WO2017212887A1 - Vertical-cavity surface-emitting laser - Google Patents

Vertical-cavity surface-emitting laser Download PDF

Info

Publication number
WO2017212887A1
WO2017212887A1 PCT/JP2017/018674 JP2017018674W WO2017212887A1 WO 2017212887 A1 WO2017212887 A1 WO 2017212887A1 JP 2017018674 W JP2017018674 W JP 2017018674W WO 2017212887 A1 WO2017212887 A1 WO 2017212887A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
substrate
step portion
insulating
Prior art date
Application number
PCT/JP2017/018674
Other languages
French (fr)
Japanese (ja)
Inventor
一平 松原
岩田 圭司
新治 鏑木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017212887A1 publication Critical patent/WO2017212887A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • This disclosure relates to vertical cavity surface emitting lasers.
  • a vertical cavity surface emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser) is a semiconductor laser device that outputs laser light in a direction perpendicular to a substrate surface by forming an optical resonator in a direction perpendicular to the substrate surface.
  • a VCSEL includes a semi-insulating semiconductor substrate, an N-type semiconductor contact layer, an N-type DBR (Distributed Bragg Reflector) layer, an active layer including a quantum well, a P-type DBR layer, and a P-type Type semiconductor contact layers are provided in this order.
  • An anode electrode is formed on the surface of the P-type semiconductor contact layer.
  • a cathode electrode is formed in the portion where the N-type semiconductor contact layer is exposed by etching.
  • a pad electrode is formed in a region where the N-type DBR layer is exposed by etching, with a thick organic resin insulating layer such as polyimide interposed. The pad electrode is connected to the anode electrode by a metal wiring.
  • This disclosure takes the above-mentioned problems into consideration, and its main purpose is to provide a vertical cavity surface emitting laser capable of reducing parasitic capacitance.
  • a vertical cavity surface emitting laser includes an insulating or semi-insulating substrate and a semiconductor multilayer film provided on the substrate.
  • the semiconductor multilayer film includes a first DBR layer, an active layer, and a second DBR layer in order from the substrate side.
  • the semiconductor stacked film is further provided between the first DBR layer and the active layer, between the second DBR layer and the active layer, inside the first DBR layer, and inside the second DBR layer.
  • At least one current confinement layer formed at least one is provided.
  • the vertical cavity surface emitting laser further includes an insulating layer, a first contact electrode, a second contact electrode, a bonding pad, and a metal wiring.
  • the insulating layer covers at least a part of the side end portion of the semiconductor multilayer film, and has an upper surface and an end surface.
  • the upper surface of the insulating layer is connected to the upper surface of the semiconductor multilayer film and extends along the substrate.
  • the end surface of the insulating layer is connected to the upper surface of the insulating layer and extends toward the substrate.
  • the first contact electrode is electrically connected to the first DBR layer.
  • the second contact electrode is provided on the upper surface of the semiconductor stacked film.
  • the bonding pad is provided directly on the substrate or with an insulating film interposed.
  • the metal wiring is provided on the upper surface and the end surface of the insulating layer, and connects the second contact electrode and the bonding pad.
  • the bonding pad directly or on the insulating or semi-insulating substrate with the insulating film interposed, the parasitic capacitance of the bonding pad is suppressed and the VCSEL device can be modulated at high speed.
  • the side end portion of the semiconductor multilayer film has two or more step portions.
  • the first step portion reaches from the upper surface of the semiconductor multilayer film to a position where the end face of the at least one current confinement layer is exposed.
  • the step portion at the final stage reaches the substrate.
  • the bottom surface of the step portion at the final stage is on the extended surface of the interface between the semiconductor multilayer film and the substrate or at a position closer to the back surface of the substrate than the extended surface.
  • the step portion is constituted by two surfaces having different distances from the substrate, that is, an upper surface and a bottom surface, and an end surface connecting these two surfaces.
  • the top surface and the bottom surface extend in a direction along the substrate, and the end surface extends in a direction intersecting the substrate.
  • the top surface is located farther from the substrate than the bottom surface.
  • the size of the upper surface of the first step portion and the size of the upper surface of the second step portion can be controlled separately. Therefore, by reducing the area of the upper surface of the first step portion, the parasitic capacitance due to the oxidized region of the current confinement layer is suppressed, and the resistance of the VCSEL element is increased by increasing the area of the upper surface of the second step portion. The value (particularly the resistance value of the first DBR layer) can be reduced.
  • the side end portion of the semiconductor laminated film has three steps including a first step portion, a second step portion, and a third step portion at the final stage.
  • the first step portion is formed to produce an oxide layer by exposing the end face of the at least one current confinement layer.
  • the second step portion is formed to adjust the resistance value of the VCSEL element.
  • the third step portion is formed to expose the surface of the substrate in order to dispose the bonding pad.
  • the end surfaces of the first and second step portions are perpendicular to the substrate.
  • the shape of the upper surface of the first stepped portion and the shape of the upper surface of the second stepped portion can be precisely controlled by forming the end surface of the stepped portion perpendicular to the substrate.
  • the shape of the outer edge portion of the upper surface of the second stepped portion is an arc shape at least partially.
  • the current can flow more uniformly and current concentration can be prevented. . Furthermore, stress concentration on the insulating layer can be reduced.
  • the semiconductor multilayer film further includes a first semiconductor contact layer between the substrate and the first DBR layer.
  • the second stepped portion reaches halfway through the first semiconductor contact layer.
  • the first contact electrode is provided on the bottom surface of the second step portion.
  • the gap between the first contact electrode and the first semiconductor contact layer is formed. Contact resistance can be stably reduced.
  • the area of the portion surrounded by the outer edge portion on the upper surface of the second stepped portion is 2000 ⁇ m 2 or more.
  • the resistance value of the VCSEL element can be sufficiently reduced until it enters the saturation region.
  • the bonding pad is provided on the substrate with an insulating film interposed.
  • This insulating film covers the portion where the surface of the substrate is exposed and the upper surface and side end portions of the semiconductor multilayer film, except for the first and second contact electrodes.
  • This insulating film is formed of an inorganic material.
  • the insulating layer is formed of an organic resin material and covers at least a part of the side end portion of the semiconductor multilayer film with the insulating film interposed therebetween.
  • the moisture resistance of the VCSEL element can be improved.
  • a vertical cavity surface emitting laser includes a semi-insulating substrate and a semiconductor multilayer film formed on the substrate.
  • the semiconductor multilayer film includes, in order from the substrate, a first semiconductor contact layer, a first DBR (Distributed Bragg Reflector) layer, an active layer, and a second DBR layer.
  • the semiconductor stacked film is further provided between the first DBR layer and the active layer, between the second DBR layer and the active layer, inside the first DBR layer, and inside the second DBR layer. At least one current confinement layer is provided.
  • the side end portion of the semiconductor laminated film has three steps.
  • the first step portion reaches from the upper surface of the semiconductor multilayer film to a position where the end face of the at least one current confinement layer is exposed, but does not reach the first semiconductor contact layer.
  • the second step portion reaches the middle of the first semiconductor contact layer from the bottom surface of the first step portion.
  • the third step portion reaches the substrate from the bottom surface of the second step portion.
  • the vertical cavity surface emitting laser further includes a first contact electrode and a second contact electrode.
  • the first contact electrode is provided on the bottom surface of the second step portion.
  • the second contact electrode is provided on the upper surface of the semiconductor stacked film.
  • the size of the upper surface of the first step portion and the size of the upper surface of the second step portion can be controlled separately. Therefore, by reducing the area of the upper surface of the first step portion, the parasitic capacitance due to the oxidized region of the current confinement layer is suppressed, and the resistance of the VCSEL element is increased by increasing the area of the upper surface of the second step portion. The value (particularly the resistance value of the first DBR layer) can be reduced.
  • the parasitic capacitance can be reduced.
  • FIG. 11 is a cross-sectional view taken along a cutting line XI-XI in FIG. 10. It is a figure which shows the change of the resistance value of a VCSEL element when the magnitude
  • FIG. 1 is a cross-sectional view schematically showing the structure of the VCSEL according to the first embodiment.
  • the thickness of each layer in the figure is not proportional to the actual device thickness.
  • the surface of each semiconductor layer close to the substrate is referred to as a lower surface, and the surface opposite to the substrate is referred to as an upper surface.
  • the VCSEL 10 includes a semi-insulating semiconductor substrate 11 and a semiconductor multilayer film 5 formed on the main surface of the semiconductor substrate 11 by epitaxial growth.
  • the semiconductor laminated film 5 includes an N-type semiconductor contact layer 12 (first semiconductor contact layer), an N-type DBR (Distributed Bragg Reflector) layer 13 (first DBR layer), a cladding layer 14, in order from the semiconductor substrate 11 side.
  • An active layer 15 including a quantum well, a cladding layer 16, a current confinement layer 23, a P-type DBR layer 24 (second DBR layer), and a P-type semiconductor contact layer 25 (second semiconductor contact layer) are provided.
  • the semiconductor substrate 11 for example, a non-doped GaAs (gallium arsenide) substrate exhibiting semi-insulating properties is used. Note that an insulating substrate may be used instead of the semi-insulating semiconductor substrate 11 as long as the semiconductor stacked film 5 can be epitaxially grown.
  • GaAs gallium arsenide
  • An N-type semiconductor contact layer 12 is formed on the surface of the semiconductor substrate 11.
  • a GaAs layer having an impurity concentration of 3.0 ⁇ 10 18 [cm ⁇ 3 ] or more is formed.
  • Si silicon
  • Si is doped to give N-type conductivity. Si coordinates to a Ga (or Al) site and easily becomes a donor.
  • the N-type semiconductor contact layer 12 is not necessarily provided. That is, the N-type DBR layer 13 can also serve as the N-type semiconductor contact layer 12. In this case, the cathode electrode 27 is directly connected to the N-type DBR layer 13.
  • the N-type DBR layer 13 has, for example, a structure in which Al 0.12 Ga 0.88 As and Al 0.9 Ga 0.1 As are alternately stacked at an optical thickness of ⁇ / 4.
  • represents the wavelength of the laser beam.
  • Si silicon is doped to give N-type conductivity, and its concentration is, for example, 2 to 3 ⁇ 10 18 [cm ⁇ 3 ].
  • Al X Ga (1-X) As (aluminum, gallium, arsenic) is a mixed crystal semiconductor of GaAs and AlAs.
  • the Al composition (X) is 0 ⁇ X ⁇ 0.43, the direct transition type is obtained. Since the lattice constant hardly changes depending on the Al composition (X), an Al x Ga (1-x) As film having any Al composition (X) can be epitaxially grown on the GaAs substrate.
  • the Al composition (X) when the Al composition (X) is not specified, it may be described as AlGaAs.
  • An active region 17 for generating laser light is formed on the N-type DBR layer 13.
  • the active region 17 includes the clad layers 14 and 16 and the active layer 15 having an optical gain sandwiched between the clad layers 14 and 16.
  • a multiple quantum well (MQW) in which a quantum well layer and a barrier layer are stacked in multiple layers is formed.
  • the active layer 15 is a non-doped region where impurities are not introduced.
  • the cladding layers 14 and 16 can be undoped or can be doped only in the vicinity of the DBR layers 13 and 24 according to the design of the resistance value of the device.
  • the clad layers 14 and 16 are made of a material having an energy gap wider than that of the active layer 15 for carrier confinement. For example, direct transition AlGaAs is used.
  • the clad layers 14 and 16 may be provided only on one side or on both sides.
  • a current confinement layer 23 is formed on the active region 17.
  • the current confinement layer 23 efficiently injects a current into the active region and brings about a lens effect.
  • the current confinement layer 23 has an unoxidized region 21 at the center and an oxidized region 22 of a substantially insulator around the center.
  • the current confinement layer 23 is selectively oxidized from the surroundings in a heated steam atmosphere. Since only the unoxidized region 21 in the central portion serves as a current path, current can be efficiently injected into the active region.
  • the current confinement layer 23 is also possible to provide in either the DBR layers 13 and 24 (desirably close to the active layer 15) and the clad layers 14 and 16. It is also possible to provide a plurality of current confinement layers 23. Therefore, more generally, the current confinement layer 23 is formed between the N-type DBR layer 13 and the active layer 15, between the P-type DBR layer 24 and the active layer 15, inside the N-type DBR layer 13, and P At least one is provided at one or more locations inside the mold DBR layer 24.
  • a P-type DBR layer 24 is provided on the current confinement layer 23. Similar to the N-type DBR layer 13, the P-type DBR layer 24 has a structure in which, for example, Al 0.12 Ga 0.88 As and Al 0.9 Ga 0.1 As are alternately stacked at an optical thickness of ⁇ / 4. In order to give P-type conductivity, C (carbon) is doped, and its concentration is, for example, 2 to 3 ⁇ 10 18 [cm ⁇ 3 ]. C is easily coordinated to the As site and becomes an acceptor.
  • the N-type DBR layer 13 and the P-type DBR layer 24 constitute an optical resonator.
  • a P-type semiconductor contact layer 25 is formed on the upper surface of the P-type DBR layer 24.
  • the P-type semiconductor contact layer 25 in order to form a good ohmic contact with the anode electrode 26, for example, a GaAs layer having an impurity concentration of 3.0 ⁇ 10 18 [cm ⁇ 3 ] or more is formed.
  • C is doped to provide P-type conductivity.
  • the P-type semiconductor contact layer 25 is not necessarily provided. That is, the P-type DBR layer 24 can also serve as the P-type semiconductor contact layer 25.
  • the anode electrode 26 is formed on the upper surface of the P-type DBR layer 24.
  • step portions 41, 42, and 43 are formed by etching at the side end portion of the semiconductor laminated film 5 described above.
  • the first step portion 41 reaches from the upper surface of the semiconductor multilayer film 5 to a position where the end face of the current confinement layer 23 is exposed. In the case of FIG. 1, the first step portion 41 reaches halfway through the N-type DBR layer 13.
  • the second step portion 42 reaches the middle of the N-type semiconductor contact layer 12 from the bottom surface of the first step portion 41.
  • the third step portion 42 reaches the semiconductor substrate 11 from the bottom surface of the second step portion 42.
  • the VCSEL 10 further includes a cathode electrode 27, an anode electrode 26, an insulating protective film 30 (insulating film), an insulating layer 31, a bonding pad 33, and a metal wiring 32.
  • the cathode electrode 27 and the anode electrode 26 are collectively referred to as a contact electrode (the cathode electrode 27 is referred to as a first contact electrode, and the anode electrode 26 is referred to as a second contact electrode).
  • the cathode electrode 27 is formed on the upper surface of the N-type semiconductor contact layer 12 exposed by etching.
  • the anode electrode 26 is formed on the upper surface of the P-type semiconductor contact layer 25.
  • the cathode electrode 27 is formed on the upper surface of the N-type DBR layer 13 exposed by etching, and the anode electrode 26 is formed of P It is formed on the upper surface of the type DBR layer 24.
  • the insulating protective film 30 is provided for moisture resistance, and excludes the cathode electrode 27 and the anode electrode 26, and the upper surface and side end portions (step portions 41, 42, 43) of the semiconductor multilayer film 5 and the main surface of the semiconductor substrate 11. It is formed so as to cover.
  • the insulating protective film 30 is an inorganic insulating film, and for example, silicon nitride or silicon oxide is used. Note that the insulating protective film 30 is not necessarily provided.
  • the insulating layer 31 is formed on the insulating protective film 30 so as to cover at least a part of the side end portions (step portions 41, 42, 43) of the semiconductor multilayer film 5.
  • the insulating layer 31 has an upper surface 61 and an end surface 62.
  • the upper surface 61 of the insulating layer 31 is connected to the upper surface of the semiconductor stacked film 5 and extends along the semiconductor substrate 11 (that is, faces the semiconductor substrate 11).
  • the end surface 62 of the insulating layer 31 is connected to the upper surface 61 of the insulating layer 31 and extends toward the semiconductor substrate 11.
  • a photosensitive organic resin material such as photosensitive polyimide is used as the insulating layer 31.
  • the insulating layer 31 does not need to cover the entire side end portion of the semiconductor laminated film 5.
  • the insulating layer 31 is formed on the side end portions (step portions 41, 42, 43) of the semiconductor multilayer film 5. It covers everything.
  • the insulating layer 31 covers the first step portion 41 and the second step portion 42.
  • the third stepped portion 43 and the cathode electrode 27 are not covered.
  • the bonding pad 33 is formed on the main surface of the semiconductor substrate 11 exposed by etching the semiconductor multilayer film 5 with the insulating protective film 30 interposed therebetween. When the insulating protective film 30 is not provided, the bonding pad 33 is formed directly on the main surface of the semiconductor substrate 11.
  • the metal wiring 32 that connects the bonding pad 33 and the anode electrode 26 is formed on the upper surface 61 and the end surface 62 of the insulating layer 31.
  • the area of the metal wiring 32 is made sufficiently small in plan view of the semiconductor substrate 11 (which is considerably smaller than the area of the bonding pad 33). Since the bonding pad 33 does not exist on the insulating layer 31 and does not face the N-type semiconductor contact layer 12 and the N-type DBR layer 13, the parasitic capacitance due to the bonding pad 33 becomes sufficiently small.
  • FIG. 2 is a flowchart showing manufacturing steps of the VCSEL of FIG.
  • the VCSEL manufacturing process will be described below with reference to FIG. 2 and the cross-sectional views of FIGS. 3 to 6, the thickness of each layer in the figure is not proportional to the actual device thickness in order to facilitate illustration.
  • the semiconductor multilayer film 5 is epitaxially grown on the semiconductor substrate 11 (step S100).
  • FIG. 3 is a cross-sectional view showing the semiconductor laminated film 5 epitaxially grown on the semiconductor substrate.
  • the semiconductor multilayer film 5 includes the N-type semiconductor contact layer 12, the N-type DBR (Distributed Bragg Reflector) layer 13, the clad layer 14, the active layer 15 including the quantum well, and the clad layer in this order from the semiconductor substrate 11 side. 16.
  • a current confinement layer 23 before oxidation, a P-type DBR layer 24, and a P-type semiconductor contact layer 25 are provided.
  • the thickness of the current confinement layer 23 before being oxidized is desirably 40 nm or less in order to suppress the influence of distortion due to volume shrinkage during the oxidation treatment.
  • step S110 by performing dry etching using a resist pattern formed by photolithography as a mask, the semiconductor multilayer film 5 of FIG. 3 is processed into a mesa post shape (step S110). Thereby, the first step portion 41 is formed.
  • FIG. 4 is a cross-sectional view showing the semiconductor laminated film after processing the first step portion. It is desirable that the dimension of the upper surface 51 of the stepped portion 41 (the dimension of the top surface of the mesa post portion) when viewed in plan is as small as possible within a range that can be stably processed.
  • the upper surface 51 of the step portion 41 is formed in a circular shape having a diameter of 20 ⁇ m.
  • the height of the step portion 41 is desirably the minimum depth necessary for exposing the end face of the current confinement layer 23.
  • the stepped portion 41 reaches from the upper surface of the semiconductor stacked film 5 (upper surface of the P-type semiconductor contact layer 25) to the middle of the N-type DBR layer 13.
  • the stepped portion 41 is configured by the top surface 51 and the bottom surface 53 that are two surfaces having different distances from the semiconductor substrate 11 and the end surface 52 that connects these two surfaces.
  • the upper surface 51 and the bottom surface 53 extend in a direction along the semiconductor substrate 11, and the end surface 52 extends in a direction intersecting the semiconductor substrate 11.
  • the upper surface 51 is located farther from the semiconductor substrate 11 than the bottom surface 53.
  • the exposed surface of the N-type DBR layer 13 by etching corresponds to the bottom surface 53 of the step portion 41.
  • the upper surface 51 of the step portion 41 corresponds to the upper surface of the P-type semiconductor contact layer 25.
  • a surface connecting the upper surface 51 and the bottom surface 53 is referred to as an end surface 52 of the step portion 41.
  • the semiconductor substrate 11 with the semiconductor laminated film is heated to 400 ° C. or higher in a water vapor atmosphere.
  • oxidation proceeds from the outer peripheral portion of the current confinement layer 23, and a current confinement structure (see FIG. 5) including the oxidized region 22 in the peripheral portion and the unoxidized region 21 in the central portion is formed (step S120).
  • the diameter of the unoxidized region is, for example, 10 ⁇ m.
  • the second step portion 42 and the third step portion 43 are formed by performing dry etching using a resist pattern formed by photolithography as a mask (step S130). As a result, the side end portion 6 including the first to third step portions 41, 42, 43 is formed in the semiconductor laminated film 5.
  • FIG. 5 is a cross-sectional view showing the semiconductor laminated film after the formation of the second and third step portions.
  • second step portion 42 reaches halfway of N-type semiconductor contact layer 12 from bottom surface 53 (exposed surface of N-type DBR layer 13 by etching) of first step portion 41.
  • the exposed surface of the N-type semiconductor contact layer 12 by etching corresponds to the bottom surface 55 of the second step portion 42.
  • the upper surface 53 of the second step portion 42 and the bottom surface 53 of the first step portion 41 are the same surface.
  • a surface connecting the upper surface 53 and the bottom surface 55 of the second step portion 42 is referred to as an end surface 54 of the second step portion 42.
  • the third stepped portion 43 reaches the semiconductor substrate 11 from the bottom surface 55 of the second stepped portion 42 (exposed surface of the N-type semiconductor contact layer 12 by etching).
  • the exposed surface of the semiconductor substrate 11 by etching corresponds to the bottom surface 57 of the third step portion 43.
  • the upper surface 55 of the third step portion 43 and the bottom surface 55 of the second step portion 42 are the same surface.
  • a surface connecting the upper surface 55 of the third step portion 43 and the bottom surface 57 of the third step portion 43 is referred to as an end surface 56 of the third step portion 43.
  • this bottom surface 57 of the third step portion 43 is an exposed surface of the semiconductor substrate 11 by etching, this bottom surface 57 is the interface between the semiconductor stacked film 5 and the semiconductor substrate 11 (the N-type semiconductor contact layer 12 and the semiconductor substrate 11). On the extended surface of the semiconductor substrate 11 or closer to the back surface of the semiconductor substrate 11 than the extended surface.
  • the first step portion 41 forms a first mesa structure
  • the second step portion 42 forms a second mesa structure
  • the third step portion 43 forms a third mesa structure.
  • the second mesa structure has a larger area on the top surface than the first mesa structure (stepped portion 41), and the first mesa structure is on the top surface of the second mesa structure.
  • the area of the top surface of the third mesa structure is larger than that of the second mesa structure (stepped portion 42), and the second mesa structure is on the top surface of the third mesa structure. Formed (in plan view, the second mesa structure is included in the third mesa structure).
  • the end surface 52 of the first step portion 41 and the end surface 54 of the second step portion 42 are formed in a direction perpendicular to the semiconductor substrate 11. Thereby, the accuracy of the dimension of the first mesa and the accuracy of the dimension of the second mesa can be increased.
  • the term “perpendicular to the semiconductor substrate 11” does not mean strictly perpendicular to the semiconductor substrate 11, but refers to a range including manufacturing errors.
  • the end surface 56 of the third step portion 43 may be inclined with respect to the semiconductor substrate 11.
  • the surface of the N-type semiconductor contact layer is surely exposed without being affected by variations in etching rate (in-plane variation or process-to-process variation).
  • the thickness of the N-type semiconductor contact layer 12 is desirably 3 ⁇ m or more.
  • the contact electrodes are formed using photolithography and vapor deposition techniques (step S140).
  • the contact electrode for example, a laminated film made of Ti (titanium), Pt (platinum), and Au (gold) can be used.
  • the moisture-proof insulating protective film 30 is formed on the entire surface of the semiconductor substrate 11 (step S150).
  • An inorganic insulating film such as silicon nitride or silicon oxide is used as the insulating protective film 30.
  • the insulating protective film 30 is formed using a method such as CVD in order to improve the coverage of the step portion.
  • FIG. 6 is a diagram showing a cross-sectional structure after formation of the contact electrode and the insulating protective film in the VCSEL manufacturing process.
  • a photosensitive organic resin insulating layer 31 is formed so as to cover at least a part of the side end portions (step portions 41, 42, 43) of the semiconductor laminated film 5 (steps). S160).
  • the insulating layer 31 is formed, for example, by applying photosensitive polyimide to the entire surface of the semiconductor substrate 11 by spin coating, and then exposing and developing the pattern of the insulating layer 31. After development, the photosensitive polyimide pattern is cured.
  • the step portions 41, 42, 43 are covered, and the surface from the surface of the P-type semiconductor contact layer 25 to the surface of the semiconductor substrate 11 is connected by the insulating layer 31 having a smooth planar or curved surface shape. Will be.
  • the smooth surface of the insulating layer 31 is important for preventing the metal wiring 32 formed thereon from being disconnected.
  • the film thickness of the photosensitive organic resin film formed by spin coating and the film thickness of the semiconductor multilayer film 5 are equal so that the step between the upper surface 61 of the insulating layer 31 and the upper surface of the semiconductor multilayer film 5 becomes small. It is desirable to form so that it becomes. “Equal film thickness” in this case does not mean that the film thicknesses are strictly the same, but means a range including manufacturing errors.
  • the metal wiring 32 and the bonding pad 33 connected to the anode electrode 26 are formed by vapor deposition (step S170).
  • the metal wiring 32 and the bonding pad 33 are formed by lift-off using a resist pattern by photolithography.
  • a metal wiring (not shown) connected to the cathode electrode 27 and a bonding pad (not shown) are also formed at the same time.
  • step S180 the semiconductor substrate is separated into chips by a technique such as dicing (step S180).
  • a technique such as dicing
  • the removal of the insulating protective film 30 can be realized, for example, by performing an etching process using a resist pattern formed by photolithography as a mask.
  • FIG. 7 is a cross-sectional view schematically showing the structure of a VCSEL according to the first modification.
  • the VCSEL 10A of FIG. 7 is different from the VCSEL 10 of FIG. 1 in that two step portions 41A and 43 are provided at the side end of the semiconductor laminated film 5.
  • the first step portion 41 ⁇ / b> A reaches from the upper surface of the semiconductor multilayer film 5 (upper surface of the P-type semiconductor contact layer 25) to the middle of the N-type semiconductor contact layer 12.
  • the second step portion 43 reaches the semiconductor substrate 11 from the bottom surface of the first step portion 41A (the exposed surface of the N-type semiconductor contact layer 12).
  • the first step portion 41A in FIG. 7 can be considered as a combination of the first step portion 41 and the second step portion 42 in FIG.
  • the second step portion 43 in FIG. 7 corresponds to the third step portion 43 in FIG. Since the other points of FIG. 7 are the same as those of FIG. 1, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
  • the area of the upper surface of the first step portion 41 (the top surface of the first mesa structure) is suppressed in order to suppress the parasitic capacitance caused by the oxidized region 22 of the current confinement layer 23. Accordingly, the cross-sectional area of the N-type DBR layer 13 (the cross-sectional area in the substrate parallel direction) is also reduced. Then, the resistance value of the VCSEL element becomes too large, which is not preferable (the resistance value of the VCSEL element is mainly determined by the current flowing in the DBR layer in the vertical direction).
  • the cross-sectional area of the N-type DBR layer 13 is provided by providing three step portions (particularly the second step portion 42) at the side end portion of the semiconductor multilayer film 5. Is larger. As a result, the resistance value of the VCSEL element can be reduced.
  • FIG. 8 is a cross-sectional view schematically showing the structure of a VCSEL according to the second modification.
  • the VCSEL 10B of FIG. 8 is different from the VCSEL 10 of FIG. 1 in that two step portions 41 and 42A are provided at the side end of the semiconductor laminated film 5.
  • the first step portion 41 reaches the middle of the N-type DBR layer 13 from the upper surface of the semiconductor stacked film 5 (upper surface of the P-type semiconductor contact layer 25).
  • the second step portion 42A reaches the semiconductor substrate 11 from the bottom surface of the first step portion 41 (exposed surface of the N-type DBR layer 13).
  • the first step 41 in FIG. 8 corresponds to the first step 41 in FIG.
  • the second step portion 42A in FIG. 8 can be considered as a combination of the second step portion 42 and the third step portion 43 in FIG.
  • the VCSEL 10B of FIG. 8 is provided with a groove 49 that reaches the N-type semiconductor contact layer 12 from the exposed surface of the N-type DBR layer 13 (the bottom surface of the first step portion 41). And different.
  • the cathode electrode 27 is formed on the exposed surface of the N-type semiconductor contact layer 12, which is the bottom surface of the groove 49. Since the other points of FIG. 8 are the same as those of FIG. 1, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
  • the resistance value of the element can be reduced to the same extent as in the case of FIG. Therefore, the high-speed modulation characteristics of the VCSEL element can be optimized to the same extent as in FIG.
  • the N-type semiconductor contact layer 12 is exposed when the second step portion 42 is formed, so that the cathode electrode 27 is formed on the exposed surface of the N-type semiconductor contact layer 12. Can be formed. Therefore, there is an advantage that it is not necessary to form the groove portion 49 as shown in FIG.
  • FIG. 9 is a table summarizing the advantages and disadvantages of the VCSEL device structure of FIGS. 1, 7, and 8 in a tabular format.
  • FIG. 9 also shows a comparison with Patent Document 1 (WO2013 / 176201).
  • the pad electrode and the N-type DBR layer are opposed to each other with the insulating layer interposed therebetween.
  • the bonding pad 33 is formed on the main surface of the semiconductor substrate 11 with the insulating protective film 30 interposed therebetween.
  • the parasitic capacitance of the pad 33 is smaller than that of the conventional structure (FIG. 2 of Patent Document 1).
  • the resistance of the VCSEL element in the case of the structure of FIG. 7, since the cross-sectional area of the N-type DBR layer 13 is relatively small, the element resistance is large, which is not preferable. In the case of other structures (FIGS. 1 and 8 of the present application and FIG. 2 of Patent Document 1), by increasing the cross-sectional area of the N-type DBR layer 13, the element resistance can be reduced, which is more preferable.
  • FIGS. 1, 7, and 8 of Patent Document 1 it is difficult to widen the band because the high-speed modulation characteristics deteriorate, but in the case of FIGS. 1, 7, and 8 of the present application, it is possible to widen the band. It is.
  • the structures shown in FIGS. 1 and 8 are optimal in that the element resistance can be adjusted while reducing the parasitic capacitance due to the oxidized region 22 of the current confinement layer 23.
  • the step in the case of FIG. The height of the part can be kept relatively low.
  • the height of the step portion per step is high.
  • the stepped portion has three steps, so that the height of the stepped portion is medium compared with the above case. If the height of the stepped portion is too high, the coverage of the stepped portion may not be sufficient when the insulating layer 31 is formed.
  • the semiconductor laminated film 5 (the N-type semiconductor contact layer 12, the N-type DBR layer 13, the active layer in order from the substrate side) is formed on the main surface of the semi-insulating semiconductor substrate 11. Region 17, current confinement layer 23, P-type DBR layer 24, and P-type semiconductor contact layer 25) are formed.
  • An insulating layer 31 made of an organic resin is formed so as to cover the side end portion of the semiconductor laminated film 5.
  • a bonding pad 33 is formed directly on the semiconductor substrate 11 or with an insulating protective film 30 interposed therebetween.
  • the bonding pad 33 and the anode electrode 26 formed on the upper surface of the P-type semiconductor contact layer 25 are formed of an insulating layer. They are connected via metal wiring 32 formed on 31.
  • the bonding pad 33 is not disposed so as to face the N-type DBR layer 13 or the N-type semiconductor contact layer 12, the parasitic capacitance caused by the bonding pad 33 can be reduced.
  • two or more step portions are formed at the side end portion of the semiconductor multilayer film 5.
  • the first step portion 41 reaches from the upper surface of the semiconductor stacked film 5 to a position where the end face of the current confinement layer 23 is exposed, and the step portion 43 at the final stage reaches the semiconductor substrate 11.
  • the parasitic capacitance caused by the oxidized region 22 of the current confinement layer 23 is suppressed,
  • the resistance value of the VCSEL element can be reduced by increasing the area of the upper surface of the second step portion (the area of the top surface of the second mesa).
  • FIG. 1 an example in which the number of stepped portions is three steps (FIG. 1) and an example in which the number of stepped portions is two steps (FIGS. 7 and 8) are shown.
  • the number of stages is not limited as long as it is two or more.
  • an N-type layer (N-type semiconductor contact layer 12 and N-type DBR layer 13) is provided at a position close to the substrate, and a P-type layer (P-type semiconductor contact layer 25, P-type is provided at a position away from the substrate.
  • a type DBR layer 24 is provided.
  • a P-type layer may be provided at a position close to the substrate, and an N-type layer may be provided at a position away from the substrate.
  • FIG. 10 is a plan view illustrating a layout example of the VCSEL. 10, the anode electrode 26, the cathode electrode 27, the upper surface of the first step portion 41, the upper surface of the second step portion 42, the upper surface of the third step portion 43, the insulating layer 31, the bonding pads 33 and 35, and the metal
  • Each layout of the wirings 32 and 34 is shown.
  • the bonding pads 33 and 35 and the metal wirings 32 and 34 are hatched.
  • the shape of the upper surface of the first step portion 41 is a circle having a diameter L1.
  • the diameter L1 is 20 ⁇ m.
  • a ring-shaped anode electrode 26 is provided on the upper surface of the first step portion 41.
  • the shape of the portion where the upper surface of the first step portion 41 is combined with the upper surface of the second step portion 42 is a substantially circular shape having a diameter L2.
  • the diameter L2 is 56 ⁇ m.
  • the outer shape of the portion close to the cathode electrode 27 is linear (therefore, the shape of the outer edge portion of the upper surface of the second step portion 42 is at least partially arc-shaped. Can be said).
  • the substantially circular shape allows the current to flow more uniformly and prevents current concentration. Furthermore, the stress concentration of the organic resin on the insulating layer 31 can be reduced.
  • the shape of the portion in which the upper surfaces of the first and second step portions 41 and 42 are combined with the upper surface of the third step portion 43 is a shape obtained by connecting a circular shape and a substantially square shape.
  • the diameter L3 of the circular portion is 76 ⁇ m.
  • the organic resin insulating layer 31 covers the entire upper surface of the second step portion 42, but covers only a part of the upper surface of the third step portion 43. Most of the substantially square portion of the upper surface of the third step portion 43, in particular, the portion where the cathode electrode 27 is provided is not covered with the insulating layer 31.
  • the bonding pads 33 and 35 are provided in a portion where the semiconductor substrate is exposed, and the shape thereof is a substantially square shape with one side L8.
  • the length of the side L8 is 65 ⁇ m.
  • the bonding pad 33 is connected to the anode electrode 26 through the metal wiring 32 having a width L4.
  • the width L4 of the metal wiring 32 is 18 ⁇ m
  • the length of the metal wiring 32 is 45 ⁇ m.
  • the bonding pad 35 is connected to the cathode electrode 27 via the metal wiring 34.
  • FIG. 11 is a cross-sectional view taken along the cutting line XI-XI in FIG.
  • the end surfaces of the first and second step portions 41 and 42 are perpendicular to the semiconductor substrate, but the end surface of the third step portion 43 is a semiconductor. Inclined with respect to the substrate.
  • the length L5 from the inner edge to the outer edge of the upper surface of the second step portion 42 is 18 ⁇ m.
  • the length L6 from the end surface of the second step portion to the lower end of the end surface of the third step portion 43 is 5 ⁇ m.
  • a length L7 from the lower end of the end surface of the third step portion 43 to the bonding pad 33 is 10 ⁇ m.
  • the height H1 of the first step portion 41 is 3.7 ⁇ m, and the total value H2 of the height of the first step portion 41 and the height of the second step portion 42 is 9.0 ⁇ m.
  • the total height H3 of the first to third step portions 41, 42, 43 is 13.0 ⁇ m.
  • FIG. 12 is a diagram illustrating a change in the resistance value of the VCSEL element when the size of the upper surface of the second step portion is changed.
  • the horizontal axis represents the diameter of the outer edge portion of the upper surface of the second step portion 42 (corresponding to the diameter L2 in FIG. 10), and the vertical axis represents the resistance value of the VCSEL element.
  • the diameter L2 is 56 ⁇ m
  • the area of the portion surrounded by the outer edge of the upper surface of the second step portion 42 is 2552 ⁇ m 2 .
  • the resistance value of the VCSEL element gradually increases. It can also be seen that if the area of the portion surrounded by the outer edge of the upper surface of the second stepped portion 43 is 2000 ⁇ m 2 or more, the resistance value tends to saturate at a substantially minimum value. Therefore, the area of the portion surrounded by the outer edge of the upper surface of the second stepped portion 43 is desirably 2000 ⁇ m 2 or more.
  • FIG. 13 is a diagram illustrating a change in parasitic capacitance when the size of the upper surface of the second step portion is changed.
  • the horizontal axis represents the diameter of the outer edge portion of the upper surface of the second step portion 42 (corresponding to the diameter L ⁇ b> 2 in FIG. 10), and the vertical axis represents the value of the parasitic capacitance generated by the metal wiring 32 portion.
  • the capacitance solid line in FIG. 12
  • the portion facing the upper surface of the second step portion 42 is obtained by calculation.
  • the capacitance in the case of a conventional structure in which the metal wiring 32 and the bonding pad 33 are opposed to the N-type DBR layer is indicated by a broken line.
  • the width L4 of the metal wiring 32 is 18 ⁇ m and the length is 45 ⁇ m.
  • the area of the bonding pad 33 is 65 ⁇ m ⁇ 65 ⁇ m.
  • the thickness of the insulating layer 31 at these opposing portions is set to 2.0 ⁇ m.
  • the size of the parasitic capacitance is 1 ⁇ 2 that of the conventional structure. It can be seen that the structure can sufficiently reduce the parasitic capacitance.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

In this vertical-cavity surface-emitting laser (10), a semiconductor multilayer film (5) provided on a semiconductor substrate (11) is provided with a first DBR layer (13), an active layer (15), a current confinement layer (23), and a second DBR layer (24). The upper surface of an insulating layer (31) covering the side ends of the semiconductor multilayer film (5) is connected to the upper surface of the semiconductor multilayer film (5) and extends along the semiconductor substrate (11). The end surface (62) of the insulating layer (31) is connected to the upper surface (61) of the insulating layer (31) and extends toward the semiconductor substrate (11). First and second contact electrodes (26, 27) are electrically connected with each of the first DBR layer (13) and the upper surface of the semiconductor multilayer film (5). A bonding pad (33) is provided either directly on the semiconductor substrate (11) or with an insulating film (30) therebetween. Metal wiring (32) provided on the insulating layer (31) connects the second contact electrode (26) and the bonding pad (33).

Description

垂直共振器面発光レーザVertical cavity surface emitting laser
 この開示は、垂直共振器面発光レーザに関する。 This disclosure relates to vertical cavity surface emitting lasers.
 垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)は、基板面と垂直方向に光共振器を形成することにより、基板面と垂直方向にレーザ光を出力する半導体レーザ装置である。 A vertical cavity surface emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser) is a semiconductor laser device that outputs laser light in a direction perpendicular to a substrate surface by forming an optical resonator in a direction perpendicular to the substrate surface.
 VCSELの具体的構成は、たとえば、国際公開第2013/176201号公報(特許文献1)に開示されている。特許文献1の図2に示すように、VCSELは、半絶縁性半導体基板、N型半導体コンタクト層、N型DBR(Distributed Bragg Reflector)層、量子井戸を備える活性層、P型DBR層、およびP型半導体コンタクト層をこの順に備える。P型半導体コンタクト層の表面にアノード電極が形成される。エッチングによりN型半導体コンタクト層が露出された部分にカソード電極が形成される。さらに、エッチングによりN型DBR層が露出した領域にポリイミドなどの厚い有機樹脂の絶縁層を介在してパッド電極が形成される。パッド電極は、金属配線によってアノード電極と接続される。 A specific configuration of the VCSEL is disclosed in, for example, International Publication No. 2013/176201 (Patent Document 1). As shown in FIG. 2 of Patent Document 1, a VCSEL includes a semi-insulating semiconductor substrate, an N-type semiconductor contact layer, an N-type DBR (Distributed Bragg Reflector) layer, an active layer including a quantum well, a P-type DBR layer, and a P-type Type semiconductor contact layers are provided in this order. An anode electrode is formed on the surface of the P-type semiconductor contact layer. A cathode electrode is formed in the portion where the N-type semiconductor contact layer is exposed by etching. Further, a pad electrode is formed in a region where the N-type DBR layer is exposed by etching, with a thick organic resin insulating layer such as polyimide interposed. The pad electrode is connected to the anode electrode by a metal wiring.
国際公開第2013/176201号公報International Publication No. 2013/176201
 上記の特許文献1のVCSELの構造においては、パッド電極とN型DBR層とが絶縁層を挟んで対向しているため大きな寄生容量を有するという問題がある。この結果、VCSEL素子の高速変調特性が変化してしまう。 In the VCSEL structure of the above-mentioned Patent Document 1, there is a problem that the pad electrode and the N-type DBR layer are opposed to each other with an insulating layer interposed therebetween, so that there is a large parasitic capacitance. As a result, the high-speed modulation characteristic of the VCSEL element changes.
 この開示は、上記の問題点を考慮したものであり、その主な目的は、寄生容量を低減することが可能な垂直共振器面発光レーザを提供することである。 This disclosure takes the above-mentioned problems into consideration, and its main purpose is to provide a vertical cavity surface emitting laser capable of reducing parasitic capacitance.
 この開示の一局面による垂直共振器面発光レーザは、絶縁性または半絶縁性の基板と、この基板上に設けられた半導体積層膜とを備える。半導体積層膜は、基板側から順に、第1のDBR層、活性層、および第2のDBR層を備える。半導体積層膜は、さらに、第1のDBR層と活性層との間、第2のDBR層と活性層との間、第1のDBR層の内部、および第2のDBR層の内部のうちの少なくとも1つに形成された少なくとも1つの電流狭窄層を備える。垂直共振器面発光レーザは、さらに、絶縁層と、第1のコンタクト電極と、第2のコンタクト電極と、ボンディングパッドと、金属配線とを備える。絶縁層は、半導体積層膜の側端部の少なくとも一部を覆い、上面および端面を有する。絶縁層の上面は、半導体積層膜の上面に接続し基板に沿って延在する。絶縁層の端面は、絶縁層の上面に接続し基板に向かって延在する。第1のコンタクト電極は、第1のDBR層と電気的に接続される。第2のコンタクト電極は、半導体積層膜の上面に設けられる。ボンディングパッドは、基板上に直接または絶縁膜を介在して設けられる。金属配線は、上記の絶縁層の上面および端面上に設けられ、第2のコンタクト電極とボンディングパッドとを接続する。 A vertical cavity surface emitting laser according to one aspect of the present disclosure includes an insulating or semi-insulating substrate and a semiconductor multilayer film provided on the substrate. The semiconductor multilayer film includes a first DBR layer, an active layer, and a second DBR layer in order from the substrate side. The semiconductor stacked film is further provided between the first DBR layer and the active layer, between the second DBR layer and the active layer, inside the first DBR layer, and inside the second DBR layer. At least one current confinement layer formed at least one is provided. The vertical cavity surface emitting laser further includes an insulating layer, a first contact electrode, a second contact electrode, a bonding pad, and a metal wiring. The insulating layer covers at least a part of the side end portion of the semiconductor multilayer film, and has an upper surface and an end surface. The upper surface of the insulating layer is connected to the upper surface of the semiconductor multilayer film and extends along the substrate. The end surface of the insulating layer is connected to the upper surface of the insulating layer and extends toward the substrate. The first contact electrode is electrically connected to the first DBR layer. The second contact electrode is provided on the upper surface of the semiconductor stacked film. The bonding pad is provided directly on the substrate or with an insulating film interposed. The metal wiring is provided on the upper surface and the end surface of the insulating layer, and connects the second contact electrode and the bonding pad.
 上記構成によれば、ボンディングパッドを絶縁性または半絶縁性の基板上に直接または絶縁膜を介在して設けることによって、ボンディングパッドの寄生容量を抑制し、VCSEL素子の高速変調動作を可能にする。 According to the above configuration, by providing the bonding pad directly or on the insulating or semi-insulating substrate with the insulating film interposed, the parasitic capacitance of the bonding pad is suppressed and the VCSEL device can be modulated at high speed. .
 好ましくは、半導体積層膜の側端部は2段以上の段差部を有する。第1の段差部は、半導体積層膜の上面から上記少なくとも1つの電流狭窄層の端面が露出する位置まで到達する。最終段の段差部は基板にまで到達する。最終段の段差部の底面は、半導体積層膜と基板との界面の延長面上にあるか、その延長面よりも基板の裏面に近い位置にある。 Preferably, the side end portion of the semiconductor multilayer film has two or more step portions. The first step portion reaches from the upper surface of the semiconductor multilayer film to a position where the end face of the at least one current confinement layer is exposed. The step portion at the final stage reaches the substrate. The bottom surface of the step portion at the final stage is on the extended surface of the interface between the semiconductor multilayer film and the substrate or at a position closer to the back surface of the substrate than the extended surface.
 ここで、段差部とは、基板からの距離の異なる2つの面である、上面および底面と、これらの2つの面を接続する端面とによって構成される。上面および底面は基板に沿う方向に延在し、端面は基板と交差する方向に延在する。上面は底面よりも基板から離れた位置にある。第1の段差部の次に第2の段差部が形成されている場合には、第1の段差部の底面と第2の段差部の上面とは同じ面である。 Here, the step portion is constituted by two surfaces having different distances from the substrate, that is, an upper surface and a bottom surface, and an end surface connecting these two surfaces. The top surface and the bottom surface extend in a direction along the substrate, and the end surface extends in a direction intersecting the substrate. The top surface is located farther from the substrate than the bottom surface. When the second step portion is formed next to the first step portion, the bottom surface of the first step portion and the top surface of the second step portion are the same surface.
 上記構成によれば、第1の段差部の上面の大きさと第2の段差部の上面の大きさを別々に制御することができる。したがって、第1の段差部の上面の面積を小さくすることによって電流狭窄層の酸化領域に起因した寄生容量を抑制するとともに、第2の段差部の上面の面積を大きくすることによってVCSEL素子の抵抗値(特に第1のDBR層の部分の抵抗値)を低減することができる。 According to the above configuration, the size of the upper surface of the first step portion and the size of the upper surface of the second step portion can be controlled separately. Therefore, by reducing the area of the upper surface of the first step portion, the parasitic capacitance due to the oxidized region of the current confinement layer is suppressed, and the resistance of the VCSEL element is increased by increasing the area of the upper surface of the second step portion. The value (particularly the resistance value of the first DBR layer) can be reduced.
 さらに好ましくは、半導体積層膜の側端部は、第1の段差部、第2の段差部、および最終段の第3の段差部を含む3段の段差を有する。 More preferably, the side end portion of the semiconductor laminated film has three steps including a first step portion, a second step portion, and a third step portion at the final stage.
 上記の構成によれば、第1の段差部は、上記少なくとも1つの電流狭窄層の端面を露出させることによって酸化層を作製するために形成される。第2の段差部は、VCSEL素子の抵抗値を調整するために形成される。第3の段差部は、ボンディングパッドを配置するために基板の表面を露出させるために形成される。 According to the above configuration, the first step portion is formed to produce an oxide layer by exposing the end face of the at least one current confinement layer. The second step portion is formed to adjust the resistance value of the VCSEL element. The third step portion is formed to expose the surface of the substrate in order to dispose the bonding pad.
 好ましくは、第1および第2の段差部の端面は、基板と垂直である。
 上記のように、段差部の端面を基板と垂直に形成することによって、第1の段差部の上面の形状および第2の段差部の上面の形状を精密に制御することができる。
Preferably, the end surfaces of the first and second step portions are perpendicular to the substrate.
As described above, the shape of the upper surface of the first stepped portion and the shape of the upper surface of the second stepped portion can be precisely controlled by forming the end surface of the stepped portion perpendicular to the substrate.
 好ましくは、基板を平面視して、第2の段差部の上面の外縁部の形状は、少なくとも一部において円弧状である。 Preferably, when the substrate is viewed in plan, the shape of the outer edge portion of the upper surface of the second stepped portion is an arc shape at least partially.
 平面視して、第2の段差部の上面に第1の段差部の上面を併せた部分の形状を略円形とすることによって、電流がより均一に流れるようになり電流集中を防ぐことができる。さらに、絶縁層に対する応力集中を少なくすることができる。 In plan view, by making the shape of the portion where the upper surface of the first stepped portion is combined with the upper surface of the second stepped portion into a substantially circular shape, the current can flow more uniformly and current concentration can be prevented. . Furthermore, stress concentration on the insulating layer can be reduced.
 好ましくは、半導体積層膜は、基板と第1のDBR層との間に第1の半導体コンタクト層をさらに備える。この場合、第2の段差部は、第1の半導体コンタクト層の途中まで到達する。第1のコンタクト電極は、第2の段差部の底面上に設けられる。 Preferably, the semiconductor multilayer film further includes a first semiconductor contact layer between the substrate and the first DBR layer. In this case, the second stepped portion reaches halfway through the first semiconductor contact layer. The first contact electrode is provided on the bottom surface of the second step portion.
 上記のように第1の半導体コンタクト層を設け、第1のコンタクト電極を第1の半導体コンタクト層の露出面に形成することによって、第1のコンタクト電極と第1の半導体コンタクト層との間の接触抵抗を安定的に低減することができる。 By providing the first semiconductor contact layer as described above and forming the first contact electrode on the exposed surface of the first semiconductor contact layer, the gap between the first contact electrode and the first semiconductor contact layer is formed. Contact resistance can be stably reduced.
 好ましくは、基板を平面視して、第2の段差部の上面の外縁部によって囲まれた部分の面積は2000μm2以上である。 Preferably, when the substrate is viewed in plan, the area of the portion surrounded by the outer edge portion on the upper surface of the second stepped portion is 2000 μm 2 or more.
 上記の程度まで第2の段差部の上面の大きさを拡張することによって、VCSEL素子の抵抗値を飽和領域に入るまで十分に低減することができる。 By extending the size of the upper surface of the second step portion to the above degree, the resistance value of the VCSEL element can be sufficiently reduced until it enters the saturation region.
 好ましくは、ボンディングパッドは、基板上に絶縁膜を介在して設けられる。この絶縁膜は、第1および第2のコンタクト電極の部分を除いて、基板の表面が露出している部分および半導体積層膜の上面および側端部を覆う。この絶縁膜は、無機材料によって形成される。上記の絶縁層は、有機樹脂材料によって形成され、上記の絶縁膜を介在して半導体積層膜の側端部の少なくとも一部を覆っている。 Preferably, the bonding pad is provided on the substrate with an insulating film interposed. This insulating film covers the portion where the surface of the substrate is exposed and the upper surface and side end portions of the semiconductor multilayer film, except for the first and second contact electrodes. This insulating film is formed of an inorganic material. The insulating layer is formed of an organic resin material and covers at least a part of the side end portion of the semiconductor multilayer film with the insulating film interposed therebetween.
 上記のように無機材料の絶縁膜を設けることによって、VCSEL素子の耐湿性を向上させることができる。 By providing an insulating film made of an inorganic material as described above, the moisture resistance of the VCSEL element can be improved.
 この開示の他の局面による垂直共振器面発光レーザは、半絶縁性の基板と、基板上に形成された半導体積層膜とを備える。半導体積層膜は、基板から順に、第1の半導体コンタクト層、第1のDBR(Distributed Bragg Reflector)層、活性層、および第2のDBR層を備える。半導体積層膜は、さらに、第1のDBR層と活性層との間、第2のDBR層と活性層との間、第1のDBR層の内部、および第2のDBR層の内部のうちの少なくとも1つに形成されたすくなくとも1つの電流狭窄層を備える。半導体積層膜の側端部は、3段の段差部を有する。第1の段差部は、半導体積層膜の上面から上記少なくとも1つの電流狭窄層の端面が露出する位置まで到達しているが、第1の半導体コンタクト層まで到達していない。第2の段差部は、第1の段差部の底面から第1の半導体コンタクト層の途中まで到達する。第3の段差部は、第2の段差部の底面から基板まで到達する。垂直共振器面発光レーザは、さらに、第1のコンタクト電極と第2のコンタクト電極とを備える。第1のコンタクト電極は、第2の段差部の底面上に設けられる。第2のコンタクト電極は、半導体積層膜の上面に設けられる。 A vertical cavity surface emitting laser according to another aspect of the present disclosure includes a semi-insulating substrate and a semiconductor multilayer film formed on the substrate. The semiconductor multilayer film includes, in order from the substrate, a first semiconductor contact layer, a first DBR (Distributed Bragg Reflector) layer, an active layer, and a second DBR layer. The semiconductor stacked film is further provided between the first DBR layer and the active layer, between the second DBR layer and the active layer, inside the first DBR layer, and inside the second DBR layer. At least one current confinement layer is provided. The side end portion of the semiconductor laminated film has three steps. The first step portion reaches from the upper surface of the semiconductor multilayer film to a position where the end face of the at least one current confinement layer is exposed, but does not reach the first semiconductor contact layer. The second step portion reaches the middle of the first semiconductor contact layer from the bottom surface of the first step portion. The third step portion reaches the substrate from the bottom surface of the second step portion. The vertical cavity surface emitting laser further includes a first contact electrode and a second contact electrode. The first contact electrode is provided on the bottom surface of the second step portion. The second contact electrode is provided on the upper surface of the semiconductor stacked film.
 上記構成によれば、第1の段差部の上面の大きさと第2の段差部の上面の大きさを別々に制御することができる。したがって、第1の段差部の上面の面積を小さくすることによって電流狭窄層の酸化領域に起因した寄生容量を抑制するとともに、第2の段差部の上面の面積を大きくすることによってVCSEL素子の抵抗値(特に第1のDBR層の部分の抵抗値)を低減することができる。 According to the above configuration, the size of the upper surface of the first step portion and the size of the upper surface of the second step portion can be controlled separately. Therefore, by reducing the area of the upper surface of the first step portion, the parasitic capacitance due to the oxidized region of the current confinement layer is suppressed, and the resistance of the VCSEL element is increased by increasing the area of the upper surface of the second step portion. The value (particularly the resistance value of the first DBR layer) can be reduced.
 したがって、この開示の垂直共振器面発光レーザによれば、寄生容量を低減することができる。 Therefore, according to the vertical cavity surface emitting laser of this disclosure, the parasitic capacitance can be reduced.
第1の実施形態によるVCSELの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of VCSEL by 1st Embodiment. 図1のVCSELの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of VCSEL of FIG. 半導体基板上にエピタキシャル成長された半導体積層膜を示す断面図である。It is sectional drawing which shows the semiconductor laminated film epitaxially grown on the semiconductor substrate. 第1の段差部の加工後の半導体積層膜を示す断面図である。It is sectional drawing which shows the semiconductor laminated film after the process of a 1st level | step-difference part. 第2および第3の段差部の形成後の半導体積層膜を示す断面図である。It is sectional drawing which shows the semiconductor laminated film after formation of the 2nd and 3rd level | step-difference part. VCSELの製造工程においてコンタクト電極および絶縁保護膜の形成後の断面構造を示す図である。It is a figure which shows the cross-sectional structure after formation of a contact electrode and an insulating protective film in the manufacturing process of VCSEL. 第1の変形例によるVCSELの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of VCSEL by a 1st modification. 第2の変形例によるVCSELの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of VCSEL by a 2nd modification. 図1、図7、および図8のVCSELの素子構造のメリットおよびデメリットを表形式にまとめた図である。It is the figure which put together the merit and demerit of the element structure of VCSEL of FIG.1, FIG.7, and FIG.8 in the table format. VCSELのレイアウト例を示す平面図である。It is a top view which shows the example of a layout of VCSEL. 図10の切断線XI-XIに沿った断面図である。FIG. 11 is a cross-sectional view taken along a cutting line XI-XI in FIG. 10. 第2の段差部の上面の大きさを変更したときのVCSEL素子の抵抗値の変化を示す図である。It is a figure which shows the change of the resistance value of a VCSEL element when the magnitude | size of the upper surface of a 2nd level | step-difference part is changed. 第2の段差部の上面の大きさを変更したときの寄生容量の変化を示す図である。It is a figure which shows the change of the parasitic capacitance when the magnitude | size of the upper surface of a 2nd level | step-difference part is changed.
 以下、実施形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。 Hereinafter, embodiments will be described in detail with reference to the drawings. The same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 <第1の実施形態>
 [VCSELの構成]
 図1は、第1の実施形態によるVCSELの構造を模式的に示す断面図である。なお、図1では、図解を容易にするために図中の各層の厚みは実際のデバイスの厚みと比例関係にない。以下の説明において、各半導体層の基板に近い側の表面を下面と称し、基板と反対側の表面を上面と称する。
<First Embodiment>
[Configuration of VCSEL]
FIG. 1 is a cross-sectional view schematically showing the structure of the VCSEL according to the first embodiment. In FIG. 1, for ease of illustration, the thickness of each layer in the figure is not proportional to the actual device thickness. In the following description, the surface of each semiconductor layer close to the substrate is referred to as a lower surface, and the surface opposite to the substrate is referred to as an upper surface.
 図1を参照して、VCSEL10は、半絶縁性の半導体基板11と、半導体基板11の主面上にエピタキシャル成長によって形成された半導体積層膜5とを備える。半導体積層膜5は、半導体基板11側から順に、N型半導体コンタクト層12(第1の半導体コンタクト層)、N型DBR(Distributed Bragg Reflector)層13(第1のDBR層)、クラッド層14、量子井戸を含む活性層15、クラッド層16、電流狭窄層23、P型DBR層24(第2のDBR層)、およびP型半導体コンタクト層25(第2の半導体コンタクト層)を備える。 Referring to FIG. 1, the VCSEL 10 includes a semi-insulating semiconductor substrate 11 and a semiconductor multilayer film 5 formed on the main surface of the semiconductor substrate 11 by epitaxial growth. The semiconductor laminated film 5 includes an N-type semiconductor contact layer 12 (first semiconductor contact layer), an N-type DBR (Distributed Bragg Reflector) layer 13 (first DBR layer), a cladding layer 14, in order from the semiconductor substrate 11 side. An active layer 15 including a quantum well, a cladding layer 16, a current confinement layer 23, a P-type DBR layer 24 (second DBR layer), and a P-type semiconductor contact layer 25 (second semiconductor contact layer) are provided.
 半導体基板11として、たとえば、半絶縁性を示すノンドープのGaAs(ガリウムヒ素)基板が用いられる。なお、上記の半導体積層膜5をエピタキシャル成長可能な材料であれば、半絶縁性の半導体基板11に代えて、絶縁性の基板を用いても構わない。 As the semiconductor substrate 11, for example, a non-doped GaAs (gallium arsenide) substrate exhibiting semi-insulating properties is used. Note that an insulating substrate may be used instead of the semi-insulating semiconductor substrate 11 as long as the semiconductor stacked film 5 can be epitaxially grown.
 半導体基板11の表面上にN型半導体コンタクト層12が形成される。N型半導体コンタクト層12として、カソード電極27と良好なオーミックコンタクトを形成するために、たとえば、不純物濃度が3.0×1018[cm-3]以上のGaAs層が形成される。N型の導電性を与えるためにたとえばSi(シリコン)がドーピングされる。Siは、Ga(またはAl)サイトに配位してドナーになりやすい。 An N-type semiconductor contact layer 12 is formed on the surface of the semiconductor substrate 11. As the N-type semiconductor contact layer 12, in order to form a good ohmic contact with the cathode electrode 27, for example, a GaAs layer having an impurity concentration of 3.0 × 10 18 [cm −3 ] or more is formed. For example, Si (silicon) is doped to give N-type conductivity. Si coordinates to a Ga (or Al) site and easily becomes a donor.
 なお、N型半導体コンタクト層12は、必ずしも設けられていなくてよい。すなわち、N型DBR層13は、N型半導体コンタクト層12を兼ねることができる。この場合、カソード電極27は、N型DBR層13と直接接続される。 Note that the N-type semiconductor contact layer 12 is not necessarily provided. That is, the N-type DBR layer 13 can also serve as the N-type semiconductor contact layer 12. In this case, the cathode electrode 27 is directly connected to the N-type DBR layer 13.
 N型DBR層13は、たとえば、Al0.12Ga0.88AsとAl0.9Ga0.1Asとを光学膜厚でλ/4ずつ交互に積層した構造からなる。λはレーザ光の波長を表す。N型の導電性を与えるためにSi(シリコン)がドーピングされており、その濃度は、たとえば2~3×1018[cm-3]である。 The N-type DBR layer 13 has, for example, a structure in which Al 0.12 Ga 0.88 As and Al 0.9 Ga 0.1 As are alternately stacked at an optical thickness of λ / 4. λ represents the wavelength of the laser beam. Si (silicon) is doped to give N-type conductivity, and its concentration is, for example, 2 to 3 × 10 18 [cm −3 ].
 なお、AlXGa(1-X)As(アルミニウム・ガリウム・ヒ素)は、GaAsとAlAsとの混晶半導体であり、Al組成(X)が高いほどエネルギーギャップが広く、屈折率は低くなる。Al組成(X)が0≦X<0.43において直接遷移型となる。Al組成(X)に応じて格子定数がほとんど変化しないために、あらゆるAl組成(X)のAlXGa(1-X)As膜をGaAs基板上にエピタキシャル成長可能である。この明細書では、Al組成(X)を特定しない場合には、AlGaAsと記載する場合がある。 Al X Ga (1-X) As (aluminum, gallium, arsenic) is a mixed crystal semiconductor of GaAs and AlAs. The higher the Al composition (X), the wider the energy gap and the lower the refractive index. When the Al composition (X) is 0 ≦ X <0.43, the direct transition type is obtained. Since the lattice constant hardly changes depending on the Al composition (X), an Al x Ga (1-x) As film having any Al composition (X) can be epitaxially grown on the GaAs substrate. In this specification, when the Al composition (X) is not specified, it may be described as AlGaAs.
 N型DBR層13の上に、レーザ光を発生する活性領域17が形成される。活性領域17は、クラッド層14,16と、クラッド層14,16に挟まれた光学利得を有する活性層15とによって構成される。活性層15には、量子井戸層と障壁層を多重に積層した多重量子井戸(MQW:Multiple Quantum Well)が形成される。活性層15は、不純物を導入しないノンドープ領域である。 An active region 17 for generating laser light is formed on the N-type DBR layer 13. The active region 17 includes the clad layers 14 and 16 and the active layer 15 having an optical gain sandwiched between the clad layers 14 and 16. In the active layer 15, a multiple quantum well (MQW) in which a quantum well layer and a barrier layer are stacked in multiple layers is formed. The active layer 15 is a non-doped region where impurities are not introduced.
 クラッド層14,16は、デバイスの抵抗値の設計に応じて、アンドープにすることも、DBR層13,24の近傍部分のみにドープすることもできる。クラッド層14,16は、キャリア閉じ込めのために活性層15よりエネルギーギャップが広い材料が用いられる。たとえば、直接遷移型のAlGaAsが用いられる。なお、クラッド層14,16は片側だけでもよいし、両方のどちらにも設けられていなくてもよい。 The cladding layers 14 and 16 can be undoped or can be doped only in the vicinity of the DBR layers 13 and 24 according to the design of the resistance value of the device. The clad layers 14 and 16 are made of a material having an energy gap wider than that of the active layer 15 for carrier confinement. For example, direct transition AlGaAs is used. The clad layers 14 and 16 may be provided only on one side or on both sides.
 活性領域17の上に電流狭窄層23が形成される。電流狭窄層23は、活性領域に効率よく電流を注入し、レンズ効果をもたらすものである。図1に示すように、電流狭窄層23は、中心部分の未酸化領域21と、その周囲のほぼ絶縁体の酸化領域22とを有する。この構造は、電流狭窄層23を0.95≦X≦1のAlXGa(1-X)Asで形成し(X=1の場合、すなわちAlAsを含む)、半導体積層膜5のうち電流狭窄層23を含む部分をメサポスト形状に加工した後に、加熱水蒸気雰囲気下で電流狭窄層23を周囲から選択的に酸化させることによって得られる。中心部分の未酸化領域21のみが電流経路となるので、活性領域に効率よく電流を注入できる。 A current confinement layer 23 is formed on the active region 17. The current confinement layer 23 efficiently injects a current into the active region and brings about a lens effect. As shown in FIG. 1, the current confinement layer 23 has an unoxidized region 21 at the center and an oxidized region 22 of a substantially insulator around the center. In this structure, the current confinement layer 23 is formed of Al X Ga (1-X) As satisfying 0.95 ≦ X ≦ 1 (when X = 1, that is, including AlAs), and the current confinement is included in the semiconductor laminated film 5. After the portion including the layer 23 is processed into a mesa post shape, the current confinement layer 23 is selectively oxidized from the surroundings in a heated steam atmosphere. Since only the unoxidized region 21 in the central portion serves as a current path, current can be efficiently injected into the active region.
 図1の場合と異なるが、電流狭窄層23をDBR層13,24(活性層15に近い位置が望ましい)およびクラッド層14,16のいずれかに設けることも可能である。電流狭窄層23を複数設けることも可能である。したがって、より一般的には、電流狭窄層23は、N型DBR層13と活性層15との間、P型DBR層24と活性層15との間、N型DBR層13の内部、およびP型DBR層24の内部のうちの1つ以上の箇所に少なくとも1つ設けられる。 Although different from the case of FIG. 1, it is also possible to provide the current confinement layer 23 in either the DBR layers 13 and 24 (desirably close to the active layer 15) and the clad layers 14 and 16. It is also possible to provide a plurality of current confinement layers 23. Therefore, more generally, the current confinement layer 23 is formed between the N-type DBR layer 13 and the active layer 15, between the P-type DBR layer 24 and the active layer 15, inside the N-type DBR layer 13, and P At least one is provided at one or more locations inside the mold DBR layer 24.
 電流狭窄層23の上にP型DBR層24が設けられる。P型DBR層24は、N型DBR層13と同様に、たとえばAl0.12Ga0.88AsとAl0.9Ga0.1Asとを光学膜厚でλ/4ずつ交互に積層した構造から構成される。P型の導電性を与えるために、C(カーボン)がドーピングされており、その濃度は、たとえば2~3×1018[cm-3]である。CはAsサイトに配位してアクセプタになりやすい。N型DBR層13とP型DBR層24とによって光共振器が構成される。 A P-type DBR layer 24 is provided on the current confinement layer 23. Similar to the N-type DBR layer 13, the P-type DBR layer 24 has a structure in which, for example, Al 0.12 Ga 0.88 As and Al 0.9 Ga 0.1 As are alternately stacked at an optical thickness of λ / 4. In order to give P-type conductivity, C (carbon) is doped, and its concentration is, for example, 2 to 3 × 10 18 [cm −3 ]. C is easily coordinated to the As site and becomes an acceptor. The N-type DBR layer 13 and the P-type DBR layer 24 constitute an optical resonator.
 P型DBR層24の上面にP型半導体コンタクト層25が形成される。P型半導体コンタクト層25として、アノード電極26と良好なオーミックコンタクトを形成するために、たとえば、不純物濃度が3.0×1018[cm-3]以上のGaAs層が形成される。P型の導電性を与えるためにたとえばCがドーピングされる。なお、P型半導体コンタクト層25は、必ずしも設けられていなくてもよい。すなわち、P型DBR層24は、P型半導体コンタクト層25を兼ねることができる。この場合、アノード電極26は、P型DBR層24の上面に形成される。 A P-type semiconductor contact layer 25 is formed on the upper surface of the P-type DBR layer 24. As the P-type semiconductor contact layer 25, in order to form a good ohmic contact with the anode electrode 26, for example, a GaAs layer having an impurity concentration of 3.0 × 10 18 [cm −3 ] or more is formed. For example, C is doped to provide P-type conductivity. Note that the P-type semiconductor contact layer 25 is not necessarily provided. That is, the P-type DBR layer 24 can also serve as the P-type semiconductor contact layer 25. In this case, the anode electrode 26 is formed on the upper surface of the P-type DBR layer 24.
 上記の半導体積層膜5の側端部には、エッチングにより3段の段差部41,42,43が形成されている。第1の段差部41は、半導体積層膜5の上面から電流狭窄層23の端面が露出する位置まで到達する。図1の場合には、第1の段差部41はN型DBR層13の途中まで到達する。第2の段差部42は、第1の段差部41の底面からN型半導体コンタクト層12の途中まで到達する。第3の段差部42は、第2の段差部42の底面から半導体基板11まで到達する。 Three step portions 41, 42, and 43 are formed by etching at the side end portion of the semiconductor laminated film 5 described above. The first step portion 41 reaches from the upper surface of the semiconductor multilayer film 5 to a position where the end face of the current confinement layer 23 is exposed. In the case of FIG. 1, the first step portion 41 reaches halfway through the N-type DBR layer 13. The second step portion 42 reaches the middle of the N-type semiconductor contact layer 12 from the bottom surface of the first step portion 41. The third step portion 42 reaches the semiconductor substrate 11 from the bottom surface of the second step portion 42.
 VCSEL10は、さらに、カソード電極27、アノード電極26、絶縁保護膜30(絶縁膜)、絶縁層31、ボンディングパッド33、および金属配線32を備える。カソード電極27とアノード電極26とを総称してコンタクト電極と称する(カソード電極27を第1のコンタクト電極と称し、アノード電極26を第2のコンタクト電極と称する)。 The VCSEL 10 further includes a cathode electrode 27, an anode electrode 26, an insulating protective film 30 (insulating film), an insulating layer 31, a bonding pad 33, and a metal wiring 32. The cathode electrode 27 and the anode electrode 26 are collectively referred to as a contact electrode (the cathode electrode 27 is referred to as a first contact electrode, and the anode electrode 26 is referred to as a second contact electrode).
 カソード電極27は、エッチングにより露出したN型半導体コンタクト層12の上面に形成される。アノード電極26は、P型半導体コンタクト層25の上面に形成される。なお、N型半導体コンタクト層12およびP型半導体コンタクト層25が設けられていない場合には、カソード電極27は、エッチングによって露出したN型DBR層13の上面に形成され、アノード電極26は、P型DBR層24の上面に形成される。 The cathode electrode 27 is formed on the upper surface of the N-type semiconductor contact layer 12 exposed by etching. The anode electrode 26 is formed on the upper surface of the P-type semiconductor contact layer 25. When the N-type semiconductor contact layer 12 and the P-type semiconductor contact layer 25 are not provided, the cathode electrode 27 is formed on the upper surface of the N-type DBR layer 13 exposed by etching, and the anode electrode 26 is formed of P It is formed on the upper surface of the type DBR layer 24.
 絶縁保護膜30は、耐湿用に設けられ、上記のカソード電極27およびアノード電極26を除く、半導体積層膜5の上面および側端部(段差部41,42,43)ならびに半導体基板11の主面を覆うように形成される。絶縁保護膜30は、無機の絶縁膜であり、たとえば、窒化シリコンまたは酸化シリコンなどが用いられる。なお、絶縁保護膜30は、必ずしも設けられていなくてもよい。 The insulating protective film 30 is provided for moisture resistance, and excludes the cathode electrode 27 and the anode electrode 26, and the upper surface and side end portions ( step portions 41, 42, 43) of the semiconductor multilayer film 5 and the main surface of the semiconductor substrate 11. It is formed so as to cover. The insulating protective film 30 is an inorganic insulating film, and for example, silicon nitride or silicon oxide is used. Note that the insulating protective film 30 is not necessarily provided.
 絶縁層31は、半導体積層膜5の側端部(段差部41,42,43)の少なくとも一部を覆うように絶縁保護膜30の上部に形成される。図1に示すように絶縁層31は、上面61と端面62とを有する。絶縁層31の上面61は、半導体積層膜5の上面に接続し半導体基板11に沿って延在する(すなわち、半導体基板11に対向する)。絶縁層31の端面62は、絶縁層31の上面61に接続し半導体基板11に向かって延在する。絶縁層31として、感光性ポリイミドなどの感光性有機樹脂材料が用いられる。 The insulating layer 31 is formed on the insulating protective film 30 so as to cover at least a part of the side end portions ( step portions 41, 42, 43) of the semiconductor multilayer film 5. As shown in FIG. 1, the insulating layer 31 has an upper surface 61 and an end surface 62. The upper surface 61 of the insulating layer 31 is connected to the upper surface of the semiconductor stacked film 5 and extends along the semiconductor substrate 11 (that is, faces the semiconductor substrate 11). The end surface 62 of the insulating layer 31 is connected to the upper surface 61 of the insulating layer 31 and extends toward the semiconductor substrate 11. As the insulating layer 31, a photosensitive organic resin material such as photosensitive polyimide is used.
 絶縁層31は、半導体積層膜5の側端部の全体を覆っている必要はない。ボンディングパッド33と半導体積層膜5の上面(P型半導体コンタクト層25の上面)との間の領域では、絶縁層31は、半導体積層膜5の側端部(段差部41,42,43)の全てを覆っている。一方、カソード電極27と半導体積層膜5の上面(P型半導体コンタクト層25の上面)との間の領域では、絶縁層31は、第1の段差部41および第2の段差部42を覆っているが、第3の段差部43およびカソード電極27を覆っていない。 The insulating layer 31 does not need to cover the entire side end portion of the semiconductor laminated film 5. In the region between the bonding pad 33 and the upper surface of the semiconductor multilayer film 5 (the upper surface of the P-type semiconductor contact layer 25), the insulating layer 31 is formed on the side end portions ( step portions 41, 42, 43) of the semiconductor multilayer film 5. It covers everything. On the other hand, in the region between the cathode electrode 27 and the upper surface of the semiconductor multilayer film 5 (the upper surface of the P-type semiconductor contact layer 25), the insulating layer 31 covers the first step portion 41 and the second step portion 42. However, the third stepped portion 43 and the cathode electrode 27 are not covered.
 ボンディングパッド33は、半導体積層膜5のエッチングにより露出した半導体基板11の主面上に、絶縁保護膜30を介在して形成される。絶縁保護膜30が設けられていない場合には、ボンディングパッド33は、半導体基板11の主面上に直接形成される。 The bonding pad 33 is formed on the main surface of the semiconductor substrate 11 exposed by etching the semiconductor multilayer film 5 with the insulating protective film 30 interposed therebetween. When the insulating protective film 30 is not provided, the bonding pad 33 is formed directly on the main surface of the semiconductor substrate 11.
 ボンディングパッド33とアノード電極26とを接続する金属配線32は、絶縁層31の上面61および端面62上に形成される。寄生容量を削減するために、半導体基板11を平面視して、金属配線32の面積は十分に小さくする(ボンディングパッド33の面積と比べるとかなり小さい)。ボンディングパッド33は、絶縁層31上に存在しておらず、N型半導体コンタクト層12およびN型DBR層13と対向していないので、ボンディングパッド33による寄生容量は十分に小さくなる。 The metal wiring 32 that connects the bonding pad 33 and the anode electrode 26 is formed on the upper surface 61 and the end surface 62 of the insulating layer 31. In order to reduce the parasitic capacitance, the area of the metal wiring 32 is made sufficiently small in plan view of the semiconductor substrate 11 (which is considerably smaller than the area of the bonding pad 33). Since the bonding pad 33 does not exist on the insulating layer 31 and does not face the N-type semiconductor contact layer 12 and the N-type DBR layer 13, the parasitic capacitance due to the bonding pad 33 becomes sufficiently small.
 [VCSELの製造方法]
 図2は、図1のVCSELの製造工程を示すフローチャートである。以下、図2と図3~図6の断面図とを参照して、VCSELの製造工程について説明する。なお、図3~図6では、図解を容易にするために図中の各層の厚みは実際のデバイスの厚みと比例関係にない。
[Manufacturing method of VCSEL]
FIG. 2 is a flowchart showing manufacturing steps of the VCSEL of FIG. The VCSEL manufacturing process will be described below with reference to FIG. 2 and the cross-sectional views of FIGS. 3 to 6, the thickness of each layer in the figure is not proportional to the actual device thickness in order to facilitate illustration.
 まず、半導体基板11上に半導体積層膜5をエピタキシャル成長させる(ステップS100)。図3は、半導体基板上にエピタキシャル成長された半導体積層膜5を示す断面図である。前述のように、半導体積層膜5は、半導体基板11側から順に、N型半導体コンタクト層12、N型DBR(Distributed Bragg Reflector)層13、クラッド層14、量子井戸を含む活性層15、クラッド層16、酸化される前の電流狭窄層23、P型DBR層24、およびP型半導体コンタクト層25を備える。半導体積層膜5の形成には、MOCVD(Metal Organic Chemical Vapor Deposition)またはMBE(Molecular Beam Epitaxy)などの手法が用いられる。酸化される前の電流狭窄層23の厚みは、酸化処理の際の体積収縮による歪みの影響を抑制するために40nm以下にするのが望ましい。 First, the semiconductor multilayer film 5 is epitaxially grown on the semiconductor substrate 11 (step S100). FIG. 3 is a cross-sectional view showing the semiconductor laminated film 5 epitaxially grown on the semiconductor substrate. As described above, the semiconductor multilayer film 5 includes the N-type semiconductor contact layer 12, the N-type DBR (Distributed Bragg Reflector) layer 13, the clad layer 14, the active layer 15 including the quantum well, and the clad layer in this order from the semiconductor substrate 11 side. 16. A current confinement layer 23 before oxidation, a P-type DBR layer 24, and a P-type semiconductor contact layer 25 are provided. For the formation of the semiconductor laminated film 5, a technique such as MOCVD (Metal Organic Chemical Vapor Deposition) or MBE (Molecular Beam Epitaxy) is used. The thickness of the current confinement layer 23 before being oxidized is desirably 40 nm or less in order to suppress the influence of distortion due to volume shrinkage during the oxidation treatment.
 次に、フォトリソグラフィーによって形成したレジストパターンをマスクとしてドライエッチングを行うことによって、図3の半導体積層膜5をメサポスト形状に加工する(ステップS110)。これによって第1の段差部41が形成される。 Next, by performing dry etching using a resist pattern formed by photolithography as a mask, the semiconductor multilayer film 5 of FIG. 3 is processed into a mesa post shape (step S110). Thereby, the first step portion 41 is formed.
 図4は、第1の段差部の加工後の半導体積層膜を示す断面図である。平面視したときの段差部41の上面51の寸法(メサポスト部分の天面の寸法)は、安定して加工が可能な範囲内でできるだけ小さいほうが望ましい。たとえば、段差部41の上面51は、直径20μmの円形に形成される。段差部41の高さ(エッチングの深さ)は、電流狭窄層23の端面が露出するのに必要な最低限の深さが望ましい。図4の場合には、段差部41は、半導体積層膜5の上面(P型半導体コンタクト層25の上面)からN型DBR層13の途中まで到達する。 FIG. 4 is a cross-sectional view showing the semiconductor laminated film after processing the first step portion. It is desirable that the dimension of the upper surface 51 of the stepped portion 41 (the dimension of the top surface of the mesa post portion) when viewed in plan is as small as possible within a range that can be stably processed. For example, the upper surface 51 of the step portion 41 is formed in a circular shape having a diameter of 20 μm. The height of the step portion 41 (etching depth) is desirably the minimum depth necessary for exposing the end face of the current confinement layer 23. In the case of FIG. 4, the stepped portion 41 reaches from the upper surface of the semiconductor stacked film 5 (upper surface of the P-type semiconductor contact layer 25) to the middle of the N-type DBR layer 13.
 なお、前述のように、段差部41は、半導体基板11からの距離の異なる2つの面である、上面51および底面53と、これらの2つの面を接続する端面52とによって構成される。上面51および底面53は半導体基板11に沿う方向に延在し、端面52は半導体基板11と交差する方向に延在する。上面51は底面53よりも半導体基板11から離れた位置にある。エッチングによるN型DBR層13の露出面は、段差部41の底面53に相当する。段差部41の上面51は、P型半導体コンタクト層25の上面に相当する。上面51と底面53との間を接続する面を、段差部41の端面52と称する。 Note that, as described above, the stepped portion 41 is configured by the top surface 51 and the bottom surface 53 that are two surfaces having different distances from the semiconductor substrate 11 and the end surface 52 that connects these two surfaces. The upper surface 51 and the bottom surface 53 extend in a direction along the semiconductor substrate 11, and the end surface 52 extends in a direction intersecting the semiconductor substrate 11. The upper surface 51 is located farther from the semiconductor substrate 11 than the bottom surface 53. The exposed surface of the N-type DBR layer 13 by etching corresponds to the bottom surface 53 of the step portion 41. The upper surface 51 of the step portion 41 corresponds to the upper surface of the P-type semiconductor contact layer 25. A surface connecting the upper surface 51 and the bottom surface 53 is referred to as an end surface 52 of the step portion 41.
 次に、第1の段差部41の加工後に、半導体積層膜付きの半導体基板11を水蒸気雰囲気中で400℃以上に加熱する。これによって、電流狭窄層23の外周部から酸化が進行し、周縁部の酸化領域22と中心部の未酸化領域21とからなる電流狭窄構造(図5を参照)が形成される(ステップS120)。未酸化領域の直径はたとえば10μmである。 Next, after processing the first step portion 41, the semiconductor substrate 11 with the semiconductor laminated film is heated to 400 ° C. or higher in a water vapor atmosphere. As a result, oxidation proceeds from the outer peripheral portion of the current confinement layer 23, and a current confinement structure (see FIG. 5) including the oxidized region 22 in the peripheral portion and the unoxidized region 21 in the central portion is formed (step S120). . The diameter of the unoxidized region is, for example, 10 μm.
 次に、フォトリソグラフィーによって形成したレジストパターンをマスクとしてドライエッチングを行うことによって、第2の段差部42および第3の段差部43を形成する(ステップS130)。この結果、半導体積層膜5には第1~第3の段差部41,42,43を含む側端部6が形成される。 Next, the second step portion 42 and the third step portion 43 are formed by performing dry etching using a resist pattern formed by photolithography as a mask (step S130). As a result, the side end portion 6 including the first to third step portions 41, 42, 43 is formed in the semiconductor laminated film 5.
 図5は、第2および第3の段差部の形成後の半導体積層膜を示す断面図である。図5を参照して、第2の段差部42は、第1の段差部41の底面53(エッチングによるN型DBR層13の露出面)からN型半導体コンタクト層12の途中まで到達する。エッチングによるN型半導体コンタクト層12の露出面は、第2の段差部42の底面55に相当する。第2の段差部42の上面53と第1の段差部41の底面53とは同じ面である。第2の段差部42の上面53と底面55とを接続する面を、第2の段差部42の端面54と称する。 FIG. 5 is a cross-sectional view showing the semiconductor laminated film after the formation of the second and third step portions. Referring to FIG. 5, second step portion 42 reaches halfway of N-type semiconductor contact layer 12 from bottom surface 53 (exposed surface of N-type DBR layer 13 by etching) of first step portion 41. The exposed surface of the N-type semiconductor contact layer 12 by etching corresponds to the bottom surface 55 of the second step portion 42. The upper surface 53 of the second step portion 42 and the bottom surface 53 of the first step portion 41 are the same surface. A surface connecting the upper surface 53 and the bottom surface 55 of the second step portion 42 is referred to as an end surface 54 of the second step portion 42.
 第3の段差部43は、第2の段差部42の底面55(エッチングによるN型半導体コンタクト層12の露出面)から半導体基板11にまで到達する。エッチングによる半導体基板11の露出面は、第3の段差部43の底面57に相当する。第3の段差部43の上面55と第2の段差部42の底面55とは同じ面である。第3の段差部43の上面55と第3の段差部43の底面57とを接続する面を、第3の段差部43の端面56と称する。 The third stepped portion 43 reaches the semiconductor substrate 11 from the bottom surface 55 of the second stepped portion 42 (exposed surface of the N-type semiconductor contact layer 12 by etching). The exposed surface of the semiconductor substrate 11 by etching corresponds to the bottom surface 57 of the third step portion 43. The upper surface 55 of the third step portion 43 and the bottom surface 55 of the second step portion 42 are the same surface. A surface connecting the upper surface 55 of the third step portion 43 and the bottom surface 57 of the third step portion 43 is referred to as an end surface 56 of the third step portion 43.
 第3の段差部43の底面57はエッチングによる半導体基板11の露出面であるので、この底面57は、半導体積層膜5と半導体基板11との界面(N型半導体コンタクト層12と半導体基板11との界面)の延長面上にあるか、またはその延長面よりも半導体基板11の裏面に近い位置にある。 Since the bottom surface 57 of the third step portion 43 is an exposed surface of the semiconductor substrate 11 by etching, this bottom surface 57 is the interface between the semiconductor stacked film 5 and the semiconductor substrate 11 (the N-type semiconductor contact layer 12 and the semiconductor substrate 11). On the extended surface of the semiconductor substrate 11 or closer to the back surface of the semiconductor substrate 11 than the extended surface.
 なお、第1の段差部41によって第1のメサ構造が形成され、第2の段差部42によって第2のメサ構造が形成され、第3の段差部43によって第3のメサ構造が形成されていると考えることもできる。この場合、第2のメサ構造(段差部42)は第1のメサ構造(段差部41)よりも天面の面積が広く、第1のメサ構造は第2のメサ構造の天面の上に形成されている(平面視して、第1のメサ構造は第2のメサ構造に包含されている)。同様に、第3のメサ構造(段差部43)は第2のメサ構造(段差部42)よりも天面の面積が広く、第2のメサ構造は第3のメサ構造の天面の上に形成されている(平面視して、第2のメサ構造は第3のメサ構造に包含されている)。 The first step portion 41 forms a first mesa structure, the second step portion 42 forms a second mesa structure, and the third step portion 43 forms a third mesa structure. You can also think that In this case, the second mesa structure (stepped portion 42) has a larger area on the top surface than the first mesa structure (stepped portion 41), and the first mesa structure is on the top surface of the second mesa structure. Are formed (in plan view, the first mesa structure is included in the second mesa structure). Similarly, the area of the top surface of the third mesa structure (stepped portion 43) is larger than that of the second mesa structure (stepped portion 42), and the second mesa structure is on the top surface of the third mesa structure. Formed (in plan view, the second mesa structure is included in the third mesa structure).
 第1の段差部41の端面52および第2の段差部42の端面54は、半導体基板11に対して垂直方向に形成されるのが望ましい。これによって、第1のメサの寸法の精度および第2のメサの寸法の精度を高めることができる。なお、この明細書で半導体基板11に垂直とは厳密に垂直であることを意味するのでなく、製造誤差を含めた範囲を言うものとする。第3の段差部43の端面56は、半導体基板11に対して傾斜していてもよい。 It is desirable that the end surface 52 of the first step portion 41 and the end surface 54 of the second step portion 42 are formed in a direction perpendicular to the semiconductor substrate 11. Thereby, the accuracy of the dimension of the first mesa and the accuracy of the dimension of the second mesa can be increased. In this specification, the term “perpendicular to the semiconductor substrate 11” does not mean strictly perpendicular to the semiconductor substrate 11, but refers to a range including manufacturing errors. The end surface 56 of the third step portion 43 may be inclined with respect to the semiconductor substrate 11.
 第2の段差部42を形成するときに、エッチング速度のばらつき(基板面内のばらつき又はプロセスごとのばらつき)の影響を受けずに確実にN型半導体コンタクト層の表面が露出するようにするため、N型半導体コンタクト層12の厚みは3μm以上であることが望ましい。 When forming the second step portion 42, the surface of the N-type semiconductor contact layer is surely exposed without being affected by variations in etching rate (in-plane variation or process-to-process variation). The thickness of the N-type semiconductor contact layer 12 is desirably 3 μm or more.
 次に、図6を参照して、第1の段差部41の上面(P型半導体コンタクト層25の上面)および第2の段差部42の底面(N型半導体コンタクト層12の露出面)において、たとえば、フォトリソグラフィーおよび蒸着の手法を用いてコンタクト電極(アノード電極26およびカソード電極27)が形成される(ステップS140)。コンタクト電極として、たとえば、Ti(チタン)、Pt(白金)、およびAu(金)からなる積層膜を利用することができる。 Next, referring to FIG. 6, on the upper surface of the first step portion 41 (upper surface of the P-type semiconductor contact layer 25) and the bottom surface of the second step portion 42 (exposed surface of the N-type semiconductor contact layer 12), For example, the contact electrodes (the anode electrode 26 and the cathode electrode 27) are formed using photolithography and vapor deposition techniques (step S140). As the contact electrode, for example, a laminated film made of Ti (titanium), Pt (platinum), and Au (gold) can be used.
 次に、半導体基板11の全面に耐湿用の絶縁保護膜30が形成される(ステップS150)。絶縁保護膜30として窒化シリコンまたは酸化シリコンなどの無機絶縁膜が用いられる。絶縁保護膜30は、段差部の部分の被覆性を良好にするためにCVDなどの方法を用いて形成される。 Next, the moisture-proof insulating protective film 30 is formed on the entire surface of the semiconductor substrate 11 (step S150). An inorganic insulating film such as silicon nitride or silicon oxide is used as the insulating protective film 30. The insulating protective film 30 is formed using a method such as CVD in order to improve the coverage of the step portion.
 続いて、コンタクト電極(アノード電極26およびカソード電極27)の上部の絶縁保護膜30に開口が形成される。絶縁保護膜30の開口は、たとえば、フォトリソグラフィーによるレジストパターンをマスクとしたドライエッチングによって形成される。図6は、VCSELの製造工程においてコンタクト電極および絶縁保護膜の形成後の断面構造を示す図である。 Subsequently, an opening is formed in the insulating protective film 30 above the contact electrodes (the anode electrode 26 and the cathode electrode 27). The opening of the insulating protective film 30 is formed by, for example, dry etching using a resist pattern as a mask by photolithography. FIG. 6 is a diagram showing a cross-sectional structure after formation of the contact electrode and the insulating protective film in the VCSEL manufacturing process.
 次に、図1を参照して、半導体積層膜5の側端部(段差部41,42,43)の少なくとも一部を覆うように感光性の有機樹脂の絶縁層31が形成される(ステップS160)。絶縁層31は、たとえば、スピンコートによって感光性ポリイミドを半導体基板11の全面に塗布した後、絶縁層31のパターンを露光して現像することによって形成される。現像後に感光性ポリイミドのパターンはキュアされる。 Next, referring to FIG. 1, a photosensitive organic resin insulating layer 31 is formed so as to cover at least a part of the side end portions ( step portions 41, 42, 43) of the semiconductor laminated film 5 (steps). S160). The insulating layer 31 is formed, for example, by applying photosensitive polyimide to the entire surface of the semiconductor substrate 11 by spin coating, and then exposing and developing the pattern of the insulating layer 31. After development, the photosensitive polyimide pattern is cured.
 絶縁層31を形成することによって段差部41,42,43が被覆され、P型半導体コンタクト層25の表面から半導体基板11の表面までが滑らかな平面または曲面の表面形状を有する絶縁層31によって接続されることになる。絶縁層31の表面が滑らかであることは、その上に形成される金属配線32が断線しないようにするために重要である。 By forming the insulating layer 31, the step portions 41, 42, 43 are covered, and the surface from the surface of the P-type semiconductor contact layer 25 to the surface of the semiconductor substrate 11 is connected by the insulating layer 31 having a smooth planar or curved surface shape. Will be. The smooth surface of the insulating layer 31 is important for preventing the metal wiring 32 formed thereon from being disconnected.
 また、絶縁層31の上面61と半導体積層膜5の上面との段差が小さくなるように、スピンコートによって形成された感光性有機樹脂膜の膜厚と、半導体積層膜5の膜厚とは等しくなるように形成するのが望ましい。この場合の膜厚が等しいとは、厳密に膜厚が一致していることを意味するのでなく、製造誤差を含めた範囲を意味している。 Further, the film thickness of the photosensitive organic resin film formed by spin coating and the film thickness of the semiconductor multilayer film 5 are equal so that the step between the upper surface 61 of the insulating layer 31 and the upper surface of the semiconductor multilayer film 5 becomes small. It is desirable to form so that it becomes. “Equal film thickness” in this case does not mean that the film thicknesses are strictly the same, but means a range including manufacturing errors.
 次に、アノード電極26と接続される金属配線32およびボンディングパッド33が蒸着によって形成される(ステップS170)。たとえば、金属配線32およびボンディングパッド33は、フォトリソグラフィーによるレジストパターンを利用したリフトオフによって形成される。カソード電極27と接続される金属配線(不図示)およびボンディングパッド(不図示)も同時に形成される。 Next, the metal wiring 32 and the bonding pad 33 connected to the anode electrode 26 are formed by vapor deposition (step S170). For example, the metal wiring 32 and the bonding pad 33 are formed by lift-off using a resist pattern by photolithography. A metal wiring (not shown) connected to the cathode electrode 27 and a bonding pad (not shown) are also formed at the same time.
 次に、ダイシングなどの手法によって半導体基板をチップ単位に分離する(ステップS180)。その際、ダイシングブレードの磨耗を抑え、またダイシングの衝撃がVCSEL素子部へ伝わることを抑制するため、ダイシングライン上の絶縁保護膜30は予め除去してあるのが望ましい。絶縁保護膜30の除去は、たとえば、フォトリソグラフィーによって形成したレジストパターンをマスクとしてエッチング処理を行うことによって実現できる。 Next, the semiconductor substrate is separated into chips by a technique such as dicing (step S180). At this time, in order to suppress wear of the dicing blade and to prevent the impact of dicing from being transmitted to the VCSEL element portion, it is desirable to remove the insulating protective film 30 on the dicing line in advance. The removal of the insulating protective film 30 can be realized, for example, by performing an etching process using a resist pattern formed by photolithography as a mask.
 [変形例]
 以下、図1のVCSELの複数の変形例を示し、これらの変形例と比較することによって図1のVCSEL構造の利点について説明する。なお、以下のいずれの変形例の場合においてもアノード電極26と電気的に接続されるボンディングパッド33は、半導体基板11の主面上に絶縁保護膜30を介在して形成されている。したがって、図1の場合と同様にボンディングパッド33の寄生容量は従来構造(特許文献1の図2)の場合よりも低減されている。
[Modification]
Hereinafter, a plurality of modified examples of the VCSEL of FIG. 1 will be shown, and the advantages of the VCSEL structure of FIG. 1 will be described by comparing with these modified examples. In any of the following modifications, the bonding pad 33 electrically connected to the anode electrode 26 is formed on the main surface of the semiconductor substrate 11 with the insulating protective film 30 interposed. Therefore, as in the case of FIG. 1, the parasitic capacitance of the bonding pad 33 is reduced as compared with the case of the conventional structure (FIG. 2 of Patent Document 1).
 図7は、第1の変形例によるVCSELの構造を模式的に示す断面図である。図7のVCSEL10Aは、半導体積層膜5の側端部に2段の段差部41A,43が設けられている点で図1のVCSEL10と異なる。 FIG. 7 is a cross-sectional view schematically showing the structure of a VCSEL according to the first modification. The VCSEL 10A of FIG. 7 is different from the VCSEL 10 of FIG. 1 in that two step portions 41A and 43 are provided at the side end of the semiconductor laminated film 5.
 具体的に、第1の段差部41Aは、半導体積層膜5の上面(P型半導体コンタクト層25の上面)からN型半導体コンタクト層12の途中まで到達する。第2の段差部43は、第1の段差部41Aの底面(N型半導体コンタクト層12の露出面)から半導体基板11にまで到達する。図7の第1の段差部41Aは、図1の第1の段差部41および第2の段差部42を1つにまとめたものと考えることができる。図7の第2の段差部43は、図1の第3の段差部43に対応する。図7のその他の点は、図1の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。 Specifically, the first step portion 41 </ b> A reaches from the upper surface of the semiconductor multilayer film 5 (upper surface of the P-type semiconductor contact layer 25) to the middle of the N-type semiconductor contact layer 12. The second step portion 43 reaches the semiconductor substrate 11 from the bottom surface of the first step portion 41A (the exposed surface of the N-type semiconductor contact layer 12). The first step portion 41A in FIG. 7 can be considered as a combination of the first step portion 41 and the second step portion 42 in FIG. The second step portion 43 in FIG. 7 corresponds to the third step portion 43 in FIG. Since the other points of FIG. 7 are the same as those of FIG. 1, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 上記の図7のVCSEL10Aの構造の場合、電流狭窄層23の酸化領域22に起因した寄生容量を抑制するために、第1の段差部41の上面(第1のメサ構造の天面)の面積を小さくすると、それに伴ってN型DBR層13の断面積(基板平行方向の断面の面積)も小さくなる。そうすると、VCSEL素子の抵抗値が大きくなりすぎてしまうので、あまり好ましくない(VCSEL素子の抵抗値は主としてDBR層を縦方向に流れる電流によって決まる)。 In the case of the structure of the VCSEL 10A of FIG. 7 described above, the area of the upper surface of the first step portion 41 (the top surface of the first mesa structure) is suppressed in order to suppress the parasitic capacitance caused by the oxidized region 22 of the current confinement layer 23. Accordingly, the cross-sectional area of the N-type DBR layer 13 (the cross-sectional area in the substrate parallel direction) is also reduced. Then, the resistance value of the VCSEL element becomes too large, which is not preferable (the resistance value of the VCSEL element is mainly determined by the current flowing in the DBR layer in the vertical direction).
 これに対して、図1のVCSEL10の場合には、半導体積層膜5の側端部に3段の段差部(特に第2の段差部42)を設けることによって、N型DBR層13の断面積をより大きくしている。これによって、VCSEL素子の抵抗値を減らすことができる。 On the other hand, in the VCSEL 10 of FIG. 1, the cross-sectional area of the N-type DBR layer 13 is provided by providing three step portions (particularly the second step portion 42) at the side end portion of the semiconductor multilayer film 5. Is larger. As a result, the resistance value of the VCSEL element can be reduced.
 図8は、第2の変形例によるVCSELの構造を模式的に示す断面図である。図8のVCSEL10Bは、半導体積層膜5の側端部に2段の段差部41,42Aが設けられている点で図1のVCSEL10と異なる。 FIG. 8 is a cross-sectional view schematically showing the structure of a VCSEL according to the second modification. The VCSEL 10B of FIG. 8 is different from the VCSEL 10 of FIG. 1 in that two step portions 41 and 42A are provided at the side end of the semiconductor laminated film 5.
 具体的に、第1の段差部41は、半導体積層膜5の上面(P型半導体コンタクト層25の上面)からN型DBR層13の途中まで到達する。第2の段差部42Aは、第1の段差部の41の底面(N型DBR層13の露出面)から半導体基板11にまで到達する。図8の第1の段差部41は、図1の第1の段差部41に対応する。図8の第2の段差部42Aは、図1の第2の段差部42および第3の段差部43を1つにまとめたものと考えることができる。 Specifically, the first step portion 41 reaches the middle of the N-type DBR layer 13 from the upper surface of the semiconductor stacked film 5 (upper surface of the P-type semiconductor contact layer 25). The second step portion 42A reaches the semiconductor substrate 11 from the bottom surface of the first step portion 41 (exposed surface of the N-type DBR layer 13). The first step 41 in FIG. 8 corresponds to the first step 41 in FIG. The second step portion 42A in FIG. 8 can be considered as a combination of the second step portion 42 and the third step portion 43 in FIG.
 さらに、図8のVCSEL10Bは、N型DBR層13の露出面(第1の段差部41の底面)からN型半導体コンタクト層12にまで到達する溝部49が形成されている点で図1のVCSEL10と異なる。図8のVCSEL10Bでは、溝部49の底面であるN型半導体コンタクト層12の露出面にカソード電極27が形成されている。図8のその他の点は、図1の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。 Further, the VCSEL 10B of FIG. 8 is provided with a groove 49 that reaches the N-type semiconductor contact layer 12 from the exposed surface of the N-type DBR layer 13 (the bottom surface of the first step portion 41). And different. In the VCSEL 10B of FIG. 8, the cathode electrode 27 is formed on the exposed surface of the N-type semiconductor contact layer 12, which is the bottom surface of the groove 49. Since the other points of FIG. 8 are the same as those of FIG. 1, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図8のVCSEL10Bの場合、素子の抵抗値は図1の場合と同程度に低減することができる。したがって、VCSEL素子の高速変調特性は、図1の場合と同程度に最適化することができる。しかしながら、図8のVCSEL10Bの場合には、N型半導体コンタクト層12の表面を露出させるために、溝部49を形成する必要がある。これに対して、図1のVCSEL10では、第2の段差部42を形成する際にN型半導体コンタクト層12を露出させているので、そのN型半導体コンタクト層12の露出面にカソード電極27を形成することができる。したがって、図8のように溝部49を形成する必要がないというメリットがある。 In the case of the VCSEL 10B of FIG. 8, the resistance value of the element can be reduced to the same extent as in the case of FIG. Therefore, the high-speed modulation characteristics of the VCSEL element can be optimized to the same extent as in FIG. However, in the case of the VCSEL 10B of FIG. 8, it is necessary to form the groove 49 in order to expose the surface of the N-type semiconductor contact layer 12. On the other hand, in the VCSEL 10 of FIG. 1, the N-type semiconductor contact layer 12 is exposed when the second step portion 42 is formed, so that the cathode electrode 27 is formed on the exposed surface of the N-type semiconductor contact layer 12. Can be formed. Therefore, there is an advantage that it is not necessary to form the groove portion 49 as shown in FIG.
 図9は、図1、図7、および図8のVCSELの素子構造のメリットおよびデメリットを表形式にまとめた図である。図9では、特許文献1(WO2013/176201)との比較も示されている。 FIG. 9 is a table summarizing the advantages and disadvantages of the VCSEL device structure of FIGS. 1, 7, and 8 in a tabular format. FIG. 9 also shows a comparison with Patent Document 1 (WO2013 / 176201).
 図9を参照して、ボンディングパッドの寄生容量に関して、特許文献1(WO2013/176201)の図2の場合には、パッド電極とN型DBR層とが絶縁層を挟んで対向しているため大きな寄生容量を有するという問題がある。これに対して、本願の図1、図7、および図8のいずれの場合も、ボンディングパッド33は、半導体基板11の主面上に絶縁保護膜30を介在して形成されているので、ボンディングパッド33の寄生容量は従来構造(特許文献1の図2)の場合よりも小さくなっている。 Referring to FIG. 9, regarding the parasitic capacitance of the bonding pad, in the case of FIG. 2 of Patent Document 1 (WO2013 / 176201), the pad electrode and the N-type DBR layer are opposed to each other with the insulating layer interposed therebetween. There is a problem of having parasitic capacitance. On the other hand, in any of FIGS. 1, 7, and 8 of the present application, the bonding pad 33 is formed on the main surface of the semiconductor substrate 11 with the insulating protective film 30 interposed therebetween. The parasitic capacitance of the pad 33 is smaller than that of the conventional structure (FIG. 2 of Patent Document 1).
 次に、VCSEL素子の抵抗について、図7の構造の場合、N型DBR層13の断面積が比較的小さくなるために、素子抵抗が大きくなりあまり好ましくない。その他の構造(本願の図1、図8および特許文献1の図2)の場合には、N型DBR層13の断面積を拡大することによって、素子抵抗を小さくすることができるのでより好ましい。 Next, regarding the resistance of the VCSEL element, in the case of the structure of FIG. 7, since the cross-sectional area of the N-type DBR layer 13 is relatively small, the element resistance is large, which is not preferable. In the case of other structures (FIGS. 1 and 8 of the present application and FIG. 2 of Patent Document 1), by increasing the cross-sectional area of the N-type DBR layer 13, the element resistance can be reduced, which is more preferable.
 上記の理由から、特許文献1の図2の場合には高速変調特性が劣化するために広帯域化が困難であるが、本願の図1、図7、および図8の場合には広帯域化が可能である。特に、電流狭窄層23の酸化領域22に起因した寄生容量を低減しつつ素子抵抗の調整も可能という点において図1および図8の構造が最適である。 For the above reason, in the case of FIG. 2 of Patent Document 1, it is difficult to widen the band because the high-speed modulation characteristics deteriorate, but in the case of FIGS. 1, 7, and 8 of the present application, it is possible to widen the band. It is. In particular, the structures shown in FIGS. 1 and 8 are optimal in that the element resistance can be adjusted while reducing the parasitic capacitance due to the oxidized region 22 of the current confinement layer 23.
 一方、半導体積層膜5の側端部に設けられた段差部の高さ(上面と底面との間の基板垂直方向の距離)の点で比較すると、特許文献1の図2の場合には段差部の高さを比較的低く抑えることができる。これに対して、図7および図8では半導体積層膜5の側端部の段差部の段数が2段であるために、1段あたりの段差部の高さが高くなっている。図1のVCSELの場合には、段差部が3段であるので、上記の場合と比較して中程度の段差部の高さとなっている。段差部の高さが高すぎると、絶縁層31の形成の際に段差部の被覆性が十分でなく好ましくない場合がある。 On the other hand, when compared in terms of the height of the step portion provided at the side end portion of the semiconductor laminated film 5 (distance in the substrate vertical direction between the top surface and the bottom surface), the step in the case of FIG. The height of the part can be kept relatively low. On the other hand, in FIG. 7 and FIG. 8, since the number of steps of the step portion at the side end of the semiconductor laminated film 5 is two, the height of the step portion per step is high. In the case of the VCSEL in FIG. 1, the stepped portion has three steps, so that the height of the stepped portion is medium compared with the above case. If the height of the stepped portion is too high, the coverage of the stepped portion may not be sufficient when the insulating layer 31 is formed.
 [効果]
 以上のとおり、第1の実施形態のVCSELによれば、半絶縁性の半導体基板11の主面上に半導体積層膜5(基板側から順にN型半導体コンタクト層12、N型DBR層13、活性領域17、電流狭窄層23、P型DBR層24、P型半導体コンタクト層25)が形成される。半導体積層膜5の側端部を覆うように有機樹脂の絶縁層31が形成される。さらに、ボンディングパッド33が半導体基板11上に直接または絶縁保護膜30を介在して形成され、このボンディングパッド33と、P型半導体コンタクト層25の上面に形成されたアノード電極26とが、絶縁層31の上に形成された金属配線32を介して接続される。
[effect]
As described above, according to the VCSEL of the first embodiment, the semiconductor laminated film 5 (the N-type semiconductor contact layer 12, the N-type DBR layer 13, the active layer in order from the substrate side) is formed on the main surface of the semi-insulating semiconductor substrate 11. Region 17, current confinement layer 23, P-type DBR layer 24, and P-type semiconductor contact layer 25) are formed. An insulating layer 31 made of an organic resin is formed so as to cover the side end portion of the semiconductor laminated film 5. Further, a bonding pad 33 is formed directly on the semiconductor substrate 11 or with an insulating protective film 30 interposed therebetween. The bonding pad 33 and the anode electrode 26 formed on the upper surface of the P-type semiconductor contact layer 25 are formed of an insulating layer. They are connected via metal wiring 32 formed on 31.
 上記構成によれば、ボンディングパッド33は、N型DBR層13またはN型半導体コンタクト層12と対向するように配置されていないので、ボンディングパッド33に起因した寄生容量を低減することができる。 According to the above configuration, since the bonding pad 33 is not disposed so as to face the N-type DBR layer 13 or the N-type semiconductor contact layer 12, the parasitic capacitance caused by the bonding pad 33 can be reduced.
 さらに、第1の実施形態のVCSELによれば、半導体積層膜5の側端部に2段以上の段差部が形成されている。第1の段差部41は、半導体積層膜5の上面から電流狭窄層23の端面が露出する位置まで到達し、最終段の段差部43は半導体基板11にまで到達する。 Furthermore, according to the VCSEL of the first embodiment, two or more step portions are formed at the side end portion of the semiconductor multilayer film 5. The first step portion 41 reaches from the upper surface of the semiconductor stacked film 5 to a position where the end face of the current confinement layer 23 is exposed, and the step portion 43 at the final stage reaches the semiconductor substrate 11.
 上記構成によれば、第1の段差部41の上面の面積(第1のメサの天面の面積)を小さくすることによって電流狭窄層23の酸化領域22に起因した寄生容量を抑制するとともに、第2の段差部の上面の面積(第2のメサの天面の面積)を大きくすることによってVCSEL素子の抵抗値を低減することができる。 According to the above configuration, by reducing the area of the upper surface of the first step portion 41 (the area of the top surface of the first mesa), the parasitic capacitance caused by the oxidized region 22 of the current confinement layer 23 is suppressed, The resistance value of the VCSEL element can be reduced by increasing the area of the upper surface of the second step portion (the area of the top surface of the second mesa).
 なお、上記の実施形態では、段差部の数が3段の例(図1)と2段の例(図7、図8)とが示されているが、段差部の数はこれらの例に限られず、2段以上であれば何段であってもよい。 In the above embodiment, an example in which the number of stepped portions is three steps (FIG. 1) and an example in which the number of stepped portions is two steps (FIGS. 7 and 8) are shown. The number of stages is not limited as long as it is two or more.
 上記の実施形態では、基板に近接する位置にN型層(N型半導体コンタクト層12、N型DBR層13)を設け、基板から離反する位置にP型層(P型半導体コンタクト層25、P型DBR層24)を設けている。これとは逆に、基板に近接する位置にP型層を設け、基板から離反する位置にN型層を設けてもよい。 In the above embodiment, an N-type layer (N-type semiconductor contact layer 12 and N-type DBR layer 13) is provided at a position close to the substrate, and a P-type layer (P-type semiconductor contact layer 25, P-type is provided at a position away from the substrate. A type DBR layer 24) is provided. On the contrary, a P-type layer may be provided at a position close to the substrate, and an N-type layer may be provided at a position away from the substrate.
 さらに、上記で説明した各特徴は、任意に組み合わせることが可能なことは言うまでもない。 Furthermore, it goes without saying that the features described above can be arbitrarily combined.
 <第2の実施形態>
 第2の実施形態では、第1の実施形態で説明したVCSEL素子の具体的な平面レイアウトの例について説明する。
<Second Embodiment>
In the second embodiment, an example of a specific planar layout of the VCSEL element described in the first embodiment will be described.
 [VCSELのレイアウト例]
 図10は、VCSELのレイアウト例を示す平面図である。図10では、アノード電極26、カソード電極27、第1の段差部41の上面、第2の段差部42の上面、第3の段差部43の上面、絶縁層31、ボンディングパッド33,35および金属配線32,34の各レイアウトが示されている。図解を容易にするために、ボンディングパッド33,35および金属配線32,34にハッチングを付している。
[VCSEL layout example]
FIG. 10 is a plan view illustrating a layout example of the VCSEL. 10, the anode electrode 26, the cathode electrode 27, the upper surface of the first step portion 41, the upper surface of the second step portion 42, the upper surface of the third step portion 43, the insulating layer 31, the bonding pads 33 and 35, and the metal Each layout of the wirings 32 and 34 is shown. For ease of illustration, the bonding pads 33 and 35 and the metal wirings 32 and 34 are hatched.
 図10を参照して、第1の段差部41の上面の形状は直径L1の円形である。本実施形態では、直径L1は20μmである。第1の段差部41の上面にはリング状のアノード電極26が設けられている。 Referring to FIG. 10, the shape of the upper surface of the first step portion 41 is a circle having a diameter L1. In the present embodiment, the diameter L1 is 20 μm. A ring-shaped anode electrode 26 is provided on the upper surface of the first step portion 41.
 第2の段差部42の上面に第1の段差部41の上面を併せた部分の形状は、直径L2の略円形である。本実施形態では、直径L2は56μmである。ただし、省スペースのために、カソード電極27に近接する部分の外形は直線状となっている(したがって、第2の段差部42の上面の外縁部の形状は、少なくとも一部において円弧状であるということができる)。 The shape of the portion where the upper surface of the first step portion 41 is combined with the upper surface of the second step portion 42 is a substantially circular shape having a diameter L2. In the present embodiment, the diameter L2 is 56 μm. However, in order to save space, the outer shape of the portion close to the cathode electrode 27 is linear (therefore, the shape of the outer edge portion of the upper surface of the second step portion 42 is at least partially arc-shaped. Can be said).
 上記のように略円形の形状とすることによって、電流がより均一に流れるようになり電流集中を防ぐことができる。さらに、有機樹脂の絶縁層31に対する応力集中を少なくすることができる。 As described above, the substantially circular shape allows the current to flow more uniformly and prevents current concentration. Furthermore, the stress concentration of the organic resin on the insulating layer 31 can be reduced.
 第3の段差部43の上面に第1および第2の段差部41,42の上面を併せた部分の形状は、円形の形状と略正方形の形状とを連結した形状となっている。本実施形態の場合、円形部分の直径L3は76μmである。 The shape of the portion in which the upper surfaces of the first and second step portions 41 and 42 are combined with the upper surface of the third step portion 43 is a shape obtained by connecting a circular shape and a substantially square shape. In the present embodiment, the diameter L3 of the circular portion is 76 μm.
 有機樹脂の絶縁層31は、第2の段差部42の上面の全てを覆っているが、第3の段差部43の上面の一部分のみを覆っている。第3の段差部43上面のうち略正方形の部分の大半、特にカソード電極27が設けられている部分は、絶縁層31によって覆われていない。 The organic resin insulating layer 31 covers the entire upper surface of the second step portion 42, but covers only a part of the upper surface of the third step portion 43. Most of the substantially square portion of the upper surface of the third step portion 43, in particular, the portion where the cathode electrode 27 is provided is not covered with the insulating layer 31.
 ボンディングパッド33,35は、半導体基板が露出した部分に設けられており、その形状は一辺L8の略正方形の形状である。本実施形態の場合、辺L8の長さは65μmである。 The bonding pads 33 and 35 are provided in a portion where the semiconductor substrate is exposed, and the shape thereof is a substantially square shape with one side L8. In the present embodiment, the length of the side L8 is 65 μm.
 ボンディングパッド33は、幅L4の金属配線32を介してアノード電極26と接続される。本実施形態の場合、金属配線32の幅L4は18μmであり、金属配線32の長さ(第1の段差部41の外縁部からボンディングパッド33の外縁部まで)は45μmである。また、ボンディングパッド35は、金属配線34を介してカソード電極27と接続される。 The bonding pad 33 is connected to the anode electrode 26 through the metal wiring 32 having a width L4. In the present embodiment, the width L4 of the metal wiring 32 is 18 μm, and the length of the metal wiring 32 (from the outer edge portion of the first step portion 41 to the outer edge portion of the bonding pad 33) is 45 μm. The bonding pad 35 is connected to the cathode electrode 27 via the metal wiring 34.
 図11は、図10の切断線XI-XIに沿った断面図である。図10および図11を参照して、第2の実施形態の場合、第1および第2の段差部41,42の端面は半導体基板に垂直であるが、第3の段差部43の端面は半導体基板に対して傾斜している。 FIG. 11 is a cross-sectional view taken along the cutting line XI-XI in FIG. Referring to FIGS. 10 and 11, in the case of the second embodiment, the end surfaces of the first and second step portions 41 and 42 are perpendicular to the semiconductor substrate, but the end surface of the third step portion 43 is a semiconductor. Inclined with respect to the substrate.
 また、第2の実施形態の場合、第2の段差部42の上面の内縁から外縁までの長さL5は18μmである。平面視して、第2の段差部の端面から第3の段差部43の端面の下端までの長さL6は5μmである。第3の段差部43の端面の下端からボンディングパッド33までの長さL7は10μmである。 Further, in the case of the second embodiment, the length L5 from the inner edge to the outer edge of the upper surface of the second step portion 42 is 18 μm. In a plan view, the length L6 from the end surface of the second step portion to the lower end of the end surface of the third step portion 43 is 5 μm. A length L7 from the lower end of the end surface of the third step portion 43 to the bonding pad 33 is 10 μm.
 第1の段差部41の高さH1は3.7μmであり、第1の段差部41の高さと第2の段差部42の高さの合計値H2は9.0μmである。第1~第3の段差部41,42,43の高さの合計値H3は13.0μmである。 The height H1 of the first step portion 41 is 3.7 μm, and the total value H2 of the height of the first step portion 41 and the height of the second step portion 42 is 9.0 μm. The total height H3 of the first to third step portions 41, 42, 43 is 13.0 μm.
 [VCSELの抵抗値]
 図12は、第2の段差部の上面の大きさを変更したときのVCSEL素子の抵抗値の変化を示す図である。図12において、横軸は、第2の段差部42の上面の外縁部の直径(図10の直径L2に相当する)を表し、縦軸はVCSEL素子の抵抗値を表す。
[Resistance value of VCSEL]
FIG. 12 is a diagram illustrating a change in the resistance value of the VCSEL element when the size of the upper surface of the second step portion is changed. In FIG. 12, the horizontal axis represents the diameter of the outer edge portion of the upper surface of the second step portion 42 (corresponding to the diameter L2 in FIG. 10), and the vertical axis represents the resistance value of the VCSEL element.
 図10、図11で示したVCSEL素子の構造の場合、直径L2は56μmであり、第2の段差部42の上面の外縁部で囲まれた部分の面積は2552μm2である。図12に示すように、第2の段差部42の上面の外縁部の直径L2を上記の値よりも小さくすると、VCSEL素子の抵抗値はしだいに増大する。また、第2の段差部43の上面外縁部で囲まれた部分の面積が2000μm2以上であれば、抵抗値がほぼ最小値で飽和する傾向にあることがわかる。したがって、第2の段差部43の上面外縁部で囲まれた部分の面積は、2000μm2以上であるのが望ましい。 In the case of the VCSEL element structure shown in FIGS. 10 and 11, the diameter L2 is 56 μm, and the area of the portion surrounded by the outer edge of the upper surface of the second step portion 42 is 2552 μm 2 . As shown in FIG. 12, when the diameter L2 of the outer edge portion of the upper surface of the second step portion 42 is made smaller than the above value, the resistance value of the VCSEL element gradually increases. It can also be seen that if the area of the portion surrounded by the outer edge of the upper surface of the second stepped portion 43 is 2000 μm 2 or more, the resistance value tends to saturate at a substantially minimum value. Therefore, the area of the portion surrounded by the outer edge of the upper surface of the second stepped portion 43 is desirably 2000 μm 2 or more.
 [VCSELの寄生容量]
 図13は、第2の段差部の上面の大きさを変更したときの寄生容量の変化を示す図である。図13において、横軸は、第2の段差部42の上面の外縁部の直径(図10の直径L2に相当する)を表し、縦軸は、金属配線32の部分によって生じる寄生容量の値を示す。具体的には、図10および図11に示すVCSELの素子構造において、第2の段差部42の上面と対向する部分の静電容量(図12の実線)を計算によって求めている。この対向部分の幅はL4であり、対向部分の長さは(L2-L1)/2であり、絶縁層31の厚みは3.7μmである。L1=20μm、L4=18μmで固定されている(L2:可変)。さらに、絶縁層31の比誘電率を3.0としている。
[Parasitic capacitance of VCSEL]
FIG. 13 is a diagram illustrating a change in parasitic capacitance when the size of the upper surface of the second step portion is changed. In FIG. 13, the horizontal axis represents the diameter of the outer edge portion of the upper surface of the second step portion 42 (corresponding to the diameter L <b> 2 in FIG. 10), and the vertical axis represents the value of the parasitic capacitance generated by the metal wiring 32 portion. Show. Specifically, in the VCSEL device structure shown in FIGS. 10 and 11, the capacitance (solid line in FIG. 12) of the portion facing the upper surface of the second step portion 42 is obtained by calculation. The width of the facing portion is L4, the length of the facing portion is (L2-L1) / 2, and the thickness of the insulating layer 31 is 3.7 μm. It is fixed at L1 = 20 μm and L4 = 18 μm (L2: variable). Furthermore, the dielectric constant of the insulating layer 31 is set to 3.0.
 さらに、図13では、金属配線32およびボンディングパッド33がN型DBR層と対向している従来構造の場合の静電容量が破線で示されている。この従来構造の場合の静電容量の計算では、金属配線32の幅L4を18μmとし、長さを45μmとしている。ボンディングパッド33の面積を65μm×65μmとしている。さらに、これらの対向部分の絶縁層31の厚みを2.0μmとしている。 Further, in FIG. 13, the capacitance in the case of a conventional structure in which the metal wiring 32 and the bonding pad 33 are opposed to the N-type DBR layer is indicated by a broken line. In the calculation of the capacitance in the case of this conventional structure, the width L4 of the metal wiring 32 is 18 μm and the length is 45 μm. The area of the bonding pad 33 is 65 μm × 65 μm. Furthermore, the thickness of the insulating layer 31 at these opposing portions is set to 2.0 μm.
 図13に示すように、第2の段差部42の上面外縁部の直径L2を300μmまで増大しても、寄生容量の大きさは従来構造の1/2であり、本実施形態のVCSEL素子の構造によって寄生容量を十分に低減できることがわかる。 As shown in FIG. 13, even when the diameter L2 of the outer edge of the upper surface of the second step portion 42 is increased to 300 μm, the size of the parasitic capacitance is ½ that of the conventional structure. It can be seen that the structure can sufficiently reduce the parasitic capacitance.
 今回開示された実施形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 5 半導体積層膜、11 半導体基板、12 N型半導体コンタクト層、13 N型DBR層、14,16 クラッド層、15 活性層、17 活性領域、21 未酸化領域、22 酸化領域、23 電流狭窄層、24 P型DBR層、25 P型半導体コンタクト層、26 アノード電極、27 カソード電極、30 絶縁保護膜、31 絶縁層、32,34 金属配線、33,35 ボンディングパッド、41,41A,42,42A,43 段差部、49 溝部、61 絶縁層の上面、62 絶縁層の端面。 5 semiconductor laminated film, 11 semiconductor substrate, 12 N-type semiconductor contact layer, 13 N-type DBR layer, 14, 16 cladding layer, 15 active layer, 17 active region, 21 unoxidized region, 22 oxidized region, 23 current confinement layer, 24 P-type DBR layer, 25 P-type semiconductor contact layer, 26 anode electrode, 27 cathode electrode, 30 insulation protective film, 31 insulation layer, 32, 34 metal wiring, 33, 35 bonding pad, 41, 41A, 42, 42A, 43 steps, 49 grooves, 61 top surface of insulating layer, 62 end surface of insulating layer.

Claims (9)

  1.  垂直共振器面発光レーザであって、
     絶縁性または半絶縁性の基板と、
     前記基板上に設けられた半導体積層膜とを備え、
     前記半導体積層膜は、前記基板側から順に、第1のDBR(Distributed Bragg Reflector)層、活性層、および第2のDBR層を備え、
     前記半導体積層膜は、さらに、前記第1のDBR層と前記活性層との間、前記第2のDBR層と前記活性層との間、前記第1のDBR層の内部、および前記第2のDBR層の内部のうちの少なくとも1つに形成された少なくとも1つの電流狭窄層を備え、
     前記垂直共振器面発光レーザは、さらに、
     前記半導体積層膜の側端部の少なくとも一部を覆い、上面および端面を有する絶縁層を備え、前記絶縁層の前記上面は前記半導体積層膜の上面に接続し前記基板に沿って延在し、前記絶縁層の前記端面は前記絶縁層の前記上面に接続し前記基板に向かって延在し、
     前記垂直共振器面発光レーザは、さらに、
     前記第1のDBR層と電気的に接続された第1のコンタクト電極と、
     前記半導体積層膜の上面に設けられた第2のコンタクト電極と、
     前記基板上に直接または絶縁膜を介在して設けられたボンディングパッドと、
     前記絶縁層の前記上面および前記端面上に設けられ、前記第2のコンタクト電極と前記ボンディングパッドとを接続する金属配線とを備える、垂直共振器面発光レーザ。
    A vertical cavity surface emitting laser,
    An insulating or semi-insulating substrate;
    A semiconductor laminated film provided on the substrate,
    The semiconductor multilayer film includes, in order from the substrate side, a first DBR (Distributed Bragg Reflector) layer, an active layer, and a second DBR layer,
    The semiconductor laminated film further includes a gap between the first DBR layer and the active layer, a gap between the second DBR layer and the active layer, an inside of the first DBR layer, and the second DBR layer. Comprising at least one current confinement layer formed in at least one of the interiors of the DBR layer;
    The vertical cavity surface emitting laser further comprises:
    Covering at least a part of the side end of the semiconductor multilayer film, and comprising an insulating layer having an upper surface and an end surface; the upper surface of the insulating layer is connected to the upper surface of the semiconductor multilayer film and extends along the substrate; The end surface of the insulating layer is connected to the upper surface of the insulating layer and extends toward the substrate;
    The vertical cavity surface emitting laser further comprises:
    A first contact electrode electrically connected to the first DBR layer;
    A second contact electrode provided on the upper surface of the semiconductor multilayer film;
    A bonding pad provided directly or via an insulating film on the substrate;
    A vertical cavity surface emitting laser provided on the upper surface and the end surface of the insulating layer, and comprising a metal wiring connecting the second contact electrode and the bonding pad.
  2.  前記半導体積層膜の前記側端部は2段以上の段差部を有し、
     第1の段差部は、前記半導体積層膜の上面から前記少なくとも1つの電流狭窄層の端面が露出する位置まで到達し、
     最終段の段差部は前記基板にまで到達し、前記最終段の段差部の底面は、前記半導体積層膜と前記基板との界面の延長面上にあるか、その延長面よりも前記基板の裏面に近い位置にある、請求項1に記載の垂直共振器面発光レーザ。
    The side end portion of the semiconductor laminated film has two or more step portions,
    The first step portion reaches from the upper surface of the semiconductor multilayer film to a position where the end face of the at least one current confinement layer is exposed,
    The step portion of the final stage reaches the substrate, and the bottom surface of the step portion of the final stage is on the extended surface of the interface between the semiconductor laminated film and the substrate, or the back surface of the substrate is more than the extended surface. The vertical cavity surface emitting laser according to claim 1, wherein the vertical cavity surface emitting laser is at a position close to.
  3.  前記半導体積層膜の前記側端部は、前記第1の段差部、第2の段差部、および前記最終段の第3の段差部を含む3段の段差部を有する、請求項2に記載の垂直共振器面発光レーザ。 The said side edge part of the said semiconductor laminated film has a three-step level | step difference part containing the said 1st level | step-difference part, a 2nd level | step-difference part, and the said 3rd level | step-difference part of the last stage of Claim 2. Vertical cavity surface emitting laser.
  4.  前記第1および第2の段差部の端面は、前記基板と垂直である、請求項3に記載の垂直共振器面発光レーザ。 4. The vertical cavity surface emitting laser according to claim 3, wherein end surfaces of the first and second step portions are perpendicular to the substrate.
  5.  前記基板を平面視して、前記第2の段差部の上面の外縁部の形状は、少なくとも一部において円弧状である、請求項3または4に記載の垂直共振器面発光レーザ。 5. The vertical cavity surface emitting laser according to claim 3, wherein the shape of the outer edge portion of the upper surface of the second stepped portion is an arc shape at least partially when the substrate is viewed in plan.
  6.  前記半導体積層膜は、前記基板と前記第1のDBR層との間に第1の半導体コンタクト層をさらに備え、
     前記第2の段差部は、前記第1の半導体コンタクト層の途中まで到達し、
     前記第1のコンタクト電極は、前記第2の段差部の底面上に設けられる、請求項3~5のいずれか1項に記載の垂直共振器面発光レーザ。
    The semiconductor stacked film further includes a first semiconductor contact layer between the substrate and the first DBR layer,
    The second stepped portion reaches halfway through the first semiconductor contact layer,
    6. The vertical cavity surface emitting laser according to claim 3, wherein the first contact electrode is provided on a bottom surface of the second step portion.
  7.  前記基板を平面視して、前記第2の段差部の上面の外縁部によって囲まれた部分の面積は2000μm2以上である、請求項3~6のいずれか1項に記載の垂直共振器面発光レーザ。 The vertical resonator surface according to any one of claims 3 to 6, wherein an area of a portion surrounded by an outer edge portion of the upper surface of the second stepped portion in a plan view is 2000 μm 2 or more. Light emitting laser.
  8.  前記ボンディングパッドは、前記基板上に前記絶縁膜を介在して設けられ、
     前記絶縁膜は、前記第1および第2のコンタクト電極の部分を除いて、前記基板の表面が露出している部分および前記半導体積層膜の上面および側端部を覆い、前記絶縁膜は、無機材料によって形成され、
     前記絶縁層は、有機樹脂材料によって形成され、前記絶縁膜を介在して前記半導体積層膜の前記側端部の少なくとも一部を覆っている、請求項1~7のいずれか1項に記載の垂直共振器面発光レーザ。
    The bonding pad is provided on the substrate with the insulating film interposed therebetween,
    The insulating film covers a portion where the surface of the substrate is exposed, and an upper surface and a side edge of the semiconductor laminated film, except for the first and second contact electrodes, and the insulating film is inorganic. Formed by material,
    The insulating layer according to any one of claims 1 to 7, wherein the insulating layer is formed of an organic resin material and covers at least a part of the side end portion of the semiconductor multilayer film with the insulating film interposed therebetween. Vertical cavity surface emitting laser.
  9.  絶縁性または半絶縁性の基板と、
     前記基板上に形成された半導体積層膜とを備え、
     前記半導体積層膜は、前記基板から順に、第1の半導体コンタクト層、第1のDBR(Distributed Bragg Reflector)層、活性層、および第2のDBR層を備え、
     前記半導体積層膜は、さらに、前記第1のDBR層と前記活性層との間、前記第2のDBR層と前記活性層との間、前記第1のDBR層の内部、および前記第2のDBR層の内部のうちの少なくとも1つに形成された少なくとも1つの電流狭窄層を備え、
     前記半導体積層膜の側端部は、3段の段差部を有し、
     第1の段差部は、前記半導体積層膜の上面から前記少なくとも1つの電流狭窄層の端面が露出する位置まで到達しているが、前記第1の半導体コンタクト層まで到達しておらず、
     第2の段差部は、前記第1の段差部の底面から前記第1の半導体コンタクト層の途中まで到達し、
     第3の段差部は、前記第2の段差部の底面から前記基板まで到達し、
     さらに、前記第2の段差部の底面上に設けられた第1のコンタクト電極と、
     前記半導体積層膜の上面に設けられた第2のコンタクト電極とを備える、垂直共振器面発光レーザ。
    An insulating or semi-insulating substrate;
    A semiconductor multilayer film formed on the substrate,
    The semiconductor laminated film includes, in order from the substrate, a first semiconductor contact layer, a first DBR (Distributed Bragg Reflector) layer, an active layer, and a second DBR layer,
    The semiconductor laminated film further includes a gap between the first DBR layer and the active layer, a gap between the second DBR layer and the active layer, an inside of the first DBR layer, and the second DBR layer. Comprising at least one current confinement layer formed in at least one of the interiors of the DBR layer;
    The side end portion of the semiconductor multilayer film has three steps.
    The first step portion reaches the position where the end face of the at least one current confinement layer is exposed from the upper surface of the semiconductor multilayer film, but does not reach the first semiconductor contact layer,
    The second step portion reaches from the bottom surface of the first step portion to the middle of the first semiconductor contact layer,
    The third step portion reaches the substrate from the bottom surface of the second step portion,
    A first contact electrode provided on a bottom surface of the second step portion;
    A vertical cavity surface emitting laser comprising: a second contact electrode provided on an upper surface of the semiconductor multilayer film.
PCT/JP2017/018674 2016-06-07 2017-05-18 Vertical-cavity surface-emitting laser WO2017212887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-113288 2016-06-07
JP2016113288 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017212887A1 true WO2017212887A1 (en) 2017-12-14

Family

ID=60577847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018674 WO2017212887A1 (en) 2016-06-07 2017-05-18 Vertical-cavity surface-emitting laser

Country Status (2)

Country Link
TW (1) TW201743523A (en)
WO (1) WO2017212887A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809621A (en) * 2018-06-12 2018-11-13 五邑大学 The GCCS determination methods of three node VCSEL networks under a kind of delayed coupling
JP2019153707A (en) * 2018-03-05 2019-09-12 富士ゼロックス株式会社 Surface emitting semiconductor laser
JP2019153706A (en) * 2018-03-05 2019-09-12 富士ゼロックス株式会社 Surface emitting semiconductor laser and manufacturing method thereof
CN113809035A (en) * 2020-06-16 2021-12-17 株式会社村田制作所 Semiconductor device with a plurality of semiconductor chips
CN114614340A (en) * 2022-05-12 2022-06-10 山东大学 Coplanar electrode vertical cavity surface emitting laser and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434710B2 (en) * 2019-02-07 2024-02-21 富士フイルムビジネスイノベーション株式会社 Optical semiconductor element, optical semiconductor device, optical transmission system, and method for manufacturing optical semiconductor device
TWI844071B (en) * 2022-08-11 2024-06-01 兆勁科技股份有限公司 Process method and manufacturing structure of high power surface emitting laser with low series resistance structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263388A (en) * 1990-03-13 1991-11-22 Nec Corp Optical semiconductor element and manufacture thereof
JP2007294741A (en) * 2006-04-26 2007-11-08 Ricoh Co Ltd Surface-emitting semiconductor laser, optical transmission module, and optical transmission system
JP2015099870A (en) * 2013-11-20 2015-05-28 富士ゼロックス株式会社 Surface-emitting type semiconductor laser, surface-emitting type semiconductor laser array, method for manufacturing surface-emitting type semiconductor laser, surface-emitting type semiconductor laser device, optical transmission device and information processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263388A (en) * 1990-03-13 1991-11-22 Nec Corp Optical semiconductor element and manufacture thereof
JP2007294741A (en) * 2006-04-26 2007-11-08 Ricoh Co Ltd Surface-emitting semiconductor laser, optical transmission module, and optical transmission system
JP2015099870A (en) * 2013-11-20 2015-05-28 富士ゼロックス株式会社 Surface-emitting type semiconductor laser, surface-emitting type semiconductor laser array, method for manufacturing surface-emitting type semiconductor laser, surface-emitting type semiconductor laser device, optical transmission device and information processor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153707A (en) * 2018-03-05 2019-09-12 富士ゼロックス株式会社 Surface emitting semiconductor laser
JP2019153706A (en) * 2018-03-05 2019-09-12 富士ゼロックス株式会社 Surface emitting semiconductor laser and manufacturing method thereof
JP7147184B2 (en) 2018-03-05 2022-10-05 富士フイルムビジネスイノベーション株式会社 surface emitting semiconductor laser
CN108809621A (en) * 2018-06-12 2018-11-13 五邑大学 The GCCS determination methods of three node VCSEL networks under a kind of delayed coupling
WO2019237730A1 (en) * 2018-06-12 2019-12-19 五邑大学 Gccs determination method for three-node vcsel network under delay coupling
CN113809035A (en) * 2020-06-16 2021-12-17 株式会社村田制作所 Semiconductor device with a plurality of semiconductor chips
CN113809035B (en) * 2020-06-16 2024-06-04 株式会社村田制作所 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN114614340A (en) * 2022-05-12 2022-06-10 山东大学 Coplanar electrode vertical cavity surface emitting laser and preparation method thereof

Also Published As

Publication number Publication date
TW201743523A (en) 2017-12-16

Similar Documents

Publication Publication Date Title
WO2017212887A1 (en) Vertical-cavity surface-emitting laser
US6014400A (en) Surface-emitting laser and a fabrication method thereof
JP4721513B2 (en) Semiconductor structure and manufacturing method thereof
KR101148287B1 (en) Vcsel having an air gap and protective coating
JP4184769B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
US8189642B1 (en) VCSEL semiconductor device
CN211929898U (en) Vertical cavity surface emitting laser device
US9444223B2 (en) Surface-emitting semiconductor laser device and method for producing the same
US10958042B2 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
US8027370B2 (en) Semiconductor device
US8228964B2 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
JP2014508420A (en) P-type isolation region adjacent to the facet of a semiconductor quantum cascade laser
WO2017212888A1 (en) Semiconductor device and production method therefor
JP3188658B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH06314854A (en) Surface light emitting element and its manufacture
JP2007165798A (en) Semiconductor laser element
JP6004063B1 (en) Manufacturing method of surface emitting semiconductor laser device
JP4224981B2 (en) Surface emitting semiconductor laser device and method for manufacturing the same
JPWO2007135772A1 (en) Light emitting element
JP7297875B2 (en) Gain-guided semiconductor laser and manufacturing method thereof
JP2009188238A (en) Surface light-emitting laser and method of manufacturing the same
US10312667B2 (en) Quantum cascade laser
US11539188B2 (en) Surface emitting laser and method of manufacturing the same
JP2019016628A (en) Optical semiconductor element
JP2019153719A (en) Surface emitting semiconductor laser and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP