WO2023237838A1 - Procédé de fabrication d'un reservoir pour le stockage d'un fluide sous pression et reservoir ainsi obtenu - Google Patents
Procédé de fabrication d'un reservoir pour le stockage d'un fluide sous pression et reservoir ainsi obtenu Download PDFInfo
- Publication number
- WO2023237838A1 WO2023237838A1 PCT/FR2023/050810 FR2023050810W WO2023237838A1 WO 2023237838 A1 WO2023237838 A1 WO 2023237838A1 FR 2023050810 W FR2023050810 W FR 2023050810W WO 2023237838 A1 WO2023237838 A1 WO 2023237838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ribbons
- preform
- composite
- thermoplastic
- ribbon
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 43
- 239000012530 fluid Substances 0.000 title claims abstract description 19
- 239000002131 composite material Substances 0.000 claims abstract description 127
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 101
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 68
- 239000004753 textile Substances 0.000 claims abstract description 62
- 238000001816 cooling Methods 0.000 claims abstract description 12
- 238000009954 braiding Methods 0.000 claims abstract description 9
- 238000005520 cutting process Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 229920000571 Nylon 11 Polymers 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 45
- 239000000835 fiber Substances 0.000 claims description 39
- 238000011955 best available control technology Methods 0.000 claims description 27
- 239000004952 Polyamide Substances 0.000 claims description 26
- 229920002647 polyamide Polymers 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 26
- 238000007596 consolidation process Methods 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- 239000001257 hydrogen Substances 0.000 claims description 23
- 238000003860 storage Methods 0.000 claims description 20
- 238000004804 winding Methods 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 13
- 239000004917 carbon fiber Substances 0.000 claims description 13
- 230000009477 glass transition Effects 0.000 claims description 12
- 150000002431 hydrogen Chemical class 0.000 claims description 9
- 229910010272 inorganic material Inorganic materials 0.000 claims description 7
- 239000011147 inorganic material Substances 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229920006012 semi-aromatic polyamide Polymers 0.000 claims description 6
- 239000004953 Aliphatic polyamide Substances 0.000 claims description 5
- 229920003231 aliphatic polyamide Polymers 0.000 claims description 5
- 239000012783 reinforcing fiber Substances 0.000 claims description 5
- 229920002748 Basalt fiber Polymers 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 239000012815 thermoplastic material Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- 238000007789 sealing Methods 0.000 description 17
- 238000003466 welding Methods 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 11
- 230000003014 reinforcing effect Effects 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- 230000002787 reinforcement Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 238000010025 steaming Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229920006375 polyphtalamide Polymers 0.000 description 6
- 238000004078 waterproofing Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000009730 filament winding Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000004954 Polyphthalamide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229920006135 semi-crystalline thermoplastic polymer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/86—Incorporated in coherent impregnated reinforcing layers, e.g. by winding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
- B29B11/16—Making preforms characterised by structure or composition comprising fillers or reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
- B29C53/58—Winding and joining, e.g. winding spirally helically
- B29C53/581—Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material
- B29C53/582—Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material comprising reinforcements, e.g. wires, threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
- B29C53/58—Winding and joining, e.g. winding spirally helically
- B29C53/60—Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
- B29C53/602—Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
- B29C53/58—Winding and joining, e.g. winding spirally helically
- B29C53/60—Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
- B29C53/68—Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels with rotatable winding feed member
- B29C53/70—Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels with rotatable winding feed member and moving axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7154—Barrels, drums, tuns, vats
- B29L2031/7156—Pressure vessels
Definitions
- the invention relates to a tank for storing a fluid under pressure, in particular hydrogen, comprising an elongated textile element, and its manufacturing method.
- the invention relates to a tank comprising an elongated textile element specific for the storage of gas, in particular compressed gas at high pressure, and its manufacturing method.
- batteries in electric or hybrid vehicles usually represent between 10 and 30% of the vehicle's weight. This excess weight causes a certain number of disadvantages, including in particular excess consumption of fuel or energy.
- the electric vehicle still suffers today from several problems, namely the autonomy of the battery, the use in these batteries of rare earths, the resources of which are not inexhaustible as well as a problem of production of electricity in different countries to be able to recharge the batteries.
- Hydrogen therefore represents an alternative to the electric battery, since hydrogen can be transformed into electricity using a fuel cell and thus power electric vehicles.
- Hydrogen tanks are generally made up of a metallic or polymeric envelope (also called a liner), which must prevent the diffusion of hydrogen outside the envelope.
- This first envelope must itself be protected by a second envelope (generally made of composite materials) intended to support the internal pressure of the tank (for example, 700 bars) and resistant to possible shocks or heat sources.
- the tank has a valve system, which must also be safe.
- thermoplastic resin bladder called a liner or sealing sheath
- a reinforcing structure made up of fibers (glass, aramid, carbon) impregnated with thermosetting resin, called sheath or reinforcing layer.
- This type of tank makes it possible to work at much higher pressures while reducing the mass of the tank and avoiding the risk of explosive rupture in the event of severe external attacks. This is how a pressure of 70 MPa (700 bars) has practically become the current standard.
- the sealing layer and the reinforcing layer are made of different materials, which do not adhere to each other, often responsible for the collapse of the sealing layer, when simultaneously, on the one hand there is an accumulation of gas at the interface between the sealing layer and the reinforcing layer and on the other hand, a drop in the internal pressure of the tank.
- the drying of type IV tanks which takes place after the proof test under water pressure, is long and expensive, because it can only be done under vacuum due to the risk of collapse of the layer. waterproofing.
- type V tanks which are based on the use of the same polymer for the sealing layer and for the matrix of the reinforcing layer, or at least a polymer compatible with that composing the matrix of the composite (so-called type 4.5 tanks), so as to guarantee excellent and durable weldability between these two layers, thus making it possible to obtain a one-piece tank.
- type 4.5 tanks which are based on the use of the same polymer for the sealing layer and for the matrix of the reinforcing layer, or at least a polymer compatible with that composing the matrix of the composite (so-called type 4.5 tanks), so as to guarantee excellent and durable weldability between these two layers, thus making it possible to obtain a one-piece tank.
- This type of tank is still at the R&D stage.
- thermosetting resins in particular of the epoxy type, are generally microcracked, after the curing of the thermosetting resin, or even after having undergone a certain number of pressure/depression cycles, induced by the cycles filling/draining, which causes great variability, or even a loss of mechanical strength. In anticipation of this drop in performance over time, it is therefore necessary to increase the carbon fiber content and therefore the weight and cost of the tank.
- thermosetting resins in particular epoxy
- microcracking harms the impermeability of the composite reinforcement, which requires the use of a thick waterproofing layer inside the tank (ie type IV tank).
- thermosetting resins particularly epoxy
- microcracking harms the impermeability of the composite reinforcement, which requires the use of a thick waterproofing layer inside the tank (ie type IV tank).
- current tanks, type IV use reinforcing layers of thermosetting resins, particularly epoxy, which are not recyclable.
- Type IV tanks despite the improvements made to Type IV tanks, they still have disadvantages. In particular, it is desired to accelerate the speed of filling the tank. However, the temperature resistance of gas tanks, particularly hydrogen tanks, is too low with current solutions. Accelerating the speed of filling the tank would be an advantage, particularly economically for the consumer, in particular without having to additionally cool the hydrogen to -60°C before filling.
- PPA polyphthalamide
- Tg glass transition temperature
- this type of resin being thermoplastic, it would make it possible to obtain an easily recyclable tank.
- the thermoplastic nature of the resin would make it possible to reduce the level of microcracking of the composite envelope, thus strengthening its mechanical resistance and reducing the variability of this mechanical resistance, which would make it possible to significantly reduce the quantity of carbon fibers used and therefore the cost and the carbon footprint of the type V tank compared to those of type IV.
- the semi-crystalline nature of the resin would increase its tightness to gases, and in particular to hydrogen. Consequently, the composite envelope would contribute to the impermeability of the tank and therefore make it possible to reduce the thickness of the waterproofing layer and therefore the cost and weight of the internal waterproofing layer of the tank.
- the tank comprises inserts molded in aliphatic polyamide type resin, of low Tg, typically of Tg of the order of 50°C
- said residual stresses can lead to deformation of the inserts, preventing the complete manufacture of the tank and in particular the fixing the bases closing the tank.
- the tank is type V (or 4.5, that is to say the polymer making up the composite matrix is of a different nature from that of the sealing layer, but the two polymers remain compatible and weldable to each other) and that it comprises a sealing layer of low Tg polyamide, in particular of the aliphatic polyamide type
- the residual stresses can lead to decohesion within the composite reinforcing layer itself.
- conformable composite reservoirs that is to say reservoirs that can be inserted into volumes of complex and/or narrow shape, according to a at least three dimensions, such as, for example, the volume of a battery pack.
- One of the most promising types of conformable tank is composed of an assembly of small diameter composite tubes (typically with a diameter ⁇ 200mm) linked together by pipes.
- current processes allow the manufacture of tanks in one piece, typically 60 liters, therefore having a large footprint and at least impossible to insert into a battery pack, but are not suitable for the manufacture of small diameter tubular tanks.
- tanks with good mechanical strength at high temperatures, which are recyclable and conformable, have good gas tightness, and are easy to manufacture are currently sought after. These tanks would thus make it possible to store hydrogen but also any type of gas under pressure, and in particular under high pressure.
- a first step i) of manufacturing an elongated and unconsolidated textile preform comprising several layers of at least one thermoplastic composite ribbon, preferably several layers of ribbons, each layer comprising a ribbon wound at a given angle, without steaming , said preform being capable of being obtained from a specific device, shown in Figure 1;
- the manufacture of the preform according to step i) of the process of the invention can be produced continuously, and therefore provides rapid and inexpensive access to large textile preforms, particularly small diameters with great lengths.
- step i) of the method according to the invention makes it possible to superimpose a very large number of layers: the preform can contain as many layers of ribbon as desired modules used.
- the device implemented in step i) uses guides to deploy the ribbons in the same direction. It thus makes it possible to produce elongated textile preforms of different shapes, cylindrical or not.
- preform obtained according to step i) can also include section restrictions, at which certain ribbons can be cut and welded, and inserts positioned, in particular before consolidation.
- the preform can be easily bent at room temperature in order to give it a particular non-rectilinear shape which can then be frozen during the consolidation step ii). This will, however, require a particular choice of fiber orientations in the different layers of the preform.
- the method allows easy access to conformable tanks, which can in particular be inserted in a volume similar to an automobile battery pack.
- step ii) makes it possible to co-consolidate, within a single step, thermoplastic or metallic inserts, with the ribbons of the textile preform, making it possible in particular to close the tube to make it a reservoir, this which constitutes an additional economic advantage of the method of manufacturing tanks according to the invention.
- this co-consolidation makes it possible to improve the mechanical resistance and/or cohesion between the insert and the elongated co-consolidated textile element.
- the invention thus relates, according to a first aspect, to a method of manufacturing a tank, in particular for the storage of a fluid under pressure, comprising an elongated textile and consolidated element, said method comprising the steps of:
- a frame (2) comprising a main longitudinal guide (3) in a direction X, said guide (3) being fixed on the frame (2) and
- each module (4) comprising:
- - feed means (6) arranged on the crown (5) capable of feeding at least one ribbon (10) towards the guide (3) at a winding angle of between -90° and 90° with the direction X and at an advance speed V1, each ribbon (10) being capable of winding at least around the guide (3) or on the upper layer of ribbon (10), and
- said supply means (6) comprising selected ribbons (10), said selected ribbons (10) comprising at least thermoplastic composite ribbons
- step i) not including a ribbon braiding step
- the method according to the invention comprises one or more of the following additional characteristics:
- thermoplastic composite tapes include: o Reinforcing fibers, continuous or discontinuous, of an inorganic material; and o A composition of thermoplastic polymers.
- the reinforcing fibers of an inorganic material are: o thoroughly impregnated or pre-impregnated with a composition of thermoplastic polymers, or o mixed with fibers of thermoplastic polymer(s).
- thermoplastic composite ribbon comprises continuous fibers impregnated with a composition based on a thermoplastic polymer, having a glass transition temperature (Tg), measured according to standard ISO 11357 - 3: 2013, greater than 80° C, preferably greater than or equal to 100°C, even more preferably greater than 120°C, when the polymer is amorphous, and a melting temperature greater than 150°C when the polymer is semi-crystalline.
- Tg glass transition temperature
- thermoplastic polymer composition of the composite tape mainly comprises a polyamide, preferably semi-crystalline.
- the polyamide is an aliphatic, cycloaliphatic or semi-aromatic polyamide.
- the aliphatic polyamide is chosen from PA 5, PA5-10, PA6, PA66, PA6-10, PA6-12, PA6-18, PA9, PA10-10, PA 10-12, PA11, PA12, and their mixture.
- the semi-aromatic polyamide is chosen from PA MPMDT/6T, PA 11/6T, PA 11/10T, PA 11/BACT, PA 5T/10T, PA 11/6T/10T, PA MXDT/4T, PA MXDT/6T , PA MXDT/10T, PA MPMDT/4T, PA MPMDT/6T, PA MPMDT/10T, PA BACT/10T, PA BACT/6T, PA BACT/4T, PA BACT/10T/6T, PA 11/BACT/4T, PA 11/BACT/6T, PA 11/BACT/10T, PA 11/BACT/10T, PA 11/MXDT/4T, PA 11/MXDT/6T, PA 11/MXDT/10T, PA 11/MPMDT/4T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/MPMDT/10T, PA 11/MPMDT/10T, PA 11/MPMDT/10T, PA 11/MXDT/10T, PA11/5T/10T, and their mixture.
- the fibers of the thermoplastic composite ribbons are chosen from glass fibers, carbon fibers, basalt fibers or are based on basalt.
- thermoplastic composite ribbons are unidirectional, that is to say all oriented according to the length of the ribbon.
- the composite ribbons contain a fiber content of between 40 and 70% by volume, preferably between 50 and 60% by volume of thermoplastic composite ribbons.
- the chosen ribbons (10) further comprise non-composite thermoplastic polymer ribbons (10).
- the non-composite thermoplastic polymer ribbons (10) represent a minor mass fraction of the preform compared to the mass fraction of the thermoplastic composite ribbons.
- the polymer composition constituting the non-composite thermoplastic ribbons (10) mainly comprises a polyamide, preferably semi-crystalline.
- thermoplastic polymer composition of the thermoplastic composite ribbons (10) on the one hand, and that of the non-composite thermoplastic polymer ribbons (10) on the other hand, are compatible, in particular identical.
- the ribbons (10) have a thickness of between 50 and 300 pm, in particular between 50 and 260 pm and more particularly between 60 pm and 170 pm.
- the ribbons (10) have a width of between 5 mm and 50 mm, in particular between 10 mm and 15 mm.
- the winding angle of the ribbon (10) relative to the direction X is between +90° and - 90°.
- the winding angle is equal to +/-54.8° to +/-10 0 , preferably +/-5°, better still +/-1°.
- the textile preform manufactured in step i) comprises a variation in section, in particular sequential in direction X.
- step ii) is carried out in a mold, in particular external to the preform, in particular closed.
- step ii) the pressure is applied by means of a bladder internal to the preform.
- an insert is positioned at the ends of the preform obtained in step i), preferably outside the ends of the preform.
- the insert is made of a thermoplastic material possibly composite.
- the insert is co-consolidated with the ribbons (10) during consolidation step ii).
- the invention relates to a tank, in particular for the storage of a fluid under pressure, in particular hydrogen, comprising at least one elongated textile and consolidated element, capable of being obtained according to the process of invention.
- the tank according to the invention comprises one or more of the following additional characteristics:
- each consolidated elongated element is provided with an insert at its ends.
- the tank comprises several consolidated elongated elements, in series, connected to each other via connectors.
- the inventors were able to show that the tanks comprising an elongated and consolidated textile element obtained according to the process of the invention had very good mechanical strength compared to the composite tanks of the state of the art.
- the process of the invention allows the ribbons to be wound without steaming, which makes it possible to avoid local overstressing at the points where the fibers cross between them, and therefore to improve the mechanical resistance of the elongated textile element obtained after consolidation.
- the consolidation step ii) can be carried out under pressure, in particular under a pressure of between 5 and 10 bars, which allows both to further improve the mechanical resistance and to reduce the porosity of the composite material.
- thermoplastic composite ribbons do not allow high pressure to be applied, particularly for a prolonged period of time, so that the quality of consolidation is often quite low.
- step ii) of consolidating the preform under pressure made it possible to give the elongated and consolidated textile element obtained a very low residual porosity, in particular less than 5%, in particular less than 2%, which makes it possible to reinforce the barrier effect played by the liner in type IV or 4.5 tanks, or even to do without a liner and obtain a type V tank.
- thermoplastic polymer composition constituting the composite ribbons is or comprises a semi-crystalline thermoplastic polymer, in particular polyphthalamide
- the crystallization of the resin during the cooling step advantageously makes it possible to further improve the barrier effect of the reservoir with respect to the fluid under pressure.
- the step of consolidating the preform in a closed mold also makes it possible to reduce the thermoxidation of the resin which occurs during deposition of thermoplastic tape in the open air, and thus to contribute to the improvement of the mechanical properties of the composite tubular structure thus obtained.
- the invention relates to an elongated textile and unconsolidated preform, capable of being obtained according to step i) of the process according to the invention.
- the invention relates to a battery pack, in particular for a motor vehicle, comprising a hydrogen storage tank according to the invention.
- the invention relates to the use of the device according to the invention, as described in particular in Figures 1 to 11, to prepare a reservoir according to the invention.
- Figure 1 is a perspective view of an example of a device according to the invention.
- Figure 2 is a perspective view from an opposite angle of the device of Figure 1.
- Figure 3 is a perspective view of an example of an elongated element according to the invention.
- Figure 4 is a sectional view of Figure 3.
- Figure 5 is a perspective view of an example of module according to the invention.
- Figure 6 is a perspective view of the module of Figure 5.
- Figure 7 is a perspective view of an example of ribbon feeding means according to the invention.
- Figure 8 is a perspective view of another embodiment of a device according to the invention.
- Figure 9 is a perspective view from an opposite angle of the device of Figure 8.
- Figure 10 is a perspective view of an elongated element comprising a variable section according to the invention.
- Figure 11 is a sectional view of an elongated curved element according to the invention.
- the invention relates to a method of manufacturing a tank, in particular for the storage of a fluid under pressure, comprising an elongated and consolidated textile element, said method comprising the steps of:
- a frame (2) comprising a main longitudinal guide (3) in a direction X, said guide (3) being fixed on the frame (2) and
- each module (4) comprising:
- - feed means (6) arranged on the crown (5) capable of feeding at least one ribbon (10) towards the guide (3) at a winding angle of between -90° and 90° with the direction X and at an advance speed V1, each ribbon (10) being capable of winding at least around the guide (3) or on the upper layer of ribbon (10), and
- Step i) comprises the manufacture of an elongated textile and unconsolidated preform, using so-called textile ribbons, more particularly thermoplastic composite ribbons.
- Step i) is carried out using a specific device described in Figures 1 to 11.
- a ribbon is called textile and therefore comprises fibers, for example unidirectional carbon fibers, in which case they are dry fibers.
- a ribbon compatible with the invention is capable of being wound around the guide and comprises a sufficiently rigid structure to remain wound around the guide.
- Step i) of manufacturing the preform does not include a ribbon braiding step. It thus makes it possible to manufacture an elongated, non-consolidated textile preform, without steaming, that is to say having a steaming noted E of less than 0.5%, preferably equal to 0%.
- the length of a fabric is always less than the length of the constituent threads or ribbons, because the crossing of the warp threads or ribbons with the weft (or different orientations of threads/ribbons for a braid or a textile) consumes length . This difference is the steaming and is expressed as a percentage. Fogging can be compared to the "undulation" perpendicular to the local plane of the textile of the threads or ribbons within said textile.
- the haze E increases with the density of crisscrossing between the different orientations of a fabric, a braid and more generally a textile comprising out-of-plane undulations of its threads or ribbons. It is defined as a percentage as follows:
- thermoplastic composite tape is meant a tape comprising fibers of an inorganic material and a thermoplastic polymer composition, capable of melting under the effect of temperature then solidifying, and therefore consolidating the preform.
- thermoplastic composite ribbons used in step i) may comprise:
- thermoplastic composite tapes include fibers of inorganic materials:
- thermoplastic polymers commonly called “tape”
- thermoplastic polymers in particular in powder form, or
- thermoplastic polymer(s) fibers and commonly called “co-mixed ribbons”.
- thermoplastic composite tape is a tape thoroughly impregnated with a composition of thermoplastic polymers.
- the thermoplastic composite tape comprises continuous fibers impregnated with a composition based on a thermoplastic polymer, having a glass transition temperature (Tg), measured according to standard ISO 11357 -3: 2013, greater than 80 ° C, preferably greater than or equal to 100° C., even more preferably greater than 120° C., when the polymer is amorphous, and a melting temperature greater than 150° C. when the polymer is semi-crystalline.
- Tg glass transition temperature
- thermoplastic polymer composition of the composite tape mainly comprises a polyamide, preferably semi-crystalline.
- the polyamide is an aliphatic, cycloaliphatic or semi-aromatic polyamide.
- the aliphatic polyamide can be chosen from PA 5, PA5-10, PA6, PA66, PA6-10, PA6-12, PA6-18, PA9, PA10-10, PA 10-12, PA11, PA12, and their mixture.
- the semi-aromatic polyamide can be chosen from PA MPMDT/6T, PA 11/10T, PA 11/BACT, PA 5T/10T, PA 11/6T/10T, PA MXDT/4T, PA MXDT/6T, PA MXDT/10T , PA MPMDT/4T, PA MPMDT/6T, PA MPMDT/10T, PA BACT/10T, PA BACT/6T, PA BACT/4T, PA BACT/10T/6T, PA 11/BACT/4T, PA 11/BACT/ 6T, PA 11/BACT/10T, PA 11/MXDT/4T, PA 11/MXDT/6T, PA 11/MXDT/10T, PA 11/MPMDT/4T, PA 11/MPMDT/6T, PA 11/MPMDT/10T , PA 11/MPMDT/10T , PA 11/MPMDT/10T, PA 11/MPMDT/10T, PA 11/MPMDT/10T, PA 11/MPMDT/10T, PA 11/MPMDT/10T, PA 11/MPMDT/10
- the fibers of the composite tapes can be chosen from glass fibers, carbon fibers, basalt fibers or are based on basalt.
- the fibers of the thermoplastic composite ribbons are preferably unidirectional, which means that in this case the fibers are all oriented in the same direction, that is to say along the length of the ribbon.
- the ribbons can also be composed of several layers of fibers superimposed on each other and having different orientations from one layer to another: however, even in this case, the fibers are non-woven and/or non-braided.
- the composite ribbons contain a fiber content of between 40 and 70% by volume, preferably between 50 and 60% by volume of the material constituting the composite ribbons. This percentage of fibers can be determined according to well-known methods such as those described in ISO14127:2008
- the selected ribbons (10) further comprise non-composite thermoplastic polymer ribbons (10).
- the ribbons (10) of non-composite thermoplastic polymer represent a minor mass fraction of the preform compared to the mass fraction of the thermoplastic composite ribbons.
- the polymer composition constituting the non-composite thermoplastic ribbons (10) mainly comprises a polyamide, preferably semi-crystalline.
- the ribbons (10) have a thickness of between 50 and 300 pm, in particular between 50 and 260 pm and more particularly between 60 pm and 170 pm.
- the ribbons (10) have a width of between 5 mm and 50 mm, in particular between 10 mm and 15 mm.
- the ribbons are deposited towards the guide with a winding angle strictly greater than -90° relative to the direction X of advancement of the textile element and strictly less than 90° relative to the direction X of advancement of the textile element.
- the winding angle of the ribbon (10) with respect to the direction X is between +90° and - 90°, the +90° and - 90 terminals not being included.
- the wrap angle is +/-54.8° to +/-10°, preferably +1-5°, more preferably +/-1°.
- the method further comprises a step of varying the diameter, or the section if it is not a tube with a circular section, of the elongated element.
- Means other than the implementation of the secondary guide can be implemented to enlarge or reduce the diameter, or the section if it is not a tube with a circular section, of the elongated element.
- the textile preform obtained at the end of step i) generally comprises several layers, in particular as many layers as modules (4) implemented. Each layer is formed by winding a ribbon, which may be of the same or different nature to that of the ribbon of at least one adjacent layer.
- non-composite thermoplastic ribbons can in particular be interposed between two layers of thermoplastic composite ribbon and/or constitute the internal layer of the preform and therefore of the elongated textile element after consolidation.
- This internal layer formed by non-composite thermoplastic ribbons can in particular act as a barrier layer to the fluid contained in the reservoir.
- thermoplastic polymer composition of the thermoplastic composite ribbons (10), on the one hand, and that of the thermoplastic non-composite polymer ribbons (10) on the other hand are compatible, in particular totally or partially miscible and are notably identical.
- the total or partial compatibility of said compositions allowing their welding is defined by the ratio composed of:
- the compatibility is total, when said ratio is equal to 0, and the compatibility is partial, when said ratio is different from 0 and less than 1, in absolute value.
- a total incompatibility of the polyamide included in the composition constituting the sealing layer with the polyamide included in the composition which impregnates the fibrous material of the intermediate layer is excluded.
- a total incompatibility of the polyamide included in the composition which impregnates the fibrous material of the intermediate layer with the polyamide in the composition which impregnates the fibrous material of the outer layer is excluded.
- said ratio is less than 30%, preferably less than 20%, in absolute value.
- the glass transition temperature(s) of the mixture depending on whether the compatibility is total or partial, must be between the glass transition temperatures of said polyamides before mixing and different from them, by at least 5° C, preferably at least 10°C.
- totally compatible means that when for example, two polyamides denoted PAa and PAb having respectively a Tga and a Tgb, are present respectively in two sealing layers or two adjacent reinforcing layers, and that Tga is less than Tgb , then the mixture of the two polyamides has only one Tgab, the value of which is between Tga and one Tgb.
- said ratio is less than 30%, preferably less than 20%, in absolute value.
- the glass transition temperature(s) of the mixture depending on whether the compatibility is total or partial, must be between the glass transition temperatures of said polyamides before mixing and different from them, by at least 5° C, preferably at least 10°C.
- totally compatible means that when for example, two polyamides denoted PAa and PAb having respectively a Tga and a Tgb, are present respectively in two adjacent layers, and that Tga is less than Tgb, then the mixture of the two polyamides does not presents only one Tgab, the value of which is between Tga and one Tgb.
- This Tgab value is then greater than Tga by at least 5°C, in particular by at least 10°C and lower than Tgb by at least 5°C, in particular by at least 10°C.
- partially compatible means that when for example, two polyamides PAa and PAb having respectively a Tga and a Tgb, are present respectively in two sealing layers or two adjacent reinforcing layers, then the mixture of the two polyamides has two Tg: Tg'a and Tg'b, with Tga ⁇ Tg'a ⁇ Tg'b ⁇ Tgb. These Tg'a and Tg'b values are then greater than Tga by at least 5°C, in particular by at least 10°C and lower than Tgb by at least 5°C, in particular by at least 10 °C.
- the preform may comprise several layers of thermoplastic composite ribbons, the thermoplastic polymer possibly being identical or different in nature to the thermoplastic polymer of the adjacent layer.
- the preform can include up to 50 layers, including 47 layers. It may in particular comprise 10 layers of non-composite thermoplastic ribbons, and 37 layers of thermoplastic composite ribbons. In embodiments, the preform comprises 10 internal layers of non-composite thermoplastic tapes, forming a sealing layer after consolidation and 10 to 50 layers of thermoplastic composite tapes, in particular 37 layers of thermoplastic composite tape, in particular thoroughly impregnated forming a reinforcing layer.
- the textile preform manufactured in step i) comprises a variation in section, in particular a shrinkage in section, in particular sequential in the direction X.
- the cutting of the elongated element can be carried out at the level of these section narrowings, and an insert can possibly be positioned there.
- each module of the preform manufacturing device comprises independent power supply means.
- each module can distribute ribbons of a different nature.
- the nature and dimensions of the ribbons may be different from one layer to another.
- the main longitudinal guide comprises a substantially circular or polygonal section or still free form.
- the elongated element obtained can thus have the shape of a tube or can be of a more complex shape depending on the use.
- the supply means comprise at least one ribbon distributor arranged around the supply ring.
- the implementation of a ribbon distributor allows easy storage and distribution of ribbons towards the main guide, the distributor(s) rotating around the guide according to the rotation speed of the feed ring.
- the ribbon dispensers comprise pivoting means on the feed ring.
- pivoting means makes it possible to direct the distribution of the ribbons towards the guide and thus to choose an angle between -90° and 90° between the ribbon and the guide. All the ribbons of the same module have approximately the same angle with the guide.
- the ribbon dispensers comprise at least one guillotine capable of cutting at least one ribbon leaving a distributor and a motorized element capable of bringing the ribbon towards the guide.
- the ribbon dispensers comprise welding means, for example ultrasonic welding means, capable of welding a ribbon to a present layer or upper layer.
- welding means for example ultrasonic welding means, capable of welding a ribbon to a present layer or upper layer.
- Other welding means compatible with the nature of the ribbons used are possible within the framework of the invention.
- the diameter, or the section if it is not a tube with a circular section, of the elongated element varies, it is interesting to add or remove one or more ribbons, which is possible in the framework of the invention thanks to the implementation of the guillotine and/or welding means.
- the device further comprises a pulling assistance device capable of guiding the ribbons of the module(s).
- An exemplary embodiment of a pulling assistance device may be a system of at least one roller arranged downstream of the last module in direction main guide.
- this aid device can be removed during the manufacture of the textile element which, due to its rigidity, can advance alone on the guide. According to other embodiments, the nature of the ribbons does not require drawing assistance.
- the device further comprises a secondary longitudinal guide of diameter or section greater than the diameter or section if it is not a tube with circular section, of the main guide and able to translate on the main guide.
- a secondary guide of greater diameter or section makes it possible to increase the diameter, or the section if it is not a tube, of the elongated element , the ribbons being deposited on the secondary guide.
- the advance speed V1 corresponds to the advance speed of the textile element on the main guide.
- the advance speed V1 is therefore approximately the same for each of the modules.
- the advance speed V1 and the rotation speed V2 of each module are linked, on the one hand, to the angle defined between the ribbon(s) supplied by each of the modules and their supply speed.
- the method further comprises a step of storing the elongated element wound around a storage coil.
- the method according to the invention makes it possible to manufacture, until the ribbon supply means are exhausted, an elongated element of large size which can go, for example, up to a kilometer. Storing the elongated element at the outlet of the device in a coil facilitates handling.
- the method further comprises the step of assisting in drawing the ribbons with the implementation of the drawing assistance device.
- the pulling assistance device is placed downstream of the last module delivering the last layer of the textile element.
- An operator can, for example, guide each of the layers of ribbon towards the pulling assistance device which will then help slide the different layers onto the main guide.
- the storage reel is a device for assisting in drawing ribbons from the supply means of the modules of the manufacturing device.
- the method further comprises the additional step of arranging a secondary longitudinal guide at the level of the first module and translation of said secondary guide in the direction X.
- the secondary guide makes it possible to enlarge the diameter or section if it is not a tube, the elongated element being manufactured or reduce the diameter or section of the element if a first secondary guide has already been implemented.
- the method further comprises a step of bending at room temperature the elongated element obtained at a desired angle.
- An advantage of the manufacturing device is the possibility of bending the elongated element at room temperature.
- ambient temperature within the meaning of this description, we mean a temperature between 15 and 25°C.
- the elongated textile preform obtained in step i) is then consolidated by heating and cooling the thermoplastic composite ribbons.
- thermoplastic composite ribbons More particularly, it is consolidated by melting and cooling the thermoplastic composite ribbons.
- This heating and cooling step makes it possible to weld the different layers of ribbons constituting the preform together.
- the heating temperature is therefore determined according to the nature of the ribbons (10) chosen.
- This step ii) is generally carried out under a pressure of between 1 bar and 25 bars, in particular between 5 bars and 10 bars, in particular between 6 bars and 8 bars.
- Step ii) can be carried out in a mold, in particular external to the preform, in particular closed.
- the pressure is applied by means of a bladder internal to the preform.
- an insert is positioned at the ends of the preform obtained in step i), preferably outside the ends of the preform.
- the internal surface of the insert can be in contact with the external surface of the preform.
- the insert may in particular be metallic or made of a thermoplastic material, possibly composite.
- the insert in step ii), can be advantageously co-consolidated with the ribbons of the preform during consolidation step ii).
- pressure is applied by means of an internal bladder to the preform, the ribbons of the preform are pressed against the internal wall of the insert, which makes it possible in particular to obtain good consolidation of the preform and also to improve the weld, and therefore the mechanical resistance, between the preform and the insert.
- the invention relates to a tank, in particular for the storage of a fluid under pressure, in particular hydrogen, comprising at least one elongated textile and consolidated element, capable of being obtained according to the process as defined above.
- Each consolidated elongated element is generally provided with an insert at its ends. It may include in particular
- the consolidated elongated element may comprise, at each of its ends, an insert provided with an orifice intended to allow the entry and exit of the fluid. In this case, it is usually connected to other elongated elements via connectors.
- the tank comprises several elongated elements connected in series to each other by means of connectors.
- the first consolidated elongated element of the series can be provided with an insert including an orifice allowing the entry of the fluid and the last consolidated elongated element can be provided with an insert closing it, the intermediate consolidated elongated elements being equipped, at each of their ends, with inserts provided with an orifice allowing the circulation of fluid between the first and the last elongated element of the series.
- the tank is conformable and can be inserted into very restricted volumes, such as a battery pack, particularly for a motor vehicle.
- the invention relates to an elongated textile and unconsolidated preform, capable of being obtained according to step i) of the process as defined above.
- the invention relates to a battery pack, in particular for a motor vehicle, comprising a storage tank for a fluid, in particular hydrogen, as defined above.
- a device according to the invention as illustrated in Figures 1 and 2 and designated as a whole by the reference 1 aims at the manufacture of an elongated textile and unconsolidated element.
- the device 1 comprises a frame 2 comprising a main longitudinal guide 3 in a direction X, and at least two modules 4 arranged in series around the guide 3 in the direction X.
- the main longitudinal guide 3 is fixed on the frame 2. According to the illustrated embodiments, the main longitudinal guide 3 comprises a circular section and therefore has a tubular shape. This form is not limiting for the invention, other forms of guide 3 are compatible with the invention.
- the guide 3 is rectilinear and can include sections of different shapes such as square, rectangular, quadrilateral, triangular, polygonal, round, oval, or of mixed and/or free shape.
- a module 4 of a device 1 comprises, on the one hand, a feed ring 5 surrounding a section of the main longitudinal guide 3.
- the feed ring 5 has substantially the shape of 'a disc comprising a central hole in which the guide 3 is located.
- a module 4 comprises, on the other hand, supply means 6 arranged on the crown 5.
- the supply means 6 are located on one face of the disc and supply at least one ribbon 10 towards the guide 3 with an angle relative to the direction X of between -90° and 90°.
- a ribbon 10 compatible with the invention is, on the one hand, sufficiently flexible to wrap around the guide 3.
- Figure 3 illustrates an elongated element 11 obtained by means of the device 1 according to the invention. These are the successive layers of ribbon 10 arranged at different angles which allow to the elongated element 11 obtained to keep its shape.
- Figure 4 illustrates a section of this elongated element 11 where the successive layers are visible.
- the supply means 6 arranged on the crown 5 feed at least one ribbon 10 towards the guide 3 with a chosen angle between -90° and 90° relative to the direction X.
- Each ribbon 10 wraps at least around the guide 3 or on the layer of ribbon 10 already present, i.e. the upper layer with a chosen overall advancement speed V1.
- Each module 4 also includes drive means 15 of the crown 5. According to Figure 2 and also visible in Figure 5, the drive means 15 are located on the face of the crown 5 opposite the supply means 6 The drive means 15 of the crown
- the drive means 15 comprise a motor comprising in particular a belt capable of rotating the crown 5 and a motor control unit in order to implement a rotation speed V2 of the crown 5.
- a motor comprising in particular a belt capable of rotating the crown 5 and a motor control unit in order to implement a rotation speed V2 of the crown 5.
- the device illustrated in Figures 1 and 2 comprises two modules 4.
- the supply means 6 of the first module 4 comprise two distributors 20 of ribbon 10 and the supply means 6 of the second module 4 comprise a single distributor 20 of ribbon 10. Power supplies
- each module 4 can deliver ribbons 10 of different nature and a chosen number of ribbons 10 per layer.
- FIG. 6 illustrates a module 4 comprising six distributors 20 of ribbon 10.
- the distributors 20 of ribbon 10 are arranged around the feed ring 5.
- a distributor 20 of ribbon 10 comprises a fixed spool 21 on one face of the crown 5 with pivoting means 22.
- the pivoting means 22 comprise a fixed part 23 and a pivoting part 24 directed towards the coil 21.
- the coil 21 is free to pivot in the pivoting part 24 and the pivoting part is free to pivot relative to the fixed part 23.
- the coil 21 can be arranged in a desired configuration and the pivoting means 22 can be blocked according to the desired arrangement of the distributor 20.
- Figure 7 illustrates a particular embodiment of the invention in which a distributor 20 of ribbon 10 also comprises, a guillotine 25 capable of cutting the ribbon 10 at the outlet of the distributor 20, a motor M capable of feeding the ribbon after cutting and ultrasonic welding means 26 capable of welding a ribbon 10 at the level of a layer of ribbons 10 present or upper layer.
- the illustration of the motor M, the guillotine 25 and the welding means 26 is schematic in Figure 7 and other embodiments are possible and in particular with means of acting on a ribbon 10 outside the distributor 20.
- FIGS 8 and 9 illustrate a particular embodiment of the invention.
- the device 1 comprises three modules 4.
- the first module 4 comprises four distributors 20 of tape 10 which each deposit a tape 10 in the direction of advancement X, that is to say that the angle between the tape 10 and the guide 3 has a value of 0 degrees.
- the second module 4 comprises two distributors 20 of ribbon 10 and finally the third module 4 comprises a single distributor 20 of ribbon 10. This embodiment is not limiting for the invention.
- a first step consists of implementing power supply means 6 on each of the modules 4 of the device 1.
- coils 21 each comprising a chosen ribbon 10 are arranged on each feed ring 5 of the device 1.
- the reels deliver the same ribbon 10 per module and each module 4 can comprise reels of ribbon 10 of different type.
- the ribbons 10 used have a width of between 20 and 10 mm and a thickness of approximately 150 microns.
- a second step of the process consists of configuring, on the one hand, the advance speed V1 and, on the other hand, the rotation speed V2 of each of the modules 4.
- the precise and coordinated parameterization of these two values makes it possible to define for each supply means 6 a desired angle between the ribbon 10 and the guide, this angle varies between -90 and 90° excluding these two interval limits.
- a first layer of ribbon 10 is deposited with an angle close to 0° relative to the direction of approximately 80° relative to the X direction and a third layer is deposited at an angle close to -80° relative to the X direction.
- An example of configuration consists of defining an advance speed V1 substantially equal to one meter per minute and a rotation speed V2 of two modules 4 each distributing a ribbon 10 substantially equal to 360 revolutions per minute. This example is not limiting for the invention.
- a drawing assistance device 30 is implemented in order to help draw the ribbons 10 from the different layers of the element 11.
- the first layer of ribbon 10 from the first module 4 slides on the main guide 3 through the two other modules 4 implemented.
- the ribbons 10 of the first layer can slide alone if their nature allows it or with manual assistance.
- the ribbons 10 of the other layers are deposited on the previous layer and then pass through the pulling aid device 30.
- This aid device 30 is not always necessary for the implementation of the process but it can help with sliding of the different layers towards the direction X depending on the nature of the ribbons 10 used.
- the elongated element 11 is manufactured without assistance and the drawing assistance device 30 no longer has any use and can be removed. This may be a transitional period of start-up assistance which is necessary if the nature of the ribbon 10 used does not allow the ribbon to deploy effectively out of its reel 21.
- the elongated element 11 which is manufactured can be stored wrapped around a storage reel, thus facilitating its subsequent handling.
- the elongated element 11 can also be cut as it is manufactured according to the desired size and according to the additional steps described below, for example increasing or reducing dimensions.
- the storage reel is a device for aiding the drawing of the ribbons 10.
- the textile element 11 causes the drawing of the ribbons 10 which form it.
- the elongated element 11 When the elongated element 11 is of the desired size, it can then be cut. Another way to complete the process is to wait for the ribbons 10 to run out. The elongated textile and unconsolidated element 11 obtained can finally be recovered. Consolidation steps can then be applied to it, for example a thermoforming step when the dimensions allow it. During the consolidation of the elongated element 11, it is also possible to slightly vary the dimensions of the elongated element 11, in particular its perimeter, of the order of 10-20%.
- a secondary longitudinal guide (not shown) is placed at the level of the first module 4 during manufacturing.
- This secondary guide of diameter or section greater than the diameter or section of the main guide 3 is placed upstream of the first module 4 and translates towards the direction of manufacture of the elongated element 11.
- the ribbons 10 of the different modules 4 are deposited then on the secondary guide, and again on the main guide 3 after the passage of the secondary guide. It is thus also possible to greatly increase the diameter or section or even overall shape of the elongated element 11 during its manufacture.
- Such an elongated element 11 obtained is illustrated in Figure 10.
- ribbons 10 similar to the ribbons 10 supplied by the corresponding module 4 can be added using ultrasonic welding means 26, thus making it possible to fill openings which could form due to the increase.
- the surface of the elongated element 11 such an example is illustrated in Figure 10 with ribbons 10 added on the layer below the upper layer when increasing the diameter of the element 11 and ribbons 10 cut when reducing the diameter of element 11.
- the elongated element 11 obtained using the device 1 is bent at room temperature at a desired angle such that the elongated element 11 appears in Figure 11.
- This bending step at room temperature can be done by hand if the bending rigidity of the elongated element 11 obtained allows it.
- the elongated element 11 can also be consolidated by integrating a solid matrix at one of the layers of ribbon 10 composing it.
- the resin making up the matrix of the thermoplastic composite tape is 11/BACT/10T, the fiber used is Hyosung 2550 G10 carbon fiber, the fiber content is 53% by volume.
- the tensile breaking stress at 0° (fiber direction) of the composite obtained with the composite tape is 2700 MPa.
- the width of the tape is 14” and its thickness is 137 pm, on average.
- thermoplastic composite ribbons Positioning in the preform, thermoplastic composite ribbons at +/- 55° from the axis of the tubular tank.
- the preform has a section restriction corresponding to half of the initial diameter, allowing a metal insert to be positioned outside the preform, at its two ends.
- thermoplastic composite tape It has 37 layers of thermoplastic composite tape
- the preform was manufactured continuously at a speed of 1 m/min.
- the temperature rise time, maintenance time at 300°C and cooling time are 20 minutes.
- the tank is type V, meaning that it does not have an additional sealing layer, the composite reinforcement ensuring this function in addition to pressure resistance.
- the total length of the tubular tank is 123 m, the internal diameter of 110 mm in the central part, 55 mm in the restriction and the transition between the central part and the restriction is conical at an angle of 45°.
- the thickness of the composite reinforcement is 5 mm.
- the stacking by construction does not involve braiding, the fogging E is less than 0.5%.
- the burst pressure of the tank is 1605 bars.
- the resulting tubular tank has a capacity of 10 liters and contains 2.98 kg of composite.
- the resin making up the matrix of the thermoplastic composite tape is 11/BACT/10T, the fiber used is Hyosung 2550 G10 carbon fiber, the fiber content is 53% by volume.
- the tensile breaking stress at 0° (fiber direction) of the composite obtained with the composite tape is 2700 MPa.
- the width of the tape is 14” and its thickness is 137 pm, on average.
- the preform has a section restriction corresponding to half of the initial diameter, making it possible to position a metal insert inside the preform.
- thermoplastic tape It comprises 10 layers of thermoplastic tape with a width of 14” and a thickness of 200 pm in polyamide 11 and 37 layers of thermoplastic composite tape, having a width of 14” and a thickness of 137 pm on average.
- the preform was manufactured continuously at a speed of 1 m/min.
- the temperature rise time, maintenance time at 300°C and cooling time are 20 minutes.
- the resin making up the matrix of the thermoplastic composite tape is 11/BACT/10T, the fiber used is Hyosung 2550 carbon fiber, the fiber content is 55% by vol.
- the width of the tape is 14”.
- the stacking by construction does not involve braiding, the fogging E is less than 0.5%.
- the length of the tubular tank is 1.33 m, the internal diameter of 110 mm in the central part of the composite reinforcement, 55 mm in the restriction and the transition between the central part and the restriction is conical at an angle of 45 °.
- the thickness of the composite reinforcement is 5 mm and that of the polyamide 11 sealing layer, resulting from the consolidation of the thermoplastic ribbons included in the preform, is 2 mm.
- the internal diameter of the tank in its central part is therefore 106 mm and 51 mm in the restriction.
- the 2 layers are perfectly welded together and the tank is in one piece.
- This type of reservoir is type 4.5 (ie the sealing layer is of a different chemical nature from that of the composite matrix but the two resins are partially miscible, which allows perfect welding between them).
- the burst pressure of the tank is 1620 bars.
- the resulting tubular tank has a capacity of 10.15 liters and includes 3.22 kg of composite and 0.89 kg of polyamide 11 liner.
- the total weight of composite used is 19.3 kg.
- the total manufacturing time of the complete conformable tank is 39 minutes, broken down as follows:
- This tank is type IV and has a composite reinforcement on the outside, weighing 36.7 kg, and a polyethylene sealing layer, weighing 5 kg on the inside. No adhesion exists between the waterproofing layer and the composite reinforcement.
- the composite reinforcement is composed of an epoxy matrix and carbon fiber from Toray, ref T700 S, the fiber content is 70% by weight or 59% by volume (density of the carbon fiber used is 1.8 and that of epoxy resin is 1.1). It is manufactured by wet filament winding: the dry fibers are unwound from a creel and are impregnated with resin by passing at a speed of 0.8 m/s, in a bath containing the liquid precursor of the epoxy resin , at room temperature. 4 wicks are simultaneously wound around the liner. Each carbon wick has 1200 filaments (12K carbon wick), and has a linear mass of 0.83g/m. Taking into account the fiber content of 70% by weight, each impregnated wick has a linear mass of 1.18 g/m. Thus, the entire winding at 0.8m/s, with 4 strands in parallel, lasts approximately 2.7 hours. This step is followed by polymerization of the resin in an oven at 60°C for 8 hours.
- the manufacturing time of the type IV tank is much longer than that of the conformable type V tank of example 3, according to the invention and consumes much more composite and will therefore be significantly heavier and more expensive. since the price of carbon fiber is a major factor in the cost of the tank.
- the effectiveness of the composite reinforcement in the type IV tank is at least 2 times lower than that of the composite making up the type V tank of example 3: in fact, to contain the same volume of gaseous hydrogen (61 I) while withstanding the same internal pressure of 1600 bar, approximately 2 times more composite is required in the Type IV epoxy carbon composite tank than in the conformable PPA carbon composite tank.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
L'invention concerne un procédé de fabrication d'un réservoir, notamment pour le stockage d'un fluide sous pression, comprenant un élément textile allongé et consolidé, ledit procédé comprenant les étapes de : (i) Fabrication d'une préforme allongée textile et non consolidée comprenant plusieurs couches de rubans composites thermoplastiques, chaque couche comprenant au moins un ruban enroulé selon un angle donné, la dite préforme étant fabriquée au moyen d'un dispositif (1) spécifique, Ladite préforme étant fabriquée selon un procédé comprenant les étapes de : - Mise en œuvre des moyens d'alimentation (6) sur chacun des modules (4), lesdits moyens d'alimentation (6) comprenant des rubans (10) choisis, lesdits rubans (10) choisis comprenant au moins des rubans composites thermoplastiques - Paramétrage de la vitesse d'avancée V1 et de la vitesse de rotation V2 de chacun des modules (4) et mise en route de chaque module (4), - Découpe de l'élément allongé (11) et/ou épuisement des rubans (10), et - Récupération de la préforme textile allongée non consolidée (11) obtenue; l'étape i) ne comprenant pas d'étape de tressage de rubans, (ii) Consolidation de la préforme textile obtenue à l'étape précédente, par chauffage et refroidissement des rubans composites thermoplastiques, ce par quoi la préforme est consolidée et un élément textile, allongé et consolidé est obtenu.
Description
PROCÉDÉ DE FABRICATION D'UN RESERVOIR POUR LE STOCKAGE
D'UN FLUIDE SOUS PRESSION ET RESERVOIR AINSI OBTENU
Domaine de l’invention
L’invention porte sur un réservoir pour le stockage d’un fluide sous pression, notamment d’hydrogène, comportant un élément allongé textile, et son procédé de fabrication.
Arrière-plan technique
L’invention porte sur un réservoir comportant un élément allongé textile spécifique pour le stockage de gaz, notamment de gaz comprimé à haute pression et son procédé de fabrication.
L’un des buts recherchés dans le domaine du transport, et notamment dans le domaine automobile est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s’avère que la batterie est un constituant du véhicule relativement complexe. Selon l’emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l’environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d’éviter tout risque de flammes.
En outre, les batteries des véhicules électriques ou hybrides représentent habituellement entre 10 et 30% du poids du véhicule. Ce surpoids induit un certain nombre d’inconvénients, dont notamment une surconsommation de carburant ou d’énergie.
De plus, il est important que sa température de fonctionnement n’excède pas 55°C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l’inverse, par exemple en hiver, il peut être nécessaire d’élever la température de la batterie de manière à optimiser son fonctionnement.
Par ailleurs, le véhicule électrique souffre encore aujourd’hui de plusieurs problèmes, à savoir l’autonomie de la batterie, l’utilisation dans ces batteries de terres rares, dont les ressources ne sont pas inépuisables ainsi qu’un problème de production d’électricité dans les différents pays pour pouvoir recharger les batteries.
L’hydrogène représente donc une alternative à la batterie électrique, puisque l’hydrogène peut être transformé en électricité au moyen d’une pile à combustible et alimenter ainsi les véhicules électriques.
Néanmoins, le stockage de l’hydrogène est techniquement difficile et coûteux du fait de sa très faible masse molaire et de sa très basse température de liquéfaction, tout particulièrement quand il s’agit d’un stockage mobile. Or, le stockage pour être efficace doit s’effectuer sous faible volume, ce qui impose de maintenir l’hydrogène sous forte pression, compte tenu des températures d’utilisation des véhicules. C’est le cas, en particulier, des véhicules routiers hybrides à pile à combustible pour lesquels on vise une autonomie de l’ordre de 600 à 700 km, voire moins pour des usages essentiellement urbains en complément d'une base électrique sur batteries.
Les réservoirs à hydrogène sont généralement constitués d'une enveloppe (également nommée liner) métallique ou polymérique, qui doit empêcher la diffusion de l'hydrogène à l’extérieur de l’enveloppe. Cette première enveloppe doit elle-même être protégée par une seconde enveloppe (en général en matériaux composites) destinée à supporter la pression interne du réservoir (par exemple, 700 bars) et résistant à d'éventuels chocs ou sources de chaleur. Par ailleurs, le réservoir comporte un système de vanne, qui doit également être sûr.
Selon le Memento sur l’hydrogène de l’association française pour l’hydrogène et la pile à combustible (AFHYPAC) Fiche 4.2, révision décembre 2016, le stockage et la distribution d’hydrogène sous pression sont une pratique standard, depuis de très nombreuses années, avec des bouteilles ou assemblages de bouteilles cylindriques, en acier, gonflées à 20 ou 25 MPa (types I et II) ou métal renforcé par un bobinage de matériaux fibreux, en externe. L’inconvénient de ce mode de stockage est l’encombrement - seulement 14 kg/m3 sous 20 MPa et à température ordinaire (21 °C) contre 100 kg/m3 pour le méthane - et surtout le poids, qui résulte de l’utilisation d’aciers à bas niveaux de contraintes pour éviter les problèmes de fragilisation par l’hydrogène. La situation a radicalement changé avec l'apparition de la technologie des réservoirs composites dits de type IV. Leur principe de base est de séparer les deux fonctions essentielles que sont l'étanchéité et la tenue mécanique pour gérer l'une indépendamment de l'autre. Dans ce type de réservoir, une vessie en résine thermoplastique dénommée liner ou gaine d’étanchéité est associée à une structure de renforcement constituée de fibres (verre, aramide, carbone) imprégnées de résine thermodurcissable,
dénommée gaine ou couche de renfort. Ce type de réservoir permet de travailler à des pressions beaucoup plus élevées tout en réduisant la masse du réservoir et en évitant les risques de rupture explosive en cas d’agressions externes sévères. C’est ainsi qu’une pression de 70 MPa (700 bars) est pratiquement devenue le standard actuel.
Dans les réservoirs de type IV, la couche d’étanchéité et la couche de renfort sont constituées de matériaux différents, qui n’adhèrent pas l’un à l’autre, souvent responsables du collapse de la couche d’étanchéité, lorsque simultanément, il y a d’une part accumulation de gaz à l’interface entre la couche d’étanchéité et la couche de renfort et d’autre part, une baisse de la pression interne du réservoir. En outre, le séchage des réservoirs de type IV, qui a lieu après le test d’épreuve sous pression d’eau, est long et coûteux, car il ne peut se faire que sous vide en raison du risque de collapse de la couche d’étanchéité.
Ce problème a donné lieu au développement des réservoirs de type V, qui sont basés sur l’utilisation d’un même polymère pour la couche d’étanchéité et pour la matrice de la couche de renfort, ou a minima d’un polymère compatible avec celui composant la matrice du composite (réservoirs dit de type 4,5), de façon à garantir une excellente et durable soudabilité entre ces deux couches, permettant ainsi d’obtenir un réservoir monobloc. Ce type de réservoirs est encore au stade de la R&D.
Il est connu pour réaliser l’enveloppe composite d’utiliser, comme matrice de ce composite, des résines époxy pour fabriquer des réservoirs pouvant présenter une haute température de transition vitreuse (ci-après Tg), c’est-à-dire une Tg supérieure à 100°C. L’inconvénient de ces composites à base de résines thermodurcissables, notamment de type époxy est qu’ils sont généralement microfissurés, après la cuisson de la résine thermodurcissable, voire après avoir subi un certain nombre de cycles de pression/ dépression, induits par les cycles de remplissage / vidange, ce qui occasionne une grande variabilité, voire une perte de résistance mécanique. En prévision de cette chute de performance dans le temps, il est donc nécessaire d’augmenter le taux de fibres de carbone et donc le poids et le coût du réservoir.
En outre, dans le cas des résines thermodurcissables, notamment époxy, la microfissuration nuit à l’imperméabilité du renfort composite, ce qui impose l’utilisation d’une couche d’étanchéité épaisse en interne du réservoir (i.e. réservoir de type IV).
Enfin, en termes de recyclabilité, les réservoirs actuels, de type IV, utilisent des couches de renfort en résines thermodurcissables, notamment époxy qui ne sont pas recyclables.
Toutefois, malgré les améliorations apportées aux réservoirs de type IV, ils présentent encore des inconvénients. Il est notamment recherché d’accélérer la vitesse de remplissage du réservoir. Or, la tenue en température des réservoirs de gaz, notamment des réservoirs pour hydrogène, est trop faible avec les solutions actuelles. Accélérer la vitesse de remplissage du réservoir serait un avantage, notamment économique pour le consommateur, notamment sans avoir en plus à refroidir l’hydrogène à -60°C avant le remplissage.
L’utilisation d’une couche de renfort en polyphtalamide (ci-après noté PPA) de haute température de transition vitreuse (ci-après Tg) serait un avantage important en termes de tenue mécanique à haute température. En outre, ce type de résine étant thermoplastique, elle permettrait d’obtenir un réservoir facilement recyclable. Le caractère thermoplastique de la résine permettrait de réduire le niveau de microfissuration de l’enveloppe composite, renforçant ainsi sa résistance mécanique et réduisant la variabilité de cette résistance mécanique, ce qui permettrait de réduire significativement la quantité de fibres de carbone utilisée et donc le coût et l’empreinte carbone du réservoir de type V par rapport à ceux de type IV. En outre, la nature semi- cristalline de la résine permettrait d’augmenter son étanchéité aux gaz, et notamment à l’hydrogène. Par conséquent, l’enveloppe composite contribuerait à l’imperméabilité du réservoir et de ce fait permettrait de réduire l’épaisseur de la couche d’étanchéité et donc le coût et le poids de la couche d’étanchéité interne au réservoir.
Cependant, la fabrication de ce type de réservoirs par enroulement de rubans composites à chaud, sur une couche d’étanchéité en polymère thermoplastique, pose des difficultés, liées à l’apparition de contraintes résiduelles importantes, d’origine thermique, inhérentes aux dilatations différentielles des matériaux mis en jeu, en particulier inhérentes aux dilatations différentielles entre les fibres et le polymère composant la couche d’étanchéité, lors du refroidissement du réservoir, à la fin de sa fabrication. Ceci est particulièrement exacerbé dans le cas d’une matrice PPA composant le renfort composite à base de fibres de carbone. En effet, la température élevée de mise en œuvre du ruban composite à base de PPA, du fait du haut point de fusion de ce type de résine, ainsi que sa haute Tg, sont les sources
majoritaires responsables des contraintes résiduelles supplémentaires dans le réservoir. Lorsque le réservoir comporte des inserts moulés en résine de type polyamide aliphatiques, de basse Tg, typiquement de Tg de l’ordre de 50°C, lesdites contraintes résiduelles peuvent conduire à une déformation des inserts, empêchant la fabrication complète du réservoir et notamment la fixation des embases fermant le réservoir. Lorsque le réservoir est de type V (ou 4.5, c’est-à-dire que le polymère composant la matrice du composite est de nature différente de celle de la couche d’étanchéité, mais les deux polymères restent compatibles et soudables entre eux) et qu’il comporte une couche d’étanchéité en polyamide de basse Tg, en particulier de type polyamide aliphatique, les contraintes résiduelles peuvent conduire à une décohésion au sein de la couche de renfort composite elle-même.
Par ailleurs, les procédés de fabrication de ces réservoirs composites sont généralement lents et coûteux. Ainsi, basés classiquement sur un enroulement filamentaire en voie humide ou un bobinage à chaud de rubans composites thermoplastique, la fabrication d’un réservoir composite d’un seul tenant, de 60 litres et plus, nécessite des temps de cycle de plusieurs heures. En outre, ces procédés se révèlent peu efficaces, en-dessous d’une certaine taille de réservoir, typiquement en-deçà de 30 litres. Enfin, la qualité du composite obtenu est imparfaite, du fait de la présence de porosités, liée à la faible pression appliquée lors de la mise en œuvre des fibres pré-imprégnées de résine, lorsqu’il s’agit d’imprégnation par voie humide ou lors de la consolidation in situ des rubans composites thermoplastiques.
Ainsi, les procédés de fabrication usuels de ces réservoirs composites ne permettent pas la préparation aisée et efficace de réservoirs composites conformables, c’est-à-dire des réservoirs pouvant s’insérer dans des volumes de forme complexe et/ou étroit, selon une des trois dimensions au moins, tel que, par exemple, le volume d’un pack batterie. Un des types de réservoir conformable les plus prometteurs, est composé d’un assemblage de tubes composites de petit diamètre (typiquement d’un diamètre < 200mm) reliés entre eux par des canalisations. Or, comme indiqué précédemment, les procédés actuels permettent la fabrication de réservoirs d’un seul tenant, typiquement de 60 litres, présentant donc un fort encombrement et a minima impossible à insérer dans un pack batterie, mais ne sont pas adaptés à la fabrication de réservoirs tubulaires de petits diamètres.
Par conséquent, il est recherché aujourd’hui un procédé simple, rapide et peu coûteux permettant d’accéder à des réservoirs présentant une bonne
tenue mécanique à haute température, recyclables et conformables, présentant une bonne étanchéité aux gaz. Ces réservoirs permettraient ainsi de stocker de l’hydrogène mais également tout type de gaz sous pression, et notamment sous haute pression.
Par conséquent, il est recherché aujourd’hui des réservoirs présentant une bonne tenue mécanique à haute température, recyclables et conformables, présentant une bonne étanchéité aux gaz, et dont la fabrication est aisée. Ces réservoirs permettraient ainsi de stocker de l’hydrogène mais également tout type de gaz sous pression, et notamment sous haute pression.
Résumé de l’invention
Ce problème est résolu par le procédé de l’invention qui comprend deux étapes :
- Une première étape i) de fabrication d’une préforme textile allongée et non consolidée, comprenant plusieurs couches d’au moins un ruban composite thermoplastique, de préférence plusieurs couches de rubans, chaque couche comprenant un ruban enroulé selon un angle donné, sans embuvage, ladite préforme étant susceptible d’être obtenue à partir d’un dispositif spécifique, représenté à la figure 1 ;
- Une deuxième étape de consolidation ii) de la préforme textile obtenue à l’étape précédente, notamment sous pression.
Ce procédé présente de nombreux avantages.
Tout d’abord, contrairement aux procédés impliquant un tressage ou un tissage et qui nécessitent de repasser sur une même couche pour empiler plusieurs couches de rubans tissés ou tressés, la fabrication de la préforme selon l’étape i) du procédé de l’invention peut être réalisée en continu, et permet donc d’accéder de façon rapide et peu coûteuse, à des préformes textiles de grandes dimensions, notamment de petit diamètre avec de grandes longueurs.
En outre, l’étape i) du procédé selon l’invention permet de superposer un très grand nombre de couches : la préforme peut contenir autant de couches de ruban voulues que de modules mis en œuvre.
Le dispositif mis en œuvre à l’étape i) met en œuvre des guides pour déployer les rubans dans une même direction. Il permet ainsi de réaliser des préformes allongées textiles de différentes formes, cylindriques ou non. La
préforme obtenue selon l’étape i) peut également comprendre des restrictions de section, au niveau desquelles certains rubans pourront être découpés et soudés, et des inserts positionnés, notamment avant consolidation. De même, la préforme peut être facilement cintrée à température ambiante afin de lui donner une forme particulière non rectiligne qui pourra être ensuite figée lors de l’étape de consolidation ii). Ceci nécessitera toutefois un choix particulier des orientations de fibres dans les différentes couches de la préforme. Ainsi, le procédé permet d’accéder de façon aisée, à des réservoirs conformables, pouvant notamment être insérés dans un volume similaire à un pack batterie d’une automobile.
De façon avantageuse, l’étape ii) permet de coconsolider, au sein d’une seule et même étape, des inserts thermoplastiques ou métalliques, avec les rubans de la préforme textile, permettant notamment de fermer le tube pour en faire un réservoir, ce qui constitue un avantage économique supplémentaire du procédé de fabrication de réservoirs selon l’invention. En outre, cette coconsolidation permet d’améliorer la résistance mécanique et/ou la cohésion entre l’insert et l’élément allongé textile coconsolidé.
L’invention concerne ainsi, selon un premier aspect, un procédé de fabrication d’un réservoir, notamment pour le stockage d’un fluide sous pression, comprenant un élément allongé textile et consolidé , ledit procédé comprenant les étapes de :
(i) Fabrication d’une préforme allongée textile et non consolidée, comprenant plusieurs couches de rubans composites thermoplastiques, chaque couche comprenant au moins un ruban enroulé selon un angle donné, la dite préforme étant fabriquée au moyen d’un dispositif (1 ) comprenant :
- un bâti (2) comprenant un guide longitudinal principal (3) selon une direction X, ledit guide (3) étant fixe sur le bâti (2) et
- au moins deux modules (4) disposés en série autour du guide (3) selon la direction X, chaque module (4) comprenant :
- une couronne d’alimentation (5) entourant une section du guide (3),
- des moyens d’alimentation (6) disposés sur la couronne (5) aptes à alimenter au moins un ruban (10) vers le guide (3) selon un angle d’enroulement compris entre -90° et 90° avec la direction X et selon une vitesse d’avancée V1 , chaque ruban (10) étant apte à s’enrouler au moins autour du guide (3) ou sur la couche de ruban (10) supérieure, et
- des moyens d’entraînement (15) de la couronne (5) aptes à faire tourner la couronne (5) autour du guide (3) selon une vitesse de rotation V2,
Ladite préforme étant fabriquée selon un procédé comprenant les étapes de :
- Mise en œuvre des moyens d’alimentation (6) sur chacun des modules (4), lesdits moyens d’alimentation (6) comprenant des rubans (10) choisis, lesdits rubans (10) choisis comprenant au moins des rubans composites thermoplastiques
- Paramétrage de la vitesse d’avancée V1 et de la vitesse de rotation V2 de chacun des modules (4) et mise en route de chaque module (4),
- Découpe de l’élément allongé (11 ) et/ou épuisement des rubans (10), et
- Récupération de la préforme textile allongée non consolidée (11 ) obtenue ; l’étape i) ne comprenant pas d’étape de tressage de rubans,
(ii) Consolidation de la préforme textile obtenue à l’étape précédente, par chauffage et refroidissement des rubans composites thermoplastiques, ce par quoi la préforme est consolidée et un élément textile allongé et consolidé est obtenu.
Dans des modes de réalisation, le procédé selon l’invention comprend une ou plusieurs des caractéristiques additionnelles suivantes :
- les rubans composites thermoplastiques comprennent : o Des fibres de renfort, continues ou discontinues, d’un matériau inorganique ; et o Une composition de polymères thermoplastiques.
- les fibres de renfort d’un matériau inorganique sont : o imprégnées à cœur ou pré-imprégnées par une composition de polymères thermoplastiques, ou o mélangées à des fibres de polymère(s) thermoplastique(s).
- le ruban composite thermoplastique comprend des fibres continues imprégnées par une composition à base d’un polymère thermoplastique, présentant une température de transition vitreuse (Tg), mesurée selon la norme ISO 11357 - 3 : 2013, supérieure à 80° C, de préférence supérieure ou égale à 100°C, encore plus préférentiellement supérieure à
120°C, lorsque le polymère est amorphe, et une température de fusion supérieure à 150°C lorsque le polymère est semi- cristallin.
- la composition de polymère thermoplastique du ruban composite comprend majoritairement un polyamide, de préférence semi-cristallin.
- le polyamide est un polyamide aliphatique, cycloaliphatique ou semi-aromatique.
- le polyamide aliphatique est choisi parmi PA 5, PA5-10, PA6, PA66, PA6-10, PA6-12, PA6-18, PA9, PA10-10, PA 10-12, PA11 , PA12, et leur mélange.
- le polyamide semi-aromatique est choisi parmi PA MPMDT/6T, PA 11/6T, PA 11/10T, PA 11/BACT, PA 5T/10T, PA 11/6T/10T, PA MXDT/4T, PA MXDT/6T, PA MXDT/10T, PA MPMDT/4T, PA MPMDT/6T, PA MPMDT/10T, PA BACT/10T, PA BACT/6T, PA BACT/4T, PA BACT/10T/6T, PA 11/BACT/4T, PA 11/BACT/6T, PA 11/BACT/10T, PA 11/MXDT/4T, PA 11/MXDT/6T, PA 11/MXDT/10T, PA 11/MPMDT/4T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/MXDT/10T, PA11/5T/10T, et leur mélange.
- les fibres des rubans composites thermoplastiques sont choisies parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou sont à base de basalte.
- les fibres des rubans composites thermoplastiques sont unidirectionnelles, c’est-à-dire toutes orientées selon la longueur du ruban.
- les rubans composites contiennent un taux de fibre compris entre 40 et 70% en volume, de préférence entre 50 et 60% en volume des rubans composites thermoplastiques.
- les rubans (10) choisis comprennent en outre des rubans (10) non composites de polymère thermoplastique.
- les rubans (10) de polymère thermoplastique non composites représentent une fraction massique minoritaire de la préforme par rapport à la fraction massique des rubans de composite thermoplastique.
- la composition de polymère constituant les rubans thermoplastiques non composite (10) comprend majoritairement un polyamide, de préférence semi-cristallin.
- la composition de polymère thermoplastique des rubans (10) de composite thermoplastique d’une part, et celle des rubans (10) de polymère thermoplastique non composite d’autre part, sont compatibles, notamment identiques.
- les rubans (10) présentent une épaisseur comprise entre 50 et 300 pm, notamment entre 50 et 260 pm et plus particulièrement entre 60 pm et 170 pm.
- les rubans (10) présentent une largeur comprise entre 5 mm et 50 mm, notamment entre 10 mm et 15 mm.
- l’angle d’enroulement du ruban (10) par rapport à la direction X est compris entre +90° et - 90°.
- l’angle d’enroulement est égal à +/-54,8° à +/-100, de préférence à +/-5°, mieux encore à +/-1 °.
- la préforme textile fabriquée à l’étape i) comprend une variation de section, notamment séquentielle selon la direction X.
- l’étape ii) est réalisée dans un moule, notamment externe à la préforme, en particulier fermé.
- l’étape ii) la pression est appliquée au moyen d’une vessie interne à la préforme.
préalablement à l’étape il), un insert est positionné aux extrémités de la préforme obtenue à l’étape i), de préférence à l’extérieur des extrémités de la préforme.
- l’insert est constitué d’un matériau thermoplastique éventuellement composite.
- à l’étape ii), l’insert est co-consolidé aux rubans (10) lors de l’étape de consolidation ii).
Selon un deuxième aspect, l’invention concerne un réservoir, notamment pour le stockage d’un fluide sous pression, en particulier d’hydrogène, comprenant au moins un élément allongé textile et consolidé, susceptible d’être obtenu selon le procédé de l’invention.
Dans des modes de réalisation, le réservoir selon l’invention comprend une ou plusieurs des caractéristiques additionnelles suivantes :
- chaque élément allongé consolidé est muni d’un insert à ses extrémités.
- l’insert est :
- un insert fermant l’élément allongé et consolidé, ou
- un insert muni d’un orifice, destiné à permettre l’entrée et la sortie du fluide.
- le réservoir comprend plusieurs éléments allongés consolidés, en série, reliés entre eux via des connecteurs.
Les inventeurs ont pu montrer que les réservoirs comprenant un élément textile allongé et consolidé obtenu selon le procédé de l’invention présentaient une très bonne résistante mécanique comparativement aux réservoirs composites de l’état de la technique.
En effet, contrairement aux méthodes classiques impliquant un tressage des rubans composites, le procédé de l’invention permet un enroulement des rubans sans embuvage, ce qui permet d’éviter une surcontrainte locale aux points de croisement des fibres entre elles, et donc d’améliorer la résistance mécanique de l’élément textile allongé obtenu après consolidation.
Avantageusement, l’étape de consolidation ii) peut être réalisée sous pression, notamment sous une pression comprise entre 5 et 10 bars, ce qui
permet à la fois d’améliorer plus encore la résistance mécanique et de diminuer la porosité du matériau composite.
En effet, les procédés classiques mettant en œuvre un enroulement filamentaire en voie humide ou un bobinage de rubans composites thermoplastiques ne permettent pas d’appliquer une pression élevée, notamment pendant une durée prolongée de sorte que la qualité de la consolidation est souvent assez faible.
En outre, les inventeurs ont pu observer que l’étape ii) de consolidation de la préforme sous pression permettait de conférer à l’élément textile allongé et consolidé obtenu, une très faible porosité résiduelle, notamment inférieure à 5%, en particulier inférieure à 2%, ce qui permet de renforcer l’effet barrière joué par le liner dans les réservoirs de type IV ou 4.5, voire de s’affranchir d’un liner et obtenir un réservoir de type V.
En outre, selon un autre avantage, lorsque la composition de polymère thermoplastique constituant les rubans composites est ou comprend un polymère thermoplastique semi-cristallin, notamment polyphtalamide, la cristallisation de la résine lors de l’étape de refroidissement permet avantageusement d’améliorer plus encore l’effet barrière du réservoir vis-à-vis du fluide sous pression.
Avantageusement, l’étape de consolidation de la préforme en moule fermé permet également de réduire la thermoxydation de la résine qui intervient lors d’une dépose de ruban thermoplastique à l’air libre, et ainsi de contribuer à l’amélioration des propriétés mécaniques de la structure tubulaire composite ainsi obtenue.
Selon un troisième aspect, l’invention concerne une préforme allongée textile et non consolidée, susceptible d’être obtenue selon l’étape i) du procédé selon l’invention.
Selon un quatrième aspect, l’invention concerne un pack batterie, notamment pour véhicule automobile, comprenant un réservoir de stockage d’hydrogène selon l’invention.
Selon un cinquième aspect, l’invention concerne l’utilisation du dispositif selon l’invention, tel que décrit notamment dans les figures 1 à 11 , pour préparer un réservoir selon l’invention.
Brève description des figures
La figure 1 est une vue en perspective d’un exemple de dispositif selon l’invention.
La figure 2 est une vue en perspective selon un angle opposé du dispositif de la figure 1 .
La figure 3 est une vue en perspective d’un exemple d’élément allongé selon l’invention.
La figure 4 est une vue en coupe de la figure 3.
La figure 5 est une vue en perspective d’un exemple de module selon l’invention.
La figure 6 est une vue en perspective du module de la figure 5.
La figure 7 est une vue en perspective d’un exemple de moyen d’alimentation de ruban selon l’invention.
La figure 8 est une vue en perspective d’un autre exemple de réalisation d’un dispositif selon l’invention.
La figure 9 est une vue en perspective selon un angle opposé du dispositif de la figure 8.
La figure 10 est une vue en perspective d’un élément allongé comprenant une section variable selon l’invention.
La figure 11 est une vue en coupe d’un élément allongé cintré selon l’invention.
Il est à noter que sur ces figures, les éléments structurels et/ou fonctionnels communs aux différentes variantes peuvent présenter les mêmes références.
Description détaillée
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Sauf indication contraire, tous les pourcentages concernant des quantités sont des pourcentages volumiques.
Procédé de fabrication d’un réservoir
Selon un premier aspect, l’invention concerne un procédé de fabrication d’un réservoir, notamment pour le stockage d’un fluide sous pression, comprenant un élément textile allongé et consolidé, ledit procédé comprenant les étapes de :
(i) Fabrication d’une préforme allongée textile et non consolidée comprenant plusieurs couches de rubans composites thermoplastiques,
chaque couche comprenant au moins un ruban enroulé selon un angle donné, la dite préforme étant fabriquée au moyen d’un dispositif (1 ) comprenant :
- un bâti (2) comprenant un guide longitudinal principal (3) selon une direction X, ledit guide (3) étant fixe sur le bâti (2) et
- au moins deux modules (4) disposés en série autour du guide (3) selon la direction X, chaque module (4) comprenant :
- une couronne d’alimentation (5) entourant une section du guide (3),
- des moyens d’alimentation (6) disposés sur la couronne (5) aptes à alimenter au moins un ruban (10) vers le guide (3) selon un angle d’enroulement compris entre -90° et 90° avec la direction X et selon une vitesse d’avancée V1 , chaque ruban (10) étant apte à s’enrouler au moins autour du guide (3) ou sur la couche de ruban (10) supérieure, et
- des moyens d’entraînement (15) de la couronne (5) aptes à faire tourner la couronne (5) autour du guide (3) selon une vitesse de rotation V2, ladite préforme étant fabriquée selon un procédé comprenant les étapes de :
Mise en œuvre des moyens d’alimentation (6) sur chacun des modules (4), lesdits moyens d’alimentation (6) comprenant des rubans (10) choisis, lesdits rubans (10) choisis comprenant des rubans composites thermoplastiques,
Paramétrage de la vitesse d’avancée V1 et de la vitesse de rotation V2 de chacun des modules (4) et mise en route de chaque module (4),
Découpe de l’élément allongé (11 ) et/ou épuisement des rubans (10), et
Récupération de la préforme textile allongée non consolidée (11 ) obtenue ; l’étape i) ne comprenant pas d’étape de tressage de rubans,
(ii) Consolidation de la préforme textile obtenue à l’étape précédente, par chauffage et refroidissement des rubans composite thermoplastiques, ce par quoi la préforme est consolidée et un élément textile allongé et consolidé est obtenu.
Etape i)
L’étape i) comprend la fabrication d’une préforme allongée textile et non consolidée, au moyen de rubans dits textiles, plus particulièrement de rubans composites thermoplastiques. L’étape i) est réalisée au moyen d’un dispositif spécifique décrit dans les figures 1 à 11 .
Au sens de l’invention, un ruban est dit textile et comprend donc des fibres, par exemple des fibres de carbone unidirectionnelle, il s’agit alors de fibres sèches. Un ruban compatible avec l’invention est apte à s’enrouler autour du guide et comprend une structure suffisamment rigide pour rester enroulé autour du guide.
L’étape i) de fabrication de la préforme ne comprend pas d’étape de tressage de rubans. Elle permet ainsi de fabriquer une préforme allongée textile et non consolidée, sans embuvage, c’est-à-dire présentant un embuvage noté E inférieur à 0, 5 % de préférence égal à 0%.
Au sens de l’invention, « sans embuvage » signifie que les rubans constitutifs du textile n’ondulent pas.
La longueur d'un tissu est toujours inférieure à la longueur des fils ou rubans constitutifs, car le croisement des fils ou rubans de chaine avec la trame (ou des différentes orientations de fils/rubans pour une tresse ou un textile) consomme de la longueur. Cette différence est l'embuvage et s'exprime en pourcentage. L'embuvage peut être assimilé à "l'ondulation" perpendiculaire au plan local du textile des fils ou rubans au sein dudit textile.
L'embuvage E croît avec la densité d’entrecroisements entre les différentes orientations d’un tissu, d’une tresse et plus généralement d’un textile comportant des ondulations hors plan de ses fils ou rubans. Il est défini en pourcentage de la façon suivante :
E =( L - LO )/L0 x 100 où L est la longueur du textile et L0 est la longueur du fil ou ruban rectiligne issu du textile de longueur L. Un embuvage inférieur à 0, 5 % de préférence de 0% correspondant théoriquement à un fil totalement tendu, c’est-à-dire à une absence d’ondulations.
[Rubans composites thermoplastiques]
Par « ruban composite thermoplastique », on entend un ruban comprenant des fibres d’un matériau inorganique et une composition de polymère thermoplastique, apte à fondre sous l’effet de la température puis à se solidifier, et donc à consolider la préforme.
En particulier, les rubans composites thermoplastiques mis en œuvre à l’étape i) peuvent comprendre :
- des fibres de renfort, continues ou discontinues, d’un matériau inorganique ; et
- une composition de polymères thermoplastiques.
Dans des modes de réalisation, les rubans composites thermoplastiques comprennent des fibres de matériaux inorganiques:
- imprégnées à cœur par une composition de polymères thermoplastiques (communément appelés « tape ») ; ou
- ou pré-imprégnées par une composition de polymères thermoplastiques, notamment sous forme de poudre, ou
- mélangées à des fibres de polymère(s) thermoplastique(s), et communément appelés « rubans co-mêlés ».
Dans des modes de réalisation préférés, le ruban composite thermoplastique, est un ruban imprégné à cœur par une composition de polymères thermoplastiques.
Dans des modes de réalisation, le ruban composite thermoplastique comprend des fibres continues imprégnées par une composition à base d’un polymère thermoplastique, présentant une température de transition vitreuse (Tg), mesurée selon la norme ISO 11357 -3 : 2013, supérieure à 80° C, de préférence supérieure ou égale à 100°C, encore plus préférentiellement supérieure à 120°C, lorsque le polymère est amorphe, et une température de fusion supérieure à 150°C lorsque le polymère est semi-cristallin.
Dans des modes de réalisation, la composition de polymère thermoplastique du ruban composite comprend majoritairement un polyamide, de préférence semi-cristallin.
Dans des modes de réalisation, le polyamide est un polyamide aliphatique, cycloaliphatique ou semi-aromatique.
Le polyamide aliphatique peut être choisi parmi PA 5, PA5-10, PA6, PA66, PA6-10, PA6-12, PA6-18, PA9, PA10-10, PA 10-12, PA11 , PA12, et leur mélange.
Le polyamide semi-aromatique peut être choisi parmi PA MPMDT/6T, PA 11/10T, PA 11/BACT, PA 5T/10T, PA 11/6T/10T, PA MXDT/4T, PA MXDT/6T, PA MXDT/10T, PA MPMDT/4T, PA MPMDT/6T, PA MPMDT/10T, PA BACT/10T, PA BACT/6T, PA BACT/4T, PA BACT/10T/6T, PA 11/BACT/4T, PA 11/BACT/6T, PA 11/BACT/10T, PA 11/MXDT/4T, PA 11/MXDT/6T, PA 11/MXDT/10T, PA 11/MPMDT/4T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/MXDT/10T, PA11/5T/10T, et leur mélange.
Les fibres des rubans composites peuvent être choisies parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou sont à base de basalte.
Les fibres des rubans composites thermoplastiques sont de préférence unidirectionnelles., ce qui signifie que dans ce cas les fibres sont toutes orientées dans la même direction c’est-à-dire selon la longueur du ruban. Les rubans peuvent également être composés de plusieurs couches de fibres superposées entre elle et présentant des orientations différentes d’une couche à l’autre : cependant, même dans ce cas, les fibres sont non tissées et/ou non tressées.
Dans des modes de réalisation, les rubans composites contiennent un taux de fibre compris entre 40 et 70% en volume, de préférence entre 50 et 60% en volume du matériau constituant les rubans composites. Ce pourcentage de fibres peut être déterminé selon des méthodes bien connues telles que celles décrites dans ISO14127 :2008
Dans des modes de réalisation, les rubans (10) choisis comprennent en outre des rubans (10) non composite de polymère thermoplastique.
Dans d’autres modes de réalisation, les rubans (10) de polymère thermoplastique non composite représentent une fraction massique minoritaire de la préforme par rapport à la fraction massique des rubans de composite thermoplastique.
Dans encore d’autres modes de réalisation, la composition de polymère constituant les rubans thermoplastiques non composite (10) comprend majoritairement un polyamide, de préférence semi-cristallin.
Dans des variantes des modes de réalisation, les rubans (10) présentent une épaisseur comprise entre 50 et 300 pm, notamment entre 50 et 260 pm et plus particulièrement entre 60 pm et 170 pm.
Dans des variantes des modes de réalisation, les rubans (10) présentent une largeur comprise entre 5 mm et 50 mm, notamment entre 10 mm et 15 mm.
Les rubans sont déposés vers le guide avec un angle d’enroulement strictement supérieur à -90° par rapport à la direction X d’avancement de l’élément textile et strictement inférieur à 90° par rapport à la direction X d’avancement de l’élément textile.
En d’autres termes, l’angle d’enroulement du ruban (10) par rapport à la direction X est compris entre +90° et - 90°, les bornes +90° et - 90 n’étant pas incluses.
Dans des modes de réalisation, l’angle d’enroulement est égal à +/- 54,8° à +/-10°, de préférence à +1-5°, mieux encore à +/-1 °.
Selon une forme de réalisation de l’invention, le procédé comprend en outre une étape de variation de diamètre, ou de la section s’il ne s’agit pas d’un tube à section circulaire, de l’élément allongé. D’autres moyens que la mise en œuvre du guide secondaire peuvent être mises en œuvre pour agrandir ou diminuer le diamètre, ou la section s’il ne s’agit pas d’un tube à section circulaire, de l’élément allongé.
La préforme textile obtenue à l’issue de l’étape i) comprend généralement plusieurs couches, notamment autant de couches que de modules (4) mis en œuvre. Chaque couche est formée par l’enroulement d’un ruban, qui peut être de nature identique ou différente, à celle du ruban d’au moins une couche adjacente.
Ainsi les rubans thermoplastiques non composites peuvent notamment être intercalés entre deux couches de ruban composite thermoplastique et/ou constituer la couche interne de la préforme et donc de l’élément allongé textile après consolidation. Cette couche interne formée par des rubans thermoplastiques non composites peut notamment jouer le rôle de couche barrière au fluide contenu dans le réservoir.
Dans des modes de réalisation, la composition de polymère thermoplastique des rubans (10) composite thermoplastique, d’une part, et celle des rubans (10) de polymère non composite thermoplastique d’autre part, sont compatibles, en particulier totalement ou partiellement miscibles et sont notamment identiques.
La compatibilité totale ou partielle desdites compositions permettant leur soudage est définie par le ratio composé de :
- la différence des températures de transition vitreuse des deux compositions présentes dans la couche interfaciale créée par la soudure,
- rapportées à la différence des températures de transition vitreuse des deux compositions, avant le mélange par soudure de ces deux compositions.
La compatibilité est totale, lorsque ledit ratio est égal à 0, et la compatibilité est partielle, lorsque ledit ratio est différent de 0 et inférieur à 1 , en valeur absolue. Une incompatibilité totale du polyamide compris dans la composition constituant la couche d’étanchéité avec le polyamide compris dans la composition qui imprègne le matériau fibreux de la couche intermédiaire est exclue. De même, une incompatibilité totale du polyamide compris dans la composition qui imprègne le matériau fibreux de la couche intermédiaire avec le polyamide dans la composition qui imprègne le matériau fibreux de la couche externe est exclue.
Avantageusement, lorsque la compatibilité desdites compositions est partielle, ledit ratio est inférieur à 30%, préférentiellement inférieure à 20%, en valeur absolue.
Dans des modes de réalisation, la ou les températures de transition vitreuse du mélange, selon que la compatibilité est totale ou partielle, doivent être comprises entre les températures de transition vitreuse desdits polyamides avant mélange et différentes d’elles, d’au moins 5°C, de préférence d’au moins 10°C.
L’expression « totalement compatible » signifie que lorsque par exemple, deux polyamides notés PAa et PAb présentant respectivement une Tga et une Tgb, sont présents respectivement dans deux couches d’étanchéité ou deux couches de renfort adjacentes, et que Tga est inférieure à Tgb, alors le mélange des deux polyamides ne présente qu’une seule Tgab, dont la valeur est comprise entre Tga et une Tgb.
Avantageusement, lorsque la compatibilité desdites compositions est partielle, ledit ratio est inférieur à 30%, préférentiellement inférieure à 20%, en valeur absolue.
Dans des modes de réalisation, la ou les températures de transition vitreuse du mélange, selon que la compatibilité est totale ou partielle, doivent être comprises entre les températures de transition vitreuse desdits polyamides avant mélange et différentes d’elles, d’au moins 5°C, de préférence d’au moins 10°C.
L’expression « totalement compatible » signifie que lorsque par exemple, deux polyamides notés PAa et PAb présentant respectivement une Tga et une Tgb, sont présents respectivement dans deux couches adjacentes, et que Tga est inférieure à Tgb, alors le mélange des deux polyamides ne présente qu’une seule Tgab, dont la valeur est comprise entre Tga et une Tgb.
Cette valeur Tgab est alors supérieure à Tga d’au moins 5°C, en particulier d’au moins 10°C et inférieure à Tgb d’au moins 5°C, en particulier d’au moins 10°C.
L’expression « partiellement compatible » signifie que lorsque par exemple, deux polyamides PAa et PAb présentant respectivement une Tga et une Tgb, sont présents respectivement dans deux couches d’étanchéité ou deux couches de renfort adjacentes, alors le mélange des deux polyamides présente deux Tg : Tg’a et Tg’b, avec Tga < Tg’a < Tg’b < Tgb.
Ces valeurs Tg’a et Tg’b sont alors supérieures à Tga d’au moins 5°C, en particulier d’au moins 10°C et inférieure à Tgb d’au moins 5°C, en particulier d’au moins 10°C.
Une incompatibilité de deux polyamides se traduit par la présence de deux Tg, Tga et Tgb, dans le mélange des deux polyamides qui correspondent aux Tg respectives Tga et Tgb des polymères purs pris séparément.
On ne sortirait pas de l’invention si les températures de transition vitreuse dans le mélange des deux polyamides étaient identiques ou différentes aux températures avant mélange, mais que ces deux polyamides étaient réactifs entre eux.
Selon d’autres modes de réalisation, la préforme pourra comprendre plusieurs couches de rubans composite thermoplastiques, le polymère thermoplastique pouvant être de nature identique ou différente au polymère thermoplastique de la couche adjacente.
La préforme peut comprendre jusqu’à 50 couches, notamment 47 couches. Elle peut notamment comprendre 10 couches de rubans thermoplastiques non composite, et 37 couches de rubans composite thermoplastiques. Dans des modes de réalisation, la préforme comprend 10 couches internes de rubans thermoplastiques non composite, formant une couche d’étanchéité après consolidation et de 10 à 50 couches de rubans composite thermoplastiques, notamment 37 couches de ruban composite thermoplastique, en particulier imprégnés à cœur formant une couche de renfort.
Dans des variantes des modes de réalisation, la préforme textile fabriquée à l’étape i) comprend une variation de section, notamment un rétrécissement de section, en particulier séquentielle selon la direction X.
Dans certains modes de réalisation, la découpe de l’élément allongé peut être réalisée au niveau de ces rétrécissements de section, et un insert peut y être éventuellement positionné.
Selon une caractéristique de l’invention, chaque module du dispositif de fabrication de la préforme comprend des moyens d’alimentation indépendants. Ainsi, chaque module peut distribuer des rubans de nature différente. La nature et les dimensions des rubans peuvent être différents d’une couche à l’autre.
Selon une autre caractéristique de l’invention, le guide longitudinal principal comprend une section sensiblement circulaire ou polygonale ou
encore de forme libre. L’élément allongé obtenu peut ainsi avoir la forme d’un tube ou peut être de forme plus complexe selon l’utilisation.
Selon encore une autre caractéristique de l’invention, les moyens d’alimentation comprennent au moins un distributeur de ruban disposé autour de la couronne d’alimentation. La mise en œuvre de distributeur de ruban permet un stockage et une distribution facilités des rubans vers le guide principal, le ou les distributeurs tournant autour du guide selon la vitesse de rotation de la couronne d’alimentation.
Selon une forme de réalisation de l’invention, les distributeurs de ruban comprennent des moyens de pivotement sur la couronne d’alimentation. La mise en œuvre de moyens de pivotement permet d’orienter la distribution des rubans vers le guide et ainsi de choisir un angle entre -90° et 90° entre le ruban et le guide. Tous les rubans d’un même module ont sensiblement le même angle avec le guide.
Selon une autre forme de réalisation de l’invention, les distributeurs de ruban comprennent au moins une guillotine apte à couper au moins un ruban en sortie d’un distributeur et un élément motorisé apte à amener le ruban vers le guide.
Selon une autre forme de réalisation de l’invention, les distributeurs de ruban comprennent des moyens de soudure, par exemple des moyens de soudure par ultrasons, aptes à souder un ruban sur une couche présente ou couche supérieure. D’autres moyens de soudure compatibles avec la nature des rubans utilisés sont possibles dans le cadre de l’invention. Lorsque le diamètre, ou la section s’il ne s’agit pas d’un tube à section circulaire, de l’élément allongé varie, il est intéressant d’ajouter ou d’enlever un ou plusieurs rubans, ce qui est possible dans le cadre de l’invention grâce à la mise en œuvre de la guillotine et/ou de moyens de soudure.
Selon une forme de réalisation de l’invention, le dispositif comprend en outre un dispositif d’aide au tirage apte à guider les rubans du ou des modules.
L’utilisation d’un dispositif d’aide au tirage permet de faciliter le glissement des différentes couches de ruban le long du guide principal. Un exemple de réalisation de dispositif d’aide au tirage peut être un système d’au moins un rouleau disposé en aval du dernier module selon la direction X. Ce ou ces rouleaux exercent une pression suffisante pour entraîner le glissement des couches de ruban sur le guide principal.
Selon la nature des rubans, ce dispositif d’aide peut être retiré au cours de la fabrication de l’élément textile qui par sa rigidité peut avancer seul sur le
guide. Selon d’autres formes de réalisation, la nature des rubans ne nécessite pas d’aide au tirage.
Selon une variante de réalisation de l’invention, le dispositif comprend en outre un guide longitudinal secondaire de diamètre ou de section supérieur au diamètre ou à la section s’il ne s’agit pas d’un tube à section circulaire, du guide principal et apte à translater sur le guide principal. Lorsque le dispositif est en fonctionnement, la mise en œuvre d’un guide secondaire de diamètre ou de section supérieur permet d’augmenter le diamètre, ou la section s’il ne s’agit pas d’un tube, de l’élément allongé, les rubans étant déposés sur le guide secondaire.
La vitesse d’avancée V1 correspond à la vitesse d’avancée de l’élément textile sur le guide principal. La vitesse d’avancée V1 est donc sensiblement la même pour chacun des modules. La vitesse d’avancée V1 et la vitesse de rotation V2 de chaque module sont liées, d’une part, à l’angle défini entre le ou les rubans alimenté par chacun des modules et leur vitesse d’alimentation.
Selon une forme de réalisation de l’invention, le procédé comprend en outre une étape de stockage de l’élément allongé enroulé autour d’une bobine de stockage. Le procédé selon l’invention permet de fabriquer jusqu’à épuisement des moyens d’alimentation en ruban un élément allongé de taille importante pouvant aller, par exemple, jusqu’au kilomètre. Stocker en bobine l’élément allongé en sortie du dispositif facilite la manutention.
Selon une variante de réalisation de l’invention, le procédé comprend en outre l’étape d’aide au tirage des rubans avec la mise en œuvre du dispositif d’aide au tirage. Le dispositif d’aide au tirage est placé en aval du dernier module délivrant la dernière couche de l’élément textile. Un opérateur peut, par exemple, guider chacune des couches de ruban vers le dispositif d’aide au tirage qui aidera ensuite à faire glisser les différentes couches sur le guide principal.
Selon une forme de réalisation de l’invention, la bobine de stockage est un dispositif d’aide au tirage des rubans des moyens d’alimentation des modules du dispositif de fabrication.
Selon une forme de réalisation de l’invention, le procédé comprend en outre l’étape supplémentaire de disposition d’un guide longitudinal secondaire au niveau du premier module et translation dudit guide secondaire selon la direction X. Le guide secondaire permet d’agrandir le diamètre ou la section s’il ne s’agit pas d’un tube, de l’élément allongé en cours de fabrication ou de
diminuer le diamètre ou la section de l’élément si un premier guide secondaire a déjà été mis en œuvre.
Selon une forme de réalisation de l’invention, le procédé comprend en outre une étape de cintrage à température ambiante de l’élément allongé obtenu selon un angle voulu. Un avantage du dispositif de fabrication est la possibilité de cintrer à température ambiante l’élément allongé.
Par « température ambiante » au sens de la présente description, on entend une température comprise entre 15 et 25°C.
Etape ii)
La préforme allongée textile obtenue à l’étape i) est ensuite consolidée en chauffant et en refroidissant les rubans composites thermoplastiques.
Plus particulièrement, elle est consolidée par fusion et refroidissement des rubans composite thermoplastiques.
Cette étape de chauffage et de refroidissement permet de souder les différentes couches de rubans constituant la préforme entre elles. La température de chauffage est donc déterminée en fonction de la nature des rubans (10) choisis.
Cette étape ii) est généralement réalisée sous une pression comprise entre 1 bar et 25 bars, notamment entre 5 bars et 10 bars, en particulier entre 6 bars et 8 bars.
L’étape ii) peut être réalisée dans un moule, notamment externe à la préforme, en particulier fermé.
Selon des modes de réalisation de l’étape ii), la pression est appliquée au moyen d’une vessie interne à la préforme.
Selon encore des modes de réalisation de l’étape ii), un insert est positionné aux extrémités de la préforme obtenue à l’étape i), de préférence à l’extérieur des extrémités de la préforme. En d’autres termes, la surface interne de l’insert peut être en contact avec la surface externe de la préforme.
L’insert peut être notamment métallique ou constitué d’un matériau thermoplastique, éventuellement composite.
Ainsi, à l’étape ii), l’insert peut être avantageusement co-consolidé aux rubans de la préforme lors de l’étape de consolidation ii). Lorsqu’une pression est appliquée au moyen d’une vessie interne à la préforme, les rubans de la préforme viennent se plaquer contre la paroi interne de l’insert, ce qui permet notamment d’obtenir une bonne consolidation de la préforme et aussi
d’améliorer la soudure, et donc la résistance mécanique, entre la préforme et l’insert.
Dans ces modes de réalisation, lorsque l’angle d’enroulement des rubans autour de l’axe du tube ou du corps creux est supérieur à 65°, il est préférable de couper de façon périodique les rubans pour faciliter leur consolidation.
Réservoir
Selon un autre aspect, l’invention concerne un réservoir, notamment pour le stockage d’un fluide sous pression, en particulier d’hydrogène, comprenant au moins un élément allongé textile et consolidé, susceptible d’être obtenu selon le procédé tel que défini ci-dessus.
Chaque élément allongé consolidé est généralement muni d’un insert à ses extrémités. Il peut comprendre notamment
- au moins un insert muni d’un orifice, destiné à permettre l’entrée et la sortie du fluide, et éventuellement
- un insert fermant l’élément allongé et consolidé à l’une de ses extrémités.
L’élément allongé consolidé peut comprendre, à chacune de ses extrémités, un insert muni d’un orifice destiné à permettre l’entrée et la sortie du fluide. Dans ce cas, il est généralement relié à d’autres éléments allongés via des connecteurs.
Selon des modes de réalisation, le réservoir comprend plusieurs éléments allongés reliés en série, les uns aux autres, au moyen de connecteurs.
En particulier, le premier élément allongé consolidé de la série peut être muni d’un insert incluant un orifice permettant l’entrée du fluide et le dernier élément allongé et consolidé peut être muni d’un insert le fermant, les éléments allongés consolidés intermédiaires étant équipés, à chacune de leurs extrémités, d’inserts munis d’un orifice permettant la circulation du fluide entre le premier et le dernier élément allongé de la série.
Avantageusement, le réservoir est conformable et peut s’insérer dans des volumes très restreints, tels qu’un pack batterie, notamment pour véhicule automobile.
Préforme
Selon encore un autre aspect, l’invention concerne une préforme allongée textile et non consolidée, susceptible d’être obtenue selon l’étape i) du procédé tel que défini ci-dessus.
Pack batterie
Selon encore un autre aspect, l’invention concerne un pack batterie, notamment pour véhicule automobile, comprenant un réservoir de stockage d’un fluide, en particulier d’hydrogène, tel que défini ci-dessus.
Description détaillée des figures
Un dispositif selon l’invention tel qu’illustré aux figures 1 et 2 et désigné dans son ensemble par la référence 1 vise à la fabrication d’un élément allongé textile et non consolidé. A ces fins, le dispositif 1 comprend un bâti 2 comprenant un guide longitudinal principal 3 selon une direction X, et au moins deux modules 4 disposés en série autour du guide 3 selon la direction X.
Le guide longitudinal principal 3 est fixe sur le bâti 2. Selon les formes de réalisation illustrées, le guide longitudinal principal 3 comprend une section circulaire et revête donc une forme tubulaire. Cette forme n’est pas limitative pour l’invention, d’autres formes de guide 3 sont compatibles avec l’invention. Le guide 3 est rectiligne et peut comprendre des sections de formes différentes telles que carré, rectangulaire, quadrilatérale, triangulaire, polygonale, ronde, ovale, ou de forme mixte et/ou libre.
Un module 4 d’un dispositif 1 selon l’invention comprend, d’une part, une couronne d’alimentation 5 entourant une section du guide longitudinal principal 3. Selon les exemples illustrées, la couronne d’alimentation 5 a sensiblement la forme d’un disque comprenant un trou central dans lequel le guide 3 est situé.
Un module 4 comprend, d’autre part, des moyens d’alimentation 6 disposés sur la couronne 5. Selon la forme de réalisation illustrée, les moyens d’alimentation 6 sont situés sur une face du disque et alimentent au moins un ruban 10 vers le guide 3 avec un angle par rapport à la direction X compris entre -90° et 90°.
Un ruban 10 compatible avec l’invention est, d’une part, suffisamment souple pour s’enrouler autour du guide 3. La figure3 illustre un élément allongé 11 obtenu au moyen du dispositif 1 selon l’invention. Ce sont les couches successives de ruban 10 disposés avec des angles différents qui permettent
à l’élément allongé 11 obtenu de garder sa forme. La figure 4 illustre une coupe de cet élément allongé 11 où les couches successives sont visibles.
Les moyens d’alimentation 6 disposés sur la couronne 5 alimentent au moins un ruban 10 vers le guide 3 avec un angle choisi compris entre -90° et 90° par rapport à la direction X. Chaque ruban 10 s’enroulent au moins autour du guide 3 ou sur la couche de ruban 10 déjà présente, soit la couche supérieure avec une vitesse d’avancée V1 globale choisie.
Chaque module 4 comprend également des moyens d’entraînement 15 de la couronne 5. Selon la figure 2 et visible également à la figure 5, les moyens d’entraînement 15 se situent sur la face de la couronne 5 opposée aux moyens d’alimentation 6. Les moyens d’entraînement 15 de la couronne
5 permettent de faire tourner la couronne 5 autour du guide 3 selon une vitesse de rotation V2. Selon la forme de réalisation illustrée, les moyens d’entraînement 15 comprennent un moteur comprenant notamment une courroie apte à faire tourner la couronne 5 et une unité de commande du moteur afin de mettre en œuvre une vitesse de rotation V2 de la couronne 5. Cette configuration n’est pas limitative pour l’invention.
Le dispositif illustré aux figures 1 et 2 comprend deux modules 4. Les moyens d’alimentation 6 du premier module 4 comprennent deux distributeurs 20 de ruban 10 et les moyens d’alimentation 6 du second module 4 comprennent un seul distributeur 20 de ruban 10. Les moyens d’alimentations
6 des différents modules 4 sont en effet indépendants les uns des autres. Ainsi chaque module 4 peut délivrer des rubans 10 de nature différente et un nombre choisi de ruban 10 par couche.
La figure 6 illustre un module 4 comprenant six distributeurs 20 de ruban 10. Les distributeurs 20 de ruban 10 sont disposés autour de la couronne d’alimentation 5. Selon les formes de réalisation illustrées, un distributeur 20 de ruban 10 comprend une bobine 21 fixée sur une face de la couronne 5 avec des moyens de pivotement 22.
Selon cette forme de réalisation illustrée mais non limitative, les moyens de pivotement 22 comprennent une partie fixe 23 et une partie pivotante 24 dirigée vers la bobine 21. La bobine 21 est libre de pivoter dans la partie pivotante 24 et la partie pivotante est libre de pivoter par rapport à la partie fixe 23. Ainsi, la bobine 21 peut être disposée selon une configuration voulue et les moyens de pivotement 22 peuvent être bloqués selon la disposition voulue du distributeur 20.
La figure 7 illustre un exemple de réalisation particulier de l’invention dans lequel un distributeur 20 de ruban 10 comprend également, une guillotine 25 apte à couper le ruban 10 en sortie du distributeur 20, un moteur M apte à alimenter le ruban après découpe et des moyens de soudure 26 par ultrasons aptes à souder un ruban 10 au niveau d’une couche de rubans 10 présente ou couche supérieure. L’illustration du moteur M, de la guillotine 25 et des moyens de soudure 26 est schématique sur la figure 7 et d’autres formes de réalisation sont possibles et notamment avec des moyens d’agir sur un ruban 10 hors du distributeur 20.
Les figures 8 et 9 illustrent une forme de réalisation particulière de l’invention. Le dispositif 1 comprend trois modules 4. Le premier module 4 comprend quatre distributeurs 20 de ruban 10 qui déposent chacun un ruban 10 dans le sens d’avancement X, c’est-à-dire que l’angle entre le ruban 10 et le guide 3 a une valeur de 0 degré. Le deuxième module 4 comprend deux distributeurs 20 de ruban 10 et enfin le troisième module 4 comprend un seul distributeur 20 de ruban 10. Cette forme de réalisation n’est pas limitative pour l’invention.
Afin de fabriquer un élément allongé 11 selon l’invention, une première étape consiste à mettre en œuvre des moyens d’alimentation 6 sur chacun des modules 4 du dispositif 1. A ses fins, selon les exemples illustrés, des bobines 21 comprenant chacune un ruban 10 choisi sont disposés sur chaque couronne d’alimentation 5 du dispositif 1 .
De préférence, les bobines délivrent le même ruban 10 par module et chaque module 4 peut comprendre des bobines de ruban 10 de type différent.
Selon l’exemple illustré aux figures 8 et 9, les rubans 10 utilisés ont une largeur comprise entre 20 et 10 mm et une épaisseur d’environ 150 microns.
Une deuxième étape du procédé consiste à paramétrer, d’une part, la vitesse d’avancée V1 et, d’autre part, la vitesse de rotation V2 de chacun des modules 4. Le paramétrage précis et coordonnée de ces deux valeurs permet de définir pour chaque moyens d’alimentation 6 un angle voulu entre le ruban 10 et le guide, cet angle varie entre -90 et 90° en excluant ces deux limites d’intervalle. Par exemple, et selon l’exemple du dispositif illustré aux figures 8 et 9, une première couche de ruban 10 est déposée avec un angle proche de 0° par rapport à la direction X, une deuxième couche de ruban 10 est déposée avec un angle d’environ 80° par rapport à la direction X et une troisième couche est déposée avec un angle proche de -80° par rapport à la direction X.
Un exemple de paramétrage consiste à définir une vitesse d’avancée V1 sensiblement égale à un mètre par minute et une vitesse de rotation V2 de deux modules 4 distribuant chacun un ruban 10 sensiblement égale à 360 tours par minute. Cet exemple n’est pas limitatif pour l’invention.
Les modules 4 sont ensuite mis en route.
Selon la nature des rubans 10, un dispositif d’aide au tirage 30 est mis en œuvre afin d’aider au tirage des rubans 10 des différentes couches de l’élément 11. Selon la forme de réalisation illustrée aux figures 8 et 9, la première couche de ruban 10 issue du premier module 4 glisse sur le guide principal 3 au travers des deux autres modules 4 mis en œuvre. Les rubans 10 de la première couche peuvent glisser seuls si leur nature le permet ou avec une aide manuelle. Les rubans 10 des autres couches sont déposés sur la couche précédente et ensuite passent par le dispositif d’aide au tirage 30. Ce dispositif d’aide 30 n’est pas toujours nécessaire à la mise en œuvre du procédé mais il peut aider au glissement des différentes couches vers la direction X selon la nature des rubans 10 utilisés.
Selon une forme de réalisation particulière avec notamment des rubans de la première couche disposés selon un angle proche de 0° avec la direction X, il n’y a pas nécessairement besoin d’aide manuelle pour faire avancer lesdits rubans 10.
Selon une autre forme de réalisation, une fois que d’autres couches de rubans 10 sont superposées à la première couche, l’élément allongé 11 se fabrique sans aide et le dispositif d’aide au tirage 30 n’a plus d’utilité et peut être retiré. Il peut s’agir d’une période transitoire d’aide au démarrage qui est nécessaire si la nature du ruban 10 utilisé ne permet pas au ruban de se déployer efficacement hors de sa bobine 21 .
L’élément allongé 11 qui se fabrique peut être stocké enroulé autour d’une bobine de stockage facilitant ainsi sa manutention ultérieure. L’élément allongé 11 peut également être découpé au fur et à mesure de sa fabrication selon la taille voulue et selon les étapes supplémentaires décrites ci-dessous, par exemple d’augmentation ou de réduction des dimensions.
Selon une forme de réalisation (non illustrée) la bobine de stockage est un dispositif d’aide au tirage des rubans 10. En effet, lors de son enroulement, l’élément textile 11 entraîne le tirage des rubans 10 qui le forment.
Lorsque l’élément allongé 11 est de taille voulue, on peut alors le découper. Une autre manière de terminer le procédé consiste à attendre l’épuisement des rubans 10.
L’élément allongé 11 textile et non consolidé obtenu peut enfin être récupéré. Des étapes de consolidation peuvent alors lui être appliquées, par exemple une étape de thermoformage lorsque les dimensions le permettent. Lors de la consolidation de l’élément allongé 11 , il est également possible de varier légèrement les dimensions de l’élément allongé 11 , notamment son périmètre, de l’ordre de 10-20 %.
Selon une forme de réalisation particulière, un guide longitudinal secondaire (non représenté) est disposé au niveau du premier module 4 pendant la fabrication. Ce guide secondaire de diamètre ou de section supérieur au diamètre ou à la section du guide principal 3 est placé en amont du premier module 4 et translate vers la direction de fabrication de l’élément allongé 11. Les rubans 10 des différents modules 4 se déposent alors sur le guide secondaire, et à nouveau sur le guide principal 3 après le passage du guide secondaire. Il est ainsi également possible d’augmenter fortement le diamètre ou la section ou encore forme globale de l’élément allongé 11 pendant sa fabrication. Un tel élément allongé 11 obtenu est illustré à la figure 10.
Avec une augmentation du diamètre ou de la section, des rubans 10 similaires aux rubans 10 alimentés par le module 4 correspondant peuvent être ajoutés grâce à des moyens de soudure 26 par ultrasons permettant ainsi de combler des ouvertures qui pourraient se former dues à l’augmentation de la surface de l’élément allongé 11 , un tel exemple est illustré à la figure 10 avec des rubans 10 ajoutés sur la couche en dessous de la couche supérieure lors de l’augmentation du diamètre de l’élément 11 et des rubans 10 coupés lors de la diminution du diamètre de l’élément 11 .
Selon une autre forme de réalisation de l’invention, l’élément allongé 11 obtenu grâce au dispositif 1 est cintré à température ambiante selon un angle voulu tel que l’élément allongé 11 apparait à la figure 11. Cette étape de cintrage à température ambiante peut être faite à la main si la rigidité de flexion de l’élément allongé 11 obtenu le permet.
Selon une autre forme de réalisation non illustrée, l’élément allongé 11 peut également être consolidé en intégrant une matrice solide au niveau d’une des couches de ruban 10 le composant.
Bien entendu, diverses autres modifications peuvent être apportées à l’invention dans le cadre des revendications annexées.
Exemples
Exemple 1 (selon l’invention):
La résine composant la matrice du ruban composite thermoplastique est le 11/BACT/10T, la fibre utilisée est la fibre de carbone Hyosung 2550 G10, le taux de fibre est de 53% en volume.
La contrainte à rupture en traction à 0° (sens fibre) du composite obtenu avec le ruban composite est de 2700 MPa. La largeur du ruban est de 14” et son épaisseur de 137 pm, en moyenne.
Positionnement dans la préforme, des rubans composites thermoplastiques à +/- 55° de l’axe du réservoir tubulaire. La préforme présente une restriction de section correspondant à la moitié du diamètre initial, permettant de positionner un insert métallique à l’extérieur de la préforme, à ses 2 extrémités.
Elle comporte 37 couches de ruban composite thermoplastique,
La préforme a été fabriquée en continue à une vitesse de 1 m/mn.
Elle est consolidée sous une pression de 6 bars à 300°C. Le temps de montée en température, de maintien à 300°C et de refroidissement sont de 20mn.
Le réservoir est de type V c’est à dire qu’il ne comporte de pas de couche supplémentaire d’étanchéité, le renfort composite assurant cette fonction en plus de la tenue à la pression.
La longueur totale du réservoir tubulaire est de 123 m, le diamètre intérieur de 110 mm dans la partie centrale, de 55 mm dans la restriction et la transition entre la partie centrale et la restriction est conique d’un angle de 45°. L’épaisseur du renfort composite est de 5 mm. L’empilement par construction ne comporte pas de tressage, l’embuvage E est inférieur à 0,5%. La pression d’éclatement du réservoir est de 1605 bars.
Le réservoir tubulaire obtenu possède une capacité de 10 litres et comporte 2,98 kg de composite.
Exemple 2 (selon l’invention):
La résine composant la matrice du ruban composite thermoplastique est le 11/BACT/10T, la fibre utilisée est la fibre de carbone Hyosung 2550 G10, le taux de fibre est de 53% en volume.
La contrainte à rupture en traction à 0° (sens fibre) du composite obtenu avec le ruban composite est de 2700 MPa. La largeur du ruban est de 14” et son épaisseur de 137 pm, en moyenne.
Positionnement dans la préforme des rubans composites thermoplastiques à +/-55° de l’axe du réservoir tubulaire. La préforme présente une restriction de section correspondant à la moitié du diamètre initial, permettant de positionner un insert métallique à l’intérieur de la préforme.
Elle comporte 10 couches de ruban thermoplastique d’une largeur de 14” et d’une épaisseur de 200 pm en polyamide 11 et 37 couches de ruban composite thermoplastique, présentant une largeur de 14” et une épaisseur de 137 pm en moyenne.
La préforme a été fabriquée en continue à une vitesse de 1m/mn.
Elle est consolidée sous une pression de 6 bars à 300°C. Le temps de montée en température, de maintien à 300°C et de refroidissement sont de 20mn.
La résine composant la matrice du ruban composite thermoplastique est le 11/BACT/10T, la fibre utilisée est la fibre de carbone Hyosung 2550, le taux de fibre est de 55% en vol. La largeur de la tape est de 14”. L’empilement par construction ne comporte pas de tressage, l’embuvage E est inférieur à 0,5%.
La longueur du réservoir tubulaire est de 1 ,33 m, le diamètre intérieur de 110 mm dans la partie centrale du renfort composite, de 55 mm dans la restriction et la transition entre la partie centrale et la restriction est conique d’un angle de 45°. L’épaisseur du renfort composite est de 5 mm et celle de la couche d’étanchéité en polyamide 11 , issue de la consolidation des rubans thermoplastiques inclus dans la préforme, est de 2 mm. Le diamètre interne du réservoir dans sa partie centrale est donc de 106 mm et de 51 mm dans la restriction.
Les 2 couches sont parfaitement soudées entre elles et le réservoir est monobloc. Ce type de réservoir est de type 4,5 (ie couche d’étanchéité est de nature chimique différente de celle de la matrice du composite mais les deux résines sont partiellement miscibles, ce qui permet une soudure parfaite entre elles).
La pression d’éclatement du réservoir est de 1620 bars.
Le réservoir tubulaire obtenu possède une capacité de 10,15 litres et comporte 3,22 kg de composite et 0,89 kg de liner en polyamide 11
Exemple 3 (selon l’invention):
Connexion au moyen de raccord métalliques de diamètre 25 mm, comportant un raccord fileté, de 6 réservoirs tubulaires tels que décrits dans
l’exemple 2, pour constituer un réservoir H2 conformable pour automobile d’une capacité de 61 litres (environ). Ce réservoir, constitué des 6 réservoirs tubulaires, résiste à la même pression de 1620 bars que chacun des 6 réservoir tubulaire pris séparément. La consolidation des 6 préformes a été faite en parallèle dans 6 moules fermés différents, sous une pression de 6 bars à 300°C. Le temps de montée en température, de maintien à 300°C et de refroidissement étaient de 20 mn.
Le poids total de composite utilisé est de 19,3 kg.
Le temps total de fabrication du réservoir conformable complet est de 39 mn, se décomposant comme suit :
• Temps de fabrication des préformes de 6 x 1 ,21 =7,26 mn + temps de découpe, soit un total de 8 mn pour disposer des préformes prêtes à être consolidées
• 3 mn pour le positionnement des 6 préformes dans les moules avec les inserts,
• 20 mn de temps de moulage pour la consolidation des 6 préformes
• 3 mn de temps de démoulage pour les 6 préformes
• 5 mn de temps d’assemblage pour connecter les 6 réservoirs tubulaires les uns aux autres.
Exemple 4 (comparatif):
Réalisation d’un réservoir d’un volume interne de 61 litres pour automobile, d’un diamètre externe de 400 mm et d’une longueur de 0,88 m, (embases comprises) présentant une pression d’éclatement de 1610 bars.
Ce réservoir est de type IV et comporte un renfort composite à l’extérieur, d’un poids de 36,7 kg et une couche d’étanchéité en polyéthylène, d’un poids de 5 kg à l’intérieur. Aucune adhésion n’existe entre la couche d’étanchéité et le renfort composite.
Le renfort composite est composé d’une matrice époxy et de fibre de carbone de Toray, ref T700 S, le taux de fibres est de 70% poids soit 59% en vol (densité de la fibre de carbone utilisée est de 1 ,8 et celle de la résine époxy est de 1 ,1 ). Il est fabriqué par enroulement filamentaire en voie humide : les fibres sèches sont déroulées à partir d’un cantre et sont imprégnées de résine en passant à la vitesse de 0,8 m/s, dans un bain contenant le précurseur liquide de la résine epoxy, à température ambiante. 4 mèches sont simultanément bobinées autour du liner. Chaque mèche de carbone comporte 1200 filaments (mèche de carbone 12K), et possède une masse linéique de
0,83g/m. Compte tenu du taux de fibre de 70% en poids, chaque mèche imprégnée présente une masse linéique de 1 ,18 g/m. Ainsi, la totalité de l’enroulement à 0,8m/s, avec 4 mèches en parallèle, dure environ 2,7 h. Cette étape est suivie d’une polymérisation de la résine en étuve à 60°C pendant 8h.
On constate donc que le temps de fabrication du réservoir de type IV est beaucoup plus long que celui du réservoir conformable de type V de l’exemple 3, selon l’invention et consomme beaucoup plus de composite et sera donc nettement plus lourd et plus cher puisque le prix des fibres de carbone est un facteur majeur du coût du réservoir. Cela montre que l’efficacité du renfort composite dans le réservoir de type IV est au moins 2 fois plus faible que celle du composite composant le réservoir de type V de l’exemple 3 : en effet, pour contenir le même volume d’hydrogène gazeux (61 I) tout en résistant à la même pression interne de 1600 bars, il faut environ 2 fois plus de composite dans le réservoir de type IV en composite carbone époxy que dans le réservoir conformable en composite carbone PPA.
Claims
Revendications
1. Procédé de fabrication d’un réservoir, notamment pour le stockage d’un fluide sous pression, comprenant un élément textile allongé et consolidé, ledit procédé comprenant les étapes de :
(i) Fabrication d’une préforme allongée textile et non consolidée, comprenant plusieurs couches de rubans composites thermoplastiques, chaque couche comprenant au moins un ruban enroulé selon un angle donné, la dite préforme étant fabriquée au moyen d’un dispositif (1 ) comprenant :
- un bâti (2) comprenant un guide longitudinal principal (3) selon une direction X, ledit guide (3) étant fixe sur le bâti (2) et
- au moins deux modules (4) disposés en série autour du guide (3) selon la direction X, chaque module (4) comprenant :
- une couronne d’alimentation (5) entourant une section du guide (3),
- des moyens d’alimentation (6) disposés sur la couronne (5) aptes à alimenter au moins un ruban (10) vers le guide (3) selon un angle d’enroulement compris entre -90° et 90° avec la direction X et selon une vitesse d’avancée V1 , chaque ruban (10) étant apte à s’enrouler au moins autour du guide (3) ou sur la couche de ruban (10) supérieure, et
- des moyens d’entraînement (15) de la couronne (5) aptes à faire tourner la couronne (5) autour du guide (3) selon une vitesse de rotation V2,
Ladite préforme étant fabriquée selon un procédé comprenant les étapes de :
- Mise en œuvre des moyens d’alimentation (6) sur chacun des modules (4), lesdits moyens d’alimentation (6) comprenant des rubans (10) choisis, lesdits rubans (10) choisis comprenant au moins des rubans composites thermoplastiques
- Paramétrage de la vitesse d’avancée V1 et de la vitesse de rotation V2 de chacun des modules (4) et mise en route de chaque module (4),
- Découpe de l’élément allongé (11 ) et/ou épuisement des rubans (10), et
- Récupération de la préforme textile allongée non consolidée (11 ) obtenue ; l’étape i) ne comprenant pas d’étape de tressage de rubans, (ii) Consolidation de la préforme textile obtenue à l’étape précédente, par chauffage et refroidissement des rubans composites thermoplastiques, ce par quoi la préforme est consolidée et un élément textile allongé et consolidé est obtenu.
2. Procédé selon la revendication 1 , dans lequel les rubans composites thermoplastiques comprennent :
- Des fibres de renfort, continues ou discontinues, d’un matériau inorganique ; et
- Une composition de polymères thermoplastiques.
3. Procédé selon la revendication 2, dans lequel les fibres de renfort d’un matériau inorganique sont :
- imprégnées à cœur ou pré-imprégnées par une composition de polymères thermoplastiques, ou
- mélangées à des fibres de polymère(s) thermoplastique(s).
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel le ruban composite thermoplastique comprend des fibres continues imprégnées par une composition à base d’un polymère thermoplastique, présentant une température de transition vitreuse (Tg), mesurée selon la norme ISO 11357 -3 : 2013, supérieure à 80° C, de préférence supérieure ou égale à 100°C, encore plus préférentiellement supérieure à 120°C, lorsque le polymère est amorphe, et une température de fusion supérieure à 150°C lorsque le polymère est semi-cristallin.
5. Procédé selon l’une quelconque des revendications 2 à 4, dans lequel la composition de polymère thermoplastique du ruban composite comprend majoritairement un polyamide, de préférence semi-cristallin.
6. Procédé selon la revendication 5, dans lequel le polyamide est un polyamide aliphatique, cycloaliphatique ou semi-aromatique.
Procédé selon la revendication 6, dans lequel le polyamide aliphatique est choisi parmi PA 5, PA5-10, PA6, PA66, PA6-10, PA6-12, PA6-18, PA9, PA10-10, PA 10-12, PA11 , PA12, et leur mélange. Procédé selon la revendication 7, dans lequel le polyamide semi- aromatique est choisi parmi PA MPMDT/6T, PA 11/6T, PA 11/10T, PA 11/BACT, PA 5T/10T, PA 11/6T/10T, PA MXDT/4T, PA MXDT/6T, PA MXDT/10T, PA MPMDT/4T, PA MPMDT/6T, PA MPMDT/10T, PA BACT/10T, PA BACT/6T, PA BACT/4T, PA BACT/10T/6T, PA 11/BACT/4T, PA 11/BACT/6T, PA
11/BACT/10T, PA 11/MXDT/4T, PA 11/MXDT/6T, PA
11/MXDT/10T, PA 11/MPMDT/4T, PA 11/MPMDT/6T, PA
11/MPMDT/10T, PA 11/MXDT/10T, PA11/5T/10T, et leur mélange. Procédé selon l’une quelconque des revendications précédentes, dans lequel les fibres des rubans composites thermoplastiques sont choisies parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou sont à base de basalte. Procédé selon l’une quelconque des revendications précédentes, dans lequel les fibres des rubans composites thermoplastiques sont unidirectionnelles, c’est-à-dire toutes orientées selon la longueur du ruban. Procédé selon l’une quelconque des revendications précédentes, dans lequel les rubans composites contiennent un taux de fibre compris entre 40 et 70% en volume, de préférence entre 50 et 60% en volume des rubans composites thermoplastiques. Procédé selon l’une quelconque des revendications précédentes, dans lequel les rubans (10) choisis comprennent en outre des rubans (10) non composites de polymère thermoplastique.
13. Procédé selon la revendication 12, dans lequel les rubans (10) de polymère thermoplastique non composites représentent une fraction massique minoritaire de la préforme par rapport à la fraction massique des rubans de composite thermoplastique.
14. Procédé selon la revendication 13, dans lequel la composition de polymère constituant les rubans thermoplastiques non composite (10) comprend majoritairement un polyamide, de préférence semi-cristallin.
15. Procédé selon la revendication 14, dans lequel la composition de polymère thermoplastique des rubans (10) de composite thermoplastique d’une part, et celle des rubans (10) de polymère thermoplastique non composite d’autre part, sont compatibles, notamment identiques.
16. Procédé selon l’une quelconque des revendications précédentes, dans lequel les rubans (10) présentent une épaisseur comprise entre 50 et 300 pm, notamment entre 50 et 260 pm et plus particulièrement entre 60 pm et 170 pm.
17. Procédé selon l’une quelconque des revendications précédentes, dans lequel les rubans (10) présentent une largeur comprise entre 5 mm et 50 mm, notamment entre 10 mm et 15 mm.
18. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’angle d’enroulement du ruban (10) par rapport à la direction X est compris entre +90° et - 90°.
19. Procédé selon la revendication 18, dans lequel l’angle d’enroulement est égal à +/-54,8° à +/-100, de préférence à +/- 5°, mieux encore à +/-1 °.
20. Procédé selon l’une quelconque des revendications précédentes, dans lequel la préforme textile fabriquée à l’étape i) comprend une variation de section, notamment séquentielle selon la direction X.
21. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape ii) est réalisée dans un moule, notamment externe à la préforme, en particulier fermé.
22. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape ii) la pression est appliquée au moyen d’une vessie interne à la préforme.
23. Procédé selon l’une quelconque des revendications précédentes, dans lequel préalablement à l’étape ii), un insert est positionné aux extrémités de la préforme obtenue à l’étape i), de préférence à l’extérieur des extrémités de la préforme.
24. Procédé selon la revendication 23, dans lequel l’insert est constitué d’un matériau thermoplastique éventuellement composite.
25. Procédé selon les revendications 23 et 24, dans lequel à l’étape ii), l’insert est co-consolidé aux rubans (10) lors de l’étape de consolidation ii).
26. Réservoir, notamment pour le stockage d’un fluide sous pression, en particulier d’hydrogène, comprenant au moins un élément allongé textile et consolidé, susceptible d’être obtenu selon le procédé tel que défini aux revendications 1 à 25.
27. Réservoir selon la revendication 26, dans lequel chaque élément allongé consolidé est muni d’un insert à ses extrémités.
28. Réservoir selon la revendication 27, dans lequel l’insert est :
- un insert fermant l’élément allongé et consolidé, ou
- un insert muni d’un orifice, destiné à permettre l’entrée et la sortie du fluide.
29. Réservoir selon les revendications 26 à 28, comprenant plusieurs éléments allongés consolidés, en série, reliés entre eux via des connecteurs.
30. Préforme allongée textile et non consolidée, susceptible d’être obtenue selon l’étape i) du procédé selon les revendications 1 à 25. 31. Pack batterie, notamment pour véhicule automobile, comprenant un réservoir de stockage d’hydrogène selon l’une des revendications 26 à 29.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2205498A FR3136396A1 (fr) | 2022-06-08 | 2022-06-08 | Réservoir pour le stockage d’un fluide sous pression |
FRFR2205498 | 2022-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023237838A1 true WO2023237838A1 (fr) | 2023-12-14 |
Family
ID=83188311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/050810 WO2023237838A1 (fr) | 2022-06-08 | 2023-06-07 | Procédé de fabrication d'un reservoir pour le stockage d'un fluide sous pression et reservoir ainsi obtenu |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3136396A1 (fr) |
WO (1) | WO2023237838A1 (fr) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4778073A (en) * | 1986-09-19 | 1988-10-18 | Eugen Ehs | Pressure vessel |
WO2000015417A1 (fr) * | 1998-09-11 | 2000-03-23 | Essef Corporation | Procede de fabrication d'enceintes sous pression composites et produits fabriques a l'aide de ce procede |
US20050006393A1 (en) * | 2003-07-08 | 2005-01-13 | Polymer & Steel Technologies Holding Company, L.L.C. | Filament-reinforced composite thermoplastic pressure vessel fitting assembly and method |
EP3225900A1 (fr) * | 2016-03-30 | 2017-10-04 | Plastic Omnium Advanced Innovation and Research | Récipient sous pression et procédé de formation d'une couche externe d'un récipient sous pression |
EP3747626A1 (fr) * | 2019-06-05 | 2020-12-09 | L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude | Procédé de production d'un récipient composite multicouches et récipient composite ainsi obtenu |
WO2021019181A1 (fr) * | 2019-07-30 | 2021-02-04 | Arkema France | Structure multicouche pour le transport ou le stockage de l'hydrogene |
WO2021209715A1 (fr) * | 2020-04-15 | 2021-10-21 | Centre Technique Des Industries Mecaniques | Reservoir de stockage de fluide sous pression renforce |
GB2596810A (en) * | 2020-07-06 | 2022-01-12 | Cygnet Texkimp Ltd | Filament winder, method and filament-reinforced body |
-
2022
- 2022-06-08 FR FR2205498A patent/FR3136396A1/fr active Pending
-
2023
- 2023-06-07 WO PCT/FR2023/050810 patent/WO2023237838A1/fr unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4778073A (en) * | 1986-09-19 | 1988-10-18 | Eugen Ehs | Pressure vessel |
WO2000015417A1 (fr) * | 1998-09-11 | 2000-03-23 | Essef Corporation | Procede de fabrication d'enceintes sous pression composites et produits fabriques a l'aide de ce procede |
US20050006393A1 (en) * | 2003-07-08 | 2005-01-13 | Polymer & Steel Technologies Holding Company, L.L.C. | Filament-reinforced composite thermoplastic pressure vessel fitting assembly and method |
EP3225900A1 (fr) * | 2016-03-30 | 2017-10-04 | Plastic Omnium Advanced Innovation and Research | Récipient sous pression et procédé de formation d'une couche externe d'un récipient sous pression |
EP3747626A1 (fr) * | 2019-06-05 | 2020-12-09 | L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude | Procédé de production d'un récipient composite multicouches et récipient composite ainsi obtenu |
WO2021019181A1 (fr) * | 2019-07-30 | 2021-02-04 | Arkema France | Structure multicouche pour le transport ou le stockage de l'hydrogene |
WO2021209715A1 (fr) * | 2020-04-15 | 2021-10-21 | Centre Technique Des Industries Mecaniques | Reservoir de stockage de fluide sous pression renforce |
GB2596810A (en) * | 2020-07-06 | 2022-01-12 | Cygnet Texkimp Ltd | Filament winder, method and filament-reinforced body |
Also Published As
Publication number | Publication date |
---|---|
FR3136396A1 (fr) | 2023-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2035204B1 (fr) | Procede de fabrication d'une vessie d'etancheite en polymere thermodurcissable pour un reservoir contenant un fluide sous pression, tel qu'un reservoir composite, et reservoir | |
CA2055808A1 (fr) | Reservoir de poids unitaire faible utilisable notamment pour le stockage de fluides sous pression et son procede de fabrication | |
EP2949449B1 (fr) | Réservoir destiné au stockage de milieux liquides ou gazeux sous pression et son procédé de fabrication | |
WO2023083783A1 (fr) | Reservoir pour le stockage de gaz | |
WO2021019181A1 (fr) | Structure multicouche pour le transport ou le stockage de l'hydrogene | |
EP4251413A1 (fr) | Structure multicouche pour le transport ou le stockage de l'hydrogene | |
EP4319974A1 (fr) | Structure multicouche pour le transport ou le stockage de l'hydrogene | |
WO2023237838A1 (fr) | Procédé de fabrication d'un reservoir pour le stockage d'un fluide sous pression et reservoir ainsi obtenu | |
EP2988911B1 (fr) | Procede de fabrication d'un materiau composite realise avec des fils de fibres vegetales et materiau composite realise selon ce procede | |
EP1067300B1 (fr) | Réservoir en matériau composite destiné au stockage de gaz liquéfié sous pression | |
WO2021165607A1 (fr) | Réservoir pour ergols cryogéniques | |
EP4058623A1 (fr) | Fil imprégné, produit composite à paroi mince nervuré comportant un tel fil imprégné, et procédé de fabrication de ce fil et de ce produit composite | |
FR2957296A1 (fr) | Procede pour fabriquer un reservoir a carburant et son utilisation dans un vehicule hybride | |
WO2023007093A1 (fr) | Réservoir comportant un élément cylindrique pultrudé | |
EP3089855A1 (fr) | Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée | |
WO2024002902A1 (fr) | Réservoirs composites à coque tressée et procédés de fabrication correspondants | |
EP4136381B1 (fr) | Procede de realisation d'un reservoir de stockage composite | |
WO2024002903A1 (fr) | Attache formant un renfort pour réservoir et procédés de fabrication et de mise en forme correspondants | |
EP2809581B1 (fr) | Procede de realisation de la couche externe d'un reservoir de lanceur spatial | |
WO2023247449A1 (fr) | Procédés de fabrication de réservoirs polymorphes | |
FR2847564A1 (fr) | Machines permettant de fabriquer des pieces cylindriques en composite par centrifugation et en enroulant une nappe continue de fils de renfort |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23736161 Country of ref document: EP Kind code of ref document: A1 |