EP3089855A1 - Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée - Google Patents

Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée

Info

Publication number
EP3089855A1
EP3089855A1 EP14833523.5A EP14833523A EP3089855A1 EP 3089855 A1 EP3089855 A1 EP 3089855A1 EP 14833523 A EP14833523 A EP 14833523A EP 3089855 A1 EP3089855 A1 EP 3089855A1
Authority
EP
European Patent Office
Prior art keywords
reinforcing
thermoplastic material
wall
son
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14833523.5A
Other languages
German (de)
English (en)
Inventor
Wilfried LEMASSON
Frédéric GUIGNERY
Pierre De Keyzer
Jules-Joseph Van Schaftingen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plastic Omnium Advanced Innovation and Research SA
Original Assignee
Plastic Omnium Advanced Innovation and Research SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plastic Omnium Advanced Innovation and Research SA filed Critical Plastic Omnium Advanced Innovation and Research SA
Publication of EP3089855A1 publication Critical patent/EP3089855A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14786Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/12Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels
    • B29C33/123Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels for centering the inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • B29C45/14073Positioning or centering articles in the mould using means being retractable during injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans

Definitions

  • a method of injecting a tank wall comprising a localized reinforcing ply is provided.
  • the present invention is concerned with methods of manufacturing objects having thin walls and requiring localized reinforcements. More particularly, the invention relates to a method of manufacturing by injection of tanks for equipping motor vehicles.
  • thermo molding The manufacture of tanks by thermo molding is widely known in the industry and, traditionally, operates in a single operation during which successively is carried out by injection a cylindrical web of thermoplastic material forming a parison, it closes a mold around said parison still hot and plastic, and a gas is injected under pressure so as to press the parison against the walls of the mold.
  • These localized reinforcements are then in the form of fabrics formed of fibers or reinforcing threads, oriented or not, and impregnated with a thermoplastic material capable of fusing with the material forming the reservoir.
  • the reinforcing fibers may be of synthetic, natural or metallic origin.
  • the laying of a localized reinforcement can be done, according to a first method, by applying the reinforcement on the external wall of the tank after the tank has been extracted from the mold and cooled.
  • the reinforcement is brought to a temperature close to the melting temperature of the thermoplastic material that composes it, and is then applied under pressure to the wall of the pre-heated tank.
  • a second method when use is made of a device for blow molding a parison in a mold, the laying of localized reinforcements is done before the introduction of the parison into the mold.
  • the reinforcement is brought before a temperature close to the melting temperature of the material impregnating the son that compose it and, using a suitable device, is placed on the outer surface of the parison or directly in the mold in the zone intended to form the tank part requiring a particular reinforcement.
  • This method is well suited for the production of large capacity tanks with high loads and which require thick reinforcements.
  • thermoplastic material in a mold designed for this purpose.
  • This embodiment makes it possible, among other things, to manufacture reservoirs at relatively low costs.
  • the invention proposes to provide a particularly economical solution for producing a wall, intended for example to form the wall of a tank, by injection under pressure and at a predetermined temperature of a thermoplastic material in a mold, said wall comprising at least one localized reinforcing ply of predetermined thickness and formed of reinforcement son embedded in a thermoplastic material compatible with the thermoplastic material forming said wall and having a predetermined melting temperature.
  • the method according to the invention is characterized in that the reinforcing ply is deposited in the injection mold at a temperature substantially equal to the ambient temperature of a workshop and that the injection temperature of the thermoplastic material forming the wall, the melting temperature of the thermoplastic material coating the reinforcing threads and the thickness of the reinforcing ply are adjusted so that the material coating the reinforcing threads is melted during the injection phase.
  • the method makes it possible to overcome all the movements of material in the mold.
  • the method according to the invention may also comprise multiple implementation modes making it possible to optimize the performance of the final product, the characteristics of which, taken separately or in combination, are as follows:
  • the temperature of the workshop is between 15 ° C and 30 ° C.
  • thermoplastic material forming the wall and the thermoplastic material coating the reinforcing threads are chosen from materials such as
  • HDPE high polyethylene, polyamides or polyphthalamides.
  • the reinforcing ply comprises entangled reinforcing threads.
  • the reinforcement ply comprises one or more plies of reinforcing threads, each ply of reinforcing threads being composed of reinforcing threads parallel to each other, and the plies of reinforcing threads being arranged so that the reinforcing threads of a ply together with the reinforcing threads of the other plies form definite and non-zero angles.
  • the reinforcing ply comprises woven reinforcement threads.
  • the thickness of the reinforcement ply is less than or equal to 0.7 mm, and preferably less than or equal to 0.5 mm.
  • the reinforcing threads are embedded between two films of thermoplastic material, so that the thickness of thermoplastic material on the back of the reinforcing threads is less than or equal to 0.2 mm, and preferably less than or equal to 0.05 mm.
  • the difference between the melting temperature of the thermoplastic material coating the reinforcing son of the reinforcement ply and the injection temperature of the thermoplastic material forming said wall is between 60 ° C and 115 ° C.
  • the injection temperature of the thermoplastic material forming said wall is between 190 ° C. and 330 ° C.
  • a pressurization time of the material in the mold is greater than 0.3 minutes and preferably greater than 0.5 minutes.
  • a temperature of the mold during the introduction of the reinforcing ply is between 30 ° C and 140 ° C.
  • the reinforcing ply is preformed to the final shape that it is desired to impart to it in the mold, before it is introduced into the mold.
  • the reinforcing ply is anchored to a pre-established position in the mold by means of a plurality of needles and / or retractable shims, able to disappear at the end of the injection phase of the material forming said wall.
  • a height of the needles and / or wedges is adjusted so as to position the reinforcing ply at predefined and non-zero distances from the walls of the mold.
  • Figure 1 shows a general and schematic view of an injection press.
  • FIG. 2 represents a schematic sectional view of the fixed part and the mobile part of the injection mold comprising means for positioning the reinforcing ply.
  • FIG. 3 represents the fixed plate of a mold in which a reinforcing ply has been positioned before closing the mold.
  • FIG. 4 represents a perspective view of the bottom wall of a tank, comprising a reinforcing ply, and obtained using the method according to the invention.
  • FIG. 1 represents a standard-type injection press 1 comprising an injection screw 10 rotatably mounted in a heating sleeve 11. Upstream of the screw is a receptacle 12 in which the granules of material to be injected are introduced.
  • the screw opens, via an injection nozzle 15, into an injection mold comprising a fixed plate 13 and a movable plate 14 whose inner space defines the shape and the volume of the part 20 to be injected. at high temperature.
  • Cooling circuits 16 are provided in the fixed plate and the mobile plate to reduce the temperature of the material after the injection phase so as to allow solidification, before extraction, and just after the opening of the mold by translation. of the movable plate 14.
  • This device makes it possible to produce parts made of thermoplastic material of high quality with a high efficiency. It turns out to be particularly suitable for the realization of medium or reduced size tanks, which will be achieved by injecting two separate parts to be joined, for example by heat sealing, to form the final reservoir.
  • the tank is made of thermoplastic material.
  • Thermoplastic means any thermoplastic polymer, including thermoplastic elastomers, and mixtures thereof.
  • the term "polymer” denotes both homopolymers and copolymers (especially binary or ternary). Examples of such copolymers are, but are not limited to: random copolymers, block copolymers, block copolymers and graft copolymers.
  • thermoplastic polymer or copolymer whose temperature of melting is below the decomposition temperature are suitable.
  • Synthetic thermoplastics having a melting range spread over at least 10 degrees Celsius are particularly suitable. Examples of such materials are those having a polydispersion of their molecular weight.
  • polystyrene resin polystyrene resin
  • thermoplastic polyesters polyketones
  • polyvinyls halogenated polyvinyls
  • PVDH polyvinyl fluoride
  • PA polyamides
  • a mixture of polymers or copolymers may also be used, as well as a mixture of polymeric materials with inorganic, organic and / or natural fillers such as, for example, but not limited to: carbon, clays, salts and the like. inorganic derivatives, natural or polymeric fibers.
  • These materials may contain additives such as stabilizers, reinforcing fillers or plasticizers.
  • PE polyethylene
  • HDPE high density polyethylene
  • the reinforcing ply is in the form of fibers or reinforcement son embedded in a thermoplastic material also called prepreg (pre-impregnated).
  • son or reinforcing fibers prepreg can be of synthetic origin, natural or metallic.
  • Prepreg is an alternative to reinforcements or so-called dry fabrics, without any coating material and made of synthetic or natural fibers or metal strands.
  • the reinforcement can be in many forms; it is generally a plate comprising cut fibers or long fibers or continuous fibers which may or may not be woven.
  • the cut fibers have final lengths of a few tens / hundreds of microns.
  • the residual lengths are a few millimeters.
  • Continuous fibers or continuous filaments are used in the case where the length of the fibers used is several centimeters.
  • the son plies can be simply superimposed on each other, or include weft son and chain son in the manner of a fabric.
  • the most commonly used woven reinforcing plies are formed of two layers of yarn woven together.
  • Continuous fibers are, however, preferred and in particular nonwoven continuous fibers and randomly distributed (so-called multidirectional fibers). While being less expensive than long woven fibers, they have the advantage of distributing the stresses more uniformly. They also have the advantage, in the context of the invention, of having a lower density of fibers, ie a higher proportion of voids which are advantageously filled with thermoplastic coating material in order to facilitate the welding .
  • the fiber content in the reinforcement is preferably at least 30%, preferably at least 60% or even at least 45% of the total mass of the prepreg.
  • These fibers may be based on glass, carbon, a polymer (such as a polyamide, for example aromatic such as aramid), or even be natural fibers such as hemp or sisal. It is preferably glass fibers (type E, S or other).
  • the fibers of the fibrous reinforcement according to the invention are preferably compatible with the thermoplastic material and therefore, as a rule, compatible with polyolefins and in particular with HDPE. In order to obtain this compatibility, it is possible to size (surface treat) the fibers with a compatibilizing substance such as a silane.
  • a reactive HDPE binder can also be used. In this context, reactive functions of maleic anhydride type can be advantageously used.
  • the fibrous reinforcement comprises a thermoplastic material compatible with that of the reservoir, or even identical thereto.
  • a thermoplastic material compatible with that of the reservoir, or even identical thereto.
  • it is usually polyethylene and in particular HDPE.
  • thermoplastic material is preferably melted around / in the mass of fibers so as to form a homogeneous sheet / plate having on at least a portion of its surface, thermoplastic material so as to facilitate the welding.
  • this can be done by compression molding, injection molding, projection molding, vacuum molding or even calendering.
  • the method of producing the reinforcement will be compression molding (continuous pressing process between 2 rolls) or projection molding. Prepregs reinforced with continuous woven fibers give good results with this method.
  • the reinforcement covers at least part of an area where a component is fixed (for example: the filling chute where the filling pipe is just fixed) and includes a barrier layer so that it fulfills both a reinforcing function (in this often fragile zone) and a waterproofing function.
  • the reinforcement is advantageously obtained by compression molding a multilayer sheet including a barrier layer (and preferably a sheet comprising an EVOH layer between two layers of HDPE), a fiber mat (from preferably: non-woven and randomly distributed continuous glass fibers) and a HDPE sheet.
  • the mechanical strength imparted to the tank bottom is related to the type of yarn, the type of weaving and the diameter of the yarns used.
  • the son are coated between two films of material, so as to impregnate the free spaces between the son and to form a thin layer on the back of the son, and to promote their adhesion to the material forming the object to be reinforced.
  • the material coating the wires is chosen to be compatible with the injected material forming the wall to be injected. That is to say that the impregnating material of the son is able to bond intimately by melting with the injected material. It is therefore preferable to choose a material of the same nature as the material forming the wall. In the case of support for the present description, a prepreg impregnated with an HDPE satisfies this condition.
  • the reinforcing ply is introduced into the mold at the workshop temperature which is usually between 15 ° C. and 30 ° C.
  • the method according to the invention is therefore based on the fact that the amount of energy required to ensure the melting of the material forming the reinforcing ply is provided by the injected material in the liquid state.
  • This thermal energy therefore comprises at least the portion of energy to ensure the temperature rise of the reinforcement to the melting temperature of the material that composes it, and the energy to be supplied to ensure the melting of this material, so that it mixes, at least on a surface layer, with the injected material.
  • a first factor lies in the choice of the mass of the prepreg, and therefore its thickness.
  • a good compromise for low capacity tanks is obtained with a prepreg having a total thickness of less than 0.7 mm and preferably less than 0.5 mm.
  • thermoplastic material on the back of the wire is less than 0.2mm and preferably less than 0.05mm.
  • This value, measured in a direction normal to the surface of the prepreg, corresponds to the smallest thickness of material available between a wire and said surface.
  • a second factor to take into account is the melting temperature of the material forming the prepreg which should be as low as possible relative to the temperature of the injected material at the time of its introduction into the mold. It appears in this regard that the difference between the melting temperature of the thermoplastic material coating the reinforcing son and the injection temperature of the thermoplastic material forming said wall must be between 60 ° C and 115 ° C.
  • the third factor is the injection temperature of the material into the mold.
  • this temperature for a material of HDPE type is usually between 190 ° C and 245 ° C, and can go up to 280 ° C for some grades of HDPE.
  • the melting temperature of the material coating the prepreg son should usefully be less than 140 ° C or even 120 ° C, which is entirely compatible with the nature of the materials used. To adjust the melting temperature of the HDPE forming the prepreg, it adjusts its grade and the length of the polymer chains that compose it.
  • the injection temperature can nevertheless reach 330 ° C in the case of a material such as PA6 or PPA.
  • the melting temperature of the material coating the reinforcing threads of the prepreg can then be adjusted accordingly.
  • the fourth factor relates to the cooling power of the mold, and consequently the thermal energy that is removed from the injected material and can not be restored to prepreg.
  • This last factor is particularly difficult to regulate in that it also determines the demolding temperature and the cycle time of the machine.
  • a temperature below 40 ° C provides an acceptable result, and a temperature of 30 ° C is a preferred choice.
  • the mold can reach much higher temperatures, of the order of 135 ° C or even 140 ° C, at the time of introduction of the prepreg,
  • the last factor relates to the duration of time under pressure, before opening the mold. This time depends on the thickness of the injected wall and the temperature of the mold at the beginning of the injection. Good results are obtained with a duration under pressure greater than 0.3 minutes and preferably greater than 0.5 min.
  • a relative increase in the thickness of the prepreg will result in a greater need for thermal energy, which can be satisfied by an increase in the injection temperature or by an increase in the temperature of the mold and the duration under pressure.
  • the choice of the melting temperature of the material forming the prepreg is then adjusted accordingly.
  • Another advantage that can be obtained at a lower cost is the possibility of place the sheet at a precise distance from each of the inner walls of the mold.
  • wedges 17 or retractable needles 16 on which the reinforcing ply 30 is anchored in a precise geometric position.
  • the needles are adjusted to a predetermined height h relative to the inner walls of the mold. This distance h is not necessarily constant. A few tenths of seconds before the end of the injection of the material, the needles or wedges are then retracted and the final volume of the wall is introduced into the mold and put under a given set pressure.
  • This embodiment also makes it possible to optimize the resistance of the wall as a function of the forces undergone, in that it becomes possible to place the prepreg at an optimum location with respect to the neutral fiber of the wall.
  • Figure 3 shows the prepreg 30 after installation on the wedges, just before the closure of the movable plate and the injection of the material into the mold.
  • FIG. 4 illustrates the final result after injection of the portion of the tank bottom 21 comprising an opening around which said reinforcement 30 is installed.
  • Another advantage of the invention lies in the fact that, when the part of the wall intended to be reinforced is not a flat or developable surface, it is possible to impart to the prepreg, by any method that is not the same. object of the present invention, a determined permanent deformation.
  • the reinforcing ply is then preformed to the final shape that it is desired to impart to it in the mold. It is then avoided that the movements of material related to the movements of the reinforcing threads occur during the shaping of the sheet in the mold. The geometric characteristics of the molded wall are improved accordingly.
  • the invention is not limited to the embodiments that are the subject of the present description and other embodiments will become clear to those skilled in the art. It is in particular possible to vary the nature of the injected material, and in the foregoing explanations will be found all of the information likely to guide a person skilled in the art to produce by injection a wall comprising a reinforcement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Procédé de fabrication d'une paroi, destinée par exemple à former la paroi d'un réservoir, par injection sous pression d'un matériau thermoplastique dans un moule d'injection (13, 4), ladite paroi comprenant au moins une nappe de renforts (30) localisée et formée de fils de renfort enrobés dans un matériau thermoplastique compatible avec le matériau thermoplastique formant ladite paroi. La nappe de renfort (30) est déposée dans le moule d'injection à une température sensiblement égale à la température ambiante d'un atelier et que la température d'injection du matériau thermoplastique formant la paroi, la température de fusion du matériau thermoplastique enrobant les fils de renfort et l'épaisseur de la nappe de renfort sont ajustés de sorte que le matériau enrobant les fils de renfort soit entraîné en fusion pendant la phase d'injection.

Description

Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée.
La présente invention s'intéresse aux procédés de fabrication d'objets comportant des parois minces et nécessitant des renforts localisés. Plus particulièrement, l'invention concerne un procédé de fabrication par injection de réservoirs destinés à équiper des véhicules automobiles.
La fabrication des réservoirs par thermo moulage est largement connue dans l'industrie et, de manière traditionnelle, s'opère en une seule opération au cours de laquelle successivement on réalise par injection un voile cylindrique de matériau thermoplastique formant une paraison, on referme un moule autour de ladite paraison encore chaude et plastique, et on injecte un gaz sous pression de manière à plaquer la paraison contre les parois du moule.
De manière alternative, il est également possible de réaliser les parois du réservoir par thermoformage dans un moule.
Il peut s'avérer nécessaire, selon l'usage du réservoir, de disposer des renforts localisés pour absorber des contraintes locales liées par exemple à la pression interne régnant dans le réservoir, ou encore au mode de fixation et à la charge représentée par les liquides que le réservoir est destiné à contenir.
Ces renforts localisés se présentent alors sous la forme de tissus formés de fibres ou de fils de renfort, orientés ou non, et imprégnés d'un matériau thermoplastique apte à fusionner avec le matériau formant le réservoir. Les fibres de renfort peuvent être d'origine synthétique, naturelle ou métallique.
La pose d'un renfort localisé peut se faire, selon une première méthode, en appliquant le renfort sur la paroi externe du réservoir après que le réservoir a été extrait du moule et refroidi. Le renfort est porté à une température proche de la température de fusion du matériau thermoplastique qui le compose, puis est appliqué sous pression sur la paroi du réservoir préalablement préchauffée.
Selon une seconde méthode, lorsqu'il est fait usage d'un dispositif de moulage par soufflage d'une paraison dans un moule, la pose de renforts localisés se fait avant l'introduction de la paraison dans le moule. Le renfort est porté préalablement à une température proche de la température de fusion du matériau imprégnant les fils qui le composent et, à l'aide d'un dispositif adapté, est placé sur la surface externe de la paraison ou directement dans le moule dans la zone destinée à former la partie de réservoir nécessitant un renforcement particulier. Pour réussir cette opération, il est particulièrement important de maintenir les matériaux thermoplastiques du renfort dans un état plastique et à une température proche de leur température de fusion pour faciliter l'adhérence avec le matériau formant la paraison, et pour éviter les phénomènes de retrait susceptibles de bloquer localement la mise en forme et le moulage des parois du réservoir. Cette méthode est bien adaptée pour la réalisation de réservoirs de grande contenance supportant des charges importantes et qui nécessitent des renforts de forte épaisseur.
Bien qu'elles aient fait leur preuve, ces méthodes nécessitent une mise en œuvre lourde et délicate si on désire obtenir une fusion parfaite du renfort et du matériau formant les parois du réservoir. En effet, la manipulation du renfort chaud et plastique nécessite de prendre les précautions permettant de prévenir les déformations géométriques du renfort lui-même tout en limitant son refroidissement.
Toutefois, dans certaines conditions, il s'avère possible de réaliser un réservoir en deux parties distinctes qui sont réunies par soudage pour former une enceinte fermée destinée à recevoir un produit liquide donné.
Ces deux parties, ou plus, peuvent alors utilement être réalisées par injection d'un matériau thermoplastique dans un moule conçu à cet effet. Ce mode de réalisation permet entre autres choses de fabriquer des réservoirs à des coûts relativement bas.
L'invention se propose d'apporter une solution particulièrement économique pour réaliser une paroi, destinée par exemple à former la paroi d'un réservoir, par injection sous pression et à une température prédéterminée d'un matériau thermoplastique dans un moule, ladite paroi comprenant au moins une nappe de renfort localisée d'épaisseur prédéterminée et formée de fils de renfort enrobés dans un matériau thermoplastique compatible avec le matériau thermoplastique formant ladite paroi et ayant une température de fusion prédéterminée.
Le procédé selon l'invention se caractérise en ce que la nappe de renfort est déposée dans le moule d'injection à une température sensiblement égale à la température ambiante d'un atelier et que la température d'injection du matériau thermoplastique formant la paroi, la température de fusion du matériau thermoplastique enrobant les fils de renfort et l'épaisseur de la nappe de renfort sont ajustés de sorte que le matériau enrobant les fils de renfort soit entraîné en fusion pendant la phase d'injection.
Il n'est alors plus nécessaire de préchauffer la nappe de renfort avant de l'introduire dans le moule, ce qui permet de simplifier le processus de réalisation de la paroi, et d'en alléger le coût de fabrication. De plus, en l'absence de déformations de la nappe de renforts pendant le moulage, le procédé permet de s'affranchir de tous les mouvements de matériau dans le moule. Le procédé selon l'invention peut également comprendre des modes de mise en œuvre multiples permettant d'optimiser les performances du produit final, dont les caractéristiques, prises isolément ou en combinaison, sont les suivantes :
La température de l'atelier est comprise entre 15°C et 30 °C.
Le matériau thermoplastique formant la paroi et le matériau thermoplastique enrobant les fils de renfort sont choisis parmi des matériaux tels que des
PEHD, des polyamides ou des polyphtalamides.
La nappe de renfort comprend des fils de renfort enchevêtrés.
La nappe de renfort comprend une ou plusieurs nappes de fils de renfort, chaque nappe de fils de renfort étant composée de fils de renfort parallèles entre eux, et les nappes de fils de renfort étant disposées de sorte que les fils de renfort d'une nappe forment avec les fils de renfort des autres nappes des angles déterminés et non nuls.
La nappe de renfort comprend des fils de renfort tissés.
L'épaisseur de la nappe de renfort est inférieure ou égale à 0,7mm, et préférentiellement inférieure ou égale à 0,5mm.
Les fils de renfort sont noyés entre deux films de matériau thermoplastique, de sorte que l'épaisseur de matériau thermoplastique au dos des fils de renfort est inférieure ou égale à 0,2 mm, et préférentiellement inférieure ou égale à 0,05mm.
L'écart entre la température de fusion du matériau thermoplastique enrobant les fils de renfort de la nappe de renfort et la température d'injection du matériau thermoplastique formant ladite paroi est compris entre 60 °C et 115°C.
La température d'injection du matériau thermoplastique formant ladite paroi est comprise entre 1900 C et 3300 C.
Un temps de maintien sous pression du matériau dans le moule est supérieur à 0,3 minute et préférentiellement supérieur à 0,5 minute.
Une température du moule lors de l'introduction de la nappe de renfort est comprise entre 30 °C et 140 °C.
On préforme la nappe de renfort, à la forme finale que l'on désire lui conférer dans le moule, préalablement à son introduction dans le moule.
On ancre la nappe de renfort à une position préétablie dans le moule à l'aide d'une pluralité d'aiguilles et/ou de cales rétractables, aptes à s'effacer à la fin de la phase d'injection de la matière formant ladite paroi.
On ajuste une hauteur des aiguilles et/ou des cales, de manière à positionner la nappe de renfort à des distances prédéfinies et non nulles des parois du moule.
L'invention sera mieux comprise à la lecture des figures annexées, qui sont fournies à titre d'exemples et ne présentent aucun caractère limitatif, dans lesquelles :
La figure 1 représente une vue générale et schématique d'une presse à injection.
La figure 2 représente une vue schématique en coupe de la partie fixe et de la partie mobile du moule d'injection comprenant des moyens de positionnement de la nappe de renfort.
La figure 3 représente le plateau fixe d'un moule dans lequel a été positionnée une nappe de renfort avant la fermeture du moule.
La figure 4 représente une vue en perspective de la paroi du fond d'un réservoir, comprenant une nappe de renfort, et obtenue à l'aide du procédé selon l'invention
La figure 1 représente une presse à injection 1 de type standard comprenant une vis d'injection 10 montée à rotation dans un fourreau chauffant 11 . En amont de la vis est disposé un réceptacle 12 dans lequel sont introduits les granulés de matériau à injecter. La vis débouche, par l'intermédiaire d'une buse d'injection 15, dans un moule d'injection comprenant un plateau fixe 13 et un plateau mobile 14 dont l'espace intérieur définit la forme et le volume de la pièce 20 à injecter à haute température. Des circuits de refroidissement 16, sont prévus dans le plateau fixe et le plateau mobile pour réduire la température du matériau après la phase d'injection de manière à en permettre la solidification, avant son extraction, et juste après l'ouverture du moule par translation du plateau mobile 14.
Ce dispositif permet de réaliser des pièces en matériau thermoplastique de haute qualité avec un rendement élevé. Il s'avère être particulièrement adapté à la réalisation de réservoirs de taille moyenne ou réduite, que l'on réalisera par l'injection de deux parties distinctes destinées à être réunies, par exemple par thermo soudage, pour former le réservoir final.
Selon l'invention, le réservoir est en matière thermoplastique. Par matière thermoplastique, on désigne tout polymère thermoplastique, y compris les élastomères thermoplastiques, ainsi que leurs mélanges. On désigne par le terme "polymère" aussi bien les homopolymères que les copolymères (binaires ou ternaires notamment). Des exemples de tels copolymères sont, de manière non limitative : les copolymères à distribution aléatoire, les copolymères séquencés, les copolymères à blocs et les copolymères greffés.
Tout type de polymère ou de copolymère thermoplastique dont la température de fusion est inférieure à la température de décomposition conviennent. Les matières thermoplastiques de synthèse qui présentent une plage de fusion étalée sur au moins 10 degrés Celsius conviennent particulièrement bien. Comme exemple de telles matières, on trouve celles qui présentent une polydispersion de leur masse moléculaire.
En particulier, on peut utiliser des polyoléfines, des polyesters thermoplastiques, des polycétones, des polyvinyles, des polyvinyles halogénés tels que le polyvinyl chloride (PVC) ou le polyvinyle fluoride (PVDH) des polyamides (PA) et leurs copolymères. Un mélange de polymères ou de copolymères peut aussi être utilisé, de même qu'un mélange de matières polymériques avec des charges inorganiques, organiques et/ou naturelles comme, par exemple, mais non limitativement : le carbone, les argiles, les sels et autres dérivés inorganiques, les fibres naturelles ou polymériques.
Ces matériaux peuvent contenir des additifs tels que des produits stabilisants, des charges renforçantes ou des produits plastifiants.
Un polymère souvent employé est le polyéthylène (PE). D'excellents résultats ont été obtenus avec du polyéthylène haute densité (PEHD) en raison de son inertie chimique et de sa bonne tenue mécanique.
Bien que la contenance de ce type de réservoir soit plus faible, il peut s'avérer nécessaire de prévoir le renforcement de certaines zones du réservoir, généralement le fond de réservoir situé en partie basse, de manière à supporter les efforts liés à son mode d'ancrage sur le support destiné à le recevoir. On entend ici par faible contenance des réservoirs dont la capacité n'excède pas une vingtaine de litres.
La nappe de renfort se présente sous la forme de fibres ou encore de fils de renfort enrobés dans un matériau thermoplastique encore dénommé prepreg (pré imprégné).
En fonction de la résistance mécanique recherchée, et de la nature des sollicitations, les fils ou les fibres de renfort du prepreg peuvent être d'origine synthétique, naturelle ou métallique.
Le prepreg est une alternative aux renforts ou aux tissus dits secs, ne comportant pas de matériau d'enrobage et formés de fibres synthétiques ou naturelle ou encore de brins métalliques.
Le renfort peut se présenter sous de nombreuses formes; il s'agit généralement d'une plaque comprenant des fibres coupées ou des fibres longues ou des fibres continues qui peuvent ou non être tissées. De manière générale, les fibres coupées ont des longueurs finales de quelques dizaines/centaines de microns. Pour les fibres longues, les longueurs résiduelles sont de quelques millimètres. On parle de fibres continues ou de filaments continus dans le cas où la longueur des fibres utilisées est de plusieurs centimètres.
Lorsque l'on désire renforcer la structure selon plusieurs directions privilégiées on peut alors superposer plusieurs nappes de fils disposées de sorte que les fils de d'une nappe forment avec les fils des autres nappes des angles déterminés et non nuls. Les nappes de fils peuvent être simplement superposées les unes sur les autres, ou encore comprendre des fils de trame et des fils de chaînes à la manière d'un tissu. Les nappes de renfort tissées les plus couramment utilisées sont formées de deux couches de fils tissés entre eux.
Les fibres continues sont toutefois préférées et en particulier, les fibres continues non tissées et réparties de manière aléatoire (fibres dites multidirectionnelles). Tout en étant moins onéreuses que les fibres longues tissées, celles-ci présentent l'avantage de répartir les contraintes de manière plus uniforme. Elles présentent également comme avantage, dans le cadre de l'invention, le fait de présenter une moins forte densité de fibres c'est à dire une plus forte proportion de vides qui sont avantageusement remplis de matière thermoplastique d'enrobage afin de faciliter la soudure.
La teneur en fibres dans le renfort est de préférence d'au moins 30%, de préférence d'au moins 60% voire d'au moins 45% de la masse totale du prepreg.
Ces fibres peuvent être à base de verre, de carbone, d'un polymère (tel qu'un polyamide, par exemple aromatique tels que aramide), voire même être des fibres naturelles tel que le chanvre ou le sisal. Il s'agit de préférence de fibres de verre (de type E, S ou autre). Les fibres du renfort fibreux selon l'invention sont de préférence compatibles avec la matière thermoplastique et donc, en règle générale, compatibles avec les polyoléfines et en particulier, avec le PEHD. Afin d'obtenir cette compatibilité, on peut ensimer (traiter en surface) les fibres avec une substance compatibilisante telle qu'un silane. Un liant de type PEHD réactif peut également être utilisé. Dans ce cadre, des fonctions réactives de type anhydride maléique peuvent être avantageusement utilisées.
Selon l'invention, le renfort fibreux comprend une matière thermoplastique compatible avec celle du réservoir, voire identique à celle-ci. Dans le cas de réservoirs à carburant, il s'agit généralement de polyéthylène et en particulier de PEHD.
La matière thermoplastique est de préférence fondue autour/dans la masse de fibres de sorte à constituer une feuille/plaque homogène ayant sur au moins une partie de sa surface, de la matière thermoplastique de sorte à faciliter la soudure. En pratique, cela peut se faire par moulage par compression, moulage par injection, moulage par projection, moulage sous vide ou encore, calandrage. De préférence, le procédé de production du renfort sera du moulage par compression (procédé continu par pressage entre 2 rouleaux) ou moulage par projection. Les prepregs renforcés par des fibres continues tissées donnent de bons résultats avec cette méthode.
Selon une variante particulièrement préférée, le renfort couvre au moins une partie d'une zone où un composant est fixé (par exemple: la goulotte remplissage où l'on vient fixer la tubulure de remplissage) et inclut une couche barrière de sorte qu'il remplit à la fois une fonction renforçante (dans cette zone souvent fragile) et une fonction d'imperméabilisation. Dans cette variante, le renfort est avantageusement obtenu par moulage par compression d'une feuille multicouche incluant une couche barrière (et de préférence, une feuille comprenant une couche d'EVOH entre deux couches de PEHD), d'un mat de fibres (de préférence : des fibres de verre continues non tissées et réparties de manière aléatoire) et d'une feuille en PEHD.
La résistance mécanique conférée au fond de réservoir est liée au type de fils, au type de tissage et au diamètre des fils utilisés.
Les fils sont enrobés entre deux films de matériau, de manière à imprégner les espaces libres entre les fils et à former une couche de faible épaisseur au dos des fils, et destinée à favoriser leur adhésion au matériau formant l'objet à renforcer.
Le matériau enrobant les fils est choisi pour être compatible avec le matériau injecté formant la paroi à injecter. C'est-à-dire que le matériau d'imprégnation des fils est apte à se lier intimement par fusion avec le matériau injecté. On choisira donc de préférence un matériau de même nature que le matériau formant la paroi. Dans le cas servant de support à la présente description, un prepreg imprégné à l'aide d'un PEHD satisfait cette condition.
La nappe de renfort est introduite dans le moule à la température de l'atelier qui est usuellement comprise entre 15°C et 30 °C.
La méthode selon l'invention repose donc sur le fait que la quantité d'énergie nécessaire pour assurer la fusion du matériau formant la nappe de renfort est apportée par le matériau injecté à l'état liquide. Cette énergie thermique comprend donc au moins la part d'énergie pour assurer la montée en température du renfort jusqu'à la température de fusion du matériau qui le compose, et l'énergie à fournir pour assurer la fusion de ce matériau, pour qu'il se mélange, au moins sur une couche superficielle, avec le matériau injecté.
Il est donc primordial de régler les différents paramètres déterminants et agissant les uns avec les autres pour assurer une bonne liaison.
Un premier facteur réside dans le choix de la masse du prepreg, et donc de son épaisseur. Plus l'épaisseur du prepreg est faible, moins la quantité d'énergie à transmettre est importante. On sélectionnera donc, pour une résistance mécanique demandée donnée, un fil dont le diamètre est le plus approprié en fonction de son coût et de sa résistance. Un bon compromis pour les réservoirs de faible capacité est obtenu avec un prepreg ayant une épaisseur totale inférieure à 0,7mm et préférentiellement inférieure à 0,5mm.
On cherchera donc à réduire l'épaisseur des films servant à enrober les fils de renfort de manière à ce que l'épaisseur de matériau thermoplastique au dos du fil soit inférieure à 0,2mm et préférentiellement inférieure à 0,05mm. Cette valeur, mesurée selon une direction normale à la surface du prepreg, correspond à la plus faible épaisseur de matière disponible entre un fil et ladite surface.
Un second facteur à prendre en compte est la température de fusion du matériau formant le prepreg qui devra être la plus basse possible par rapport à la température du matériau injecté au moment de son introduction dans le moule. Il apparaît à cet égard que l'écart entre la température de fusion du matériau thermoplastique enrobant les fils de renfort et la température d'injection du matériau thermoplastique formant ladite paroi doit être compris entre 60 °C et 115°C.
Le troisième facteur est la température d'injection du matériau dans le moule. Pour des raisons de mise en œuvre, cette température, pour un matériau de type PEHD, est usuellement comprise entre 190°C et 245°C, et peutaller jusqu'à 280°C pour certains grades de PEHD.
Pour ce dernier type de matériau, la température de fusion du matériau enrobant les fils du prepreg devra utilement être inférieure à 140 °C voire à 120° C, ce qui est tout à fait compatible avec la nature des matériaux employés. Pour ajuster la température de fusion du PEHD formant le prepreg, on ajuste son grade et la longueur des chaînes de polymères qui le composent.
La température d'injection peut néanmoins atteindre 330 °C dans le cas d'un matériau tel que le PA6 ou le PPA. La température de fusion du matériau enrobant les fils de renfort du prepreg peut alors être ajustée en conséquence.
Le quatrième facteur concerne la puissance de refroidissement du moule, et par voie de conséquence l'énergie thermique qui est retirée de la matière injectée et qui ne peut pas être restituée au prepreg. Ce dernier facteur est particulièrement difficile à régler en ce qu'il détermine aussi la température de démoulage et le temps de cycle de la machine. Dans le cas du PEHD, une température inférieure à 40 °C permet d'obtenir un résultat acceptable, et une température de 30 °C constitue un choix préférentiel.
Toutefois, dans le cas de matériaux tels que le PPA, le moule peut atteindre des températures beaucoup plus élevées, de l'ordre de 135°C, voire 140 °C, au moment de l'introduction du prepreg,
Le dernier facteur concerne le temps de durée sous pression, avant l'ouverture du moule. Ce temps dépend de l'épaisseur de la paroi injectée et de la température du moule au début de l'injection. De bons résultats sont obtenus avec une durée sous pression supérieure à 0,3 minutes et préférentiellement supérieure à 0,5 min.
D'autres facteurs peuvent également rentrer en ligne de compte tels que la position du prepreg par rapport aux parois du moule, la puissance et la configuration des moyens de refroidissement, ou encore l'inertie thermique du moule.
L'homme du métier pourra utilement mettre en œuvre un plan d'expérience pour ajuster ces paramètres, et atteindre le meilleur équilibre permettant d'assurer la fusion du matériau composant le prepreg et du matériau injecté au niveau de leur interface.
Ainsi, de manière qualitative, une augmentation relative de l'épaisseur du prepreg se traduira par un besoin en énergie thermique plus important, qui pourra être satisfait par une augmentation de la température d'injection ou par une augmentation de la température du moule et de la durée sous pression.
Le choix de la température de fusion du matériau formant le prepreg est alors ajusté en conséquence. Alternativement, il est aussi possible de choisir des fils de résistance équivalente mais de diamètre inférieur pour revenir à une épaisseur plus réduite.
On obtient alors une liaison parfaite entre le prepreg et le matériau formant la paroi injectée.
Outre l'optimisation du procédé de fabrication, le fait d'introduire la nappe de renfort directement dans le moule à la température ambiante dans une presse d'injection permet de simplifier le procédé de fabrication.
Cela offre également des avantages que l'on va décrire en référence à la figure 2 qui représente une vue schématique détaillée du moule.
En effet, l'absence de déformations plastiques et la relative bonne tenue mécanique de la nappe de renfort à température ambiante autorise un placement plus précis de cette dernière dans le moule d'injection. Ceci facilite également les opérations de manutention lors de l'introduction à l'aide de transporteurs mécaniques par exemple, en ce qu'il n'est plus nécessaire d'avoir à traiter l'outil de préhension afin d'empêcher la formation de dépôts de matière fondue comme c'est le cas lorsqu'il s'agit de transférer un prépreg préchauffé dans un moule.
Un autre avantage qu'il est possible d'obtenir à moindre coût, est la possibilité de placer la nappe à une distance précise de chacune des parois intérieures du moule.
A cet effet on peut disposer des cales 17 ou des aiguilles 16 rétractables sur lesquelles on vient ancrer la nappe de renfort 30 dans une position géométrique précise. Les aiguilles sont ajustées à une hauteur prédéterminée h par rapport aux parois intérieures du moule. Cette distance h n'est d'ailleurs pas forcément constante. Quelques dixièmes de secondes avant la fin de l'injection du matériau, les aiguilles ou les cales sont alors rétractées et le volume final de la paroi est introduit dans le moule et mis sous une pression de consigne donnée.
Le refroidissement, qui s'opère par conduction thermique entre les parois du moule et le matériau injecté, atteindra la nappe plus tardivement et permettra alors une meilleure diffusion thermique entre le prepreg et le matériau injecté. Ce mode de réalisation permet également d'optimiser la résistance de la paroi en fonction des efforts subis, en ce qu'il devient possible de placer le prepreg à un endroit optimum par rapport à la fibre neutre de la paroi.
La figure 3 permet de visualiser le prepreg 30 après son installation sur les cales, juste avant la fermeture du plateau mobile et l'injection du matériau dans le moule.
La figure 4 illustre le résultat final après injection de la partie du fond de réservoir 21 comportant une ouverture autour de laquelle est installé ledit renfort 30.
Un autre avantage lié à l'invention réside dans le fait que, lorsque la partie de la paroi destinée à être renforcée n'est pas une surface plane ou développable, il est possible de conférer au prépreg, par un procédé quelconque ne faisant pas l'objet de la présente invention, une déformation permanente déterminée. La nappe de renfort est alors préformée à la forme finale que l'on désire lui conférer dans le moule. On évite alors que ne se produisent les mouvements de matériau liés aux mouvements des fils de renfort lors de la conformation de la nappe dans le moule. Les caractéristiques géométriques de la paroi moulée en sont améliorées d'autant.
L'invention n'est pas limitée aux modes de réalisation faisant l'objet de la présente description et d'autres modes de réalisation apparaîtront clairement à l'homme du métier. Il est notamment possible de faire varier la nature du matériau injecté, et on trouvera dans les explications qui précèdent l'ensemble des informations susceptibles de guider l'homme du métier pour réaliser par injection une paroi comportant un renfort.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'une paroi, destinée par exemple à former la paroi d'un réservoir (21 ), par injection sous pression et à une température prédéterminée d'un matériau thermoplastique dans un moule d'injection (13, 14), ladite paroi comprenant au moins une nappe de renfort (30) localisée d'épaisseur prédéterminée et formée de fils de renfort enrobés dans un matériau thermoplastique compatible avec le matériau thermoplastique formant ladite paroi et ayant une température de fusion prédéterminée, caractérisé en ce que la nappe de renfort (30) est déposée dans le moule d'injection à une température sensiblement égale à la température ambiante d'un atelier et que la température d'injection du matériau thermoplastique formant la paroi, la température de fusion du matériau thermoplastique enrobant les fils de renfort et l'épaisseur de la nappe de renfort sont ajustés de sorte que le matériau enrobant les fils de renfort soit entraîné en fusion pendant la phase d'injection.
2. Procédé de fabrication selon la revendication 1 , dans lequel la température de l'atelier est comprise entre 15°C et 30°C.
3. Procédé de fabrication selon la revendication 1 ou la revendication 2, dans lequel le matériau thermoplastique formant la paroi et le matériau thermoplastique enrobant les fils de renfort sont choisis parmi des matériaux tels que des PEHD des polyamide ou des polyphtalamides.
4. Procédé de fabrication selon l'une des revendications 1 à 3, dans lequel la nappe de renfort comprend des fils de renfort enchevêtrés.
5. Procédé de fabrication selon l'une des revendication 1 à 4, dans lequel la nappe de renfort comprend une ou plusieurs nappes de fils de renfort, chaque nappe de fils de renfort étant composée de fils de renfort parallèles entre eux, et les nappes de fils de renfort étant disposées de sorte que les fils de renfort d'une nappe forment avec les fils de renfort des autres nappes des angles déterminés et non nuls.
6. Procédé de fabrication selon la revendication 5, dans lequel la nappe de renfort comprend des fils de renfort tissés.
7. Procédé de fabrication selon l'une des revendications 1 à 6, dans lequel l'épaisseur de la nappe de renfort est inférieure ou égale à 0,7mm, et préférentiellement inférieure ou égale à 0,5mm.
8. Procédé de fabrication selon l'une des revendications 1 à 7, dans lequel les fils de renfort sont noyés entre deux films de matériau thermoplastique, de sorte que l'épaisseur de matériau thermoplastique au dos des fils de renfort est inférieure ou égale à 0,2 mm, et préférentiellement inférieure ou égale à 0,05mm.
9. Procédé de fabrication selon l'une des revendications 1 à 8, dans lequel l'écart entre la température de fusion du matériau thermoplastique enrobant les fils de renfort de la nappe de renfort et la température d'injection du matériau thermoplastique formant ladite paroi est compris entre 60 °C et 115°C.
10. Procédé de fabrication selon l'une des revendications 1 à 9, dans lequel la température d'injection du matériau thermoplastique formant ladite paroi est comprise entre 190 ° C et 330 °C.
1 1 . Procédé de fabrication selon l'une des revendications 1 à 10, dans lequel un temps de maintien sous pression du matériau dans le moule est supérieur à 0,3 minute et préférentiellement supérieur à 0,5 minute.
12. Procédé de fabrication selon l'une des revendications 1 à 11 , dans lequel une température du moule lors de l'introduction de la nappe de renfort est comprise entre 30 °C et 140°C.
13. Procédé selon l'une des revendications 1 à 12, dans lequel on préforme la nappe de renfort, à la forme finale que l'on désire lui conférer dans le moule, préalablement à son introduction dans le moule.
14. Procédé de fabrication selon l'une des revendications 1 à 13, dans lequel on ancre la nappe de renfort à une position préétablie dans le moule à l'aide d'une pluralité d'aiguilles (16) et/ou de cales (17) rétractables, aptes à s'effacer à la fin de la phase d'injection de la matière formant ladite paroi.
15. Procédé selon la revendication 14, dans lequel, préalablement à l'introduction de la nappe de renfort, on ajuste une hauteur des aiguilles (16) et/ou des cales (17), de manière à positionner la nappe de renfort à des distances (h) prédéfinies et non nulles des parois du moule.
EP14833523.5A 2013-12-30 2014-12-26 Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée Withdrawn EP3089855A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1363678 2013-12-30
PCT/FR2014/053563 WO2015101748A1 (fr) 2013-12-30 2014-12-26 Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée

Publications (1)

Publication Number Publication Date
EP3089855A1 true EP3089855A1 (fr) 2016-11-09

Family

ID=50179859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14833523.5A Withdrawn EP3089855A1 (fr) 2013-12-30 2014-12-26 Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée

Country Status (4)

Country Link
US (1) US20160354957A1 (fr)
EP (1) EP3089855A1 (fr)
CN (1) CN105873739B (fr)
WO (1) WO2015101748A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017125264A1 (de) * 2017-10-27 2019-05-02 Kautex Textron Gmbh & Co. Kg Flüssigkeitsbehälter für ein Kraftfahrzeug und Verfahren zum Herstellen eines Flüssigkeitsbehälters
FR3087380A1 (fr) * 2018-10-23 2020-04-24 Psa Automobiles Sa Reservoir renforce pour le conditionnement de fluides de vehicules automobiles et procede de fabrication d’un tel reservoir

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291819A1 (en) * 2009-05-12 2010-11-18 E.I.Du Pont De Nemours And Company Overmolded polyamide composite structures and processes for their preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854883A1 (de) * 1998-11-27 2000-05-31 Bayerische Motoren Werke Ag Kunststoff-Bauteil und Verfahren zu dessen Herstellung
DE102005040404A1 (de) * 2005-08-26 2007-03-01 Volkswagen Ag Verfahren zur Herstellung eines verstärkten Bauteils für Kraftfahrzeuge sowie Vorrichtung zur Durchführung des Verfahrens
DE102008046908B4 (de) * 2008-09-11 2012-10-25 Kraussmaffei Technologies Gmbh Verfahren und Vorrichtung zur Herstellung von Kunststoffprodukten mit partiell vorgesehenen Strukturen
JP5738610B2 (ja) * 2011-01-27 2015-06-24 小野産業株式会社 複合体及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291819A1 (en) * 2009-05-12 2010-11-18 E.I.Du Pont De Nemours And Company Overmolded polyamide composite structures and processes for their preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015101748A1 *

Also Published As

Publication number Publication date
WO2015101748A1 (fr) 2015-07-09
US20160354957A1 (en) 2016-12-08
CN105873739B (zh) 2018-08-14
CN105873739A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
EP2978583B1 (fr) Procédé pour fabriquer un réservoir à carburant ou une tubulure de remplissage et leur utilisation dans un véhicule hybride
FR2873321A1 (fr) Procede pour la fixation d'un accessoire dans un reservoir a carburant en matiere plastique
FR2879122A1 (fr) Procede pour la fabrication d'un reservoir a carburant en matiere plastique ayant une resistance au fluage amelioree
EP3096940B1 (fr) Procédé et dispositif pour l'estampage d'un flan composite à matrice thermoplastique non consolidé
EP1175295A1 (fr) Produits composites creux et procede de fabrication
FR3083733A1 (fr) Procédé de soudage par induction de pièces à base de matériau thermoplastique
WO2015101748A1 (fr) Procédé d'injection d'une paroi de réservoir comprenant une nappe de renfort localisée
WO2015162355A1 (fr) Procédé de fabrication d'un accumulateur de pression.
FR2879494A1 (fr) Procede pour la fabrication d'un corps creux multicouche comprenant au moins une soudure
FR3083732A1 (fr) Procédé de soudage de pièces à base de matériau thermoplastique
FR2914874A1 (fr) Procede de moulage de produits composites creux par extrusion-soufflage, dispositif utilise et produits obtenus
CA2419433C (fr) Procede de fabrication d'une piece de revolution par rotomoulage et piece obtenue
EP3204219B1 (fr) Procédé de réalisation de pièces thermoplastiques renforcées de fibres thermoplastiques continues
FR3090450A1 (fr) Materiau fibreux impregne de polymere thermoplastique de masse moleculaire et de viscosite optimum et son procede de preparation
EP0659923A1 (fr) Réseau de fils de verre et matériau composite renforcé par ledit réseau
FR2918594A1 (fr) Procede et appareillage pour la fabrication d'un corps creux en matiere plastique a partir de deux feuilles.
FR2733296A1 (fr) Reservoir sous pression a renfort composite a permeation reduite
FR2957018A1 (fr) Procede et appareillage pour la fabrication d'un corps creux en matiere plastique a partir de deux feuilles
FR2852551A1 (fr) Procede pour la fabrication d'un revetement d'isolation accoustique et/ou antivibratile
WO2022195208A1 (fr) Preforme realisee par tricotage, produit composite incorporant une telle preforme et procedes de fabrication
EP0691902B1 (fr) Procede de fabrication de pieces renforcees en matiere thermoplastique et pieces obtenues par ce procede
WO2023237838A1 (fr) Procédé de fabrication d'un reservoir pour le stockage d'un fluide sous pression et reservoir ainsi obtenu
WO2022167757A1 (fr) Procede de preparation de pieces composites a fort degre de consolidation
FR3093669A1 (fr) Procédé de fabrication d’un renfort fibreux pré-imprégné à partir d’un non-tissé thermoplastique et d’un renfort de fibres naturelles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190528