WO2023237106A1 - 干湿两用全封闭的无刷电机、电机的防护结构及安装方法 - Google Patents

干湿两用全封闭的无刷电机、电机的防护结构及安装方法 Download PDF

Info

Publication number
WO2023237106A1
WO2023237106A1 PCT/CN2023/099489 CN2023099489W WO2023237106A1 WO 2023237106 A1 WO2023237106 A1 WO 2023237106A1 CN 2023099489 W CN2023099489 W CN 2023099489W WO 2023237106 A1 WO2023237106 A1 WO 2023237106A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotating shaft
annular protrusion
bushing
housing
Prior art date
Application number
PCT/CN2023/099489
Other languages
English (en)
French (fr)
Inventor
倪祖根
贾洪运
Original Assignee
莱克电气股份有限公司
莱克电气绿能科技(苏州)有限公司
苏州金莱克精密机械有限公司
江苏莱克智能电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221446991.2U external-priority patent/CN217873352U/zh
Application filed by 莱克电气股份有限公司, 莱克电气绿能科技(苏州)有限公司, 苏州金莱克精密机械有限公司, 江苏莱克智能电器有限公司 filed Critical 莱克电气股份有限公司
Publication of WO2023237106A1 publication Critical patent/WO2023237106A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer

Definitions

  • This manual relates to the field of motors, and in particular to a fully enclosed brushless motor for wet and dry use, the motor's protective structure and installation method.
  • Cleaning equipment can usually clean moisture or other impurities, and the motor drives air flow to ensure the dryness and cleanliness of the floor. If the sealing effect of the motor's shell structure is poor, some moisture or impurities may enter the inside of the motor when the cleaning equipment is working, causing the internal circuits of the motor to be burned and shortening the service life of the cleaning equipment.
  • One embodiment of this specification provides a wet and dry fully enclosed brushless motor, including a motor housing, a motor rotor, a stator core, a moving impeller, an air guide cover, a circuit board and a circuit board end cover;
  • the motor housing includes an upper aluminum housing and a lower aluminum housing that are sealed to each other.
  • the motor rotor is placed in the space surrounded by the upper aluminum housing and the lower aluminum housing.
  • the motor rotor passes through The stator core transfers heat to the upper aluminum shell and/or the lower aluminum shell for heat dissipation; the rotating shaft of the motor rotor seals with the bearing and extends out of the lower aluminum shell.
  • the moving impeller is installed on the shaft head of the rotating shaft, and the air guide cover is installed on the lower aluminum shell outside the moving impeller.
  • the air flow discharged from the moving impeller is blown toward the air guide cover through the air guide cover.
  • the motor housing takes away the heat of the motor housing at the same time; the circuit board is arranged in the space enclosed by the circuit board end cover and the upper aluminum housing that are sealedly connected to each other.
  • the outer surface of the MOS tube of the power device on the board conducts heat to the upper surface of the upper aluminum shell through thermal conductive glue.
  • the leads of the circuit board are sealed through the outlet holes opened on the end cover of the circuit board and Extend; the moving impeller rotates and takes away the heat conducted by the motor rotor, the stator core and the circuit board to the outer surfaces of the upper aluminum shell and the lower aluminum shell.
  • the motor includes a motor body and a motor housing.
  • the motor body includes a rotating shaft.
  • One end of the rotating shaft extends from the end wall of the motor housing.
  • the protective structure includes a seal and a bushing; the seal is installed on the outer surface of the end wall , the seal is provided with an elastic structure surrounding the rotating shaft; the bushing is set on the rotating shaft, and the bushing is provided with an annular protrusion coaxially arranged with the rotating shaft, and the The annular protrusion is embedded in the elastic structure.
  • the motor includes a motor body, a motor housing, and a protective structure.
  • the motor body includes a rotating shaft.
  • the protective structure includes a seal and a bushing;
  • the installation method includes: extending one end of the rotating shaft from the end wall of the motor housing; setting the sealing member on the outside of the end wall, and the sealing member is provided with a ring surrounding the rotating shaft.
  • the elastic structure installs the bushing provided with an annular protrusion on the rotating shaft, the annular protrusion is coaxial with the rotating shaft, and causes the axial top end of the annular protrusion to compress the
  • the elastic structure is embedded in the elastic structure.
  • Figure 1 is a schematic cross-sectional view of a motor according to some embodiments of this specification.
  • Figure 2 is a schematic diagram of an electric machine according to some embodiments of this specification.
  • Figure 3 is a schematic diagram of a circuit board according to some embodiments of this specification.
  • Figure 4 is yet another schematic diagram of a motor shown in some embodiments of this specification.
  • Figure 5 is an enlarged view of part A of the motor shown in Figure 1;
  • Figure 6 is another schematic cross-sectional view of the motor shown in some embodiments of this specification.
  • Figure 7 is another schematic cross-sectional view of the motor shown in some embodiments of this specification.
  • Figure 8 is a schematic diagram of a seal and bushing according to some embodiments of the present specification.
  • Figure 9 is another schematic cross-sectional view of a motor shown in some embodiments of this specification.
  • Figure 10 is an enlarged view of part C of the motor shown in Figure 9;
  • Figure 11 is another schematic cross-sectional view of a motor according to some embodiments of this specification.
  • Figure 12 is an enlarged view of part D of the motor shown in Figure 11;
  • Figure 13 is a schematic cross-sectional view of a partial structure of a motor according to some embodiments of this specification.
  • Figure 14 is an enlarged view of part E of the motor shown in Figure 13;
  • Figure 15 is a schematic diagram of a cleaning device according to some embodiments of the present specification.
  • Figure 16 is an exemplary flowchart of an installation method for a motor according to some embodiments of the present specification.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • said words may be replaced by other expressions if they serve the same purpose.
  • Figure 1 is a schematic cross-sectional view of a motor according to some embodiments of this specification.
  • the motor 100 may include a motor housing 120 , a motor body 110 , a moving impeller 130 , an air guide 140 , a circuit board 150 and a circuit board end cover 160 .
  • the motor housing 120 can be used to accommodate the motor body 110 to prevent it from being damaged.
  • the motor housing 120 may include an upper aluminum housing 121 and a lower aluminum housing 122 that are sealingly connected to each other.
  • the lower aluminum housing 122 is located below the upper aluminum housing 121 .
  • the motor housing 120 may also be integrally formed.
  • the motor housing 120 may also be used to dissipate heat.
  • the heat on the motor housing 120 is generated by the heat-generating components of the motor 100 .
  • the heat on the motor housing 120 may be generated by the motor rotor 111 , stator core 112 , circuit board 150 and other structures in the motor 100 , and be conducted to the outer surfaces of the upper aluminum housing 121 and the lower aluminum housing 122 .
  • the upper aluminum housing 121 and/or the lower aluminum housing 122 can be made of metal aluminum alloy, which can improve the heat dissipation of the upper aluminum housing 121 and/or the lower aluminum housing 122 and facilitate the upper aluminum housing 121 and/or the lower aluminum housing 122.
  • the processing and production of the housing 121 and/or the lower aluminum housing 122 can further improve the toughness of the motor housing 120 and avoid deformation.
  • the material of the upper aluminum housing 121 and/or the lower aluminum housing 122 can be made of aluminum-magnesium alloy.
  • the motor housing 120 may also be made of other materials.
  • the motor housing 120 may be made of copper with good heat dissipation properties.
  • the outer surfaces of the upper aluminum housing 121 and/or the lower aluminum housing 122 may be provided with cooling fins 123 .
  • the heat on the upper aluminum housing 121 and/or the lower aluminum housing 122 can be transferred to the cooling blades 123 for heat dissipation to increase the cooling speed of the motor 100 .
  • the cooling blades 123 can be disposed at any position on the outer surface of the motor housing 120 in various ways. As shown in FIG. 2 , the cooling blades 123 may be circumferentially spaced on the outer surface of the lower aluminum shell 122 . In some embodiments, the cooling blades 123 can be disposed above the cooling air duct 180. When the airflow B flows, it can pass through the cooling blades 123, thereby taking away the heat on the cooling blades 123, thereby further improving the efficiency of the cooling blades 123. Liter motor 100 heat dissipation effect. Similar to the motor housing 120, the cooling blades 123 may also be made of metallic aluminum alloy. More information about the cooling air duct 180 and the air flow B can be found later in this specification.
  • the diameter of the lower aluminum housing 122 may gradually increase along its end wall toward the upper aluminum housing 121 , so that the airflow B can contact a larger area of the motor housing 120 and take away its surface. of heat to improve the heat dissipation effect of the motor 100.
  • the motor body 110 can be used to generate driving torque as a power source of the motor 100 .
  • the motor body 110 may include a motor rotor 111 and a stator core 112 .
  • the motor rotor 111 can be placed in the space surrounded by the upper aluminum housing 121 and the lower aluminum housing 122.
  • the motor rotor 111 rotates at a high speed, and at this time the motor rotor 111 will generate heat. .
  • the motor rotor 111 transfers heat to the upper aluminum housing 121 and/or the lower aluminum housing 122 through the stator core 112 for heat dissipation.
  • the stator core 112 can be attached to the inner surface of the upper aluminum case 121 and/or the lower aluminum case 122 through thermally conductive glue or other types of thermally conductive media, so that the heat generated therefrom can be transferred through the thermally conductive media.
  • the aforementioned heat transfer medium can be a variety of media that can transfer heat.
  • the thermally conductive medium may include but is not limited to thermally conductive glue, metal strips for fixation, etc.
  • the rotating shaft 111-1 of the motor rotor 111 seals with the bearing 111-2 and extends out of the lower aluminum housing 122.
  • a moving impeller 130 is installed on the shaft head of the rotating shaft 111-1.
  • An air guide 140 is installed on the lower aluminum housing 122 outside the moving impeller 130. The air flow discharged from the moving impeller 130 is blown toward the motor housing 120 through the air guide 140. , and at the same time take away the heat of the motor housing 120.
  • the rotation of the moving impeller 130 can take away the heat generated by the motor rotor 111, the stator core 112, the circuit board 150 and other structures in the motor 100, and conduct it to the outer surfaces of the upper aluminum housing 121 and the lower aluminum housing 122.
  • the air guide 140 and the lower aluminum shell 122 can jointly define an accommodation cavity 144 .
  • the air guide 140 can be disposed outside the moving impeller 130 , and the moving impeller 130 can be disposed on the rotating shaft 111 - 1.
  • a cooling air duct 180 can be formed between the air guide 140 and the lower aluminum shell 122.
  • the cooling air duct 180 can extend from the lower aluminum shell 122. Go to the upper aluminum housing 121.
  • the moving impeller 130 can generate airflow B when rotating, and the airflow B can be blown toward the motor housing 120 through the air guide 140 and the cooling air duct 180 . When the airflow B flows through the motor housing 120, it can take away the heat on its surface, thereby further improving the cooling effect of the motor 100.
  • the circuit board 150 can be disposed in the space enclosed by the circuit board end cover 160 and the upper aluminum housing 121 which are sealed and connected to each other.
  • the circuit board 150 may include at least one power device metal-oxide-semiconductor field-effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOS transistor) 151.
  • MOS transistor Metal-Oxide-Semiconductor Field-Effect Transistor
  • the circuit board 150 may include 3-6 power device MOS transistors 151 .
  • Other components may also be included on the circuit board 150 .
  • the circuit board 150 may also include a micro control unit (Micro Controller Unit, MCU) 152.
  • MCU Micro Controller Unit
  • the devices on the circuit board 150 can be connected to the upper aluminum shell through thermal conductive glue or other types of thermal conductive media.
  • the upper surface of the upper aluminum case 121 is in contact with each other, and the heat generated therefrom is conducted to the upper surface of the upper aluminum case 121 in contact through the thermal conductive medium, so as to improve the heat dissipation effect of the motor 100 .
  • the upper surface of the upper aluminum case 121 may be provided with a groove 121 - 1 whose shape matches the components on the circuit board 150 (such as the MOS tube 151 and/or the MCU 182 ).
  • the groove 121-1 may be filled with heat conductive medium.
  • the components on the circuit board 150 can be connected to the upper aluminum housing 121 through the thermal conductive medium in the groove 121-1.
  • the circuit board 150 may also include leads 153, and correspondingly, the circuit board end cover 160 may be provided with outlet holes 161. As shown in Figures 1 and 2, the circuit board 150 can include two leads 153. The leads 153 on the circuit board 150 can seal through the outlet holes 161 opened on the circuit board end cover 160 and extend out of the upper aluminum shell 121. outside, and connected with other structures of the cleaning device 200 (not shown). The outlet hole 161 and the lead wire 153 can be sealed by sealant or other types of sealing media.
  • the aforementioned sealing medium can be a variety of media that can be used for sealing.
  • the sealing medium may include but is not limited to sealant, sealing film, etc.
  • the maximum size of the outlet hole 161 may be less than or equal to 3 times the diameter of the lead 153 of the circuit board 150 .
  • the minimum size of the outlet hole 161 may not be smaller than the diameter of the lead 153 of the circuit board 150 .
  • the diameter of the outlet hole 161 (when the outlet hole 161 is circular, the aforementioned diameter may refer to the diameter of the circle; when the outlet hole 161 is non-circular) , the aforementioned diameter may refer to the maximum size) is set to be much larger than 3 times or even 10 times greater than the diameter of the lead 153, the sealing of the outlet hole 161 is usually achieved through a rubber gasket.
  • the rubber gasket is easily deformed and there must be a gap between the rubber gasket and the lead 153, which may result in poor sealing effect of the motor, and the motor cannot be truly waterproof.
  • Some embodiments of this specification creatively set the maximum size of the outlet hole 161 to be less than or equal to three times the diameter of the lead 153 of the circuit board 150, and seal the outlet hole 161 and the lead 153 with a sealing medium, thereby achieving true Fully sealed in a meaningful way, improving the sealing performance of the motor 100.
  • the electric machine 100 also includes a fixed impeller 170 .
  • the fixed impeller 170 can be installed on the lower aluminum housing 122 or the air guide 140 and is located between the moving impeller 130 and the lower aluminum housing 122 .
  • Some embodiments of this specification can guide the airflow B to the motor housing 120 by providing the fixed impeller 170, thereby improving the cooling effect of the motor housing 120.
  • the fixed impeller 170 may be a dual fixed impeller.
  • Some embodiments of this specification can improve the cooling efficiency of the motor housing 120 and the heat dissipation effect of the motor 100 through the aforementioned embodiments. It should be understood that when the heat dissipation effect of the motor 100 is good, increasing the power of the motor 100 can still ensure the normal operation of the motor 100, so that the wind power of the motor 100 can be stronger. For example, through the settings in the foregoing embodiments, the suction power of the motor 100 can be increased to over 300W. When using equal-volume and equal-power devices, the suction power of the motor 100 can exceed that of traditional wet and dry devices with non-fully enclosed plastic casings. The suction power of the motor is approximately 100%, thereby increasing the cleaning power of the cleaning equipment 200 equipped with the motor 100 .
  • the motor 100 may include a motor body 110 and a motor housing 120.
  • the motor body 110 includes a rotating shaft 111-1.
  • One end of the rotating shaft 111-1 extends electrically from the end wall 122-1 of the motor housing 120. Outside the machine casing 120, the rotating shaft 111-1 and the end wall 122-1 are sealed and matched through a protective structure 190, wherein the protective structure 190 includes a seal 191 and a bushing 192. More information about the motor body 110 and the motor housing 120 can be found above in this specification.
  • the motor 100 may be a brush motor, a brushless motor, or other types of motors that need to be tested for water-related performance.
  • the embodiment of this description takes as an example a wet and dry vacuum cleaner motor used in cleaning equipment 200, such as a vacuum cleaner, a floor scrubber, etc.
  • the motor housing 120 may be provided with a cooling air inlet and a cooling air outlet (not shown), and the motor 100 may further include a cooling fan 113 .
  • the cooling fan 113 can rotate driven by the rotating shaft 111-1, and the outside air can enter the motor housing 120 through the cooling air inlet, and pass through various heating components in the motor body 110 (such as the motor rotor 111 ) after sufficient heat exchange, it is discharged out of the motor housing 120 through the cooling air outlet, thereby generating a cooling cycle in the motor housing 120 and improving the cooling effect of the motor 100.
  • the rotating shaft 111-1 can drive the moving impeller 130 to rotate.
  • the airflow B flows from the external environment through the inlet 141 into the air guide 140, passes through the blades of the moving impeller 130, and then flows out of the air guide 140 through the outlet 142. Suction is provided at inlet 141. As shown in FIG. 7 , the inlet 141 of the air guide 140 can be disposed at the bottom of the air guide 140 , and the outlet 142 can be disposed on the side of the air guide 140 . When the motor 100 is running, the airflow B can be formed as shown by the dotted arrow. flow path shown. As shown in FIG. 2 , the outlet 142 of the air guide 140 can also be disposed on the top of the air guide 140 . When the motor 100 is running, the airflow B can form a flow path as shown by the solid arrow.
  • one end of the rotating shaft 111 - 1 can extend out of the motor housing 120 from the end wall 122 - 1 of the lower aluminum housing 122 . It can be understood that when the motor housing 120 is formed in one piece, the wall portion of the motor housing 120 through which the rotating shaft 111-1 extends can be formed as an end wall 122-1.
  • a through hole 122-2 can be provided on the end wall 122-1 of the motor housing 120 (such as the lower aluminum housing 122), and a bearing 111-2 and a protection are provided in the through hole 122-2.
  • Structure 190, the rotating shaft 111-1 is sealed through the bearing 111-2 and the protective structure 190, and extends out of the motor housing 120.
  • the aforementioned bearing 111-2 may be a sealed bearing.
  • the motor 100 is provided with a protective structure 190 at the through hole 122-2 to prevent liquid or other impurities from entering the interior of the motor 100 through the through hole 122-2.
  • the protective structure 190 can be used to prevent external liquid or other impurities from entering the motor 100 and affecting the normal operation of the motor body 110 .
  • the protective structure 190 may include a variety of structures.
  • the protective structure 190 may include one or more components of a bearing 111 - 2 , a combination of a seal 191 and a bushing 192 , and other structures.
  • guard structure 190 may include seal 191 and bushing 192 (shown in Figure 8).
  • the sealing member 191 can be installed on the outer surface of the end wall 122-1, and the sealing member 191 can be provided with an elastic structure 191-1 surrounding the rotating shaft 111-1.
  • the seal 191 may only include an elastic structure 191-1, for example, an annular elastic ring; the seal may also include an elastic structure 191-1 and other structures, such as an annular mounting base and an annular mounting base. annular elastic ring.
  • the bushing 192 can be sleeved on the rotating shaft 111-1 and disposed on the side of the seal 191 away from the end wall 122-1.
  • the bushing 192 is provided with an annular protrusion 192 arranged coaxially with the rotating shaft 111-1. -1.
  • the bushing 192 can take the rotating shaft 111-1 as the axis and rotate driven by the rotating shaft 111-1.
  • the bushing 192 may include an annular base 192-4 and an annular protrusion 192-1 provided on the base.
  • the outer diameter of the annular base 192-4 may be greater than or equal to the outer diameter of the annular protrusion 192-1.
  • the annular protrusion 192-1 can be embedded in the elastic structure 191-1.
  • the annular protrusion 192-1 embedded in the elastic structure 191-1 may refer to: the corresponding position of the elastic structure 191-1 is deformed (compressed) by the annular protrusion exerting pressure, and the part compressed by the annular protrusion 192-1 Will sink, and the annular protrusion 192-1 is embedded in the sunken part. Since the depression of the elastic structure 191-1 is caused by the compression of the annular protrusion 192-1, the shape of the depressed portion can match the shape of the annular protrusion 192-1.
  • the annular protrusion 192-1 embedded in the elastic structure 191-1 may also mean that the elastic structure 191-1 has a structure to accommodate the annular protrusion 192-1 (such as the annular groove 191-2 below). shaped protrusion 192-1 into the structure.
  • the annular protrusion 192-1 can be embedded in the elastic structure 191-1 through the annular groove 191-2, and the annular groove 191-2 covers the annular protrusion.
  • 192-1 is the portion located in the annular groove 191-2.
  • the annular groove 191-2 surrounds the circumferential outside of the rotating shaft 111-1.
  • the elastic structure 191-1 may have one or more annular grooves 191-2.
  • Each of the annular protrusions 192-1 can correspond to an annular groove 191-2, and the annular protrusions 192-1 can be embedded in the corresponding annular grooves 191-2.
  • the inner wall of the annular groove 191-2 Covered on the corresponding annular protrusion 192-1.
  • the bushing 192 can rotate with the rotating shaft 111-1, so that the annular protrusion 192-1 on the bushing 192 cuts the elastic structure 191-1, so that a covering annular shape is formed on the elastic structure 191-1.
  • the annular groove 191-2 of the protrusion 192-1, the annular groove 191-2 generated by the aforementioned method can perfectly fit the annular protrusion 192-1, reducing the production and production of separately pre-processing the annular groove 191-2. Installation difficulty. For more information on the above-mentioned embodiment of forming annular groove 191-2, see FIG. 16 and its related description.
  • the state in which the elastic structure 191-1 is compressed and sag is different from the state in which the annular groove 191-2 is formed on the elastic structure 191-1.
  • the difference is that the annular groove 191-2 is formed after the surface of the elastic structure 191-1 is cut.
  • the state in which the elastic structure 191-1 is compressed and sag may be a state in which the bushing 192 and the seal 191 are installed together but the motor 100 is not started.
  • the state in which the annular groove 191-2 is formed on the elastic structure 191-1 may be a state in which the motor 100 is not started. 100The state of running for a period of time after startup.
  • the radial width of the annular protrusion 192-1 can be changed from a direction close to the motor housing 120 to a direction away from the motor housing 120.
  • the direction gradually increases, that is, it takes on a tip shape as shown in Figure 12, where the Z direction in Figures 7, 8 and 11 is the axial direction, and the Z direction is also the axial direction of the rotating shaft 111-1.
  • the X direction in Figure 7 may be a radial direction.
  • the elastic structure 191-1 can also be pre-processed with annular grooves 191-2, and during installation, the annular protrusions 192-1 can be embedded in the corresponding annular grooves 191-2, so as to The annular groove 191-2 is realized to cover the annular protrusion 192-1.
  • annular protrusions 192-1 provided on the bushing 192 are embedded in the annular groove 191-2 on the seal 191 one-to-one, and the annular groove 191-2 and the bushing 192 are both Surrounding the circumferential outer side of the rotating shaft 111-1, the bushing 192, the annular protrusion 192-1, and the seal 191 form a tightly connected integral structure and surrounding the circumferential outer side of the rotating shaft 111-1.
  • the bushing 192 is sleeved on the rotating shaft 111-1. The space inside the bushing 192 is blocked by the rotating shaft 111-1. There is no gap between the bushing 192 and the rotating shaft 111-1.
  • the seal 191 is installed on the end wall 122-1. Therefore, there is no gap between the overall structure and the end wall 122-1. In this way, the overall structure formed by the bushing 192, the annular protrusion 192-1, and the seal 191 is in contact with the end wall 122-1 and the rotating shaft.
  • a closed barrier can be defined between 111-1, and the closed barrier can cover the gap 122-3 between the rotating shaft 111-1 and the end wall 122-1, thereby effectively preventing external liquid or other impurities from passing through the above-mentioned
  • the gap 122-3 enters the inside of the motor 100, which improves the protection performance of the motor 100 and improves the sealing performance of the motor 100.
  • the inner wall of the annular groove 191-2 is covered with the corresponding annular protrusion 192-1, that is, all the inner walls of the annular groove 191-2 are completely attached to the annular protrusion 192-1.
  • the protrusion 192-1 there is close contact between the two, but it will not affect the rotation of the bushing 192 driven by the rotating shaft 111-1 relative to the seal 191.
  • the rotating shaft 111-1 can drive the annular protrusion 192-1 of the bushing 192 to rotate relative to the annular groove 191-2.
  • a tiny slit may be formed between the inner wall of the annular groove 191-2 and the axial top of the corresponding annular protrusion 192-1.
  • the aforementioned slits can reduce the tension in the bushing 192.
  • the friction between the annular protrusion 192-1 and the seal 191 prevents damage to the seal 191 and the bushing 192 caused by long-term frictional heat.
  • the elastic structure 191 - 1 in order to arrange the annular groove 191 - 2 on the seal 191 around the circumferential outside of the rotating shaft 111 - 1 , the elastic structure 191 - 1 can continuously extend along the circumferential direction of the rotating shaft 111 - 1 . That is to say, the elastic structure 191-1 may be annular, so that an annular groove 191-2 surrounding the rotating shaft 111-1 can be provided on the elastic structure 191-1.
  • elastic structure 191- 1 can be in the shape of a ring.
  • the elastic structure 132-2 can also be annular in other shapes, such as a square outer ring and an annular inner ring.
  • the annular protrusion 192-1 can be made of rigid material, and its Rockwell hardness can range from 15 to 35HRC to ensure that it has good sealing properties and does not deform during rotation, so that it can rotate with the rotating shaft 111-1.
  • An annular groove 191-2 is formed on the elastic structure 191-1.
  • other structures of the bushing 192 and the annular protrusion 192 - 1 may be made of the same material or may be made of different materials.
  • the bushing 192 may be made of metal or plastic.
  • the elastic structure 191-1 can be made of elastic material, and its elastic lifting amount is 150%-200% to ensure that during installation, that is, before operation and cutting, the elastic structure 191-1 will not be annularly raised 192- 1. Cut it, just make an indentation. At the same time, after the annular groove 191-2 in the elastic structure 191-1 is generated, it can also be covered with the annular protrusion 192-1, thereby achieving a sealing effect.
  • the sealing member 191 may be made of silicone, Teflon or vinyl.
  • the seal 191 can also be made of other materials, such as rubber, latex, etc.
  • the hardness of the annular protrusion 192-1 is greater than the hardness of the elastic structure 191-1.
  • the Rockwell hardness of the annular protrusion 192-1 may be 25HRC.
  • the elastic structure 191-1 can be disposed on the bushing 192, and the annular protrusion 192-1 can be disposed on the seal 191. That is to say, the rotation of the bushing 192 can drive the elastic structure 191-1 Rotate, and the position of the annular protrusion 133-2 is relatively fixed. It can be understood that when the elastic structure 191-1 is provided on the bushing 192 and the annular protrusion 192-1 is provided on the seal 191, the material of the elastic structure 191-1 on the bushing 192 can be silicone, special rubber, etc. Fluorocarbon or vinyl, the annular protrusion 192-1 on the seal 191 can be made of metal or plastic.
  • an annular mounting groove 122-4 can be provided on the outer surface of the end wall 122-1, the mounting groove 122-4 and the rotating shaft 111-1 can be coaxially arranged, and the elastic structure 191-1 can be clamped in the mounting groove 122-4 to facilitate the installation and replacement of the elastic structure 191-1.
  • liquid elastic material can also be poured into the installation groove 122-4, and the elastic structure 191-1 can be formed after solidification.
  • the elastic structure 191-1 generated by the aforementioned method has good adhesion to the end wall 122-1. Even if the elastic structure 191-1 deforms to form an annular groove 191-2, it will not easily fall off from the installation groove 122-4.
  • the bushing 192 may be provided with a mounting hole 192-3, the rotating shaft 111-1 may be inserted into the mounting hole 192-3, and the circumferential outer surface of the rotating shaft 111-1 is in contact with the mounting hole. 192-3 inner surface fit.
  • Bushing 192 may also include an inner barrel portion 192-2.
  • the inner cylinder portion 192-2 can be provided on the circumferential inner side of the annular protrusion 192-1, and the aforementioned mounting hole 192-3 can be formed in the hollow portion of the shaft on the inner cylinder portion 192-2.
  • the inner cylinder part 192-2 can be sleeved on the rotating shaft 111-1, and at least part of the structure of the inner cylinder part 192-2 can extend into the through hole 122-2 to ensure the stability of its structure.
  • the circumferential outer surface of the rotating shaft 111-1 can fit with the inner surface of the inner cylinder portion 192-2 to prevent external liquid or other impurities from entering the motor 100.
  • the bushing 192 has an interference fit with the rotating shaft 111-1, that is, the inner cylinder portion 192-2 and the rotating shaft 111-1 have an interference fit to prevent movement between the rotating shaft 111-1 and the bushing 192.
  • the inner cylinder portion 192-2 can be connected through bonding, snapping, etc.
  • the radial thickness of the inner cylinder portion 192-2 can be greater than the radial thickness of the annular protrusion 192-1. Increasing the radial thickness of the inner cylinder portion 192-2 can improve the structural strength of the entire bushing 192. .
  • the axial height of the inner cylinder portion 192-2 (the axial direction of the inner cylinder portion 192-2 is equal to the axial direction of the rotating shaft 111-1) may be greater than the axial height of the annular protrusion 192-1.
  • the axial height of the inner cylinder portion 192-2 is relatively high, which can further ensure the tight connection between the bushing 192 and the rotating shaft, and can further provide a protective effect against liquids.
  • the annular protrusion 192 - 1 may be configured as an annular member extending from the bushing 192 toward the seal 191 as shown in FIG. 12 , thereby making the bushing 192 simpler in structure and easier to process.
  • the extension direction of the annular protrusion 192-1 can extend along the axial direction of the rotating shaft 111-1, so that the annular protrusion 192-1 can be aligned with the annular groove 191-1 when the rotating shaft 111-1 rotates. 2 has less friction.
  • the annular groove 191 - 2 may be provided on the surface of the seal 191 facing the bushing 192
  • the annular protrusion 192 - 1 may be provided on the surface of the bushing 192 facing the seal 191 . This facilitates processing and can also make the structure of the seal 191 and the bushing 192 more compact in the radial direction of the rotating shaft 111-1.
  • the outer surface of the axial top of the annular protrusion 192-1 may be configured to match the inner wall of the corresponding annular groove 191-2, such that the inner wall of the annular groove 191-2 covers At the axial top of the corresponding annular protrusion 192-1, the protective effect of the protective structure 190 is improved.
  • the axial direction of the annular groove 191-2 (the axial direction of the annular groove 191-2 is also the rotation axis 111-1) depth is less than the axial height of the seal 191 on the rotating shaft 111-1.
  • the axial direction of the annular protrusion 192-1 (the axial direction of the annular groove 191-2 is also the axis of rotation 111-1
  • the axial) height H1 is 1.5-4.5mm. It is worth mentioning that if the axial height of the annular protrusion 192-1 is too small, the connecting portion of the annular protrusion 192-1 and the annular groove 191-2 will easily come into contact with the liquid or other liquid entering through the water inlet gap 143. Contact with impurities may affect the protective effect of the protective structure 190 against liquids or other impurities.
  • the axial height of the annular protrusion 192-1 is too large, more energy may be consumed by the rotating shaft 111-1 to drive the bushing 192 to rotate, and more heat may easily be generated. This will affect the stability of the overall structure when the bushing 192 rotates. may be poor, by setting the axial height of the annular protrusion 192-1 to the above range, the generation of heat and the consumption of energy can be reduced as much as possible while ensuring the protective effect.
  • the ratio of the axial height H1 of the annular protrusion 192-1 to the outer diameter D1 of the bushing 192 may range from 0.05 to 0.25.
  • the outer diameter of bushing 192 may refer to the outer diameter of annular base 192-4 of bushing 192.
  • the annular base 192-4 is also equal to the outer diameter of the annular protrusion 192-1. If the ratio of the axial height H1 of the annular protrusion 192-1 to the outer diameter of the bushing 192 is too small, the annular protrusion 192-1 may not have a good protective effect on liquids.
  • the ratio of the axial height H1 of the annular protrusion 192-1 to the outer diameter D1 of the bushing 192 is too large (for example, the axial height of the annular protrusion 192-1 is too large or the outer diameter of the bushing 192 is too small)
  • other structures of the bushing 192 such as the structure between the inner cylinder 192-2 and the annular protrusion 192-1
  • the structure of the bushing 192 is more stable.
  • Other structures of the bushing 192 can support the movement of the annular protrusion 192-1 to avoid the effects of high-speed rotation. And cause structural damage.
  • the ratio of the axial height H1 of the annular protrusion 192-1 to the axial height H2 of the bushing 192 ranges from 1 to 4.
  • the axial height H2 of the bushing refers to the axial height of the annular base 192-4 of the bushing 192.
  • the ratio of the axial height H1 of the annular protrusion 192-1 to the diameter D2 of the rotating shaft 111-1 may range from 0.2 to 0.8. If the ratio of the axial height H1 of the annular protrusion 192-1 to the diameter D2 of the rotating shaft 111-1 is too small, the annular protrusion 192-1 may not have a good protective effect on liquids. If the ratio of the axial height of the annular protrusion 192-1 to the diameter of the rotating shaft 111-1 is too large, it means that the axial height H1 of the annular protrusion 192-1 is set too high, which will generate more heat. And generate more energy consumption. By limiting the ratio of the axial height of the annular protrusion 192-1 to the diameter of the rotating shaft 111-1 according to the above range, heat generation and energy consumption can be reduced as much as possible while ensuring the protective effect.
  • the ratio of the axial depth H3 of the annular protrusion 192-1 embedded in the elastic structure 191-1 to the axial height H1 of the annular protrusion 132-1 ranges from 0.1 to 0.3. It can be understood that if the annular protrusion 192-1 is embedded too deeply into the elastic structure 191-1, the contact area between the annular protrusion 192-1 and the seal 191 may be too large, and the support may cause the bushing 192 to rotate with the rotating shaft 111-1. Generating more heat will result in more energy consumption; if the annular protrusion 192-1 is embedded too shallowly into the elastic structure 191-1, the contact area with the seal 191 may be too small, resulting in an annular protrusion.
  • the contact area between 192-1 and annular groove 191-2 is too small, and external liquid or other impurities can easily break through the barrier and enter the motor 100, reducing the protective effect of the protective structure 190.
  • the protective effect is ensured and the reduction is minimized. Heat production and energy consumption.
  • the ratio of the axial height H1 of the annular protrusion 192-1 to the height H4 of the water inlet gap 143 ranges from 0.4 to 2.0.
  • the water inlet gap 143 may refer to the distance in the axial direction of the rotating shaft 111 - 1 between the end wall 122 - 1 and the mounting plate 131 at one end of the moving impeller 130 close to the motor housing 120 .
  • the height of the water inlet gap 143 directly affects the amount of water that may enter the motor body, and the axial height of the annular protrusion 192-1 directly affects the protective effect against liquids. The greater the amount of water, the greater the axial height of the annular protrusion 192-1. Toward the height may need to be higher.
  • the annular protrusion 192-1 may generate more heat and consume more energy.
  • the annular protrusion 192-1 can be ensured. -1 protective effect while minimizing heat generation and energy consumption.
  • the outer surface of the end wall 122-1 is further provided with at least one flow baffle ring 122-5.
  • the baffle ring 122-5 may surround the circumferential outside of the seal 191 and extend in a direction away from the end wall 122-1.
  • the inner diameters of each baffle ring 122-5 are different, and the baffle ring 122-5 with a larger inner diameter is nested within the baffle ring 122-5 with a smaller inner diameter. outside.
  • multiple baffle rings 122-5 may be arranged coaxially.
  • three baffle rings 122-5 are provided on the outer surface of the end wall 122-1.
  • the seal 191 may include an annular groove 191 - 2
  • the bushing 192 may include a corresponding annular protrusion 192 - 1 .
  • the bushing 192 may also be provided with multiple (such as two, three, five, etc.) annular protrusions with different diameters. 192-1, multiple annular protrusions 192-1 are concentrically arranged; for each of the multiple annular protrusions 192-1, the seal 191 can be provided with a corresponding elastic structure 191-1, the annular protrusion 192-1 is embedded in the corresponding elastic structure 191-1.
  • the bushing 192 may include two annular protrusions 192-1, the seal 191 may include two elastic structures 191-1, and the two annular protrusions 192-1 correspond one to one. Embedded in the annular grooves 191-2 of the two elastic structures 191-1.
  • the seal 191 may include other numbers of annular grooves 191-2, and the bushing 192 may include a corresponding number of annular protrusions 192-1, which will not be described again here.
  • Some embodiments of this specification can add multiple safeguards to the motor 100 by arranging multiple sets of mutually matching annular protrusions 192-1 and elastic structures 191-1.
  • the radially outer annular protrusion 192-1 and the elastic structure 191-1 fail, the radially inner annular protrusion 192-1 and the elastic structure 191-1 can also play a protective role.
  • two annular protrusions 192-1 on the bushing 192 and two elastic structures 191-1 on the seal 191 as an example, when a set of annular protrusions 192-1 and elastic structures 191-1 on the radially outer side When 1 fails, a set of annular protrusions 192-1 and elastic structures 191-1 on the radially inner side can also play a protective role.
  • the axial height of the radially outer annular protrusion 192-1 on the bushing 192 may be equal to the axial height of the radially inner annular protrusion 192-1 on the bushing 192; and
  • the height of the elastic structure 191-1 corresponding to the radially outer annular protrusion 192-1 on the bushing 192 in the axial direction of the rotating shaft 111-1 is higher than that of the radially inward annular protrusion on the bushing 192.
  • 192-1 corresponds to the height of the elastic structure 191-1 in the axial direction of the rotating shaft 111-1.
  • the plurality of annular grooves 191-2 can be staggered from each other in the axial direction of the rotating shaft 111-1, that is, the axial direction of each annular groove 191-2 (the axial direction of the annular groove 191-2
  • the axial direction may also be the direction of the rotating shaft 111-1) and the height may be different.
  • the plurality of annular protrusions 192-1 can also be staggered from each other in the axial direction of the rotating shaft 111-1. That is to say, the axial direction of each annular protrusion 192-1 (annular protrusion 192-1
  • the axial direction of the rotating shaft 111-1 may also have different heights.
  • the axial height of the radially outer annular protrusion 192-1 on the bushing 192 can be greater than the axial height of the radially inward annular protrusion 192-1 on the bushing 192. high.
  • multiple protection guarantees can be provided for the motor 100; on the other hand, even if a gap occurs between the corresponding annular protrusion 192-1 and the annular groove 191-2 due to long use time or other reasons, , the length of the passage through which liquid or other impurities enter the through hole 122-2 through the gap will also become longer, which improves the protection effect of the motor 100 to a certain extent.
  • guard structure 190 may also include only bushing 192 .
  • the bushing 192 can be disposed on the outer side of the end wall 122-1.
  • the inner diameter of the annular protrusion 192-1 on the bushing 192 is larger than the diameter of the through hole 122-2.
  • the annular protrusion 192-1 is in contact with the end wall 122-1.
  • the axial distance of the outer surface of is greater than 0 and less than the preset distance threshold.
  • the annular protrusion 192-1 can cover the through hole 122-2 from the outside.
  • the axial top of the annular protrusion 192-1 is very close to the end wall 122-1, but does not contact.
  • This specification also discloses a cleaning device 200 equipped with a motor 100.
  • the cleaning equipment 200 as a vacuum cleaner or a floor scrubber as an example, the situation is similar to other types of cleaning equipment and will not be described again here.
  • the cleaning device 200 may include a fuselage 230 , a floor brush 210 , a dust cup 220 and a structural member 240 disposed on the fuselage 230 .
  • the motor 100 is also disposed on the fuselage 230 .
  • the floor brush 210 is used to clean the surface to be cleaned, and the floor brush 210, the structural member 240, the dust cup 220, and the motor 100 are fluidly connected.
  • the structural member 240 may be a sewage tank or a clean water tank; when the cleaning equipment 200 is a vacuum cleaner, the structural member 240 may be a dust cup.
  • the cleaning device 200 includes the motor 100 described in any of the above embodiments. It can be understood that the structure, function, working principle, etc. of the motor 100 have been described in detail and will not be described again here.
  • Figure 16 is an exemplary flow chart of an installation method for a motor according to some embodiments of this specification.
  • process 300 may be used to install the electric machine 100 shown in Figures 6-14. As shown in Figure 16, process 300 may include the following steps:
  • a seal is provided on the outside of the end wall, and an elastic structure surrounding the rotating shaft is provided on the seal.
  • a mounting groove 122-4 may be formed on the outer surface of the end wall 122-1, and the mounting groove 122-4 may surround the circumferential outside of the rotating shaft 111-1.
  • a liquid elastic material eg, liquid silicone
  • the elastic structure 191-1 provided in this way has better adhesion to the end wall 122-1. Even if an annular groove 191-2 is provided on the elastic structure 191-1, it is not easy to remove the elastic structure 191-1 from the installation groove 122-4. falling off.
  • the pre-produced elastic structure 191-1 can also be clamped in the installation groove 122-4 to facilitate replacement.
  • the bushing 192 can be sleeved on the rotating shaft 111-1, and the annular protrusion 192-1 is coaxial with the rotating shaft 111-1; the bushing 192 is pushed toward the end wall 122-1. , until the annular protrusion 192-1 sinks into the elastic structure 191-1.
  • the depth at which the annular protrusion 192-1 sinks into the elastic structure 191-1 may be 0.3 mm to 0.6 mm. In some embodiments, the depth at which the annular protrusion 192-1 sinks into the elastic structure 191-1 may be 0.12% to 0.2% of its axial height.
  • the seal 191 (for example, the seal 191 is pierced in the following step S40), causing damage to the bushing 192 or the seal 191; on the other hand, it can also prevent the axial top end of the annular protrusion 192-1 from sinking into the elastic structure 191 -1 is too shallow, which affects the sealing performance of the protective structure 190 .
  • the elastic structure 191-1 may be in a compressed and sunken state. At this time, the motor 100 is used before it is powered on. The state at this time may be the state of the motor 100 when it leaves the factory or the state before testing.
  • the bushing 192 (such as the inner barrel portion 192-2 of the bushing) can be interference-fitted on the rotating shaft 111-1, thereby making the connection between the bushing 192 and the rotating shaft 111-1 more reliable and avoiding the problem of The liquid or its impurities enter the motor 100 through the gap between the two.
  • a scale mark can also be provided on the annular protrusion 192-1 of the bushing 192 to facilitate judging whether the bushing 192 is installed in place.
  • Some embodiments of this specification may install the protective structure 190 of the motor 100 through the above method.
  • the process 300 when installing the protective structure 190 of the motor 100, can further provide an annular groove 191-2 on the elastic structure 191-1, and an annular groove 191-2 on the elastic structure 191-1. 2 is as follows:
  • the bushing is rotated with the rotating shaft, so that the axial top of the annular protrusion cuts the elastic structure, so that an annular groove covering the annular protrusion is formed on the elastic structure.
  • the elastic structure 191-1 may not have an annular groove 191-2, and its side away from the end wall 122-1 may be flat. After the bushing 192 is assembled, the annular protrusion 192-1 on the bushing 192 can contact the side of the elastic structure 191-1 away from the end wall 122-1, and compress it through the annular protrusion 192-1. .
  • the ratio of the compressed volume of the elastic structure 191-1 to the original volume is 70% to 95%. By limiting the ratio of the compressed volume of the elastic structure 191-1 to the original volume, it is avoided that the elastic structure 191-1 is compressed too small, causing the annular groove 191-2 formed after cutting the elastic structure 191-1 to not cover the ring.
  • the shaped protrusion 192-1 reduces the sealing performance of the motor 100 and prevents the elastic structure 191-1 from being compressed too much, causing excessive friction between the elastic structure 191-1 and the annular protrusion 192-1, causing the motor to malfunction.
  • the bushing 192 rotates at high speed, damaging the elastic structure 191-1 or the annular protrusion 192-1 or causing a large amount of energy dissipation.
  • the motor 100 can be started to cause the rotating shaft 111-1 to drive the bushing 192 to rotate, so that the axial top end of the annular protrusion 192-1 on the bushing 192 passes through the rotational cutting seal 191, so as to cut the seal 191 on the bushing 192.
  • the seal 191 undergoes elastic deformation or plastic deformation, correspondingly forming an annular groove covering the axial top of the annular protrusion 192-1.
  • the annular groove 191-2 cut out in the above manner can correspond to the annular protrusion 192-1 on the bushing 192 one-to-one, and can cover the annular protrusion 192-1 more reliably to avoid gaps. . It can be understood that after step S40 is completed, the elastic structure 191-1 may be in a state with an annular groove 191-2 formed thereon. At this time, the motor 100 has been started, and the state at this time may be the state during use by the user.
  • the seal 191 and the bushing 192 both surround the circumferential outside of the rotating shaft 111-1, the bushing 192, the annular protrusion 192-1, and the sealing member 191 form an integral structure and surround the rotating shaft 111-1. Circumferentially outside. Since the bushing 192 is sleeved on the rotating shaft 111-1, the space inside the bushing 192 is blocked by the rotating shaft 111-1, and there is no gap between the bushing 192 and the rotating shaft 111-1; because the seal 191 is installed on the end wall 122-1 On the outer surface, there is no gap between the end wall 122-1 side of the overall structure and the end wall 122-1.
  • the overall structure formed by the bushing 192, the annular protrusion 192-1, and the sealing member 191 is consistent with the end wall 122-1.
  • a closed barrier is defined between the end wall 122-1 and the rotating shaft 111-1, and the closed barrier also covers the gap 122-3 between the rotating shaft 111-1 and the end wall 122-1, which can effectively prevent external fluids. Entering the inside of the motor 100 through the above gap 122-3 improves the protection performance of the motor 100.
  • the bushing 192 can be made of hard material (such as metal or plastic), and the elastic structure 191-1 can be made of elastic material (such as rubber, silicone, Teflon or vinyl).
  • the hardness of the bushing 192 is greater than the hardness of the elastic structure 191-1, so that when the annular protrusion 192-1 on the bushing 192 is in frictional contact with the elastic structure 191-1, the elastic structure 191-1 with a smaller hardness can be Partially cut to form annular groove 191-2.
  • the motor 100 before the motor 100 leaves the factory, it can drive the rotating shaft 111-1 to rotate and form an annular groove 191-2 in the elastic structure 191-1, or the user can automatically rotate the motor 100 when using it for the first time after purchasing the motor 100. The operation of cutting the annular groove 191-2 is completed.
  • the elastic structure 191-1 can be cut through the above process 300 to obtain the annular groove 191-2.
  • the annular groove 191-2 obtained in this way can be connected with the annular protrusion on the bushing 192.
  • 192-1 is better adapted to avoid the difficulty of processing and installation when producing the annular groove 191-2 separately, and improves the sealing performance of the motor 100.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本说明书实施例提供一种干湿两用全封闭的无刷电机、电机的防护结构及安装方法,该电机包括电机壳体、电机转子、定子铁芯、动叶轮、导风罩、线路板和线路板端盖;电机壳体包括相互密封连接的上铝壳体和下铝壳体,电机转子置于上铝壳体和下铝壳体围成的空间内,电机转子通过定子铁芯把热量传递到上铝壳体和/或下铝壳体进行散热;电机转子的转轴与轴承进行密封配合并伸出下铝壳体外,转轴的轴头安装有动叶轮,下铝壳体上位于动叶轮的外侧安装有导风罩,动叶轮排出的气流通过导风罩吹向电机壳体,同时把电机壳体的热量带走;线路板设置在相互密封连接的线路板端盖和上铝壳体围成的空间内,线路板的引线密封穿过开设在线路板端盖上的出线孔并伸出。

Description

干湿两用全封闭的无刷电机、电机的防护结构及安装方法
优先权说明
本说明书要求2022年6月10日提交的申请号为202221446991.2的中国专利申请以及的2022年12月29日提交的申请号为202211703925.3的中国专利申请优先权。其内容通过引用的方式以其整体并入本文。
技术领域
本说明书涉及电机领域,特别涉及一种干湿两用全封闭的无刷电机、电机的防护结构及安装方法。
背景技术
随着人们生活水平的提高,越来越多的家庭开始借助,如洗地机、吸尘器等清洁设备来减少劳动,提高生活质量。清洁设备通常可以对水分或其他杂质进行清理,同时电机带动空气流动从而保证地面的干燥与清洁。如果电机的壳体结构的密封效果差,可能导致清洁设备工作时,部分水分或杂质进入到电机的内部,从而使得电机内部线电路被烧毁,缩短清洁设备的使用寿命。
因此,希望提出一种干湿两用全封闭的无刷电机、电机的防护结构及安装方法,提升电机的密封性,保证搭载有该电机的清洁设备的使用寿命。
发明内容
本说明书的实施例之一提供一种干湿两用全封闭的无刷电机,包括电机壳体、电机转子、定子铁芯、动叶轮、导风罩、线路板和线路板端盖;所述电机壳体包括相互密封连接的上铝壳体和下铝壳体,所述电机转子置于所述上铝壳体和所述下铝壳体围成的空间内,所述电机转子通过所述定子铁芯把热量传递到所述上铝壳体和/或所述下铝壳体进行散热;所述电机转子的转轴与轴承进行密封配合并伸出所述下铝壳体外,所述转轴的轴头安装有所述动叶轮,所述下铝壳体上位于所述动叶轮的外侧安装有所述导风罩,所述动叶轮排出的气流通过所述导风罩吹向所述电机壳体,同时把所述电机壳体的热量带走;所述线路板设置在相互密封连接的所述线路板端盖和所述上铝壳体围成的空间内,所述线路板上的功率器件MOS管的外表面通过导热胶把热量传导接触到所述上铝壳体的上表面,所述线路板的引线密封穿过开设在所述线路板端盖上的出线孔并伸出;所述动叶轮转动并带走由所述电机转子、所述定子铁芯和所述线路板传导至所述上铝壳体和所述下铝壳体外表面的热量。
本说明书的实施例之一提供一种电机的防护结构,所述电机包括电机本体和电机壳体,所述电机本体包括转轴,所述转轴的一端自所述电机壳体的端壁伸出所述电机壳体外,所述转轴与所述端壁通过所述防护结构密封配合,其中,所述防护结构包括密封件和衬套;所述密封件安装于所述端壁的外侧表面,所述密封件上设有环绕于所述转轴的弹性结构;所述衬套套设于所述转轴上,所述衬套上设有与所述转轴同轴布置的环状凸起,所述环状凸起嵌入所述弹性结构内。
本说明书的实施例之一提供一种用于电机的安装方法,所述电机包括电机本体、电机壳体和防护结构,所述电机本体包括转轴,所述防护结构包括密封件和衬套;所述安装方法包括:将所述转轴的一端自所述电机壳体的端壁伸出;在所述端壁外侧上设置所述密封件,所述密封件上设有环绕于所述转轴的弹性结构将设有环状凸起的所述衬套安装至所述转轴上,所述环状凸起与所述转轴同轴,并使得所述环状凸起的轴向顶端压缩所述弹性结构而嵌入所述弹性结构内。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的电机的剖面示意图;
图2是根据本说明书一些实施例所示的电机的示意图;
图3是根据本说明书一些实施例所示的线路板的示意图;
图4是根据本说明书一些实施例所示的电机的又一示意图;
图5是图1所示电机的A部放大图;
图6是根据本说明书一些实施例所示的电机的又一剖面示意图;
图7是根据本说明书一些实施例所示的电机的又一剖面示意图;
图8是根据本说明书一些实施例所示的密封件与衬套的示意图;
图9是根据本说明书一些实施例所示的电机的又一剖面示意图;
图10是图9所示电机的C部放大图;
图11是根据本说明书一些实施例所示的电机的又一剖面示意图;
图12是图11所示电机的D部放大图;
图13是根据本说明书一些实施例所示的电机部分结构的剖面示意图;
图14是图13所示电机的E部放大图;
图15是根据本说明书一些实施例所示的清洁设备的示意图;
图16是根据本说明书一些实施例所示的用于电机的安装方法的示例性流程图。
附图标记说明:100、电机;110、电机本体;111、电机转子;111-1、转轴;111-2、轴承;112、定子铁芯;113、冷却风扇;120、电机壳体;121、上铝壳体;121-1、凹槽;122、下铝壳体;122-1、端壁;122-2、贯穿孔;122-3、间隙;122-4、安装槽;122-5、挡流环;123、冷却叶片;130、动叶轮;131、安装板;140、导风罩;141、入口;142、出口;143、进水间隙;144、容置腔;150、线路板;151、MOS管;152、MCU;153、引线;160、线路板端盖;161、出线孔;170、定叶轮;180、冷却风道;190、防护结构;191、密封件;191-1、弹性结构;191-2、环状槽;192、衬套;192-1、环状凸起;192-2、内筒部;192-3、安装孔;192-4、环状底座;200、清洁设备;210、地刷;220、尘杯;230、机身;240、结构件。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
当清洁设备工作时,如果电机壳体的密封效果差,可能导致部分水分或杂质进入到电机的内部,从而使得电机内部线电路被烧毁,缩短了清洁设备的使用寿命。本说明书提供了一种密封性更好的电机,通过防护结构的设置,可以有效防止液体或其他杂质进入电机内部,保证清洁设备的使用寿命。
图1是根据本说明书一些实施例所示的电机的剖面示意图。如图1所示,电机100可以包括电机壳体120、电机本体110、动叶轮130、导风罩140、线路板150和线路板端盖160。
电机壳体120可以用于容纳电机本体110,防止其受损。在一些实施例中,电机壳体120可以包括相互密封连接的上铝壳体121以及下铝壳体122。在图2所示的实施例中,下铝壳体122位于上铝壳体121的下方。在一些实施例中,电机壳体120还可以为一体形成。
电机壳体120还可以用于散热。其中,电机壳体120上的热量由电机100的发热部件生成。例如,电机壳体120上的热量可以为电机100中电机转子111、定子铁芯112以及线路板150等结构产生,并传导至上铝壳体121和下铝壳体122外表面的热量。在一些实施例中,上铝壳体121和/或下铝壳体122可以采用金属铝合金制成,从而可以提升上铝壳体121和/或下铝壳体122的散热性,便于上铝壳体121和/或下铝壳体122的加工生产,且可以进一步提升电机壳体120的韧性,避免发生变形。例如,上铝壳体121和/或下铝壳体122的材质可以采用金属铝镁合金制成。在一些实施例中,电机壳体120还可以由其他材料制成。例如,电机壳体120可以由散热性能良好的铜制成。
在一些实施例中,上铝壳体121和/或下铝壳体122的外表面可以设有冷却叶片123。上铝壳体121和/或下铝壳体122上的热量可以传递至冷却叶片123进行散热,以提升电机100的冷却速度。
冷却叶片123可以以多种方式设置在电机壳体120的外表面的任意位置。如图2所示,冷却叶片123可以周向间隔设置在下铝壳体122的外表面。在一些实施例中,冷却叶片123可以设置在冷却风道180上方,当气流B流动时可以经过冷却叶片123,从而带走冷却叶片123上的热量,从而进一步提 升电机100的散热效果。与电机壳体120类似地,冷却叶片123也可以由金属铝合金制成。关于冷却风道180以及气流B的更多内容可以参见本说明书下文。
在一些实施例中,下铝壳体122的直径可以沿其端壁向上铝壳体121方向逐渐增大,从而使得气流B可以与更大面积的电机壳体120接触,并带走其表面的热量,提升电机100的散热效果。
电机本体110可以用于产生驱动转矩,作为电机100的动力源。电机本体110可以包括电机转子111以及定子铁芯112。
如图1所示,电机转子111可以置于上铝壳体121和下铝壳体122围成的空间内,当电机100运作时,电机转子111进行高速旋转,此时电机转子111将产生热量。电机转子111通过定子铁芯112把热量传递到上铝壳体121和/或下铝壳体122进行散热。在一些实施例中,定子铁芯112可以通过导热胶或其他类型的导热介质与上铝壳体121和/或下铝壳体122的内表面贴合,从而可以通过导热介质将其产生的热量传输至电机壳体120,以提升电机100的散热效果。前述导热介质可以为多种可以传递热量的介质。例如,导热介质可以包括但不限于导热胶、用于固定的金属条等。
电机转子111的转轴111-1与轴承111-2进行密封配合并伸出下铝壳体122外。转轴111-1的轴头安装有动叶轮130,下铝壳体122上位于动叶轮130的外侧安装有导风罩140,动叶轮130排出的气流通过导风罩140吹向电机壳体120,同时把电机壳体120的热量带走。例如,动叶轮130转动可以带走电机100中电机转子111、定子铁芯112以及线路板150等结构产生,并传导至上铝壳体121和下铝壳体122外表面的热量。
如图1以及图2所示,导风罩140可以与下铝壳体122共同限定出一容置腔144,导风罩140可以设置在动叶轮130外侧,动叶轮130可以设置在转轴111-1伸出下铝壳体122的部分上,位于容置腔144内,导风罩140与下铝壳体122之间可以形成冷却风道180,冷却风道180可以由下铝壳体122延伸到上铝壳体121。动叶轮130在转动时可以生成气流B,前述气流B可以通过导风罩140经由冷却风道180吹向电机壳体120。当气流B流经电机壳体120时,可以带走其表面的热量,从而进一步提高电机100的冷却效果。
如图3所示,线路板150可以设置在线路板端盖160与上铝壳体121相互密封连接而围成的空间内。线路板150上可以包括至少一个功率器件金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOS管)151。例如,线路板150上可以包括3-6个功率器件MOS管151。线路板150上还可以包括其他部件。例如,线路板150还可以包括微控制单元(Micro Controller Unit,MCU)152。
当电机100运行时,线路板150上的MOS管151的运作会产生热量,线路板150上的器件(如MOS管151和/或MCU182)可以通过导热胶或其他类型的导热介质与上铝壳体121的上表面贴合,并通过前述导热介质将其产生的热量传导至接触到的上铝壳体121的上表面,以提升电机100的散热效果。
如图4所示,上铝壳体121的上表面可以设置有形状与线路板150上的器件(如MOS管151和/或MCU182)匹配的凹槽121-1。凹槽121-1内可以填充有导热介质。线路板150上的器件可以通过凹槽121-1中的导热介质与上铝壳体121连接。
线路板150上还可以包括引线153,对应的,线路板端盖160上可以设置有出线孔161。如图1以及图2所示,线路板150可以包括两条引线153,线路板150上的引线153可以密封穿过开设在线路板端盖160上的出线孔161并伸出上铝壳体121外,并与清洁设备200的其他结构连接(图未示出)。出线孔161与引线153可以通过密封胶或其他类型的密封介质进行密封。前述密封介质可以为多种可以用于密封的介质。例如,密封介质可以包括但不限于密封胶、密封膜等。
在一些实施例中,出线孔161的最大尺寸可以小于或等于线路板150的引线153直径的3倍。出线孔161的最小尺寸可以不小于线路板150的引线153直径。
值得说明的是,若便于线路板150中引线153的安装,将出线孔161的直径(当出线孔161为圆形时,前述直径可以指圆形的直径;当出线孔161为非圆形时,前述直径可以指最大尺寸)设置为远大于引线153直径3倍甚至10倍以上时,通常通过橡胶垫圈来实现出线孔161的密封。但橡胶垫圈容易变形且其与引线153之间必然存在间隙,因而可能导致电机的密封效果较差,不能真正地实现电机的防水。应当理解的是,若出线孔161的直径过大时,使用密封介质对出线孔161与引线153进行密封时容易掉落;若出线孔161的直径过小时,不便于通过密封介质对出线孔161以对出线孔161与引线153进行密封,例如,不便于将密封胶注入出线孔161,以上两种情况均会降低电机的密封效果。本说明书的一些实施例创造性地将出线孔161的最大尺寸设置为小于或等于线路板150的引线153直径的3倍,并通过密封介质将出线孔161和引线153之间进行密封,从而实现真正意义地全密封,提升电机100的密封性。
在一些实施例中,电机100还包括定叶轮170。如图1所示,定叶轮170可以安装在下铝壳体122或导风罩140上,并位于动叶轮130和下铝壳体122之间。本说明书的一些实施例通过设置定叶轮170能够引导气流B流动至电机壳体120,从而提升电机壳体120的冷却效果。在一些实施例中,定叶轮170可以为双定叶轮。
本说明书的一些实施例可以通过前述各个实施例提高电机壳体120的冷却效率,提升电机100的散热效果。应当理解的是,当电机100的散热效果较好的前提下,加大电机100的使用功率,仍可以保证电机100的正常运作,以使得电机100的风力更加强劲。例如,通过前述实施例中的设置,电机100的吸入功率可以增加至超300W,在使用等体积等功率器件情况下,电机100的吸入功率可以超过塑料壳体非全封闭的传统干湿两用电机的吸入功率100%左右,从而可以·提升搭载了该电机100的清洁设备200的清洁力度。
本说明书的一些实施例还公开了一种电机100的防护结构190。如图6所示,电机100可以包括电机本体110和电机壳体120,电机本体110包括转轴111-1,转轴111-1的一端自电机壳体120的端壁122-1伸出电机壳体120外,转轴111-1与端壁122-1通过防护结构190密封配合,其中,防护结构190包括密封件191和衬套192。关于电机本体110和电机壳体120的更多内容可以参见本说明书上文。
可以理解的是,电机100可以是有刷电机、无刷电机等类型的、且需要做涉水性能测试的电机。本说明书实施例以应用于清洁设备200,例如,吸尘器、洗地机等中的干湿两用吸尘器电机为例进行说明。
电机壳体120上可以设有冷却风入口和冷却风出口(图未示出),电机100还可以包括冷却风扇113。当电机100运行时,冷却风扇113可以在转轴111-1的带动下转动,外界空气可以经过冷却风入口进入电机壳体120内,并经过电机本体110中各个发热部件(如,电机转子111)进行充分热交换后,经冷却风出口排出电机壳体120外,从而在电机壳体120内产生冷却循环,提升电机100的冷却效果。当电机100运行时,转轴111-1可以带动动叶轮130转动,气流B从外部环境经过入口141流入导风罩140,经过动叶轮130的叶片后,再经过出口142流出导风罩140,以在入口141提供吸力。如图7所示,导风罩140的入口141可以设置在导风罩140的底部,出口142可以设置在导风罩140的侧边,当电机100运行时,气流B可以形成如虚线箭头所示的流动路径。如图2所示,导风罩140的出口142还可以设置在导风罩140的顶部,当电机100运行时,气流B可以形成如实线箭头所示的流动路径。
如图7所示,转轴111-1的一端可以自下铝壳体122的端壁122-1伸出电机壳体120。可以理解的是,当电机壳体120为一体形成时,此时电机壳体120供转轴111-1伸出的壁部可以形成为端壁122-1。
如图5所示,电机壳体120(如,下铝壳体122)的端壁122-1上可以设置有贯穿孔122-2,贯穿孔122-2内设置有轴承111-2和防护结构190,转轴111-1通过轴承111-2和防护结构190实现密封,并伸出电机壳体120外。前述轴承111-2可以为密封轴承。
值得说明的是,当电机100运行时,大部分气流(如气流B)可以从导风罩140的出口142排出。但由于受电机100负压影响,可能存在部分气流(如图7中的单点划线箭头所示的气流)沿着端壁122-1的外侧表面向贯穿孔122-2处流动,若不对贯穿孔122-2进行防护处理,前述气流中裹挟的液体(如水汽、酸碱液等)或其他杂质可能进入进水间隙143,并通过贯穿孔122-2进入到电机100内部,可以对电机100造成损害,降低电机100的使用寿命。
在一些实施例中,电机100在贯穿孔122-2处设置有防护结构190,以防止液体或其他杂质可能通过贯穿孔122-2进入到电机100内部。
防护结构190可以用于防止外部的液体或其他杂质进入电机100内,影响电机本体110的正常运作。防护结构190可以包括多种结构,例如,防护结构190可以包括轴承111-2、密封件191与衬套192的组合等结构中的一种或多种的组件。
在一些实施例中,防护结构190可以包括密封件191以及衬套192(如图8所示)。
密封件191可以安装于端壁122-1的外侧表面,密封件191上可以设置有环绕于转轴111-1的弹性结构191-1。当电机100运作时,密封件191在电机100中的位置相对固定。需要说明的是,密封件191可以仅包括弹性结构191-1,例如,环形的弹性圈;密封件也可以包括弹性结构191-1和其他结构,例如,环形的安装座和设置在安装座上的环形的弹性圈。
衬套192可以套设于转轴111-1上,且设置在密封件191的背离端壁122-1的一侧,衬套192上设有与转轴111-1同轴布置的环状凸起192-1。当电机100运作时,衬套192可以以转轴111-1为轴心,在转轴111-1的带动下进行旋转。在一些实施例中,衬套192上可以设置一个或多个环状凸起192- 1。如图8所示,衬套192可以包括环状底座192-4和设于底座上的环状凸起192-1。环状底座192-4的外径可以大于或等于环状凸起192-1的外径。
环状凸起192-1可以嵌入弹性结构191-1内。环状凸起192-1嵌入弹性结构191-1内可以是指:弹性结构191-1的对应位置被环状凸起施加压力而形变(压缩),被环状凸起192-1压缩的部位会下陷,而环状凸起192-1则嵌入该下陷的部位。由于弹性结构191-1的下陷是环状凸起192-1的压缩造成的,下陷部位的形状可以与环状凸起192-1的形状是匹配的。或者,环状凸起192-1嵌入弹性结构191-1也可以是指:弹性结构191-1上具有容纳环状凸起192-1的结构(如下文的环状槽191-2),环状凸起192-1进入该结构内。
在一些实施例中,如图10以及图14所示,环状凸起192-1可以通过环状槽191-2嵌入弹性结构191-1内,环状槽191-2包覆环状凸起192-1位于环状槽191-2内的部分。环状槽191-2环绕于转轴111-1的周向外侧。弹性结构191-1上可以具有一个或多个环状槽191-2。环状凸起192-1中的每一个可以与一个环状槽191-2对应,环状凸起192-1可以嵌入对应的各环状槽191-2内,环状槽191-2的内壁包覆于对应的环状凸起192-1外。
在一些实施例中,衬套192可以随转轴111-1发生转动,使衬套192上的环状凸起192-1切割弹性结构191-1,使弹性结构191-1上形成包覆环状凸起192-1的环状槽191-2,通过前述方式生成的环状槽191-2可以与环状凸起192-1完美贴合,降低单独预先加工环状槽191-2的生产、安装难度。关于上述形成环状槽191-2的实施例的更多内容参见图16及其相关描述。需要说明的是,弹性结构191-1被压缩而下陷的状态与弹性结构191-1上形成环状槽191-2的状态是不同的。区别在于,环状槽191-2的形成是弹性结构191-1的表面被切割后形成的,弹性结构191-1被压缩而下陷的状态下弹性结构191-1的表面是未被环状凸起192-1切割的。弹性结构191-1被压缩而下陷的状态可以是将衬套192和密封件191配合安装但电机100未启动运行的状态,弹性结构191-1上形成环状槽191-2的状态可以是电机100启动后运行一段时间的状态。
可以理解的是,为了便于转动的环状凸起192-1切割密封件191,环状凸起192-1的径向宽度可以从靠近电机壳体120的方向向远离电机壳体120的方向逐渐增大,即呈现如图12所示的尖端状,其中,图7、图8以及图11中的Z方向为轴向,Z方向也是转轴111-1的轴线方向。图7中的X方向可以为径向方向。
在另外一些实施例中,弹性结构191-1上也可以预先加工设置有环状槽191-2,在安装时可以将环状凸起192-1嵌入对应的环状槽191-2内,以实现环状槽191-2包覆于环状凸起192-1。
如图10以及图11所示,当转轴111-1一端自端壁122-1通过贯穿孔122-2伸出至电机壳体120时,可能在转轴111-1和端壁122-1的交界位置产生可供液体或其他杂质进入电机壳体120内的间隙122-3。
本说明书一些实施例公开了衬套192上设有的环状凸起192-1一一对应嵌入密封件191上的环状槽191-2内,且环状槽191-2和衬套192都环绕于转轴111-1的周向外侧,从而可以使得衬套192、环状凸起192-1、密封件191形成一个紧密连接的整体结构,并环绕于转轴111-1的周向外侧。同时,衬套192套接在转轴111-1上,衬套192内侧的空间被转轴111-1封堵,与转轴111-1之间不存在缝隙,密封件191安装于端壁122-1的外侧表面,因此,该整体结构与端壁122-1之间也不存在缝隙,如此,衬套192、环状凸起192-1、密封件191形成的整体结构与端壁122-1、转轴111-1之间可以限定出一封闭屏障,并且该封闭屏障可以将转轴111-1和端壁122-1之间的间隙122-3笼罩在内,从而可以有效避免外部液体或其他杂质经过上述间隙122-3进入电机100内部,提高了对电机100的防护性能,提升电机100的密封性。
值得说明的是,如图10所示,环状槽191-2的内壁包覆在对应的环状凸起192-1外,即环状槽191-2的所有内壁都完全贴合在环状凸起192-1上,二者之间紧密接触,但不会影响到转轴111-1带动衬套192相对于密封件191的转动。
可以理解的是,当电机100运行时,转轴111-1可以带动衬套192的环状凸起192-1相对于环状槽191-2发生转动。在使用一段时间或出厂测试后,环状槽191-2的内壁和对应的环状凸起192-1的轴向顶端之间可能形成有微小狭缝,前述狭缝可以降低衬套192中的环状凸起192-1与密封件191的摩擦,避免长期摩擦生热对密封件191以及衬套192造成的损害。另外,值得说明的是,转轴111-1带动衬套192经过一段时间的高速旋转后,可以在密封件191上产生水膜,该水膜可以起到密封作用的同时,降低密封件191以及衬套192之间的摩擦。
参见图7至图14,为了使密封件191上的环状槽191-2环绕转轴111-1的周向外侧设置,弹性结构191-1可以沿着转轴111-1的周向连续延伸。也就是说,弹性结构191-1可以呈环状,以便于在弹性结构191-1上设置围绕在转轴111-1外的环状槽191-2。在一些实施例中,如图8所示,弹性结构191- 1可以为圆环状。在另一些实施例中,弹性结构132-2也可以是其他形状的环状,如外环为方形,内环为环形的环状。
环状凸起192-1可以由刚性材料制成,其洛氏硬度的范围可以为15~35HRC,以保障其具有良好的密封性,旋转不变形,从而在随转轴111-1发生转动时在弹性结构191-1上切割形成环状槽191-2。在一些实施例中,衬套192的其他结构与环状凸起192-1可以由相同的材料制成,也可以由不同的材料制成。在一些实施例中,衬套192的材质可以为金属或塑料。
弹性结构191-1可以由弹性材料制成,其弹性拉升量为150%-200%,以保证在安装时,即不运转切割前,弹性结构191-1不会被环状凸起192-1切开,只是压陷。同时弹性结构191-1中的环状槽191-2在生成后,还可以包覆于环状凸起192-1,从而达到密封效果。在一些实施例中,密封件191的材质可以为硅胶、特氟龙或者乙烯。在一些实施例中,密封件191还可以为其他材质,例如,橡胶、乳胶等。
环状凸起192-1的硬度大于弹性结构191-1的硬度。例如,当弹性结构191-1的弹性拉升量为150%-200%,环状凸起192-1的洛氏硬度可以为25HRC。通过上述设置可以保证弹性结构191-1与环状凸起192-1配合可以对电机100进行密封,而起到防护作用,通过弹性结构191-1的弹性模块与环状凸起192-1的强度按照上述数值进行设置,可以保证防护结构190具有较优的密封效果,从而保障电机100的密封性。
在一些实施例中,弹性结构191-1可以设置在衬套192上,环状凸起192-1可以设置在密封件191上,也就是说,衬套192的转动可以带动弹性结构191-1转动,而环状凸起133-2的位置相对固定。可以理解的是,当弹性结构191-1设置在衬套192上,环状凸起192-1设置在密封件191上时,衬套192上的弹性结构191-1的材质可以为硅胶、特氟龙或者乙烯,密封件191上的环状凸起192-1的材质可以为金属或塑料。
在一些实施例中,端壁122-1的外侧表面上可以设置有环状的安装槽122-4,安装槽122-4与转轴111-1可以同轴布置,弹性结构191-1可以卡设在安装槽122-4中,以便于弹性结构191-1的安装和更换。
在另一些实施例中,还可以在安装槽122-4中灌入液态弹性材料,待凝固成型后可以形成弹性结构191-1。通过前述方式生成的弹性结构191-1与端壁122-1的附着性较好,即使,弹性结构191-1发生形变形成环状槽191-2,也不易从安装槽122-4中脱落。
如图11至图14所示,衬套192内可以设有安装孔192-3,转轴111-1可以穿设在安装孔192-3中,且转轴111-1的周向外表面与安装孔192-3的内表面贴合。衬套192还可以包括内筒部192-2。内筒部192-2可以设于环状凸起192-1周向内侧,内筒部192-2上的轴中中空部位可以形成前述安装孔192-3。内筒部192-2可以套设于转轴111-1上,且内筒部192-2至少部分结构可以伸入至贯穿孔122-2内,以保证其结构的稳定性。转轴111-1的周向外表面可以与内筒部192-2的内表面贴合,以避免外部液体或其他杂质进入电机100内。在一些实施例中,衬套192与转轴111-1过盈配合,即内筒部192-2和转轴111-1过盈配合,以避免转轴111-1和衬套192之间发生窜动。
在一些实施例中,内筒部192-2可以通过粘接、卡接等方式实现连接。在一些实施例中,为了保证内筒部192-2与转轴111-1之间的密封效果,内筒部192-2与转轴111-1之间可以具有密封胶或其他类型的密封介质。
在一些实施例中,内筒部192-2的径向厚度可以大于环状凸起192-1的径向厚度,增加内筒部192-2的径向厚度可以提升整个衬套192的结构强度。在一些实施例中,内筒部192-2的轴向(内筒部192-2的轴向等同于转轴111-1的轴向)高度可以大于环状凸起192-1的轴向高度。内筒部192-2的轴向高度较高,可以进一步保证衬套192与转轴紧密连接,也可以进一步起到对液体的防护效果。
环状凸起192-1可以为被构造为如图12所示的,由衬套192朝向密封件191伸出的圆环状件,从而可以使衬套192结构较为简单,易于加工。示例性的,环状凸起192-1的延伸方向可以沿着转轴111-1的轴向延伸,从而可以使得环状凸起192-1在转轴111-1转动时,与环状槽191-2的摩擦力较小。
如图7至图14所示,环状槽191-2可以设置在密封件191的面向衬套192的表面上,环状凸起192-1设置在衬套192的面向密封件191的表面上。这样便于加工,也可以使得密封件191和衬套192在转轴111-1径向的结构较为紧凑。
在一些实施例中,环状凸起192-1的轴向顶端的外表面可以被配置为与对应的环状槽191-2的内壁相匹配,从而使得环状槽191-2的内壁包覆于对应的环状凸起192-1的轴向顶端,提升防护结构190的防护效果。可以理解的是,为了避免环状凸起192-1穿透密封件191,影响密封件191的强度,可以使环状槽191-2的轴向(环状槽191-2的轴向也是转轴111-1的轴向)深度小于密封件191在转轴111-1的轴向高度。
在一些实施例中,如图11所示,环状凸起192-1的轴向(环状槽191-2的轴向也是转轴111-1 的轴向)高度H1为1.5-4.5mm。值得说明的是,如果环状凸起192-1的轴向高度过小,环状凸起192-1与环状槽191-2的相接部分容易与由进水间隙143进入的液体或其他杂质接触,从而可能会影响对防护结构190对液体或其他杂质的防护效果。如果环状凸起192-1的轴向高度过大,转轴111-1带动衬套192旋转可能需要消耗更多能量,也容易产生更多的热量,衬套192进行旋转时整体结构的稳定性可能较差,通过将环状凸起192-1的轴向高度设置为上述范围,可以在保证防护效果的同时尽可能地减少热量的产生和能量的消耗。
在一些实施例中,环状凸起192-1的轴向高度H1与衬套192的外径D1的比值范围可以为0.05~0.25。衬套192的外径可以是指衬套192的环状底座192-4的外径。在图8和图10所示的实施例中,环状底座192-4也等于环状凸起192-1的外径。如果环状凸起192-1的轴向高度H1与衬套192的外径的比值过小,环状凸起192-1对液体可能起不到较好的防护效果。如果环状凸起192-1的轴向高度H1与衬套192的外径D1的比值过大(如环状凸起192-1的轴向高度太大或衬套192的外径太小),衬套192的其他结构(如内筒部192-2与环状凸起192-1之间的结构)无法对环状凸起192-1起到支撑作用,整个衬套192在高速旋转中的结构强度难以保证。通过上述设置,在保证环状凸起192-1对液体的防护效果的同时,衬套192结构更加稳定,衬套192的其他结构可以支撑其环状凸起192-1运动,避免因高速旋转而带来的结构损坏。
在一些实施例中,环状凸起192-1的轴向高度H1与衬套192的轴向高度H2的比值范围为1~4。衬套的轴向高度H2是指衬套192的环状底座192-4的轴向高度。与上文所述的原理类似,如果环状凸起192-1的轴向高度H1与衬套192的径向高度H2的比值过大(如环状凸起192-1的轴向高度太大或衬套192的轴向高度太小),衬套192的其他结构(如内筒部192-2与环状凸起192-1之间的结构)无法对环状凸起192-1起到支撑作用,整个衬套192在高速旋转中的结构强度难以保证。通过上述设置,在保证环状凸起192-1对液体的防护效果的同时,衬套192结构更加稳定,衬套192的其他结构可以支撑其环状凸起192-1运动,避免因高速旋转而带来的结构损坏。
在一些实施例中,环状凸起192-1的轴向高度H1与转轴111-1的直径D2的比值范围可以为0.2~0.8。如果环状凸起192-1的轴向高度H1与转轴111-1的直径D2的比值过小,环状凸起192-1对液体可能起不到较好的防护效果。如果环状凸起192-1的轴向高度与转轴111-1的直径的比值过大,这说明环状凸起192-1的轴向高度H1设置得过高,这会产生较多的热量并产生较多的能量消耗。通过按照上述范围限定环状凸起192-1的轴向高度与转轴111-1的直径的比值,可以在保证防护效果的同时尽可能地减少热量的产生和能量的消耗。
在一些实施例中,环状凸起192-1嵌入弹性结构191-1的轴向深度H3与环状凸起132-1的轴向高度H1的比值范围为0.1~0.3。可以理解的是,若环状凸起192-1嵌入弹性结构191-1过深,可能会导致其与密封件191的接触面积过大,支撑导致衬套192随着转轴111-1转动时会产生较多的热量而带来较多的能量消耗;若环状凸起192-1嵌入弹性结构191-1过浅,可能会导致其与密封件191的接触面积过小,从而环状凸起192-1与环状槽191-2的接触面积过小,外部的液体或其他杂质容易突破该屏障进入电机100内,降低防护结构190的防护效果。通过将环状凸起192-1嵌入弹性结构191-1的轴向深度与环状凸起132-1的轴向高度的比值限定在上述范围内,既保证了防护效果,又尽可能地减少热量的产生和能量的消耗。
在一些实施例中,环状凸起192-1的轴向高度H1与进水间隙143的高度H4的比值范围为0.4~2.0。进水间隙143可以是指端壁122-1与动叶轮130的靠近电机壳体120的一端的安装板131之间的在转轴111-1的轴向上的距离。进水间隙143的高度直接影响了可能进入电机主体的水量,环状凸起192-1的轴向高度直接影响了对液体的防护效果,水量越大,则环状凸起192-1的轴向高度可能需要越高。但是,如前所述,环状凸起192-1的轴向高度过大,可能会产生较多的热量并产生较多的能量消耗,通过限定前述比值范围,可以在保证环状凸起192-1的防护效果的同时尽可能地减少热量的产生和能量的消耗。
如图11以及图12所示,在一些实施例中,端壁122-1的外侧表面还设有至少一个挡流环122-5。挡流环122-5可以围绕在密封件191的周向外侧,且向背离端壁122-1的方向延伸。当挡流环122-5的数量是多个时,各个挡流环122-5的内径大小不同,且内径较大的挡流环122-5套设在内径较小的挡流环122-5外。在一些实施例中,多个挡流环122-5可以同轴布置。在图12中,端壁122-1的外侧表面设置有三个挡流环122-5。通过设置挡流环122-5可以进一步防止液体或其他杂质通过前述的贯穿孔122-2进入电机100内部,提升电机100的密封性。
如图7至图12所示,密封件191可以包括一个环状槽191-2,衬套192上可以包括一个对应的环状凸起192-1。
在一些实施例中,衬套192上还可以设有直径不同的多个(如两个、三个、五个等)环状凸起 192-1,多个环状凸起192-1同心布置;针对多个环状凸起192-1中的每一个,密封件191上可以设置有对应的弹性结构191-1,环状凸起192-1嵌入对应的弹性结构191-1内。
如图13以及图14所示,衬套192上可以包括两个环状凸起192-1,密封件191可以包括两个弹性结构191-1,两个环状凸起192-1一一对应地嵌入两个弹性结构191-1的环状槽191-2内。在一些实施例中,密封件191可以包括其他数量的环状槽191-2,衬套192上可以包括对应数量的环状凸起192-1,此处不再赘述。
本说明书的一些实施例通过设置多组相互配合的环状凸起192-1与弹性结构191-1,可以为电机100增加了多重保障。当径向靠外的环状凸起192-1和弹性结构191-1失效的情况下,径向靠内的环状凸起192-1和弹性结构191-1还能起到防护作用。以衬套192上设置两个环状凸起192-1和密封件191上设置两个弹性结构191-1为例,当径向外侧的一组环状凸起192-1和弹性结构191-1失效的情况下,径向内侧的一组环状凸起192-1和弹性结构191-1还能起到防护作用。
在一些实施例中,衬套192上径向靠外的环状凸起192-1的轴向高度可以等于衬套192上径向靠内的环状凸起192-1的轴向高度;与衬套192上径向靠外的环状凸起192-1对应的弹性结构191-1在转轴111-1的轴向上的高度高于与衬套192上径向靠内的环状凸起192-1对应的弹性结构191-1在转轴111-1的轴向上的高度。
在一些实施例中,多个环状槽191-2之间可以在转轴111-1的轴向相互错开,也就是说,各个环状槽191-2的轴向(环状槽191-2的轴向也可以是转轴111-1的向)高度可以不同。对应的,多个环状凸起192-1之间也可以在转轴111-1的轴向相互错开,也就是说,各个环状凸起192-1的轴向(环状凸起192-1的轴向也可以是转轴111-1的向)高度不同。如图13以及图14所示,衬套192上径向靠外的环状凸起192-1的轴向高度可以大于衬套192上径向靠内的环状凸起192-1的轴向高度。通过前述设置,一方面,可以为电机100提供多重防护保障;另一方面,即使由于使用时间过长等原因导致对应的环状凸起192-1和环状槽191-2之间产生了缝隙,液体或其他杂质经过该缝隙进入贯穿孔122-2的通道长度也会变长,在一定程度上提升了电机100防护效果。
在一些实施例中,防护结构190还可以仅包括衬套192。衬套192可以设置在端壁122-1的外侧面,衬套192上环状凸起192-1的内径大于贯穿孔122-2的直径,环状凸起192-1与端壁122-1的外侧面在轴向上的距离大于0且小于预设距离阈值。此时,环状凸起192-1可以从外部覆盖住贯穿孔122-2,同时,环状凸起192-1的轴向顶部与端壁122-1非常接近,但并不会接触。当电机100运行时,衬套192可以在转轴111-1的带动下高速旋转并形成水膜,从而防止液体或其他杂质进入贯穿孔122-2,保证电机100的密封性。
本说明书还公开了一种搭载有电机100的清洁设备200。以清洁设备200为吸尘器或洗地机为例进行说明,对于清洁设备是其他类型的情况与此类似,此处不再赘述。
如图15所示,清洁设备200可以包括机身230、以及设置在机身230上的地刷210、尘杯220和结构件240,电机100也设于机身230上。其中,地刷210用于对待清洁表面进行清理,地刷210、结构件240、尘杯220、电机100之间流体连接。
当清洁设备200为洗地机时,结构件240可以是污水箱或者清水箱;当清洁设备200为吸尘器时,结构件240可以是尘杯。
清洁设备200包括上述实施例中任一项所述的电机100。可以理解的,电机100的结构、功能、工作原理等已经进行过详细说明,此处不再赘述。
图16为本说明书一些实施例所述的用于电机的安装方法的示例性流程图。
在一些实施例中,流程300可以用于安装图6至图14所示的电机100。如图16所示,流程300可以包括以下步骤:
S10、将转轴的一端自电机壳体的端壁伸出。
S20、在端壁外侧上设置密封件,密封件上设有环绕于转轴的弹性结构。
端壁122-1的外侧表面上可以形成有安装槽122-4,安装槽122-4可以环绕于转轴111-1的周向外侧。在一些实施例中,可以在安装槽122-4中灌入液态弹性材料(如,液体硅胶),凝固成型后形成的弹性结构191-1。通过该方式设置的弹性结构191-1与端壁122-1的附着性较好,即使在弹性结构191-1上开设了环状槽191-2的情况下,也不易从安装槽122-4中脱落。
在一些实施例中,还可以将预先生产好的弹性结构191-1卡设于安装槽122-4中,以便于更换。
S30、将设有环状凸起的衬套安装至转轴上,环状凸起与转轴同轴,并使得环状凸起的轴向顶端压缩弹性结构而嵌入弹性结构内。
在一些实施例中,可以将衬套192套接在转轴111-1上,并使环状凸起192-1与转轴111-1同轴;朝向端壁122-1的方向推压衬套192,直至环状凸起192-1陷入弹性结构191-1内。在一些实施例 中,环状凸起192-1陷入弹性结构191-1的深度可以为0.3mm~0.6mm。在一些实施例中,环状凸起192-1陷入弹性结构191-1的深度可以为其轴向高度的0.12%~0.2%。通过限制环状凸起192-1的轴向顶端陷入弹性结构191-1的深度或比值,一方面可以避免制环状凸起192-1的轴向顶端陷入弹性结构191-1过深刺穿密封件191(如在下述步骤S40中刺穿密封件191),对衬套192或密封件191造成损坏;另一方面还可以避免制环状凸起192-1的轴向顶端陷入弹性结构191-1过浅,影响防护结构190的密封性。可以理解地,在完成步骤S30后,弹性结构191-1可以处于被压缩而下陷的状态。此时,电机100尚未开机时使用,此时的状态可以是电机100出厂时的状态或测试前的状态。
在一些实施例中,可以使衬套192(如衬套的内筒部192-2)过盈配合于转轴111-1上,从而使得衬套192和转轴111-1的连接较为可靠,也避免液体或其杂质从二者之间的缝隙进入电机100内。
在一些实施例中,还可以在衬套192的环状凸起192-1上设置刻度线,以便于判断衬套192的安装是否到位。
本说明书的一些实施例可以通过上述方法安装电机100的防护结构190。在一些实施例中,安装电机100的防护结构190时,流程300还可以进一步在弹性结构191-1上设置上环状槽191-2,在弹性结构191-1上设置上环状槽191-2如下:
S40、使衬套随转轴转动,使环状凸起的轴向顶端切割弹性结构,使弹性结构上形成包覆环状凸起的环状槽。
在安装电机100时,在未安装衬套192前,弹性结构191-1上可以未开设环状槽191-2,其远离端壁122-1的一侧可以为平面。在装配衬套192后,衬套192上的环状凸起192-1可以与弹性结构191-1远离端壁122-1的一侧接触,且通过环状凸起192-1对其造成压缩。在一些实施例中,弹性结构191-1压缩后的体积与原始体积的比值为70%~95%。通过对弹性结构191-1压缩后的体积与原始体积的比值进行限定,避免弹性结构191-1压缩过小,造成弹性结构191-1切割后形成的环状槽191-2不能包覆于环状凸起192-1,降低电机100的密封性,也避免弹性结构191-1压缩过过大,造成弹性结构191-1与环状凸起192-1之间摩擦力过大,在导致电机100运作时,衬套192高速旋转时损坏弹性结构191-1或环状凸起192-1或带来大量的能量耗散。
在一些实施例中,可以通过启动电机100,使转轴111-1带动衬套192转动,从而使得衬套192上的环状凸起192-1的轴向顶端通过旋转切割密封件191,以在密封件191发生弹性变形,或者塑性变形,对应形成包覆于环状凸起192-1的轴向顶端的环状槽。
通过上述方式切割出的环状槽191-2可以与衬套192上的环状凸起192-1一一对应,且能够较为可靠地包覆在环状凸起192-1外,避免存在缝隙。可以理解地,在完成步骤S40后,弹性结构191-1可以其上形成环状槽191-2的状态。此时,电机100已经启动,此时的状态可以是用户使用过程中的状态。
由于密封件191和衬套192都环绕于转轴111-1的周向外侧,这样,衬套192、环状凸起192-1、密封件191形成一个整体结构,并环绕于转轴111-1的周向外侧。由于衬套192套接在转轴111-1上,衬套192内侧的空间被转轴111-1封堵,与转轴111-1之间不存在缝隙;由于密封件191安装于端壁122-1的外侧表面,该整体结构在端壁122-1一侧的与端壁122-1之间也不存在缝隙,如此,衬套192、环状凸起192-1、密封件191形成的整体结构与端壁122-1、转轴111-1之间限定出一封闭屏障,并且该封闭屏障还将转轴111-1和端壁122-1之间的间隙122-3笼罩在内,可以有效避免外界流体经过上述间隙122-3进入电机100内部,提高了对电机100的防护性能。
在一些实施例中,衬套192可以为硬性材质(如金属或塑料),弹性结构191-1可以为弹性材质(如橡胶、硅胶、特氟龙或者乙烯)。衬套192的硬度大于弹性结构191-1的硬度,从而可以使得衬套192上的环状凸起192-1与弹性结构191-1摩擦接触时能够将硬度较小的弹性结构191-1的局部切割开,以生成环状槽191-2。
实际应用中,在电机100出厂之前可以驱动转轴111-1转动,在弹性结构191-1中形成环状槽191-2的操作,或者使用者购买该电机100后,在第一次使用时自行完成该切割环状槽191-2的操作。
本说明书的一些实施例中可以通过上述流程300完成切割弹性结构191-1,获得环状槽191-2,通过该方式获得的环状槽191-2可以与衬套192上的环状凸起192-1更好的适配,避免单独生产环状槽191-2时的加工、安装难度,提升电机100的密封性。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和 /或“一些实施例”意指与本说明书实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (15)

  1. 一种干湿两用全封闭的无刷电机,包括电机壳体、电机转子、定子铁芯、动叶轮、导风罩、线路板和线路板端盖;
    所述电机壳体包括相互密封连接的上铝壳体和下铝壳体,所述电机转子置于所述上铝壳体和所述下铝壳体围成的空间内,所述电机转子通过所述定子铁芯把热量传递到所述上铝壳体和/或所述下铝壳体进行散热;
    所述电机转子的转轴与轴承进行密封配合并伸出所述下铝壳体外,所述转轴的轴头安装有所述动叶轮,所述下铝壳体上位于所述动叶轮的外侧安装有所述导风罩,所述动叶轮排出的气流通过所述导风罩吹向所述电机壳体,同时把所述电机壳体的热量带走;
    所述线路板设置在相互密封连接的所述线路板端盖和所述上铝壳体围成的空间内,所述线路板上的功率器件MOS管的外表面通过导热胶把热量传导接触到所述上铝壳体的上表面,所述线路板的引线密封穿过开设在所述线路板端盖上的出线孔并伸出;所述动叶轮转动并带走由所述电机转子、所述定子铁芯和所述线路板传导至所述上铝壳体和所述下铝壳体外表面的热量。
  2. 如权利要求1所述的电机,所述上铝壳体和/或所述下铝壳体采用金属铝合金制成;所述上铝壳体和/或所述下铝壳体的外表面设有冷却叶片。
  3. 如权利要求1所述的电机,所述出线孔与所述引线通过密封胶进行密封;所述定子铁芯通过导热胶与所述上铝壳体和/或所述下铝壳体的内表面贴合;所述线路板的MCU通过导热胶直接与所述上铝壳体的上表面贴合。
  4. 如权利要求1所述的电机,所述出线孔的最大尺寸小于等于所述线路板的引线直径的3倍;所述下铝壳体的直径自其端壁向所述上铝壳体方向逐渐增大。
  5. 如权利要求1所述的电机,所述下铝壳体的端壁上设置有贯穿孔,所述贯穿孔内设置有所述轴承和防护结构,所述转轴通过所述轴承和所述防护结构实现密封,并伸出所述下铝壳体外。
  6. 如权利要求5所述的电机,所述防护结构包括密封件和衬套;
    所述密封件安装于所述端壁的外侧表面,所述密封件上设有环绕于所述转轴的弹性结构;
    所述衬套套设于所述转轴上,所述衬套上设有与所述转轴同轴布置的环状凸起,所述环状凸起嵌入所述弹性结构内。
  7. 如权利要求6所述的电机,所述衬套带动所述环状凸起随所述转轴发生转动而切割所述弹性结构形成环状槽,所述环状槽包覆所述环状凸起位于所述环状槽内的部分。
  8. 如权利要求6所述的电机,所述端壁的外侧表面上形成有环状的安装槽,所述安装槽与所述转轴同轴布置,所述密封件卡设在所述安装槽中;所述端壁的外侧表面还设有至少一个挡流环,所述挡流环围绕在所述密封件的周向外侧,且向背离所述端壁的方向延伸。
  9. 一种电机的防护结构,所述电机包括电机本体和电机壳体,所述电机本体包括转轴,所述转轴的一端自所述电机壳体的端壁伸出所述电机壳体外,所述转轴与所述端壁通过所述防护结构密封配合,其中,所述防护结构包括密封件和衬套;
    所述密封件安装于所述端壁的外侧表面,所述密封件上设有环绕于所述转轴的弹性结构;
    所述衬套套设于所述转轴上,所述衬套上设有与所述转轴同轴布置的环状凸起,所述环状凸起嵌入所述弹性结构内。
  10. 如权利要求9所述的防护结构,所述衬套带动所述环状凸起随所述转轴发生转动而切割所述弹性结 构形成环状槽,所述环状槽包覆所述环状凸起位于所述环状槽内的部分。
  11. 如权利要求9所述的防护结构,所述环状凸起的径向宽度从靠近所述电机壳体的方向向远离所述电机壳体的方向逐渐增大。
  12. 如权利要求9所述的电机,所述衬套的材质为金属或塑料,所述密封件的材质为硅胶、特氟龙或者乙烯。
  13. 一种用于电机的安装方法,所述电机包括电机本体、电机壳体和防护结构,所述电机本体包括转轴,所述防护结构包括密封件和衬套;所述安装方法包括:
    将所述转轴的一端自所述电机壳体的端壁伸出;
    在所述端壁外侧上设置所述密封件,所述密封件上设有环绕于所述转轴的弹性结构;
    将设有环状凸起的所述衬套安装至所述转轴上,所述环状凸起与所述转轴同轴,并使得所述环状凸起的轴向顶端压缩所述弹性结构而嵌入所述弹性结构内。
  14. 如权利要求13所述的方法,所述安装方法还包括:
    使所述衬套随所述转轴转动,使所述环状凸起的轴向顶端切割所述弹性结构,使所述弹性结构上形成包覆所述环状凸起的环状槽。
  15. 如权利要求13所述的方法,所述端壁的外侧表面上形成有安装槽,所述安装槽环绕于所述转轴的周向外侧;
    所述在所述端壁外侧上设置所述密封件,所述密封件上设有环绕于所述转轴的弹性结构包括:
    在所述安装槽中灌入液态弹性材料,所述液态弹性材料凝固成型后形成的所述弹性结构;或,
    将所述弹性结构卡设于所述安装槽中。
PCT/CN2023/099489 2022-06-10 2023-06-09 干湿两用全封闭的无刷电机、电机的防护结构及安装方法 WO2023237106A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221446991.2U CN217873352U (zh) 2022-06-10 2022-06-10 一种干湿两用全封闭的无刷电风机
CN202221446991.2 2022-06-10
CN202211703925.3 2022-12-29
CN202211703925 2022-12-29

Publications (1)

Publication Number Publication Date
WO2023237106A1 true WO2023237106A1 (zh) 2023-12-14

Family

ID=89117598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099489 WO2023237106A1 (zh) 2022-06-10 2023-06-09 干湿两用全封闭的无刷电机、电机的防护结构及安装方法

Country Status (1)

Country Link
WO (1) WO2023237106A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532299A (zh) * 2012-07-05 2014-01-22 日本电产株式会社 离心风扇
JP2018155238A (ja) * 2017-03-17 2018-10-04 日本電産株式会社 送風装置及び掃除機
CN108626146A (zh) * 2017-03-17 2018-10-09 日本电产株式会社 送风装置以及吸尘器
CN110768467A (zh) * 2019-10-22 2020-02-07 苏州工业园区星德胜电机有限公司 一种带轴向式导叶干湿两用无刷马达
CN211579812U (zh) * 2020-02-27 2020-09-25 深圳市杉川机器人有限公司 无刷吸尘器电机及吸尘器
CN113489218A (zh) * 2021-07-02 2021-10-08 苏州凯航电机有限公司 一种可吸水式干湿两用无刷直流电机
CN113530839A (zh) * 2020-04-13 2021-10-22 比亚迪股份有限公司 水泵
CN215897441U (zh) * 2021-09-23 2022-02-22 江苏美的清洁电器股份有限公司 一种无刷电机及电器设备
CN217873352U (zh) * 2022-06-10 2022-11-22 莱克电气股份有限公司 一种干湿两用全封闭的无刷电风机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532299A (zh) * 2012-07-05 2014-01-22 日本电产株式会社 离心风扇
JP2018155238A (ja) * 2017-03-17 2018-10-04 日本電産株式会社 送風装置及び掃除機
CN108626146A (zh) * 2017-03-17 2018-10-09 日本电产株式会社 送风装置以及吸尘器
CN110768467A (zh) * 2019-10-22 2020-02-07 苏州工业园区星德胜电机有限公司 一种带轴向式导叶干湿两用无刷马达
CN211579812U (zh) * 2020-02-27 2020-09-25 深圳市杉川机器人有限公司 无刷吸尘器电机及吸尘器
CN113530839A (zh) * 2020-04-13 2021-10-22 比亚迪股份有限公司 水泵
CN113489218A (zh) * 2021-07-02 2021-10-08 苏州凯航电机有限公司 一种可吸水式干湿两用无刷直流电机
CN215897441U (zh) * 2021-09-23 2022-02-22 江苏美的清洁电器股份有限公司 一种无刷电机及电器设备
CN217873352U (zh) * 2022-06-10 2022-11-22 莱克电气股份有限公司 一种干湿两用全封闭的无刷电风机

Similar Documents

Publication Publication Date Title
US10519956B2 (en) Pump and pump assembly
JP5215728B2 (ja) モータ組立体およびポンプ装置
US20070205676A1 (en) Fan, motor and impeller thereof
CN105411433A (zh) 一种食物处理器的循环换风装置
WO2022142998A1 (zh) 电动机和清洁设备
DE50300874D1 (de) Lüfter mit integriertem ip-schutz
JP2009278811A (ja) モータ組立体およびポンプ装置
JP5373315B2 (ja) モータ組立体およびポンプ装置
WO2023237106A1 (zh) 干湿两用全封闭的无刷电机、电机的防护结构及安装方法
CN214205164U (zh) 电动机和清洁设备
CN107740773B (zh) 电子水泵
CN112780587B (zh) 气体增压器及燃气设备
WO2023124716A1 (zh) 电机结构、电机以及清洁设备
CN111677695A (zh) 一种自散热的电子冷却水泵
CN111637062A (zh) 一种电子冷却水泵
CN113824249B (zh) 一种电机
CN212563661U (zh) 一种电子冷却水泵
JP2009278808A (ja) モータ組立体およびポンプ装置
CN114696538A (zh) 一种无刷电机用快速散热结构
EP2624419A1 (en) Paper shredder
CN220929773U (zh) 风扇导流结构
CN212407131U (zh) 一种自散热的电子冷却水泵
JP2011149440A (ja) 送風装置
CN215419840U (zh) 一种转动轴悬臂安装真空泵电机
CN218118095U (zh) 一种高压离心风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819269

Country of ref document: EP

Kind code of ref document: A1