone 8 and the second coil 14. 14 and 15, the same elements as shown in FIG. 13 are given the same reference numerals. The inventor of the present application confirmed the operation with a Felica card commercially available as the auxiliary circuit board 15 in the iPhone of Apple Inc. in the United States, as well as a seal and a flexible board module with equivalent functions. As shown in the timing chart of FIG. 12, in these Felica cards, the NFC chip 13 always operates due to power supply from the second coil 14, and there is no major difference other than the size of the coil. If these Felica cards and the like are placed on several iPhones as the auxiliary circuit board 15 so that they fit on the bottom of the iPhone as shown in FIG. 14, the auxiliary circuit board 15 will not operate and the It worked only when the auxiliary circuit board 15 protruded largely from the bottom of the iPhone near where the non-contact IC card reader 9 was built-in.
 iPhoneにおいて、補助回路基板15が図15のようにiPhoneの底面から大きくはみ出した状態でなければ補助回路基板15が動作しない理由は、iPhoneに内蔵されている非接触ICカードリーダー9から発生される交番磁界が主にiPhoneの側面から出ており、この交番磁界の磁束が第2のコイル14の中を通過するように補助回路基板15を配置しなければNFCチップ13を動作させるのに十分な電力を供給できないためである。従って補助回路基板15の形状が平板である場合には図15のようにiPhoneの底面から大きくはみ出してしまうことになる。 In the iPhone, the reason why the auxiliary circuit board 15 does not operate unless the auxiliary circuit board 15 is protruding from the bottom of the iPhone as shown in FIG. 15 is that it is generated from the non-contact IC card reader 9 built into the iPhone. The alternating magnetic field mainly comes out from the side of the iPhone, and unless the auxiliary circuit board 15 is arranged so that the magnetic flux of this alternating magnetic field passes through the second coil 14, it will not be enough to operate the NFC chip 13. This is because electricity cannot be supplied. Therefore, if the auxiliary circuit board 15 is a flat plate, it will protrude significantly from the bottom of the iPhone as shown in FIG. 15.
 図16は、スマートフォン8に対する第2のコイル14の配置を説明するための図である。図16において、図13に図示と同じ要素には同じ参照符号を付してある。図16において、補助回路基板15は、基板の一部または全部をフレキシブルプリント基板等にすることにより、補助回路基板15の一部を曲げてスマートフォン8の底面と側面の一部を覆うように構成されている。これにより、非接触ICカードリーダー9から発生される交番磁界の磁束が第2のコイル14の中を通過するようにする。また、補助回路基板15がスマートフォン8から大きくはみ出さない。市販のフェリカカードを内部の配線が断線しないように曲げて、これを補助回路基板15として、図16に図示のようにiPhoneに装着したところ、iPhoneに内蔵されている非接触ICカードリーダー9からの給電でフェリカカード(補助回路基板15)内のフェリカチップ(NFCチップ13)が起動し、初期応答でフェリカチップが非接触ICカードリーダー9に認識され、連続給電状態になることを確認した。 FIG. 16 is a diagram for explaining the arrangement of the second coil 14 with respect to the smartphone 8. In FIG. 16, the same elements as shown in FIG. 13 are given the same reference numerals. In FIG. 16, the auxiliary circuit board 15 is configured such that part or all of the board is made of a flexible printed circuit board or the like so that a part of the auxiliary circuit board 15 is bent to cover part of the bottom and side surfaces of the smartphone 8. has been done. This allows the magnetic flux of the alternating magnetic field generated from the non-contact IC card reader 9 to pass through the second coil 14. Further, the auxiliary circuit board 15 does not protrude significantly from the smartphone 8. When I bent a commercially available Felica card so as not to break the internal wiring and attached it to the iPhone as the auxiliary circuit board 15 as shown in FIG. It was confirmed that the Felica chip (NFC chip 13) in the Felica card (auxiliary circuit board 15) was activated by power supply, the Felica chip was recognized by the non-contact IC card reader 9 in the initial response, and a continuous power supply state was established.
 図17、図18は、図13の指紋認証システムを説明するための断面図である。図17、図18において、図13に図示と同じ要素には同じ参照符号を付してある。図17、図18に図示の参照符号17はスマートフォン8に装着するスマートフォン用ケースである。参照符号18は指紋認証機能付き非接触ICカードであり、図13の指紋認証機能付き非接触ICカード又は指紋認証機能回路基板16の形状がクレジットカードサイズに形作られている。参照符号19はLEDであり、指紋認証機能付き非接触ICカード18に実装され指紋認証機能付き非接触ICカードの給電状況や指紋認証の成功・失敗等を表示する表示部を構成している。 17 and 18 are cross-sectional views for explaining the fingerprint authentication system of FIG. 13. 17 and 18, the same elements as shown in FIG. 13 are given the same reference numerals. Reference numeral 17 shown in FIGS. 17 and 18 is a smartphone case that is attached to the smartphone 8. As shown in FIG. Reference numeral 18 is a non-contact IC card with a fingerprint authentication function, and the shape of the non-contact IC card with a fingerprint authentication function or the fingerprint authentication function circuit board 16 shown in FIG. 13 is shaped into the size of a credit card. Reference numeral 19 is an LED, which is mounted on the non-contact IC card 18 with a fingerprint authentication function and constitutes a display section that displays the power supply status of the non-contact IC card with a fingerprint authentication function, success/failure of fingerprint authentication, etc.
 図17、図18において補助回路基板15は図16に示すように基板の一部または全部をフレキシブルプリント基板等にすることにより一部を曲げている。この曲げた部分によりスマートフォン8の底面と側面の一部が補助回路基板15で覆われている。非接触ICカードリーダー9から発生される交番磁界の磁束が第2のコイル14の中を通過する。これにより、非接触ICカードリーダー9からの無線給電で補助回路基板15が動作する、ことができる。補助回路基板15はスマートフォン用ケース17に両面テープ等で固定される。補助回路基板15はスマートフォン8に直接両面テープ等で固定しても良いが、修理等のメンテナンスを考慮してスマートフォン8から容易に着脱できるように固定するのが好ましい。また、スマートフォン8から補助回路基板15をケースの厚み分だけ離すことにより、非接触ICカードリーダー9からの交番磁界を通す第2のコイル14の実効面積を広くすることができる。これにより、補助回路基板15は、より安定した給電を受けることができる。 In FIGS. 17 and 18, the auxiliary circuit board 15 is partially bent by using a flexible printed circuit board or the like for part or all of the board, as shown in FIG. This bent portion covers the bottom and part of the sides of the smartphone 8 with the auxiliary circuit board 15. The magnetic flux of the alternating magnetic field generated from the non-contact IC card reader 9 passes through the second coil 14. Thereby, the auxiliary circuit board 15 can be operated by wireless power supply from the non-contact IC card reader 9. The auxiliary circuit board 15 is fixed to the smartphone case 17 with double-sided tape or the like. Although the auxiliary circuit board 15 may be directly fixed to the smartphone 8 with double-sided tape or the like, it is preferable to fix it in such a way that it can be easily attached to and detached from the smartphone 8 in consideration of maintenance such as repair. Furthermore, by separating the auxiliary circuit board 15 from the smartphone 8 by the thickness of the case, the effective area of the second coil 14 through which the alternating magnetic field from the non-contact IC card reader 9 passes can be increased. Thereby, the auxiliary circuit board 15 can receive more stable power supply.
 図17を参照して、スマートフォン用ケース17を介して、スマートフォン8に補助回路基板15を装着した状態において、指紋認証機能付き非接触ICカード18を非接触ICカードリーダー9付近にアクセスした状態を図17は図示している。この状態で非接触ICカードリーダー9からの給電が開始されると補助回路基板15内のNFCチップ13が起動し、初期応答でNFCチップ13が非接触ICカードリーダー9に認識され、そして、指紋認証機能付き非接触ICカード18に対して連続給電状態となり指紋認証が可能となる。図17において補助回路基板15として大きさの異なるフェリカカードや同等の機能を持つシールやフレキシブル基板モジュールの一部を曲げて動作を確認した。スマートフォン8の底面を覆う第2のコイル14の面積が大きい方が指紋認証機能付き非接触ICカード18に動作可能な十分な電力を供給でき、その結果、非接触ICカードリーダー9と指紋認証機能付き非接触ICカード18との相対位置の範囲が広がることを確認できた。これは第2のコイル14を介して非接触ICカードリーダー9からの電力をより広範囲に給電可能となるからである。 Referring to FIG. 17, a state is shown in which the non-contact IC card 18 with fingerprint authentication function is accessed near the non-contact IC card reader 9 with the auxiliary circuit board 15 attached to the smartphone 8 via the smartphone case 17. FIG. 17 illustrates. When power supply from the non-contact IC card reader 9 is started in this state, the NFC chip 13 in the auxiliary circuit board 15 is activated, the NFC chip 13 is recognized by the non-contact IC card reader 9 in an initial response, and the fingerprint is detected. The non-contact IC card 18 with an authentication function is continuously supplied with power, and fingerprint authentication becomes possible. In FIG. 17, the operation was confirmed by bending Felica cards of different sizes as the auxiliary circuit board 15, a seal having the same function, and a part of a flexible board module. The larger the area of the second coil 14 that covers the bottom of the smartphone 8 is, the more power can be supplied to enable the non-contact IC card 18 with fingerprint authentication function to operate, and as a result, the non-contact IC card reader 9 and the fingerprint authentication function It was confirmed that the range of relative positions with the attached non-contact IC card 18 was expanded. This is because power from the non-contact IC card reader 9 can be supplied over a wider range via the second coil 14.
 図18を参照して、図示の実施例では、スマートフォン用ケース17にカードを保持する機構が追加されている。このカード保持機構をケース17に追加することにより、指紋認証機能付き非接触ICカード18を使用しないときは指紋認証機能付き非接触ICカード18をスマートフォン用ケース17に収納できる。指紋認証するときには、指紋認証機能付き非接触ICカード18をスマートフォン用ケース17から引き出して図18のような状態で指紋認証を行う。図17、図18のいずれの場合も指紋センサ2がスマートフォン8の画面側にあるため指紋センサ2の位置及び指紋センサ2を実際に目で確認しながら指7で指紋センサ2を触れることにより、確実に指紋認証を行うことができる。また指紋認証機能付き非接触ICカード18上のLED19により、給電状況や指紋認証の成功・失敗等を確認しながら指紋認証を行うことが可能となる。図18のような使い方は、図17のケース17に市販のクレジットカードサイズのカードを保持するカードホルダーを貼りつけて使うことも可能である。 Referring to FIG. 18, in the illustrated embodiment, a mechanism for holding a card is added to the smartphone case 17. By adding this card holding mechanism to the case 17, the non-contact IC card 18 with a fingerprint authentication function can be stored in the smartphone case 17 when the non-contact IC card 18 with a fingerprint authentication function is not in use. When performing fingerprint authentication, the non-contact IC card 18 with fingerprint authentication function is pulled out from the smartphone case 17 and fingerprint authentication is performed in a state as shown in FIG. In both cases of FIGS. 17 and 18, the fingerprint sensor 2 is located on the screen side of the smartphone 8, so by touching the fingerprint sensor 2 with the finger 7 while visually checking the position of the fingerprint sensor 2 and the fingerprint sensor 2, Fingerprint authentication can be performed reliably. Further, the LED 19 on the non-contact IC card 18 with a fingerprint authentication function makes it possible to perform fingerprint authentication while checking the power supply status and success/failure of fingerprint authentication. The usage as shown in FIG. 18 can also be achieved by attaching a card holder for holding a commercially available credit card size card to the case 17 of FIG. 17.
 図17、図18においては複数の指紋認証機能付き非接触ICカード18を使い分けることにより、法人用と個人用で別々のカードでの指紋認証を可能とし、より高いセキュリティを実現することが可能となる。また、一つの指紋認証機能付き非接触ICカード18でスマートフォン8だけでなく他の端末での指紋認証機能の使用が可能となり利便性が高まる。 In FIGS. 17 and 18, by using multiple non-contact IC cards 18 with fingerprint authentication functions, it is possible to perform fingerprint authentication using separate cards for corporate use and personal use, thereby achieving higher security. Become. Further, with one non-contact IC card 18 with a fingerprint authentication function, the fingerprint authentication function can be used not only on the smartphone 8 but also on other terminals, increasing convenience.
 図13、図17、図18に図示の指紋認証システムによれば、スマートフォンに内蔵された指紋認証デバイスと同等の使い勝手を提供できる。それだけでなく、SIMスワップ攻撃のように、犯人が電話番号を移した新しいスマートフォンに対して犯人が自身の生体情報を登録することにより、スマートフォン内蔵の顔認証や指紋認証が無効化される攻撃に対しても、セキュリティを確保することができる。すなわち、SIMスワップ攻撃だけでは、指紋登録された指紋認証機能付き非接触ICカード18を犯人が入手することはできない。指紋が未登録の新しい指紋認証機能付き非接触ICカード18を入手して犯人が自身の指紋を登録しても、固有のデータが異なるため、SIMスワップ攻撃を受けても指紋認証が成功したとは認識されない。指紋登録された指紋認証機能付き非接触ICカード18を犯人が入手できたとしても犯人の指紋では指紋認証は成功しない。このように本発明の指紋認証システムはSIMスワップ攻撃に対しても有効な認証デバイスであると言うことができる。本発明の指紋認証システムによれば、スマートフォンに内蔵された指紋認証デバイスよりも、高いセキュリティを提供することが可能となる。 According to the fingerprint authentication system illustrated in FIGS. 13, 17, and 18, it is possible to provide usability equivalent to that of a fingerprint authentication device built into a smartphone. In addition, similar to SIM swap attacks, the criminal registers his or her biometric information on a new smartphone to which he has transferred his phone number, thereby disabling the smartphone's built-in facial recognition and fingerprint authentication. Security can also be ensured. In other words, the criminal cannot obtain the non-contact IC card 18 with a fingerprint authentication function in which a fingerprint is registered only by a SIM swap attack. Even if a criminal obtains a new contactless IC card 18 with an unregistered fingerprint authentication function and registers his or her own fingerprint, the unique data will be different, so even if a SIM swap attack occurs, the fingerprint authentication will be considered successful. is not recognized. Even if the culprit were able to obtain the non-contact IC card 18 with the fingerprint authentication function in which the fingerprint was registered, the fingerprint authentication would not be successful with the culprit's fingerprint. As described above, it can be said that the fingerprint authentication system of the present invention is an effective authentication device even against SIM swap attacks. According to the fingerprint authentication system of the present invention, it is possible to provide higher security than a fingerprint authentication device built into a smartphone.
 また、図13、図17、図18に図示の補助回路基板15は、iPhoneのようにアプリケーション・ソフトウェアだけでは内蔵の非接触ICカードリーダーからの給電を連続状態にすることができない機種であっても、連続給電状態が実現できるようにスマートフォンに装着される。加えて、装着状態であればスマートフォンからいつでも補助回路基板15のNFCチップ13にアクセスしてIDmなどの固有番号を確認すること等ができるため、多要素認証の一つとして使用可能である。補助回路基板15による認証は、指紋認証ではないため補助回路基板15が盗まれた場合にはSIMスワップ攻撃に対して無効である。しかし、補助回路基板15が盗まれない場合においてはSIMスワップ攻撃に対しても有効な認証デバイスとなる。指紋センサに触れるなどの作業は不要であるためネットバンキングで高額な送金などは指紋認証機能付き非接触ICカード18による認証を必須とし、ネットバンキングでのログインや残高照会では補助回路基板15の認証を使用してスムースな運用を行うことが可能である。 Furthermore, the auxiliary circuit board 15 shown in FIGS. 13, 17, and 18 is for a model such as an iPhone in which it is not possible to continuously supply power from the built-in non-contact IC card reader using application software alone. It is also attached to a smartphone so that continuous power supply can be achieved. In addition, as long as the smartphone is attached, the NFC chip 13 of the auxiliary circuit board 15 can be accessed from the smartphone at any time to check the unique number such as IDm, so it can be used as one type of multi-factor authentication. Authentication using the auxiliary circuit board 15 is not fingerprint authentication, so if the auxiliary circuit board 15 is stolen, it is ineffective against SIM swap attacks. However, if the auxiliary circuit board 15 is not stolen, it becomes an effective authentication device against SIM swap attacks. Since there is no need to touch the fingerprint sensor, authentication using the contactless IC card 18 with a fingerprint authentication function is required for large remittances through online banking, and authentication using the auxiliary circuit board 15 is required for logging in and checking balances through online banking. It is possible to perform smooth operation using .
 補助回路基板15は前述のように指紋認証機能は搭載していないため補助回路基板15が盗まれた場合にはSIMスワップ攻撃に対して無効である。しかしながら、補助回路基板15と指紋認証機能回路基板とを1つの回路基板で構成して、図3や図4の指紋認証機能回路基板11のように構成することにより、盗難の場合でもSIMスワップ攻撃を防ぐことが可能となる。なお、1つの回路基板にする際に、第1のコイルと第2のコイルを一つのコイルで兼用した回路基板を設計することは当業者にとって容易な設計事項である。 As mentioned above, the auxiliary circuit board 15 is not equipped with a fingerprint authentication function, so if the auxiliary circuit board 15 is stolen, it is ineffective against SIM swap attacks. However, by configuring the auxiliary circuit board 15 and the fingerprint authentication function circuit board as one circuit board, like the fingerprint authentication function circuit board 11 in FIGS. 3 and 4, even in the case of theft, SIM swap attacks can be avoided. It becomes possible to prevent It should be noted that it is an easy design matter for those skilled in the art to design a circuit board in which one coil serves as both the first coil and the second coil.
1 スマートフォン用指紋認証機能付きケース
Fp 指紋認証手段
2 指紋センサ
3 指紋認証部
4 メモリ
5 コイル
6 ICチップ(フェリカチップ)
8 スマートフォン
9 非接触ICカードリーダー
13 NFCチップ
14 第2のコイル
15 補助回路基板
16 指紋認証機能付き非接触ICカード又は指紋認証機能回路基板
18 指紋認証機能付き非接触ICカード
19 LED
1 Case Fp with fingerprint authentication function for smartphone Fingerprint authentication means 2 Fingerprint sensor 3 Fingerprint authentication section 4 Memory 5 Coil 6 IC chip (Felica chip)
8 Smartphone 9 Contactless IC card reader 13 NFC chip 14 Second coil 15 Auxiliary circuit board 16 Contactless IC card with fingerprint authentication function or fingerprint authentication function circuit board 18 Contactless IC card with fingerprint authentication function 19 LED

Claims (8)

  1.  非接触ICカードリーダーを内蔵したスマートフォンに装着し、装着した状態で前記スマートフォンを操作でき、
     指紋認証機能付き非接触ICカード又は指紋認証機能回路基板に内蔵された指紋認証機能をスマートフォンで使用可能とする指紋認証機能付き非接触ICカード読み取り補助回路であって、
     該指紋認証機能付き非接触ICカード又は指紋認証機能回路基板は、
     指紋センサと、
     指紋認証部と、
     照合用指紋データを保存するメモリと、
     前記非接触ICカードリーダーから電力を受け取る第1のコイルと、
     前記非接触ICカードリーダーとの間でNFC通信する機能を有するICチップとを含む指紋認証手段を備え、
     該指紋認証手段は、
     前記第1のコイルが前記非接触ICカードリーダーから電力を受け取ったときに、前記指紋センサを用いて指紋データの読み取りを開始する指紋データ読み取り機能と、
     前記読み取った指紋データと、前記メモリに保存された前記照合用指紋データとを前記指紋認証部により照合する指紋データ照合機能と、
     前記指紋認証部により同一の指紋と認証された場合のみ前記ICチップから前記非接触ICカードリーダーへ、前記NFC通信を行い、同一の指紋と認証されたことを通知する指紋認証通知機能とを有した前記指紋認証機能を内蔵し、
     前記指紋センサ、前記指紋認証部、前記メモリ、前記ICチップは、前記第1のコイルが受け取った電力のみで動作し、
     前記スマートフォンが、これにインストールされたアプリケーション・ソフトウェアだけでは前記非接触ICカードリーダーから前記第1のコイルへ連続した給電が行えない機種であり、
     前記指紋認証機能付き非接触ICカード読み取り補助回路は、
     前記ICチップとは別のNFCチップと、
     前記第1のコイルとは別の第2のコイルを備え、
     前記第2のコイルによって前記非接触ICカードリーダーから電力を受け取った場合に、前記NFC通信の初期応答で、前記別のNFCチップを認識させることにより、前記非接触ICカードリーダーから前記第1のコイルへ連続した給電を行い、
     前記指紋認証部による前記指紋認証を完了し、
     前記指紋認証が成功した場合には前記指紋認証通知を行うことを特徴とするスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。
    It is attached to a smartphone with a built-in non-contact IC card reader, and the smartphone can be operated while attached,
    A non-contact IC card reading auxiliary circuit with a fingerprint authentication function that enables a smartphone to use a non-contact IC card with a fingerprint authentication function or a fingerprint authentication function built in a fingerprint authentication function circuit board,
    The non-contact IC card with fingerprint authentication function or the fingerprint authentication function circuit board,
    a fingerprint sensor,
    A fingerprint authentication section,
    A memory for storing fingerprint data for verification,
    a first coil receiving power from the contactless IC card reader;
    A fingerprint authentication means including an IC chip having a function of NFC communication with the non-contact IC card reader,
    The fingerprint authentication means is
    a fingerprint data reading function that starts reading fingerprint data using the fingerprint sensor when the first coil receives power from the contactless IC card reader;
    a fingerprint data matching function for matching the read fingerprint data with the matching fingerprint data stored in the memory by the fingerprint authentication unit;
    It has a fingerprint authentication notification function that performs the NFC communication from the IC chip to the non-contact IC card reader only when the same fingerprint is authenticated by the fingerprint authentication unit, and notifies that the fingerprint has been authenticated as the same fingerprint. Built-in fingerprint authentication function,
    The fingerprint sensor, the fingerprint authentication unit, the memory, and the IC chip operate only with the power received by the first coil,
    The smartphone is a model that cannot continuously supply power from the contactless IC card reader to the first coil with only the application software installed on the smartphone,
    The non-contact IC card reading auxiliary circuit with fingerprint authentication function includes:
    an NFC chip different from the IC chip;
    comprising a second coil different from the first coil,
    When the second coil receives power from the contactless IC card reader, the second coil recognizes the other NFC chip in the initial response of the NFC communication, thereby causing the contactless IC card reader to receive power from the first coil. Continuously supplies power to the coil,
    completing the fingerprint authentication by the fingerprint authentication unit;
    A non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone, characterized in that when the fingerprint authentication is successful, the fingerprint authentication notification is sent.
  2.  前記指紋認証部により同一の指紋と認証されたときに指紋認証が成功したことを通知する前記指紋認証通知が、前記ICチップに保管されている固有データを用いたデータを、前記非接触ICカードリーダーへ前記NFC通信で送信することを特徴とする請求項1に記載のスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。 The fingerprint authentication notification, which notifies that the fingerprint authentication was successful when the same fingerprint is authenticated by the fingerprint authentication unit, transfers data using unique data stored in the IC chip to the non-contact IC card. The non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone according to claim 1, wherein the non-contact IC card reading auxiliary circuit with a fingerprint authentication function is transmitted to a reader by the NFC communication.
  3.  前記ICチップから前記非接触ICカードリーダーへ前記NFC通信により送信された前記固有データを用いたデータと、前記スマートフォンに事前に登録したデータとを前記スマートフォンが比較してデータが一致したときに、前記指紋認証部により同一の指紋と認証されたと前記スマートフォンが認識することを特徴とする請求項2に記載のスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。 When the smartphone compares data using the unique data transmitted from the IC chip to the contactless IC card reader by the NFC communication and data registered in the smartphone in advance, and the data match, 3. The non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone according to claim 2, wherein the smartphone recognizes that the fingerprint is authenticated by the fingerprint authentication unit.
  4.  前記指紋認証機能付き非接触ICカード読み取り補助回路と同一基板上に前記指紋認証機能を実装することを特徴とする請求項1に記載のスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。 The non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone according to claim 1, wherein the fingerprint authentication function is mounted on the same substrate as the non-contact IC card reading auxiliary circuit with a fingerprint authentication function.
  5.  前記指紋認証機能付き非接触ICカード読み取り補助回路の前記スマートフォンへの装着はスマートフォン用ケースを介して行うことを特徴とする請求項4に記載のスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。 5. The non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone according to claim 4, wherein the non-contact IC card reading auxiliary circuit with a fingerprint authentication function is attached to the smartphone via a smartphone case. .
  6.  前記指紋認証機能付き非接触ICカード読み取り補助回路の前記スマートフォンへの装着はスマートフォン用ケースを介して行うことを特徴とする請求項1に記載のスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。 The non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone according to claim 1, wherein the non-contact IC card reading auxiliary circuit with a fingerprint authentication function is attached to the smartphone via a smartphone case. .
  7.  前記非接触ICカードリーダーから発生される交番磁界の磁束が前記第2のコイルの中を通過するように前記第2のコイルの一部が前記スマートフォンの側面の一部を覆うことにより、前記NFC通信の初期応答で前記別のNFCチップを認識させるために必要な電力を供給できるようにすることを特徴とする請求項1ないし6のいずれか一項に記載のスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。 A portion of the second coil covers a portion of the side surface of the smartphone so that the magnetic flux of the alternating magnetic field generated from the non-contact IC card reader passes through the second coil. The non-contact smartphone with fingerprint authentication function according to any one of claims 1 to 6, wherein the contactless smartphone with fingerprint authentication function according to any one of claims 1 to 6 is capable of supplying power necessary for recognizing the other NFC chip in an initial response of communication. IC card reading auxiliary circuit.
  8.  前記ICチップと前記別のNFCチップとが、フェリカチップであることを特徴とする請求項7に記載のスマートフォン用指紋認証機能付き非接触ICカード読み取り補助回路。 The non-contact IC card reading auxiliary circuit with a fingerprint authentication function for a smartphone according to claim 7, wherein the IC chip and the other NFC chip are Felica chips.
PCT/JP2023/020153 2022-06-06 2023-05-30 Smartphone-use fingerprint authentication function-equipped contactless ic card reading auxiliary circuit WO2023238742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022091813 2022-06-06
JP2022-091813 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238742A1 true WO2023238742A1 (en) 2023-12-14

Family

ID=89118269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020153 WO2023238742A1 (en) 2022-06-06 2023-05-30 Smartphone-use fingerprint authentication function-equipped contactless ic card reading auxiliary circuit

Country Status (2)

Country Link
TW (2) TW202403571A (en)
WO (1) WO2023238742A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208336A (en) * 2002-01-16 2003-07-25 Toshiba Corp Evaluation system of ic card handling terminal
JP2006004257A (en) * 2004-06-18 2006-01-05 Nec Corp Personal effects loss preventing method and system
WO2020075317A1 (en) * 2018-10-10 2020-04-16 株式会社MoriX Authentication system and smartphone case used therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208336A (en) * 2002-01-16 2003-07-25 Toshiba Corp Evaluation system of ic card handling terminal
JP2006004257A (en) * 2004-06-18 2006-01-05 Nec Corp Personal effects loss preventing method and system
WO2020075317A1 (en) * 2018-10-10 2020-04-16 株式会社MoriX Authentication system and smartphone case used therefor

Also Published As

Publication number Publication date
TW202403598A (en) 2024-01-16
TW202403571A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US10223555B2 (en) Smart card systems comprising a card and a carrier
CN107944332B (en) Fingerprint identification card and method for operating a fingerprint identification card
EP3557482B1 (en) Fingerprint recognition card and method for operating power source by using fingerprint recognition card
US9633300B2 (en) Apparatus having communication means and a receiving member for a chip card
EP3471070A1 (en) Configurable digital badge holder
JPWO2005114561A1 (en) Access control method to reader / writer secure module
JP2003271937A (en) Device for personal authentication, and portable terminal unit
WO2002042890A1 (en) Security system for information processor
JP5146872B2 (en) Non-contact IC card, portable terminal device, activation control method, and activation control program
EP4068570B1 (en) Biometric system and enrollment method
US8713660B2 (en) Authentication platform and related method of operation
JP2006221477A (en) Portable communication terminal device, security system for the same, and security method
JP2009151435A (en) Non-contact communication device
WO2023238742A1 (en) Smartphone-use fingerprint authentication function-equipped contactless ic card reading auxiliary circuit
WO2023176354A1 (en) Case equipped with fingerprint authentication function for smartphones
JP4207404B2 (en) Mobile terminal, control method therefor, and IC card
WO2023243467A1 (en) Smartphone-compatible contactless ic card with fingerprint authentication function
JP2016089554A (en) Electric lock device, electric lock system and program
KR20180118583A (en) Fingerprint recognition card and method of operating the fingerprint recognition card
CN218273348U (en) Writing pen
JP2024021821A (en) User authentication method, user authentication digital key system, and program for portable device
KR20220069295A (en) Mobile payment device and method of operation of the same
TW202038064A (en) Method and system for triggering a payment procedure for unmanned machine
JP2011253382A (en) Card reader
JP2009251885A (en) Sim holder having voice-authenticating function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819722

Country of ref document: EP

Kind code of ref document: A1