WO2023238527A1 - Capacitor array - Google Patents

Capacitor array Download PDF

Info

Publication number
WO2023238527A1
WO2023238527A1 PCT/JP2023/016082 JP2023016082W WO2023238527A1 WO 2023238527 A1 WO2023238527 A1 WO 2023238527A1 JP 2023016082 W JP2023016082 W JP 2023016082W WO 2023238527 A1 WO2023238527 A1 WO 2023238527A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sealing layer
thickness direction
sealing
capacitor
Prior art date
Application number
PCT/JP2023/016082
Other languages
French (fr)
Japanese (ja)
Inventor
拓哉 天本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023238527A1 publication Critical patent/WO2023238527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a capacitor array.
  • Patent Document 1 includes a plurality of solid electrolytic capacitor elements formed by dividing one solid electrolytic capacitor sheet, a sheet-shaped first sealing layer, and a sheet-shaped second sealing layer,
  • the electrolytic capacitor sheet includes an anode plate made of a valve metal, a porous layer provided on at least one main surface of the anode plate, a dielectric layer provided on the surface of the porous layer, and the dielectric layer.
  • each of the plurality of solid electrolytic capacitor elements has a first main surface and a second main surface facing each other in the thickness direction.
  • the main surface side is disposed on the first sealing layer, and the second sealing layer is configured to cover the plurality of solid electrolytic capacitor elements on the first sealing layer from the second main surface side.
  • a capacitor array is disclosed in which the solid electrolytic capacitor elements are separated by slit-like sheet removal parts.
  • the present invention has been made in order to solve the above problems, and an object of the present invention is to provide a capacitor array that can suppress deterioration in flatness.
  • the capacitor array of the present invention includes a plurality of capacitor parts arranged in a plane in a plane direction perpendicular to the thickness direction, and a plurality of capacitor parts sealed from both main surfaces facing in the thickness direction of the plurality of capacitor parts. and a sealing part made of an insulating material, the sealing part being formed by laminating a plurality of sealing layers in the thickness direction, and the plurality of sealing layers having a thickness in the thickness direction. a first sealing layer located closest to the capacitor section in the direction; and a first sealing layer located on the opposite side of the capacitor section from the first sealing layer in the thickness direction, and in the thickness direction of the sealing section. A second sealing layer forming both opposing principal surfaces.
  • FIG. 1 is a schematic plan view showing an example of a capacitor array of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment A1-A2.
  • FIG. 3 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment B1-B2.
  • FIG. 5 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 4.
  • FIG. FIG. 6 is a schematic cross-sectional view showing an enlarged view of a via conductor and its surroundings in a capacitor array in which the insulating material constituting the second sealing layer contains glass cloth.
  • the capacitor array of the present invention will be explained. Note that the present invention is not limited to the following configuration, and may be modified as appropriate without departing from the gist of the present invention. Furthermore, the present invention also includes a combination of a plurality of individual preferred configurations described below.
  • FIG. 1 is a schematic plan view showing an example of a capacitor array of the present invention.
  • the capacitor array 1 shown in FIG. 1 has a plurality of capacitor sections 10.
  • the number of capacitor sections 10 is not particularly limited as long as it is two or more.
  • the plurality of capacitor parts 10 are arranged in a plane in a plane direction perpendicular to the thickness direction T.
  • the plurality of capacitor sections 10 are arranged in a plane along a first direction U that is orthogonal to the thickness direction T, and a second direction V that is orthogonal to the thickness direction T and the first direction U. . That is, the surface direction is a direction that includes the first direction U and the second direction V.
  • the plurality of capacitor sections 10 may be arranged along multiple directions as shown in FIG. 1, or may be arranged along one direction. Furthermore, the plurality of capacitor sections 10 may be arranged regularly or irregularly.
  • the planar shape of the capacitor section 10 when viewed from the thickness direction T includes, for example, a rectangle (square or rectangle) as shown in FIG. Examples include oval shape.
  • planar shapes of the plurality of capacitor sections 10 when viewed from the thickness direction T may be the same, different from each other, or partially different.
  • the areas of the plurality of capacitor parts 10 when viewed from the thickness direction T may be the same, different from each other, or different in some parts.
  • FIG. 2 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment A1-A2.
  • FIG. 3 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment B1-B2.
  • FIG. 5 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 4.
  • the capacitor section 10 includes an anode plate 20, a dielectric layer 30, and a cathode layer 40.
  • the anode plate 20 has a core portion 21 and a porous layer 22.
  • the core portion 21 is preferably made of metal, and particularly preferably made of valve metal.
  • the anode plate 20 is also referred to as a valve metal base.
  • Valve metals include, for example, simple metals such as aluminum, tantalum, niobium, titanium, and zirconium, and alloys containing at least one of these simple metals. Among these, aluminum or aluminum alloy is preferred.
  • the porous layer 22 is provided on at least one of the two principal surfaces facing the thickness direction T of the core portion 21 . That is, the porous layer 22 may be provided only on one main surface of the core section 21, or may be provided on both main surfaces of the core section 21 as shown in FIG. 2 and the like. In this way, the anode plate 20 has the porous layer 22 on at least one of the two main surfaces facing each other in the thickness direction T. This increases the surface area of the anode plate 20, making it easier to improve the capacitance of the capacitor section 10.
  • the porous layer 22 is preferably an etched layer obtained by etching the surface of the anode plate 20.
  • the shape of the anode plate 20 is preferably flat, and more preferably foil-like.
  • plate-like shapes include foil-like shapes, sheet-like shapes, film-like shapes, etc., and these are not distinguished by the dimension in the thickness direction.
  • the dielectric layer 30 is provided on the surface of the porous layer 22. More specifically, the dielectric layer 30 is provided along the surface (contour) of each pore present in the porous layer 22.
  • the dielectric layer 30 is preferably made of an oxide film of the above-mentioned valve metal.
  • the anode plate 20 is aluminum foil
  • the anode plate 20 is anodized (also called chemical conversion treatment) in an aqueous solution containing ammonium adipate, etc. to form an oxide film that will become the dielectric layer 30. is formed. Since the dielectric layer 30 is formed along the surface of the porous layer 22, the dielectric layer 30 is provided with pores (recesses).
  • the cathode layer 40 is provided on the surface of the dielectric layer 30.
  • the cathode layer 40 has a solid electrolyte layer 41 provided on the surface of the dielectric layer 30 and a conductor layer 42 provided on the surface of the solid electrolyte layer 41.
  • the capacitor section 10 constitutes a solid electrolytic capacitor.
  • the solid electrolyte layer 41 has an inner layer provided inside the pores of the dielectric layer 30 and an outer layer covering the inner layer.
  • Examples of the constituent material of the solid electrolyte layer 41 include conductive polymers such as polypyrroles, polythiophenes, and polyanilines. Among these, polythiophenes are preferred, and poly(3,4-ethylenedioxythiophene) (PEDOT) is particularly preferred. Further, the conductive polymer may contain a dopant such as polystyrene sulfonic acid (PSS).
  • conductive polymers such as polypyrroles, polythiophenes, and polyanilines.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • PES polystyrene sulfonic acid
  • the solid electrolyte layer 41 can be formed, for example, by coating a dispersion of a conductive polymer such as poly(3,4-ethylenedioxythiophene) on the surface of the dielectric layer 30 and drying it;
  • the dielectric layer 30 is formed by a method of forming a polymer film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer 30 using a treatment liquid containing a polymerizable monomer such as oxythiophene. formed in a predetermined area on the surface.
  • the conductor layer 42 has a conductive resin layer 42A provided on the surface of the solid electrolyte layer 41 and a metal layer 42B provided on the surface of the conductive resin layer 42A.
  • Examples of the conductive resin layer 42A include a conductive adhesive layer containing at least one conductive filler selected from the group consisting of copper filler, silver filler, nickel filler, and carbon filler.
  • the metal layer 42B contains a metal filler.
  • the metal filler is preferably at least one selected from the group consisting of copper filler, silver filler, and nickel filler.
  • the metal layer 42B may be, for example, a metal plating film, metal foil, or the like.
  • the metal layer 42B is preferably made of at least one metal selected from the group consisting of copper, silver, nickel, and an alloy containing at least one of these metals as a main component.
  • the main component means the elemental component having the largest weight percentage.
  • the conductor layer 42 may include, for example, a carbon layer as the conductive resin layer 42A and a copper layer as the metal layer 42B.
  • the carbon layer is formed in a predetermined area by, for example, applying a carbon paste containing a carbon filler to the surface of the solid electrolyte layer 41 using a sponge transfer method, screen printing method, dispenser coating method, inkjet printing method, etc. be done.
  • the copper layer is formed in a predetermined area by applying a copper paste containing a copper filler to the surface of the carbon layer using a sponge transfer method, screen printing method, spray coating method, dispenser coating method, inkjet printing method, etc. is formed.
  • the conductor layer 42 may include at least one of a conductive resin layer 42A and a metal layer 42B.
  • the conductor layer 42 may include only the conductive resin layer 42A, only the metal layer 42B, or may include the conductive resin layer 42A and the metal layer as shown in FIG. It may have both layers 42B.
  • the capacitor section 10 further includes a mask layer 50 provided at the periphery of the porous layer 22 when viewed from the thickness direction T. In this case, insulation between the anode plate 20 and the cathode layer 40 is ensured, and short circuits between the two are prevented.
  • the mask layer 50 is provided on the entire periphery of the porous layer 22. Note that the mask layer 50 may be provided on a part of the periphery of the porous layer 22.
  • the mask layer 50 is preferably provided so as to extend inward from at least one of the two principal surfaces of the anode plate 20 in the thickness direction T; More preferably, they are provided so as to extend toward each other.
  • the mask layer 50 may or may not be in contact with the core 21 in the thickness direction T.
  • the mask layer 50 may be provided outside the porous layer 22 in addition to inside the porous layer 22.
  • the mask layer 50 may be filled inside the porous layer 22 and provided on the surface of the filled porous layer 22 . That is, the dimension of the mask layer 50 in the thickness direction T may be larger than the dimension of the porous layer 22 in the thickness direction T.
  • the mask layer 50 is preferably provided in a region surrounding the cathode layer 40 when viewed from the thickness direction T.
  • the mask layer 50 When viewed from the thickness direction T, the mask layer 50 may partially overlap the cathode layer 40 or may not entirely overlap the cathode layer 40.
  • the mask layer 50 is made of an insulating material.
  • Examples of the insulating material constituting the mask layer 50 include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, and fluororesin (tetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer).
  • PPS polyphenylsulfone
  • PES polyethersulfone
  • cyanate ester resin cyanate ester resin
  • fluororesin tetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer.
  • the mask layer 50 is formed by coating the above-mentioned insulating material on both main surfaces of the anode plate 20 at a position overlapping the periphery of the porous layer 22 and allowing the material to permeate inward from both main surfaces of the anode plate 20. By doing so, it is formed at the periphery of the porous layer 22.
  • the mask layer 50 may be formed on the porous layer 22 at a timing before the dielectric layer 30, or may be formed at a timing after the dielectric layer 30.
  • the capacitor array 1 shown in FIGS. 2 and 4 further includes a sealing section 60 in addition to the plurality of capacitor sections 10.
  • the sealing portion 60 seals the plurality of capacitor portions 10 from both main surfaces opposite to each other in the thickness direction T of the plurality of capacitor portions 10 . Thereby, the plurality of capacitor sections 10 are protected by the sealing section 60.
  • the sealing part 60 is made of an insulating material.
  • the sealing section 60 functions as an insulating section.
  • the sealing portion 60 is formed by laminating a plurality of sealing layers in the thickness direction T.
  • the plurality of sealing layers that constitute the sealing section 60 include a first sealing layer 60A and a second sealing layer 60B.
  • the sealing section 60 is formed by laminating a first sealing layer 60A and a second sealing layer 60B in the thickness direction T in order from the capacitor section 10 side. That is, in the example shown in FIG. 2 and the like, the second sealing layer 60B is adjacent to the first sealing layer 60A on the opposite side to the capacitor section 10.
  • the first sealing layer 60A is located closest to the capacitor section 10 in the thickness direction T among the plurality of sealing layers. Therefore, the first sealing layer 60A functions as a sealing layer that follows the surface shape of the capacitor section 10.
  • the second sealing layer 60B is located on the side opposite to the capacitor section 10 from the first sealing layer 60A in the thickness direction T, and constitutes both main surfaces of the sealing section 60 facing in the thickness direction T. There is. That is, the second sealing layer 60B is located on the outermost surface of the sealing part 60. Therefore, the second sealing layer 60B functions as a sealing layer that flattens both main surfaces of the sealing section 60 and, by extension, both main surfaces of the capacitor array 1.
  • the first sealing layer 60A mainly plays the role of sealing the capacitor section 10, and covers both main surfaces of the sealing section 60 and, by extension, both main surfaces of the capacitor array 1.
  • the second sealing layer 60B can mainly play the role of flattening. Therefore, in the capacitor array 1 in which the sealing part 60 is composed of a plurality of sealing layers including the first sealing layer 60A and the second sealing layer 60B, the sealing part is composed of only one sealing layer. Warpage, distortion, waviness, etc. caused by the sealing portion 60 are less likely to occur compared to a capacitor array that is similar to a capacitor array.
  • the capacitor array 1 it is possible to suppress the occurrence of warpage, distortion, waviness, etc., and therefore it is possible to suppress the deterioration of flatness.
  • the sealing part 60 only needs to include at least a first sealing layer 60A and a second sealing layer 60B, and at least one layer of sealing is provided between the first sealing layer 60A and the second sealing layer 60B. It may further include layers.
  • the insulating material forming the first sealing layer 60A may contain an insulating resin.
  • Examples of the insulating resin contained in the insulating material constituting the first sealing layer 60A include epoxy resin, phenol resin, polyimide resin, and the like.
  • the insulating material constituting the first sealing layer 60A may further contain an inorganic filler.
  • Examples of the inorganic filler contained in the insulating material constituting the first sealing layer 60A include silica filler, alumina filler, and the like.
  • the median diameter D 50 of the inorganic filler contained in the insulating material constituting the first sealing layer 60A is 10 ⁇ m or less. In this case, even if the first sealing layer 60A contains an inorganic filler, it can easily follow the surface shape of the capacitor section 10.
  • the median diameter D 50 of the inorganic filler contained in the insulating material constituting the first sealing layer 60A is 0.1 ⁇ m or more.
  • the median diameter D50 of the inorganic filler contained in the insulating material constituting the sealing layer is determined as follows. First, by cutting, polishing, etc. the capacitor array, a cross section along the thickness direction in which the target sealing layer is exposed, here, a cross section along the thickness direction in which the first sealing layer is exposed, as shown in FIG. appear. Next, an image of the cross section is taken using a scanning electron microscope (SEM) or the like. Next, in the photographed cross-sectional image, an analysis method such as energy dispersive X-ray analysis (EDX) is used to determine the region where the first sealing layer exists, and furthermore, the presence of the inorganic filler present inside the first sealing layer. Check the existence area.
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray analysis
  • the equivalent circular diameter of the inorganic filler present inside the first sealing layer is measured, and the obtained equivalent circular diameter is taken as the particle size of the inorganic filler.
  • a number-based cumulative particle size distribution is determined from the particle size of the obtained inorganic filler, and the particle size at which the cumulative probability is 50% in the number-based cumulative particle size distribution is determined as the median diameter D 50 of the inorganic filler.
  • the first sealing layer 60A is formed by attaching the capacitor part 10 from both main surfaces of the capacitor part 10, for example, by thermocompression bonding an insulating resin sheet, or by applying an insulating resin paste and then thermosetting it. Formed to seal.
  • the insulating material forming the second sealing layer 60B may contain an insulating resin.
  • Examples of the insulating resin contained in the insulating material constituting the second sealing layer 60B include epoxy resin, phenol resin, and polyimide resin.
  • the insulating materials forming the first sealing layer 60A and the second sealing layer 60B contain different insulating resins.
  • the insulating materials constituting the plurality of sealing layers contain different insulating resins refers to at least the types of insulating resins with respect to the insulating materials constituting the plurality of sealing layers. It means that they are different from each other, and preferably means that in addition to the type of insulating resin, the ratio of the content of the insulating resin to the total amount of the insulating material is different from each other.
  • the first sealing layer 60A and the second sealing layer 60B contain different insulating resins, the first sealing layer 60A and the second sealing layer 60B are different from each other. They tend to have different characteristics.
  • the first sealing layer 60A mainly plays the role of sealing the capacitor section 10, and both main surfaces of the sealing section 60, by extension, the capacitor array 1.
  • the second sealing layer 60B mainly plays the role of flattening both main surfaces. Therefore, it is preferable that the first sealing layer 60A and the second sealing layer 60B have different characteristics from each other.
  • the insulating materials forming the first sealing layer 60A and the second sealing layer 60B may contain the same insulating resin.
  • the insulating materials constituting the plurality of sealing layers contain the same insulating resin refers to at least the type of insulating resin with respect to the insulating materials constituting the plurality of sealing layers. are the same, and preferably, in addition to the type of insulating resin, the ratio of the content of the insulating resin to the total amount of the insulating material is the same.
  • the insulating material constituting the second sealing layer 60B may further contain an inorganic filler.
  • Examples of the inorganic filler contained in the insulating material constituting the second sealing layer 60B include silica filler, alumina filler, and the like.
  • the inorganic fillers contained in the insulating materials constituting the first sealing layer 60A and the second sealing layer 60B may be the same or different at least in kind.
  • the median diameter D 50 of the inorganic filler contained in the insulating material constituting the first sealing layer 60A and the second sealing layer 60B may be the same or different.
  • the ratio of the content of the inorganic filler to the total amount of the insulating material may be the same or different.
  • the insulating material constituting the second sealing layer 60B may further contain glass cloth.
  • the rigidity of the second sealing layer 60B is easily improved, so that the flatness of the second sealing layer 60B is easily maintained. As a result, the flatness of the capacitor array 1 is easily maintained.
  • Examples of the insulating material containing glass cloth include prepreg.
  • the second sealing layer 60B can be formed, for example, by thermocompression bonding an insulating resin sheet after the first sealing layer 60A is formed by the method described above, or by applying an insulating resin paste and then thermosetting it. etc., and is formed adjacent to the first sealing layer 60A on the side opposite to the capacitor section 10.
  • the heat treatment when forming the second sealing layer 60B will remove the already formed first sealing layer 60B.
  • the glass transition temperature of the insulating material constituting the second sealing layer 60B is It is preferable that the glass transition temperature is lower than the glass transition temperature of the insulating material constituting the layer 60A.
  • the glass transition temperature of the insulating material constituting the second sealing layer 60B may be the same as the glass transition temperature of the insulating material constituting the first sealing layer 60A, or It may be higher than the glass transition temperature of the insulating material constituting 60A.
  • the insulating material constituting the second sealing layer 60B When the glass transition temperature of the insulating material constituting the second sealing layer 60B is higher than the glass transition temperature of the insulating material constituting the first sealing layer 60A, the insulating material constituting the second sealing layer 60B Compared to the case where the glass transition temperature of the material is lower than the glass transition temperature of the insulating material constituting the first sealing layer 60A, even if heat treatment is performed in the manufacturing process of the capacitor array 1, the second sealing layer The flatness of both main surfaces of the sealing portion 60 constituted by the sealing layer 60B, and thus of both main surfaces of the capacitor array 1, can be easily maintained.
  • the glass transition temperature of the insulating material constituting the sealing layer is measured by simultaneous thermogravimetric and differential thermal measurement (TG-DTA) or differential scanning calorimetry (DSC).
  • the linear expansion coefficient in the thickness direction T of the second sealing layer 60B is preferably smaller than the linear expansion coefficient in the thickness direction T of the first sealing layer 60A.
  • the linear expansion coefficient in the thickness direction T of the second sealing layer 60B is smaller than that of the first sealing layer 60A in the thickness direction T.
  • the linear expansion coefficient in the thickness direction T of the first sealing layer 60A or more is greater than or equal to the linear expansion coefficient in the thickness direction T of the first sealing layer 60A.
  • the linear expansion coefficient in the thickness direction T of the second sealing layer 60B may be the same as the linear expansion coefficient in the thickness direction T of the first sealing layer 60A.
  • the coefficient of linear expansion may be larger than the coefficient of linear expansion.
  • thermomechanical analysis TMA
  • the first sealing layer 60A has a first insulating part 61 that covers both main surfaces of the plurality of capacitor parts 10.
  • the first insulating section 61 covers the cathode layer 40 and the mask layer 50 that constitute both main surfaces of the plurality of capacitor sections 10.
  • the first insulating section 61 overlaps the plurality of capacitor sections 10 when viewed from the thickness direction T.
  • the maximum dimension da1 in the thickness direction T of the first insulating part 61 of the first sealing layer 60A and the thickness direction of the second sealing layer 60B is preferably different from each other.
  • the maximum dimension da1 in the thickness direction T of the first insulating part 61 of the first sealing layer 60A is equal to the thickness direction of the second sealing layer 60B. It is preferably larger than the maximum dimension db1 at T.
  • the first insulating part 61 follows the surface shape of the capacitor part 10, it becomes easy to flatten the main surface of the first insulating part 61 on the side opposite to the capacitor part 10.
  • both main surfaces of the sealing portion 60 and, by extension, both main surfaces of the capacitor array 1 can be easily made flat.
  • the thickness direction of the first insulating part 61 of the first sealing layer 60A with respect to the maximum dimension db1 in the thickness direction T of the second sealing layer 60B is preferably 110% or more.
  • the thickness direction of the first insulating part 61 of the first sealing layer 60A with respect to the maximum dimension db1 in the thickness direction T of the second sealing layer 60B is preferably 500% or less.
  • the maximum dimension da1 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A in the region on one of the two main surfaces of the sealing section 60 is 5 ⁇ m or more.
  • the maximum dimension da1 in the thickness direction T of the first insulating portion 61 of the first sealing layer 60A is preferably 100 ⁇ m or less.
  • the maximum dimension db1 in the thickness direction T of the second sealing layer 60B in the region on one of the two main surfaces of the sealing portion 60 is 100 ⁇ m or less.
  • the maximum dimension db1 in the thickness direction T of the second sealing layer 60B in the region on one of the two main surfaces of the sealing portion 60 is 5 ⁇ m or more.
  • the ratio (da2/da1) of the minimum dimension da2 in the thickness direction T of the insulating portion 61 may be 50% or less. In this case, it can be said that a large step exists on one main surface of the capacitor section 10 located on the one main surface side of the sealing section 60.
  • the plurality of sealing layers including the first sealing layer 60A and the second sealing layer 60B allow the capacitor to This makes it possible to suppress deterioration in the flatness of the array 1.
  • the ratio (da2/da1) of the minimum dimension da2 in the thickness direction T of the insulating portion 61 may be 5% or more.
  • the maximum dimension da1 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is the thickness direction of the portion of the first sealing layer 60A that overlaps with the plurality of capacitor sections 10 when viewed from the thickness direction T. This corresponds to the maximum dimension at T.
  • the maximum dimension da1 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is between the main surface of the first insulating section 61 opposite to the capacitor section 10 and the mask. This corresponds to the distance in the thickness direction T between the anode plate 20 of the layer 50 and the opposite main surface.
  • the minimum dimension da2 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is the thickness direction of the portion of the first sealing layer 60A that overlaps with the plurality of capacitor sections 10 when viewed from the thickness direction T. This corresponds to the minimum dimension in T.
  • the minimum dimension da2 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is between the main surface of the first insulating section 61 opposite to the capacitor section 10 and the cathode This corresponds to the distance in the thickness direction T between the main surface of the layer 40 opposite to the anode plate 20, here, the main surface of the conductor layer 42 opposite to the anode plate 20.
  • the maximum dimension db1 in the thickness direction T of the second sealing layer 60B is the difference between the main surface of the second sealing layer 60B on the opposite side to the capacitor section 10 and the main surface of the second sealing layer 60B on the capacitor section 10 side. This corresponds to the maximum distance in the thickness direction T between.
  • the maximum and minimum dimensions in the thickness direction of the sealing layer are determined as follows. First, by cutting, polishing, etc. the capacitor array, a cross section along the thickness direction in which the target sealing layer is exposed, here, the first sealing layer and the second sealing layer are exposed as shown in FIG. so that a cross section along the thickness direction appears. Next, an image of the cross section is taken using a scanning electron microscope or the like. Subsequently, in the photographed cross-sectional image, the region where the first insulating portion of the first sealing layer exists and the region where the second sealing layer exists are confirmed by an analysis method such as energy dispersive X-ray analysis.
  • the maximum dimension in the thickness direction of the first insulating part of the first sealing layer, the minimum dimension in the thickness direction of the first insulating part of the first sealing layer, and the second The maximum dimension in the thickness direction of the sealing layer is measured.
  • the maximum dimension in the thickness direction T of the first insulating part 61 of the first sealing layer 60A, the minimum dimension in the thickness direction T of the first insulating part 61 of the first sealing layer 60A, and the second sealing layer Regarding the maximum dimension in the thickness direction T of 60B the aspect in the area on the side of one of both main surfaces of the sealing part 60 has been described, but the area on the side of the other main surface of both main surfaces of the sealing part 60 It is preferable that the same aspect be applied to the region.
  • the first sealing layer 60A further includes a second insulating part 62 that divides the plurality of capacitor parts 10 into each part.
  • the second insulating section 62 is filled between the two capacitor sections 10 so as to separate the two capacitor sections 10 from each other.
  • the first sealing layer 60A further includes a third insulating part 63 that penetrates each of the plurality of capacitor parts 10 in the thickness direction T.
  • the third insulating section 63 penetrates the anode plate 20 and mask layer 50 of each of the plurality of capacitor sections 10 in the thickness direction T.
  • the first sealing layer 60A has the first insulating part 61, the second insulating part 62, and the third insulating part 63, the first insulating part 61, the second insulating part 62, and the third insulating part
  • the portion 63 is provided so as to follow the surface shape of the capacitor portion 10.
  • the first sealing layer 60A has the first insulating part 61, the second insulating part 62, and the third insulating part 63, as shown in FIG.
  • the portion 62 and the third insulating portion 63 may be integrated, and the interface between each insulating portion may not be exposed.
  • the first insulating part 61, the second insulating part 62, and the third insulating part 63 may not be integrated, and the interface between each insulating part may be exposed.
  • the capacitor array 1 further includes a through-hole conductor 70A.
  • the through-hole conductor 70A penetrates the capacitor portion 10 and the sealing portion 60 in the thickness direction T.
  • the through-hole conductor 70A penetrates in the thickness direction T, in addition to the capacitor part 10, the first insulating part 61 of the first sealing layer 60A and the second sealing layer 60B. There is.
  • the through-hole conductor 70A is preferably provided on at least the inner wall surface of the through hole 71A that penetrates the capacitor portion 10 and the sealing portion 60 in the thickness direction T.
  • the through-hole conductor 70A is provided on the inner wall surface of the through-hole 71A rather than the entire inside of the through-hole 71A.
  • the through-hole conductor 70A is electrically connected to the anode plate 20 on the inner wall surface of the through-hole 71A. More specifically, the through-hole conductor 70A is preferably electrically connected to the end surface of the anode plate 20 that faces the inner wall surface of the through-hole 71A in the planar direction. Thereby, the anode plate 20 is electrically led out to the outside via the through-hole conductor 70A.
  • the core portion 21 and the porous layer 22 are exposed on the end surface of the anode plate 20 that is electrically connected to the through-hole conductor 70A.
  • the porous layer 22 is also electrically connected to the through-hole conductor 70A.
  • the through-hole conductor 70A When viewed from the thickness direction T, the through-hole conductor 70A is preferably electrically connected to the anode plate 20 over the entire circumference of the through-hole 71A. In this case, since the connection resistance between the anode plate 20 and the through-hole conductor 70A tends to decrease, the equivalent series resistance (ESR) of the capacitor section 10 tends to decrease.
  • ESR equivalent series resistance
  • the through-hole conductor 70A is formed, for example, as follows. First, a through hole 71A passing through the capacitor section 10 and the sealing section 60 in the thickness direction T is formed by drilling, laser processing, or the like. Then, the through-hole conductor 70A is formed by metallizing the inner wall surface of the through-hole 71A with a metal material containing a low-resistance metal such as copper, gold, or silver. When forming the through-hole conductor 70A, processing is facilitated by, for example, metalizing the inner wall surface of the through-hole 71A by electroless copper plating, electrolytic copper plating, or the like.
  • the method of forming the through-hole conductor 70A in addition to the method of metalizing the inner wall surface of the through-hole 71A, a method of filling the through-hole 71A with a metal material, a composite material of metal and resin, etc. may be used. .
  • the capacitor array 1 further includes an anode connection layer 72 provided between the anode plate 20 and the through-hole conductor 70A in the planar direction.
  • the anode connection layer 72 is in contact with both the anode plate 20 and the through-hole conductor 70A.
  • the anode connection layer 72 serves as a barrier layer for the anode plate 20, more specifically, as a barrier layer for the anode plate 20, and more specifically, as a barrier layer for the anode plate 20 and It functions as a barrier layer for the porous layer 22.
  • the anode connection layer 72 functions as a barrier layer for the anode plate 20
  • dissolution of the anode plate 20 that occurs during chemical treatment for forming an external electrode layer 80A, etc., which will be described later is suppressed, and as a result, infiltration of the chemical liquid into the capacitor section 10 is suppressed. Since this is suppressed, the reliability of the capacitor array 1 can be easily improved.
  • anode plate 20 and the through-hole conductor 70A are electrically connected via the anode connection layer 72.
  • the dimension of the anode connection layer 72 in the thickness direction T is preferably larger than the dimension of the anode plate 20 in the thickness direction T. In this case, since the entire end surface of the anode plate 20 is covered with the anode connection layer 72, the barrier properties of the anode connection layer 72 against the anode plate 20 are likely to be improved.
  • the dimension of the anode connection layer 72 in the thickness direction T is preferably larger than 100% and 200% or less of the dimension of the anode plate 20 in the thickness direction T.
  • the dimension of the anode connection layer 72 in the thickness direction T may be the same as the dimension of the anode plate 20 in the thickness direction T, or may be smaller than the dimension of the anode plate 20 in the thickness direction T.
  • the through-hole conductor 70A When viewed from the thickness direction T, the through-hole conductor 70A is preferably connected to the anode connection layer 72 over the entire circumference of the through-hole 71A.
  • the contact area between the through-hole conductor 70A and the anode connection layer 72 becomes large, the connection resistance between the through-hole conductor 70A and the anode connection layer 72 tends to decrease.
  • the connection resistance between the anode plate 20 and the through-hole conductor 70A tends to decrease, so the equivalent series resistance of the capacitor section 10 tends to decrease.
  • the adhesion between the through-hole conductor 70A and the anode connection layer 72 is easily improved, problems such as peeling between the through-hole conductor 70A and the anode connection layer 72 due to thermal stress are less likely to occur.
  • the anode connection layer 72 includes a layer containing nickel as a main component. In this case, damage to the metal (for example, aluminum) constituting the anode plate 20 is reduced, so that the barrier properties of the anode connection layer 72 with respect to the anode plate 20 are easily improved.
  • anode connection layer 72 may not be provided between the anode plate 20 and the through-hole conductor 70A in the planar direction.
  • the through-hole conductor 70A may be directly connected to the end surface of the anode plate 20.
  • the capacitor array 1 further includes an external electrode layer 80A electrically connected to the through-hole conductor 70A.
  • the external electrode layer 80A is provided on the surface of the through-hole conductor 70A, and functions as a connection terminal of the capacitor array 1 (capacitor section 10).
  • the external electrode layer 80A is electrically connected to the anode plate 20 via the through-hole conductor 70A, and functions as a connection terminal for the anode plate 20.
  • Examples of the constituent material of the external electrode layer 80A include metal materials containing low-resistance metals such as silver, gold, and copper.
  • the external electrode layer 80A is formed, for example, by plating the surface of the through-hole conductor 70A.
  • silver filler is used as a constituent material of the external electrode layer 80A.
  • a mixed material of a resin and at least one conductive filler selected from the group consisting of , copper filler, nickel filler, and carbon filler may be used.
  • the capacitor array 1 further includes a resin filling portion 90A in which the through hole 71A is filled with a resin material.
  • the resin filling portion 90A is provided in a space surrounded by the through-hole conductor 70A on the inner wall surface of the through-hole 71A.
  • the coefficient of thermal expansion of the resin filled portion 90A is higher than that of the through-hole conductor 70A. More specifically, the coefficient of thermal expansion of the resin material filled in the through-hole 71A is preferably higher than the coefficient of thermal expansion of the constituent material (for example, copper) of the through-hole conductor 70A.
  • the resin filling portion 90A more specifically, the resin material filled in the through hole 71A expands in a high temperature environment, so that the through hole conductor 70A moves from the inside of the through hole 71A to the outside. Since it is pressed against the inner wall surface of the through-hole conductor 71A, the occurrence of delamination of the through-hole conductor 70A is sufficiently suppressed.
  • the coefficient of thermal expansion of the resin filling portion 90A may be the same as the coefficient of thermal expansion of the through-hole conductor 70A, or may be lower than the coefficient of thermal expansion of the through-hole conductor 70A. More specifically, the coefficient of thermal expansion of the resin material filled in the through-hole 71A may be the same as that of the constituent material of the through-hole conductor 70A, or the thermal expansion coefficient of the resin material filled in the through-hole 71A may be the same as that of the constituent material of the through-hole conductor 70A. It may be lower than the expansion rate.
  • the capacitor array 1 does not need to have the resin filling part 90A.
  • the through-hole conductor 70A is provided not only on the inner wall surface of the through-hole 71A but also throughout the inside of the through-hole 71A.
  • the capacitor array 1 further includes a through-hole conductor 70B.
  • the through-hole conductor 70B penetrates the capacitor portion 10 and the sealing portion 60, or more specifically, the sealing portion 60 in the thickness direction T. In the example shown in FIG. 2 and the like, the through-hole conductor 70B penetrates the third insulating portion 63 of the first sealing layer 60A and the second sealing layer 60B.
  • the through-hole conductor 70B is preferably provided on at least the inner wall surface of the capacitor portion 10 and the sealing portion 60, or more specifically, the through hole 71B that penetrates the sealing portion 60 in the thickness direction T.
  • the through-hole conductor 70B is provided on the inner wall surface of the through-hole 71B rather than the entire inside of the through-hole 71B.
  • the through-hole conductor 70B is formed, for example, as follows. First, a through hole passing through the capacitor portion 10 in the thickness direction T is formed by drilling, laser processing, or the like. Next, by forming the first sealing layer 60A so as to seal the capacitor part 10 from both main surfaces of the capacitor part 10, a third insulating layer in which the above-mentioned through hole is filled with an insulating material is formed. A portion 63 is formed. Further, a second sealing layer 60B is formed adjacent to the first sealing layer 60A on the opposite side of the capacitor section 10. Then, a through hole 71B is formed by performing drilling, laser processing, etc. on the third insulating portion 63 of the first sealing layer 60A and the second sealing layer 60B.
  • a third The insulating portion 63 is provided. Thereafter, a through-hole conductor 70B is formed by metallizing the inner wall surface of the through-hole 71B with a metal material containing a low-resistance metal such as copper, gold, or silver.
  • a metal material containing a low-resistance metal such as copper, gold, or silver.
  • the method of forming the through-hole conductor 70B in addition to the method of metalizing the inner wall surface of the through-hole 71B, a method of filling the through-hole 71B with a metal material, a composite material of metal and resin, etc. may be used. .
  • the third insulating part 63 is formed in the capacitor part in the planar direction. 10 and the through-hole conductor 70B, and further between the anode plate 20 and the through-hole conductor 70B.
  • the third insulating portion 63 is in contact with both the capacitor portion 10 and the through-hole conductor 70B, and furthermore, with both the anode plate 20 and the through-hole conductor 70B.
  • the third insulating portion 63 of the first sealing layer 60A is provided between the capacitor portion 10 and the through-hole conductor 70B, and further between the anode plate 20 and the through-hole conductor 70B in the planar direction. , the insulation between the anode plate 20 and the through-hole conductor 70B, as well as the insulation between the anode plate 20 and the cathode layer 40, is ensured, and short circuits between the two are prevented.
  • the third insulating part 63 of the first sealing layer 60A is in contact with both the capacitor part 10 and the through-hole conductor 70B, and furthermore, with both the anode plate 20 and the through-hole conductor 70B, as shown in FIG. It is preferable that the core portion 21 and the porous layer 22 be exposed at the end surface of the anode plate 20 that is in contact with the third insulating portion 63 . In this case, the contact area between the porous layer 22 and the third insulating part 63 increases, which improves the adhesion between them, resulting in problems such as peeling between the porous layer 22 and the third insulating part 63. is less likely to occur.
  • the constituent material of the mask layer 50 is the pores of the porous layer 22. It is preferable that a mask layer 50 that penetrates and spreads inside the porous layer 22 is provided around the through-hole conductor 70B. In this case, the insulation between the anode plate 20 and the through-hole conductor 70B, as well as the insulation between the anode plate 20 and the cathode layer 40, is sufficiently ensured, and a short circuit between the two is sufficiently prevented.
  • the insulating material constituting the third insulating part 63 is porous. It is preferable that the particles penetrate into the pores of the quality layer 22. In this case, the mechanical strength of the porous layer 22 is improved, and the occurrence of delamination due to pores in the porous layer 22 is suppressed.
  • the coefficient of thermal expansion of the third insulating portion 63 of the first sealing layer 60A is preferably higher than the coefficient of thermal expansion of the through-hole conductor 70B. More specifically, the coefficient of thermal expansion of the insulating material constituting the third insulating portion 63 is preferably higher than the coefficient of thermal expansion of the material (for example, copper) constituting the through-hole conductor 70B.
  • the third insulating part 63 more specifically, the insulating material constituting the third insulating part 63 expands in a high-temperature environment, and the porous layer 22 and the through-hole conductor 70B are pressed down. The occurrence of delamination is sufficiently suppressed.
  • the coefficient of thermal expansion of the third insulating portion 63 of the first sealing layer 60A may be the same as the coefficient of thermal expansion of the through-hole conductor 70B, or may be lower than the coefficient of thermal expansion of the through-hole conductor 70B. good. More specifically, the coefficient of thermal expansion of the insulating material constituting the third insulating portion 63 may be the same as the coefficient of thermal expansion of the material constituting the through-hole conductor 70B, or The coefficient of thermal expansion may be lower than that of
  • the capacitor array 1 further includes an external electrode layer 80B electrically connected to the through-hole conductor 70B.
  • external electrode layer 80B is provided on the surface of through-hole conductor 70B, and functions as a connection terminal of capacitor array 1 (capacitor section 10).
  • Examples of the constituent material of the external electrode layer 80B include metal materials containing low-resistance metals such as silver, gold, and copper.
  • the external electrode layer 80B is formed, for example, by plating the surface of the through-hole conductor 70B.
  • silver filler is used as a constituent material of the external electrode layer 80B.
  • a mixed material of a resin and at least one conductive filler selected from the group consisting of , copper filler, nickel filler, and carbon filler may be used.
  • the constituent materials of the external electrode layer 80A and the external electrode layer 80B are preferably the same, at least in terms of type, but may be different from each other.
  • each of the plurality of capacitor sections 10 is provided with an external electrode layer 80A electrically connected to the anode plate 20 and an external electrode layer 80B electrically connected to the cathode layer 40.
  • at least one of the external electrode layer 80A and the external electrode layer 80B may be provided in common among the plurality of capacitor sections 10.
  • the external electrode layer 80A and the external electrode layer 80B are provided on both main surfaces of the sealing section 60, but they are provided only on one main surface of the sealing section 60. Good too.
  • the capacitor array 1 further includes a via conductor 73 that penetrates the sealing portion 60 in the thickness direction T and is connected to the cathode layer 40 and the external electrode layer 80B.
  • the via conductor 73 penetrates the first insulating part 61 of the first sealing layer 60A and the second sealing layer 60B in the thickness direction T, and passes through the cathode layer 40 and the external electrode layer. It is connected to 80B.
  • Examples of the constituent material of the via conductor 73 include metal materials containing low-resistance metals such as silver, gold, and copper.
  • the via conductor 73 is formed by plating the inner wall surface of the through hole that penetrates the first insulating part 61 of the first sealing layer 60A and the second sealing layer 60B in the thickness direction T with the above-mentioned metal material. It is formed by performing heat treatment after filling with conductive paste.
  • FIG. 6 is a schematic cross-sectional view showing an enlarged view of a via conductor and its surroundings in a capacitor array in which the insulating material constituting the second sealing layer contains glass cloth.
  • the insulating material constituting the second sealing layer 60B contains glass cloth, as shown in FIG.
  • the glass cloth G can easily protrude inward from the inner wall surface of the portion where the glass cloth G is attached.
  • the via conductor 73 is formed by the above-described method in a through hole in which the glass cloth G protrudes, stress is dispersed by the protrusion of the glass cloth G, thereby suppressing the occurrence of cracks in the via conductor 73.
  • the through-hole conductor 70B is electrically connected to the cathode layer 40 via the external electrode layer 80B and the via conductor 73. In this way, the through-hole conductor 70B is preferably electrically connected to the cathode layer 40.
  • the external electrode layer 80B is electrically connected to the cathode layer 40 via the via conductor 73, and functions as a connection terminal for the cathode layer 40.
  • the capacitor array 1 further includes a resin filling portion 90B in which the through hole 71B is filled with a resin material.
  • the resin filling portion 90B is provided in a space surrounded by the through-hole conductor 70B on the inner wall surface of the through-hole 71B.
  • the coefficient of thermal expansion of the resin filling portion 90B is higher than that of the through-hole conductor 70B. More specifically, it is preferable that the coefficient of thermal expansion of the resin material filled in the through hole 71B is higher than the coefficient of thermal expansion of the constituent material (for example, copper) of the through hole conductor 70B.
  • the resin filling part 90B more specifically, the resin material filled in the through hole 71B expands in a high temperature environment, so that the through hole conductor 70B moves from the inside of the through hole 71B to the outside. Since it is pressed against the inner wall surface of the through-hole conductor 71B, the occurrence of delamination of the through-hole conductor 70B is sufficiently suppressed.
  • the coefficient of thermal expansion of the resin filling portion 90B may be the same as the coefficient of thermal expansion of the through-hole conductor 70B, or may be lower than the coefficient of thermal expansion of the through-hole conductor 70B. More specifically, the thermal expansion coefficient of the resin material filled in the through hole 71B may be the same as that of the constituent material of the through-hole conductor 70B, or the thermal expansion coefficient of the resin material filled in the through-hole conductor 71B may be the same as that of the constituent material of the through-hole conductor 70B. It may be lower than the expansion rate.
  • the capacitor array 1 does not need to have the resin filling part 90B.
  • the through-hole conductor 70B is provided not only on the inner wall surface of the through-hole 71B but also throughout the inside of the through-hole 71B.
  • the capacitor section is not limited to an electrolytic capacitor including the solid electrolytic capacitor described above.
  • the capacitor section includes, for example, a ceramic capacitor using barium titanate, a thin film capacitor using silicon nitride (SiN), silicon dioxide (SiO 2 ), hydrogen fluoride (HF), etc., MIM ( A trench type capacitor or the like having a metal insulator structure may also be configured.
  • the capacitor part is made of a capacitor based on a metal such as aluminum. It is preferable to configure an electrolytic capacitor, and more preferably to configure an electrolytic capacitor based on a metal such as aluminum.
  • the capacitor array of the present invention is used, for example, in composite electronic components.
  • a composite electronic component includes, for example, the capacitor array of the present invention and an electronic component electrically connected to the external electrode layer of the capacitor array of the present invention.
  • the electronic component electrically connected to the external electrode layer may be a passive element, an active element, or both a passive element and an active element. , a composite of a passive element and an active element.
  • passive elements examples include inductors and the like.
  • Active elements include memory, GPU (Graphical Processing Unit), CPU (Central Processing Unit), MPU (Micro Processing Unit), PMIC (Power Management IC), etc.
  • the capacitor array of the present invention When the capacitor array of the present invention is used in a composite electronic component, the capacitor array of the present invention is treated as a substrate on which the electronic component is mounted, for example. Therefore, by forming the capacitor array of the present invention in the form of a sheet as a whole and further forming the electronic components mounted on the capacitor array of the present invention in the form of a sheet, through-hole conductors penetrating the electronic components in the thickness direction, It becomes possible to electrically connect the capacitor array of the present invention and electronic components in the thickness direction. As a result, it becomes possible to configure passive elements and active elements as electronic components like a collective module.
  • a switching regulator can be formed by electrically connecting the capacitor array of the present invention between a voltage regulator including a semiconductor active element and a load to which the converted DC voltage is supplied.
  • a circuit layer is formed on one main surface of a capacitor matrix sheet on which a plurality of capacitor arrays of the present invention are laid out, and then the circuit layer is electrically connected to a passive element or an active element as an electronic component. You can also connect directly.
  • the capacitor array of the present invention may be placed in a cavity provided in advance on a substrate, filled with resin, and then a circuit layer may be formed on the resin.
  • a passive element or an active element as another electronic component may be mounted in another cavity portion of the same substrate.
  • the capacitor array of the present invention may be mounted on a smooth carrier such as a wafer or glass, an outer layer made of resin may be formed, a circuit layer may be formed, and the circuit layer may be used as a passive element or an active element as an electronic component. It may be electrically connected to the element.
  • a smooth carrier such as a wafer or glass
  • an outer layer made of resin may be formed
  • a circuit layer may be formed, and the circuit layer may be used as a passive element or an active element as an electronic component. It may be electrically connected to the element.
  • a plurality of capacitor parts arranged in a plane in a plane direction perpendicular to the thickness direction, a sealing portion that seals the plurality of capacitor portions from both main surfaces opposite to each other in the thickness direction of the plurality of capacitor portions, and is made of an insulating material;
  • the sealing portion is formed by laminating a plurality of sealing layers in the thickness direction,
  • the plurality of sealing layers include a first sealing layer located closest to the capacitor section in the thickness direction, and a first sealing layer located on a side opposite to the capacitor section from the first sealing layer in the thickness direction, and , a second sealing layer forming both principal surfaces facing each other in the thickness direction of the sealing portion.
  • the capacitor section includes an anode plate having a porous layer on at least one of the two principal surfaces facing each other in the thickness direction, a dielectric layer provided on the surface of the porous layer, and a dielectric layer provided on the surface of the porous layer.
  • ⁇ 3> The capacitor array according to ⁇ 1> or ⁇ 2>, wherein the insulating material constituting the first sealing layer contains an insulating resin.
  • ⁇ 4> The capacitor array according to ⁇ 3>, wherein the insulating material constituting the first sealing layer further contains an inorganic filler.
  • ⁇ 6> The capacitor array according to any one of ⁇ 1> to ⁇ 5>, wherein the insulating material constituting the second sealing layer contains an insulating resin.
  • ⁇ 10> The capacitor array according to any one of ⁇ 1> to ⁇ 9>, wherein the linear expansion coefficient of the second sealing layer in the thickness direction is smaller than the linear expansion coefficient of the first sealing layer in the thickness direction.
  • ⁇ 11> The capacitor array according to any one of ⁇ 1> to ⁇ 10>, wherein the first sealing layer has a first insulating part that covers both main surfaces of the plurality of capacitor parts.
  • ⁇ 12> In a region on one main surface side of both main surfaces of the sealing part, the maximum dimension in the thickness direction of the first insulating part of the first sealing layer and the thickness direction of the second sealing layer.
  • the maximum dimension in the thickness direction of the first insulating part of the first sealing layer is the maximum dimension in the thickness direction of the second sealing layer.
  • the capacitor array according to ⁇ 12> which is larger than the maximum dimension of the capacitor array.
  • the thickness direction of the first insulating part of the first sealing layer is relative to the maximum dimension in the thickness direction of the second sealing layer.
  • the second sealing layer has a maximum dimension in the thickness direction of 100 ⁇ m or less in a region on one main surface side of both main surfaces of the sealing part. Capacitor array as described.
  • the first insulating portion of the first sealing layer has a maximum dimension in the thickness direction of The capacitor array according to any one of ⁇ 13> to ⁇ 16>, wherein the ratio of the minimum dimension of the insulating portion in the thickness direction is 50% or less.
  • the first sealing layer further includes a third insulating part that penetrates each of the plurality of capacitor parts in the thickness direction.
  • ⁇ 20> The capacitor array according to any one of ⁇ 1> to ⁇ 19>, further comprising a through-hole conductor that penetrates the capacitor section and the sealing section in the thickness direction.
  • Capacitor array 10 Capacitor section 20 Anode plate 21 Core section 22 Porous layer 30 Dielectric layer 40 Cathode layer 41 Solid electrolyte layer 42 Conductive layer 42A Conductive resin layer 42B Metal layer 50 Mask layer 60 Sealing section 60A First sealing Sealing layer 60B Second sealing layer 61 First insulating part 62 Second insulating part 63 Third insulating part 70A, 70B Through hole conductor 71A, 71B Through hole 72 Anode connection layer 73 Via conductor 80A, 80B External electrode layer 90A, 90B Resin filling part da1 Maximum dimension in the thickness direction of the first insulating part of the first sealing layer da2 Minimum dimension in the thickness direction of the first insulating part of the first sealing layer db1 Maximum dimension in the thickness direction of the second sealing layer G Glass cloth T Thickness direction U First direction V Second direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A capacitor array 1 includes: a plurality of capacitor units 10 arranged horizontally in a plane direction orthogonal to a thickness direction T; and a sealing part 60 that seals the plurality of capacitor units 10 from both main surface sides that face the thickness direction T of the plurality of capacitor units 10, and that is constituted from an insulating material. The sealing part 60 includes a plurality of sealing layers stacked in the thickness direction T. The plurality of sealing layers includes: a first sealing layer 60A that is positioned closest to the capacitor units 10 in the thickness direction T; and second sealing layers 60B that are positioned more to the opposite side from the capacitor units 10 in the thickness direction T than the first sealing layer 60A, and that constitute both main surfaces that face in the thickness direction T of the sealing part 60.

Description

コンデンサアレイcapacitor array
 本発明は、コンデンサアレイに関する。 The present invention relates to a capacitor array.
 特許文献1には、1枚の固体電解コンデンサシートが分割されてなる複数の固体電解コンデンサ素子と、シート状の第1封止層と、シート状の第2封止層とを備え、上記固体電解コンデンサシートは、弁作用金属からなる陽極板と、上記陽極板の少なくとも一方の主面に設けられた多孔質層と、上記多孔質層の表面に設けられた誘電体層と、上記誘電体層の表面に設けられた固体電解質層を含む陰極層とを備え、厚み方向に相対する第1主面及び第2主面を有し、上記複数の固体電解コンデンサ素子は、それぞれの上記第1主面側が上記第1封止層上に配置されており、上記第2封止層は、上記第1封止層上の上記複数の固体電解コンデンサ素子を上記第2主面側から覆うように配置されており、上記固体電解コンデンサ素子間がスリット状のシート除去部によって分割されている、コンデンサアレイが開示されている。 Patent Document 1 includes a plurality of solid electrolytic capacitor elements formed by dividing one solid electrolytic capacitor sheet, a sheet-shaped first sealing layer, and a sheet-shaped second sealing layer, The electrolytic capacitor sheet includes an anode plate made of a valve metal, a porous layer provided on at least one main surface of the anode plate, a dielectric layer provided on the surface of the porous layer, and the dielectric layer. a cathode layer including a solid electrolyte layer provided on the surface of the layer, and has a first main surface and a second main surface facing each other in the thickness direction, and each of the plurality of solid electrolytic capacitor elements has a first main surface and a second main surface facing each other in the thickness direction. The main surface side is disposed on the first sealing layer, and the second sealing layer is configured to cover the plurality of solid electrolytic capacitor elements on the first sealing layer from the second main surface side. A capacitor array is disclosed in which the solid electrolytic capacitor elements are separated by slit-like sheet removal parts.
特開2020-167361号公報Japanese Patent Application Publication No. 2020-167361
 特許文献1に記載のコンデンサアレイでは、複数の固体電解コンデンサ素子の周囲を封止する封止層が設けられている。しかしながら、特許文献1に記載のコンデンサアレイでは、封止層に起因する反り、歪み、うねり等を抑制する観点、すなわち、平坦性(コプラナリティ)の低下を抑制する点で改善の余地がある。 In the capacitor array described in Patent Document 1, a sealing layer that seals around a plurality of solid electrolytic capacitor elements is provided. However, in the capacitor array described in Patent Document 1, there is room for improvement in terms of suppressing warpage, distortion, waviness, etc. caused by the sealing layer, that is, suppressing a decrease in flatness (coplanarity).
 本発明は、上記の問題を解決するためになされたものであり、平坦性の低下を抑制可能なコンデンサアレイを提供することを目的とするものである。 The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a capacitor array that can suppress deterioration in flatness.
 本発明のコンデンサアレイは、厚み方向に直交する面方向に平面配置された複数のコンデンサ部と、複数の上記コンデンサ部の上記厚み方向に相対する両主面側から複数の上記コンデンサ部を封止し、かつ、絶縁性材料で構成された封止部と、を備え、上記封止部は、複数の封止層が上記厚み方向に積層されてなり、複数の上記封止層は、上記厚み方向において最も上記コンデンサ部側に位置する第1封止層と、上記厚み方向において上記第1封止層よりも上記コンデンサ部と反対側に位置し、かつ、上記封止部の上記厚み方向に相対する両主面を構成する第2封止層と、を含む、ことを特徴とする。 The capacitor array of the present invention includes a plurality of capacitor parts arranged in a plane in a plane direction perpendicular to the thickness direction, and a plurality of capacitor parts sealed from both main surfaces facing in the thickness direction of the plurality of capacitor parts. and a sealing part made of an insulating material, the sealing part being formed by laminating a plurality of sealing layers in the thickness direction, and the plurality of sealing layers having a thickness in the thickness direction. a first sealing layer located closest to the capacitor section in the direction; and a first sealing layer located on the opposite side of the capacitor section from the first sealing layer in the thickness direction, and in the thickness direction of the sealing section. A second sealing layer forming both opposing principal surfaces.
 本発明によれば、平坦性の低下を抑制可能なコンデンサアレイを提供できる。 According to the present invention, it is possible to provide a capacitor array that can suppress deterioration in flatness.
図1は、本発明のコンデンサアレイの一例を示す平面模式図である。FIG. 1 is a schematic plan view showing an example of a capacitor array of the present invention. 図2は、図1に示すコンデンサアレイの線分A1-A2に沿う断面の一例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment A1-A2. 図3は、図2中の破線で囲まれた領域を拡大して示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 2. As shown in FIG. 図4は、図1に示すコンデンサアレイの線分B1-B2に沿う断面の一例を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment B1-B2. 図5は、図4中の破線で囲まれた領域を拡大して示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 4. FIG. 図6は、第2封止層を構成する絶縁性材料がガラスクロスを含有している場合のコンデンサアレイにおける、ビア導体及びその周辺を拡大して示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing an enlarged view of a via conductor and its surroundings in a capacitor array in which the insulating material constituting the second sealing layer contains glass cloth.
 以下、本発明のコンデンサアレイについて説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更されてもよい。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。 Hereinafter, the capacitor array of the present invention will be explained. Note that the present invention is not limited to the following configuration, and may be modified as appropriate without departing from the gist of the present invention. Furthermore, the present invention also includes a combination of a plurality of individual preferred configurations described below.
 以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。 The drawings shown below are schematic diagrams, and their dimensions, aspect ratios, etc. may differ from the actual product.
 図1は、本発明のコンデンサアレイの一例を示す平面模式図である。 FIG. 1 is a schematic plan view showing an example of a capacitor array of the present invention.
 図1に示すコンデンサアレイ1は、複数のコンデンサ部10を有している。 The capacitor array 1 shown in FIG. 1 has a plurality of capacitor sections 10.
 コンデンサ部10の数は、2つ以上であれば特に限定されない。 The number of capacitor sections 10 is not particularly limited as long as it is two or more.
 複数のコンデンサ部10は、厚み方向Tに直交する面方向に平面配置されている。図1に示す例において、複数のコンデンサ部10は、厚み方向Tに直交する第1方向Uと、厚み方向T及び第1方向Uに直交する第2方向Vとに沿って平面配置されている。つまり、面方向は、第1方向U及び第2方向Vを包含する方向である。 The plurality of capacitor parts 10 are arranged in a plane in a plane direction perpendicular to the thickness direction T. In the example shown in FIG. 1, the plurality of capacitor sections 10 are arranged in a plane along a first direction U that is orthogonal to the thickness direction T, and a second direction V that is orthogonal to the thickness direction T and the first direction U. . That is, the surface direction is a direction that includes the first direction U and the second direction V.
 複数のコンデンサ部10は、図1に示すように複数方向に沿って配置されていてもよいし、一方向に沿って配置されていてもよい。また、複数のコンデンサ部10は、規則的に配置されていてもよいし、不規則に配置されていてもよい。 The plurality of capacitor sections 10 may be arranged along multiple directions as shown in FIG. 1, or may be arranged along one direction. Furthermore, the plurality of capacitor sections 10 may be arranged regularly or irregularly.
 厚み方向Tから見たときのコンデンサ部10の平面形状としては、例えば、図1に示すような矩形(正方形又は長方形)、矩形以外の四角形、三角形、五角形、六角形等の多角形、円形、楕円形等が挙げられる。 The planar shape of the capacitor section 10 when viewed from the thickness direction T includes, for example, a rectangle (square or rectangle) as shown in FIG. Examples include oval shape.
 厚み方向Tから見たときの複数のコンデンサ部10の平面形状は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 The planar shapes of the plurality of capacitor sections 10 when viewed from the thickness direction T may be the same, different from each other, or partially different.
 厚み方向Tから見たときの複数のコンデンサ部10の面積は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 The areas of the plurality of capacitor parts 10 when viewed from the thickness direction T may be the same, different from each other, or different in some parts.
 図2は、図1に示すコンデンサアレイの線分A1-A2に沿う断面の一例を示す断面模式図である。図3は、図2中の破線で囲まれた領域を拡大して示す断面模式図である。図4は、図1に示すコンデンサアレイの線分B1-B2に沿う断面の一例を示す断面模式図である。図5は、図4中の破線で囲まれた領域を拡大して示す断面模式図である。 FIG. 2 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment A1-A2. FIG. 3 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 2. As shown in FIG. FIG. 4 is a schematic cross-sectional view showing an example of a cross section of the capacitor array shown in FIG. 1 along line segment B1-B2. FIG. 5 is a schematic cross-sectional view showing an enlarged area surrounded by a broken line in FIG. 4. FIG.
 図2、図3、図4、及び、図5に示すように、コンデンサ部10は、陽極板20と、誘電体層30と、陰極層40と、を有している。 As shown in FIGS. 2, 3, 4, and 5, the capacitor section 10 includes an anode plate 20, a dielectric layer 30, and a cathode layer 40.
 以下では、コンデンサ部10が電解コンデンサを構成している態様の一例について説明する。 Below, an example of a mode in which the capacitor section 10 constitutes an electrolytic capacitor will be described.
 陽極板20は、芯部21と、多孔質層22と、を有している。 The anode plate 20 has a core portion 21 and a porous layer 22.
 芯部21は、金属からなることが好ましく、中でも弁作用金属からなることが好ましい。芯部21が弁作用金属からなる場合、陽極板20は、弁作用金属基体とも呼ばれる。 The core portion 21 is preferably made of metal, and particularly preferably made of valve metal. When the core portion 21 is made of a valve metal, the anode plate 20 is also referred to as a valve metal base.
 弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム等の金属単体、これらの金属単体の少なくとも1種を含有する合金等が挙げられる。中でも、アルミニウム又はアルミニウム合金が好ましい。 Valve metals include, for example, simple metals such as aluminum, tantalum, niobium, titanium, and zirconium, and alloys containing at least one of these simple metals. Among these, aluminum or aluminum alloy is preferred.
 多孔質層22は、芯部21の厚み方向Tに相対する両主面のうちの少なくとも一方主面上に設けられている。つまり、多孔質層22は、芯部21の一方主面上のみに設けられていてもよいし、図2等に示すように芯部21の両主面上に設けられていてもよい。このように、陽極板20は、厚み方向Tに相対する両主面のうちの少なくとも一方主面に多孔質層22を有している。これにより、陽極板20の表面積が大きくなるため、コンデンサ部10の容量が向上しやすくなる。 The porous layer 22 is provided on at least one of the two principal surfaces facing the thickness direction T of the core portion 21 . That is, the porous layer 22 may be provided only on one main surface of the core section 21, or may be provided on both main surfaces of the core section 21 as shown in FIG. 2 and the like. In this way, the anode plate 20 has the porous layer 22 on at least one of the two main surfaces facing each other in the thickness direction T. This increases the surface area of the anode plate 20, making it easier to improve the capacitance of the capacitor section 10.
 多孔質層22は、陽極板20の表面がエッチング処理されてなるエッチング層であることが好ましい。 The porous layer 22 is preferably an etched layer obtained by etching the surface of the anode plate 20.
 陽極板20の形状は、平板状であることが好ましく、箔状であることがより好ましい。 The shape of the anode plate 20 is preferably flat, and more preferably foil-like.
 本明細書中、板状には、箔状、シート状、フィルム状等も含まれ、厚み方向における寸法によってこれらを区別しない。 In this specification, plate-like shapes include foil-like shapes, sheet-like shapes, film-like shapes, etc., and these are not distinguished by the dimension in the thickness direction.
 誘電体層30は、多孔質層22の表面上に設けられている。より具体的には、誘電体層30は、多孔質層22に存在する各細孔の表面(輪郭)に沿って設けられている。 The dielectric layer 30 is provided on the surface of the porous layer 22. More specifically, the dielectric layer 30 is provided along the surface (contour) of each pore present in the porous layer 22.
 誘電体層30は、上述した弁作用金属の酸化皮膜からなることが好ましい。例えば、陽極板20がアルミニウム箔である場合、陽極板20に対して、アジピン酸アンモニウム等を含む水溶液中で陽極酸化処理(化成処理とも呼ばれる)を行うことにより、誘電体層30となる酸化皮膜が形成される。誘電体層30は多孔質層22の表面に沿って形成されるため、誘電体層30には細孔(凹部)が設けられることになる。 The dielectric layer 30 is preferably made of an oxide film of the above-mentioned valve metal. For example, when the anode plate 20 is aluminum foil, the anode plate 20 is anodized (also called chemical conversion treatment) in an aqueous solution containing ammonium adipate, etc. to form an oxide film that will become the dielectric layer 30. is formed. Since the dielectric layer 30 is formed along the surface of the porous layer 22, the dielectric layer 30 is provided with pores (recesses).
 陰極層40は、誘電体層30の表面上に設けられている。 The cathode layer 40 is provided on the surface of the dielectric layer 30.
 陰極層40は、誘電体層30の表面上に設けられた固体電解質層41と、固体電解質層41の表面上に設けられた導電体層42と、を有していることが好ましい。陰極層40が固体電解質層41を有している場合、コンデンサ部10は、固体電解コンデンサを構成することになる。 It is preferable that the cathode layer 40 has a solid electrolyte layer 41 provided on the surface of the dielectric layer 30 and a conductor layer 42 provided on the surface of the solid electrolyte layer 41. When the cathode layer 40 has the solid electrolyte layer 41, the capacitor section 10 constitutes a solid electrolytic capacitor.
 固体電解質層41は、誘電体層30の細孔の内部に設けられた内層と、内層を覆う外層と、を有していることが好ましい。 It is preferable that the solid electrolyte layer 41 has an inner layer provided inside the pores of the dielectric layer 30 and an outer layer covering the inner layer.
 固体電解質層41の構成材料としては、例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等の導電性高分子等が挙げられる。中でも、ポリチオフェン類が好ましく、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が特に好ましい。また、導電性高分子は、ポリスチレンスルホン酸(PSS)等のドーパントを含んでいてもよい。 Examples of the constituent material of the solid electrolyte layer 41 include conductive polymers such as polypyrroles, polythiophenes, and polyanilines. Among these, polythiophenes are preferred, and poly(3,4-ethylenedioxythiophene) (PEDOT) is particularly preferred. Further, the conductive polymer may contain a dopant such as polystyrene sulfonic acid (PSS).
 固体電解質層41は、例えば、ポリ(3,4-エチレンジオキシチオフェン)等の導電性高分子の分散液を誘電体層30の表面に塗工して乾燥させる方法、3,4-エチレンジオキシチオフェン等の重合性モノマーを含む処理液を用いて、誘電体層30の表面上にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法等により、誘電体層30の表面上の所定の領域に形成される。 The solid electrolyte layer 41 can be formed, for example, by coating a dispersion of a conductive polymer such as poly(3,4-ethylenedioxythiophene) on the surface of the dielectric layer 30 and drying it; The dielectric layer 30 is formed by a method of forming a polymer film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer 30 using a treatment liquid containing a polymerizable monomer such as oxythiophene. formed in a predetermined area on the surface.
 導電体層42は、固体電解質層41の表面上に設けられた導電性樹脂層42Aと、導電性樹脂層42Aの表面上に設けられ金属層42Bと、を有していることが好ましい。 It is preferable that the conductor layer 42 has a conductive resin layer 42A provided on the surface of the solid electrolyte layer 41 and a metal layer 42B provided on the surface of the conductive resin layer 42A.
 導電性樹脂層42Aとしては、例えば、銅フィラー、銀フィラー、ニッケルフィラー、及び、カーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーを含有する導電性接着剤層等が挙げられる。 Examples of the conductive resin layer 42A include a conductive adhesive layer containing at least one conductive filler selected from the group consisting of copper filler, silver filler, nickel filler, and carbon filler.
 金属層42Bは、金属フィラーを含有していることが好ましい。 It is preferable that the metal layer 42B contains a metal filler.
 金属フィラーは、銅フィラー、銀フィラー、及び、ニッケルフィラーからなる群より選択される少なくとも1種であることが好ましい。 The metal filler is preferably at least one selected from the group consisting of copper filler, silver filler, and nickel filler.
 金属層42Bは、例えば、金属めっき膜、金属箔等であってもよい。この場合、金属層42Bは、銅、銀、ニッケル、及び、これらの金属の少なくとも1種を主成分とする合金からなる群より選択される少なくとも1種の金属からなることが好ましい。 The metal layer 42B may be, for example, a metal plating film, metal foil, or the like. In this case, the metal layer 42B is preferably made of at least one metal selected from the group consisting of copper, silver, nickel, and an alloy containing at least one of these metals as a main component.
 本明細書中、主成分は、重量割合が最も大きい元素成分を意味する。 In this specification, the main component means the elemental component having the largest weight percentage.
 導電体層42は、例えば、導電性樹脂層42Aとしてのカーボン層と、金属層42Bとしての銅層と、を有していてもよい。 The conductor layer 42 may include, for example, a carbon layer as the conductive resin layer 42A and a copper layer as the metal layer 42B.
 カーボン層は、例えば、カーボンフィラーを含有するカーボンペーストを、スポンジ転写法、スクリーン印刷法、ディスペンサ塗布法、インクジェット印刷法等で固体電解質層41の表面に塗工することにより、所定の領域に形成される。 The carbon layer is formed in a predetermined area by, for example, applying a carbon paste containing a carbon filler to the surface of the solid electrolyte layer 41 using a sponge transfer method, screen printing method, dispenser coating method, inkjet printing method, etc. be done.
 銅層は、例えば、銅フィラーを含有する銅ペーストを、スポンジ転写法、スクリーン印刷法、スプレー塗布法、ディスペンサ塗布法、インクジェット印刷法等でカーボン層の表面に塗工することにより、所定の領域に形成される。 For example, the copper layer is formed in a predetermined area by applying a copper paste containing a copper filler to the surface of the carbon layer using a sponge transfer method, screen printing method, spray coating method, dispenser coating method, inkjet printing method, etc. is formed.
 導電体層42は、導電性樹脂層42A及び金属層42Bの少なくとも一方を有していてもよい。つまり、導電体層42は、導電性樹脂層42Aのみを有していてもよいし、金属層42Bのみを有していてもよいし、図2等に示すように導電性樹脂層42A及び金属層42Bの両方を有していてもよい。 The conductor layer 42 may include at least one of a conductive resin layer 42A and a metal layer 42B. In other words, the conductor layer 42 may include only the conductive resin layer 42A, only the metal layer 42B, or may include the conductive resin layer 42A and the metal layer as shown in FIG. It may have both layers 42B.
 コンデンサ部10は、厚み方向Tから見たときの多孔質層22の周縁に設けられたマスク層50を更に有していることが好ましい。この場合、陽極板20と陰極層40との間の絶縁性が確保され、両者間の短絡が防止される。 It is preferable that the capacitor section 10 further includes a mask layer 50 provided at the periphery of the porous layer 22 when viewed from the thickness direction T. In this case, insulation between the anode plate 20 and the cathode layer 40 is ensured, and short circuits between the two are prevented.
 マスク層50は、多孔質層22の周縁の全体に設けられていることが好ましい。なお、マスク層50は、多孔質層22の周縁の一部に設けられていてもよい。 It is preferable that the mask layer 50 is provided on the entire periphery of the porous layer 22. Note that the mask layer 50 may be provided on a part of the periphery of the porous layer 22.
 マスク層50は、厚み方向Tにおいて、陽極板20の両主面のうちの少なくとも一方主面から内部に向かって延びるように設けられていることが好ましく、陽極板20の両主面から内部に向かって延びるように設けられていることがより好ましい。 The mask layer 50 is preferably provided so as to extend inward from at least one of the two principal surfaces of the anode plate 20 in the thickness direction T; More preferably, they are provided so as to extend toward each other.
 マスク層50は、厚み方向Tにおいて、芯部21に接していてもよいし、芯部21に接していなくてもよい。 The mask layer 50 may or may not be in contact with the core 21 in the thickness direction T.
 マスク層50は、多孔質層22の内部に加えて、多孔質層22の外部に設けられていてもよい。この場合、マスク層50は、多孔質層22の内部に充填されつつ、充填された多孔質層22の表面上に設けられていてもよい。つまり、マスク層50の厚み方向Tにおける寸法は、多孔質層22の厚み方向Tにおける寸法よりも大きくてもよい。 The mask layer 50 may be provided outside the porous layer 22 in addition to inside the porous layer 22. In this case, the mask layer 50 may be filled inside the porous layer 22 and provided on the surface of the filled porous layer 22 . That is, the dimension of the mask layer 50 in the thickness direction T may be larger than the dimension of the porous layer 22 in the thickness direction T.
 マスク層50が多孔質層22の外部に設けられている場合、マスク層50は、厚み方向Tから見たときに陰極層40を囲む領域に設けられていることが好ましい。 When the mask layer 50 is provided outside the porous layer 22, the mask layer 50 is preferably provided in a region surrounding the cathode layer 40 when viewed from the thickness direction T.
 厚み方向Tから見たとき、マスク層50は、一部が陰極層40に重なっていてもよいし、全体が陰極層40に重なっていなくてもよい。 When viewed from the thickness direction T, the mask layer 50 may partially overlap the cathode layer 40 or may not entirely overlap the cathode layer 40.
 マスク層50は、絶縁性材料で構成されている。 The mask layer 50 is made of an insulating material.
 マスク層50を構成する絶縁性材料としては、例えば、ポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、可溶性ポリイミドシロキサン及びエポキシ樹脂からなる組成物、ポリイミド樹脂、ポリアミドイミド樹脂、これらの誘導体又は前駆体等が挙げられる。 Examples of the insulating material constituting the mask layer 50 include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, and fluororesin (tetrafluoroethylene, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer). compositions consisting of soluble polyimide siloxane and epoxy resin, polyimide resins, polyamideimide resins, derivatives or precursors thereof, and the like.
 マスク層50は、例えば、上述した絶縁性材料を、陽極板20の両主面における多孔質層22の周縁に重なる位置に塗工して、陽極板20の両主面から内部に向かって浸透させることにより、多孔質層22の周縁に形成される。 For example, the mask layer 50 is formed by coating the above-mentioned insulating material on both main surfaces of the anode plate 20 at a position overlapping the periphery of the porous layer 22 and allowing the material to permeate inward from both main surfaces of the anode plate 20. By doing so, it is formed at the periphery of the porous layer 22.
 マスク層50は、多孔質層22に対して、誘電体層30よりも前のタイミングで形成されてもよいし、誘電体層30よりも後のタイミングで形成されてもよい。 The mask layer 50 may be formed on the porous layer 22 at a timing before the dielectric layer 30, or may be formed at a timing after the dielectric layer 30.
 図2及び図4に示すコンデンサアレイ1は、複数のコンデンサ部10に加えて、封止部60を更に有している。 The capacitor array 1 shown in FIGS. 2 and 4 further includes a sealing section 60 in addition to the plurality of capacitor sections 10.
 封止部60は、複数のコンデンサ部10の厚み方向Tに相対する両主面側から、複数のコンデンサ部10を封止している。これにより、複数のコンデンサ部10が封止部60で保護される。 The sealing portion 60 seals the plurality of capacitor portions 10 from both main surfaces opposite to each other in the thickness direction T of the plurality of capacitor portions 10 . Thereby, the plurality of capacitor sections 10 are protected by the sealing section 60.
 封止部60は、絶縁性材料で構成されている。つまり、封止部60は、絶縁部として機能する。 The sealing part 60 is made of an insulating material. In other words, the sealing section 60 functions as an insulating section.
 封止部60は、複数の封止層が厚み方向Tに積層されてなる。 The sealing portion 60 is formed by laminating a plurality of sealing layers in the thickness direction T.
 封止部60を構成する複数の封止層は、第1封止層60A及び第2封止層60Bを含んでいる。図2等に示す例において、封止部60は、第1封止層60A及び第2封止層60Bがコンデンサ部10側から順に厚み方向Tに積層されてなる。つまり、図2等に示す例において、第2封止層60Bは、第1封止層60Aに対してコンデンサ部10と反対側に隣接している。 The plurality of sealing layers that constitute the sealing section 60 include a first sealing layer 60A and a second sealing layer 60B. In the example shown in FIG. 2 and the like, the sealing section 60 is formed by laminating a first sealing layer 60A and a second sealing layer 60B in the thickness direction T in order from the capacitor section 10 side. That is, in the example shown in FIG. 2 and the like, the second sealing layer 60B is adjacent to the first sealing layer 60A on the opposite side to the capacitor section 10.
 第1封止層60Aは、複数の封止層のうち、厚み方向Tにおいて最もコンデンサ部10側に位置している。そのため、第1封止層60Aは、コンデンサ部10の表面形状に追従する封止層として機能する。 The first sealing layer 60A is located closest to the capacitor section 10 in the thickness direction T among the plurality of sealing layers. Therefore, the first sealing layer 60A functions as a sealing layer that follows the surface shape of the capacitor section 10.
 第2封止層60Bは、厚み方向Tにおいて第1封止層60Aよりもコンデンサ部10と反対側に位置し、かつ、封止部60の厚み方向Tに相対する両主面を構成している。つまり、第2封止層60Bは、封止部60の最表面に位置している。そのため、第2封止層60Bは、封止部60の両主面、ひいては、コンデンサアレイ1の両主面を平坦にする封止層として機能する。 The second sealing layer 60B is located on the side opposite to the capacitor section 10 from the first sealing layer 60A in the thickness direction T, and constitutes both main surfaces of the sealing section 60 facing in the thickness direction T. There is. That is, the second sealing layer 60B is located on the outermost surface of the sealing part 60. Therefore, the second sealing layer 60B functions as a sealing layer that flattens both main surfaces of the sealing section 60 and, by extension, both main surfaces of the capacitor array 1.
 コンデンサアレイ1では、封止部60において、コンデンサ部10を封止する役割を主に第1封止層60Aが担い、封止部60の両主面、ひいては、コンデンサアレイ1の両主面を平坦にする役割を主に第2封止層60Bが担うことができる。そのため、封止部60が第1封止層60A及び第2封止層60Bを含む複数の封止層で構成されるコンデンサアレイ1では、封止部が1層の封止層のみで構成されているコンデンサアレイと比較して、封止部60に起因する反り、歪み、うねり等が発生しにくくなる。 In the capacitor array 1, in the sealing section 60, the first sealing layer 60A mainly plays the role of sealing the capacitor section 10, and covers both main surfaces of the sealing section 60 and, by extension, both main surfaces of the capacitor array 1. The second sealing layer 60B can mainly play the role of flattening. Therefore, in the capacitor array 1 in which the sealing part 60 is composed of a plurality of sealing layers including the first sealing layer 60A and the second sealing layer 60B, the sealing part is composed of only one sealing layer. Warpage, distortion, waviness, etc. caused by the sealing portion 60 are less likely to occur compared to a capacitor array that is similar to a capacitor array.
 以上のように、コンデンサアレイ1では、反り、歪み、うねり等の発生を抑制可能となるため、平坦性の低下を抑制可能となる。 As described above, in the capacitor array 1, it is possible to suppress the occurrence of warpage, distortion, waviness, etc., and therefore it is possible to suppress the deterioration of flatness.
 封止部60は、少なくとも第1封止層60A及び第2封止層60Bを含んでいればよく、第1封止層60Aと第2封止層60Bとの間に少なくとも1層の封止層を更に含んでいてもよい。 The sealing part 60 only needs to include at least a first sealing layer 60A and a second sealing layer 60B, and at least one layer of sealing is provided between the first sealing layer 60A and the second sealing layer 60B. It may further include layers.
 第1封止層60Aを構成する絶縁性材料は、絶縁性樹脂を含有していてもよい。 The insulating material forming the first sealing layer 60A may contain an insulating resin.
 第1封止層60Aを構成する絶縁性材料に含有される絶縁性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等が挙げられる。 Examples of the insulating resin contained in the insulating material constituting the first sealing layer 60A include epoxy resin, phenol resin, polyimide resin, and the like.
 第1封止層60Aを構成する絶縁性材料は、無機フィラーを更に含有していてもよい。 The insulating material constituting the first sealing layer 60A may further contain an inorganic filler.
 第1封止層60Aを構成する絶縁性材料に含有される無機フィラーとしては、例えば、シリカフィラー、アルミナフィラー等が挙げられる。 Examples of the inorganic filler contained in the insulating material constituting the first sealing layer 60A include silica filler, alumina filler, and the like.
 第1封止層60Aを構成する絶縁性材料に含有される無機フィラーのメジアン径D50は、10μm以下であることが好ましい。この場合、第1封止層60Aが無機フィラーを含有していても、コンデンサ部10の表面形状に追従しやすくなる。 It is preferable that the median diameter D 50 of the inorganic filler contained in the insulating material constituting the first sealing layer 60A is 10 μm or less. In this case, even if the first sealing layer 60A contains an inorganic filler, it can easily follow the surface shape of the capacitor section 10.
 第1封止層60Aを構成する絶縁性材料に含有される無機フィラーのメジアン径D50は、0.1μm以上であることが好ましい。 It is preferable that the median diameter D 50 of the inorganic filler contained in the insulating material constituting the first sealing layer 60A is 0.1 μm or more.
 封止層を構成する絶縁性材料に含有される無機フィラーのメジアン径D50は、以下のようにして定められる。まず、コンデンサアレイを切断、研磨等することにより、対象の封止層が露出した厚み方向に沿う断面、ここでは、図2に示すような、第1封止層が露出した厚み方向に沿う断面が現れるようにする。次に、上記断面の画像を、走査型電子顕微鏡(SEM)等で撮影する。続いて、撮影された断面画像において、エネルギー分散型X線分析(EDX)等の分析方法により、第1封止層の存在領域、更には、第1封止層の内部に存在する無機フィラーの存在領域を確認する。そして、断面画像の画像解析を行うことにより、第1封止層の内部に存在する無機フィラーの等価円相当径を測定し、得られた等価円相当径を無機フィラーの粒径とする。その後、得られた無機フィラーの粒径から個数基準の累積粒径分布を求め、その個数基準の累積粒径分布において累積確率が50%となる粒径を、無機フィラーのメジアン径D50と定める。 The median diameter D50 of the inorganic filler contained in the insulating material constituting the sealing layer is determined as follows. First, by cutting, polishing, etc. the capacitor array, a cross section along the thickness direction in which the target sealing layer is exposed, here, a cross section along the thickness direction in which the first sealing layer is exposed, as shown in FIG. appear. Next, an image of the cross section is taken using a scanning electron microscope (SEM) or the like. Next, in the photographed cross-sectional image, an analysis method such as energy dispersive X-ray analysis (EDX) is used to determine the region where the first sealing layer exists, and furthermore, the presence of the inorganic filler present inside the first sealing layer. Check the existence area. Then, by performing image analysis of the cross-sectional image, the equivalent circular diameter of the inorganic filler present inside the first sealing layer is measured, and the obtained equivalent circular diameter is taken as the particle size of the inorganic filler. Thereafter, a number-based cumulative particle size distribution is determined from the particle size of the obtained inorganic filler, and the particle size at which the cumulative probability is 50% in the number-based cumulative particle size distribution is determined as the median diameter D 50 of the inorganic filler. .
 第1封止層60Aは、例えば、絶縁性樹脂シートを熱圧着する方法、絶縁性樹脂ペーストを塗工した後で熱硬化させる方法等で、コンデンサ部10の両主面側からコンデンサ部10を封止するように形成される。 The first sealing layer 60A is formed by attaching the capacitor part 10 from both main surfaces of the capacitor part 10, for example, by thermocompression bonding an insulating resin sheet, or by applying an insulating resin paste and then thermosetting it. Formed to seal.
 第2封止層60Bを構成する絶縁性材料は、絶縁性樹脂を含有していてもよい。 The insulating material forming the second sealing layer 60B may contain an insulating resin.
 第2封止層60Bを構成する絶縁性材料に含有される絶縁性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等が挙げられる。 Examples of the insulating resin contained in the insulating material constituting the second sealing layer 60B include epoxy resin, phenol resin, and polyimide resin.
 第1封止層60A及び第2封止層60Bを構成する絶縁性材料は、互いに異なる絶縁性樹脂を含有していることが好ましい。 It is preferable that the insulating materials forming the first sealing layer 60A and the second sealing layer 60B contain different insulating resins.
 本明細書中、「複数の封止層を構成する絶縁性材料は、互いに異なる絶縁性樹脂を含有する」とは、複数の封止層を構成する絶縁性材料について、少なくとも絶縁性樹脂の種類が互いに異なることを意味し、好ましくは、絶縁性樹脂の種類に加えて、絶縁性材料の全量に対する絶縁性樹脂の含有量の割合が互いに異なることを意味する。 In this specification, "the insulating materials constituting the plurality of sealing layers contain different insulating resins" refers to at least the types of insulating resins with respect to the insulating materials constituting the plurality of sealing layers. It means that they are different from each other, and preferably means that in addition to the type of insulating resin, the ratio of the content of the insulating resin to the total amount of the insulating material is different from each other.
 第1封止層60A及び第2封止層60Bを構成する絶縁性材料が、互いに異なる絶縁性樹脂を含有していることにより、第1封止層60A及び第2封止層60Bは、互いに異なる特性を有しやすくなる。 Since the insulating materials constituting the first sealing layer 60A and the second sealing layer 60B contain different insulating resins, the first sealing layer 60A and the second sealing layer 60B are different from each other. They tend to have different characteristics.
 上述したように、コンデンサアレイ1では、封止部60において、コンデンサ部10を封止する役割を主に第1封止層60Aが担い、封止部60の両主面、ひいては、コンデンサアレイ1の両主面を平坦にする役割を主に第2封止層60Bが担っている。そのため、第1封止層60A及び第2封止層60Bは、互いに異なる特性を有していることが好ましい。 As described above, in the capacitor array 1, in the sealing section 60, the first sealing layer 60A mainly plays the role of sealing the capacitor section 10, and both main surfaces of the sealing section 60, by extension, the capacitor array 1. The second sealing layer 60B mainly plays the role of flattening both main surfaces. Therefore, it is preferable that the first sealing layer 60A and the second sealing layer 60B have different characteristics from each other.
 なお、第1封止層60A及び第2封止層60Bを構成する絶縁性材料は、互いに同じ絶縁性樹脂を含有していてもよい。 Note that the insulating materials forming the first sealing layer 60A and the second sealing layer 60B may contain the same insulating resin.
 本明細書中、「複数の封止層を構成する絶縁性材料は、互いに同じ絶縁性樹脂を含有する」とは、複数の封止層を構成する絶縁性材料について、少なくとも絶縁性樹脂の種類が互いに同じであることを意味し、好ましくは、絶縁性樹脂の種類に加えて、絶縁性材料の全量に対する絶縁性樹脂の含有量の割合が互いに同じであることを意味する。 In this specification, "the insulating materials constituting the plurality of sealing layers contain the same insulating resin" refers to at least the type of insulating resin with respect to the insulating materials constituting the plurality of sealing layers. are the same, and preferably, in addition to the type of insulating resin, the ratio of the content of the insulating resin to the total amount of the insulating material is the same.
 第2封止層60Bを構成する絶縁性材料は、無機フィラーを更に含有していてもよい。 The insulating material constituting the second sealing layer 60B may further contain an inorganic filler.
 第2封止層60Bを構成する絶縁性材料に含有される無機フィラーとしては、例えば、シリカフィラー、アルミナフィラー等が挙げられる。 Examples of the inorganic filler contained in the insulating material constituting the second sealing layer 60B include silica filler, alumina filler, and the like.
 第1封止層60A及び第2封止層60Bを構成する絶縁性材料に含有される無機フィラーは、少なくとも種類の点で、互いに同じであってもよいし、互いに異なっていてもよい。 The inorganic fillers contained in the insulating materials constituting the first sealing layer 60A and the second sealing layer 60B may be the same or different at least in kind.
 第1封止層60A及び第2封止層60Bを構成する絶縁性材料に含有される無機フィラーのメジアン径D50は、互いに同じであってもよいし、互いに異なっていてもよい。 The median diameter D 50 of the inorganic filler contained in the insulating material constituting the first sealing layer 60A and the second sealing layer 60B may be the same or different.
 第1封止層60A及び第2封止層60Bにおいて、絶縁性材料の全量に対する無機フィラーの含有量の割合は、互いに同じであってもよいし、互いに異なっていてもよい。 In the first sealing layer 60A and the second sealing layer 60B, the ratio of the content of the inorganic filler to the total amount of the insulating material may be the same or different.
 第2封止層60Bを構成する絶縁性材料は、ガラスクロスを更に含有していてもよい。この場合、第2封止層60Bの剛性が向上しやすくなるため、第2封止層60Bの平坦性が維持されやすくなる。その結果、コンデンサアレイ1の平坦性が維持されやすくなる。 The insulating material constituting the second sealing layer 60B may further contain glass cloth. In this case, the rigidity of the second sealing layer 60B is easily improved, so that the flatness of the second sealing layer 60B is easily maintained. As a result, the flatness of the capacitor array 1 is easily maintained.
 ガラスクロスを含有する絶縁性材料としては、例えば、プリプレグ等が挙げられる。 Examples of the insulating material containing glass cloth include prepreg.
 第2封止層60Bは、例えば、第1封止層60Aが上述した方法で形成された後、絶縁性樹脂シートを熱圧着する方法、絶縁性樹脂ペーストを塗工した後で熱硬化させる方法等で、第1封止層60Aに対してコンデンサ部10と反対側に隣接するように形成される。このようにして、第2封止層60Bを、第1封止層60Aに対してビルドアップ工法で形成すると、第2封止層60Bを形成する際の熱処理によって、既に形成された第1封止層60Aを軟化させる必要がない。そのため、第2封止層60Bを形成する際に、第1封止層60A及び第2封止層60Bが一体化せず、第1封止層60Aと第2封止層60Bとの間には界面が存在するようになる。 The second sealing layer 60B can be formed, for example, by thermocompression bonding an insulating resin sheet after the first sealing layer 60A is formed by the method described above, or by applying an insulating resin paste and then thermosetting it. etc., and is formed adjacent to the first sealing layer 60A on the side opposite to the capacitor section 10. In this way, when the second sealing layer 60B is formed using the build-up method on the first sealing layer 60A, the heat treatment when forming the second sealing layer 60B will remove the already formed first sealing layer 60B. There is no need to soften the stop layer 60A. Therefore, when forming the second sealing layer 60B, the first sealing layer 60A and the second sealing layer 60B are not integrated, and there is a gap between the first sealing layer 60A and the second sealing layer 60B. comes to have an interface.
 第1封止層60Aと第2封止層60Bとの間に界面が存在する状態を実現する観点から、第2封止層60Bを構成する絶縁性材料のガラス転移温度は、第1封止層60Aを構成する絶縁性材料のガラス転移温度よりも低いことが好ましい。 From the viewpoint of realizing a state in which an interface exists between the first sealing layer 60A and the second sealing layer 60B, the glass transition temperature of the insulating material constituting the second sealing layer 60B is It is preferable that the glass transition temperature is lower than the glass transition temperature of the insulating material constituting the layer 60A.
 なお、第2封止層60Bを構成する絶縁性材料のガラス転移温度は、第1封止層60Aを構成する絶縁性材料のガラス転移温度と同じであってもよいし、第1封止層60Aを構成する絶縁性材料のガラス転移温度よりも高くてもよい。第2封止層60Bを構成する絶縁性材料のガラス転移温度が、第1封止層60Aを構成する絶縁性材料のガラス転移温度よりも高い場合、第2封止層60Bを構成する絶縁性材料のガラス転移温度が、第1封止層60Aを構成する絶縁性材料のガラス転移温度以下である場合と比較して、コンデンサアレイ1の製造過程等で熱処理が施されても、第2封止層60Bが構成する封止部60の両主面、ひいては、コンデンサアレイ1の両主面の平坦性が維持されやすくなる。 Note that the glass transition temperature of the insulating material constituting the second sealing layer 60B may be the same as the glass transition temperature of the insulating material constituting the first sealing layer 60A, or It may be higher than the glass transition temperature of the insulating material constituting 60A. When the glass transition temperature of the insulating material constituting the second sealing layer 60B is higher than the glass transition temperature of the insulating material constituting the first sealing layer 60A, the insulating material constituting the second sealing layer 60B Compared to the case where the glass transition temperature of the material is lower than the glass transition temperature of the insulating material constituting the first sealing layer 60A, even if heat treatment is performed in the manufacturing process of the capacitor array 1, the second sealing layer The flatness of both main surfaces of the sealing portion 60 constituted by the sealing layer 60B, and thus of both main surfaces of the capacitor array 1, can be easily maintained.
 封止層を構成する絶縁性材料のガラス転移温度は、熱重量・示差熱同時測定(TG-DTA)、又は、示差走査熱量測定(DSC)で測定される。 The glass transition temperature of the insulating material constituting the sealing layer is measured by simultaneous thermogravimetric and differential thermal measurement (TG-DTA) or differential scanning calorimetry (DSC).
 第2封止層60Bの厚み方向Tにおける線膨張係数は、第1封止層60Aの厚み方向Tにおける線膨張係数よりも小さいことが好ましい。第2封止層60Bの厚み方向Tにおける線膨張係数が、第1封止層60Aの厚み方向Tにおける線膨張係数よりも小さい場合、第2封止層60Bの厚み方向Tにおける線膨張係数が、第1封止層60Aの厚み方向Tにおける線膨張係数以上である場合と比較して、コンデンサアレイ1の製造過程等で熱処理が施されても、第2封止層60Bが構成する封止部60の両主面、ひいては、コンデンサアレイ1の両主面の平坦性が維持されやすくなる。 The linear expansion coefficient in the thickness direction T of the second sealing layer 60B is preferably smaller than the linear expansion coefficient in the thickness direction T of the first sealing layer 60A. When the linear expansion coefficient in the thickness direction T of the second sealing layer 60B is smaller than the linear expansion coefficient in the thickness direction T of the first sealing layer 60A, the linear expansion coefficient in the thickness direction T of the second sealing layer 60B is smaller than that of the first sealing layer 60A in the thickness direction T. , the linear expansion coefficient in the thickness direction T of the first sealing layer 60A or more is greater than or equal to the linear expansion coefficient in the thickness direction T of the first sealing layer 60A. The flatness of both main surfaces of the portion 60 and, by extension, both main surfaces of the capacitor array 1 can be easily maintained.
 なお、第2封止層60Bの厚み方向Tにおける線膨張係数は、第1封止層60Aの厚み方向Tにおける線膨張係数と同じであってよいし、第1封止層60Aの厚み方向Tにおける線膨張係数よりも大きくてもよい。 The linear expansion coefficient in the thickness direction T of the second sealing layer 60B may be the same as the linear expansion coefficient in the thickness direction T of the first sealing layer 60A. The coefficient of linear expansion may be larger than the coefficient of linear expansion.
 封止層の厚み方向における線膨張係数は、熱機械分析(TMA)で測定される。 The linear expansion coefficient in the thickness direction of the sealing layer is measured by thermomechanical analysis (TMA).
 第1封止層60Aは、複数のコンデンサ部10の両主面を覆う第1絶縁部61を有していることが好ましい。図2等に示す例において、第1絶縁部61は、複数のコンデンサ部10の両主面を構成する陰極層40及びマスク層50を覆っている。 It is preferable that the first sealing layer 60A has a first insulating part 61 that covers both main surfaces of the plurality of capacitor parts 10. In the example shown in FIG. 2 and the like, the first insulating section 61 covers the cathode layer 40 and the mask layer 50 that constitute both main surfaces of the plurality of capacitor sections 10.
 第1絶縁部61は、厚み方向Tから見たときに複数のコンデンサ部10に重なっている。 The first insulating section 61 overlaps the plurality of capacitor sections 10 when viewed from the thickness direction T.
 封止部60の両主面のうちの一方主面側の領域において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1と、第2封止層60Bの厚み方向Tにおける最大寸法db1とは、互いに異なっていることが好ましい。 In a region on one main surface side of both main surfaces of the sealing part 60, the maximum dimension da1 in the thickness direction T of the first insulating part 61 of the first sealing layer 60A and the thickness direction of the second sealing layer 60B The maximum dimension db1 at T is preferably different from each other.
 封止部60の両主面のうちの一方主面側の領域において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1は、第2封止層60Bの厚み方向Tにおける最大寸法db1よりも大きいことが好ましい。この場合、第1絶縁部61がコンデンサ部10の表面形状に追従しつつ、第1絶縁部61のコンデンサ部10と反対側の主面を平坦にすることが容易になる。その結果、封止部60の両主面、ひいては、コンデンサアレイ1の両主面を平坦にすることが容易になる。 In the area on the side of one of the two main surfaces of the sealing part 60, the maximum dimension da1 in the thickness direction T of the first insulating part 61 of the first sealing layer 60A is equal to the thickness direction of the second sealing layer 60B. It is preferably larger than the maximum dimension db1 at T. In this case, while the first insulating part 61 follows the surface shape of the capacitor part 10, it becomes easy to flatten the main surface of the first insulating part 61 on the side opposite to the capacitor part 10. As a result, both main surfaces of the sealing portion 60 and, by extension, both main surfaces of the capacitor array 1 can be easily made flat.
 封止部60の両主面のうちの一方主面側の領域において、第2封止層60Bの厚み方向Tにおける最大寸法db1に対する、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1の割合(da1/db1)は、110%以上であることが好ましい。 In the region on one main surface side of both main surfaces of the sealing part 60, the thickness direction of the first insulating part 61 of the first sealing layer 60A with respect to the maximum dimension db1 in the thickness direction T of the second sealing layer 60B. The ratio of the maximum dimension da1 in T (da1/db1) is preferably 110% or more.
 封止部60の両主面のうちの一方主面側の領域において、第2封止層60Bの厚み方向Tにおける最大寸法db1に対する、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1の割合(da1/db1)は、500%以下であることが好ましい。 In the region on one main surface side of both main surfaces of the sealing part 60, the thickness direction of the first insulating part 61 of the first sealing layer 60A with respect to the maximum dimension db1 in the thickness direction T of the second sealing layer 60B. The ratio of the maximum dimension da1 in T (da1/db1) is preferably 500% or less.
 封止部60の両主面のうちの一方主面側の領域において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1は、5μm以上であることが好ましい。 It is preferable that the maximum dimension da1 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A in the region on one of the two main surfaces of the sealing section 60 is 5 μm or more.
 封止部60の両主面のうちの一方主面側の領域において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1は、100μm以下であることが好ましい。 In a region on one of the two principal surfaces of the sealing portion 60, the maximum dimension da1 in the thickness direction T of the first insulating portion 61 of the first sealing layer 60A is preferably 100 μm or less.
 封止部60の両主面のうちの一方主面側の領域において、第2封止層60Bの厚み方向Tにおける最大寸法db1は、100μm以下であることが好ましい。 It is preferable that the maximum dimension db1 in the thickness direction T of the second sealing layer 60B in the region on one of the two main surfaces of the sealing portion 60 is 100 μm or less.
 封止部60の両主面のうちの一方主面側の領域において、第2封止層60Bの厚み方向Tにおける最大寸法db1は、5μm以上であることが好ましい。 It is preferable that the maximum dimension db1 in the thickness direction T of the second sealing layer 60B in the region on one of the two main surfaces of the sealing portion 60 is 5 μm or more.
 封止部60の両主面のうちの一方主面側の領域において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1に対する、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最小寸法da2の割合(da2/da1)は、50%以下であってもよい。この場合、封止部60の一方主面側に位置するコンデンサ部10の一方主面において、大きな段差が存在すると言える。これに対して、コンデンサアレイ1では、コンデンサ部10の一方主面に大きな段差が存在していても、第1封止層60A及び第2封止層60Bを含む複数の封止層により、コンデンサアレイ1の平坦性の低下を抑制可能となる。 In a region on one main surface side of both main surfaces of the sealing part 60, the first of the first sealing layer 60A with respect to the maximum dimension da1 in the thickness direction T of the first insulating part 61 of the first sealing layer 60A. The ratio (da2/da1) of the minimum dimension da2 in the thickness direction T of the insulating portion 61 may be 50% or less. In this case, it can be said that a large step exists on one main surface of the capacitor section 10 located on the one main surface side of the sealing section 60. In contrast, in the capacitor array 1, even if there is a large step on one main surface of the capacitor section 10, the plurality of sealing layers including the first sealing layer 60A and the second sealing layer 60B allow the capacitor to This makes it possible to suppress deterioration in the flatness of the array 1.
 封止部60の両主面のうちの一方主面側の領域において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1に対する、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最小寸法da2の割合(da2/da1)は、5%以上であってもよい。 In a region on one main surface side of both main surfaces of the sealing part 60, the first of the first sealing layer 60A with respect to the maximum dimension da1 in the thickness direction T of the first insulating part 61 of the first sealing layer 60A. The ratio (da2/da1) of the minimum dimension da2 in the thickness direction T of the insulating portion 61 may be 5% or more.
 第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1は、第1封止層60Aのうち、厚み方向Tから見たときに複数のコンデンサ部10に重なる部分の厚み方向Tにおける最大寸法に該当する。図3及び図5に示す例において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法da1は、第1絶縁部61のコンデンサ部10と反対側の主面と、マスク層50の陽極板20と反対側の主面との間の厚み方向Tにおける距離に該当する。 The maximum dimension da1 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is the thickness direction of the portion of the first sealing layer 60A that overlaps with the plurality of capacitor sections 10 when viewed from the thickness direction T. This corresponds to the maximum dimension at T. In the examples shown in FIGS. 3 and 5, the maximum dimension da1 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is between the main surface of the first insulating section 61 opposite to the capacitor section 10 and the mask. This corresponds to the distance in the thickness direction T between the anode plate 20 of the layer 50 and the opposite main surface.
 第1封止層60Aの第1絶縁部61の厚み方向Tにおける最小寸法da2は、第1封止層60Aのうち、厚み方向Tから見たときに複数のコンデンサ部10に重なる部分の厚み方向Tにおける最小寸法に該当する。図3及び図5に示す例において、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最小寸法da2は、第1絶縁部61のコンデンサ部10と反対側の主面と、陰極層40の陽極板20と反対側の主面、ここでは、導電体層42の陽極板20と反対側の主面との間の厚み方向Tにおける距離に該当する。 The minimum dimension da2 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is the thickness direction of the portion of the first sealing layer 60A that overlaps with the plurality of capacitor sections 10 when viewed from the thickness direction T. This corresponds to the minimum dimension in T. In the examples shown in FIGS. 3 and 5, the minimum dimension da2 in the thickness direction T of the first insulating section 61 of the first sealing layer 60A is between the main surface of the first insulating section 61 opposite to the capacitor section 10 and the cathode This corresponds to the distance in the thickness direction T between the main surface of the layer 40 opposite to the anode plate 20, here, the main surface of the conductor layer 42 opposite to the anode plate 20.
 第2封止層60Bの厚み方向Tにおける最大寸法db1は、第2封止層60Bのコンデンサ部10と反対側の主面と、第2封止層60Bのコンデンサ部10側の主面との間の厚み方向Tにおける最大距離に該当する。 The maximum dimension db1 in the thickness direction T of the second sealing layer 60B is the difference between the main surface of the second sealing layer 60B on the opposite side to the capacitor section 10 and the main surface of the second sealing layer 60B on the capacitor section 10 side. This corresponds to the maximum distance in the thickness direction T between.
 封止層の厚み方向における最大寸法及び最小寸法は、以下のようにして定められる。まず、コンデンサアレイを切断、研磨等することにより、対象の封止層が露出した厚み方向に沿う断面、ここでは、図2に示すような、第1封止層及び第2封止層が露出した厚み方向に沿う断面が現れるようにする。次に、上記断面の画像を、走査型電子顕微鏡等で撮影する。続いて、撮影された断面画像において、エネルギー分散型X線分析等の分析方法により、第1封止層の第1絶縁部の存在領域、及び、第2封止層の存在領域を確認する。そして、断面画像の画像解析を行うことにより、第1封止層の第1絶縁部の厚み方向における最大寸法と、第1封止層の第1絶縁部の厚み方向における最小寸法と、第2封止層の厚み方向における最大寸法とを測定する。 The maximum and minimum dimensions in the thickness direction of the sealing layer are determined as follows. First, by cutting, polishing, etc. the capacitor array, a cross section along the thickness direction in which the target sealing layer is exposed, here, the first sealing layer and the second sealing layer are exposed as shown in FIG. so that a cross section along the thickness direction appears. Next, an image of the cross section is taken using a scanning electron microscope or the like. Subsequently, in the photographed cross-sectional image, the region where the first insulating portion of the first sealing layer exists and the region where the second sealing layer exists are confirmed by an analysis method such as energy dispersive X-ray analysis. Then, by performing image analysis of the cross-sectional image, the maximum dimension in the thickness direction of the first insulating part of the first sealing layer, the minimum dimension in the thickness direction of the first insulating part of the first sealing layer, and the second The maximum dimension in the thickness direction of the sealing layer is measured.
 以上では、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最大寸法と、第1封止層60Aの第1絶縁部61の厚み方向Tにおける最小寸法と、第2封止層60Bの厚み方向Tにおける最大寸法とについて、封止部60の両主面のうちの一方主面側の領域における態様を説明したが、封止部60の両主面のうちの他方主面側の領域においても同様の態様であることが好ましい。 In the above, the maximum dimension in the thickness direction T of the first insulating part 61 of the first sealing layer 60A, the minimum dimension in the thickness direction T of the first insulating part 61 of the first sealing layer 60A, and the second sealing layer Regarding the maximum dimension in the thickness direction T of 60B, the aspect in the area on the side of one of both main surfaces of the sealing part 60 has been described, but the area on the side of the other main surface of both main surfaces of the sealing part 60 It is preferable that the same aspect be applied to the region.
 第1封止層60Aは、複数のコンデンサ部10を各々に分断する第2絶縁部62を更に有していることが好ましい。図2に示す例において、第2絶縁部62は、2つのコンデンサ部10を各々に分断するように、2つのコンデンサ部10の間に充填されている。 It is preferable that the first sealing layer 60A further includes a second insulating part 62 that divides the plurality of capacitor parts 10 into each part. In the example shown in FIG. 2, the second insulating section 62 is filled between the two capacitor sections 10 so as to separate the two capacitor sections 10 from each other.
 第1封止層60Aは、複数のコンデンサ部10の各々を厚み方向Tに貫通する第3絶縁部63を更に有していることが好ましい。図2等に示す例において、第3絶縁部63は、複数のコンデンサ部10の各々の陽極板20及びマスク層50を厚み方向Tに貫通している。 It is preferable that the first sealing layer 60A further includes a third insulating part 63 that penetrates each of the plurality of capacitor parts 10 in the thickness direction T. In the example shown in FIG. 2 and the like, the third insulating section 63 penetrates the anode plate 20 and mask layer 50 of each of the plurality of capacitor sections 10 in the thickness direction T.
 第1封止層60Aが第1絶縁部61、第2絶縁部62、及び、第3絶縁部63を有している場合、第1絶縁部61、第2絶縁部62、及び、第3絶縁部63は、コンデンサ部10の表面形状に追従するように設けられることになる。 When the first sealing layer 60A has the first insulating part 61, the second insulating part 62, and the third insulating part 63, the first insulating part 61, the second insulating part 62, and the third insulating part The portion 63 is provided so as to follow the surface shape of the capacitor portion 10.
 第1封止層60Aが第1絶縁部61、第2絶縁部62、及び、第3絶縁部63を有している場合、図2等に示すように、第1絶縁部61、第2絶縁部62、及び、第3絶縁部63は一体化し、各々の絶縁部の界面が現れていなくてもよい。なお、第1絶縁部61、第2絶縁部62、及び、第3絶縁部63は一体化せず、各々の絶縁部の界面が現れていてもよい。 When the first sealing layer 60A has the first insulating part 61, the second insulating part 62, and the third insulating part 63, as shown in FIG. The portion 62 and the third insulating portion 63 may be integrated, and the interface between each insulating portion may not be exposed. Note that the first insulating part 61, the second insulating part 62, and the third insulating part 63 may not be integrated, and the interface between each insulating part may be exposed.
 コンデンサアレイ1は、スルーホール導体70Aを更に有していることが好ましい。 Preferably, the capacitor array 1 further includes a through-hole conductor 70A.
 スルーホール導体70Aは、コンデンサ部10及び封止部60を厚み方向Tに貫通している。図2等に示す例において、スルーホール導体70Aは、コンデンサ部10に加えて、第1封止層60Aの第1絶縁部61と、第2封止層60Bとを厚み方向Tに貫通している。 The through-hole conductor 70A penetrates the capacitor portion 10 and the sealing portion 60 in the thickness direction T. In the example shown in FIG. 2 etc., the through-hole conductor 70A penetrates in the thickness direction T, in addition to the capacitor part 10, the first insulating part 61 of the first sealing layer 60A and the second sealing layer 60B. There is.
 スルーホール導体70Aは、コンデンサ部10及び封止部60を厚み方向Tに貫通する貫通孔71Aの少なくとも内壁面上に設けられていることが好ましい。図2等に示す例において、スルーホール導体70Aは、貫通孔71Aの内部全体ではなく、貫通孔71Aの内壁面上に設けられている。 The through-hole conductor 70A is preferably provided on at least the inner wall surface of the through hole 71A that penetrates the capacitor portion 10 and the sealing portion 60 in the thickness direction T. In the example shown in FIG. 2 and the like, the through-hole conductor 70A is provided on the inner wall surface of the through-hole 71A rather than the entire inside of the through-hole 71A.
 スルーホール導体70Aは、貫通孔71Aの内壁面で陽極板20に電気的に接続されていることが好ましい。より具体的には、スルーホール導体70Aは、面方向において貫通孔71Aの内壁面に対向する陽極板20の端面に電気的に接続されていることが好ましい。これにより、陽極板20は、スルーホール導体70Aを介して外部に電気的に導出される。 It is preferable that the through-hole conductor 70A is electrically connected to the anode plate 20 on the inner wall surface of the through-hole 71A. More specifically, the through-hole conductor 70A is preferably electrically connected to the end surface of the anode plate 20 that faces the inner wall surface of the through-hole 71A in the planar direction. Thereby, the anode plate 20 is electrically led out to the outside via the through-hole conductor 70A.
 スルーホール導体70Aに電気的に接続される陽極板20の端面には、芯部21及び多孔質層22が露出していることが好ましい。この場合、芯部21に加えて多孔質層22でも、スルーホール導体70Aとの電気的な接続がなされる。 It is preferable that the core portion 21 and the porous layer 22 are exposed on the end surface of the anode plate 20 that is electrically connected to the through-hole conductor 70A. In this case, in addition to the core portion 21, the porous layer 22 is also electrically connected to the through-hole conductor 70A.
 厚み方向Tから見たとき、スルーホール導体70Aは、貫通孔71Aの全周にわたって陽極板20に電気的に接続されていることが好ましい。この場合、陽極板20とスルーホール導体70Aとの接続抵抗が低下しやすくなるため、コンデンサ部10の等価直列抵抗(ESR)が低下しやすくなる。 When viewed from the thickness direction T, the through-hole conductor 70A is preferably electrically connected to the anode plate 20 over the entire circumference of the through-hole 71A. In this case, since the connection resistance between the anode plate 20 and the through-hole conductor 70A tends to decrease, the equivalent series resistance (ESR) of the capacitor section 10 tends to decrease.
 スルーホール導体70Aは、例えば、以下のようにして形成される。まず、ドリル加工、レーザー加工等を行うことにより、コンデンサ部10及び封止部60を厚み方向Tに貫通する貫通孔71Aを形成する。そして、貫通孔71Aの内壁面を、銅、金、銀等の低抵抗の金属を含有する金属材料でメタライズすることにより、スルーホール導体70Aを形成する。スルーホール導体70Aを形成する際、例えば、貫通孔71Aの内壁面を、無電解銅めっき処理、電解銅めっき処理等でメタライズすることにより、加工が容易になる。なお、スルーホール導体70Aを形成する方法については、貫通孔71Aの内壁面をメタライズする方法以外に、金属材料、金属と樹脂との複合材料等を貫通孔71Aに充填する方法であってもよい。 The through-hole conductor 70A is formed, for example, as follows. First, a through hole 71A passing through the capacitor section 10 and the sealing section 60 in the thickness direction T is formed by drilling, laser processing, or the like. Then, the through-hole conductor 70A is formed by metallizing the inner wall surface of the through-hole 71A with a metal material containing a low-resistance metal such as copper, gold, or silver. When forming the through-hole conductor 70A, processing is facilitated by, for example, metalizing the inner wall surface of the through-hole 71A by electroless copper plating, electrolytic copper plating, or the like. As for the method of forming the through-hole conductor 70A, in addition to the method of metalizing the inner wall surface of the through-hole 71A, a method of filling the through-hole 71A with a metal material, a composite material of metal and resin, etc. may be used. .
 コンデンサアレイ1は、面方向において陽極板20とスルーホール導体70Aとの間に設けられた陽極接続層72を更に有していることが好ましい。図2等に示す例において、陽極接続層72は、陽極板20及びスルーホール導体70Aの両方に接している。 It is preferable that the capacitor array 1 further includes an anode connection layer 72 provided between the anode plate 20 and the through-hole conductor 70A in the planar direction. In the example shown in FIG. 2 and the like, the anode connection layer 72 is in contact with both the anode plate 20 and the through-hole conductor 70A.
 陽極接続層72が面方向において陽極板20とスルーホール導体70Aとの間に設けられていることにより、陽極接続層72が、陽極板20に対するバリア層、より具体的には、芯部21及び多孔質層22に対するバリア層として機能する。陽極接続層72が陽極板20に対するバリア層として機能すると、後述する外部電極層80A等を形成するための薬液処理時に生じる陽極板20の溶解が抑制され、ひいては、コンデンサ部10への薬液の浸入が抑制されるため、コンデンサアレイ1の信頼性が向上しやすくなる。 Since the anode connection layer 72 is provided between the anode plate 20 and the through-hole conductor 70A in the planar direction, the anode connection layer 72 serves as a barrier layer for the anode plate 20, more specifically, as a barrier layer for the anode plate 20, and more specifically, as a barrier layer for the anode plate 20 and It functions as a barrier layer for the porous layer 22. When the anode connection layer 72 functions as a barrier layer for the anode plate 20, dissolution of the anode plate 20 that occurs during chemical treatment for forming an external electrode layer 80A, etc., which will be described later, is suppressed, and as a result, infiltration of the chemical liquid into the capacitor section 10 is suppressed. Since this is suppressed, the reliability of the capacitor array 1 can be easily improved.
 陽極板20とスルーホール導体70Aとは、陽極接続層72を介して電気的に接続されていることが好ましい。 It is preferable that the anode plate 20 and the through-hole conductor 70A are electrically connected via the anode connection layer 72.
 陽極接続層72の厚み方向Tにおける寸法は、陽極板20の厚み方向Tにおける寸法よりも大きいことが好ましい。この場合、陽極板20の端面全体が陽極接続層72で覆われるため、陽極板20に対する陽極接続層72のバリア性が向上しやすくなる。 The dimension of the anode connection layer 72 in the thickness direction T is preferably larger than the dimension of the anode plate 20 in the thickness direction T. In this case, since the entire end surface of the anode plate 20 is covered with the anode connection layer 72, the barrier properties of the anode connection layer 72 against the anode plate 20 are likely to be improved.
 陽極接続層72の厚み方向Tにおける寸法は、陽極板20の厚み方向Tにおける寸法の100%よりも大きく、200%以下であることが好ましい。 The dimension of the anode connection layer 72 in the thickness direction T is preferably larger than 100% and 200% or less of the dimension of the anode plate 20 in the thickness direction T.
 なお、陽極接続層72の厚み方向Tにおける寸法は、陽極板20の厚み方向Tにおける寸法と同じであってもよいし、陽極板20の厚み方向Tにおける寸法よりも小さくてもよい。 Note that the dimension of the anode connection layer 72 in the thickness direction T may be the same as the dimension of the anode plate 20 in the thickness direction T, or may be smaller than the dimension of the anode plate 20 in the thickness direction T.
 厚み方向Tから見たとき、スルーホール導体70Aは、貫通孔71Aの全周にわたって陽極接続層72に接続されていることが好ましい。この場合、スルーホール導体70Aと陽極接続層72との接触面積が大きくなるため、スルーホール導体70Aと陽極接続層72との接続抵抗が低下しやすくなる。その結果、陽極板20とスルーホール導体70Aとの接続抵抗が低下しやすくなるため、コンデンサ部10の等価直列抵抗が低下しやすくなる。更に、スルーホール導体70Aと陽極接続層72との間の密着性が向上しやすくなるため、熱応力によるスルーホール導体70Aと陽極接続層72との間の剥離等の不具合が生じにくくなる。 When viewed from the thickness direction T, the through-hole conductor 70A is preferably connected to the anode connection layer 72 over the entire circumference of the through-hole 71A. In this case, since the contact area between the through-hole conductor 70A and the anode connection layer 72 becomes large, the connection resistance between the through-hole conductor 70A and the anode connection layer 72 tends to decrease. As a result, the connection resistance between the anode plate 20 and the through-hole conductor 70A tends to decrease, so the equivalent series resistance of the capacitor section 10 tends to decrease. Furthermore, since the adhesion between the through-hole conductor 70A and the anode connection layer 72 is easily improved, problems such as peeling between the through-hole conductor 70A and the anode connection layer 72 due to thermal stress are less likely to occur.
 陽極接続層72は、ニッケルを主成分とする層を含むことが好ましい。この場合、陽極板20を構成する金属(例えば、アルミニウム)等へのダメージが低減されるため、陽極板20に対する陽極接続層72のバリア性が向上しやすくなる。 It is preferable that the anode connection layer 72 includes a layer containing nickel as a main component. In this case, damage to the metal (for example, aluminum) constituting the anode plate 20 is reduced, so that the barrier properties of the anode connection layer 72 with respect to the anode plate 20 are easily improved.
 なお、面方向において、陽極板20とスルーホール導体70Aとの間には、陽極接続層72が設けられていなくてもよい。この場合、スルーホール導体70Aは、陽極板20の端面に直に接続されていてもよい。 Note that the anode connection layer 72 may not be provided between the anode plate 20 and the through-hole conductor 70A in the planar direction. In this case, the through-hole conductor 70A may be directly connected to the end surface of the anode plate 20.
 コンデンサアレイ1は、スルーホール導体70Aに電気的に接続された外部電極層80Aを更に有していることが好ましい。図2等に示す例において、外部電極層80Aは、スルーホール導体70Aの表面上に設けられており、コンデンサアレイ1(コンデンサ部10)の接続端子として機能する。図2等に示す例において、外部電極層80Aは、スルーホール導体70Aを介して陽極板20に電気的に接続されており、陽極板20用の接続端子として機能する。 Preferably, the capacitor array 1 further includes an external electrode layer 80A electrically connected to the through-hole conductor 70A. In the example shown in FIG. 2 and the like, the external electrode layer 80A is provided on the surface of the through-hole conductor 70A, and functions as a connection terminal of the capacitor array 1 (capacitor section 10). In the example shown in FIG. 2 and the like, the external electrode layer 80A is electrically connected to the anode plate 20 via the through-hole conductor 70A, and functions as a connection terminal for the anode plate 20.
 外部電極層80Aの構成材料としては、例えば、銀、金、銅等の低抵抗の金属を含有する金属材料等が挙げられる。この場合、外部電極層80Aは、例えば、スルーホール導体70Aの表面にめっき処理を行うことにより形成される。 Examples of the constituent material of the external electrode layer 80A include metal materials containing low-resistance metals such as silver, gold, and copper. In this case, the external electrode layer 80A is formed, for example, by plating the surface of the through-hole conductor 70A.
 外部電極層80Aと他の部材との間の密着性、ここでは、外部電極層80Aとスルーホール導体70Aとの間の密着性を向上させるために、外部電極層80Aの構成材料として、銀フィラー、銅フィラー、ニッケルフィラー、及び、カーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーと樹脂との混合材料が用いられてもよい。 In order to improve the adhesion between the external electrode layer 80A and other members, here, the adhesion between the external electrode layer 80A and the through-hole conductor 70A, silver filler is used as a constituent material of the external electrode layer 80A. A mixed material of a resin and at least one conductive filler selected from the group consisting of , copper filler, nickel filler, and carbon filler may be used.
 コンデンサアレイ1は、貫通孔71Aに樹脂材料が充填されてなる樹脂充填部90Aを更に有していることが好ましい。図2等に示す例において、樹脂充填部90Aは、貫通孔71Aの内壁面上のスルーホール導体70Aで囲まれた空間に設けられている。樹脂充填部90Aが設けられることで貫通孔71A内の空間が解消されると、スルーホール導体70Aのデラミネーションの発生が抑制される。 It is preferable that the capacitor array 1 further includes a resin filling portion 90A in which the through hole 71A is filled with a resin material. In the example shown in FIG. 2 and the like, the resin filling portion 90A is provided in a space surrounded by the through-hole conductor 70A on the inner wall surface of the through-hole 71A. When the space within the through hole 71A is eliminated by providing the resin filling portion 90A, the occurrence of delamination of the through hole conductor 70A is suppressed.
 樹脂充填部90Aの熱膨張率は、スルーホール導体70Aの熱膨張率よりも高いことが好ましい。より具体的には、貫通孔71Aに充填された樹脂材料の熱膨張率は、スルーホール導体70Aの構成材料(例えば、銅)の熱膨張率よりも高いことが好ましい。この場合、樹脂充填部90A、より具体的には、貫通孔71Aに充填された樹脂材料が高温環境下で膨張することにより、スルーホール導体70Aが貫通孔71Aの内側から外側に向かって貫通孔71Aの内壁面に押さえつけられるため、スルーホール導体70Aのデラミネーションの発生が充分に抑制される。 It is preferable that the coefficient of thermal expansion of the resin filled portion 90A is higher than that of the through-hole conductor 70A. More specifically, the coefficient of thermal expansion of the resin material filled in the through-hole 71A is preferably higher than the coefficient of thermal expansion of the constituent material (for example, copper) of the through-hole conductor 70A. In this case, the resin filling portion 90A, more specifically, the resin material filled in the through hole 71A expands in a high temperature environment, so that the through hole conductor 70A moves from the inside of the through hole 71A to the outside. Since it is pressed against the inner wall surface of the through-hole conductor 71A, the occurrence of delamination of the through-hole conductor 70A is sufficiently suppressed.
 なお、樹脂充填部90Aの熱膨張率は、スルーホール導体70Aの熱膨張率と同じであってもよいし、スルーホール導体70Aの熱膨張率よりも低くてもよい。より具体的には、貫通孔71Aに充填された樹脂材料の熱膨張率は、スルーホール導体70Aの構成材料の熱膨張率と同じであってもよいし、スルーホール導体70Aの構成材料の熱膨張率よりも低くてもよい。 Note that the coefficient of thermal expansion of the resin filling portion 90A may be the same as the coefficient of thermal expansion of the through-hole conductor 70A, or may be lower than the coefficient of thermal expansion of the through-hole conductor 70A. More specifically, the coefficient of thermal expansion of the resin material filled in the through-hole 71A may be the same as that of the constituent material of the through-hole conductor 70A, or the thermal expansion coefficient of the resin material filled in the through-hole 71A may be the same as that of the constituent material of the through-hole conductor 70A. It may be lower than the expansion rate.
 なお、コンデンサアレイ1は、樹脂充填部90Aを有していなくてもよい。この場合、スルーホール導体70Aは、貫通孔71Aの内壁面上だけではなく、貫通孔71Aの内部全体に設けられていることが好ましい。 Note that the capacitor array 1 does not need to have the resin filling part 90A. In this case, it is preferable that the through-hole conductor 70A is provided not only on the inner wall surface of the through-hole 71A but also throughout the inside of the through-hole 71A.
 コンデンサアレイ1は、スルーホール導体70Bを更に有していることが好ましい。 It is preferable that the capacitor array 1 further includes a through-hole conductor 70B.
 スルーホール導体70Bは、コンデンサ部10及び封止部60、厳密には、封止部60を厚み方向Tに貫通している。図2等に示す例において、スルーホール導体70Bは、第1封止層60Aの第3絶縁部63と、第2封止層60Bとを貫通している。 The through-hole conductor 70B penetrates the capacitor portion 10 and the sealing portion 60, or more specifically, the sealing portion 60 in the thickness direction T. In the example shown in FIG. 2 and the like, the through-hole conductor 70B penetrates the third insulating portion 63 of the first sealing layer 60A and the second sealing layer 60B.
 スルーホール導体70Bは、コンデンサ部10及び封止部60、厳密には、封止部60を厚み方向Tに貫通する貫通孔71Bの少なくとも内壁面上に設けられていることが好ましい。図2等に示す例において、スルーホール導体70Bは、貫通孔71Bの内部全体ではなく、貫通孔71Bの内壁面上に設けられている。 The through-hole conductor 70B is preferably provided on at least the inner wall surface of the capacitor portion 10 and the sealing portion 60, or more specifically, the through hole 71B that penetrates the sealing portion 60 in the thickness direction T. In the example shown in FIG. 2 and the like, the through-hole conductor 70B is provided on the inner wall surface of the through-hole 71B rather than the entire inside of the through-hole 71B.
 スルーホール導体70Bは、例えば、以下のようにして形成される。まず、ドリル加工、レーザー加工等を行うことにより、コンデンサ部10を厚み方向Tに貫通する貫通孔を形成する。次に、第1封止層60Aを、コンデンサ部10の両主面側からコンデンサ部10を封止するように形成することにより、上述した貫通孔に絶縁性材料が充填されてなる第3絶縁部63を形成する。更に、第2封止層60Bを、第1封止層60Aに対してコンデンサ部10と反対側に隣接するように形成する。そして、第1封止層60Aの第3絶縁部63と、第2封止層60Bとに対して、ドリル加工、レーザー加工等を行うことにより、貫通孔71Bを形成する。この際、貫通孔71Bの直径を第3絶縁部63の直径よりも小さくすることにより、面方向において、先に形成された貫通孔の内壁面と貫通孔71Bの内壁面との間に第3絶縁部63が設けられた状態にする。その後、貫通孔71Bの内壁面を、銅、金、銀等の低抵抗の金属を含有する金属材料でメタライズすることにより、スルーホール導体70Bを形成する。スルーホール導体70Bを形成する際、例えば、貫通孔71Bの内壁面を、無電解銅めっき処理、電解銅めっき処理等でメタライズすることにより、加工が容易になる。なお、スルーホール導体70Bを形成する方法については、貫通孔71Bの内壁面をメタライズする方法以外に、金属材料、金属と樹脂との複合材料等を貫通孔71Bに充填する方法であってもよい。 The through-hole conductor 70B is formed, for example, as follows. First, a through hole passing through the capacitor portion 10 in the thickness direction T is formed by drilling, laser processing, or the like. Next, by forming the first sealing layer 60A so as to seal the capacitor part 10 from both main surfaces of the capacitor part 10, a third insulating layer in which the above-mentioned through hole is filled with an insulating material is formed. A portion 63 is formed. Further, a second sealing layer 60B is formed adjacent to the first sealing layer 60A on the opposite side of the capacitor section 10. Then, a through hole 71B is formed by performing drilling, laser processing, etc. on the third insulating portion 63 of the first sealing layer 60A and the second sealing layer 60B. At this time, by making the diameter of the through hole 71B smaller than the diameter of the third insulating part 63, a third The insulating portion 63 is provided. Thereafter, a through-hole conductor 70B is formed by metallizing the inner wall surface of the through-hole 71B with a metal material containing a low-resistance metal such as copper, gold, or silver. When forming the through-hole conductor 70B, processing is facilitated by, for example, metalizing the inner wall surface of the through-hole 71B by electroless copper plating, electrolytic copper plating, or the like. As for the method of forming the through-hole conductor 70B, in addition to the method of metalizing the inner wall surface of the through-hole 71B, a method of filling the through-hole 71B with a metal material, a composite material of metal and resin, etc. may be used. .
 以上のように、スルーホール導体70Bが第1封止層60Aの第3絶縁部63を厚み方向Tに貫通するように設けられている場合、第3絶縁部63は、面方向において、コンデンサ部10とスルーホール導体70Bとの間、ひいては、陽極板20とスルーホール導体70Bとの間に設けられる。図2等に示す例において、第3絶縁部63は、コンデンサ部10及びスルーホール導体70Bの両方、ひいては、陽極板20及びスルーホール導体70Bの両方に接している。 As described above, when the through-hole conductor 70B is provided so as to penetrate the third insulating part 63 of the first sealing layer 60A in the thickness direction T, the third insulating part 63 is formed in the capacitor part in the planar direction. 10 and the through-hole conductor 70B, and further between the anode plate 20 and the through-hole conductor 70B. In the example shown in FIG. 2 and the like, the third insulating portion 63 is in contact with both the capacitor portion 10 and the through-hole conductor 70B, and furthermore, with both the anode plate 20 and the through-hole conductor 70B.
 第1封止層60Aの第3絶縁部63が、面方向において、コンデンサ部10とスルーホール導体70Bとの間、ひいては、陽極板20とスルーホール導体70Bとの間に設けられていることにより、陽極板20とスルーホール導体70Bとの間の絶縁性、ひいては、陽極板20と陰極層40との間の絶縁性が確保され、両者間の短絡が防止される。 The third insulating portion 63 of the first sealing layer 60A is provided between the capacitor portion 10 and the through-hole conductor 70B, and further between the anode plate 20 and the through-hole conductor 70B in the planar direction. , the insulation between the anode plate 20 and the through-hole conductor 70B, as well as the insulation between the anode plate 20 and the cathode layer 40, is ensured, and short circuits between the two are prevented.
 第1封止層60Aの第3絶縁部63が、コンデンサ部10及びスルーホール導体70Bの両方、ひいては、陽極板20及びスルーホール導体70Bの両方に接している場合、図2等に示すように、第3絶縁部63に接する陽極板20の端面には、芯部21及び多孔質層22が露出していることが好ましい。この場合、多孔質層22と第3絶縁部63との接触面積が大きくなることで両者間の密着性が向上するため、多孔質層22と第3絶縁部63との間の剥離等の不具合が生じにくくなる。 When the third insulating part 63 of the first sealing layer 60A is in contact with both the capacitor part 10 and the through-hole conductor 70B, and furthermore, with both the anode plate 20 and the through-hole conductor 70B, as shown in FIG. It is preferable that the core portion 21 and the porous layer 22 be exposed at the end surface of the anode plate 20 that is in contact with the third insulating portion 63 . In this case, the contact area between the porous layer 22 and the third insulating part 63 increases, which improves the adhesion between them, resulting in problems such as peeling between the porous layer 22 and the third insulating part 63. is less likely to occur.
 第1封止層60Aの第3絶縁部63に接する陽極板20の端面に、芯部21及び多孔質層22が露出している場合、マスク層50の構成材料が多孔質層22の空孔に入り込むことで多孔質層22の内部に広がったマスク層50が、スルーホール導体70Bの周囲に設けられていることが好ましい。この場合、陽極板20とスルーホール導体70Bとの間の絶縁性、ひいては、陽極板20と陰極層40との間の絶縁性が充分に確保され、両者間の短絡が充分に防止される。 When the core part 21 and the porous layer 22 are exposed on the end face of the anode plate 20 in contact with the third insulating part 63 of the first sealing layer 60A, the constituent material of the mask layer 50 is the pores of the porous layer 22. It is preferable that a mask layer 50 that penetrates and spreads inside the porous layer 22 is provided around the through-hole conductor 70B. In this case, the insulation between the anode plate 20 and the through-hole conductor 70B, as well as the insulation between the anode plate 20 and the cathode layer 40, is sufficiently ensured, and a short circuit between the two is sufficiently prevented.
 第1封止層60Aの第3絶縁部63に接する陽極板20の端面に、芯部21及び多孔質層22が露出している場合、第3絶縁部63を構成する絶縁性材料は、多孔質層22の空孔に入り込んでいることが好ましい。この場合、多孔質層22の機械的強度が向上しつつ、多孔質層22の空孔に起因するデラミネーションの発生が抑制される。 When the core part 21 and the porous layer 22 are exposed on the end face of the anode plate 20 that is in contact with the third insulating part 63 of the first sealing layer 60A, the insulating material constituting the third insulating part 63 is porous. It is preferable that the particles penetrate into the pores of the quality layer 22. In this case, the mechanical strength of the porous layer 22 is improved, and the occurrence of delamination due to pores in the porous layer 22 is suppressed.
 第1封止層60Aの第3絶縁部63の熱膨張率は、スルーホール導体70Bの熱膨張率よりも高いことが好ましい。より具体的には、第3絶縁部63を構成する絶縁性材料の熱膨張率は、スルーホール導体70Bの構成材料(例えば、銅)の熱膨張率よりも高いことが好ましい。この場合、第3絶縁部63、より具体的には、第3絶縁部63を構成する絶縁性材料が高温環境下で膨張することにより、多孔質層22及びスルーホール導体70Bが押さえつけられるため、デラミネーションの発生が充分に抑制される。 The coefficient of thermal expansion of the third insulating portion 63 of the first sealing layer 60A is preferably higher than the coefficient of thermal expansion of the through-hole conductor 70B. More specifically, the coefficient of thermal expansion of the insulating material constituting the third insulating portion 63 is preferably higher than the coefficient of thermal expansion of the material (for example, copper) constituting the through-hole conductor 70B. In this case, the third insulating part 63, more specifically, the insulating material constituting the third insulating part 63 expands in a high-temperature environment, and the porous layer 22 and the through-hole conductor 70B are pressed down. The occurrence of delamination is sufficiently suppressed.
 なお、第1封止層60Aの第3絶縁部63の熱膨張率は、スルーホール導体70Bの熱膨張率と同じであってもよいし、スルーホール導体70Bの熱膨張率よりも低くてもよい。より具体的には、第3絶縁部63を構成する絶縁性材料の熱膨張率は、スルーホール導体70Bの構成材料の熱膨張率と同じであってもよいし、スルーホール導体70Bの構成材料の熱膨張率よりも低くてもよい。 Note that the coefficient of thermal expansion of the third insulating portion 63 of the first sealing layer 60A may be the same as the coefficient of thermal expansion of the through-hole conductor 70B, or may be lower than the coefficient of thermal expansion of the through-hole conductor 70B. good. More specifically, the coefficient of thermal expansion of the insulating material constituting the third insulating portion 63 may be the same as the coefficient of thermal expansion of the material constituting the through-hole conductor 70B, or The coefficient of thermal expansion may be lower than that of
 コンデンサアレイ1は、スルーホール導体70Bに電気的に接続された外部電極層80Bを更に有していることが好ましい。図2等に示す例において、外部電極層80Bは、スルーホール導体70Bの表面上に設けられており、コンデンサアレイ1(コンデンサ部10)の接続端子として機能する。 Preferably, the capacitor array 1 further includes an external electrode layer 80B electrically connected to the through-hole conductor 70B. In the example shown in FIG. 2 and the like, external electrode layer 80B is provided on the surface of through-hole conductor 70B, and functions as a connection terminal of capacitor array 1 (capacitor section 10).
 外部電極層80Bの構成材料としては、例えば、銀、金、銅等の低抵抗の金属を含有する金属材料等が挙げられる。この場合、外部電極層80Bは、例えば、スルーホール導体70Bの表面にめっき処理を行うことにより形成される。 Examples of the constituent material of the external electrode layer 80B include metal materials containing low-resistance metals such as silver, gold, and copper. In this case, the external electrode layer 80B is formed, for example, by plating the surface of the through-hole conductor 70B.
 外部電極層80Bと他の部材との間の密着性、ここでは、外部電極層80Bとスルーホール導体70Bとの間の密着性を向上させるために、外部電極層80Bの構成材料として、銀フィラー、銅フィラー、ニッケルフィラー、及び、カーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーと樹脂との混合材料が用いられてもよい。 In order to improve the adhesion between the external electrode layer 80B and other members, here, the adhesion between the external electrode layer 80B and the through-hole conductor 70B, silver filler is used as a constituent material of the external electrode layer 80B. A mixed material of a resin and at least one conductive filler selected from the group consisting of , copper filler, nickel filler, and carbon filler may be used.
 外部電極層80A及び外部電極層80Bの構成材料は、少なくとも種類の点で、互いに同じであることが好ましいが、互いに異なっていてもよい。 The constituent materials of the external electrode layer 80A and the external electrode layer 80B are preferably the same, at least in terms of type, but may be different from each other.
 図1に示す例では、複数のコンデンサ部10の各々において、陽極板20に電気的に接続された外部電極層80Aと、陰極層40に電気的に接続された外部電極層80Bとが設けられているが、複数のコンデンサ部10で外部電極層80A及び外部電極層80Bの少なくとも一方が共通するように設けられていてもよい。 In the example shown in FIG. 1, each of the plurality of capacitor sections 10 is provided with an external electrode layer 80A electrically connected to the anode plate 20 and an external electrode layer 80B electrically connected to the cathode layer 40. However, at least one of the external electrode layer 80A and the external electrode layer 80B may be provided in common among the plurality of capacitor sections 10.
 図2等に示す例では、外部電極層80A及び外部電極層80Bが、封止部60の両主面側に設けられているが、封止部60の一方主面側のみに設けられていてもよい。 In the example shown in FIG. 2 etc., the external electrode layer 80A and the external electrode layer 80B are provided on both main surfaces of the sealing section 60, but they are provided only on one main surface of the sealing section 60. Good too.
 コンデンサアレイ1は、封止部60を厚み方向Tに貫通して陰極層40及び外部電極層80Bに接続されたビア導体73を更に有していることが好ましい。図2等に示す例において、ビア導体73は、第1封止層60Aの第1絶縁部61と、第2封止層60Bとを厚み方向Tに貫通して、陰極層40及び外部電極層80Bに接続されている。 It is preferable that the capacitor array 1 further includes a via conductor 73 that penetrates the sealing portion 60 in the thickness direction T and is connected to the cathode layer 40 and the external electrode layer 80B. In the example shown in FIG. 2 etc., the via conductor 73 penetrates the first insulating part 61 of the first sealing layer 60A and the second sealing layer 60B in the thickness direction T, and passes through the cathode layer 40 and the external electrode layer. It is connected to 80B.
 ビア導体73の構成材料としては、例えば、銀、金、銅等の低抵抗の金属を含有する金属材料等が挙げられる。 Examples of the constituent material of the via conductor 73 include metal materials containing low-resistance metals such as silver, gold, and copper.
 ビア導体73は、例えば、第1封止層60Aの第1絶縁部61と第2封止層60Bとを厚み方向Tに貫通する貫通孔に対して、上述した金属材料で内壁面にめっき処理を行ったり、導電性ペーストを充填した後に熱処理を行ったりすることにより形成される。 For example, the via conductor 73 is formed by plating the inner wall surface of the through hole that penetrates the first insulating part 61 of the first sealing layer 60A and the second sealing layer 60B in the thickness direction T with the above-mentioned metal material. It is formed by performing heat treatment after filling with conductive paste.
 ビア導体73が上述した方法で形成される際、ビア導体73の側面上の外部電極層80B側の位置に応力が集中することにより、ビア導体73にクラックが発生することがある。これに対して、上述したように、第2封止層60Bを構成する絶縁性材料がガラスクロスを含有していると、以下のようにビア導体73でのクラックの発生が抑制される。 When the via conductor 73 is formed by the method described above, cracks may occur in the via conductor 73 due to stress concentration on the side surface of the via conductor 73 at a position on the external electrode layer 80B side. On the other hand, as described above, when the insulating material constituting the second sealing layer 60B contains glass cloth, the occurrence of cracks in the via conductor 73 is suppressed as described below.
 図6は、第2封止層を構成する絶縁性材料がガラスクロスを含有している場合のコンデンサアレイにおける、ビア導体及びその周辺を拡大して示す断面模式図である。 FIG. 6 is a schematic cross-sectional view showing an enlarged view of a via conductor and its surroundings in a capacitor array in which the insulating material constituting the second sealing layer contains glass cloth.
 第2封止層60Bを構成する絶縁性材料がガラスクロスを含有していると、図6に示すように、ビア導体73を形成しようとする貫通孔のうち、第2封止層60Bを貫通する部分の内壁面から内部に向かって面方向にガラスクロスGが突き出しやすくなる。ガラスクロスGが突き出した状態の貫通孔に対して、上述した方法でビア導体73を形成すると、ガラスクロスGの突き出しによって応力が分散されるため、ビア導体73でのクラックの発生が抑制される。 When the insulating material constituting the second sealing layer 60B contains glass cloth, as shown in FIG. The glass cloth G can easily protrude inward from the inner wall surface of the portion where the glass cloth G is attached. When the via conductor 73 is formed by the above-described method in a through hole in which the glass cloth G protrudes, stress is dispersed by the protrusion of the glass cloth G, thereby suppressing the occurrence of cracks in the via conductor 73. .
 図2等に示す例において、スルーホール導体70Bは、外部電極層80B及びビア導体73を介して、陰極層40に電気的に接続されている。このように、スルーホール導体70Bは、陰極層40に電気的に接続されていることが好ましい。 In the example shown in FIG. 2 and the like, the through-hole conductor 70B is electrically connected to the cathode layer 40 via the external electrode layer 80B and the via conductor 73. In this way, the through-hole conductor 70B is preferably electrically connected to the cathode layer 40.
 図2等に示す例において、外部電極層80Bは、ビア導体73を介して陰極層40に電気的に接続されており、陰極層40用の接続端子として機能する。 In the example shown in FIG. 2 and the like, the external electrode layer 80B is electrically connected to the cathode layer 40 via the via conductor 73, and functions as a connection terminal for the cathode layer 40.
 コンデンサアレイ1は、貫通孔71Bに樹脂材料が充填されてなる樹脂充填部90Bを更に有していることが好ましい。図2等に示す例において、樹脂充填部90Bは、貫通孔71Bの内壁面上のスルーホール導体70Bで囲まれた空間に設けられている。樹脂充填部90Bが設けられることで貫通孔71B内の空間が解消されると、スルーホール導体70Bのデラミネーションの発生が抑制される。 It is preferable that the capacitor array 1 further includes a resin filling portion 90B in which the through hole 71B is filled with a resin material. In the example shown in FIG. 2 and the like, the resin filling portion 90B is provided in a space surrounded by the through-hole conductor 70B on the inner wall surface of the through-hole 71B. When the space within the through hole 71B is eliminated by providing the resin filling portion 90B, the occurrence of delamination of the through hole conductor 70B is suppressed.
 樹脂充填部90Bの熱膨張率は、スルーホール導体70Bの熱膨張率よりも高いことが好ましい。より具体的には、貫通孔71Bに充填された樹脂材料の熱膨張率は、スルーホール導体70Bの構成材料(例えば、銅)の熱膨張率よりも高いことが好ましい。この場合、樹脂充填部90B、より具体的には、貫通孔71Bに充填された樹脂材料が高温環境下で膨張することにより、スルーホール導体70Bが貫通孔71Bの内側から外側に向かって貫通孔71Bの内壁面に押さえつけられるため、スルーホール導体70Bのデラミネーションの発生が充分に抑制される。 It is preferable that the coefficient of thermal expansion of the resin filling portion 90B is higher than that of the through-hole conductor 70B. More specifically, it is preferable that the coefficient of thermal expansion of the resin material filled in the through hole 71B is higher than the coefficient of thermal expansion of the constituent material (for example, copper) of the through hole conductor 70B. In this case, the resin filling part 90B, more specifically, the resin material filled in the through hole 71B expands in a high temperature environment, so that the through hole conductor 70B moves from the inside of the through hole 71B to the outside. Since it is pressed against the inner wall surface of the through-hole conductor 71B, the occurrence of delamination of the through-hole conductor 70B is sufficiently suppressed.
 なお、樹脂充填部90Bの熱膨張率は、スルーホール導体70Bの熱膨張率と同じであってもよいし、スルーホール導体70Bの熱膨張率よりも低くてもよい。より具体的には、貫通孔71Bに充填された樹脂材料の熱膨張率は、スルーホール導体70Bの構成材料の熱膨張率と同じであってもよいし、スルーホール導体70Bの構成材料の熱膨張率よりも低くてもよい。 Note that the coefficient of thermal expansion of the resin filling portion 90B may be the same as the coefficient of thermal expansion of the through-hole conductor 70B, or may be lower than the coefficient of thermal expansion of the through-hole conductor 70B. More specifically, the thermal expansion coefficient of the resin material filled in the through hole 71B may be the same as that of the constituent material of the through-hole conductor 70B, or the thermal expansion coefficient of the resin material filled in the through-hole conductor 71B may be the same as that of the constituent material of the through-hole conductor 70B. It may be lower than the expansion rate.
 なお、コンデンサアレイ1は、樹脂充填部90Bを有していなくてもよい。この場合、スルーホール導体70Bは、貫通孔71Bの内壁面上だけではなく、貫通孔71Bの内部全体に設けられていることが好ましい。 Note that the capacitor array 1 does not need to have the resin filling part 90B. In this case, it is preferable that the through-hole conductor 70B is provided not only on the inner wall surface of the through-hole 71B but also throughout the inside of the through-hole 71B.
 本発明のコンデンサアレイにおいて、コンデンサ部は、上述した固体電解コンデンサを含む電解コンデンサに限定されない。本発明のコンデンサアレイにおいて、コンデンサ部は、例えば、チタン酸バリウムを用いたセラミックコンデンサ、窒化ケイ素(SiN)、二酸化ケイ素(SiO)、フッ化水素(HF)等を用いた薄膜コンデンサ、MIM(Metal Insulator Metal)構造を有するトレンチ型コンデンサ等を構成してもよい。 In the capacitor array of the present invention, the capacitor section is not limited to an electrolytic capacitor including the solid electrolytic capacitor described above. In the capacitor array of the present invention, the capacitor section includes, for example, a ceramic capacitor using barium titanate, a thin film capacitor using silicon nitride (SiN), silicon dioxide (SiO 2 ), hydrogen fluoride (HF), etc., MIM ( A trench type capacitor or the like having a metal insulator structure may also be configured.
 本発明のコンデンサアレイにおいて、コンデンサ部の薄型化及び大面積化、並びに、コンデンサ部の剛性、柔軟性等の機械特性向上の観点から、コンデンサ部は、アルミニウム等の金属を基材とするコンデンサを構成することが好ましく、アルミニウム等の金属を基材とする電解コンデンサを構成することがより好ましい。 In the capacitor array of the present invention, from the viewpoint of making the capacitor part thinner and larger in area, and improving mechanical properties such as rigidity and flexibility of the capacitor part, the capacitor part is made of a capacitor based on a metal such as aluminum. It is preferable to configure an electrolytic capacitor, and more preferably to configure an electrolytic capacitor based on a metal such as aluminum.
 本発明のコンデンサアレイは、例えば、複合電子部品に用いられる。このような複合電子部品は、例えば、本発明のコンデンサアレイと、本発明のコンデンサアレイの外部電極層に電気的に接続された電子部品と、を有する。 The capacitor array of the present invention is used, for example, in composite electronic components. Such a composite electronic component includes, for example, the capacitor array of the present invention and an electronic component electrically connected to the external electrode layer of the capacitor array of the present invention.
 複合電子部品において、外部電極層に電気的に接続される電子部品は、受動素子であってもよいし、能動素子であってもよいし、受動素子及び能動素子の両方であってもよいし、受動素子及び能動素子の複合体であってもよい。 In the composite electronic component, the electronic component electrically connected to the external electrode layer may be a passive element, an active element, or both a passive element and an active element. , a composite of a passive element and an active element.
 受動素子としては、例えば、インダクタ等が挙げられる。 Examples of passive elements include inductors and the like.
 能動素子としては、メモリ、GPU(Graphical Processing Unit)、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、PMIC(Power Management IC)等が挙げられる。 Active elements include memory, GPU (Graphical Processing Unit), CPU (Central Processing Unit), MPU (Micro Processing Unit), PMIC (Power Management IC), etc.
 本発明のコンデンサアレイが複合電子部品に用いられる場合、本発明のコンデンサアレイは、例えば、電子部品を実装するための基板として扱われる。そのため、本発明のコンデンサアレイを全体としてシート状にし、更に、本発明のコンデンサアレイに実装される電子部品をシート状にすることにより、電子部品を厚み方向に貫通するスルーホール導体を介して、本発明のコンデンサアレイと電子部品とを厚み方向に電気的に接続することが可能となる。その結果、電子部品としての受動素子及び能動素子を一括のモジュールのように構成することが可能となる。 When the capacitor array of the present invention is used in a composite electronic component, the capacitor array of the present invention is treated as a substrate on which the electronic component is mounted, for example. Therefore, by forming the capacitor array of the present invention in the form of a sheet as a whole and further forming the electronic components mounted on the capacitor array of the present invention in the form of a sheet, through-hole conductors penetrating the electronic components in the thickness direction, It becomes possible to electrically connect the capacitor array of the present invention and electronic components in the thickness direction. As a result, it becomes possible to configure passive elements and active elements as electronic components like a collective module.
 例えば、半導体アクティブ素子を含むボルテージレギュレータと、変換された直流電圧が供給される負荷との間に本発明のコンデンサアレイを電気的に接続することにより、スイッチングレギュレータを形成することができる。 For example, a switching regulator can be formed by electrically connecting the capacitor array of the present invention between a voltage regulator including a semiconductor active element and a load to which the converted DC voltage is supplied.
 複合電子部品においては、本発明のコンデンサアレイが複数個レイアウトされたコンデンサマトリクスシートの一方主面上に回路層を形成した上で、その回路層を、電子部品としての受動素子又は能動素子に電気的に接続してもよい。 In a composite electronic component, a circuit layer is formed on one main surface of a capacitor matrix sheet on which a plurality of capacitor arrays of the present invention are laid out, and then the circuit layer is electrically connected to a passive element or an active element as an electronic component. You can also connect directly.
 また、基板に予め設けられたキャビティ部に本発明のコンデンサアレイを配置し、樹脂で埋め込んだ後、その樹脂上に回路層を形成してもよい。同基板の別のキャビティ部には、別の電子部品としての受動素子又は能動素子が搭載されていてもよい。 Alternatively, the capacitor array of the present invention may be placed in a cavity provided in advance on a substrate, filled with resin, and then a circuit layer may be formed on the resin. A passive element or an active element as another electronic component may be mounted in another cavity portion of the same substrate.
 あるいは、本発明のコンデンサアレイをウエハ、ガラス等の平滑なキャリアに実装し、樹脂による外層部を形成した後、回路層を形成した上で、その回路層を、電子部品としての受動素子又は能動素子に電気的に接続してもよい。 Alternatively, the capacitor array of the present invention may be mounted on a smooth carrier such as a wafer or glass, an outer layer made of resin may be formed, a circuit layer may be formed, and the circuit layer may be used as a passive element or an active element as an electronic component. It may be electrically connected to the element.
 本明細書には、以下の内容が開示されている。 The following contents are disclosed in this specification.
<1>
 厚み方向に直交する面方向に平面配置された複数のコンデンサ部と、
 複数の上記コンデンサ部の上記厚み方向に相対する両主面側から複数の上記コンデンサ部を封止し、かつ、絶縁性材料で構成された封止部と、を備え、
 上記封止部は、複数の封止層が上記厚み方向に積層されてなり、
 複数の上記封止層は、上記厚み方向において最も上記コンデンサ部側に位置する第1封止層と、上記厚み方向において上記第1封止層よりも上記コンデンサ部と反対側に位置し、かつ、上記封止部の上記厚み方向に相対する両主面を構成する第2封止層と、を含む、ことを特徴とするコンデンサアレイ。
<1>
A plurality of capacitor parts arranged in a plane in a plane direction perpendicular to the thickness direction,
a sealing portion that seals the plurality of capacitor portions from both main surfaces opposite to each other in the thickness direction of the plurality of capacitor portions, and is made of an insulating material;
The sealing portion is formed by laminating a plurality of sealing layers in the thickness direction,
The plurality of sealing layers include a first sealing layer located closest to the capacitor section in the thickness direction, and a first sealing layer located on a side opposite to the capacitor section from the first sealing layer in the thickness direction, and , a second sealing layer forming both principal surfaces facing each other in the thickness direction of the sealing portion.
<2>
 上記コンデンサ部は、上記厚み方向に相対する両主面のうちの少なくとも一方主面に多孔質層を有する陽極板と、上記多孔質層の表面上に設けられた誘電体層と、上記誘電体層の表面上に設けられた陰極層と、を有している、<1>に記載のコンデンサアレイ。
<2>
The capacitor section includes an anode plate having a porous layer on at least one of the two principal surfaces facing each other in the thickness direction, a dielectric layer provided on the surface of the porous layer, and a dielectric layer provided on the surface of the porous layer. A cathode layer provided on the surface of the layer, the capacitor array according to <1>.
<3>
 上記第1封止層を構成する上記絶縁性材料は、絶縁性樹脂を含有している、<1>又は<2>に記載のコンデンサアレイ。
<3>
The capacitor array according to <1> or <2>, wherein the insulating material constituting the first sealing layer contains an insulating resin.
<4>
 上記第1封止層を構成する上記絶縁性材料は、無機フィラーを更に含有している、<3>に記載のコンデンサアレイ。
<4>
The capacitor array according to <3>, wherein the insulating material constituting the first sealing layer further contains an inorganic filler.
<5>
 上記第1封止層を構成する上記絶縁性材料に含有される上記無機フィラーのメジアン径D50は、10μm以下である、<4>に記載のコンデンサアレイ。
<5>
The capacitor array according to <4>, wherein the inorganic filler contained in the insulating material constituting the first sealing layer has a median diameter D 50 of 10 μm or less.
<6>
 上記第2封止層を構成する上記絶縁性材料は、絶縁性樹脂を含有している、<1>~<5>のいずれかに記載のコンデンサアレイ。
<6>
The capacitor array according to any one of <1> to <5>, wherein the insulating material constituting the second sealing layer contains an insulating resin.
<7>
 上記第1封止層及び上記第2封止層を構成する上記絶縁性材料は、互いに異なる絶縁性樹脂を含有している、<6>に記載のコンデンサアレイ。
<7>
The capacitor array according to <6>, wherein the insulating materials forming the first sealing layer and the second sealing layer contain different insulating resins.
<8>
 上記第2封止層を構成する上記絶縁性材料は、無機フィラーを更に含有している、<6>又は<7>に記載のコンデンサアレイ。
<8>
The capacitor array according to <6> or <7>, wherein the insulating material constituting the second sealing layer further contains an inorganic filler.
<9>
 上記第2封止層を構成する上記絶縁性材料は、ガラスクロスを更に含有している、<6>~<8>のいずれかに記載のコンデンサアレイ。
<9>
The capacitor array according to any one of <6> to <8>, wherein the insulating material constituting the second sealing layer further contains glass cloth.
<10>
 上記第2封止層の上記厚み方向における線膨張係数は、上記第1封止層の上記厚み方向における線膨張係数よりも小さい、<1>~<9>のいずれかに記載のコンデンサアレイ。
<10>
The capacitor array according to any one of <1> to <9>, wherein the linear expansion coefficient of the second sealing layer in the thickness direction is smaller than the linear expansion coefficient of the first sealing layer in the thickness direction.
<11>
 上記第1封止層は、複数の上記コンデンサ部の両主面を覆う第1絶縁部を有している、<1>~<10>のいずれかに記載のコンデンサアレイ。
<11>
The capacitor array according to any one of <1> to <10>, wherein the first sealing layer has a first insulating part that covers both main surfaces of the plurality of capacitor parts.
<12>
 上記封止部の両主面のうちの一方主面側の領域において、上記第1封止層の上記第1絶縁部の上記厚み方向における最大寸法と、上記第2封止層の上記厚み方向における最大寸法とは、互いに異なっている、<11>に記載のコンデンサアレイ。
<12>
In a region on one main surface side of both main surfaces of the sealing part, the maximum dimension in the thickness direction of the first insulating part of the first sealing layer and the thickness direction of the second sealing layer. The capacitor array according to <11>, wherein the maximum dimensions are different from each other.
<13>
 上記封止部の両主面のうちの一方主面側の領域において、上記第1封止層の上記第1絶縁部の上記厚み方向における最大寸法は、上記第2封止層の上記厚み方向における最大寸法よりも大きい、<12>に記載のコンデンサアレイ。
<13>
In a region on one main surface side of both main surfaces of the sealing part, the maximum dimension in the thickness direction of the first insulating part of the first sealing layer is the maximum dimension in the thickness direction of the second sealing layer. The capacitor array according to <12>, which is larger than the maximum dimension of the capacitor array.
<14>
 上記封止部の両主面のうちの一方主面側の領域において、上記第2封止層の上記厚み方向における最大寸法に対する、上記第1封止層の上記第1絶縁部の上記厚み方向における最大寸法の割合は、110%以上である、<13>に記載のコンデンサアレイ。
<14>
In a region on one main surface side of both main surfaces of the sealing part, the thickness direction of the first insulating part of the first sealing layer is relative to the maximum dimension in the thickness direction of the second sealing layer. The capacitor array according to <13>, wherein the ratio of the maximum dimension in is 110% or more.
<15>
 上記封止部の両主面のうちの一方主面側の領域において、上記第1封止層の上記第1絶縁部の上記厚み方向における最大寸法は、5μm以上である、<13>又は<14>に記載のコンデンサアレイ。
<15>
<13> or 14>.
<16>
 上記封止部の両主面のうちの一方主面側の領域において、上記第2封止層の上記厚み方向における最大寸法は、100μm以下である、<13>~<15>のいずれかに記載のコンデンサアレイ。
<16>
In any one of <13> to <15>, the second sealing layer has a maximum dimension in the thickness direction of 100 μm or less in a region on one main surface side of both main surfaces of the sealing part. Capacitor array as described.
<17>
 上記封止部の両主面のうちの一方主面側の領域において、上記第1封止層の上記第1絶縁部の上記厚み方向における最大寸法に対する、上記第1封止層の上記第1絶縁部の上記厚み方向における最小寸法の割合は、50%以下である、<13>~<16>のいずれかに記載のコンデンサアレイ。
<17>
In a region on one main surface side of both main surfaces of the sealing portion, the first insulating portion of the first sealing layer has a maximum dimension in the thickness direction of The capacitor array according to any one of <13> to <16>, wherein the ratio of the minimum dimension of the insulating portion in the thickness direction is 50% or less.
<18>
 上記第1封止層は、複数の上記コンデンサ部を各々に分断する第2絶縁部を更に有している、<11>~<17>のいずれかに記載のコンデンサアレイ。
<18>
The capacitor array according to any one of <11> to <17>, wherein the first sealing layer further includes a second insulating portion that separates the plurality of capacitor portions.
<19>
 上記第1封止層は、複数の上記コンデンサ部の各々を上記厚み方向に貫通する第3絶縁部を更に有している、<11>~<18>のいずれかに記載のコンデンサアレイ。
<19>
The capacitor array according to any one of <11> to <18>, wherein the first sealing layer further includes a third insulating part that penetrates each of the plurality of capacitor parts in the thickness direction.
<20>
 上記コンデンサ部及び上記封止部を上記厚み方向に貫通するスルーホール導体を更に備えている、<1>~<19>のいずれかに記載のコンデンサアレイ。
<20>
The capacitor array according to any one of <1> to <19>, further comprising a through-hole conductor that penetrates the capacitor section and the sealing section in the thickness direction.
1 コンデンサアレイ
10 コンデンサ部
20 陽極板
21 芯部
22 多孔質層
30 誘電体層
40 陰極層
41 固体電解質層
42 導電体層
42A 導電性樹脂層
42B 金属層
50 マスク層
60 封止部
60A 第1封止層
60B 第2封止層
61 第1絶縁部
62 第2絶縁部
63 第3絶縁部
70A、70B スルーホール導体
71A、71B 貫通孔
72 陽極接続層
73 ビア導体
80A、80B 外部電極層
90A、90B 樹脂充填部
da1 第1封止層の第1絶縁部の厚み方向における最大寸法
da2 第1封止層の第1絶縁部の厚み方向における最小寸法
db1 第2封止層の厚み方向における最大寸法
G ガラスクロス
T 厚み方向
U 第1方向
V 第2方向
1 Capacitor array 10 Capacitor section 20 Anode plate 21 Core section 22 Porous layer 30 Dielectric layer 40 Cathode layer 41 Solid electrolyte layer 42 Conductive layer 42A Conductive resin layer 42B Metal layer 50 Mask layer 60 Sealing section 60A First sealing Sealing layer 60B Second sealing layer 61 First insulating part 62 Second insulating part 63 Third insulating part 70A, 70B Through hole conductor 71A, 71B Through hole 72 Anode connection layer 73 Via conductor 80A, 80B External electrode layer 90A, 90B Resin filling part da1 Maximum dimension in the thickness direction of the first insulating part of the first sealing layer da2 Minimum dimension in the thickness direction of the first insulating part of the first sealing layer db1 Maximum dimension in the thickness direction of the second sealing layer G Glass cloth T Thickness direction U First direction V Second direction

Claims (20)

  1.  厚み方向に直交する面方向に平面配置された複数のコンデンサ部と、
     複数の前記コンデンサ部の前記厚み方向に相対する両主面側から複数の前記コンデンサ部を封止し、かつ、絶縁性材料で構成された封止部と、を備え、
     前記封止部は、複数の封止層が前記厚み方向に積層されてなり、
     複数の前記封止層は、前記厚み方向において最も前記コンデンサ部側に位置する第1封止層と、前記厚み方向において前記第1封止層よりも前記コンデンサ部と反対側に位置し、かつ、前記封止部の前記厚み方向に相対する両主面を構成する第2封止層と、を含む、ことを特徴とするコンデンサアレイ。
    A plurality of capacitor parts arranged in a plane in a plane direction perpendicular to the thickness direction,
    a sealing part that seals the plurality of capacitor parts from both main surfaces facing in the thickness direction of the plurality of capacitor parts, and is made of an insulating material,
    The sealing portion is formed by laminating a plurality of sealing layers in the thickness direction,
    The plurality of sealing layers include a first sealing layer located closest to the capacitor section in the thickness direction, and a first sealing layer located on a side opposite to the capacitor section from the first sealing layer in the thickness direction, and , a second sealing layer forming both principal surfaces facing each other in the thickness direction of the sealing portion.
  2.  前記コンデンサ部は、前記厚み方向に相対する両主面のうちの少なくとも一方主面に多孔質層を有する陽極板と、前記多孔質層の表面上に設けられた誘電体層と、前記誘電体層の表面上に設けられた陰極層と、を有している、請求項1に記載のコンデンサアレイ。 The capacitor section includes an anode plate having a porous layer on at least one of the two principal surfaces facing each other in the thickness direction, a dielectric layer provided on the surface of the porous layer, and the dielectric layer. 2. A capacitor array according to claim 1, comprising a cathode layer disposed on a surface of the layer.
  3.  前記第1封止層を構成する前記絶縁性材料は、絶縁性樹脂を含有している、請求項1又は2に記載のコンデンサアレイ。 The capacitor array according to claim 1 or 2, wherein the insulating material constituting the first sealing layer contains an insulating resin.
  4.  前記第1封止層を構成する前記絶縁性材料は、無機フィラーを更に含有している、請求項3に記載のコンデンサアレイ。 The capacitor array according to claim 3, wherein the insulating material constituting the first sealing layer further contains an inorganic filler.
  5.  前記第1封止層を構成する前記絶縁性材料に含有される前記無機フィラーのメジアン径D50は、10μm以下である、請求項4に記載のコンデンサアレイ。 The capacitor array according to claim 4, wherein the inorganic filler contained in the insulating material constituting the first sealing layer has a median diameter D50 of 10 μm or less.
  6.  前記第2封止層を構成する前記絶縁性材料は、絶縁性樹脂を含有している、請求項1~5のいずれかに記載のコンデンサアレイ。 The capacitor array according to any one of claims 1 to 5, wherein the insulating material constituting the second sealing layer contains an insulating resin.
  7.  前記第1封止層及び前記第2封止層を構成する前記絶縁性材料は、互いに異なる絶縁性樹脂を含有している、請求項6に記載のコンデンサアレイ。 The capacitor array according to claim 6, wherein the insulating materials forming the first sealing layer and the second sealing layer contain different insulating resins.
  8.  前記第2封止層を構成する前記絶縁性材料は、無機フィラーを更に含有している、請求項6又は7に記載のコンデンサアレイ。 The capacitor array according to claim 6 or 7, wherein the insulating material constituting the second sealing layer further contains an inorganic filler.
  9.  前記第2封止層を構成する前記絶縁性材料は、ガラスクロスを更に含有している、請求項6~8のいずれかに記載のコンデンサアレイ。 The capacitor array according to claim 6, wherein the insulating material constituting the second sealing layer further contains glass cloth.
  10.  前記第2封止層の前記厚み方向における線膨張係数は、前記第1封止層の前記厚み方向における線膨張係数よりも小さい、請求項1~9のいずれかに記載のコンデンサアレイ。 The capacitor array according to any one of claims 1 to 9, wherein a linear expansion coefficient of the second sealing layer in the thickness direction is smaller than a linear expansion coefficient of the first sealing layer in the thickness direction.
  11.  前記第1封止層は、複数の前記コンデンサ部の両主面を覆う第1絶縁部を有している、請求項1~10のいずれかに記載のコンデンサアレイ。 The capacitor array according to any one of claims 1 to 10, wherein the first sealing layer has a first insulating part that covers both main surfaces of the plurality of capacitor parts.
  12.  前記封止部の両主面のうちの一方主面側の領域において、前記第1封止層の前記第1絶縁部の前記厚み方向における最大寸法と、前記第2封止層の前記厚み方向における最大寸法とは、互いに異なっている、請求項11に記載のコンデンサアレイ。 In a region on one main surface side of both main surfaces of the sealing part, the maximum dimension in the thickness direction of the first insulating part of the first sealing layer and the thickness direction of the second sealing layer. 12. The capacitor array of claim 11, wherein the maximum dimensions in the capacitor array are different from each other.
  13.  前記封止部の両主面のうちの一方主面側の領域において、前記第1封止層の前記第1絶縁部の前記厚み方向における最大寸法は、前記第2封止層の前記厚み方向における最大寸法よりも大きい、請求項12に記載のコンデンサアレイ。 In a region on one main surface side of both main surfaces of the sealing part, the maximum dimension in the thickness direction of the first insulating part of the first sealing layer is equal to the maximum dimension in the thickness direction of the second sealing layer. 13. The capacitor array of claim 12, wherein the capacitor array is larger than the largest dimension of .
  14.  前記封止部の両主面のうちの一方主面側の領域において、前記第2封止層の前記厚み方向における最大寸法に対する、前記第1封止層の前記第1絶縁部の前記厚み方向における最大寸法の割合は、110%以上である、請求項13に記載のコンデンサアレイ。 The thickness direction of the first insulating part of the first sealing layer with respect to the maximum dimension in the thickness direction of the second sealing layer in a region on one main surface side of both main surfaces of the sealing part. 14. The capacitor array according to claim 13, wherein the percentage of the largest dimension in is greater than or equal to 110%.
  15.  前記封止部の両主面のうちの一方主面側の領域において、前記第1封止層の前記第1絶縁部の前記厚み方向における最大寸法は、5μm以上である、請求項13又は14に記載のコンデンサアレイ。 Claim 13 or 14, wherein a maximum dimension in the thickness direction of the first insulating part of the first sealing layer is 5 μm or more in a region on one of the main surfaces of the sealing part. Capacitor array described in.
  16.  前記封止部の両主面のうちの一方主面側の領域において、前記第2封止層の前記厚み方向における最大寸法は、100μm以下である、請求項13~15のいずれかに記載のコンデンサアレイ。 According to any one of claims 13 to 15, the maximum dimension of the second sealing layer in the thickness direction in a region on one main surface side of both main surfaces of the sealing portion is 100 μm or less. capacitor array.
  17.  前記封止部の両主面のうちの一方主面側の領域において、前記第1封止層の前記第1絶縁部の前記厚み方向における最大寸法に対する、前記第1封止層の前記第1絶縁部の前記厚み方向における最小寸法の割合は、50%以下である、請求項13~16のいずれかに記載のコンデンサアレイ。 In a region on one main surface side of both main surfaces of the sealing part, the first insulating part of the first sealing layer has a maximum dimension in the thickness direction of the first sealing layer. 17. The capacitor array according to claim 13, wherein a ratio of the minimum dimension of the insulating portion in the thickness direction is 50% or less.
  18.  前記第1封止層は、複数の前記コンデンサ部を各々に分断する第2絶縁部を更に有している、請求項11~17のいずれかに記載のコンデンサアレイ。 The capacitor array according to any one of claims 11 to 17, wherein the first sealing layer further includes a second insulating part that divides the plurality of capacitor parts into each.
  19.  前記第1封止層は、複数の前記コンデンサ部の各々を前記厚み方向に貫通する第3絶縁部を更に有している、請求項11~18のいずれかに記載のコンデンサアレイ。 The capacitor array according to any one of claims 11 to 18, wherein the first sealing layer further includes a third insulating part that penetrates each of the plurality of capacitor parts in the thickness direction.
  20.  前記コンデンサ部及び前記封止部を前記厚み方向に貫通するスルーホール導体を更に備えている、請求項1~19のいずれかに記載のコンデンサアレイ。 The capacitor array according to any one of claims 1 to 19, further comprising a through-hole conductor that penetrates the capacitor section and the sealing section in the thickness direction.
PCT/JP2023/016082 2022-06-09 2023-04-24 Capacitor array WO2023238527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093677 2022-06-09
JP2022-093677 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023238527A1 true WO2023238527A1 (en) 2023-12-14

Family

ID=89118065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016082 WO2023238527A1 (en) 2022-06-09 2023-04-24 Capacitor array

Country Status (1)

Country Link
WO (1) WO2023238527A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023251A (en) * 2001-07-10 2003-01-24 Ibiden Co Ltd Multilayered printed wiring board
JP2008078301A (en) * 2006-09-20 2008-04-03 Fujitsu Ltd Capacitor built-in wiring board and manufacturing method thereof
JP2009170566A (en) * 2008-01-15 2009-07-30 Murata Mfg Co Ltd Multilayer ceramic substrate and its manufacturing method
JP2011029623A (en) * 2009-06-29 2011-02-10 Murata Mfg Co Ltd Substrate with built-in component, module component using the substrate with built-in component, and method for manufacturing substrate with built-in component
WO2019221046A1 (en) * 2018-05-16 2019-11-21 株式会社村田製作所 Solid-state electrolytic capacitor
WO2019239937A1 (en) * 2018-06-11 2019-12-19 株式会社村田製作所 Capacitor array, composite electronic component, method for manufacturing capacitor array, and method for manufacturing composite electronic component
JP2020167361A (en) * 2019-03-29 2020-10-08 株式会社村田製作所 Capacitor array and composite electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023251A (en) * 2001-07-10 2003-01-24 Ibiden Co Ltd Multilayered printed wiring board
JP2008078301A (en) * 2006-09-20 2008-04-03 Fujitsu Ltd Capacitor built-in wiring board and manufacturing method thereof
JP2009170566A (en) * 2008-01-15 2009-07-30 Murata Mfg Co Ltd Multilayer ceramic substrate and its manufacturing method
JP2011029623A (en) * 2009-06-29 2011-02-10 Murata Mfg Co Ltd Substrate with built-in component, module component using the substrate with built-in component, and method for manufacturing substrate with built-in component
WO2019221046A1 (en) * 2018-05-16 2019-11-21 株式会社村田製作所 Solid-state electrolytic capacitor
WO2019239937A1 (en) * 2018-06-11 2019-12-19 株式会社村田製作所 Capacitor array, composite electronic component, method for manufacturing capacitor array, and method for manufacturing composite electronic component
JP2020167361A (en) * 2019-03-29 2020-10-08 株式会社村田製作所 Capacitor array and composite electronic component

Similar Documents

Publication Publication Date Title
TWI711062B (en) Capacitor array and composite electronic component
KR20210044752A (en) Method for manufacturing solid electrolytic capacitor and solid electrolytic capacitor
JP2020155696A (en) Solid electrolytic capacitor
JP2023022094A (en) Capacitor and composite electronic component
JP2020102651A (en) Solid electrolytic capacitor
WO2023238527A1 (en) Capacitor array
JP7063301B2 (en) Manufacturing method of solid electrolytic capacitor
WO2023238528A1 (en) Capacitor array
WO2023238681A1 (en) Capacitor array
WO2023234172A1 (en) Capacitor array
TWI831226B (en) capacitor
KR20220146500A (en) Planar High Density Aluminum Capacitors for Lamination and Embedding
TWI841362B (en) Capacitor array
WO2024009824A1 (en) Solid electrolytic capacitor and capacitor array
WO2023157705A1 (en) Solid electrolytic capacitor and capacitor array
WO2023218801A1 (en) Capacitor
WO2022264575A1 (en) Capacitor array
WO2023095654A1 (en) Module and semiconductor composite device
US20240186072A1 (en) Capacitor element
WO2024019144A1 (en) Capacitor element
WO2024070531A1 (en) Capacitor element
WO2023228872A1 (en) Solid electrolytic capacitor and capacitor array
WO2023100630A1 (en) Module and semiconductor composite device
WO2024070529A1 (en) Capacitor element
JP7294563B1 (en) Capacitor array and capacitor array assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819514

Country of ref document: EP

Kind code of ref document: A1