WO2023238429A1 - Vertical cavity surface emitting laser - Google Patents

Vertical cavity surface emitting laser Download PDF

Info

Publication number
WO2023238429A1
WO2023238429A1 PCT/JP2023/000315 JP2023000315W WO2023238429A1 WO 2023238429 A1 WO2023238429 A1 WO 2023238429A1 JP 2023000315 W JP2023000315 W JP 2023000315W WO 2023238429 A1 WO2023238429 A1 WO 2023238429A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mesa structure
semiconductor layer
view
vcsel
Prior art date
Application number
PCT/JP2023/000315
Other languages
French (fr)
Japanese (ja)
Inventor
義光 牛見
▲高▼志 姫田
新治 鏑木
修平 山田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023238429A1 publication Critical patent/WO2023238429A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to a vertical cavity surface emitting laser.
  • a vertical cavity surface emitting laser outputs a laser beam from one or more light emitting parts formed on a substrate in a direction perpendicular to the device formation surface of the substrate.
  • a VCSEL can output a laser beam with a wavelength of 850 nm or more with less current than an edge-emitting laser, and since the beam cross section of the laser beam is approximately circular, it is easy to couple the VCSEL with an optical fiber. Furthermore, since it is possible to perform pass/fail tests in the on-wafer state, it is excellent in mass production. For these reasons, VCSELs are often used in the transmitting section of optical transceiver modules.
  • a VCSEL Compared to an edge-emitting laser, a VCSEL has a large element thermal resistance and poor heat dissipation. When the element becomes high temperature, the characteristics of the VCSEL deteriorate and the output decreases. Furthermore, if the operation at high temperatures is continued, the deterioration of the element over time becomes noticeable. In order to solve these problems, a VCSEL with high heat dissipation efficiency is desired.
  • Patent Document 1 discloses a VCSEL with improved heat dissipation efficiency.
  • a groove is formed in the semiconductor substrate directly under the mesa structure serving as the light emitting part, and the groove is filled with a highly thermally conductive member.
  • the high thermal conductivity member within the groove functions as a heat radiation path from the light emitting section.
  • a through hole is formed in a portion of the semiconductor substrate where the mesa structure is not arranged, and the through hole is filled with a highly thermally conductive member.
  • the high thermal conductivity member in the through hole functions as a heat transfer path from the device forming surface of the semiconductor substrate to the opposite back surface.
  • the through hole is not provided directly below the light emitting part, so the heat generated in the light emitting part is transferred in the in-plane direction of the semiconductor substrate to the high heat conductive member in the through hole. must be conducted. Therefore, the thermal resistance of the heat conduction path becomes large.
  • An object of the present invention is to provide a VCSEL that is less prone to cracks and can improve heat dissipation efficiency.
  • a semiconductor layer a lower distributed Bragg reflection layer disposed on the first surface of the semiconductor layer; an active layer disposed on the lower distributed Bragg reflective layer; an upper distributed Bragg reflection layer disposed on the active layer; a heat transfer member that is bonded to a second surface of the semiconductor layer opposite to the first surface and includes a material having a thermal conductivity higher than that of the semiconductor layer;
  • a mesa structure is formed from the upper distributed Bragg reflective layer to at least the upper surface of the lower distributed Bragg reflective layer, Furthermore, the mesa structure includes a current confinement layer that concentrates current in a certain region in a plan view, A vertical cavity surface emitting laser in which a height dimension from the second surface of the semiconductor layer to the current confinement layer is 1/2 or less of the diameter of a minimum enclosing circle that includes the mesa structure in plan view. is provided.
  • the heat generated in the region where the current is concentrated by the current confinement layer spreads in the in-plane direction through the mesa structure and is conducted toward the heat transfer member. Since the thermal conductivity of the heat transfer member is higher than that of the semiconductor layer, the heat transfer member functions as a good heat dissipation path. Heat dissipation efficiency can be improved by setting the height dimension from the second surface of the semiconductor layer to the current confinement layer to be 1/2 or less of the diameter of the minimum enclosing circle that includes the mesa structure in plan view.
  • FIG. 1 is a plan view of a VCSEL 10 according to a first embodiment.
  • FIG. 2 is a sectional view taken along the dashed-dotted line 2-2 in FIG.
  • FIG. 3 is a sectional view of a laser device in which a VCSEL according to the first embodiment is mounted on a module substrate.
  • FIG. 4 is a schematic cross-sectional view of the mesa structure of the VCSEL according to the first embodiment.
  • FIGS. 5A and 5B are schematic diagrams showing the shape of a mesa structure having a shape other than a circle in a plan view.
  • FIG. 6 is a schematic cross-sectional view showing an example of a mesa structure with inclined sides.
  • FIG. 1 is a plan view of a VCSEL 10 according to a first embodiment.
  • FIG. 2 is a sectional view taken along the dashed-dotted line 2-2 in FIG.
  • FIG. 3 is a sectional view of a laser device in which a VCSEL according
  • FIG. 7 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 8 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 9 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 10 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 11 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 12 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 13 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 14 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 15 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 16 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 17 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 18 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 19 is a cross-sectional view of the VCSEL according to the first example.
  • FIG. 20A and 20B are schematic diagrams showing the shape of a mesa structure of a VCSEL in a plan view according to another modification of the first embodiment.
  • FIG. 21 is a cross-sectional view of a VCSEL according to the second embodiment.
  • FIG. 22 is a cross-sectional view of the VCSEL according to the third example at an intermediate stage of manufacture.
  • FIG. 23 is a cross-sectional view of the VCSEL according to the third example at an intermediate stage of manufacture.
  • FIG. 24 is a cross-sectional view of a VCSEL according to a fourth example.
  • FIG. 25A is a diagram showing the distribution of the penetration portion of the heat transfer member and the mesa structure, and FIG.
  • FIG. 25B is a cross-sectional view of the heat transfer member taken along the dashed line 25B-25B in FIG. 25A, and a graph showing the coefficient of linear expansion.
  • FIG. 26 is a cross-sectional view of a VCSEL heat transfer member according to the fourth example at an intermediate stage of manufacture.
  • FIG. 27 is a cross-sectional view of a VCSEL heat transfer member according to the fourth example at an intermediate stage of manufacture.
  • FIG. 28 is a cross-sectional view of a VCSEL heat transfer member according to the fourth example at an intermediate stage of manufacture.
  • FIG. 29 is a cross-sectional view of a heat transfer member of a VCSEL according to a fourth embodiment.
  • FIG. 30 is a cross-sectional view of the heat transfer member and adhesive layer of the VCSEL according to the fourth example.
  • FIG. 31 is a cross-sectional view of a VCSEL according to the fourth example.
  • FIG. 32 is a diagram showing the distribution of the penetration portion of the heat transfer member and the mesa structure of a VCSEL according to a modification of the fourth embodiment.
  • FIG. 33A is a diagram showing the positional relationship in a plan view between the penetrating portion of the heat transfer member of the VCSEL and the mesa structure according to the fifth embodiment, and FIG.
  • FIG. FIG. FIG. 34A is a diagram showing the positional relationship in plan view between the penetrating portion of the heat transfer member of the VCSEL and the mesa structure according to the sixth example, and FIG.
  • FIG. 34B is a graph showing the distribution density of the penetrating portion.
  • FIG. 35 is a plan view schematically showing the positional relationship in plan view between the mesa structure and the penetrating portion of the VCSEL according to the seventh embodiment.
  • FIG. 36 is a cross-sectional view of the VCSEL taken along the dashed-dotted line 36-36 in FIG.
  • FIG. 37 is a plan view schematically showing the positional relationship in plan view between the enlarged circle and the penetrating portion in the VCSEL according to the seventh embodiment.
  • FIG. 35 is a plan view schematically showing the positional relationship in plan view between the mesa structure and the penetrating portion of the VCSEL according to the seventh embodiment.
  • FIG. 36 is a cross-sectional view of the VCSEL taken along the dashed-dotted line 36-36 in FIG.
  • FIG. 37 is a plan view schematically showing the positional relationship in plan view between the enlarged circle and the penetrating portion in the VCSEL
  • FIG. 38 is a plane diagram schematically showing one mesa structure of the VCSEL according to the seventh embodiment, another mesa structure located in the immediate vicinity, enlarged circles of each of these mesa structures, and the positional relationship of the penetrating portion. It is a diagram.
  • FIG. 1 is a plan view of the VCSEL 10 according to the first embodiment
  • FIG. 2 is a cross-sectional view taken along the dashed-dotted line 2-2 in FIG.
  • the semiconductor layer 28 is bonded to one surface of the heat transfer member 80 via an adhesive layer 81 made of metal.
  • the direction in which the surface of the heat transfer member 80 to which the semiconductor layer 28 is bonded faces is defined as the upward direction.
  • the bonding surface where the semiconductor layer 28 and the heat transfer member 80 are bonded to each other is substantially flat.
  • the semiconductor layer 28 includes two layers: a semi-insulating semiconductor layer 21 on the heat transfer member 80 side and a semiconductor layer 22 having n-type conductivity disposed thereon.
  • the semiconductor layer 21 is made of, for example, non-doped GaAs, and the semiconductor layer 22 thereon is made of, for example, n-type GaAs.
  • the heat transfer member 80 is formed of a material having a higher thermal conductivity than that of the semiconductor layer 28.
  • the material of the heat transfer member 80 metals such as Cu, Ag, and Au are used.
  • the thermal conductivity of GaAs is about 55 W/mK
  • the thermal conductivity of Cu, Ag, and Au are about 398 W/mK, about 418 W/mK, and about 320 W/mK, respectively.
  • the heat transfer member 80 may be made of a semiconductor or insulating material such as Si, SiC, SiN, or AlN, which has a higher thermal conductivity than GaAs or the like. Note that at least a portion of the heat transfer member 80 may be formed of a material having a higher thermal conductivity than that of the semiconductor layer 28.
  • the surface of the semiconductor layer 28 on the heat transfer member 80 side (the surface facing downward) is referred to as a second surface 28B, and the surface opposite thereto (the surface facing upward) is referred to as a first surface 28A.
  • a plurality of mesa structures 30 including light emitting parts are arranged on the first surface 28A of the semiconductor layer 28.
  • the plurality of mesa structures 30 are arranged in a line in an array, and each of the plurality of mesa structures 30 has a circular shape in plan view. Note that the plurality of mesa structures 30 may be arranged so as to be two-dimensionally distributed on the upper surface of the semiconductor layer 28.
  • Each of the mesa structures 30 includes a lower distributed Bragg reflection layer (hereinafter referred to as the lower DBR layer 23) laminated in order from the semiconductor layer 28, an active layer 24, a spacer layer 25, a current confinement layer 26, and an upper distributed Bragg reflection layer. (hereinafter referred to as upper DBR layer 27).
  • a portion of the lower side of the lower DBR layer 23 extends to the outside of the mesa structure 30 in plan view.
  • a portion of the lower side of the lower DBR layer 23 extends in one direction (leftward in FIG. 1) orthogonal to the arrangement direction of the plurality of mesa structures 30. In this way, the mesa structure 30 is formed by each layer from the upper DBR layer 27 to the middle of the lower DBR layer 23 in the thickness direction.
  • Each of the lower DBR layer 23 and the upper DBR layer 27 has a periodic structure in which, for example, high refractive index layers and low refractive index layers are alternately stacked.
  • AlGaAs having different Al composition ratios is used for the high refractive index layer and the low refractive index layer.
  • GaAs may be used for the high refractive index layer.
  • the lower DBR layer 23 is doped with an n-type dopant
  • the upper DBR layer 27 is doped with a p-type dopant.
  • the active layer 24 has, for example, a multiple quantum well structure in which quantum well layers and barrier layers are alternately stacked.
  • AlGaAs having different Al compositions is used for the quantum well layer and the barrier layer.
  • the spacer layer 25 is made of the same material as the low refractive index layer of the upper DBR layer 27.
  • the current confinement layer 26 is formed of AlGaAs or AlAs with an Al composition ratio of 0.95 or more.
  • the current confinement layer 26 includes an oxidized region 26A that is oxidized inward from the side surface of the mesa structure 30, and a circular unoxidized region 26B surrounded by the oxidized region 26A in plan view.
  • the current confinement layer 26 has a function of concentrating the current flowing from the upper DBR layer 27 through the active layer 24 to the lower DBR layer 23 in the central unoxidized region 26B.
  • the unoxidized region 26B is arranged at a position encompassing the geometric center of the mesa structure 30 in plan view.
  • the current density is maximum in the unoxidized region 26B of the current confinement layer 26, and the amount of heat generated is maximum in the unoxidized region 26B.
  • the unoxidized region 26B of the current confinement layer 26 can be considered as the main heat source of the VCSEL 10.
  • An anode electrode 41 is arranged on the upper surface of the upper DBR layer 27.
  • the anode electrode 41 has, for example, a shape in which a cut is provided in a part of an annular pattern when viewed from above.
  • the anode electrode 41 has, for example, a two-layer structure of a Ti layer and an Au layer, or a three-layer structure of a Ti layer, a Pt layer, and an Au layer, and is in ohmic contact with the upper DBR layer 27 .
  • a cathode electrode 42 is arranged for each mesa structure 30 on the upper surface of the semiconductor layer 22 having n-type conductivity.
  • the cathode electrode 42 is electrically connected to the lower DBR layer 23 via the semiconductor layer 22 having n-type conductivity.
  • the cathode electrode 42 is made of, for example, Au or AuGe.
  • a passivation film 50 is formed to cover the mesa structure 30, the lower part of the lower DBR layer 23, the anode electrode 41, the cathode electrode 42, and the semiconductor layer 28.
  • the passivation film 50 is made of an inorganic insulating material such as SiN or SiO 2 .
  • the passivation film 50 covering the upper surface of the mesa structure 30 may have a function as an antireflection film.
  • a protective film 51 is arranged on the passivation film 50 around the mesa structure 30.
  • the protective film 51 is formed of a resin material such as polyimide (PI), polybenzoxazole (PBO), benzocyclobutene (BCB), or the like.
  • the protective film 51 has the function of suppressing mechanical damage from the outside and the function of a buffer material that relieves thermal stress.
  • a via hole is formed in the passivation film 50 to expose a part of the upper surface of the anode electrode 41.
  • Anode wiring 45 is connected to anode electrode 41 through this via hole.
  • the anode wiring 45 extends in one direction (rightward in FIG. 1) from the mesa structure 30 in plan view, and its tip forms a bonding pad 45P.
  • a via hole is formed in the protective film 51 and the passivation film 50 to expose a part of the upper surface of the cathode electrode 42.
  • a cathode wiring 46 extends from the cathode electrode 42 exposed in the via hole toward a part of the upper surface of the protective film 51 via the side surface of the via hole.
  • the tip of the cathode wiring 46 constitutes a bonding pad 46P.
  • FIG. 3 is a cross-sectional view of the laser device in which the VCSEL 10 according to the first embodiment is mounted on the module substrate 88.
  • the downward facing surface (hereinafter referred to as the lower surface) of the heat transfer member 80 is mounted on the mounting surface of the module substrate 88 with solder or the like.
  • the module substrate 88 for example, a printed wiring board, a ceramic board, etc. are used.
  • a control circuit component 85 in which a control circuit is integrated is mounted on a module substrate 88 .
  • a land 86 is provided on the mounting surface of the module substrate 88.
  • a pad 45P connected to the anode electrode 41 (FIG. 2) of the VCSEL 10 is connected to the control circuit component 85 via a bonding wire 83.
  • a pad 46P connected to the cathode electrode 42 (FIG. 2) of the VCSEL 10 is connected to a land 86 via a bonding wire 84. Note that the pad 46P may be connected to the control circuit component 85 via a bonding wire.
  • a drive current is supplied from the control circuit component 85 to the VCSEL 10. When a drive current is supplied to the VCSEL 10, a laser beam is output from the mesa structure 30 in a direction perpendicular to the first surface 28A (FIG. 2) of the semiconductor layer 28.
  • the heat conducted to the heat transfer member 80 further diffuses within the heat transfer member 80 and is conducted to the module substrate 88. In order to increase the efficiency of heat radiation from the heat source of the VCSEL 10, it is desirable to reduce the thermal resistance of this heat radiation path.
  • FIG. 4 is a schematic cross-sectional view of the mesa structure 30 of the VCSEL 10 according to the first embodiment.
  • the unoxidized region 26B of the current confinement layer 26 can be considered as the heat source HS of the VCSEL 10.
  • the direction perpendicular to the second surface 28B of the semiconductor layer 28 is defined as the height direction.
  • the dimension in the height direction from the second surface 28B to the current confinement layer 26 is marked as H.
  • the diameter of the minimum enclosing circle that includes the mesa structure 30 in plan view is denoted as D. In the first embodiment, since the mesa structure 30 has a circular shape in plan view, the diameter of the mesa structure 30 is equal to the diameter D of the minimum enclosing circle.
  • the heat generated by the heat source HS is conducted toward the heat transfer member 80 and spreads in the in-plane direction, as shown by the arrow in FIG. Since the thermal conductivity of the heat transfer member 80 is higher than that of the semiconductor material constituting the mesa structure 30 and the semiconductor layer 28, in order to increase the heat dissipation efficiency, the height direction of the portion with relatively low thermal conductivity is It is preferable to make the dimension H as small as possible. Furthermore, since the thermal conductivity of the protective film 51 is lower than that of the semiconductor material constituting the mesa structure 30, when the diameter D of the minimum enclosing circle of the mesa structure 30 becomes smaller, the protective film 51 As a result, the heat dissipation efficiency decreases.
  • the dimension H in the height direction is 1/2 or less of the diameter D of the minimum enclosing circle of the mesa structure 30.
  • the dimension H in the height direction is 1/2 or less of the diameter D of the minimum enclosing circle of the mesa structure 30.
  • the ratio of the vertical dimension to the horizontal dimension in FIG. 4 is different from the actual dimension ratio.
  • the diameter D of the minimum enclosing circle of the mesa structure 30 is 30 ⁇ m, and the dimension H in the height direction is 8 ⁇ m.
  • the diameter of the unoxidized region 26B (heat source HS) of the current confinement layer 26 in plan view is about 5 ⁇ m.
  • 5A and 5B are schematic diagrams showing the shape of a mesa structure 30 having a shape other than circular in plan view.
  • the mesa structure 30 (FIG. 1) of the VCSEL 10 according to the first embodiment has a circular shape in plan view.
  • the shape of the mesa structure 30 in plan view is a square with rounded corners. At this time, the minimum enclosing circle 31 touches four rounded corners of the rounded square.
  • the shape of the mesa structure 30 in plan view is composed of a circular portion and a protrusion 30A that protrudes outward from one location of the circular portion.
  • the minimum enclosing circle 31 in this case includes not only the circular portion but also the protrusion 30A. Therefore, the diameter D of the minimum enclosing circle 31 is larger than the diameter of the circular portion of the mesa structure 30 in plan view.
  • the dimension H in the height direction is set to 1 of the diameter D of the minimum enclosing circle 31. /2 or less is preferable.
  • FIG. 6 is a schematic cross-sectional view showing an example of a mesa structure 30 with inclined sides.
  • the side surface of the mesa structure 30 is inclined with respect to the second surface 28B of the semiconductor layer 28. That is, the mesa structure 30 has a truncated cone shape.
  • the minimum enclosing circle of the mesa structure 30 at the position of the current confinement layer 26 is set to 1/2 or less of the diameter D of the minimum enclosing circle of the mesa structure 30 at the position of the current confinement layer 26.
  • FIG. 7 to FIG. 18 are cross-sectional views of the VCSEL 10 according to the first example at an intermediate stage of manufacture
  • FIG. 19 is a cross-sectional view of the VCSEL 10 according to the first example.
  • the spacer layer 25 (FIG. 2) is omitted.
  • a semiconductor layer 22 made of n-type GaAs, a lower DBR layer 23, an active layer 24, a spacer layer 25 (FIG. 2), and a current confinement layer 26 are provided on a substrate 21A made of semi-insulating GaAs.
  • a semiconductor layer 22 made of n-type GaAs, a lower DBR layer 23, an active layer 24, a spacer layer 25 (FIG. 2), and a current confinement layer 26 are provided on a substrate 21A made of semi-insulating GaAs.
  • a semiconductor layer 22 made of n-type GaAs, a lower DBR layer 23, an active layer 24, a spacer layer 25 (FIG. 2), and a current confinement layer 26 are provided on a substrate 21A made of semi-insulating GaAs.
  • a semiconductor layer 22 made of n-type GaAs, a lower DBR layer 23, an active layer 24, a spacer layer 25 (FIG. 2), and a current confinement layer 26 are provided on a substrate 21A made of
  • a mesa structure 30 is formed by etching from the upper DBR layer 27 to the middle of the lower DBR layer 23 in the thickness direction.
  • a dry etching method is used to etch each layer from the upper DBR layer 27 to the lower DBR layer 23.
  • an insulating oxidized region 26A made of AlO or the like is formed, leaving the central portion of the current confinement layer 26 in plan view.
  • An unoxidized region 26B remains in the central portion of the current confinement layer 26.
  • Other layers having a lower Al composition ratio than the current confinement layer 26 are hardly oxidized.
  • the semiconductor layer 22 is exposed.
  • the lower DBR layer 23 in the region where the cathode electrode 42 (FIG. 2) is arranged is also removed to expose the semiconductor layer 22.
  • Wet etching or dry etching is used for etching the lower DBR layer 23.
  • the lower portion of the lower DBR layer 23 remains around the mesa structure 30 in plan view.
  • a cathode electrode 42 is formed in a part of the exposed upper surface of the semiconductor layer 22.
  • a vacuum evaporation method and a lift-off method are used for forming the cathode electrode 42.
  • the resist pattern used as an etching mask when removing a part of the lower DBR layer 23 is used as part of a lift-off resist pattern.
  • the exposed surfaces of the mesa structure 30, the anode electrode 41, the lower DBR layer 23 remaining outside the mesa structure 30, the cathode electrode 42, and the semiconductor layer 22 are covered with a passivation film 50.
  • a passivation film 50 For example, chemical vapor deposition (CVD) is used to form the passivation film 50.
  • CVD chemical vapor deposition
  • a via hole 50A that exposes a portion of the upper surface of the cathode electrode 42 and a via hole 50B that exposes a portion of the upper surface of the anode electrode 41 are formed in the passivation film 50.
  • Wet etching or dry etching is used to form via holes 50A and 50B.
  • a protective film 51 is formed by coating the exposed surface with a photosensitive resin. Thereafter, via holes 51A and 51B are formed in the protective film 51 by a photolithography process.
  • the via hole 51A substantially overlaps with the via hole 50A formed in the passivation film 50 in plan view.
  • the via hole 51B includes the via hole 50B formed in the passivation film 50 in plan view.
  • an anode wiring 45 and a cathode wiring 46 are formed on the protective film 51.
  • a sputtering method, a vacuum evaporation method, a plating method, etc. are used for forming the anode wiring 45 and the cathode wiring 46.
  • the substrate 21A is made thinner, leaving the semiconductor layer 21 consisting of a part of the substrate 21A.
  • mechanical methods such as grinding and polishing, and chemical methods such as dry etching and wet etching can be used to reduce the thickness of the substrate 21A. Note that a mechanical method and a chemical method may be combined.
  • a semiconductor layer 28 consisting of two layers, a semi-insulating semiconductor layer 21 and an n-type conductive semiconductor layer 22, is formed.
  • an adhesive layer 81B is formed on the second surface 28B of the semiconductor layer 28.
  • the adhesive layer 81B is formed by, for example, vacuum-depositing Au or the like. After forming the adhesive layer 81B, the semiconductor layer 28, the protective film 51, etc. are diced to separate the intermediate product including a plurality of chips into pieces.
  • an adhesive layer 81A is formed on one surface of the heat transfer member 80.
  • the adhesive layer 81A is formed by, for example, vacuum-depositing Au or the like.
  • the adhesive layer 81B on the device side in which the mesa structure 30 is formed and the adhesive layer 81A on the heat transfer member 80 side are brought into close contact with each other, and the adhesive layer 81A and the adhesive layer 81A are bonded by applying pressure while heating.
  • the layer 81B is bonded to the layer 81B. Note that in FIG. 2, the adhesive layers 81A and 81B are represented as one adhesive layer 81.
  • the substrate 21A is made thinner, so the distance from the heat source HS (FIG. 4) to the heat transfer member 80 is shorter than in a configuration where the substrate 21A is not made thinner. . Since the thermal conductivity of the heat transfer member 80 is higher than that of the semiconductor layer 21, the substrate 21A (FIG. 15) is bonded to the module substrate 88 (FIG. 3) without thinning the substrate 21A (FIG. 15). The thermal resistance from the heat source HS to the module substrate 88 is reduced compared to the above. Thereby, the efficiency of heat radiation from the heat source HS can be increased.
  • the height dimension H (FIG. 4) from the second surface 28B of the semiconductor layer 28 to the current confinement layer 26 is 10 ⁇ m or less, for example.
  • the height dimension H (FIG. 4) from the second surface 28B of the semiconductor layer 28 to the current confinement layer 26 is the diameter D of the minimum enclosing circle that includes the mesa structure 30 in plan view. (FIG. 4), the heat generated by the heat source HS spreads in the in-plane direction within the mesa structure 30 without being inhibited by the protective film 51, and reaches the heat transfer member 80. . Therefore, a decrease in heat dissipation efficiency due to the protective film 51 having low thermal conductivity is suppressed.
  • the diameter D (FIG. 4) of the minimum enclosing circle that includes the mesa structure 30 in plan view is increased, the spread of the heat generated by the heat source HS in the in-plane direction will not be inhibited by the protective film 51. , the frequency characteristics deteriorate due to an increase in the parasitic capacitance component of the VCSEL 10, a decrease in the current density injected into the active layer 24, and the like.
  • the diameter D of the minimum enclosing circle that includes the mesa structure 30 in plan view is 50 ⁇ m or less.
  • the semiconductor layer 28 does not have grooves, recesses, etc., and the bonding surface between the semiconductor layer 28 and the heat transfer member 80 is flat, the semiconductor layer 28 and the heat transfer member 80 are Thermal stress generated due to the difference in linear expansion coefficients is difficult to concentrate in a specific location. Therefore, damage to the VCSEL due to local concentration of thermal stress can be suppressed.
  • the lower DBR layer 23, the semiconductor layer 22, and the cathode electrode 42 are electrically isolated from the heat transfer member 80 by the semi-insulating semiconductor layer 21. Therefore, the operation of the VCSEL 10 is less susceptible to the electrical signal applied to the heat transfer member 80.
  • the thickness of the lower DBR layer 23 remains unchanged. Therefore, the light confinement effect does not decrease due to the lower DBR layer 23 becoming thinner, and the luminous efficiency does not decrease.
  • FIGS. 20A and 20B are schematic diagrams showing the shape of the mesa structure 30 of the VCSEL 10 in a plan view according to a modification of the first embodiment.
  • the minimum The diameter D of the encompassing circle 31 is adopted.
  • the diameter D of the maximum inscribed circle 32 of the shape of the mesa structure 30 in plan view is employed as a comparison target with the dimension H.
  • the diameter D of the maximum inscribed circle is equal to the length of one side of the rounded square.
  • the diameter D of the maximum inscribed circle 32 is the same as that of the original circular shape. smaller than the diameter of
  • the dimension H in the height direction from the second surface 28B of the semiconductor layer 28 to the current confinement layer 26 is set to 1/2 the diameter D of the maximum inscribed circle 32 of the shape of the mesa structure 30 in a plan view.
  • heat diffused in any direction from the heat generating source HS reaches the heat transfer member 80 without being hindered by the protective film 51 (FIG. 4). Therefore, the effect of suppressing the reduction in heat dissipation efficiency by the protective film 51 can be enhanced.
  • the semiconductor layer 28 is bonded to the heat transfer member 80 by closely adhering the adhesive layers 81A and 81B made of Au, but the two may be bonded by other methods.
  • van der Waals bonds or hydrogen bonds may be used to bond the semiconductor layer 28 and the adhesive layer 81A of the heat transfer member 80.
  • the semiconductor layer 28 may be bonded to the adhesive layer 81A by electrostatic force, covalent bonding, eutectic alloy bonding, or the like.
  • the mesa structure 30 is formed from the upper DBR layer 27 to at least the upper surface of the lower DBR layer 23.
  • Each layer may constitute the mesa structure 30.
  • the mesa structure 30 may be formed by the upper DBR layer 27, the current confinement layer 26, the spacer layer 25, and the active layer 24. Further, the entire area up to the bottom surface of the lower DBR layer 23 may be included in the mesa structure 30.
  • an AlGaAs/GaAs-based VCSEL emission wavelength of 700 nm or more
  • non-doped GaAs is used for the semi-insulating semiconductor layer 21 (FIG. 2)
  • a VCSEL made of other compound semiconductor materials A structure similar to that of the VCSEL according to the first embodiment may be applied.
  • a structure similar to the VCSEL according to the first embodiment may be applied to an InGaAsP/InP-based VCSEL (emission wavelength of 1600 nm or less).
  • the thermal conductivity of InP is approximately 68 W/mK, which is lower than the thermal conductivity of the heat transfer member 80, so similar to the first embodiment, excellent effects can be obtained by making the semiconductor layer made of InP thinner. It will be done.
  • FIG. 21 is a cross-sectional view of the VCSEL 10 according to the second example.
  • the semiconductor layer 28 includes two layers: a semi-insulating semiconductor layer 21 and a semiconductor layer 22 having n-type conductivity disposed thereon.
  • the semiconductor layer 28 is composed of a single layer of the semiconductor layer 22 having n-type conductivity.
  • the semiconductor layer 21, which is a part of the substrate 21A is left.
  • the substrate 21A is completely removed and the semiconductor layer 22 is exposed.
  • the subsequent steps are the same as those of the method for manufacturing the VCSEL 10 according to the first embodiment.
  • the semiconductor layer 28 may be composed of a single layer of the semiconductor layer 22 having n-type conductivity.
  • the efficiency of heat radiation from the heat source of the VCSEL 10 can be improved.
  • the heat transfer member 80 can be used as a cathode electrode.
  • the cathode electrode 42 and the cathode wiring 46 may be deleted.
  • FIGS. 22 and 23 a description of the configuration common to the VCSEL 10 according to the first embodiment described with reference to the drawings from FIG. 1 to FIG. 19 will be omitted.
  • the substrate 21A includes a temporary substrate 21A1, an etching control layer 21A2 and a semiconductor layer 21 stacked thereon.
  • the temporary substrate 21A1 is, for example, a substrate made of semi-insulating GaAs.
  • the etching control layer 21A2 is a semiconductor layer epitaxially grown on the temporary substrate 21A1, and a compound semiconductor such as InGaAs, which has a different etching resistance than the temporary substrate 21A1, is used for the etching control layer 21A2.
  • the semiconductor layer 21 is a layer epitaxially grown on the etching control layer 21A2, and is made of a compound semiconductor having n-type conductivity, such as n-type GaAs, similarly to the semiconductor layer 21 of the first embodiment (FIG. 2). be done.
  • the thin semiconductor layer 21 is left by controlling the processing time of polishing, grinding, etching, etc. of the substrate 21A.
  • the temporary substrate 21A1 is etched under conditions where the etching rate of the temporary substrate 21A1 is faster than the etching rate of the etching control layer 21A2. As shown in FIG. 23, since the etching rate decreases when the etching control layer 21A2 is exposed, the etching can be stopped at the lower surface of the etching control layer 21A2 with good reproducibility.
  • the semiconductor layer 28 (FIG. 2) disposed between the mesa structure 30 and the adhesive layer 81 includes three layers: an etching control layer 21A2, a semiconductor layer 21, and a semiconductor layer 22. . Note that after exposing the etching control layer 21A2, the etching control layer 21A2 may be removed by etching to expose the semiconductor layer 21. In this case, the semiconductor layer 28 includes two semiconductor layers 21 and 22, as in the first embodiment.
  • the efficiency of heat radiation from the heat source of the VCSEL 10 can be improved. Furthermore, the controllability of the thickness of the semiconductor layer 28 can be improved.
  • FIG. 24 is a cross-sectional view of the VCSEL according to the fourth example.
  • the configuration from the semiconductor layer 28 to the anode wiring 45 and cathode wiring 46 is the same as the configuration of the VCSEL (FIG. 2) according to the first embodiment.
  • the heat transfer member 80 is made of a single material such as metal.
  • a composite material is used for the heat transfer member 80.
  • the heat transfer member 80 is composed of a high heat conduction portion 80A and a restraining portion 80B.
  • the thermal conductivity of the high thermal conductivity portion 80A is higher than the thermal conductivity of the semiconductor layer 28 and the thermal conductivity of the constraint portion 80B.
  • the linear expansion coefficient of the high thermal conductivity portion 80A is larger than that of the semiconductor layer 28.
  • the coefficient of linear expansion of the constrained portion 80B is smaller than that of the high thermal conductivity portion 80A.
  • the restraint part 80B is a plate-shaped member provided with a plurality of through holes, and the high thermal conductivity part 80A is filled in the through holes of the restraint part 80B and covers both sides of the restraint part 80B. That is, the high thermal conductivity portion 80A is exposed throughout the upper surface 80T and the lower surface 80L on the opposite side of the heat transfer member 80, and the restraining portion 80B is not exposed on either the upper surface 80T or the lower surface 80L.
  • the high thermal conductivity portion 80A includes a plurality of penetrating portions 80A1.
  • Each of the plurality of penetrating portions 80A1 extends from the upper surface 80T of the heat transfer member 80 in a direction perpendicular to the upper surface 80T, and reaches the lower surface 80L.
  • the plurality of penetrating portions 80A1 are two-dimensionally and discretely distributed.
  • Metals such as Cu, Au, and Ag are used as the material for the high thermal conductivity portion 80A.
  • the thermal conductivities of Cu, Au, and Ag are approximately 398 W/mK, approximately 320 W/mK, and approximately 418 W/mK, respectively, and the linear expansion coefficients are approximately 16.5 ppm/°C, approximately 14.3 ppm/°C, and approximately It is 18.9 ppm/°C.
  • GaAs used for the semiconductor layer 28 has a thermal conductivity of about 55 W/mK and a coefficient of linear expansion of about 5.4 ppm/°C.
  • the thermal conductivity of the high thermal conductivity portion 80A is higher than that of the semiconductor layer 28.
  • the linear expansion coefficient of the high thermal conductivity portion 80A is larger than that of the semiconductor layer 28. From the viewpoint of ease of processing and material cost, it is more preferable to use Cu as the high heat conductive portion 80A.
  • glass whose main component is silicon oxide, a single semiconductor, ceramics, etc. are used.
  • glass containing silicon oxide as a main component used as the restraining portion 80B include borosilicate glass, quartz glass, alkali-free glass, and the like.
  • the linear expansion coefficient of borosilicate glass is about 3 ppm/°C or more and about 12 ppm/°C or less
  • the linear expansion coefficient of quartz glass is about 0.5 ppm/°C
  • the linear expansion coefficient of alkali-free glass is about 3 ppm/°C. It is about 8 ppm/°C or less.
  • the thermal conductivity of quartz glass is approximately 1.5 W/mK.
  • Ceramics used as the restraining portion 80B include SiC, SiN, AlN, and the like.
  • the thermal conductivity of both SiC and SiN is about 200 W/mK.
  • the thermal conductivity of AlN is about 170 W/mK or more and about 230 W/mK or less.
  • the linear expansion coefficients of SiC, SiN, and AlN are approximately 4.0 ppm/°C, approximately 2.8 ppm/°C, and approximately 4.6 ppm/°C, respectively.
  • An example of a single semiconductor used as the constraint portion 80B is Si.
  • the thermal conductivity of Si is about 162 W/mK, and the coefficient of linear expansion is about 4.15 ppm/°C.
  • the linear expansion coefficients of these materials are smaller than that of GaAs used for the semiconductor layer 28.
  • FIG. 25A is a diagram showing the distribution of the penetrating portion 80A1 of the heat transfer member 80 and the mesa structure 30.
  • each of the plurality of penetrating portions 80A1 has a circular shape, and the plurality of penetrating portions 80A1 are two-dimensionally and discretely distributed.
  • the plurality of penetrating portions 80A1 are arranged in a regular triangular lattice shape.
  • the plurality of mesa structures 30 are arranged in a single row array, as described with reference to FIG.
  • the mesa structure 30 at least partially overlaps any of the penetrating portions 80A1 in plan view.
  • the mesa structure 30 may include the penetrating portion 80A1, or conversely, the penetrating portion 80A1 may include the mesa structure 30, or a portion of the mesa structure 30 and a portion of the penetrating portion 80A1 overlap. You can do it like this.
  • FIG. 25B is a cross-sectional view of the heat transfer member 80 taken along the dashed line 25B-25B in FIG. 25A and a graph showing the coefficient of linear expansion.
  • the graph showing the coefficient of linear expansion represents the coefficient of linear expansion at the position where the restraining portion 80B is arranged in the thickness direction of the heat transfer member 80.
  • the horizontal axis of the graph showing the coefficient of linear expansion represents the position along the dashed line 25B-25B in FIG. 25A.
  • the linear expansion coefficient ⁇ A of the high thermal conductivity portion 80A is larger than the linear expansion coefficient ⁇ B of the restraint portion 80B.
  • the linear expansion coefficient ⁇ S of the semiconductor layer 28 (FIG. 2) is smaller than the linear expansion coefficient ⁇ A of the high thermal conductivity portion 80A, and larger than the linear expansion coefficient ⁇ B of the constrained portion 80B.
  • the total area of the plurality of penetrating portions 80A1 in a plan view is denoted as S A
  • the area of the restraint portion 80B is denoted as S B.
  • the magnitude relationship between the total area S A of the penetrating portion 80A1 and the area S B of the restraining portion 80B is the difference ⁇ A ⁇ ⁇ S between the linear expansion coefficient ⁇ A of the penetrating portion 80 A1 and the linear expansion coefficient ⁇ S of the semiconductor layer 28. This is opposite to the magnitude relationship ⁇ S ⁇ B between the linear expansion coefficient ⁇ S of the semiconductor layer and the linear expansion coefficient ⁇ B of the constrained portion 80B.
  • FIG. 26 to FIG. 28 are cross-sectional views of the heat transfer member 80 at an intermediate stage of manufacture
  • FIG. 29 is a cross-sectional view of the heat transfer member 80
  • FIG. 30 is a cross-sectional view of the heat transfer member 80 and the adhesive layer 81A.
  • FIG. 31 is a cross-sectional view of a VCSEL according to a fourth embodiment.
  • an original plate 80B1 of the restrained portion 80B (FIG. 24) is prepared.
  • a plurality of through holes 80BH are formed in the original plate 80B1. This completes the restraint portion 80B.
  • the through hole 80BH can be formed by forming a mask pattern on the original plate 80B1 by photolithography, and then using a dry etching method, a wet etching method, a sandblasting method, a laser drilling method, or the like.
  • a power supply coating 80F such as Cu is formed on both sides of the restraining portion 80B and the side surface of the through hole 80BH.
  • a sputtering method can be used to form the coating 80F.
  • the high thermal conductivity portion 80A is formed by electrolytically plating Cu using the coating 80F as an electrode.
  • the Cu filled in the through hole 80BH constitutes a part of the through portion 80A1 of the high heat conductive portion 80A.
  • the surface to which the semiconductor layer 28 (FIG. 24) is to be bonded is smoothed by wet etching, polishing, chemical mechanical polishing (CMP), or the like. Thereby, the heat transfer member 80 is completed. Note that if the surface after electrolytic plating is sufficiently smooth, smoothing treatment may not be performed.
  • an adhesive layer 81A is formed on the upper surface 80T, which is one surface of the heat transfer member 80.
  • the adhesive layer 81A is formed by, for example, vacuum-depositing Au or the like.
  • the adhesive layer 81B of the intermediate product on which the mesa structure 30 is formed is brought into close contact with the adhesive layer 81A on the heat transfer member 80 side, and the adhesive layer 81A is heated and pressed.
  • the adhesive layer 81B is bonded to the adhesive layer 81B. Note that in FIG. 24, the adhesive layers 81A and 81B are represented as one adhesive layer 81.
  • the substrate 21A (FIG. 16) is made thinner, so that the efficiency of heat radiation from the heat source HS (FIG. 4) can be increased.
  • the linear expansion coefficient of the high thermal conductivity portion 80A made of metal is about three times the linear expansion coefficient of the semiconductor layer 28 made of a compound semiconductor such as GaAs.
  • the heat transfer member 80 includes a high heat conduction portion 80A and a constraint portion 80B having a smaller coefficient of linear expansion than the high heat conduction portion 80A. Therefore, the expansion of the heat transfer member 80 when the temperature rises is suppressed compared to the case where the heat transfer member 80 is made of a single metal. Thereby, thermal stress generated in the semiconductor layer 28 and the heat transfer member 80 can be reduced.
  • the linear expansion coefficient of the restraint portion 80B is preferably 50% or less, more preferably 35% or less, of the linear expansion coefficient of the high thermal conductivity portion 80A. Furthermore, since the penetrating portions 80A1 of the high thermal conductivity portion 80A are two-dimensionally arranged discretely, local concentration of thermal stress is suppressed in the in-plane direction.
  • the heat transfer member 80 includes a high thermal conductivity portion 80A having a relatively high thermal conductivity compared to the semiconductor layer 28, so that heat flowing from the semiconductor layer 28 is conducted to the module substrate 88 (FIG. 3). The thermal resistance of the thermal path is lowered. Furthermore, as shown in FIG. 25A, since the mesa structure 30 and the penetration portion 80A1 of the high heat conduction portion 80A at least partially overlap in plan view, the module is The heat transfer path to the substrate 88 becomes shorter. Thereby, good heat dissipation efficiency can be obtained. By increasing the heat dissipation efficiency, it is possible to improve the optical output of the VCSEL 10 and to suppress deterioration of the characteristics of the VCSEL 10 over time due to high-temperature operation.
  • the restraining portion 80B has a linear expansion coefficient ⁇ B smaller than the linear expansion coefficient ⁇ S of the semiconductor layer 28.
  • the material is used.
  • the total area of the penetrating portion 80A1 is S A
  • the area of the restraining portion 80B is S B
  • the linear expansion coefficient of the penetrating portion 80A1 is ⁇ A
  • the line of the restraining portion 80B is
  • the thickness T B of the restraining portion 80B is preferably 100 ⁇ m or more in order to ensure sufficient mechanical strength. Further, if the restraining portion 80B is made thicker than necessary, the thermal resistance of the heat transfer member 80 increases, so it is preferable that the thickness T B of the restraining portion 80B be 300 ⁇ m or less.
  • the thickness T A1 of the high heat conduction portion 80A covering the upper surface of the restraining portion 80B, and the high heat conduction portion covering the lower surface is 10 ⁇ m or more. If the high thermal conductivity portion 80A is made thicker than necessary, the thermal resistance of the heat transfer member 80 increases, so it is preferable that each of the thicknesses T A1 and T A2 be 100 ⁇ m or less.
  • the dimensions of the penetrating portion 80A1 in plan view for example, the diameter D A of the minimum enclosing circle of the penetrating portion 80A1, and the interval G between adjacent penetrating portions 80A1 are both set.
  • the thickness is preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • FIG. 32 is a diagram showing the distribution of the mesa structure 30 and the penetrating portion 80A1 of the heat transfer member 80 of the VCSEL 10 according to this modification.
  • a plurality of penetrating portions 80A1 are arranged in a regular triangular lattice shape.
  • the plurality of penetrating portions 80A1 are arranged in a square grid.
  • the mesa structure 30 partially overlaps with any one of the penetrating portions 80A1 in plan view.
  • the plurality of penetrating portions 80A1 may be arranged in a square grid. Further, the plurality of penetrating portions 80A1 may be distributed discretely within the two-dimensional plane in other patterns.
  • FIGS. 33A and 33B a description of the configuration common to the VCSEL 10 according to the fourth embodiment described with reference to the drawings from FIG. 24 to FIG. 31 will be omitted.
  • FIG. 33A is a diagram showing the positional relationship in plan view between the penetrating portion 80A1 of the heat transfer member 80 of the VCSEL 10 according to the fifth embodiment and the mesa structure 30, and FIG. 8 is a cross-sectional view of a heat transfer member 80.
  • one large penetrating portion 80A1 is arranged.
  • an annular restraining portion 80B is arranged around the periphery of the heat transfer member 80, and the penetrating portion 80A1 is surrounded by the restraining portion 80B.
  • the plurality of mesa structures 30 are included in the penetrating portion 80A1 in plan view.
  • the distance in the height direction from the lower end of the mesa structure 30, that is, the lower end of the side surface of the mesa structure 30, to the restraining portion 80B is denoted as H1.
  • the excellent effects of the fifth embodiment will be explained.
  • the entire interior of the heat transfer member 80 except for the peripheral portion is a penetrating portion 80A1. Therefore, the thermal resistance of the heat transfer member 80 is reduced compared to the first embodiment. As a result, higher heat radiation efficiency can be obtained.
  • FIG. 34A is a diagram showing the positional relationship in plan view between the penetrating portion 80A1 of the heat transfer member 80 of the VCSEL 10 and the mesa structure 30 according to the sixth embodiment.
  • the plurality of penetrating portions 80A1 are distributed almost uniformly within the plane.
  • the distribution density of the plurality of penetrating portions 80A1 in the in-plane direction is not uniform.
  • a direction parallel to the direction in which the plurality of mesa structures 30 are lined up is defined as a column direction, and a direction perpendicular thereto is defined as a row direction.
  • the interval G y of the plurality of penetrating portions 80A1 in the column direction is approximately constant.
  • the interval G x between the plurality of through parts 80A1 in the row direction increases as the distance from the mesa structure 30 in the row direction increases.
  • FIG. 34B is a graph showing the distribution density of the penetrating portion 80A1.
  • the horizontal axis represents the position in the row direction, and the vertical axis represents the distribution density of the penetrating portions 80A1. As the distance from the mesa structure 30 in the row direction increases, the distribution density of the penetrating portions 80A1 decreases.
  • the excellent effects of the sixth embodiment will be explained.
  • the thermal resistance from the mesa structure 30 to the module substrate 88 (FIG. 3) can be reduced.
  • the distribution density of the penetrating portions 80A1 is reduced at a position far from the mesa structure 30, the volume ratio occupied by the restraining portions 80B (FIG. 2) increases. Therefore, the function of suppressing thermal expansion of the high thermal conductivity portion 80A (FIG. 24) is enhanced. Thereby, thermal stress applied to the semiconductor layer 28 (FIG. 24) can be suppressed.
  • FIG. 35 is a plan view schematically showing the positional relationship between the mesa structure 30 and the penetrating portion 80A1 in plan view
  • FIG. 36 is a cross-sectional view of the VCSEL 10 taken along the dashed-dotted line 36-36 in FIG.
  • the mesa structure 30 (FIG. 25A) has a circular shape in plan view, but in the seventh example, the mesa structure 30 has a square shape in plan view. Note that the vertices of the square may be rounded to form a square with rounded corners.
  • the mesa structure 30 and the penetrating portion 80A1 have an overlapping region in plan view.
  • the mesa structure 30 and the penetrating portion 80A1 do not overlap in plan view, and the mesa structure 30 and the restraint portion 80B at least partially overlap.
  • H1 The distance in the height direction from the lower end of the mesa structure 30, that is, the lower end of the side surface of the mesa structure 30, to the restraining portion 80B that overlaps with the mesa structure 30 in plan view is denoted as H1.
  • H1 The distance in the height direction from the lower end of the mesa structure 30, that is, the lower end of the side surface of the mesa structure 30, to the restraining portion 80B that overlaps with the mesa structure 30 in plan view.
  • a circle that is concentric with the minimum enclosing circle 31 and has a radius larger than the radius of the minimum enclosing circle 31 by a distance H1 is referred to as an expanded circle 33.
  • the heat generated within the mesa structure 30 is conducted from the lower end toward the lower surface 80L of the heat transfer member 80, and also spreads in the in-plane direction. More specifically, the inner region of a truncated cone whose upper surface is the minimum enclosing circle 31 at the lower end of the mesa structure 30 and whose side surfaces have an inclination angle of 45 degrees functions as a main heat transfer path.
  • the outer periphery of the enlarged circle 33 is determined by the line of intersection between the side surface of this truncated cone and the virtual plane including the upper surface of the restraining portion 80B. That is, it can be considered that the heat generated within the mesa structure 30 is mainly conducted within the range of the enlarged circle 33 at the position of the upper surface of the restraining portion 80B.
  • the enlarged circle 33 and one or more penetrating portions 80A1 have an overlapping region.
  • the heat conducted within the range of the enlarged circle 33 is conducted to the lower surface 80L of the heat transfer member 80 via the penetrating portion 80A1 overlapping the enlarged circle 33.
  • the mesa structure 30 and the penetrating portion 80A1 do not have an overlapping region in plan view, and the enlarged circle 33 and the penetrating portion 80A1 at least partially overlap.
  • the heat generated in the mesa structure 30 and conducted within the range of the enlarged circle 33 is conducted to the lower surface 80L of the heat transfer member 80 via the penetrating portion 80A1. Therefore, sufficient heat radiation efficiency from the mesa structure 30 can be ensured.
  • the total area of the area where the enlarged circle 33 and the penetration portion 80A1 overlap in plan view is 3% or more of the area of the enlarged circle 33. It is preferable to have the following configuration.
  • the restraining portion 80B is not arranged directly under the mesa structure 30 in plan view.
  • the enlarged circle 33 can be defined using the distance H1 (FIG. 33B) in the height direction from the lower end of the mesa structure 30, that is, the lower end of the side surface of the mesa structure 30 to the restraining portion 80B.
  • FIG. 37 is a plan view schematically showing the positional relationship between the enlarged circle 33 and the penetrating portion 80A1 in plan view.
  • One enlarged circle 33 overlaps one penetrating portion 80A1.
  • the area of the overlapping region is designated as S in
  • the area of the region outside the enlarged circle 33 (non-overlapping region) of the penetrating portion 80A1 is designated as S out .
  • S out the proportion occupied by the constrained portion 80B (FIG.
  • the heat generated in the mesa structure 30 is mainly conducted inside the enlarged circle 33, even if the area S out of the non-overlapping region is increased, the contribution to improving the heat dissipation efficiency is not large.
  • the sum of the areas S in of the respective overlapping regions of the plurality of penetrating portions 80A1 is equal to the non-overlapping region of the plurality of penetrating portions 80A1. It is preferable to configure the area S out to be larger than the total area S out.
  • FIG. 38 is a plan view schematically showing the positional relationship between one mesa structure 30, another mesa structure 30 located immediately next to it, each enlarged circle 33 of these mesa structures 30, and the penetrating portion 80A1. be.
  • a line segment connecting the center of the minimum enclosing circle 31 of one mesa structure 30 and the center of the minimum enclosing circle 31 of the mesa structure 30 located immediately therebetween is denoted as a line segment LS.
  • a plurality of penetrating portions 80A1 overlap each of the enlarged circles 33 of the two mesa structures 30. There is no penetrating portion 80A1 that overlaps both of the two enlarged circles 33. Furthermore, no penetrating portion 80A1 that does not overlap either of the two enlarged circles 33 is arranged on the line segment LS.
  • the penetrating portion 80A1 that does not overlap either of the two enlarged circles 33 is not arranged on the line segment LS, the proportion occupied by the restraining portion 80B (FIG. 36) in the vicinity of the mesa structure 30 becomes large. Therefore, the effect of reducing thermal stress generated in the semiconductor layer 28 is enhanced. Furthermore, since the penetrating portion 80A1 that overlaps both of the two enlarged circles 33 is not arranged, thermal interference between the two mesa structures 30 is reduced, and heat is efficiently transferred in the thickness direction of the heat transfer member 80. It can be conducted.

Abstract

In the present invention, a lower distributed Bragg reflection layer is disposed on a first surface of a semiconductor layer. An active layer is disposed on the lower distributed Bragg reflection layer. An upper distributed Bragg reflection layer is disposed on the active layer. A heat-transfer member, which includes a material with thermal conductivity higher than the thermal conductivity of the semiconductor layer, is disposed on a second surface of the semiconductor which is on the side opposite the first surface. A mesa structure is formed from the upper distributed Bragg reflection layer to at least an upper surface of the lower distributed Bragg reflection. Furthermore, the mesa structure includes a current-confining layer that concentrates current in a partial region in a planar view. A dimension in a height direction from the second surface of the semiconductor layer to the current-confining layer is one-half or less of the diameter of a minimum bounding circle that encompasses the mesa structure in a planar view.

Description

垂直共振器型面発光レーザVertical cavity surface emitting laser
 本発明は、垂直共振器型面発光レーザに関する。 The present invention relates to a vertical cavity surface emitting laser.
 垂直共振器型面発光レーザ(Vertical Cavity Surface Emitting Laser、以下VCSELという。)は、基板に形成されたひとつまたは複数の発光部から、基板のデバイス形成面に対して垂直方向にレーザビームを出力する。VCSELは、端面発光レーザに比べて少ない電流で波長850nm以上のレーザビームを出力することができ、レーザビームのビーム断面がほぼ円形であるため、VCSELと光ファイバとの結合が容易である。また、オンウエハ状態で良否の試験を行うことができることから量産性に優れる。このような理由から、VCSELは、光トランシーバモジュールの送信部によく用いられている。 A vertical cavity surface emitting laser (VCSEL) outputs a laser beam from one or more light emitting parts formed on a substrate in a direction perpendicular to the device formation surface of the substrate. . A VCSEL can output a laser beam with a wavelength of 850 nm or more with less current than an edge-emitting laser, and since the beam cross section of the laser beam is approximately circular, it is easy to couple the VCSEL with an optical fiber. Furthermore, since it is possible to perform pass/fail tests in the on-wafer state, it is excellent in mass production. For these reasons, VCSELs are often used in the transmitting section of optical transceiver modules.
 ところが、VCSELは端面発光レーザと比べて、素子の熱抵抗が大きく放熱性が悪い。素子が高温になると、VCSELの特性が劣化し、出力が低下する。また、高温での動作を継続すると、素子の経時劣化が顕著になる。これらの課題を解決するために、放熱効率の高いVCSELが望まれている。 However, compared to an edge-emitting laser, a VCSEL has a large element thermal resistance and poor heat dissipation. When the element becomes high temperature, the characteristics of the VCSEL deteriorate and the output decreases. Furthermore, if the operation at high temperatures is continued, the deterioration of the element over time becomes noticeable. In order to solve these problems, a VCSEL with high heat dissipation efficiency is desired.
 下記の特許文献1に、放熱効率を高めたVCSELが開示されている。特許文献1に開示されたVCSELにおいては、発光部となるメサ構造の直下の半導体基板に溝が形成されており、この溝内に高熱伝導部材が充填されている。溝内の高熱伝導部材が、発光部からの放熱経路として機能する。または、半導体基板のうちメサ構造が配置されていない箇所に貫通孔が形成され、この貫通孔内に高熱伝導部材が充填されている。貫通孔内の高熱伝導部材は、半導体基板のデバイス形成面から反対側の裏面に向かう伝熱経路として機能する。 Patent Document 1 below discloses a VCSEL with improved heat dissipation efficiency. In the VCSEL disclosed in Patent Document 1, a groove is formed in the semiconductor substrate directly under the mesa structure serving as the light emitting part, and the groove is filled with a highly thermally conductive member. The high thermal conductivity member within the groove functions as a heat radiation path from the light emitting section. Alternatively, a through hole is formed in a portion of the semiconductor substrate where the mesa structure is not arranged, and the through hole is filled with a highly thermally conductive member. The high thermal conductivity member in the through hole functions as a heat transfer path from the device forming surface of the semiconductor substrate to the opposite back surface.
特開2005-86054号公報Japanese Patent Application Publication No. 2005-86054
 特許文献1に記載されたVCSELのように、半導体基板に溝を形成し、溝内に高熱伝導部材を充填すると、半導体基板と高熱伝導部材との間の線膨張係数の差によって半導体基板に熱応力が発生する。熱応力は、特に溝の底部に集中しやすい。熱応力が溝の底部に集中することにより、半導体基板にクラックが発生する場合がある。半導体基板に発生したクラックは、VCSELの動作不良の原因になる。 As in the VCSEL described in Patent Document 1, when a groove is formed in a semiconductor substrate and a highly thermally conductive member is filled in the groove, heat is transferred to the semiconductor substrate due to the difference in linear expansion coefficient between the semiconductor substrate and the highly thermally conductive member. Stress occurs. Thermal stress tends to concentrate particularly at the bottom of the groove. Cracks may occur in the semiconductor substrate due to the concentration of thermal stress at the bottom of the groove. Cracks generated in the semiconductor substrate cause malfunction of the VCSEL.
 半導体基板に貫通孔を形成する構造を持つVCSELにおいては、発光部の直下に貫通孔が設けられないため、発光部で発生した熱は、貫通孔内の高熱伝導部材まで半導体基板の面内方向に伝導しなければならない。このため、熱の伝導経路の熱抵抗が大きくなってしまう。 In a VCSEL that has a structure in which a through hole is formed in the semiconductor substrate, the through hole is not provided directly below the light emitting part, so the heat generated in the light emitting part is transferred in the in-plane direction of the semiconductor substrate to the high heat conductive member in the through hole. must be conducted. Therefore, the thermal resistance of the heat conduction path becomes large.
 本発明の目的は、クラック等が生じにくく、かつ放熱効率を高めることが可能なVCSELを提供することである。 An object of the present invention is to provide a VCSEL that is less prone to cracks and can improve heat dissipation efficiency.
 本発明の一観点によると、
 半導体層と、
 前記半導体層の第1面の上に配置された下部分布ブラッグ反射層と、
 前記下部分布ブラッグ反射層の上に配置された活性層と、
 前記活性層の上に配置された上部分布ブラッグ反射層と、
 前記半導体層の前記第1面とは反対側の第2面に接合され、前記半導体層の熱伝導率より高い熱伝導率を持つ材料を含む伝熱部材と
を備え、
 前記上部分布ブラッグ反射層から少なくとも前記下部分布ブラッグ反射層の上面までがメサ構造とされており、
 さらに、前記メサ構造は、平面視において一部の領域に電流を集中させる電流狭窄層を含み、
 前記半導体層の前記第2面から前記電流狭窄層までの高さ方向の寸法が、平面視において前記メサ構造を包含する最小包含円の直径の1/2以下である垂直共振器型面発光レーザが提供される。
According to one aspect of the invention:
a semiconductor layer;
a lower distributed Bragg reflection layer disposed on the first surface of the semiconductor layer;
an active layer disposed on the lower distributed Bragg reflective layer;
an upper distributed Bragg reflection layer disposed on the active layer;
a heat transfer member that is bonded to a second surface of the semiconductor layer opposite to the first surface and includes a material having a thermal conductivity higher than that of the semiconductor layer;
A mesa structure is formed from the upper distributed Bragg reflective layer to at least the upper surface of the lower distributed Bragg reflective layer,
Furthermore, the mesa structure includes a current confinement layer that concentrates current in a certain region in a plan view,
A vertical cavity surface emitting laser in which a height dimension from the second surface of the semiconductor layer to the current confinement layer is 1/2 or less of the diameter of a minimum enclosing circle that includes the mesa structure in plan view. is provided.
 電流狭窄層によって電流が集中した領域で発生した熱は、メサ構造内を通って面内方向に広がりながら伝熱部材に向かって伝導する。伝熱部材の熱伝導率は半導体層の熱伝導率より高いため、伝熱部材は良好な放熱経路として機能する。半導体層の第2面から電流狭窄層までの高さ方向の寸法、平面視においてメサ構造を包含する最小包含円の直径の1/2以下であることにより、放熱効率を高めることができる。 The heat generated in the region where the current is concentrated by the current confinement layer spreads in the in-plane direction through the mesa structure and is conducted toward the heat transfer member. Since the thermal conductivity of the heat transfer member is higher than that of the semiconductor layer, the heat transfer member functions as a good heat dissipation path. Heat dissipation efficiency can be improved by setting the height dimension from the second surface of the semiconductor layer to the current confinement layer to be 1/2 or less of the diameter of the minimum enclosing circle that includes the mesa structure in plan view.
図1は、第1実施例によるVCSEL10の平面図である。FIG. 1 is a plan view of a VCSEL 10 according to a first embodiment. 図2は、図1の一点鎖線2-2における断面図である。FIG. 2 is a sectional view taken along the dashed-dotted line 2-2 in FIG. 図3は、第1実施例によるVCSELがモジュールサブストレートに実装された状態のレーザ装置の断面図である。FIG. 3 is a sectional view of a laser device in which a VCSEL according to the first embodiment is mounted on a module substrate. 図4は、第1実施例によるVCSELのメサ構造の概略断面図である。FIG. 4 is a schematic cross-sectional view of the mesa structure of the VCSEL according to the first embodiment. 図5A及び図5Bは、円形以外の形状を有するメサ構造の平面視における形状を示す模式図である。FIGS. 5A and 5B are schematic diagrams showing the shape of a mesa structure having a shape other than a circle in a plan view. 図6は、側面が傾斜したメサ構造の例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of a mesa structure with inclined sides. 図7は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 7 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図8は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 8 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図9は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 9 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図10は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 10 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図11は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 11 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図12は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 12 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図13は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 13 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図14は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 14 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図15は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 15 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図16は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 16 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図17は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 17 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図18は、第1実施例によるVCSELの製造途中段階における断面図である。FIG. 18 is a cross-sectional view of the VCSEL according to the first embodiment at an intermediate stage of manufacture. 図19は、第1実施例によるVCSELの断面図である。FIG. 19 is a cross-sectional view of the VCSEL according to the first example. 図20A及び図20Bは、第1実施例の他の変形例によるVCSELのメサ構造の平面視における形状を示す模式図である。20A and 20B are schematic diagrams showing the shape of a mesa structure of a VCSEL in a plan view according to another modification of the first embodiment. 図21は、第2実施例によるVCSELの断面図である。FIG. 21 is a cross-sectional view of a VCSEL according to the second embodiment. 図22は、第3実施例によるVCSELの製造途中段階における断面図である。FIG. 22 is a cross-sectional view of the VCSEL according to the third example at an intermediate stage of manufacture. 図23は、第3実施例によるVCSELの製造途中段階における断面図である。FIG. 23 is a cross-sectional view of the VCSEL according to the third example at an intermediate stage of manufacture. 図24は、第4実施例によるVCSELの断面図である。FIG. 24 is a cross-sectional view of a VCSEL according to a fourth example. 図25Aは、伝熱部材の貫通部分と、メサ構造との分布を示す図であり、図25Bは、図25Aの一点鎖線25B-25Bにおける伝熱部材の断面図及び線膨張係数を示すグラフである。FIG. 25A is a diagram showing the distribution of the penetration portion of the heat transfer member and the mesa structure, and FIG. 25B is a cross-sectional view of the heat transfer member taken along the dashed line 25B-25B in FIG. 25A, and a graph showing the coefficient of linear expansion. be. 図26は、第4実施例によるVCSELの伝熱部材の製造途中段階における断面図である。FIG. 26 is a cross-sectional view of a VCSEL heat transfer member according to the fourth example at an intermediate stage of manufacture. 図27は、第4実施例によるVCSELの伝熱部材の製造途中段階における断面図である。FIG. 27 is a cross-sectional view of a VCSEL heat transfer member according to the fourth example at an intermediate stage of manufacture. 図28は、第4実施例によるVCSELの伝熱部材の製造途中段階における断面図である。FIG. 28 is a cross-sectional view of a VCSEL heat transfer member according to the fourth example at an intermediate stage of manufacture. 図29は、第4実施例によるVCSELの伝熱部材の断面図である。FIG. 29 is a cross-sectional view of a heat transfer member of a VCSEL according to a fourth embodiment. 図30は、第4実施例によるVCSELの伝熱部材及び接着層の断面図である。FIG. 30 is a cross-sectional view of the heat transfer member and adhesive layer of the VCSEL according to the fourth example. 図31は、第4実施例によるVCSELの断面図である。FIG. 31 is a cross-sectional view of a VCSEL according to the fourth example. 図32は、第4実施例の変形例によるVCSELの伝熱部材の貫通部分とメサ構造との分布を示す図である。FIG. 32 is a diagram showing the distribution of the penetration portion of the heat transfer member and the mesa structure of a VCSEL according to a modification of the fourth embodiment. 図33Aは、第5実施例によるVCSELの伝熱部材の貫通部分とメサ構造との平面視における位置関係を示す図であり、図33Bは、図33Aの一点鎖線33B-33Bにおける伝熱部材の断面図である。FIG. 33A is a diagram showing the positional relationship in a plan view between the penetrating portion of the heat transfer member of the VCSEL and the mesa structure according to the fifth embodiment, and FIG. FIG. 図34Aは、第6実施例によるVCSELの伝熱部材の貫通部分とメサ構造との平面視における位置関係を示す図であり、図34Bは、貫通部分の分布密度を表すグラフである。FIG. 34A is a diagram showing the positional relationship in plan view between the penetrating portion of the heat transfer member of the VCSEL and the mesa structure according to the sixth example, and FIG. 34B is a graph showing the distribution density of the penetrating portion. 図35は、第7実施例によるVCSELのメサ構造と貫通部分との平面視における位置関係を模式的に示す平面図である。FIG. 35 is a plan view schematically showing the positional relationship in plan view between the mesa structure and the penetrating portion of the VCSEL according to the seventh embodiment. 図36は、図35の一点鎖線36-36におけるVCSELの断面図である。FIG. 36 is a cross-sectional view of the VCSEL taken along the dashed-dotted line 36-36 in FIG. 図37は、第7実施例によるVCSELにおける拡大円と貫通部分との平面視における位置関係を模式的に示す平面図である。FIG. 37 is a plan view schematically showing the positional relationship in plan view between the enlarged circle and the penetrating portion in the VCSEL according to the seventh embodiment. 図38は、第7実施例によるVCSELの1つのメサ構造と、その直近に位置するもう1つのメサ構造、これらのメサ構造のそれぞれの拡大円、及び貫通部分の位置関係を模式的に示す平面図である。FIG. 38 is a plane diagram schematically showing one mesa structure of the VCSEL according to the seventh embodiment, another mesa structure located in the immediate vicinity, enlarged circles of each of these mesa structures, and the positional relationship of the penetrating portion. It is a diagram.
 [第1実施例]
 図1から図19までの図面を参照して、第1実施例によるVCSELについて説明する。
[First example]
A VCSEL according to a first embodiment will be described with reference to the drawings from FIG. 1 to FIG. 19.
 図1は、第1実施例によるVCSEL10の平面図であり、図2は、図1の一点鎖線2-2における断面図である。伝熱部材80の1つの面に金属からなる接着層81を介して半導体層28が接合されている。本明細書において、伝熱部材80の、半導体層28が接合されている面が向く方向を上方向と定義する。半導体層28と伝熱部材80とが相互に接合された接合面は、ほぼ平坦である。 FIG. 1 is a plan view of the VCSEL 10 according to the first embodiment, and FIG. 2 is a cross-sectional view taken along the dashed-dotted line 2-2 in FIG. The semiconductor layer 28 is bonded to one surface of the heat transfer member 80 via an adhesive layer 81 made of metal. In this specification, the direction in which the surface of the heat transfer member 80 to which the semiconductor layer 28 is bonded faces is defined as the upward direction. The bonding surface where the semiconductor layer 28 and the heat transfer member 80 are bonded to each other is substantially flat.
 半導体層28は、伝熱部材80側の半絶縁性の半導体層21、及びその上に配置されたn型導電性を有する半導体層22との2層を含む。半導体層21は、例えばノンドープGaAsで形成され、その上の半導体層22は、例えばn型GaAsで形成されている。伝熱部材80は、半導体層28の熱伝導率より高い熱伝導率を持つ材料で形成されている。 The semiconductor layer 28 includes two layers: a semi-insulating semiconductor layer 21 on the heat transfer member 80 side and a semiconductor layer 22 having n-type conductivity disposed thereon. The semiconductor layer 21 is made of, for example, non-doped GaAs, and the semiconductor layer 22 thereon is made of, for example, n-type GaAs. The heat transfer member 80 is formed of a material having a higher thermal conductivity than that of the semiconductor layer 28.
 伝熱部材80の材料として、Cu、Ag、Au等の金属が用いられる。例えば、GaAsの熱伝導率は約55W/mKであるのに対し、Cu、Ag、Auの熱伝導率は、それぞれ約398W/mK、約418W/mK、約320W/mKである。加工容易性や材料費の観点から、伝熱部材80としてCuを用いることがより好ましい。伝熱部材80として、GaAs等の熱伝導率より高い熱伝導率を持つSi、SiC、SiN、AlN等の半導体または絶縁性の材料を用いてもよい。なお、伝熱部材80の少なくとも一部を、半導体層28の熱伝導率より高い熱伝導率を持つ材料で形成してもよい。 As the material of the heat transfer member 80, metals such as Cu, Ag, and Au are used. For example, the thermal conductivity of GaAs is about 55 W/mK, while the thermal conductivity of Cu, Ag, and Au are about 398 W/mK, about 418 W/mK, and about 320 W/mK, respectively. From the viewpoint of ease of processing and material cost, it is more preferable to use Cu as the heat transfer member 80. The heat transfer member 80 may be made of a semiconductor or insulating material such as Si, SiC, SiN, or AlN, which has a higher thermal conductivity than GaAs or the like. Note that at least a portion of the heat transfer member 80 may be formed of a material having a higher thermal conductivity than that of the semiconductor layer 28.
 半導体層28の、伝熱部材80側の面(下方を向く面)を第2面28Bといい、その反対側の面(上方を向く面)を第1面28Aということとする。半導体層28の第1面28A上に、発光部を含む複数のメサ構造30が配置されている。複数のメサ構造30は一列に並んでアレイ状に配置されており、複数のメサ構造30の各々の平面視における形状は円形である。なお、複数のメサ構造30は、半導体層28の上面に二次元的に分布するように配置してもよい。 The surface of the semiconductor layer 28 on the heat transfer member 80 side (the surface facing downward) is referred to as a second surface 28B, and the surface opposite thereto (the surface facing upward) is referred to as a first surface 28A. A plurality of mesa structures 30 including light emitting parts are arranged on the first surface 28A of the semiconductor layer 28. The plurality of mesa structures 30 are arranged in a line in an array, and each of the plurality of mesa structures 30 has a circular shape in plan view. Note that the plurality of mesa structures 30 may be arranged so as to be two-dimensionally distributed on the upper surface of the semiconductor layer 28.
 メサ構造30の各々は、半導体層28から順番に積層された下部分布ブラッグ反射層(以下、下部DBR層23という。)、活性層24、スペーサ層25、電流狭窄層26、及び上部分布ブラッグ反射層(以下、上部DBR層27という。)を含む。下部DBR層23の下側の一部分は、平面視においてメサ構造30の外側まで広がっている。例えば、下部DBR層23の下側の一部分は、複数のメサ構造30の配列方向に対して直交する一方向(図1において左方向)に向かって延びている。このように、上部DBR層27から下部DBR層23の厚さ方向の途中までの各層によりメサ構造30が構成される。 Each of the mesa structures 30 includes a lower distributed Bragg reflection layer (hereinafter referred to as the lower DBR layer 23) laminated in order from the semiconductor layer 28, an active layer 24, a spacer layer 25, a current confinement layer 26, and an upper distributed Bragg reflection layer. (hereinafter referred to as upper DBR layer 27). A portion of the lower side of the lower DBR layer 23 extends to the outside of the mesa structure 30 in plan view. For example, a portion of the lower side of the lower DBR layer 23 extends in one direction (leftward in FIG. 1) orthogonal to the arrangement direction of the plurality of mesa structures 30. In this way, the mesa structure 30 is formed by each layer from the upper DBR layer 27 to the middle of the lower DBR layer 23 in the thickness direction.
 下部DBR層23及び上部DBR層27の各々は、例えば高屈折率層と低屈折率層とが交互に積層された周期構造を有する。高屈折率層及び低屈折率層には、例えばAl組成比が異なるAlGaAsが用いられる。なお、高屈折率層にGaAsを用いてもよい。下部DBR層23にはn型ドーパントがドープされており、上部DBR層27には、p型ドーパントがドープされている。 Each of the lower DBR layer 23 and the upper DBR layer 27 has a periodic structure in which, for example, high refractive index layers and low refractive index layers are alternately stacked. For example, AlGaAs having different Al composition ratios is used for the high refractive index layer and the low refractive index layer. Note that GaAs may be used for the high refractive index layer. The lower DBR layer 23 is doped with an n-type dopant, and the upper DBR layer 27 is doped with a p-type dopant.
 活性層24は、例えば量子井戸層と障壁層とが交互に積層された多重量子井戸構造を有する。量子井戸層及び障壁層には、例えばAl組成が異なるAlGaAsが用いられる。スペーサ層25は、上部DBR層27の低屈折率層と同一の材料で形成される。電流狭窄層26は、Al組成比が0.95以上のAlGaAsまたはAlAsで形成される。電流狭窄層26は、メサ構造30の側面から内側に向かって酸化された酸化領域26Aと、平面視において酸化領域26Aに囲まれた円形の未酸化領域26Bとを含む。 The active layer 24 has, for example, a multiple quantum well structure in which quantum well layers and barrier layers are alternately stacked. For example, AlGaAs having different Al compositions is used for the quantum well layer and the barrier layer. The spacer layer 25 is made of the same material as the low refractive index layer of the upper DBR layer 27. The current confinement layer 26 is formed of AlGaAs or AlAs with an Al composition ratio of 0.95 or more. The current confinement layer 26 includes an oxidized region 26A that is oxidized inward from the side surface of the mesa structure 30, and a circular unoxidized region 26B surrounded by the oxidized region 26A in plan view.
 電流狭窄層26は、上部DBR層27から活性層24を通って下部DBR層23に流れる電流を中央の未酸化領域26Bに集中させる機能を有する。未酸化領域26Bは、平面視においてメサ構造30の幾何中心を包含する位置に配置されている。電流狭窄層26の未酸化領域26Bにおいて電流密度が最大になり、未酸化領域26Bにおいて発熱量が最大になる。電流狭窄層26の未酸化領域26Bを、VCSEL10の主な発熱源と考えることができる。 The current confinement layer 26 has a function of concentrating the current flowing from the upper DBR layer 27 through the active layer 24 to the lower DBR layer 23 in the central unoxidized region 26B. The unoxidized region 26B is arranged at a position encompassing the geometric center of the mesa structure 30 in plan view. The current density is maximum in the unoxidized region 26B of the current confinement layer 26, and the amount of heat generated is maximum in the unoxidized region 26B. The unoxidized region 26B of the current confinement layer 26 can be considered as the main heat source of the VCSEL 10.
 上部DBR層27の上面にアノード電極41が配置されている。アノード電極41は、例えば平面視において円環状のパターンの一部に切れ目が設けられた形状を有する。アノード電極41は、例えばTi層とAu層との2層構造、またはTi層とPt層とAu層との3層構造を有し、上部DBR層27にオーミック接触している。 An anode electrode 41 is arranged on the upper surface of the upper DBR layer 27. The anode electrode 41 has, for example, a shape in which a cut is provided in a part of an annular pattern when viewed from above. The anode electrode 41 has, for example, a two-layer structure of a Ti layer and an Au layer, or a three-layer structure of a Ti layer, a Pt layer, and an Au layer, and is in ohmic contact with the upper DBR layer 27 .
 n型導電性を有する半導体層22の上面に、メサ構造30ごとにカソード電極42が配置されている。カソード電極42は、n型導電性を有する半導体層22を介して下部DBR層23に電気的に接続されている。カソード電極42は、例えばAuまたはAuGeで形成される。平面視においてメサ構造30の外側まで広がった下部DBR層23の下側部分は、メサ構造30からカソード電極42まで達している。 A cathode electrode 42 is arranged for each mesa structure 30 on the upper surface of the semiconductor layer 22 having n-type conductivity. The cathode electrode 42 is electrically connected to the lower DBR layer 23 via the semiconductor layer 22 having n-type conductivity. The cathode electrode 42 is made of, for example, Au or AuGe. The lower portion of the lower DBR layer 23, which extends to the outside of the mesa structure 30 in plan view, reaches from the mesa structure 30 to the cathode electrode 42.
 メサ構造30、下部DBR層23の下側部分、アノード電極41、カソード電極42、及び半導体層28を覆うように、パッシベーション膜50が形成されている。パッシベーション膜50には、例えばSiN、SiO等の無機絶縁材料が用いられる。メサ構造30の上面を覆うパッシベーション膜50に、反射防止膜としての機能を持たせてもよい。 A passivation film 50 is formed to cover the mesa structure 30, the lower part of the lower DBR layer 23, the anode electrode 41, the cathode electrode 42, and the semiconductor layer 28. The passivation film 50 is made of an inorganic insulating material such as SiN or SiO 2 . The passivation film 50 covering the upper surface of the mesa structure 30 may have a function as an antireflection film.
 メサ構造30の周囲のパッシベーション膜50の上に、保護膜51が配置されている。保護膜51は、ポリイミド(PI)、ポリベンゾオキサゾール(PBO)、ベンゾシクロブテン(BCB)等の樹脂材料で形成される。保護膜51は、外部からの機械的なダメージを抑制する機能、及び熱応力を緩和させる緩衝材としての機能を持つ。 A protective film 51 is arranged on the passivation film 50 around the mesa structure 30. The protective film 51 is formed of a resin material such as polyimide (PI), polybenzoxazole (PBO), benzocyclobutene (BCB), or the like. The protective film 51 has the function of suppressing mechanical damage from the outside and the function of a buffer material that relieves thermal stress.
 パッシベーション膜50に、アノード電極41の上面の一部を露出させるビアホールが形成されている。アノード配線45が、このビアホールを通ってアノード電極41に接続されている。アノード配線45は、平面視においてメサ構造30から一方向(図1において右方向)に延びており、その先端がボンディング用のパッド45Pを構成している。 A via hole is formed in the passivation film 50 to expose a part of the upper surface of the anode electrode 41. Anode wiring 45 is connected to anode electrode 41 through this via hole. The anode wiring 45 extends in one direction (rightward in FIG. 1) from the mesa structure 30 in plan view, and its tip forms a bonding pad 45P.
 保護膜51及びパッシベーション膜50に、カソード電極42の上面の一部を露出させるビアホールが形成されている。このビアホール内に露出したカソード電極42から、ビアホールの側面を経由して保護膜51の上面の一部の領域に向かって、カソード配線46が延びている。カソード配線46の先端が、ボンディング用のパッド46Pを構成している。 A via hole is formed in the protective film 51 and the passivation film 50 to expose a part of the upper surface of the cathode electrode 42. A cathode wiring 46 extends from the cathode electrode 42 exposed in the via hole toward a part of the upper surface of the protective film 51 via the side surface of the via hole. The tip of the cathode wiring 46 constitutes a bonding pad 46P.
 図3は、第1実施例によるVCSEL10がモジュールサブストレート88に実装された状態のレーザ装置の断面図である。伝熱部材80の下方を向く面(以下、下面という。)が、ハンダ等によってモジュールサブストレート88の実装面に実装されている。モジュールサブストレート88として、例えばプリント配線板、セラミック板等が用いられる。モジュールサブストレート88に、制御回路が集積された制御回路部品85が実装されている。さらに、モジュールサブストレート88の実装面にランド86が設けられている。 FIG. 3 is a cross-sectional view of the laser device in which the VCSEL 10 according to the first embodiment is mounted on the module substrate 88. The downward facing surface (hereinafter referred to as the lower surface) of the heat transfer member 80 is mounted on the mounting surface of the module substrate 88 with solder or the like. As the module substrate 88, for example, a printed wiring board, a ceramic board, etc. are used. A control circuit component 85 in which a control circuit is integrated is mounted on a module substrate 88 . Furthermore, a land 86 is provided on the mounting surface of the module substrate 88.
 VCSEL10のアノード電極41(図2)に接続されたパッド45Pが、ボンディングワイヤ83を介して制御回路部品85に接続されている。VCSEL10のカソード電極42(図2)に接続されたパッド46Pが、ボンディングワイヤ84を介してランド86に接続されている。なお、パッド46Pを、ボンディングワイヤを介して制御回路部品85に接続してもよい。制御回路部品85からVCSEL10に駆動電流が供給される。VCSEL10に駆動電流が供給されると、メサ構造30から半導体層28の第1面28A(図2)に対して直交する方向にレーザビームが出力される。 A pad 45P connected to the anode electrode 41 (FIG. 2) of the VCSEL 10 is connected to the control circuit component 85 via a bonding wire 83. A pad 46P connected to the cathode electrode 42 (FIG. 2) of the VCSEL 10 is connected to a land 86 via a bonding wire 84. Note that the pad 46P may be connected to the control circuit component 85 via a bonding wire. A drive current is supplied from the control circuit component 85 to the VCSEL 10. When a drive current is supplied to the VCSEL 10, a laser beam is output from the mesa structure 30 in a direction perpendicular to the first surface 28A (FIG. 2) of the semiconductor layer 28.
 メサ構造30内の発熱源、すなわち電流狭窄層26(図2)の未酸化領域26Bで発生した熱は、活性層24、下部DBR層23、半導体層28、接着層81を通って、伝熱部材80まで伝導する。伝熱部材80まで伝導した熱は、さらに伝熱部材80内を拡散して、モジュールサブストレート88まで伝導する。VCSEL10の発熱源からの放熱効率を高めるために、この放熱経路の熱抵抗を低減することが望まれる。 The heat generated in the heat source in the mesa structure 30, that is, the unoxidized region 26B of the current confinement layer 26 (FIG. 2), is transferred through the active layer 24, the lower DBR layer 23, the semiconductor layer 28, and the adhesive layer 81. conducts to member 80. The heat conducted to the heat transfer member 80 further diffuses within the heat transfer member 80 and is conducted to the module substrate 88. In order to increase the efficiency of heat radiation from the heat source of the VCSEL 10, it is desirable to reduce the thermal resistance of this heat radiation path.
 次に、図4を参照して、十分な放熱効率を確保するためのVCSEL10の構成部分の好ましい寸法について説明する。図4は、第1実施例によるVCSEL10のメサ構造30の概略断面図である。 Next, with reference to FIG. 4, preferred dimensions of the components of the VCSEL 10 to ensure sufficient heat dissipation efficiency will be described. FIG. 4 is a schematic cross-sectional view of the mesa structure 30 of the VCSEL 10 according to the first embodiment.
 電流狭窄層26の未酸化領域26BをVCSEL10の発熱源HSと考えることができる。半導体層28の第2面28Bに対して直交する方向を高さ方向と定義する。第2面28Bから電流狭窄層26までの高さ方向の寸法をHと標記する。平面視においてメサ構造30を包含する最小包含円の直径をDと標記する。第1実施例では、平面視におけるメサ構造30の形状が円形であるため、メサ構造30の直径が最小包含円の直径Dと等しい。 The unoxidized region 26B of the current confinement layer 26 can be considered as the heat source HS of the VCSEL 10. The direction perpendicular to the second surface 28B of the semiconductor layer 28 is defined as the height direction. The dimension in the height direction from the second surface 28B to the current confinement layer 26 is marked as H. The diameter of the minimum enclosing circle that includes the mesa structure 30 in plan view is denoted as D. In the first embodiment, since the mesa structure 30 has a circular shape in plan view, the diameter of the mesa structure 30 is equal to the diameter D of the minimum enclosing circle.
 発熱源HSで発生した熱は、図4において矢印で示すように、伝熱部材80に向かって伝導するとともに、面内方向に広がる。伝熱部材80の熱伝導率は、メサ構造30及び半導体層28を構成する半導体材料の熱伝導率より高いため、放熱効率を高めるために、相対的に熱伝導率が低い部分の高さ方向の寸法Hをなるべく小さくすることが好ましい。また、保護膜51の熱伝導率は、メサ構造30を構成する半導体材料の熱伝導率より低いため、メサ構造30の最小包含円の直径Dが小さくなると、保護膜51が、熱の面内方向への拡散を阻害することになり、放熱効率が低下する。 The heat generated by the heat source HS is conducted toward the heat transfer member 80 and spreads in the in-plane direction, as shown by the arrow in FIG. Since the thermal conductivity of the heat transfer member 80 is higher than that of the semiconductor material constituting the mesa structure 30 and the semiconductor layer 28, in order to increase the heat dissipation efficiency, the height direction of the portion with relatively low thermal conductivity is It is preferable to make the dimension H as small as possible. Furthermore, since the thermal conductivity of the protective film 51 is lower than that of the semiconductor material constituting the mesa structure 30, when the diameter D of the minimum enclosing circle of the mesa structure 30 becomes smaller, the protective film 51 As a result, the heat dissipation efficiency decreases.
 直径Dが小さくなると、十分な放熱効率を確保するために高さ方向の寸法Hをより小さくすることが好ましい。例えば、高さ方向の寸法Hを、メサ構造30の最小包含円の直径Dの1/2以下にすることが好ましい。高さ方向の寸法Hが、メサ構造30の最小包含円の直径Dの1/2以下である場合、発熱源HSで発生した熱の大部分は、熱伝導率の低い保護膜51に阻害されることなく面内方向に広がりながら伝熱部材80まで伝導する。 As the diameter D becomes smaller, it is preferable to make the dimension H in the height direction smaller in order to ensure sufficient heat dissipation efficiency. For example, it is preferable that the dimension H in the height direction is 1/2 or less of the diameter D of the minimum enclosing circle of the mesa structure 30. When the dimension H in the height direction is 1/2 or less of the diameter D of the minimum enclosing circle of the mesa structure 30, most of the heat generated by the heat source HS is inhibited by the protective film 51 with low thermal conductivity. The heat is transmitted to the heat transfer member 80 while spreading in the in-plane direction without any heat transfer.
 図4における縦方向の寸法と横方向の寸法との比は、実際の寸法の比とは異なる。一例として、メサ構造30の最小包含円の直径Dが30μmであり、高さ方向の寸法Hが8μmである。電流狭窄層26の未酸化領域26B(発熱源HS)の平面視における直径は約5μmである。 The ratio of the vertical dimension to the horizontal dimension in FIG. 4 is different from the actual dimension ratio. As an example, the diameter D of the minimum enclosing circle of the mesa structure 30 is 30 μm, and the dimension H in the height direction is 8 μm. The diameter of the unoxidized region 26B (heat source HS) of the current confinement layer 26 in plan view is about 5 μm.
 次に、図5A及び図5Bを参照して、メサ構造30の平面視における形状が円形以外の例について説明する。図5A及び図5Bは、円形以外の形状を有するメサ構造30の平面視における形状を示す模式図である。第1実施例によるVCSEL10のメサ構造30(図1)の平面視における形状は円形である。これに対して図5Aに示した例では、メサ構造30の平面視における形状が角丸正方形である。このとき、最小包含円31は、角丸正方形の4個の丸められた角に接する。 Next, with reference to FIGS. 5A and 5B, an example in which the shape of the mesa structure 30 in plan view is other than circular will be described. 5A and 5B are schematic diagrams showing the shape of a mesa structure 30 having a shape other than circular in plan view. The mesa structure 30 (FIG. 1) of the VCSEL 10 according to the first embodiment has a circular shape in plan view. On the other hand, in the example shown in FIG. 5A, the shape of the mesa structure 30 in plan view is a square with rounded corners. At this time, the minimum enclosing circle 31 touches four rounded corners of the rounded square.
 図5Bに示した例では、メサ構造30の平面視における形状は、円形部分と、円形部分の1カ所から外側に向かって突出した突出部30Aで構成される。この場合の最小包含円31は、円形部分のみならず、突出部30Aをも包含する。このため、最小包含円31の直径Dは、メサ構造30の平面視における形状の円形部分の直径より大きくなる。 In the example shown in FIG. 5B, the shape of the mesa structure 30 in plan view is composed of a circular portion and a protrusion 30A that protrudes outward from one location of the circular portion. The minimum enclosing circle 31 in this case includes not only the circular portion but also the protrusion 30A. Therefore, the diameter D of the minimum enclosing circle 31 is larger than the diameter of the circular portion of the mesa structure 30 in plan view.
 図5A及び図5Bに示したように、メサ構造30の平面視における形状が円形ではない場合であっても、高さ方向の寸法H(図4)を、最小包含円31の直径Dの1/2以下とすることが好ましい。 As shown in FIGS. 5A and 5B, even if the shape of the mesa structure 30 in plan view is not circular, the dimension H in the height direction (FIG. 4) is set to 1 of the diameter D of the minimum enclosing circle 31. /2 or less is preferable.
 次に、図6を参照して、メサ構造30の側面が半導体層28の第2面28Bに対して傾斜している例について説明する。図6は、側面が傾斜したメサ構造30の例を示す概略断面図である。メサ構造30の側面が半導体層28の第2面28Bに対して傾斜している。すなわち、メサ構造30は、円錐台形状を有する。 Next, with reference to FIG. 6, an example in which the side surface of the mesa structure 30 is inclined with respect to the second surface 28B of the semiconductor layer 28 will be described. FIG. 6 is a schematic cross-sectional view showing an example of a mesa structure 30 with inclined sides. The side surface of the mesa structure 30 is inclined with respect to the second surface 28B of the semiconductor layer 28. That is, the mesa structure 30 has a truncated cone shape.
 図6に示した例では、メサ構造30の最小包含円として、電流狭窄層26の位置におけるメサ構造30の最小包含円を採用するとよい。高さ方向の寸法Hを、電流狭窄層26の位置におけるメサ構造30の最小包含円の直径Dの1/2以下にすることが好ましい。 In the example shown in FIG. 6, it is preferable to adopt the minimum enclosing circle of the mesa structure 30 at the position of the current confinement layer 26 as the minimum enclosing circle of the mesa structure 30. It is preferable that the dimension H in the height direction is set to 1/2 or less of the diameter D of the minimum enclosing circle of the mesa structure 30 at the position of the current confinement layer 26.
 次に、図7から図19までの図面を参照して、第1実施例によるVCSEL10の製造方法について説明する。図7から図18までの図面は、第1実施例によるVCSEL10の製造途中段階における断面図であり、図19は、第1実施例によるVCSEL10の断面図である。図7から図19までの図面では、スペーサ層25(図2)の記載を省略している。 Next, a method for manufacturing the VCSEL 10 according to the first embodiment will be described with reference to the drawings from FIG. 7 to FIG. 19. The drawings from FIG. 7 to FIG. 18 are cross-sectional views of the VCSEL 10 according to the first example at an intermediate stage of manufacture, and FIG. 19 is a cross-sectional view of the VCSEL 10 according to the first example. In the drawings from FIG. 7 to FIG. 19, the spacer layer 25 (FIG. 2) is omitted.
 図7に示すように、半絶縁性のGaAsからなる基板21Aの上に、n型GaAsからなる半導体層22、下部DBR層23、活性層24、スペーサ層25(図2)、電流狭窄層26、及び上部DBR層27を、順番にエピタキシャル成長させる。これらの層のエピタキシャル成長には、例えば化学気相成長(CVD)、分子線エピタキシー(MBE)等を用いることができる。上部DBR層27の上面の一部の領域にアノード電極41を形成する。アノード電極41の形成には、例えば真空蒸着法及びリフトオフ法を用いることができる。 As shown in FIG. 7, on a substrate 21A made of semi-insulating GaAs, a semiconductor layer 22 made of n-type GaAs, a lower DBR layer 23, an active layer 24, a spacer layer 25 (FIG. 2), and a current confinement layer 26 are provided. , and the upper DBR layer 27 are epitaxially grown in this order. For epitaxial growth of these layers, for example, chemical vapor deposition (CVD), molecular beam epitaxy (MBE), etc. can be used. An anode electrode 41 is formed in a part of the upper surface of the upper DBR layer 27 . For forming the anode electrode 41, for example, a vacuum evaporation method and a lift-off method can be used.
 図8に示すように、上部DBR層27から下部DBR層23の厚さ方向の途中までエッチングすることにより、メサ構造30を形成する。上部DBR層27から下部DBR層23までの各層のエッチングには、例えばドライエッチング法を用いる。 As shown in FIG. 8, a mesa structure 30 is formed by etching from the upper DBR layer 27 to the middle of the lower DBR layer 23 in the thickness direction. For example, a dry etching method is used to etch each layer from the upper DBR layer 27 to the lower DBR layer 23.
 図9に示すように、水蒸気雰囲気において電流狭窄層26をその端面から酸化することにより、平面視において電流狭窄層26の中央部分を残してAlO等からなる絶縁性の酸化領域26Aを形成する。電流狭窄層26の中央部分には、未酸化領域26Bが残る。電流狭窄層26と比べてAl組成比が低い他の層は、ほとんど酸化されない。 As shown in FIG. 9, by oxidizing the current confinement layer 26 from its end face in a water vapor atmosphere, an insulating oxidized region 26A made of AlO or the like is formed, leaving the central portion of the current confinement layer 26 in plan view. An unoxidized region 26B remains in the central portion of the current confinement layer 26. Other layers having a lower Al composition ratio than the current confinement layer 26 are hardly oxidized.
 図10に示すように、平面視においてメサ構造30の外側に広がる下部DBR層23のうち一部分をエッチングすることにより、半導体層22を露出させる。このエッチングにおいて、カソード電極42(図2)が配置される領域の下部DBR層23も除去し、半導体層22を露出させる。下部DBR層23のエッチングには、ウェットエッチングまたはドライエッチングを用いる。平面視においてメサ構造30の周辺には、下部DBR層23の下側部分が残る。 As shown in FIG. 10, by etching a portion of the lower DBR layer 23 that extends outside the mesa structure 30 in plan view, the semiconductor layer 22 is exposed. In this etching, the lower DBR layer 23 in the region where the cathode electrode 42 (FIG. 2) is arranged is also removed to expose the semiconductor layer 22. Wet etching or dry etching is used for etching the lower DBR layer 23. The lower portion of the lower DBR layer 23 remains around the mesa structure 30 in plan view.
 図11に示すように、半導体層22の露出した上面の一部の領域に、カソード電極42を形成する。カソード電極42の形成には、例えば真空蒸着法、及びリフトオフ法を用いる。下部DBR層23の一部を除去するときにエッチングマスクとして用いたレジストパターンを、リフトオフ用のレジストパターンの一部として利用する。 As shown in FIG. 11, a cathode electrode 42 is formed in a part of the exposed upper surface of the semiconductor layer 22. For forming the cathode electrode 42, for example, a vacuum evaporation method and a lift-off method are used. The resist pattern used as an etching mask when removing a part of the lower DBR layer 23 is used as part of a lift-off resist pattern.
 図12に示すように、メサ構造30、アノード電極41、メサ構造30の外側に残っている下部DBR層23、カソード電極42、及び半導体層22の露出した表面をパッシベーション膜50で覆う。パッシベーション膜50の成膜には、例えば化学気相成長(CVD)法を用いる。 As shown in FIG. 12, the exposed surfaces of the mesa structure 30, the anode electrode 41, the lower DBR layer 23 remaining outside the mesa structure 30, the cathode electrode 42, and the semiconductor layer 22 are covered with a passivation film 50. For example, chemical vapor deposition (CVD) is used to form the passivation film 50.
 図13に示すように、パッシベーション膜50に、カソード電極42の上面の一部を露出させるビアホール50A、及びアノード電極41の上面の一部を露出させるビアホール50Bを形成する。ビアホール50A、50Bの形成には、ウェットエッチングまたはドライエッチングを用いる。 As shown in FIG. 13, a via hole 50A that exposes a portion of the upper surface of the cathode electrode 42 and a via hole 50B that exposes a portion of the upper surface of the anode electrode 41 are formed in the passivation film 50. Wet etching or dry etching is used to form via holes 50A and 50B.
 図14に示すように、露出した表面に、感光性を有する樹脂をコーティングすることにより、保護膜51を形成する。その後、フォトリソグラフィプロセスにより、保護膜51にビアホール51A、51Bを形成する。ビアホール51Aは、平面視においてパッシベーション膜50に形成されたビアホール50Aとほぼ重なる。ビアホール51Bは、平面視においてパッシベーション膜50に形成されたビアホール50Bを包含している。 As shown in FIG. 14, a protective film 51 is formed by coating the exposed surface with a photosensitive resin. Thereafter, via holes 51A and 51B are formed in the protective film 51 by a photolithography process. The via hole 51A substantially overlaps with the via hole 50A formed in the passivation film 50 in plan view. The via hole 51B includes the via hole 50B formed in the passivation film 50 in plan view.
 図15に示すように、保護膜51の上にアノード配線45及びカソード配線46を形成する。アノード配線45及びカソード配線46の形成には、例えばスパッタリング法、真空蒸着法、メッキ法等が用いられる。 As shown in FIG. 15, an anode wiring 45 and a cathode wiring 46 are formed on the protective film 51. For forming the anode wiring 45 and the cathode wiring 46, for example, a sputtering method, a vacuum evaporation method, a plating method, etc. are used.
 図16に示すように、基板21Aを薄層化し、基板21Aの一部からなる半導体層21を残す。基板21Aの薄層化には、例えば研削、研磨等の機械的な手法、ドライエッチング、ウェットエッチング等の化学的な手法を用いることができる。なお、機械的な手法と化学的な手法とを組み合わせてもよい。基板21Aを薄層化することにより、半絶縁性の半導体層21及びn型導電性の半導体層22の2層からなる半導体層28が形成される。 As shown in FIG. 16, the substrate 21A is made thinner, leaving the semiconductor layer 21 consisting of a part of the substrate 21A. For example, mechanical methods such as grinding and polishing, and chemical methods such as dry etching and wet etching can be used to reduce the thickness of the substrate 21A. Note that a mechanical method and a chemical method may be combined. By thinning the substrate 21A, a semiconductor layer 28 consisting of two layers, a semi-insulating semiconductor layer 21 and an n-type conductive semiconductor layer 22, is formed.
 図17に示すように、半導体層28の第2面28Bに、接着層81Bを形成する。接着層81Bは、例えばAu等を真空蒸着することにより形成される。接着層81Bを形成した後、半導体層28、保護膜51等をダイシングして、複数のチップを含む中間生産物を個片化する。 As shown in FIG. 17, an adhesive layer 81B is formed on the second surface 28B of the semiconductor layer 28. The adhesive layer 81B is formed by, for example, vacuum-depositing Au or the like. After forming the adhesive layer 81B, the semiconductor layer 28, the protective film 51, etc. are diced to separate the intermediate product including a plurality of chips into pieces.
 図18に示すように、伝熱部材80の一方の表面に接着層81Aを形成する。接着層81Aは、例えばAu等を真空蒸着することにより形成される。 As shown in FIG. 18, an adhesive layer 81A is formed on one surface of the heat transfer member 80. The adhesive layer 81A is formed by, for example, vacuum-depositing Au or the like.
 図19に示すように、メサ構造30が形成されたデバイス側の接着層81Bと、伝熱部材80側の接着層81Aとを密着させて、加熱しながら加圧することにより、接着層81Aと接着層81Bとを接合する。なお、図2では、接着層81A、81Bを、1層の接着層81として表している。 As shown in FIG. 19, the adhesive layer 81B on the device side in which the mesa structure 30 is formed and the adhesive layer 81A on the heat transfer member 80 side are brought into close contact with each other, and the adhesive layer 81A and the adhesive layer 81A are bonded by applying pressure while heating. The layer 81B is bonded to the layer 81B. Note that in FIG. 2, the adhesive layers 81A and 81B are represented as one adhesive layer 81.
 次に、第1実施例の優れた効果について説明する。
 第1実施例では、図16に示したように基板21Aを薄層化しているため、薄層化しない構成と比べて、発熱源HS(図4)から伝熱部材80までの距離が短くなる。伝熱部材80の熱伝導率が、半導体層21の熱伝導率より高いため、基板21A(図15)を薄層化することなく基板21Aをモジュールサブストレート88(図3)に接合させた構成と比べて、発熱源HSからモジュールサブストレート88までの熱抵抗が低下する。これにより、発熱源HSからの放熱効率を高めることができる。
Next, the excellent effects of the first embodiment will be explained.
In the first embodiment, as shown in FIG. 16, the substrate 21A is made thinner, so the distance from the heat source HS (FIG. 4) to the heat transfer member 80 is shorter than in a configuration where the substrate 21A is not made thinner. . Since the thermal conductivity of the heat transfer member 80 is higher than that of the semiconductor layer 21, the substrate 21A (FIG. 15) is bonded to the module substrate 88 (FIG. 3) without thinning the substrate 21A (FIG. 15). The thermal resistance from the heat source HS to the module substrate 88 is reduced compared to the above. Thereby, the efficiency of heat radiation from the heat source HS can be increased.
 放熱効率が高まることにより、VCSEL10の光出力を向上させるとともに、高温動作によるVCSEL10の特性の経時劣化を抑制することができる。熱抵抗を十分低下させるために、例えば、半導体層28の第2面28Bから電流狭窄層26までの高さ方向の寸法H(図4)を10μm以下にすることが好ましい。 By increasing the heat dissipation efficiency, it is possible to improve the optical output of the VCSEL 10 and to suppress deterioration of the characteristics of the VCSEL 10 over time due to high-temperature operation. In order to sufficiently reduce the thermal resistance, it is preferable that the height dimension H (FIG. 4) from the second surface 28B of the semiconductor layer 28 to the current confinement layer 26 is 10 μm or less, for example.
 特に、第1実施例では、半導体層28の第2面28Bから電流狭窄層26までの高さ方向の寸法H(図4)を、平面視においてメサ構造30を包含する最小包含円の直径D(図4)の1/2以下にしているため、発熱源HSで発生した熱は、保護膜51に阻害されることなくメサ構造30内を面内方向に広がりながら、伝熱部材80まで達する。このため、熱伝導率の低い保護膜51による放熱効率の低下が抑制される。 In particular, in the first embodiment, the height dimension H (FIG. 4) from the second surface 28B of the semiconductor layer 28 to the current confinement layer 26 is the diameter D of the minimum enclosing circle that includes the mesa structure 30 in plan view. (FIG. 4), the heat generated by the heat source HS spreads in the in-plane direction within the mesa structure 30 without being inhibited by the protective film 51, and reaches the heat transfer member 80. . Therefore, a decrease in heat dissipation efficiency due to the protective film 51 having low thermal conductivity is suppressed.
 なお、平面視においてメサ構造30を包含する最小包含円の直径D(図4)を大きくすると、発熱源HSで発生した熱の面内方向の広がりが保護膜51で阻害されることはなくなるが、VCSEL10の寄生容量成分の増加、活性層24への注入電流密度の低下等により、周波数特性が低下してしまう。動作周波数特性の低下を抑制するために、平面視においてメサ構造30を包含する最小包含円の直径Dを50μm以下にすることが好ましい。 Note that if the diameter D (FIG. 4) of the minimum enclosing circle that includes the mesa structure 30 in plan view is increased, the spread of the heat generated by the heat source HS in the in-plane direction will not be inhibited by the protective film 51. , the frequency characteristics deteriorate due to an increase in the parasitic capacitance component of the VCSEL 10, a decrease in the current density injected into the active layer 24, and the like. In order to suppress deterioration of the operating frequency characteristics, it is preferable that the diameter D of the minimum enclosing circle that includes the mesa structure 30 in plan view is 50 μm or less.
 さらに、第1実施例では、半導体層28に溝や凹部等が形成されておらず、半導体層28と伝熱部材80との接合面が平坦であるため、半導体層28と伝熱部材80との線膨張係数の差に起因して発生する熱応力が、特定の箇所に集中しにくい。このため、熱応力の局所的な集中によるVCSELの損傷を抑制することができる。 Furthermore, in the first embodiment, since the semiconductor layer 28 does not have grooves, recesses, etc., and the bonding surface between the semiconductor layer 28 and the heat transfer member 80 is flat, the semiconductor layer 28 and the heat transfer member 80 are Thermal stress generated due to the difference in linear expansion coefficients is difficult to concentrate in a specific location. Therefore, damage to the VCSEL due to local concentration of thermal stress can be suppressed.
 さらに、第1実施例では、下部DBR層23、半導体層22、及びカソード電極42が、半絶縁性の半導体層21によって伝熱部材80から電気的に分離されている。このため、VCSEL10の動作が、伝熱部材80に加わる電気信号の影響を受けにくい。 Further, in the first embodiment, the lower DBR layer 23, the semiconductor layer 22, and the cathode electrode 42 are electrically isolated from the heat transfer member 80 by the semi-insulating semiconductor layer 21. Therefore, the operation of the VCSEL 10 is less susceptible to the electrical signal applied to the heat transfer member 80.
 さらに、第1実施例では、半導体からなる基板21A(図16)を薄層化しても、下部DBR層23の厚さは不変である。このため、下部DBR層23が薄くなることによる光閉じ込め効果の低下は生じず、発光効率の低下も生じない。 Furthermore, in the first embodiment, even if the semiconductor substrate 21A (FIG. 16) is made thinner, the thickness of the lower DBR layer 23 remains unchanged. Therefore, the light confinement effect does not decrease due to the lower DBR layer 23 becoming thinner, and the luminous efficiency does not decrease.
 次に、図20A及び図20Bを参照して第1実施例の変形例によるVCSELについて説明する。図20A及び図20Bは、第1実施例の変形例によるVCSEL10のメサ構造30の平面視における形状を示す模式図である。 Next, a VCSEL according to a modification of the first embodiment will be described with reference to FIGS. 20A and 20B. 20A and 20B are schematic diagrams showing the shape of the mesa structure 30 of the VCSEL 10 in a plan view according to a modification of the first embodiment.
 第1実施例(図5A、図5B)では、半導体層28の第2面28Bから電流狭窄層26までの高さ方向の寸法Hとの比較対象として、平面視においてメサ構造30を包含する最小包含円31の直径Dを採用している。これに対して本変形例では、メサ構造30の平面視における形状の最大内接円32の直径Dを、寸法Hとの比較対象として採用する。 In the first embodiment (FIGS. 5A and 5B), as a comparison target with the dimension H in the height direction from the second surface 28B of the semiconductor layer 28 to the current confinement layer 26, the minimum The diameter D of the encompassing circle 31 is adopted. On the other hand, in this modification, the diameter D of the maximum inscribed circle 32 of the shape of the mesa structure 30 in plan view is employed as a comparison target with the dimension H.
 図20Aに示すように、メサ構造30の平面視における形状が角丸正方形である場合、最大内接円の直径Dは、角丸正方形の一辺の長さに等しい。図20Bに示すように、メサ構造30が、平面視において、円形の外周の一部分に、内部に向かう切込み30Bが設けられた形状である場合、最大内接円32の直径Dは、元の円形の直径より小さくなる。 As shown in FIG. 20A, when the shape of the mesa structure 30 in plan view is a rounded square, the diameter D of the maximum inscribed circle is equal to the length of one side of the rounded square. As shown in FIG. 20B, when the mesa structure 30 has a shape in which an inward cut 30B is provided in a part of the circular outer periphery in a plan view, the diameter D of the maximum inscribed circle 32 is the same as that of the original circular shape. smaller than the diameter of
 半導体層28の第2面28Bから電流狭窄層26までの高さ方向の寸法H(図4)を、メサ構造30の平面視における形状の最大内接円32の直径Dの1/2にすると、平面視において発熱源HSからいずれの方向に拡散する熱も、保護膜51(図4)に阻害されることなく伝熱部材80に達する。このため、保護膜51よる放熱効率の低下を抑制する効果を高めることができる。 If the dimension H in the height direction from the second surface 28B of the semiconductor layer 28 to the current confinement layer 26 (FIG. 4) is set to 1/2 the diameter D of the maximum inscribed circle 32 of the shape of the mesa structure 30 in a plan view. In plan view, heat diffused in any direction from the heat generating source HS reaches the heat transfer member 80 without being hindered by the protective film 51 (FIG. 4). Therefore, the effect of suppressing the reduction in heat dissipation efficiency by the protective film 51 can be enhanced.
 次に、第1実施例の種々の他の変形例について説明する。第1実施例では、Auからなる接着層81A、81Bを密着させることにより、半導体層28を伝熱部材80に接合しているが、その他の方法により両者を接合してもよい。例えば、半導体層28と伝熱部材80の接着層81Aとの接合に、ファンデルワールス結合または水素結合を利用してもよい。その他に、静電気力、共有結合、共晶合金結合等によって半導体層28を接着層81Aに接合してもよい。 Next, various other modifications of the first embodiment will be described. In the first embodiment, the semiconductor layer 28 is bonded to the heat transfer member 80 by closely adhering the adhesive layers 81A and 81B made of Au, but the two may be bonded by other methods. For example, van der Waals bonds or hydrogen bonds may be used to bond the semiconductor layer 28 and the adhesive layer 81A of the heat transfer member 80. In addition, the semiconductor layer 28 may be bonded to the adhesive layer 81A by electrostatic force, covalent bonding, eutectic alloy bonding, or the like.
 第1実施例(図2)では、上部DBR層27から、下部DBR層23の上側の一部分により、メサ構造30が構成されているが、上部DBR層27から下部DBR層23の少なくとも上面までの各層により、メサ構造30を構成してもよい。例えば、上部DBR層27、電流狭窄層26、スペーサ層25、及び活性層24によりメサ構造30を構成してもよい。また、下部DBR層23の下面までの全域をメサ構造30に含めてもよい。 In the first embodiment (FIG. 2), the mesa structure 30 is formed from the upper DBR layer 27 to at least the upper surface of the lower DBR layer 23. Each layer may constitute the mesa structure 30. For example, the mesa structure 30 may be formed by the upper DBR layer 27, the current confinement layer 26, the spacer layer 25, and the active layer 24. Further, the entire area up to the bottom surface of the lower DBR layer 23 may be included in the mesa structure 30.
 第1実施例では、AlGaAs/GaAs系VCSEL(発光波長700nm以上)について説明し、半絶縁性の半導体層21(図2)にノンドープのGaAsを用いているが、その他の化合物半導体材料からなるVCSELに、第1実施例によるVCSELと同様の構造を適用してもよい。例えば、InGaAsP/InP系VCSEL(発光波長1600nm以下)に、第1実施例によるVCSELと同様の構造を適用してもよい。InPの熱伝導率は約68W/mKであり、伝熱部材80の熱伝導率より低いため、第1実施例と同様に、InPからなる半導体層を薄層化することによる優れた効果が得られる。 In the first example, an AlGaAs/GaAs-based VCSEL (emission wavelength of 700 nm or more) is explained, and non-doped GaAs is used for the semi-insulating semiconductor layer 21 (FIG. 2), but a VCSEL made of other compound semiconductor materials A structure similar to that of the VCSEL according to the first embodiment may be applied. For example, a structure similar to the VCSEL according to the first embodiment may be applied to an InGaAsP/InP-based VCSEL (emission wavelength of 1600 nm or less). The thermal conductivity of InP is approximately 68 W/mK, which is lower than the thermal conductivity of the heat transfer member 80, so similar to the first embodiment, excellent effects can be obtained by making the semiconductor layer made of InP thinner. It will be done.
 [第2実施例]
 次に、図21を参照して第2実施例によるVCSELについて説明する。以下、図1から図19までの図面を参照して説明した第1実施例によるVCSEL10と共通の構成については説明を省略する。
[Second example]
Next, a VCSEL according to a second embodiment will be described with reference to FIG. 21. Hereinafter, a description of the configuration common to the VCSEL 10 according to the first embodiment described with reference to the drawings from FIG. 1 to FIG. 19 will be omitted.
 図21は、第2実施例によるVCSEL10の断面図である。第1実施例(図2)では、半導体層28が半絶縁性の半導体層21、及びその上に配置されたn型導電性を有する半導体層22の2層を含んでいる。これに対して第2実施例では、半導体層28が、n型導電性を有する半導体層22の単層で構成される。 FIG. 21 is a cross-sectional view of the VCSEL 10 according to the second example. In the first embodiment (FIG. 2), the semiconductor layer 28 includes two layers: a semi-insulating semiconductor layer 21 and a semiconductor layer 22 having n-type conductivity disposed thereon. In contrast, in the second embodiment, the semiconductor layer 28 is composed of a single layer of the semiconductor layer 22 having n-type conductivity.
 次に、第2実施例によるVCSEL10の製造方法について説明する。第1実施例では、図16に示した基板21Aを薄層化する工程において、基板21Aの一部である半導体層21を残している。これに対して第2実施例では、基板21Aを完全に除去し、半導体層22を露出させる。その後の工程は、第1実施例によるVCSEL10の製造方法の工程と同一である。 Next, a method for manufacturing the VCSEL 10 according to the second example will be described. In the first example, in the step of thinning the substrate 21A shown in FIG. 16, the semiconductor layer 21, which is a part of the substrate 21A, is left. On the other hand, in the second embodiment, the substrate 21A is completely removed and the semiconductor layer 22 is exposed. The subsequent steps are the same as those of the method for manufacturing the VCSEL 10 according to the first embodiment.
 次に、第2実施例の優れた効果について説明する。
 第2実施例のように、半導体層28を、n型導電性を有する半導体層22の単層で構成してもよい。第2実施例においても第1実施例と同様に、VCSEL10の発熱源からの放熱効率を高めることができる。
Next, the excellent effects of the second embodiment will be explained.
As in the second embodiment, the semiconductor layer 28 may be composed of a single layer of the semiconductor layer 22 having n-type conductivity. In the second embodiment, as in the first embodiment, the efficiency of heat radiation from the heat source of the VCSEL 10 can be improved.
 また、第2実施例では、n型導電性を有する半導体層22及び接着層81を介して、下部DBR層23を、伝熱部材80に電気的に接続することが可能である。例えば、伝熱部材80としてCu等の金属を用いる場合、伝熱部材80をカソード電極として用いることができる。この構成を採用する場合には、カソード電極42及びカソード配線46を削除してもよい。 Furthermore, in the second embodiment, it is possible to electrically connect the lower DBR layer 23 to the heat transfer member 80 via the semiconductor layer 22 having n-type conductivity and the adhesive layer 81. For example, when metal such as Cu is used as the heat transfer member 80, the heat transfer member 80 can be used as a cathode electrode. When adopting this configuration, the cathode electrode 42 and the cathode wiring 46 may be deleted.
 [第3実施例]
 次に、図22及び図23を参照して第3実施例によるVCSELについて説明する。以下、図1から図19までの図面を参照して説明した第1実施例によるVCSEL10と共通の構成については説明を省略する。
[Third example]
Next, a VCSEL according to a third embodiment will be described with reference to FIGS. 22 and 23. Hereinafter, a description of the configuration common to the VCSEL 10 according to the first embodiment described with reference to the drawings from FIG. 1 to FIG. 19 will be omitted.
 図22及び図23は、第3実施例によるVCSEL10の製造途中段階における断面図である。第1実施例(図7)では、基板21Aとして半絶縁性のGaAs等からなる単一の基板が用いられる。これに対して第3実施例では、図22に示すように、基板21Aとして、仮基板21A1、その上に積層されたエッチング制御層21A2及び半導体層21を含む。仮基板21A1は、例えば半絶縁性のGaAsからなる基板である。エッチング制御層21A2は、仮基板21A1の上にエピタキシャル成長された半導体層であり、エッチング制御層21A2には、仮基板21A1とは異なるエッチング耐性を有する化合物半導体、例えばInGaAsが用いられる。 22 and 23 are cross-sectional views of the VCSEL 10 according to the third example at an intermediate stage of manufacture. In the first embodiment (FIG. 7), a single substrate made of semi-insulating GaAs or the like is used as the substrate 21A. In contrast, in the third embodiment, as shown in FIG. 22, the substrate 21A includes a temporary substrate 21A1, an etching control layer 21A2 and a semiconductor layer 21 stacked thereon. The temporary substrate 21A1 is, for example, a substrate made of semi-insulating GaAs. The etching control layer 21A2 is a semiconductor layer epitaxially grown on the temporary substrate 21A1, and a compound semiconductor such as InGaAs, which has a different etching resistance than the temporary substrate 21A1, is used for the etching control layer 21A2.
 半導体層21は、エッチング制御層21A2の上にエピタキシャル成長された層であり、第1実施例の半導体層21(図2)と同様に、n型導電性を有する化合物半導体、例えばn型GaAsで形成される。 The semiconductor layer 21 is a layer epitaxially grown on the etching control layer 21A2, and is made of a compound semiconductor having n-type conductivity, such as n-type GaAs, similarly to the semiconductor layer 21 of the first embodiment (FIG. 2). be done.
 第1実施例では、基板21Aを薄層化する工程(図16)において、基板21Aの研磨、研削、エッチング等による加工時間を制御することにより、薄い半導体層21を残している。これに対して第3実施例では、エッチング制御層21A2のエッチング速度よりも仮基板21A1のエッチング速度が速い条件で、仮基板21A1をエッチングする。図23に示すように、エッチング制御層21A2が露出した時点でエッチング速度が低下するため、エッチング制御層21A2の下面で再現性良くエッチングを停止させることができる。 In the first embodiment, in the step of thinning the substrate 21A (FIG. 16), the thin semiconductor layer 21 is left by controlling the processing time of polishing, grinding, etching, etc. of the substrate 21A. On the other hand, in the third embodiment, the temporary substrate 21A1 is etched under conditions where the etching rate of the temporary substrate 21A1 is faster than the etching rate of the etching control layer 21A2. As shown in FIG. 23, since the etching rate decreases when the etching control layer 21A2 is exposed, the etching can be stopped at the lower surface of the etching control layer 21A2 with good reproducibility.
 第3実施例では、メサ構造30と接着層81との間に配置される半導体層28(図2)が、エッチング制御層21A2、半導体層21、及び半導体層22の3層を含むことになる。なお、エッチング制御層21A2を露出させた後、エッチング制御層21A2をエッチング除去して半導体層21を露出させてもよい。この場合、半導体層28は、第1実施例と同様に、半導体層21、22の2層を含むことになる。 In the third embodiment, the semiconductor layer 28 (FIG. 2) disposed between the mesa structure 30 and the adhesive layer 81 includes three layers: an etching control layer 21A2, a semiconductor layer 21, and a semiconductor layer 22. . Note that after exposing the etching control layer 21A2, the etching control layer 21A2 may be removed by etching to expose the semiconductor layer 21. In this case, the semiconductor layer 28 includes two semiconductor layers 21 and 22, as in the first embodiment.
 次に、第3実施例の優れた効果について説明する。第3実施例においても第1実施例と同様に、VCSEL10の発熱源からの放熱効率を高めることができる。さらに、半導体層28の厚さの制御性を高めることができる。 Next, the excellent effects of the third embodiment will be explained. In the third embodiment, as in the first embodiment, the efficiency of heat radiation from the heat source of the VCSEL 10 can be improved. Furthermore, the controllability of the thickness of the semiconductor layer 28 can be improved.
 [第4実施例]
 次に、図24から図31までの図面を参照して第4実施例によるVCSELについて説明する。以下、図1から図19までの図面を参照して説明した第1実施例によるVCSEL10と共通の構成については説明を省略する。
[Fourth example]
Next, a VCSEL according to a fourth embodiment will be described with reference to the drawings from FIG. 24 to FIG. 31. Hereinafter, a description of the configuration common to the VCSEL 10 according to the first embodiment described with reference to the drawings from FIG. 1 to FIG. 19 will be omitted.
 図24は、第4実施例によるVCSELの断面図である。半導体層28からアノード配線45及びカソード配線46までの構成は、第1実施例によるVCSEL(図2)の構成と同一である。第1実施例では、伝熱部材80に金属等の単一材料が用いられる。これに対して第4実施例では、伝熱部材80に複合材料が用いられる。 FIG. 24 is a cross-sectional view of the VCSEL according to the fourth example. The configuration from the semiconductor layer 28 to the anode wiring 45 and cathode wiring 46 is the same as the configuration of the VCSEL (FIG. 2) according to the first embodiment. In the first embodiment, the heat transfer member 80 is made of a single material such as metal. In contrast, in the fourth embodiment, a composite material is used for the heat transfer member 80.
 以下、伝熱部材80の構造について説明する。
 伝熱部材80は、高熱伝導部分80Aと拘束部分80Bとで構成される。高熱伝導部分80Aの熱伝導率は、半導体層28の熱伝導率及び拘束部分80Bの熱伝導率より高い。高熱伝導部分80Aの線膨張係数は、半導体層28の線膨張係数より大きい。拘束部分80Bの線膨張係数は高熱伝導部分80Aの線膨張係数より小さい。
The structure of the heat transfer member 80 will be described below.
The heat transfer member 80 is composed of a high heat conduction portion 80A and a restraining portion 80B. The thermal conductivity of the high thermal conductivity portion 80A is higher than the thermal conductivity of the semiconductor layer 28 and the thermal conductivity of the constraint portion 80B. The linear expansion coefficient of the high thermal conductivity portion 80A is larger than that of the semiconductor layer 28. The coefficient of linear expansion of the constrained portion 80B is smaller than that of the high thermal conductivity portion 80A.
 拘束部分80Bは、複数の貫通孔が設けられた板状の部材であり、高熱伝導部分80Aは、拘束部分80Bの貫通孔内に充填されるとともに、拘束部分80Bの両面を覆っている。すなわち、伝熱部材80の上面80T、及びその反対側の下面80Lの全域に、高熱伝導部分80Aが露出しており、拘束部分80Bは、上面80T及び下面80Lのいずれにも露出していない。 The restraint part 80B is a plate-shaped member provided with a plurality of through holes, and the high thermal conductivity part 80A is filled in the through holes of the restraint part 80B and covers both sides of the restraint part 80B. That is, the high thermal conductivity portion 80A is exposed throughout the upper surface 80T and the lower surface 80L on the opposite side of the heat transfer member 80, and the restraining portion 80B is not exposed on either the upper surface 80T or the lower surface 80L.
 高熱伝導部分80Aは、複数の貫通部分80A1を含む。複数の貫通部分80A1の各々は、伝熱部材80の上面80Tから、上面80Tに対して直交する方向に延び、下面80Lまで達している。伝熱部材80の上面80Tを平面視したとき、複数の貫通部分80A1は、二次元的に、離散的に分布している。 The high thermal conductivity portion 80A includes a plurality of penetrating portions 80A1. Each of the plurality of penetrating portions 80A1 extends from the upper surface 80T of the heat transfer member 80 in a direction perpendicular to the upper surface 80T, and reaches the lower surface 80L. When the upper surface 80T of the heat transfer member 80 is viewed from above, the plurality of penetrating portions 80A1 are two-dimensionally and discretely distributed.
 高熱伝導部分80Aの材料として、Cu、Au、Ag等の金属が用いられる。Cu、Au、Agの熱伝導率は、それぞれ約398W/mK、約320W/mK、約418W/mKであり、線膨張係数は、それぞれ約16.5ppm/℃、約14.3ppm/℃、約18.9ppm/℃である。これに対して半導体層28に用いられるGaAsの熱伝導率は約55W/mKであり、線膨張係数は約5.4ppm/℃である。このように、高熱伝導部分80Aの熱伝導率は、半導体層28の熱伝導率より高い。また、高熱伝導部分80Aの線膨張係数は、半導体層28の線膨張係数より大きい。加工容易性や材料費の観点から、高熱伝導部分80AとしてCuを用いることがより好ましい。 Metals such as Cu, Au, and Ag are used as the material for the high thermal conductivity portion 80A. The thermal conductivities of Cu, Au, and Ag are approximately 398 W/mK, approximately 320 W/mK, and approximately 418 W/mK, respectively, and the linear expansion coefficients are approximately 16.5 ppm/°C, approximately 14.3 ppm/°C, and approximately It is 18.9 ppm/°C. On the other hand, GaAs used for the semiconductor layer 28 has a thermal conductivity of about 55 W/mK and a coefficient of linear expansion of about 5.4 ppm/°C. Thus, the thermal conductivity of the high thermal conductivity portion 80A is higher than that of the semiconductor layer 28. Further, the linear expansion coefficient of the high thermal conductivity portion 80A is larger than that of the semiconductor layer 28. From the viewpoint of ease of processing and material cost, it is more preferable to use Cu as the high heat conductive portion 80A.
 拘束部分80Bの材料として、酸化ケイ素を主成分とするガラス、単体半導体、セラミックス等が用いられる。拘束部分80Bとして用いられる酸化ケイ素を主成分とするガラスの例として、ホウケイ酸系ガラス、石英ガラス、無アルカリガラス等が挙げられる。ホウケイ酸系ガラスの線膨張係数は約3ppm/℃以上約12ppm/℃以下であり、石英ガラスの線膨張係数は約0.5ppm/℃であり、無アルカリガラスの線膨張係数は約3ppm/℃以上約8ppm/℃以下である。石英ガラスの熱伝導率は約1.5W/mKである。 As a material for the restraining portion 80B, glass whose main component is silicon oxide, a single semiconductor, ceramics, etc. are used. Examples of glass containing silicon oxide as a main component used as the restraining portion 80B include borosilicate glass, quartz glass, alkali-free glass, and the like. The linear expansion coefficient of borosilicate glass is about 3 ppm/°C or more and about 12 ppm/°C or less, the linear expansion coefficient of quartz glass is about 0.5 ppm/°C, and the linear expansion coefficient of alkali-free glass is about 3 ppm/°C. It is about 8 ppm/°C or less. The thermal conductivity of quartz glass is approximately 1.5 W/mK.
 拘束部分80Bとして用いられるセラミックスの例として、SiC、SiN、AlN等が挙げられる。SiC及びSiNの熱伝導率は、共に約200W/mKである。AlNの熱伝導率は、約170W/mK以上約230W/mK以下である。SiC、SiN、AlNの線膨張係数は、それぞれ約4.0ppm/℃、約2.8ppm/℃、約4.6ppm/℃である。拘束部分80Bとして用いられる単体半導体の例として、Siが挙げられる。Siの熱伝導率は約162W/mKであり、線膨張係数は約4.15ppm/℃である。これらの材料の線膨張係数は、半導体層28に用いられるGaAsの線膨張係数より小さい。 Examples of ceramics used as the restraining portion 80B include SiC, SiN, AlN, and the like. The thermal conductivity of both SiC and SiN is about 200 W/mK. The thermal conductivity of AlN is about 170 W/mK or more and about 230 W/mK or less. The linear expansion coefficients of SiC, SiN, and AlN are approximately 4.0 ppm/°C, approximately 2.8 ppm/°C, and approximately 4.6 ppm/°C, respectively. An example of a single semiconductor used as the constraint portion 80B is Si. The thermal conductivity of Si is about 162 W/mK, and the coefficient of linear expansion is about 4.15 ppm/°C. The linear expansion coefficients of these materials are smaller than that of GaAs used for the semiconductor layer 28.
 図25Aは、伝熱部材80の貫通部分80A1と、メサ構造30との分布を示す図である。平面視において、複数の貫通部分80A1の各々の形状は円形であり、複数の貫通部分80A1が二次元的に、離散的に分布している。例えば、複数の貫通部分80A1は、正三角格子状に配置されている。複数のメサ構造30は、図1を参照して説明したように、1列のアレイ状に配置されている。メサ構造30は、平面視において、いずれかの貫通部分80A1に少なくとも部分的に重なっている。メサ構造30が貫通部分80A1を包含するようにしてもよいし、逆に貫通部分80A1がメサ構造30を包含するようにしてもよいし、メサ構造30の一部分と貫通部分80A1の一部分とが重なるようにしてもよい。 FIG. 25A is a diagram showing the distribution of the penetrating portion 80A1 of the heat transfer member 80 and the mesa structure 30. In plan view, each of the plurality of penetrating portions 80A1 has a circular shape, and the plurality of penetrating portions 80A1 are two-dimensionally and discretely distributed. For example, the plurality of penetrating portions 80A1 are arranged in a regular triangular lattice shape. The plurality of mesa structures 30 are arranged in a single row array, as described with reference to FIG. The mesa structure 30 at least partially overlaps any of the penetrating portions 80A1 in plan view. The mesa structure 30 may include the penetrating portion 80A1, or conversely, the penetrating portion 80A1 may include the mesa structure 30, or a portion of the mesa structure 30 and a portion of the penetrating portion 80A1 overlap. You can do it like this.
 図25Bは、図25Aの一点鎖線25B-25Bにおける伝熱部材80の断面図及び線膨張係数を示すグラフである。線膨張係数を示すグラフは、伝熱部材80の厚さ方向に関して拘束部分80Bが配置されている位置における線膨張係数を表している。線膨張係数を示すグラフの横軸は、図25Aの一点鎖線25B-25Bに沿う位置を表す。高熱伝導部分80Aの線膨張係数αは、拘束部分80Bの線膨張係数αより大きい。半導体層28(図2)の線膨張係数αは、高熱伝導部分80Aの線膨張係数αより小さく、拘束部分80Bの線膨張係数αより大きい。 FIG. 25B is a cross-sectional view of the heat transfer member 80 taken along the dashed line 25B-25B in FIG. 25A and a graph showing the coefficient of linear expansion. The graph showing the coefficient of linear expansion represents the coefficient of linear expansion at the position where the restraining portion 80B is arranged in the thickness direction of the heat transfer member 80. The horizontal axis of the graph showing the coefficient of linear expansion represents the position along the dashed line 25B-25B in FIG. 25A. The linear expansion coefficient α A of the high thermal conductivity portion 80A is larger than the linear expansion coefficient α B of the restraint portion 80B. The linear expansion coefficient α S of the semiconductor layer 28 (FIG. 2) is smaller than the linear expansion coefficient α A of the high thermal conductivity portion 80A, and larger than the linear expansion coefficient α B of the constrained portion 80B.
 平面視における複数の貫通部分80A1の面積の合計をSと標記し、拘束部分80Bの面積をSと標記する。貫通部分80A1の合計の面積Sと拘束部分80Bの面積Sとの大小関係が、貫通部分80A1の線膨張係数αと半導体層28の線膨張係数αとの差α-αと、半導体層の線膨張係数αと拘束部分80Bの線膨張係数αとの差α-αとの大小関係と逆である。すなわち、S<Sのとき、(α-α)>(α-α)が成立し、S>Sのとき、(α-α)<(α-α)が成立する。 The total area of the plurality of penetrating portions 80A1 in a plan view is denoted as S A , and the area of the restraint portion 80B is denoted as S B. The magnitude relationship between the total area S A of the penetrating portion 80A1 and the area S B of the restraining portion 80B is the difference α A − α S between the linear expansion coefficient α A of the penetrating portion 80 A1 and the linear expansion coefficient α S of the semiconductor layer 28. This is opposite to the magnitude relationship α S −α B between the linear expansion coefficient α S of the semiconductor layer and the linear expansion coefficient α B of the constrained portion 80B. That is, when S A < S B , (α A - α S )> (α S - α B ) holds true, and when S A > S B , (α A - α S ) < (α S - α B ) holds true.
 次に、図26から図31までの図面を参照して、第4実施例によるVCSELの製造方法について説明する。図26から図28までの図面は、伝熱部材80の製造途中段階における断面図であり、図29は、伝熱部材80の断面図であり、図30は、伝熱部材80及び接着層81Aの断面図であり、図31は、第4実施例によるVCSELの断面図である。 Next, a method for manufacturing a VCSEL according to the fourth embodiment will be described with reference to the drawings from FIG. 26 to FIG. 31. The drawings from FIG. 26 to FIG. 28 are cross-sectional views of the heat transfer member 80 at an intermediate stage of manufacture, FIG. 29 is a cross-sectional view of the heat transfer member 80, and FIG. 30 is a cross-sectional view of the heat transfer member 80 and the adhesive layer 81A. FIG. 31 is a cross-sectional view of a VCSEL according to a fourth embodiment.
 第4実施例においても第1実施例と同様に、図7から図17までの図面に示した工程と同一の工程により、接着層81Bからアノード配線45及びカソード配線46までの中間生産物を作製する。 In the fourth example, as in the first example, intermediate products from the adhesive layer 81B to the anode wiring 45 and the cathode wiring 46 are produced by the same steps as shown in the drawings from FIGS. 7 to 17. do.
 図26に示すように、拘束部分80B(図24)の原板80B1を準備する。図27に示すように、原板80B1に複数の貫通孔80BHを形成する。これにより、拘束部分80Bが完成する。貫通孔80BHは、原板80B1にフォトリソグラフィによりマスクパターンを形成した後、ドライエッチング法、ウェットエッチング法、サンドブラスト法、レーザ穴明け加工法等を用いて形成することができる。 As shown in FIG. 26, an original plate 80B1 of the restrained portion 80B (FIG. 24) is prepared. As shown in FIG. 27, a plurality of through holes 80BH are formed in the original plate 80B1. This completes the restraint portion 80B. The through hole 80BH can be formed by forming a mask pattern on the original plate 80B1 by photolithography, and then using a dry etching method, a wet etching method, a sandblasting method, a laser drilling method, or the like.
 図28に示すように、拘束部分80Bの両面、及び貫通孔80BHの側面に、Cu等の給電用の被膜80Fを形成する。被膜80Fの形成には、例えばスパッタリング法を用いることができる。 As shown in FIG. 28, a power supply coating 80F such as Cu is formed on both sides of the restraining portion 80B and the side surface of the through hole 80BH. For example, a sputtering method can be used to form the coating 80F.
 図29に示すように、被膜80Fを電極として用い、Cuを電解メッキすることにより、高熱伝導部分80Aを形成する。貫通孔80BHに充填されたCuが、高熱伝導部分80Aの貫通部分80A1の一部分を構成する。半導体層28(図24)を接合する面を、ウェットエッチング法、ポリッシング法、化学機械研磨(CMP)法等により平滑化する。これにより、伝熱部材80が完成する。なお、電解メッキ後の表面が十分平滑である場合には、平滑化の処理を行わなくてもよい。 As shown in FIG. 29, the high thermal conductivity portion 80A is formed by electrolytically plating Cu using the coating 80F as an electrode. The Cu filled in the through hole 80BH constitutes a part of the through portion 80A1 of the high heat conductive portion 80A. The surface to which the semiconductor layer 28 (FIG. 24) is to be bonded is smoothed by wet etching, polishing, chemical mechanical polishing (CMP), or the like. Thereby, the heat transfer member 80 is completed. Note that if the surface after electrolytic plating is sufficiently smooth, smoothing treatment may not be performed.
 図30に示すように、伝熱部材80の一方の面である上面80Tに接着層81Aを形成する。接着層81Aは、例えばAu等を真空蒸着することにより形成される。 As shown in FIG. 30, an adhesive layer 81A is formed on the upper surface 80T, which is one surface of the heat transfer member 80. The adhesive layer 81A is formed by, for example, vacuum-depositing Au or the like.
 図31に示すように、メサ構造30が形成された中間生産物の接着層81Bと、伝熱部材80側の接着層81Aとを密着させて、加熱しながら加圧することにより、接着層81Aと接着層81Bとを接合する。なお、図24では、接着層81A、81Bを、1層の接着層81として表している。 As shown in FIG. 31, the adhesive layer 81B of the intermediate product on which the mesa structure 30 is formed is brought into close contact with the adhesive layer 81A on the heat transfer member 80 side, and the adhesive layer 81A is heated and pressed. The adhesive layer 81B is bonded to the adhesive layer 81B. Note that in FIG. 24, the adhesive layers 81A and 81B are represented as one adhesive layer 81.
 次に、第4実施例の優れた効果について説明する。
 第4実施例においても第1実施例と同様に、基板21A(図16)を薄層化しているため、発熱源HS(図4)からの放熱効率を高めることができる。
Next, the excellent effects of the fourth embodiment will be explained.
In the fourth embodiment, as in the first embodiment, the substrate 21A (FIG. 16) is made thinner, so that the efficiency of heat radiation from the heat source HS (FIG. 4) can be increased.
 次に、伝熱部材80を複合材料で構成することによる優れた効果について説明する。一般的に、金属からなる高熱伝導部分80Aの線膨張係数は、GaAs等の化合物半導体からなる半導体層28の線膨張係数の3倍程度である。第4実施例では、伝熱部材80が高熱伝導部分80Aと、高熱伝導部分80Aより線膨張係数が小さい拘束部分80Bとを含んでいる。このため、伝熱部材80が金属単体で構成されている場合と比べて、温度上昇時における伝熱部材80の膨張が抑制される。これにより、半導体層28と伝熱部材80とに発生する熱応力を低減させることができる。拘束部分80Bの線膨張係数が高熱伝導部分80Aの線膨張係数に近づくと、熱応力を低減させる効果が弱まる。熱応力を低減させる十分な効果を得るために、拘束部分80Bの線膨張係数が高熱伝導部分80Aの線膨張係数の50%以下であることが好ましく、35%以下であることがより好ましい。また、高熱伝導部分80Aの貫通部分80A1が二次元的に離散的に配置されているため、面内方向において熱応力の局所的な集中が抑制される。 Next, the excellent effects of constructing the heat transfer member 80 from a composite material will be explained. Generally, the linear expansion coefficient of the high thermal conductivity portion 80A made of metal is about three times the linear expansion coefficient of the semiconductor layer 28 made of a compound semiconductor such as GaAs. In the fourth embodiment, the heat transfer member 80 includes a high heat conduction portion 80A and a constraint portion 80B having a smaller coefficient of linear expansion than the high heat conduction portion 80A. Therefore, the expansion of the heat transfer member 80 when the temperature rises is suppressed compared to the case where the heat transfer member 80 is made of a single metal. Thereby, thermal stress generated in the semiconductor layer 28 and the heat transfer member 80 can be reduced. When the coefficient of linear expansion of the restraining portion 80B approaches that of the high thermal conductivity portion 80A, the effect of reducing thermal stress is weakened. In order to obtain a sufficient effect of reducing thermal stress, the linear expansion coefficient of the restraint portion 80B is preferably 50% or less, more preferably 35% or less, of the linear expansion coefficient of the high thermal conductivity portion 80A. Furthermore, since the penetrating portions 80A1 of the high thermal conductivity portion 80A are two-dimensionally arranged discretely, local concentration of thermal stress is suppressed in the in-plane direction.
 伝熱部材80は、半導体層28と比べて相対的に熱伝導率が高い高熱伝導部分80Aを含んでいるため、半導体層28から流入した熱がモジュールサブストレート88(図3)まで伝導する伝熱経路の熱抵抗が低くなる。さらに、図25Aに示すように、平面視においてメサ構造30と高熱伝導部分80Aの貫通部分80A1とが少なくとも部分的に重なっているため、メサ構造30の発熱源から高熱伝導部分80Aを通ってモジュールサブストレート88に至る伝熱経路が短くなる。これにより、良好な放熱効率を得ることができる。放熱効率が高まることにより、VCSEL10の光出力を向上させるとともに、高温動作によるVCSEL10の特性の経時劣化を抑制することができる。 The heat transfer member 80 includes a high thermal conductivity portion 80A having a relatively high thermal conductivity compared to the semiconductor layer 28, so that heat flowing from the semiconductor layer 28 is conducted to the module substrate 88 (FIG. 3). The thermal resistance of the thermal path is lowered. Furthermore, as shown in FIG. 25A, since the mesa structure 30 and the penetration portion 80A1 of the high heat conduction portion 80A at least partially overlap in plan view, the module is The heat transfer path to the substrate 88 becomes shorter. Thereby, good heat dissipation efficiency can be obtained. By increasing the heat dissipation efficiency, it is possible to improve the optical output of the VCSEL 10 and to suppress deterioration of the characteristics of the VCSEL 10 over time due to high-temperature operation.
 半導体層28と伝熱部材80とに発生する熱応力を小さくするために、図25Bに示すように、拘束部分80Bとして、半導体層28の線膨張係数αより小さい線膨張係数αを有する材料を用いることが好ましい。 In order to reduce the thermal stress generated in the semiconductor layer 28 and the heat transfer member 80, as shown in FIG. 25B, the restraining portion 80B has a linear expansion coefficient α B smaller than the linear expansion coefficient α S of the semiconductor layer 28. Preferably, the material is used.
 図25A及び図25Bを参照して説明したように、貫通部分80A1の合計の面積をS、拘束部分80Bの面積をS、貫通部分80A1の線膨張係数をα、拘束部分80Bの線膨張係数をα及び半導体層28の線膨張係数をαと標記したとき、半導体層28と伝熱部材80とに発生する熱応力を小さくするために、以下の式を満たすことが最も好ましい。
Figure JPOXMLDOC01-appb-M000001
As explained with reference to FIGS. 25A and 25B, the total area of the penetrating portion 80A1 is S A , the area of the restraining portion 80B is S B , the linear expansion coefficient of the penetrating portion 80A1 is α A , and the line of the restraining portion 80B is When the expansion coefficient is denoted by α B and the linear expansion coefficient of the semiconductor layer 28 is denoted by α S , it is most preferable that the following formula is satisfied in order to reduce the thermal stress generated in the semiconductor layer 28 and the heat transfer member 80. .
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)の右辺と左辺とが完全に一致しない場合であっても、両者の差が小さい場合には、熱応力を小さくする十分な効果が得られる。熱応力を小さくするために、以下の式(2)が満たされることが好ましく、式(3)が満たされることがより好ましい。
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003
Note that even if the right side and the left side of equation (1) do not completely match, if the difference between them is small, a sufficient effect of reducing thermal stress can be obtained. In order to reduce thermal stress, it is preferable that the following formula (2) is satisfied, and it is more preferable that the formula (3) is satisfied.
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003
 次に、図25A及び図25Bを参照して、伝熱部材80の各構成要素の好ましい寸法について説明する。拘束部分80Bの厚さTは、十分な機械的強度を確保するために、100μm以上にすることが好ましい。また、拘束部分80Bを必要以上に厚くすると、伝熱部材80の熱抵抗が高くなるため、拘束部分80Bの厚さTを300μm以下にすることが好ましい。 Next, preferred dimensions of each component of the heat transfer member 80 will be described with reference to FIGS. 25A and 25B. The thickness T B of the restraining portion 80B is preferably 100 μm or more in order to ensure sufficient mechanical strength. Further, if the restraining portion 80B is made thicker than necessary, the thermal resistance of the heat transfer member 80 increases, so it is preferable that the thickness T B of the restraining portion 80B be 300 μm or less.
 半導体層28(図24)から伝熱部材80に流入した熱を面内方向に拡散させるために、拘束部分80Bの上面を覆う高熱伝導部分80Aの厚さTA1、及び下面を覆う高熱伝導部分80Aの厚さTA2を、それぞれ10μm以上にすることが好ましい。高熱伝導部分80Aを必要以上に厚くすると、伝熱部材80の熱抵抗が高くなるため、厚さTA1、TA2のそれぞれを、100μm以下にすることが好ましい。 In order to diffuse the heat flowing into the heat transfer member 80 from the semiconductor layer 28 (FIG. 24) in the in-plane direction, the thickness T A1 of the high heat conduction portion 80A covering the upper surface of the restraining portion 80B, and the high heat conduction portion covering the lower surface. It is preferable that the thickness T A2 of each 80A is 10 μm or more. If the high thermal conductivity portion 80A is made thicker than necessary, the thermal resistance of the heat transfer member 80 increases, so it is preferable that each of the thicknesses T A1 and T A2 be 100 μm or less.
 また、熱応力を面内方向に関して平準化するために、貫通部分80A1の平面視における寸法、例えば、貫通部分80A1の最小包含円の直径D、及び隣り合う貫通部分80A1の間隔Gを、ともに30μm以上100μm以下にすることが好ましい。 Furthermore, in order to equalize the thermal stress in the in-plane direction, the dimensions of the penetrating portion 80A1 in plan view, for example, the diameter D A of the minimum enclosing circle of the penetrating portion 80A1, and the interval G between adjacent penetrating portions 80A1 are both set. The thickness is preferably 30 μm or more and 100 μm or less.
 次に、図32を参照して第4実施例の変形例によるVCSELについて説明する。図32は、本変形例によるVCSEL10の伝熱部材80の貫通部分80A1と、メサ構造30との分布を示す図である。第4実施例(図25A)では、複数の貫通部分80A1が正三角格子状に配置されている。これに対して本変形例では、複数の貫通部分80A1が正方格子状に配置されている。本変形例においても、メサ構造30は、平面視においていずれか1つの貫通部分80A1と部分的に重なっている。 Next, a VCSEL according to a modification of the fourth embodiment will be described with reference to FIG. 32. FIG. 32 is a diagram showing the distribution of the mesa structure 30 and the penetrating portion 80A1 of the heat transfer member 80 of the VCSEL 10 according to this modification. In the fourth embodiment (FIG. 25A), a plurality of penetrating portions 80A1 are arranged in a regular triangular lattice shape. In contrast, in this modification, the plurality of penetrating portions 80A1 are arranged in a square grid. Also in this modification, the mesa structure 30 partially overlaps with any one of the penetrating portions 80A1 in plan view.
 本変形例のように、複数の貫通部分80A1を、正方格子状に配置してもよい。また、複数の貫通部分80A1を、その他のパターンで二次元面内に離散的に分布させてもよい。 As in this modification, the plurality of penetrating portions 80A1 may be arranged in a square grid. Further, the plurality of penetrating portions 80A1 may be distributed discretely within the two-dimensional plane in other patterns.
 [第5実施例]
 次に、図33A及び図33Bを参照して、第5実施例によるVCSELについて説明する。以下、図24から図31までの図面を参照して説明した第4実施例によるVCSEL10と共通の構成については説明を省略する。
[Fifth example]
Next, a VCSEL according to a fifth embodiment will be described with reference to FIGS. 33A and 33B. Hereinafter, a description of the configuration common to the VCSEL 10 according to the fourth embodiment described with reference to the drawings from FIG. 24 to FIG. 31 will be omitted.
 図33Aは、第5実施例によるVCSEL10の伝熱部材80の貫通部分80A1と、メサ構造30との平面視における位置関係を示す図であり、図33Bは、図33Aの一点鎖線33B-33Bにおける伝熱部材80の断面図である。第4実施例(図25A)では、複数の貫通部分80A1が二次元的に分布している。これに対して第5実施例では、1つの大きな貫通部分80A1が配置されている。平面視において、伝熱部材80の周辺部に環状の拘束部分80Bが配置され、貫通部分80A1は、拘束部分80Bに囲まれている。複数のメサ構造30は、平面視において貫通部分80A1に包含されている。メサ構造30の下端、すなわちメサ構造30の側面の下端から、拘束部分80Bまでの高さ方向の距離をH1と標記する。 FIG. 33A is a diagram showing the positional relationship in plan view between the penetrating portion 80A1 of the heat transfer member 80 of the VCSEL 10 according to the fifth embodiment and the mesa structure 30, and FIG. 8 is a cross-sectional view of a heat transfer member 80. FIG. In the fourth embodiment (FIG. 25A), the plurality of penetrating portions 80A1 are two-dimensionally distributed. On the other hand, in the fifth embodiment, one large penetrating portion 80A1 is arranged. In plan view, an annular restraining portion 80B is arranged around the periphery of the heat transfer member 80, and the penetrating portion 80A1 is surrounded by the restraining portion 80B. The plurality of mesa structures 30 are included in the penetrating portion 80A1 in plan view. The distance in the height direction from the lower end of the mesa structure 30, that is, the lower end of the side surface of the mesa structure 30, to the restraining portion 80B is denoted as H1.
 次に、第5実施例の優れた効果について説明する。第5実施例では、平面視において、伝熱部材80の周辺部を除く内部の全域が貫通部分80A1とされている。このため、第1実施例と比べて、伝熱部材80の熱抵抗が低下する。その結果、より高い放熱効率を得ることができる。 Next, the excellent effects of the fifth embodiment will be explained. In the fifth embodiment, in plan view, the entire interior of the heat transfer member 80 except for the peripheral portion is a penetrating portion 80A1. Therefore, the thermal resistance of the heat transfer member 80 is reduced compared to the first embodiment. As a result, higher heat radiation efficiency can be obtained.
 貫通部分80A1が高温になることによる面内方向の膨張は、拘束部分80Bによって抑制される。このため、伝熱部材80に接合された半導体層28(図24)に加わる熱応力を低減させることができる。ただし、伝熱部材80内で高熱伝導部分80Aが相対的に大きな体積を占めるため、第4実施例(図25A)と比べて、熱応力を低減させる効果は低い。メサ構造30に求められる放熱効率、メサ構造30を構成する半導体部分の破壊靭性等に応じて、第4実施例の構成を採用するか、第5実施例の構成を採用するかを選択するとよい。 Expansion in the in-plane direction due to the penetration portion 80A1 becoming high temperature is suppressed by the restraining portion 80B. Therefore, the thermal stress applied to the semiconductor layer 28 (FIG. 24) joined to the heat transfer member 80 can be reduced. However, since the high thermal conductivity portion 80A occupies a relatively large volume within the heat transfer member 80, the effect of reducing thermal stress is lower than that of the fourth embodiment (FIG. 25A). Depending on the heat dissipation efficiency required for the mesa structure 30, the fracture toughness of the semiconductor portion constituting the mesa structure 30, etc., it is preferable to select whether to adopt the configuration of the fourth embodiment or the configuration of the fifth embodiment. .
 [第6実施例]
 次に、図34A及び図34Bを参照して、第6実施例によるVCSELについて説明する。以下、図24から図31までの図面を参照して説明した第4実施例によるVCSEL10と共通の構成については説明を省略する。図34Aは、第6実施例によるVCSEL10の伝熱部材80の貫通部分80A1と、メサ構造30との平面視における位置関係を示す図である。
[Sixth Example]
Next, a VCSEL according to a sixth embodiment will be described with reference to FIGS. 34A and 34B. Hereinafter, a description of the configuration common to the VCSEL 10 according to the fourth embodiment described with reference to the drawings from FIG. 24 to FIG. 31 will be omitted. FIG. 34A is a diagram showing the positional relationship in plan view between the penetrating portion 80A1 of the heat transfer member 80 of the VCSEL 10 and the mesa structure 30 according to the sixth embodiment.
 第4実施例(図25A)では、複数の貫通部分80A1が面内にほぼ均一に分布している。これに対して第6実施例では、複数の貫通部分80A1の面内方向に関する分布密度が均一ではない。伝熱部材80の面内において、複数のメサ構造30が並ぶ方向と平行な方向を列方向と定義し、それに垂直な方向を行方向と定義することとする。複数の貫通部分80A1の列方向の間隔Gはほぼ一定である。複数の貫通部分80A1の行方向の間隔Gは、メサ構造30から行方向に遠ざかるにしたがって広くなっている。 In the fourth embodiment (FIG. 25A), the plurality of penetrating portions 80A1 are distributed almost uniformly within the plane. On the other hand, in the sixth embodiment, the distribution density of the plurality of penetrating portions 80A1 in the in-plane direction is not uniform. In the plane of the heat transfer member 80, a direction parallel to the direction in which the plurality of mesa structures 30 are lined up is defined as a column direction, and a direction perpendicular thereto is defined as a row direction. The interval G y of the plurality of penetrating portions 80A1 in the column direction is approximately constant. The interval G x between the plurality of through parts 80A1 in the row direction increases as the distance from the mesa structure 30 in the row direction increases.
 図34Bは、貫通部分80A1の分布密度を表すグラフである。横軸は、行方向の位置を表し、縦軸は貫通部分80A1の分布密度を表す。メサ構造30から行方向に遠ざかるにしたがって、貫通部分80A1の分布密度が低下している。 FIG. 34B is a graph showing the distribution density of the penetrating portion 80A1. The horizontal axis represents the position in the row direction, and the vertical axis represents the distribution density of the penetrating portions 80A1. As the distance from the mesa structure 30 in the row direction increases, the distribution density of the penetrating portions 80A1 decreases.
 次に、第6実施例の優れた効果について説明する。
 メサ構造30の近傍において、貫通部分80A1の分布密度を相対的に高めることにより、メサ構造30からモジュールサブストレート88(図3)までの熱抵抗を低下させることができる。メサ構造30から遠い位置において、貫通部分80A1の分布密度を低下させると、拘束部分80B(図2)が占める体積割合が高くなる。このため、高熱伝導部分80A(図24)の熱膨張を抑制する機能が高まる。これにより、半導体層28(図24)に加わる熱応力を抑制することができる。
Next, the excellent effects of the sixth embodiment will be explained.
By relatively increasing the distribution density of the penetrating portions 80A1 in the vicinity of the mesa structure 30, the thermal resistance from the mesa structure 30 to the module substrate 88 (FIG. 3) can be reduced. When the distribution density of the penetrating portions 80A1 is reduced at a position far from the mesa structure 30, the volume ratio occupied by the restraining portions 80B (FIG. 2) increases. Therefore, the function of suppressing thermal expansion of the high thermal conductivity portion 80A (FIG. 24) is enhanced. Thereby, thermal stress applied to the semiconductor layer 28 (FIG. 24) can be suppressed.
 [第7実施例]
 次に、図35から図38までの図面を参照して、第7実施例によるVCSELについて説明する。以下、図24から図31までの図面を参照して説明した第4実施例によるVCSEL10と共通の構成については説明を省略する。
[Seventh Example]
Next, a VCSEL according to a seventh embodiment will be described with reference to the drawings from FIG. 35 to FIG. 38. Hereinafter, a description of the configuration common to the VCSEL 10 according to the fourth embodiment described with reference to the drawings from FIG. 24 to FIG. 31 will be omitted.
 図35は、メサ構造30と貫通部分80A1との平面視における位置関係を模式的に示す平面図であり、図36は、図35の一点鎖線36-36におけるVCSEL10の断面図である。第4実施例では、メサ構造30(図25A)の平面視における形状が円形であるが、第7実施例では、メサ構造30の平面視における形状が正方形である。なお、正方形の頂点が丸みを帯びて角丸正方形になる場合もある。第4実施例(図25A)では、メサ構造30と貫通部分80A1とが、平面視において重なり領域を有している。これに対して第7実施例では、平面視においてメサ構造30と貫通部分80A1とが重なっておらず、メサ構造30と拘束部分80Bとが少なくとも部分的に重なっている。 FIG. 35 is a plan view schematically showing the positional relationship between the mesa structure 30 and the penetrating portion 80A1 in plan view, and FIG. 36 is a cross-sectional view of the VCSEL 10 taken along the dashed-dotted line 36-36 in FIG. In the fourth example, the mesa structure 30 (FIG. 25A) has a circular shape in plan view, but in the seventh example, the mesa structure 30 has a square shape in plan view. Note that the vertices of the square may be rounded to form a square with rounded corners. In the fourth embodiment (FIG. 25A), the mesa structure 30 and the penetrating portion 80A1 have an overlapping region in plan view. In contrast, in the seventh embodiment, the mesa structure 30 and the penetrating portion 80A1 do not overlap in plan view, and the mesa structure 30 and the restraint portion 80B at least partially overlap.
 メサ構造30の下端、すなわちメサ構造30の側面の下端から、平面視においてメサ構造30と重なっている拘束部分80Bまでの高さ方向の距離をH1と標記する。平面視においてメサ構造30を包含する最小包含円31を考える。メサ構造30の平面視における形状が正方形である場合、この正方形の4個の頂点は最小包含円31上に位置する。なお、第4実施例(図25A)のように、メサ構造30の平円視における形状が円形の場合は、メサ構造30の外形と、最小包含円31とが一致する。 The distance in the height direction from the lower end of the mesa structure 30, that is, the lower end of the side surface of the mesa structure 30, to the restraining portion 80B that overlaps with the mesa structure 30 in plan view is denoted as H1. Consider the minimum enclosing circle 31 that includes the mesa structure 30 in plan view. When the mesa structure 30 has a square shape in plan view, the four vertices of this square are located on the minimum enclosing circle 31. Note that when the mesa structure 30 has a circular shape in planar view as in the fourth embodiment (FIG. 25A), the outer shape of the mesa structure 30 and the minimum enclosing circle 31 match.
 最小包含円31と同心で、かつ最小包含円31の半径より距離H1だけ大きい半径を持つ円を拡大円33ということとする。メサ構造30内で発生した熱は、その下端から伝熱部材80の下面80Lに向かって伝導するとともに、面内方向にも広がる。より具体的には、メサ構造30の下端の位置における最小包含円31を上面とし、側面の傾斜角が45°の円錐台の内側の領域が、主な伝熱経路として機能する。この円錐台の側面と、拘束部分80Bの上面を含む仮想平面との交線によって、拡大円33の外周線が決まる。すなわち、メサ構造30内で発生した熱は、拘束部分80Bの上面の位置において、主として拡大円33の範囲内に伝導すると考えることができる。 A circle that is concentric with the minimum enclosing circle 31 and has a radius larger than the radius of the minimum enclosing circle 31 by a distance H1 is referred to as an expanded circle 33. The heat generated within the mesa structure 30 is conducted from the lower end toward the lower surface 80L of the heat transfer member 80, and also spreads in the in-plane direction. More specifically, the inner region of a truncated cone whose upper surface is the minimum enclosing circle 31 at the lower end of the mesa structure 30 and whose side surfaces have an inclination angle of 45 degrees functions as a main heat transfer path. The outer periphery of the enlarged circle 33 is determined by the line of intersection between the side surface of this truncated cone and the virtual plane including the upper surface of the restraining portion 80B. That is, it can be considered that the heat generated within the mesa structure 30 is mainly conducted within the range of the enlarged circle 33 at the position of the upper surface of the restraining portion 80B.
 平面視において、拡大円33と複数または1つの貫通部分80A1とが重なり領域を有する。拡大円33の範囲内に伝導した熱は、拡大円33と重なっている貫通部分80A1を経由して伝熱部材80の下面80Lまで伝導する。 In plan view, the enlarged circle 33 and one or more penetrating portions 80A1 have an overlapping region. The heat conducted within the range of the enlarged circle 33 is conducted to the lower surface 80L of the heat transfer member 80 via the penetrating portion 80A1 overlapping the enlarged circle 33.
 次に、第7実施例の優れた効果について説明する。
 第7実施例では、平面視においてメサ構造30と貫通部分80A1とが重なり領域を有しておらず、拡大円33と貫通部分80A1とが少なくとも部分的に重なっている。メサ構造30で発生し、拡大円33の範囲内まで伝導した熱が、貫通部分80A1を経由して伝熱部材80の下面80Lまで伝導する。このため、メサ構造30からの十分な放熱効率を確保することができる。メサ構造30のそれぞれに着目したとき、十分な放熱効率を確保するために、平面視において拡大円33と貫通部分80A1とが重なる領域の面積の合計が、拡大円33の面積の3%以上になる構成とすることが好ましい。
Next, the excellent effects of the seventh embodiment will be explained.
In the seventh embodiment, the mesa structure 30 and the penetrating portion 80A1 do not have an overlapping region in plan view, and the enlarged circle 33 and the penetrating portion 80A1 at least partially overlap. The heat generated in the mesa structure 30 and conducted within the range of the enlarged circle 33 is conducted to the lower surface 80L of the heat transfer member 80 via the penetrating portion 80A1. Therefore, sufficient heat radiation efficiency from the mesa structure 30 can be ensured. When focusing on each of the mesa structures 30, in order to ensure sufficient heat dissipation efficiency, the total area of the area where the enlarged circle 33 and the penetration portion 80A1 overlap in plan view is 3% or more of the area of the enlarged circle 33. It is preferable to have the following configuration.
 なお、第4実施例(図25A)においては、平面視においてメサ構造30と貫通部分80A1とが重なっているため、第4実施例によるVCSEL10(図24、図25A)においても、拡大円33と貫通部分80A1とが重なっているといえる。 Note that in the fourth embodiment (FIG. 25A), since the mesa structure 30 and the penetrating portion 80A1 overlap in plan view, the enlarged circle 33 and It can be said that the penetrating portion 80A1 overlaps with the penetrating portion 80A1.
 第5実施例(図33A、図33B)においては、平面視においてメサ構造30の直下に拘束部分80Bが配置されていない。この場合においても、メサ構造30の下端、すなわちメサ構造30の側面の下端から拘束部分80Bまでの高さ方向の距離H1(図33B)を用いて拡大円33を定義することができる。 In the fifth embodiment (FIGS. 33A and 33B), the restraining portion 80B is not arranged directly under the mesa structure 30 in plan view. In this case as well, the enlarged circle 33 can be defined using the distance H1 (FIG. 33B) in the height direction from the lower end of the mesa structure 30, that is, the lower end of the side surface of the mesa structure 30 to the restraining portion 80B.
 次に、図37を参照して、平面視において拡大円33と貫通部分80A1とが重なる領域の面積と、貫通部分80A1の平面視における面積との関係について説明する。図37は、拡大円33と貫通部分80A1との平面視における位置関係を模式的に示す平面図である。1つの拡大円33が1つの貫通部分80A1と重なっている。重なり領域の面積をSinと標記し、貫通部分80A1のうち拡大円33の外側の領域(非重なり領域)の面積をSoutと標記する。非重なり領域の面積Soutが大きくなると、メサ構造30の近傍において拘束部分80B(図36)が占める割合が小さくなる。メサ構造30の近傍において、半導体層28に発生する熱応力を低減させるためには、メサ構造30の近傍において拘束部分80Bの占める割合を大きくすることが好ましい。 Next, with reference to FIG. 37, the relationship between the area of the region where the enlarged circle 33 and the penetrating portion 80A1 overlap in plan view and the area of the penetrating portion 80A1 in plan view will be described. FIG. 37 is a plan view schematically showing the positional relationship between the enlarged circle 33 and the penetrating portion 80A1 in plan view. One enlarged circle 33 overlaps one penetrating portion 80A1. The area of the overlapping region is designated as S in , and the area of the region outside the enlarged circle 33 (non-overlapping region) of the penetrating portion 80A1 is designated as S out . As the area S out of the non-overlapping region increases, the proportion occupied by the constrained portion 80B (FIG. 36) in the vicinity of the mesa structure 30 decreases. In order to reduce the thermal stress generated in the semiconductor layer 28 in the vicinity of the mesa structure 30, it is preferable to increase the proportion of the restrained portion 80B in the vicinity of the mesa structure 30.
 また、メサ構造30で発生した熱は主として拡大円33の内側を伝導するため、非重なり領域の面積Soutを大きくしても、放熱効率向上への寄与は大きくない。放熱効率を高めるためには、重なり領域の面積Sinを大きくすることが望ましい。このため、メサ構造30の近傍において、十分な放熱効率を維持し、かつ熱応力を低減させるために、重なり領域の面積Sinを、非重なり領域の面積Soutより大きくなる構成とすることが好ましい。 Further, since the heat generated in the mesa structure 30 is mainly conducted inside the enlarged circle 33, even if the area S out of the non-overlapping region is increased, the contribution to improving the heat dissipation efficiency is not large. In order to improve heat dissipation efficiency, it is desirable to increase the area S in of the overlapping region. Therefore, in order to maintain sufficient heat dissipation efficiency and reduce thermal stress in the vicinity of the mesa structure 30, it is preferable to configure the area S in of the overlapping region to be larger than the area S out of the non-overlapping region. preferable.
 1つの拡大円33が平面視において複数の貫通部分80A1と重なっている場合には、複数の貫通部分80A1のそれぞれの重なり領域の面積Sinの合計が、複数の貫通部分80A1の非重なり領域の面積Soutの合計より大きくなる構成とすることが好ましい。 When one enlarged circle 33 overlaps the plurality of penetrating portions 80A1 in a plan view, the sum of the areas S in of the respective overlapping regions of the plurality of penetrating portions 80A1 is equal to the non-overlapping region of the plurality of penetrating portions 80A1. It is preferable to configure the area S out to be larger than the total area S out.
 次に、図38を参照して、複数のメサ構造30が配置されている場合において拡大円33と貫通部分80A1との平面視における位置関係について説明する。図38は、1つのメサ構造30と、その直近に位置するもう1つのメサ構造30、これらのメサ構造30のそれぞれの拡大円33、及び貫通部分80A1の位置関係を模式的に示す平面図である。 Next, with reference to FIG. 38, the positional relationship in plan view between the enlarged circle 33 and the penetrating portion 80A1 when a plurality of mesa structures 30 are arranged will be described. FIG. 38 is a plan view schematically showing the positional relationship between one mesa structure 30, another mesa structure 30 located immediately next to it, each enlarged circle 33 of these mesa structures 30, and the penetrating portion 80A1. be.
 一方のメサ構造30の最小包含円31の中心と、その直近に位置するメサ構造30の最小包含円31の中心とを結ぶ線分を、線分LSと標記する。2つのメサ構造30の拡大円33のそれぞれに、複数の貫通部分80A1が重なっている。2つの拡大円33の両方に重なる貫通部分80A1は存在しない。また、線分LS上に、2つの拡大円33のいずれにも重ならない貫通部分80A1は配置されていない。 A line segment connecting the center of the minimum enclosing circle 31 of one mesa structure 30 and the center of the minimum enclosing circle 31 of the mesa structure 30 located immediately therebetween is denoted as a line segment LS. A plurality of penetrating portions 80A1 overlap each of the enlarged circles 33 of the two mesa structures 30. There is no penetrating portion 80A1 that overlaps both of the two enlarged circles 33. Furthermore, no penetrating portion 80A1 that does not overlap either of the two enlarged circles 33 is arranged on the line segment LS.
 線分LS上に、2つの拡大円33のいずれにも重ならない貫通部分80A1が配置されていないため、メサ構造30の近傍において拘束部分80B(図36)が占める割合が大きくなる。このため、半導体層28に発生する熱応力を低減させる効果が高まる。また、2つの拡大円33の両方に重なる貫通部分80A1が配置されていないため、2つのメサ構造30の間の熱的干渉が低減され、伝熱部材80の厚さ方向に効率的に熱を伝導させることができる。 Since the penetrating portion 80A1 that does not overlap either of the two enlarged circles 33 is not arranged on the line segment LS, the proportion occupied by the restraining portion 80B (FIG. 36) in the vicinity of the mesa structure 30 becomes large. Therefore, the effect of reducing thermal stress generated in the semiconductor layer 28 is enhanced. Furthermore, since the penetrating portion 80A1 that overlaps both of the two enlarged circles 33 is not arranged, thermal interference between the two mesa structures 30 is reduced, and heat is efficiently transferred in the thickness direction of the heat transfer member 80. It can be conducted.
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 It goes without saying that each of the above-mentioned embodiments is merely an illustration, and that the configurations shown in the different embodiments can be partially replaced or combined. Similar effects due to similar configurations in a plurality of embodiments will not be mentioned for each embodiment. Furthermore, the invention is not limited to the embodiments described above. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.
10 垂直共振器型面発光レーザ(VCSEL)
21 半絶縁性の半導体層
21A 基板
21A1 仮基板
21A2 エッチング制御層
22 n型導電性の半導体層
23 下部DBR層
24 活性層
25 スペーサ層
26 電流狭窄層
26A 酸化領域
26B 未酸化領域
27 上部DBR層
28 半導体層
28A 半導体層の第1面
28B 半導体層の第2面
30 メサ構造
30A 突出部
30B 切込み
31 最小包含円
32 最大内接円
33 拡大円
41 アノード電極
42 カソード電極
45 アノード配線
45P パッド
46 カソード配線
46P パッド
50 パッシベーション膜
50A、50B ビアホール
51 保護膜
51A、51B ビアホール
80 伝熱部材
80A 高熱伝導部分
80A1 貫通部分
80B 拘束部分
80B1 原板
80BH 貫通孔
80F 被膜
80L 下面
80T 上面
81、81A、81B 接着層
83、84 ボンディングワイヤ
85 制御回路部品
86 ランド
88 モジュールサブストレート
 
10 Vertical cavity surface emitting laser (VCSEL)
21 Semi-insulating semiconductor layer 21A Substrate 21A1 Temporary substrate 21A2 Etching control layer 22 N-type conductive semiconductor layer 23 Lower DBR layer 24 Active layer 25 Spacer layer 26 Current confinement layer 26A Oxidized region 26B Unoxidized region 27 Upper DBR layer 28 Semiconductor layer 28A First surface 28B of semiconductor layer Second surface 30 of semiconductor layer Mesa structure 30A Projection 30B Cut 31 Minimum enclosing circle 32 Maximum inscribed circle 33 Expanded circle 41 Anode electrode 42 Cathode electrode 45 Anode wiring 45P Pad 46 Cathode wiring 46P Pad 50 Passivation film 50A, 50B Via hole 51 Protective film 51A, 51B Via hole 80 Heat transfer member 80A High thermal conductivity portion 80A1 Penetrating portion 80B Restraining portion 80B1 Original plate 80BH Through hole 80F Coating 80L Bottom surface 80T Top surface 81, 81A, 81B Adhesive layer 83, 84 Bonding wire 85 Control circuit component 86 Land 88 Module substrate

Claims (3)

  1.  半導体層と、
     前記半導体層の第1面の上に配置された下部分布ブラッグ反射層と、
     前記下部分布ブラッグ反射層の上に配置された活性層と、
     前記活性層の上に配置された上部分布ブラッグ反射層と、
     前記半導体層の前記第1面とは反対側の第2面に接合され、前記半導体層の熱伝導率より高い熱伝導率を持つ材料を含む伝熱部材と
    を備え、
     前記上部分布ブラッグ反射層から少なくとも前記下部分布ブラッグ反射層の上面までがメサ構造とされており、
     さらに、前記メサ構造は、平面視において一部の領域に電流を集中させる電流狭窄層を含み、
     前記半導体層の前記第2面から前記電流狭窄層までの高さ方向の寸法が、平面視において前記メサ構造を包含する最小包含円の直径の1/2以下である垂直共振器型面発光レーザ。
    a semiconductor layer;
    a lower distributed Bragg reflection layer disposed on the first surface of the semiconductor layer;
    an active layer disposed on the lower distributed Bragg reflective layer;
    an upper distributed Bragg reflection layer disposed on the active layer;
    a heat transfer member that is bonded to a second surface of the semiconductor layer opposite to the first surface and includes a material having a thermal conductivity higher than that of the semiconductor layer;
    A mesa structure is formed from the upper distributed Bragg reflective layer to at least the upper surface of the lower distributed Bragg reflective layer,
    Furthermore, the mesa structure includes a current confinement layer that concentrates current in a certain region in a plan view,
    A vertical cavity surface emitting laser in which a height dimension from the second surface of the semiconductor layer to the current confinement layer is 1/2 or less of the diameter of a minimum enclosing circle that includes the mesa structure in plan view. .
  2.  前記電流狭窄層によって電流が集中する領域は、平面視において前記メサ構造の幾何中心を包含する請求項1に記載の垂直共振器型面発光レーザ。 2. The vertical cavity surface emitting laser according to claim 1, wherein the region where current is concentrated by the current confinement layer includes the geometric center of the mesa structure in plan view.
  3.  前記半導体層の前記第2面と前記伝熱部材とは、金属からなる接着層を介して接合されている請求項1または2に記載の垂直共振器型面発光レーザ。
     
    3. The vertical cavity surface emitting laser according to claim 1, wherein the second surface of the semiconductor layer and the heat transfer member are bonded to each other via an adhesive layer made of metal.
PCT/JP2023/000315 2022-06-08 2023-01-10 Vertical cavity surface emitting laser WO2023238429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093086 2022-06-08
JP2022-093086 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238429A1 true WO2023238429A1 (en) 2023-12-14

Family

ID=89117850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000315 WO2023238429A1 (en) 2022-06-08 2023-01-10 Vertical cavity surface emitting laser

Country Status (1)

Country Link
WO (1) WO2023238429A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321090A (en) * 1989-06-16 1991-01-29 Res Dev Corp Of Japan Plane light emitting type semiconductor laser
JP2004207380A (en) * 2002-12-24 2004-07-22 Furukawa Electric Co Ltd:The Surface emitting laser element, transceiver, optical transceiver, and optical communication system using the same
JP2005086054A (en) * 2003-09-10 2005-03-31 Ricoh Co Ltd Surface-emitting laser
CN102694341A (en) * 2011-03-25 2012-09-26 长春理工大学 Etching heat dissipation enhanced type vertical-cavity surface-emitting laser
JP2015103727A (en) * 2013-11-27 2015-06-04 株式会社村田製作所 Manufacturing method for vertical resonator type surface light emission laser
US20170025815A1 (en) * 2015-07-20 2017-01-26 Apple Inc. Vcsel structure with embedded heat sink
WO2021124968A1 (en) * 2019-12-20 2021-06-24 ソニーグループ株式会社 Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method for manufacturing vertical cavity surface emitting laser element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321090A (en) * 1989-06-16 1991-01-29 Res Dev Corp Of Japan Plane light emitting type semiconductor laser
JP2004207380A (en) * 2002-12-24 2004-07-22 Furukawa Electric Co Ltd:The Surface emitting laser element, transceiver, optical transceiver, and optical communication system using the same
JP2005086054A (en) * 2003-09-10 2005-03-31 Ricoh Co Ltd Surface-emitting laser
CN102694341A (en) * 2011-03-25 2012-09-26 长春理工大学 Etching heat dissipation enhanced type vertical-cavity surface-emitting laser
JP2015103727A (en) * 2013-11-27 2015-06-04 株式会社村田製作所 Manufacturing method for vertical resonator type surface light emission laser
US20170025815A1 (en) * 2015-07-20 2017-01-26 Apple Inc. Vcsel structure with embedded heat sink
WO2021124968A1 (en) * 2019-12-20 2021-06-24 ソニーグループ株式会社 Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method for manufacturing vertical cavity surface emitting laser element

Similar Documents

Publication Publication Date Title
US10756515B2 (en) Single-chip series connected VCSEL array
JP5177130B2 (en) Photonic crystal laser and photonic crystal laser manufacturing method
TWI686025B (en) Vertical-cavity surface-emitting laser thin wafer bowing control
US8435815B2 (en) Surface-emitting semiconductor laser and manufacturing method thereof
US11322910B2 (en) Indium-phosphide VCSEL with dielectric DBR
JP2011029339A (en) Semiconductor device and method of manufacturing the same
JPH06152074A (en) Semiconductor laser diode and its manufacture together with semiconductor laser diode array
WO2017212887A1 (en) Vertical-cavity surface-emitting laser
JP7259530B2 (en) Surface emitting laser, electronic device, manufacturing method of surface emitting laser
WO2017212888A1 (en) Semiconductor device and production method therefor
WO2021192672A1 (en) Surface-emitting laser, surface-emitting laser array, electronic apparatus, and method for manufacturing surface-emitting laser
WO2023238429A1 (en) Vertical cavity surface emitting laser
JP7200721B2 (en) Surface emitting laser module, light source device, detection device
JP4470819B2 (en) Optical element
WO2023238428A1 (en) Vertical cavity surface emitting laser
US11539188B2 (en) Surface emitting laser and method of manufacturing the same
JP2015026640A (en) Surface emission laser array and method for manufacturing the same
JP4203752B2 (en) Surface emitting semiconductor laser and method for manufacturing the same, optical switch, and optical branching ratio variable element
JP2012054474A (en) Semiconductor laser device
JP2022043575A (en) Surface emission semiconductor laser
JP2018098264A (en) Quantum cascade semiconductor laser
JP2021022679A (en) Surface emitting laser and manufacturing method thereof
JP6037484B2 (en) Manufacturing method of semiconductor laser device
JP2019135748A (en) Vertical resonance type surface light emission laser
JP2015028995A (en) Surface-emitting laser array and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819417

Country of ref document: EP

Kind code of ref document: A1