WO2023238711A1 - 再生可能エネルギー発電システム及び蓄電装置の充電方法 - Google Patents

再生可能エネルギー発電システム及び蓄電装置の充電方法 Download PDF

Info

Publication number
WO2023238711A1
WO2023238711A1 PCT/JP2023/019807 JP2023019807W WO2023238711A1 WO 2023238711 A1 WO2023238711 A1 WO 2023238711A1 JP 2023019807 W JP2023019807 W JP 2023019807W WO 2023238711 A1 WO2023238711 A1 WO 2023238711A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
storage device
renewable energy
charging
Prior art date
Application number
PCT/JP2023/019807
Other languages
English (en)
French (fr)
Inventor
純也 伊東
裕 有田
Original Assignee
エナジーウィズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エナジーウィズ株式会社 filed Critical エナジーウィズ株式会社
Publication of WO2023238711A1 publication Critical patent/WO2023238711A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present disclosure relates to a renewable energy power generation system and a method of charging a power storage device.
  • Patent Document 1 discloses a power storage system including a storage battery array including lead-acid battery cells that are uniformly charged, and a power generation system that generates electric power based on a commercial power source or renewable energy such as solar power generation. It is disclosed that power is supplied to the power storage system from a power supply unit that is a combination of equipment and a commercial power source.
  • the amount of electricity derived from renewable energy varies depending on the season, climate, etc. Therefore, when charging a storage battery using electricity derived from renewable energy, it will be charged frequently during seasons or times when the amount of electricity generated is high, but on the other hand, during seasons when the amount of electricity generation is low, it will be charged less frequently or almost not. It will no longer be done. Particularly during periods when charging using electricity derived from renewable energy is low, it is desirable to keep the state of charge of the storage battery within a range suitable for storage in order to maintain the life of the storage battery in a stable state. In particular, lead-acid batteries need to be fully charged by equal charging at regular intervals.
  • the present disclosure has been made in view of the above, and aims to provide a renewable energy power generation system and a charging method for a power storage device that can adjust the state of charge of a storage battery according to the amount of electricity derived from renewable energy. shall be.
  • a renewable energy power generation device that generates electricity using renewable natural energy, a power storage device capable of storing power output from the renewable energy power generation device and power supplied from outside the system and releasing the stored power; Charging the power storage device so that the state of charge (SOC) of the power storage device is equal to or higher than the lower limit value of the state of charge (SOC) of the power storage device determined based on the power generation output related information of the renewable energy power generation device.
  • a control unit that controls the A renewable energy power generation system equipped with
  • the control unit determines the state of charge of the power storage device by subtracting a value (%) calculated using an expected charge amount (kWh) in a certain period from an upper limit value (%) of the state of charge of the power storage device.
  • the power storage device in ⁇ 2> may include a lead-acid battery, and ⁇ 2> may be a renewable energy power generation system that controls charging of the lead-acid battery.
  • the control unit determines whether the state of charge of the power storage device is a value (%) calculated by using the lower limit SOC value (%) inherent to the power storage device and the self-discharge amount (kWh) of the power storage device in a certain period of time.
  • the power storage device in ⁇ 3> may include a lithium ion secondary battery, and ⁇ 3> may be a renewable energy power generation system that controls charging of the lithium ion secondary battery.
  • the power storage device includes a plurality of lead acid batteries
  • the control unit periodically charges the plurality of lead-acid batteries using the electric power output from the renewable energy power generation device, and if uniform charging of the plurality of lead-acid batteries is not completed after a certain period of time has elapsed.
  • the renewable energy power generation system according to any one of ⁇ 1> to ⁇ 3>, in which control is performed to complete equal charging by supplying electric power to the plurality of lead-acid batteries from outside the system.
  • a renewable energy power generation device that generates power using renewable natural energy, and a power source that is capable of storing the power output from the renewable energy power generation device and the power supplied from outside the system, and the stored power Using a power storage device that can release Charging the power storage device so that the state of charge (SOC) of the power storage device is equal to or higher than the lower limit value of the state of charge (SOC) of the power storage device determined based on the power generation output related information of the renewable energy power generation device.
  • a charging method for a power storage device that controls ⁇ 6> The power storage device charging method according to ⁇ 5>, wherein the power generation output related information includes at least one of weather forecast information and past power generation output information by the renewable energy power generation device.
  • FIG. 1 is a diagram showing a configuration of an embodiment of a renewable energy power generation system of the present disclosure.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • the renewable energy power generation system of the present disclosure is a system that controls charging (preferably charging and discharging) of a power storage device based on information regarding the power generation output of a renewable energy power generation device (power generation output related information). Therefore, for example, the lower limit value of the SOC is set higher during a period when the amount of power generated by the renewable energy power generation device is low than when the amount of power generated by the renewable energy power generation device is high, and the SOC range is adjusted. This makes it possible to reduce the amount of external power required to uniformly charge the power storage device, the amount of external power required to bring the battery into a charging state that can suppress overdischarge, battery deterioration, and the like.
  • the renewable energy power generation device is preferably a power generation device that uses sunlight, a power generation device that uses wind power, or a combination thereof.
  • the power storage device may include a storage battery string in which a plurality of storage battery cells are connected in series, or may have a configuration in which one storage battery cell or one storage battery string is connected in parallel.
  • the control unit is a device that controls charging of the power storage device so that the state of charge (SOC) of the power storage device is equal to or higher than a lower limit value of the SOC of the power storage device determined based on power generation output related information of the renewable energy power generation device. It is.
  • the control unit controls charging of the power storage device so that the SOC is within a range equal to or higher than the lower limit of the SOC.
  • the control unit includes a BMU (Battery Management Unit) that monitors the state of the power storage device, controls charging and discharging of the power storage device, and transmits information related to the power generation output of the renewable energy power generation device from outside the system via the Internet. It may also be configured to include a general controller for acquiring the information.
  • the BMU sequentially acquires the voltage value and current value of the storage battery cell or the storage battery string measured by a voltmeter and an ammeter, and determines the state of charge (SOC) from at least one of the acquired voltage value and current value (for example, current value). ) is a device that monitors the state of the power storage device by determining the
  • the control unit may determine a lower limit value of the SOC based on information related to the power generation output of the renewable energy power generation device, and may control charging of the power storage device so that the SOC of the power storage device is equal to or greater than the determined lower limit value.
  • the lower limit of the SOC is predetermined based on information related to the power generation output of the renewable energy power generation device, and the control unit controls the charging of the power storage device so that the SOC of the power storage device becomes equal to or higher than the predetermined lower limit of the SOC. May be controlled.
  • the power generation output related information is not particularly limited as long as it is related to the electric power output by the renewable energy power generation device over a certain period of time, and may include weather forecast information, past power generation output information by the renewable energy power generation device, etc. Can be mentioned.
  • Examples of the weather forecast information include weather forecast information for a point closest to the point where the renewable energy power generation device is installed, weather forecast information for multiple points adjacent to the point where the renewable energy power generation device is installed, and the like.
  • Weather forecast information includes information on temperature, weather, wind speed, humidity, etc., information on combinations of these, and other information related to the power generation output of the renewable energy power generation device.
  • the amount of power output by the renewable energy power generation device over a current fixed period or a future fixed period may be estimated from past power generation output information by the renewable energy power generation device.
  • FIG. 1 is a diagram showing the configuration of an embodiment of the renewable energy power generation system of the present disclosure.
  • the renewable energy power generation system 1A includes an internal power wiring 2, a plurality of power storage units 10, one or more power generation units 20, and a general controller 4.
  • the internal power wiring 2 propagates AC power at a predetermined frequency (for example, a commercial frequency of 50 Hz or 60 Hz).
  • the internal power wiring 2 is a wiring installed in a limited area within a local area such as a home, factory, farm, etc., and is electrically connected to a load 6.
  • Renewable energy power generation system 1A can supply power generated by power generation unit 20 and power discharged from power storage unit 10 to load 6 via internal power wiring 2.
  • a load is one or more appliances or devices, or a collection thereof, that consume power.
  • the internal power wiring 2 is electrically connected via a connection point 5 to an external power system 3 located outside the local area.
  • the power generation unit 20 is electrically connected to the internal power wiring 2 and generates power using renewable natural energy.
  • the power generation unit 20 includes a renewable energy power generation device 21 and a power conditioning system (PCS) 22.
  • the renewable energy power generation system 1A may include a plurality of power generation units 20.
  • the renewable energy power generation device 21 is electrically connected to the internal power wiring 2 via the PCS 22, and generates electric power using renewable natural energy.
  • the renewable energy power generation device 21 is, for example, a solar panel or a wind power generation facility.
  • the PCS 22 includes an inverter. When the renewable energy power generation device 21 generates DC power, the PCS 22 converts the DC power into AC power of a predetermined frequency and supplies it to the internal power wiring 2 . Further, when the renewable energy power generation device 21 generates AC power, the PCS 22 converts the frequency of the AC power into a predetermined frequency and supplies it to the internal power wiring 2.
  • the PCS 22 may be integrated with the PCS 13 described later.
  • the power storage unit 10 includes a storage battery 11, a battery management unit (BMU) 12, and a PCS 13.
  • the storage battery 11 stores electric power generated by the power generation unit 20.
  • the storage battery 11 may be composed of a single storage battery cell, or may be configured by connecting a plurality of storage batteries in series.
  • BMU12 is electrically connected between storage battery 11 and PCS13.
  • the BMU 12 may manage equal charging intervals of the storage battery 11. Further, the BMU 12 measures the state of charge (SOC) of the storage battery 11 from the integrated value of the current input to or output from the storage battery 11 and the voltage across the storage battery 11 .
  • the PCS 13 is electrically connected between the storage battery 11 and the internal power wiring 2. The PCS 13 charges and discharges the storage battery 11 based on instructions from the general controller 4.
  • the PCS 13 includes an inverter. When the PCS 13 discharges the power of the storage battery 11 to the internal power wiring 2, it also performs conversion from DC power to AC power of a predetermined frequency. Furthermore, when storing the power of the internal power wiring 2 in the storage battery 11, the PCS 13 also performs conversion from AC power to DC power.
  • a BMU 12 and a PCS 13 are provided for each storage battery 11, but one BMU or one PCS may be electrically connected to a plurality of storage batteries 11.
  • the overall controller 4 controls the operation (charging operation and discharging operation) of the PCS 13 of each power storage unit 10, and acquires power generation output related information such as weather forecast information from the weather information service 30 via the Internet. Furthermore, the general controller 4 outputs a control signal, and the PCS 13 that received the control signal determines that the SOC of the storage battery 11 is based on power generation output related information such as weather forecast information, past power generation output information by the renewable energy power generation device, and power storage The charging and discharging of the storage battery 11 is controlled so that the SOC becomes equal to or higher than the lower limit value determined based on charging and discharging information of the device, deterioration information of the power storage device, and the like.
  • the overall controller 4 When the power consumption of the load 6 exceeds the power generated by the power generation unit 20, the overall controller 4 causes the PCS 13 of each power storage unit 10 to perform a discharging operation. At this time, the overall controller 4 controls the discharging operation in each power storage unit 10 so that the SOC of the storage battery 11 does not fall below a specific lower limit value. Specifically, by supplying insufficient power from the external power system 3 to the load 6, the power supply is controlled so that the SOC of the storage battery 11 becomes equal to or higher than a specific lower limit value.
  • the general controller 4 causes the PCS 13 of each power storage unit 10 to perform a charging operation using the power generated by the power generation unit 20.
  • the general controller 4 controls the charging operation of the storage battery 11 so that equal charging is performed every 14 days, and the storage battery 11 is charged using the power generated by the power generation unit 20 for 10 hours. If equal charging of the storage battery 11 is not completed after 14 days have passed since charging, control may be performed to supply insufficient power from the external power system 3 to the storage battery 11 to complete the equal charging.
  • the overall controller 4 may control the charging of the storage battery 11 so as to satisfy the following equation (1).
  • the lower limit SOC value (%) is the lower limit value of the charging state of the storage battery 11
  • the upper limit SOC value (%) is the upper limit value of the charging state of the storage battery 11
  • Q (kWh) is the upper limit value of the charging state of the storage battery 11.
  • the battery capacity (kWh) is the battery capacity of the storage battery 11
  • ⁇ (%) is the margin.
  • the upper limit SOC value (%) may be the SOC when the storage battery 11 is fully charged, and ⁇ (%) may be adjusted as appropriate depending on the usage status of the storage battery, renewable energy power generation system, etc., usage environment, etc. Good too.
  • the expected charging amount for a certain period of time may be the expected charging amount for a certain period of time such as the next day, the next week, or the next month. (expected charge amount).
  • the expected charging amount may be the amount of power obtained by subtracting the expected power supply to the load (kWh) and the expected power supply to the outside of the system (for example, sold power (kWh)) from the expected power generation amount (kWh). .
  • the original lower limit SOC value (%) of the storage battery 11 may be the lower limit SOC value that the storage battery 11 can take functionally, or it may be an SOC value corresponding to the remaining amount of stored electricity that is normally left in case of a power outage, etc. good.
  • the renewable energy power generation system 1A may include a lead acid battery and a lithium ion secondary battery as the storage battery 11.
  • the renewable energy power generation system 1A uses a power storage unit 10 (referred to as the power storage unit 10A) that includes a lead acid battery as the storage battery 11 and a power storage unit 10 (referred to as the power storage unit 10B) that includes a lithium ion secondary battery as the storage battery 11. They may be provided in parallel.
  • the state of charge of the storage battery 11 is calculated from the upper limit (%) of the state of charge of the storage battery 11 using the expected charge amount (kWh) for a certain period of time.
  • Comparative Example 1 a case where the lower limit SOC is not controlled is referred to as Comparative Example 1.
  • the number of equal charging times y per month is 2 times/month (converted to 24 times/year)
  • the battery capacity Q of the lead-acid battery is 40 kWh
  • the electricity cost z is 20 yen/kWh.
  • Example 2 A second embodiment is a case where the lower limit SOC is controlled differently from the first embodiment.
  • the lower limit SOC is controlled to 100% from January to March and from October to December, when the expected charging amount per month decreases.

Abstract

再生可能エネルギー発電システムは、再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置と、前記再生可能エネルギー発電装置から出力される電力及びシステム外部から供給される電力を貯蔵可能、かつ、貯蔵した電力を放出可能である蓄電装置と、前記蓄電装置の充電状態(SOC)が、前記再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた前記蓄電装置の充電状態(SOC)の下限値以上となるように前記蓄電装置の充電を制御する制御部と、を備える。

Description

再生可能エネルギー発電システム及び蓄電装置の充電方法
 本開示は、再生可能エネルギー発電システム及び蓄電装置の充電方法に関する。
 鉛蓄電池等の蓄電池を用いた蓄電システムでは、蓄電池の劣化を抑制する観点から、蓄電池を満充電状態にする均等充電を定期的に行っている。
 例えば、特許文献1では、均等充電が実行される鉛蓄電池セルを含む蓄電池列を備える蓄電システムが開示されており、商用電源又は、太陽光発電等の再生可能エネルギーに基づいて電力を発生させる発電設備と商用電源との組み合わせである電力供給部から蓄電システムに電力を供給することが開示されている。
国際公開2019/188889号
 再生可能エネルギー由来の電力量は季節、気候等によって変動する。そのため、再生可能エネルギーに由来の電力を用いて蓄電池の充電を行う場合、発電量の多い季節又は時期は頻繁に充電されるが、反対に少なくなる季節は充電の頻度が少ないか、ほとんど充電がされなくなる。特に再生可能エネルギーに由来の電力を用いた充電が少ない時期においては、安定した状態で蓄電池の寿命を維持するためには、蓄電池の充電状態を保存に適した範囲内にとどめることが望ましい。
 特に、鉛蓄電池においては、一定周期で均等充電により満充電にする必要がある。そのため、蓄電池の均等充電を行う場合、再生可能エネルギーに由来の電力量が少なくなる時期は、外部電源から供給される電力を用いて均等充電を行う必要がある。その結果、再生可能エネルギーに由来の電力量が少なくなる時期は、蓄電システムの均等充電に必要な外部電源からの必要電力量が増加し、均等充電コストが増加してしまう。したがって、再生可能エネルギーに由来の電力量に応じて蓄電池の充電状態を調整可能であるシステムが望ましい。
 本開示は、上記に鑑みてなされたものであり、再生可能エネルギーに由来の電力量に応じて蓄電池の充電状態を調整可能な再生可能エネルギー発電システム及び蓄電装置の充電方法を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
<1> 再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置と、
 前記再生可能エネルギー発電装置から出力される電力及びシステム外部から供給される電力を貯蔵可能、かつ、貯蔵した電力を放出可能である蓄電装置と、
 前記蓄電装置の充電状態(SOC)が、前記再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた前記蓄電装置の充電状態(SOC)の下限値以上となるように前記蓄電装置の充電を制御する制御部と、
 を備える再生可能エネルギー発電システム。
<2> 前記制御部は、前記蓄電装置の充電状態が、前記蓄電装置の充電状態の上限値(%)から一定期間における期待充電量(kWh)を用いて算出される値(%)を差し引き、さらにマージン(%)を追加した値以上となるように前記蓄電装置の充電を制御する<1>に記載の再生可能エネルギー発電システム。
 <2>における蓄電装置は、鉛蓄電池を含んでいてもよく、<2>は鉛蓄電池の充電を制御する再生可能エネルギー発電システムであってもよい。
<3> 前記制御部は、前記蓄電装置の充電状態が、蓄電装置本来の下限SOC値(%)に一定期間における蓄電装置の自己放電量(kWh)を用いて算出される値(%)を追加し、さらにマージン(%)を追加した値以上となるように前記蓄電装置の充電を制御する<1>に記載の再生可能エネルギー発電システム。
 <3>における蓄電装置は、リチウムイオン二次電池を含んでいてもよく、<3>はリチウムイオン二次電池の充電を制御する再生可能エネルギー発電システムであってもよい。
<4> 前記蓄電装置は複数の鉛蓄電池を含み、
 前記制御部は、定期的に前記再生可能エネルギー発電装置から出力される電力を用いて前記複数の鉛蓄電池の充電を行い、一定の期間経過後に前記複数の鉛蓄電池の均等充電が完了していない場合には、システム外部から電力を前記複数の鉛蓄電池に供給して均等充電を完了させる制御を行う<1>~<3>のいずれか1つに記載の再生可能エネルギー発電システム。
<5> 再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置、並びに、前記再生可能エネルギー発電装置から出力される電力及びシステム外部から供給される電力を貯蔵可能、かつ、貯蔵した電力を放出可能である蓄電装置を用い、
 前記蓄電装置の充電状態(SOC)が、前記再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた前記蓄電装置の充電状態(SOC)の下限値以上となるように前記蓄電装置の充電を制御する蓄電装置の充電方法。
<6> 前記発電出力関連情報は、天気予報情報及び前記再生可能エネルギー発電装置による過去の発電出力情報の少なくとも一方を含む<5>に記載の蓄電装置の充電方法。
 本開示によれば、再生可能エネルギーに由来の電力量に応じて蓄電池の充電状態を調整可能な再生可能エネルギー発電システム及び蓄電装置の充電方法を提供することができる。
本開示の再生可能エネルギー発電システムの一実施形態の構成を示す図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。また、本開示中の技術的思想の範囲内において、当業者による様々な変更及び修正が可能である。
 本開示において「ステップ」との語には、他のステップから独立したステップに加え、他のステップと明確に区別できない場合であってもそのステップの目的が達成されれば、当該ステップも含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
〔再生可能エネルギー発電システム〕
 本開示の再生可能エネルギー発電システムは、再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置と、前記再生可能エネルギー発電装置から出力される電力及びシステム外部から供給される電力を貯蔵可能、かつ、貯蔵した電力を放出可能である蓄電装置と、前記蓄電装置の充電状態(SOC)が、前記再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた前記蓄電装置の充電状態(SOC)の下限値以上となるように前記蓄電装置の充電を制御する制御部と、を備えるシステムである。
 本開示の再生可能エネルギー発電システムは、再生可能エネルギー発電装置の発電出力に関する情報(発電出力関連情報)に基づいて蓄電装置の充電(好ましくは充放電)を制御するシステムである。そのため、例えば、再生可能エネルギー発電装置の発電量の少ない時期に再生可能エネルギー発電装置の発電量の多い時期よりも、SOCの下限値を高く設定し、SOCの範囲を調整する。これにより、蓄電装置の均等充電に必要な外部からの電力量、過放電、電池の劣化等を抑制可能な充電状態とするために必要な外部からの電力量などを低減可能となる。その結果、再生可能エネルギー発電装置の発電量の少ない時期に、電気料金を削減することが可能となる。例えば、再生可能エネルギー発電装置の発電量の少ない時期に蓄電装置の放電量を減らすことでSOCを上昇させることができる。
 本開示の再生可能エネルギー発電システムは、集合住宅、戸建て住宅等の住居施設、工場施設、農場施設、商業施設、データセンタ、変電所、公共施設、文化施設、スポーツ施設、これらの複合施設等にて利用され得る発電システムである。
 本開示の再生可能エネルギー発電システムが備える再生可能エネルギー発電装置は、再生可能な自然エネルギーを利用して発電する発電装置であれば特に限定されない。再生可能な自然エネルギーとしては、太陽光、風力、バイオマス、水力、地熱、太陽熱、潮流、潮力等が挙げられる。
 中でも、再生可能な自然エネルギーとしては、太陽光及び風力が好ましく、再生可能エネルギー発電装置は、太陽光を利用した発電装置、風力を利用した発電装置、又はこれらの組み合わせであることが好ましい。
 蓄電装置としては、充放電を繰り返すことが可能な二次電池が挙げられる。具体的には、蓄電装置としては、鉛蓄電池、リチウムイオン二次電池、ニッケルカドミウム電池、ニッケル水素電池、ニッケル亜鉛電池、ナトリウム硫黄電池等が挙げられる。蓄電装置は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 蓄電装置は、鉛蓄電池及びリチウムイオン二次電池の少なくとも一方を含んでいてもよい。蓄電装置は、鉛蓄電池及びリチウムイオン二次電池の一方のみからなる装置であってもよく、鉛蓄電池及びリチウムイオン二次電池の組み合わせであってもよい。
 蓄電装置は、複数個の蓄電池セルが直列に接続された蓄電池ストリングを備えていてもよく、1つの蓄電池セル又は蓄電池ストリングが並列に接続された構成であってもよい。
 制御部は、蓄電装置の充電状態(SOC)が、再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた蓄電装置のSOCの下限値以上となるように蓄電装置の充電を制御する装置である。例えば、制御部は、SOCが、SOCの下限値以上の範囲となるように蓄電装置の充電を制御する。制御部は、例えば、蓄電装置の状態を監視するBMU(Battery Management Unit)と、蓄電装置の充放電を制御し、かつ再生可能エネルギー発電装置の発電出力関連情報をインターネットを介してシステムの外部から取得する統括コントローラと、を含んで構成されていてもよい。BMUは、電圧計及び電流計によって計測された蓄電池セル又は蓄電池ストリングの電圧値及び電流値を逐次取得し、取得された電圧値及び電流値の少なくとも一方(例えば、電流値)から充電状態(SOC)を求めることで蓄電装置の状態を監視する装置である。
 制御部は、再生可能エネルギー発電装置の発電出力関連情報に基づいてSOCの下限値を定め、定められた蓄電装置のSOCの下限値以上となるように蓄電装置の充電を制御してもよい。あるいは、再生可能エネルギー発電装置の発電出力関連情報に基づいてSOCの下限値を予め定めておき、制御部は、予め定められた蓄電装置のSOCの下限値以上となるように蓄電装置の充電を制御してもよい。
 発電出力関連情報としては、再生可能エネルギー発電装置にて一定期間に出力される電力に関係する情報であれば特に限定されず、天気予報情報、再生可能エネルギー発電装置による過去の発電出力情報等が挙げられる。天気予報情報としては、再生可能エネルギー発電装置が設置された地点に最も近い地点の天気予報情報、再生可能エネルギー発電装置が設置された地点に隣接する複数地点の天気予報情報等が挙げられる。天気予報情報としては、気温、天候、風速、湿度等の情報、これらの組み合わせの情報、その他再生可能エネルギー発電装置の発電出力に関係する情報などが挙げられる。再生可能エネルギー発電装置による過去の発電出力情報から現在の一定期間又は将来の一定期間にわたって再生可能エネルギー発電装置にて出力される電力量を推測してもよい。
 再生可能エネルギー発電装置の発電出力関連情報とともに、蓄電装置の充放電情報、蓄電装置の劣化情報等に基づいてSOCの下限値を定めてもよい。蓄電装置の充放電情報及び蓄電装置の劣化情報としては、蓄電装置の充放電回数、使用期間、使用環境、容量減少等の情報が挙げられる。これらの蓄電装置の充放電情報、蓄電装置の劣化情報等を考慮した上で、SOCの下限値を定めてもよい。
 本開示の再生可能エネルギー発電システムは、負荷と電気的に接続されていてもよく、直流電力を、所定周波数の交流電力に変換したり、交流電力を別の所定周波数の交流電力に変換したりするパワーコンディショニングシステム(Power Conditioning System;PCS)を備えていてもよい。
 以下、本開示の蓄電システムについて、図1を用いて、本開示の再生可能エネルギー発電システムの一実施形態を用いて説明する。図1は、本開示の再生可能エネルギー発電システムの一実施形態の構成を示す図である。
 再生可能エネルギー発電システム1Aは、内部電力配線2と、複数の蓄電ユニット10と、一又は複数の発電ユニット20と、統括コントローラ4とを備えている。
 内部電力配線2は、所定周波数(例えば50Hz又は60Hzの商用周波数)の交流電力を伝搬する。内部電力配線2は、家庭、工場、農場等の局地的な区域内に限定的に敷設された配線であって、負荷6と電気的に接続されている。再生可能エネルギー発電システム1Aは、発電ユニット20により生成された電力、及び蓄電ユニット10から放電された電力を、内部電力配線2を介して負荷6に供給することができる。負荷とは、電力を消費する1以上の機器若しくは装置又はこれらの集合である。内部電力配線2は、上記局地的な区域の外部に配設された外部電力系統3と、連係点5を介して電気的に接続される。
 発電ユニット20は、内部電力配線2と電気的に接続され、再生可能な自然エネルギーを利用して電力を発生する。発電ユニット20は、再生可能エネルギー発電装置21及びパワーコンディショニングシステム(PCS)22を有する。再生可能エネルギー発電システム1Aは、複数の発電ユニット20を備えていてもよい。再生可能エネルギー発電装置21は、PCS22を介して内部電力配線2と電気的に接続されており、再生可能な自然エネルギーを利用して電力を生成する。再生可能エネルギー発電装置21は、例えば太陽光パネル又は風力発電設備である。PCS22は、インバータを含んで構成される。再生可能エネルギー発電装置21が直流電力を生成する場合、PCS22は、その直流電力を、所定周波数の交流電力に変換して内部電力配線2に供給する。また、再生可能エネルギー発電装置21が交流電力を生成する場合、PCS22は、その交流電力の周波数を所定周波数に変換して内部電力配線2に供給する。PCS22は、後述のPCS13と一体化していてもよい。
 蓄電ユニット10は、蓄電池11、バッテリーマネジメントユニット(BMU)12、及びPCS13を有する。蓄電池11は、発電ユニット20によって生成された電力を蓄える。蓄電池11は、単一の蓄電池セルからなってもよいし、複数の蓄電池が互いに直列に接続されて構成されてもよい。BMU12は、蓄電池11とPCS13との間に電気的に接続されている。BMU12は、蓄電池11の均等充電間隔を管理してもよい。さらに、BMU12は、蓄電池11に入力又は出力される電流の積算値及び蓄電池11の両端電圧から、蓄電池11の充電状態(SOC)を測定する。PCS13は、蓄電池11と内部電力配線2との間に電気的に接続されている。PCS13は、統括コントローラ4からの指示に基づき、蓄電池11の充放電を行う。PCS13は、インバータを含んで構成される。PCS13は、蓄電池11の電力を内部電力配線2に放出する際、直流電力から所定周波数の交流電力への変換を併せて行う。また、PCS13は、内部電力配線2の電力を蓄電池11に貯蔵する際、交流電力から直流電力への変換を併せて行う。図1では、蓄電池11ごとにBMU12及びPCS13がそれぞれ設けられているが、1つのBMU又は1つのPCSが複数の蓄電池11と電気的に接続していてもよい。
 統括コントローラ4は、各蓄電ユニット10のPCS13の動作(充電動作及び放電動作)を制御し、天気予報情報等の発電出力関連情報をインターネットを介して天気情報サービス30から取得する。さらに、統括コントローラ4は、制御信号を出力し、制御信号を受信したPCS13は、蓄電池11のSOCが、天気予報情報、再生可能エネルギー発電装置による過去の発電出力情報等の発電出力関連情報、蓄電装置の充放電情報、蓄電装置の劣化情報などに基づいて定められたSOCの下限値以上となるように蓄電池11の充放電を制御する。
 統括コントローラ4は、負荷6の消費電力が発電ユニット20の生成電力を上回った場合には、各蓄電ユニット10のPCS13に放電動作を行わせる。このとき、統括コントローラ4は、各蓄電ユニット10にて、蓄電池11のSOCが特定の下限値未満にならないように放電動作を制御する。具体的には、外部電力系統3から不足の電力を負荷6に供給することで蓄電池11のSOCが特定の下限値以上となるように電力供給を制御する。
 統括コントローラ4は、負荷6の消費電力が発電ユニット20の生成電力を下回った場合には、発電ユニット20の生成電力を用いて各蓄電ユニット10のPCS13に充電動作を行わせる。
 統括コントローラ4及びBMU12は、プロセッサ、メモリ、及び通信インタフェースを備えるコンピュータ(例えばマイクロコンピュータ)により構成され得る。プロセッサは例えばCPUであり、メモリは例えばフラッシュメモリで構成されるが、統括コントローラ4及びBMU12を構成するハードウェア装置の種類はこれらに限定されず、任意に選択されてよい。統括コントローラ4及びBMU12の各機能は、プロセッサが、メモリに格納されているプログラムを実行することで実現される。例えば、プロセッサは、メモリから読み出したデータまたは通信インタフェースを介して受信したデータに対して所定の演算を実行し、その演算結果を出力する。あるいは、プロセッサは受信したデータまたは演算結果をメモリに格納する。例えば、統括コントローラ4におけるプロセッサは、蓄電池11のSOCが、発電出力関連情報に基づいて定められた蓄電池11のSOCの下限値以上となるように蓄電池11の充電を制御することが好ましい。
 蓄電池11が鉛蓄電池である場合、定期的(例えば1~2週間毎)に鉛蓄電池を満充電とする均等充電が行われる。例えば、統括コントローラ4は、一定時間(例えば数時間)にわたって発電ユニット20の生成電力を用いて蓄電池11の充電を行うように、蓄電池11の充電動作を制御する。統括コントローラ4は、一定の期間経過後(例えば、前回の均等充電から1~2週間経過後)に蓄電池11の均等充電が完了していない場合には、外部電力系統3から不足の電力を蓄電池11に供給して均等充電を完了させる制御を行う。一例として、統括コントローラ4は、14日ごとに均等充電を行い、10時間にわたって発電ユニット20の生成電力を用いて蓄電池11の充電を行うように、蓄電池11の充電動作を制御し、前回の均等充電から14日経過後に蓄電池11の均等充電が完了していない場合には、外部電力系統3から不足の電力を蓄電池11に供給して均等充電を完了させる制御を行ってもよい。
 統括コントローラ4は、蓄電池11の充電状態が、蓄電池11の充電状態の上限値(%)から一定期間における期待充電量(kWh)を用いて算出される値(%)を差し引き、さらにマージン(%)を追加した値以上となるように蓄電池11の充電を制御することが好ましい。これにより、蓄電池11の充電状態は、一定期間における期待充電量(kWh)を考慮した範囲で蓄電池11の充電状態が制御される。このとき、蓄電池11は、鉛蓄電池であってもよい。
 より具体的には、統括コントローラ4は、以下の式(1)を満たすように蓄電池11の充電を制御してもよい。
 下限SOC値≧上限SOC値-[Q/電池容量]×100+α・・・式(1)
 式(1)中、下限SOC値(%)は蓄電池11の充電状態の下限値であり、上限SOC値(%)は蓄電池11の充電状態の上限値であり、Q(kWh)は、一定期間における期待充電量であり、電池容量(kWh)は、蓄電池11の電池容量であり、α(%)は、マージンである。
 上限SOC値(%)は、蓄電池11が満充電状態の場合のSOCであってもよく、α(%)は、蓄電池、再生可能エネルギー発電システム等の使用状態、使用環境などによって適宜調整してもよい。一定期間における期待充電量は、翌日、翌週、翌月等の一定期間の期待充電量であってもよく、今後の一定期間の平均期待充電量(例えば、一日平均、週平均、月平均等の期待充電量)であってもよい。期待充電量は、期待発電量(kWh)から負荷への予想供給電力(kWh)及びシステム外部への予想供給電力(例えば、売電した電力(kWh))を差し引いた電力量であってもよい。再生可能エネルギー発電装置21の発電量が多い時期(例えば、太陽光発電量の多い夏季)は期待充電量が多くなる傾向にあり、再生可能エネルギー発電装置21の発電量が少ない時期(例えば、太陽光発電量の少ない冬季)は期待充電量が少なくなる傾向にある。その結果、再生可能エネルギー発電装置21の発電量が多い時期は、下限SOC値が比較的小さくなり、再生可能エネルギー発電装置21の発電量が少ない時期は、下限SOC値が比較的大きくなる。
 再生可能エネルギー発電装置21の発電量が少ない時期、例えば、太陽光発電量の少ない冬季又は風力発電量の少ない夏季においても、蓄電池11のSOCが特定の下限値未満にならないように蓄電池11のSOCが制御され、例えば、蓄電池11のSOCが特定の下限値付近(但し、特定の下限値以上)を維持するように蓄電池11のSOCが制御される。そのため、再生可能エネルギー発電装置21の発電量が少ない時期においても、均等充電に必要な外部電力量を削減することが可能となり、均等充電に必要な電気代を削減することが可能となる。
 統括コントローラ4が、上記式(1)を満たすように蓄電池11のSOCを制御する場合、式(1)を満たす範囲で蓄電池11の充放電を制御し、蓄電池11のSOCを制御している際に負荷6にて消費される電力として不足する電力は、外部電力系統3から負荷6に供給される。
 統括コントローラ4は、蓄電池11の充電状態が、蓄電池11本来の下限SOC値(%)に一定期間における蓄電池11の自己放電量(kWh)を用いて算出される値(%)を追加し、さらにマージン(%)を追加した値以上となるように蓄電池11の充電を制御することが好ましい。これにより、蓄電池11の充電状態は、一定期間における自己放電量(kWh)を考慮した範囲で蓄電池11の充電状態が制御され、例えば、過放電のリスクを低減することが可能となる。このとき、蓄電池11は、リチウムイオン二次電池であってもよい。
 より具体的には、統括コントローラ4は、以下の式(2)を満たすように蓄電池11の充電を制御してもよい。
 下限SOC値≧蓄電池11本来の下限SOC値+[Qs/電池容量(kWh)]×100×x+β・・・式(2)
 式(2)中、下限SOC値(%)は蓄電池11の充電状態の下限値であり、蓄電池11本来の下限SOC値(%)は蓄電池11がとり得る充電状態の下限値であり、Qs(kWh)は、蓄電池11における1ヶ月間の自己放電量であり、1ヶ月の自己放電量であり、電池容量(kWh)は、蓄電池の電池容量であり、x(ヶ月)は、再生可能エネルギー発電装置21での発電量が特定の条件を満たすと推測される期間であり、β(%)は、マージンである。
 なお、統括コントローラ4が蓄電池11の電力を用いて動作する場合、統括コントローラ4の消費電力を自己放電量に含めた上で蓄電池11のSOCを制御することが好ましい。
 蓄電池11本来の下限SOC値(%)は、蓄電池11が機能上取り得る下限SOC値であってもよく、停電等に備えて、通常残しておく蓄電残量に対応するSOC値であってもよい。
 式(2)を満たすように蓄電池11のSOCを制御することで、過放電のリスクを好適に低減することが可能となる。
 β(%)は、蓄電池、再生可能エネルギー発電システム等の使用状態、使用環境などによって適宜調整してもよい。x(ヶ月)における特定の条件を満たすと推測される期間とは、再生可能エネルギー発電装置21での発電量が一定の発電量以下になると推測される期間であってもよく、再生可能エネルギー発電装置21でのひと月あたりの発電量が、ひと月あたりの最大の発電量に対して特定の割合以下になると推測される期間などであってもよい。
 x(ヶ月)は、現時点から12ヶ月以内における特定の条件を満たすと推測される期間であってもよく、現時点から6ヶ月以内における特定の条件を満たすと推測される期間であってもよい。
 再生可能エネルギー発電システム1Aが蓄電池11として鉛蓄電池及びリチウムイオン二次電池を備えていてもよい。例えば、再生可能エネルギー発電システム1Aが蓄電池11として鉛蓄電池を含む蓄電ユニット10(蓄電ユニット10Aとする)と、蓄電池11としてリチウムイオン二次電池を含む蓄電ユニット10(蓄電ユニット10Bとする)とを並列で備えていてもよい。この場合、蓄電ユニット10Aに含まれる蓄電池11(鉛蓄電池)については、蓄電池11の充電状態が蓄電池11の充電状態の上限値(%)から一定期間における期待充電量(kWh)を用いて算出される値(%)を差し引き、さらにマージン(%)を追加した値以上となるように蓄電池11の充電を制御してもよく、好ましくは上記式(1)を満たすように蓄電池11の充電を制御してもよい。蓄電ユニット10Bに含まれる蓄電池11(リチウムイオン二次電池)については、蓄電池11の充電状態が蓄電池11本来の下限SOC値(%)に一定期間における蓄電池11の自己放電量(kWh)を用いて算出される値(%)を追加し、さらにマージン(%)を追加した値以上となるように蓄電池11の充電を制御してもよく、好ましくは上記式(2)を満たすように蓄電池11の充電を制御してもよい。
 本開示の蓄電装置の充電方法は、再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置、並びに、前記再生可能エネルギー発電装置から出力される電力及びシステム外部から供給される電力を貯蔵可能、かつ、貯蔵した電力を放出可能である蓄電装置を用い、前記蓄電装置の充電状態(SOC)が、前記再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた前記蓄電装置の充電状態(SOC)の下限値以上となるように前記蓄電装置の充電を制御する方法である。このような蓄電装置の充電方法は、本開示の再生可能エネルギー発電システムを用いて実現することができる。
(均等充電による電気代削減)
 以下、蓄電池が鉛蓄電池である場合に、本開示の蓄電装置の充電方法による均等充電を行った際の電気代削減効果について説明する。
 ひと月当りの均等充電回数をy(回/月)、鉛蓄電池本来の下限SOCをSOC_Llimit(%)、本開示の制御を行った場合の下限SOCをSOC_LClimit(%)、鉛蓄電池の電池容
量をQ(kWh)、電気代をz(¥/kWh)とする。鉛蓄電池本来の下限SOCは、下限SOCの制御を行わない場合のSOCである。均等充電による1ヶ月の電気代削減効果は以下の式(3)で表される。
(SOC_LClimit - SOC_Llimit)×Q×z×y・・・式(3)
<比較例1>
 ここで、下限SOCの制御を行わない場合を比較例1とする。ひと月当りの均等充電回数yを2回/月(年間に換算すると、24回/年)とし、鉛蓄電池の電池容量Qを40kWhとし、電気代zを20¥/kWhとする。さらに、鉛蓄電池本来の下限SOCを30%と仮定し、均等充電に不足した電力を外部電力系統からすべて取得したと仮定した場合、比較例1での均等充電に係る電気代は以下のように算出される。
 [(100-30)/100]×40×20×24=13440円
<実施例1>
 ここで、下限SOCの制御を行う場合を実施例1とする。実施例1では、式(1)に基づく下限SOCの制御の結果、1~3月における下限SOC及び10月~12月における下限SOCを80%に制御し、4~6月における下限SOC及び7~9月における下限SOCを30%に制御したと仮定する。さらに、均等充電に不足した電力を外部電力系統からすべて取得したと仮定した場合、実施例1での均等充電に係る電気代は以下のように算出される。
 [(100-80)/100]×40×20×12+[(100-30)/100]×40×20×12=8640円
<実施例2>
 実施例1とは異なる下限SOCの制御を行う場合を実施例2とする。実施例2では、ひと月あたりの期待充電量が低下する1月~3月及び10月~12月において、下限SOCを100%に制御したと仮定する。さらに、均等充電に不足した電力を外部電力系統からすべて取得したと仮定した場合、実施例2での均等充電に係る電気代は以下のように算出される。
 [(100-100)/100]×40×20×12+[(100-30)/100]×40×20×12=6720円
 実施例1、2及び比較例1の結果をまとめると以下の表1の通りである。表1に示すように、実施例1、2では比較例1に対して電気代の削減効果が得られた。
 2022年6月6日に出願された日本国特許出願2022-091548号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
1A…蓄電システム、2…内部電力配線、3…外部電力系統、4…統括コントローラ、5…連係点、6…負荷、10…蓄電ユニット、11…蓄電池、12…バッテリーマネジメントユニット(BMU)、13、22…パワーコンディショニングシステム(PCS)、20…発電ユニット、21…発電装置、30…天気情報サービス

Claims (6)

  1.  再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置と、
     前記再生可能エネルギー発電装置から出力される電力及びシステム外部から供給される電力を貯蔵可能、かつ、貯蔵した電力を放出可能である蓄電装置と、
     前記蓄電装置の充電状態(SOC)が、前記再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた前記蓄電装置の充電状態(SOC)の下限値以上となるように前記蓄電装置の充電を制御する制御部と、
     を備える再生可能エネルギー発電システム。
  2.  前記制御部は、前記蓄電装置の充電状態が、前記蓄電装置の充電状態の上限値(%)から一定期間における期待充電量(kWh)を用いて算出される値(%)を差し引き、さらにマージン(%)を追加した値以上となるように前記蓄電装置の充電を制御する請求項1に記載の再生可能エネルギー発電システム。
  3.  前記制御部は、前記蓄電装置の充電状態が、蓄電装置本来の下限SOC値(%)に一定期間における蓄電装置の自己放電量(kWh)を用いて算出される値(%)を追加し、さらにマージン(%)を追加した値以上となるように前記蓄電装置の充電を制御する請求項1に記載の再生可能エネルギー発電システム。
  4.  前記蓄電装置は複数の鉛蓄電池を含み、
     前記制御部は、定期的に前記再生可能エネルギー発電装置から出力される電力を用いて前記複数の鉛蓄電池の充電を行い、一定の期間経過後に前記複数の鉛蓄電池の均等充電が完了していない場合には、システム外部から電力を前記複数の鉛蓄電池に供給して均等充電を完了させる制御を行う請求項1に記載の再生可能エネルギー発電システム。
  5.  再生可能な自然エネルギーを利用して発電する再生可能エネルギー発電装置、並びに、前記再生可能エネルギー発電装置から出力される電力及びシステム外部から供給される電力を貯蔵可能、かつ、貯蔵した電力を放出可能である蓄電装置を用い、
     前記蓄電装置の充電状態(SOC)が、前記再生可能エネルギー発電装置の発電出力関連情報に基づいて定められた前記蓄電装置の充電状態(SOC)の下限値以上となるように前記蓄電装置の充電を制御する蓄電装置の充電方法。
  6.  前記発電出力関連情報は、天気予報情報及び前記再生可能エネルギー発電装置による過去の発電出力情報の少なくとも一方を含む請求項5に記載の蓄電装置の充電方法。
PCT/JP2023/019807 2022-06-06 2023-05-26 再生可能エネルギー発電システム及び蓄電装置の充電方法 WO2023238711A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091548 2022-06-06
JP2022091548 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023238711A1 true WO2023238711A1 (ja) 2023-12-14

Family

ID=89118169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019807 WO2023238711A1 (ja) 2022-06-06 2023-05-26 再生可能エネルギー発電システム及び蓄電装置の充電方法

Country Status (1)

Country Link
WO (1) WO2023238711A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178552A (ja) * 2009-01-30 2010-08-12 Toyota Motor Corp 自動車
JP2018157700A (ja) * 2017-03-17 2018-10-04 株式会社日立パワーソリューションズ 発電システム、発電制御装置、発電制御方法、および発電システムの連系発電電力の拡大方法
WO2019188889A1 (ja) * 2018-03-26 2019-10-03 古河電気工業株式会社 蓄電システムおよび充電制御方法
JP2021010204A (ja) * 2019-06-28 2021-01-28 大和ハウス工業株式会社 電力供給システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178552A (ja) * 2009-01-30 2010-08-12 Toyota Motor Corp 自動車
JP2018157700A (ja) * 2017-03-17 2018-10-04 株式会社日立パワーソリューションズ 発電システム、発電制御装置、発電制御方法、および発電システムの連系発電電力の拡大方法
WO2019188889A1 (ja) * 2018-03-26 2019-10-03 古河電気工業株式会社 蓄電システムおよび充電制御方法
JP2021010204A (ja) * 2019-06-28 2021-01-28 大和ハウス工業株式会社 電力供給システム

Similar Documents

Publication Publication Date Title
JP5395251B2 (ja) ハイブリッドエネルギー貯蔵システム、該貯蔵システムを含む再生可能エネルギーシステムおよびその使用方法
Qadrdan et al. Smart grid and energy storage
Gatta et al. Battery energy storage efficiency calculation including auxiliary losses: Technology comparison and operating strategies
Ricalde et al. Design of a smart grid management system with renewable energy generation
Gao et al. Annual operating characteristics analysis of photovoltaic-energy storage microgrid based on retired lithium iron phosphate batteries
Babazadeh et al. A new control scheme in a multi-battery management system for expanding microgrids
Dagdougui et al. Power management strategy for sizing battery system for peak load limiting in a university campus
Rossi et al. Real-time optimization of the battery banks lifetime in hybrid residential electrical systems
Restrepo et al. Residential battery storage: Is the timing right?
Alramlawi et al. Optimal operation strategy of a hybrid PV-battery system under grid scheduled blackouts
CN111313444A (zh) 一种面向高密度光伏配网台区侧的储能系统优化配置方法
Shavolkin et al. Installed Power of the Grid-Tied Photovoltaic System with Battery for Self-Consumption of the Local Object
Gamage et al. Battery Energy Storage based approach for grid voltage regulation in renewable rich distribution networks
Tangwiwat et al. Benefit and cost analysis of the installation of rooftop solar PV with battery system
Katsigiannis et al. Operation of wind-battery hybrid power stations in autonomous Greek islands
CN102097820A (zh) 太阳能峰谷电力调节系统
CN112365299A (zh) 考虑电池寿命损耗的综合能源电/热混合储能配置方法
Ueda et al. Study on the over voltage problem and battery operation for grid-connected residential PV systems
WO2023238711A1 (ja) 再生可能エネルギー発電システム及び蓄電装置の充電方法
JP6705652B2 (ja) 蓄電池制御方法
CN113839404A (zh) 一种近零能耗建筑自我用电最大化优化方法及系统
Gong et al. Research on scheduling of wind solar energy storage microgrid considering new energy consumption
JPWO2013046509A1 (ja) 給電システム及び給電方法
Xiao et al. Structure and Capacity Configuration of Substation Microgrid with Hydrogen Energy Storage
Esmaili et al. Evaluation of impact of energy storage on effective load carrying capability of wind energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819693

Country of ref document: EP

Kind code of ref document: A1