WO2023236987A1 - Mold processing method, and workpiece polishing method and system - Google Patents

Mold processing method, and workpiece polishing method and system Download PDF

Info

Publication number
WO2023236987A1
WO2023236987A1 PCT/CN2023/098843 CN2023098843W WO2023236987A1 WO 2023236987 A1 WO2023236987 A1 WO 2023236987A1 CN 2023098843 W CN2023098843 W CN 2023098843W WO 2023236987 A1 WO2023236987 A1 WO 2023236987A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
mold
information
workpiece
area
Prior art date
Application number
PCT/CN2023/098843
Other languages
French (fr)
Chinese (zh)
Inventor
王宇
杨棋
余建琳
梁振兴
Original Assignee
眉山博雅新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山博雅新材料股份有限公司 filed Critical 眉山博雅新材料股份有限公司
Publication of WO2023236987A1 publication Critical patent/WO2023236987A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A mold processing method, and a workpiece polishing method and system. The mold processing method comprises: acquiring first surface information of a first mold, wherein the first mold is manufactured on the basis of initial processing information; obtaining compensation information on the basis of the first surface information and target surface information; generating target processing information on the basis of the initial processing information and the compensation information; and preparing a standard mold on the basis of the target processing information, wherein the standard mold comprises a mold body and a covering layer. The mold processing method can improve the precision and consistency of mold processing. The workpiece polishing method comprises: determining at least a first polishing region and a second polishing region of a workpiece; polishing the first polishing region by using a first polishing mold; and polishing the second polishing region by using a second polishing mold, wherein the radius of curvature of the polishing surface of the first polishing mold is different from that of the polishing surface of the second polishing mold. The workpiece polishing method can realize standardized batch polishing.

Description

一种模具加工方法和工件抛光方法及其系统Mold processing method and workpiece polishing method and system
相关申请的交叉引用Cross-references to related applications
本申请要求2022年06月10日提交的申请号为202210650123.4的中国专利申请的优先权,其全部内容通过引入并入本文。This application claims priority from the Chinese patent application with application number 202210650123.4 submitted on June 10, 2022, the entire content of which is incorporated herein by reference.
技术领域Technical field
本申请涉及磨削抛光工艺技术领域,特别涉及一种模具加工方法和工件抛光方法及其系统。The present application relates to the technical field of grinding and polishing processes, and in particular to a mold processing method, a workpiece polishing method and a system thereof.
背景技术Background technique
抛光模具是晶体抛光工艺中的重要工具。受抛光皮磨损等因素的影响,抛光模具的使用寿命较短,抛光20至30个晶体后就需要更换新的抛光模具。Polishing mold is an important tool in the crystal polishing process. Affected by factors such as polishing skin wear, the service life of the polishing mold is short. After polishing 20 to 30 crystals, a new polishing mold needs to be replaced.
抛光模具的一般加工方法需要依靠加工设备(如车床、精雕机等)车削原始模具,再通过原始模具贴皮、打磨,制得抛光模具。The general processing method of polishing molds requires turning the original mold with processing equipment (such as lathes, engraving machines, etc.), and then laminating and polishing the original mold to obtain the polishing mold.
一方面,由于加工设备经保养或维护后会产生系统误差,使其车削的原始模具无法满足抛光晶体的精度要求。因此,抛光模具加工过程中需要进行较为耗时的原始模具修正工序。原始模具修正工序一般包括:制作与原始模具耦合的贴有金刚石丸片的耦合模具;基于合格的抛光模具对耦合模具进行修正后,制得修正模具;使用修正模具对原始模具进行修正;使用修正的原始模具制作抛光模具,进行晶体抛光,检测抛光精度。上述修正工序没有修正标准,通常需要反复修正调试,直至晶体的抛光精度满足要求。On the one hand, because the processing equipment will produce systematic errors after maintenance or maintenance, the original mold turned cannot meet the accuracy requirements of the polished crystal. Therefore, a time-consuming original mold correction process is required during polishing mold processing. The original mold correction process generally includes: making a coupling mold with diamond pellets coupled to the original mold; correcting the coupling mold based on a qualified polishing mold to make a correction mold; using the correction mold to correct the original mold; using the correction Make a polishing mold from the original mold, perform crystal polishing, and test the polishing accuracy. There is no correction standard for the above correction process, and it usually requires repeated correction and debugging until the polishing accuracy of the crystal meets the requirements.
另一方面,由于原始模具贴皮工序一般采用手动方式将抛光皮压实在加热的原始模具上,受温控、压力均匀性等因素的影响,抛光模具上不同区域的抛光皮可能出现厚度不均的情况。On the other hand, since the original mold coating process generally uses manual methods to compact the polished skin onto the heated original mold, affected by temperature control, pressure uniformity and other factors, the thickness of the polished skin in different areas of the polishing mold may vary. average situation.
上述问题使得抛光模具的加工存在成品一致性和加工精度较差、加工工艺标准化程度低等问题,进而限制晶体抛光的精度和效率。因此,需要提供一种可提高加工精度和一致性的模具加工方法及工件抛光方法及其系统。The above problems make the processing of polishing molds have problems such as poor consistency of finished products, poor processing accuracy, and low standardization of processing technology, which in turn limits the accuracy and efficiency of crystal polishing. Therefore, there is a need to provide a mold processing method and a workpiece polishing method and a system that can improve processing accuracy and consistency.
发明内容Contents of the invention
本说明书一个或多个实施例提供一种模具加工方法。所述方法包括:获取第一模具的第一表面信息,所述第一模具基于初始加工信息制得;基于所述第一表面信息和目标表面信息获得补偿信息;基于所述初始加工信息和所述补偿信息生成目标加工信息;基于所述目标加工信息制备标准模具,所述标准模具包括模具本体和覆盖层。One or more embodiments of this specification provide a mold processing method. The method includes: obtaining first surface information of a first mold, which is produced based on initial processing information; obtaining compensation information based on the first surface information and target surface information; and obtaining compensation information based on the initial processing information and the target surface information. The compensation information generates target processing information; a standard mold is prepared based on the target processing information, and the standard mold includes a mold body and a covering layer.
在一些实施例中,所述基于所述目标加工信息制备标准模具包括:基于所述目标加工信息对初始模具进行车削,制得所述模具本体;将所述覆盖层贴附于所述模具本体上;基于所述目标加工信息对所述覆盖层进行车削,制得所述标准模具。In some embodiments, preparing a standard mold based on the target processing information includes: turning an initial mold based on the target processing information to prepare the mold body; attaching the covering layer to the mold body Above; the covering layer is turned based on the target processing information to obtain the standard mold.
在一些实施例中,所述将所述覆盖层贴附于所述模具本体上包括:加热所述模具本体;所述覆盖层与加热的所述模具本体压实,使所述覆盖层贴附于所述模具本体上。In some embodiments, attaching the covering layer to the mold body includes: heating the mold body; compacting the covering layer with the heated mold body to cause the covering layer to adhere on the mold body.
在一些实施例中,所述模具本体通过加热线圈进行加热,待加热的所述模具本体置于所述加热线圈内。In some embodiments, the mold body is heated by a heating coil, and the mold body to be heated is placed in the heating coil.
在一些实施例中,所述加热线圈的加热温度为160℃~200℃。In some embodiments, the heating temperature of the heating coil is 160°C to 200°C.
在一些实施例中,所述覆盖层与加热的所述模具本体通过加压的压盘工装压实,所述压盘工装的施压面曲率与所述模具本体的承压面曲率配合。In some embodiments, the covering layer and the heated mold body are compacted by a pressurized platen tool, and the curvature of the pressure surface of the platen tool matches the curvature of the pressure-bearing surface of the mold body.
在一些实施例中,所述压盘工装加压的压力范围为0.1Mpa~0.8Mpa。In some embodiments, the pressure range of the pressure plate tooling is 0.1Mpa~0.8Mpa.
在一些实施例中,所述补偿信息包括主体补偿信息和边缘扩展信息;所述基于所述第一表面信息和目标表面信息获得补偿信息包括:基于所述第一表面信息和所述目标表面信息 的对比,获得对应所述第一模具主体的主体补偿信息;基于所述第一表面信息的数据趋势,获得对应所述第一模具边缘的边缘扩展信息。In some embodiments, the compensation information includes body compensation information and edge extension information; and obtaining the compensation information based on the first surface information and the target surface information includes: based on the first surface information and the target surface information. By comparison, body compensation information corresponding to the first mold body is obtained; based on the data trend of the first surface information, edge extension information corresponding to the edge of the first mold is obtained.
在一些实施例中,所述基于所述初始加工信息和所述补偿信息生成目标加工信息包括:基于所述初始加工信息和所述补偿信息生成待验加工信息;获取第二模具的第二表面信息,所述第二模具基于所述待验加工信息制得;基于所述第二表面信息和所述目标表面信息,判断所述第二模具的表面误差是否在预设值范围内;若是,则确定所述待验加工信息为目标加工信息。In some embodiments, generating target processing information based on the initial processing information and the compensation information includes: generating processing information to be verified based on the initial processing information and the compensation information; obtaining the second surface of the second mold Information, the second mold is made based on the processing information to be verified; based on the second surface information and the target surface information, it is determined whether the surface error of the second mold is within the preset value range; if so, Then it is determined that the processing information to be verified is the target processing information.
本说明书一个或多个实施例提供一种模具加工系统。所述系统包括:表面信息获取模块,被配置为获取第一模具的第一表面信息,所述第一模具基于初始加工信息制得;补偿信息获取模块,被配置为基于所述第一表面信息和目标表面信息获得补偿信息;加工信息生成模块,被配置为基于所述初始加工信息和所述补偿信息生成目标加工信息;以及加工模块,被配置为基于所述目标加工信息制备标准模具,所述标准模具包括模具本体和覆盖层。One or more embodiments of this specification provide a mold processing system. The system includes: a surface information acquisition module configured to acquire first surface information of a first mold based on initial processing information; a compensation information acquisition module configured to acquire first surface information based on the first mold and target surface information to obtain compensation information; a processing information generation module configured to generate target processing information based on the initial processing information and the compensation information; and a processing module configured to prepare a standard mold based on the target processing information, so The standard mold includes the mold body and the covering layer.
本说明书一个或多个实施例提供一种工件抛光方法。所述工件抛光方法包括:确定工件的至少第一抛光区域和第二抛光区域;使用第一抛光模具对所述第一抛光区域进行抛光;以及使用第二抛光模具对所述第二抛光区域进行抛光;其中,所述第一抛光模具的抛光面与所述第二抛光模具抛光面的曲率半径不同。One or more embodiments of this specification provide a workpiece polishing method. The workpiece polishing method includes: determining at least a first polishing area and a second polishing area of the workpiece; using a first polishing mold to polish the first polishing area; and using a second polishing die to polish the second polishing area. Polishing; wherein the polishing surface of the first polishing mold and the polishing surface of the second polishing mold have different curvature radii.
在一些实施例中,所述第一抛光区域的待抛光面曲率与所述第一抛光模具的抛光面曲率配合;所述第二抛光区域的待抛光面曲率与所述第二抛光模具的抛光面曲率配合。In some embodiments, the curvature of the surface to be polished in the first polishing area matches the curvature of the polishing surface of the first polishing mold; the curvature of the surface to be polished in the second polishing area matches the curvature of the polishing surface in the second polishing mold. Surface curvature fit.
在一些实施例中,所述第一抛光模具具有第一抛光参数,所述第一抛光参数至少包括第一摆幅参数和第一压力参数;所述第二抛光模具具有第二抛光参数,所述第二抛光参数至少包括第二摆幅参数和第二压力参数;所述第一抛光参数与所述第二抛光参数不同。In some embodiments, the first polishing mold has first polishing parameters, the first polishing parameters include at least a first swing parameter and a first pressure parameter; the second polishing mold has second polishing parameters, so The second polishing parameter includes at least a second swing parameter and a second pressure parameter; the first polishing parameter is different from the second polishing parameter.
在一些实施例中,所述第一抛光模具和/或所述第二抛光模具为标准模具,所述标准模具包括模具本体和覆盖层。In some embodiments, the first polishing mold and/or the second polishing mold is a standard mold, and the standard mold includes a mold body and a covering layer.
在一些实施例中,所述标准模具的制备包括:获取第一模具的第一表面信息,所述第一模具基于初始加工信息制得;基于所述第一表面信息和目标表面信息获得补偿信息;基于所述初始加工信息和所述补偿信息生成目标加工信息;基于所述目标加工信息制备标准模具,所述标准模具包括模具本体和覆盖层。In some embodiments, the preparation of the standard mold includes: obtaining first surface information of a first mold, which is produced based on initial processing information; and obtaining compensation information based on the first surface information and target surface information. ; Generate target processing information based on the initial processing information and the compensation information; prepare a standard mold based on the target processing information, the standard mold including a mold body and a covering layer.
在一些实施例中,所述基于所述目标加工信息制备标准模具包括:基于所述目标加工信息对初始模具进行车削,制得所述模具本体;将所述覆盖层贴附于所述模具本体上;基于所述目标加工信息对所述覆盖层进行车削,制得所述标准模具。In some embodiments, preparing a standard mold based on the target processing information includes: turning an initial mold based on the target processing information to prepare the mold body; attaching the covering layer to the mold body Above; the covering layer is turned based on the target processing information to obtain the standard mold.
在一些实施例中,所述确定工件的至少第一抛光区域和第二抛光区域包括:确定所述工件的抛光区域的形状特征;基于所述形状特征对测试工件的抛光区域进行预抛光,所述测试工件选取自所述工件;基于预抛光结果确定所述工件的至少第一抛光区域和第二抛光区域。In some embodiments, determining at least the first polishing area and the second polishing area of the workpiece includes: determining the shape characteristics of the polishing area of the workpiece; pre-polishing the polishing area of the test workpiece based on the shape characteristics, so The test workpiece is selected from the workpiece; at least a first polishing area and a second polishing area of the workpiece are determined based on a pre-polishing result.
在一些实施例中,所述预抛光结果包括所述测试工件的抛光区域经预抛光后的参数信息;所述参数信息包括抛光去除率;所述参数信息通过对比所述测试工件的抛光区域经预抛光前后的形状特征来确定。In some embodiments, the pre-polishing results include parameter information after pre-polishing of the polished area of the test workpiece; the parameter information includes polishing removal rate; the parameter information is obtained by comparing the polished area of the test workpiece. Determine the shape characteristics before and after pre-polishing.
在一些实施例中,所述基于所述形状特征对测试工件的抛光区域进行预抛光包括:基于整体抛光策略对所述测试工件的抛光区域进行预抛光,制得第一测试工件;获取所述第一测试工件的第一参数信息。In some embodiments, pre-polishing the polished area of the test workpiece based on the shape characteristics includes: pre-polishing the polished area of the test workpiece based on an overall polishing strategy to prepare the first test workpiece; obtaining the The first parameter information of the first test workpiece.
在一些实施例中,所述基于预抛光结果确定所述工件的至少第一抛光区域和第二抛光区域包括:基于所述第一参数信息和预设阈值条件,确定所述工件的至少第一抛光区域和第二抛光区域。In some embodiments, determining at least the first polishing area and the second polishing area of the workpiece based on the pre-polishing result includes: determining at least the first polishing area of the workpiece based on the first parameter information and a preset threshold condition. polished area and a second polished area.
在一些实施例中,所述预基于所述形状特征对测试工件的抛光区域进行预抛光还包括:In some embodiments, pre-polishing the polished area of the test workpiece based on the shape characteristics further includes:
基于所述第一参数信息和预设阈值条件,生成第一分区抛光策略;基于第一分区抛光策略对所述测试工件的抛光区域进行预抛光,制得第二测试工件;获取所述第二测试工件的 第二参数信息。Based on the first parameter information and preset threshold conditions, a first partition polishing strategy is generated; based on the first partition polishing strategy, the polishing area of the test workpiece is pre-polished to obtain a second test workpiece; the second test workpiece is obtained test artifact Second parameter information.
在一些实施例中,所述基于预抛光结果确定所述工件的至少第一抛光区域和第二抛光区域包括:判断所述第二参数信息是否符合预设阈值条件;若是,则基于第一分区抛光策略确定所述工件的至少第一抛光区域和第二抛光区域。In some embodiments, determining at least the first polishing area and the second polishing area of the workpiece based on the pre-polishing result includes: determining whether the second parameter information meets a preset threshold condition; if so, based on the first partition The polishing strategy determines at least a first polishing area and a second polishing area of the workpiece.
在一些实施例中,所述测试工件的预抛光通过使用预抛光工装来进行,所述预抛光工装的抛光面形状特征基于所述工件的抛光区域的形状特征和对应抛光策略来确定。In some embodiments, the pre-polishing of the test workpiece is performed by using a pre-polishing tool, and the polishing surface shape characteristics of the pre-polishing tool are determined based on the shape characteristics of the polishing area of the workpiece and the corresponding polishing strategy.
本说明书一个或多个实施例提供一种工件抛光系统。所述系统包括:抛光区域确定模块,被配置为所述抛光区域确定模块用于确定工件的至少第一抛光区域和第二抛光区域;抛光模块,被配置为使用第一抛光模具对所述第一抛光区域进行抛光,还被配置为使用第二抛光模具对所述第二抛光区域进行抛光;其中,所述第一抛光模具的抛光面与所述第二抛光模具抛光面的曲率半径不同。One or more embodiments of this specification provide a workpiece polishing system. The system includes: a polishing area determination module configured to determine at least a first polishing area and a second polishing area of the workpiece; and a polishing module configured to use a first polishing mold to polish the first polishing area. A polishing area is polished, and is further configured to use a second polishing mold to polish the second polishing area; wherein the polishing surface of the first polishing mold and the polishing surface of the second polishing mold have different curvature radii.
附图说明Description of the drawings
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:This specification is further explained by way of example embodiments, which are described in detail by means of the accompanying drawings. These embodiments are not limiting. In these embodiments, the same numbers represent the same structures, where:
图1是根据本说明书一些实施例所述的模具加工系统的示例性硬件和/或软件的示意图;Figure 1 is a schematic diagram of exemplary hardware and/or software of a mold processing system according to some embodiments of this specification;
图2是根据本说明书一些实施例所述的工件抛光系统的示例性硬件和/或软件的示意图;Figure 2 is a schematic diagram of exemplary hardware and/or software of a workpiece polishing system according to some embodiments of the present specification;
图3是根据本说明书一些实施例所述的模具加工方法的示例性流程示意图;Figure 3 is an exemplary flow diagram of a mold processing method according to some embodiments of this specification;
图4是根据本说明书一些实施例所述的补偿信息获取过程的示例性流程示意图;Figure 4 is an exemplary flow diagram of a compensation information acquisition process according to some embodiments of this specification;
图5是根据本说明书一些实施例所述的目标加工信息生成过程的示例性流程示意图;Figure 5 is an exemplary flow diagram of a target processing information generation process according to some embodiments of this specification;
图6是根据本说明书一些实施例所述的标准模具制备过程的示例性流程示意图;Figure 6 is an exemplary flow diagram of a standard mold preparation process according to some embodiments of this specification;
图7是根据本说明书一些实施例所述的压盘工装压制覆层模具的示例性结构示意图;Figure 7 is an exemplary structural schematic diagram of a platen tooling pressing coating mold according to some embodiments of this specification;
图8是根据本说明书一些实施例所述的工件抛光方法的示例性流程示意图;Figure 8 is an exemplary flow diagram of a workpiece polishing method according to some embodiments of this specification;
图9是根据本说明书一些实施例所述的第一抛光区域抛光过程的示例性结构示意图;Figure 9 is an exemplary structural schematic diagram of the polishing process of the first polishing area according to some embodiments of this specification;
图10是根据本说明书一些实施例所述的第二抛光区域抛光过程的示例性结构示意图;Figure 10 is an exemplary structural schematic diagram of the polishing process of the second polishing area according to some embodiments of this specification;
附图标记:10-标准模具;10’-初始模具;10”-覆层模具;11-模具本体;12-覆盖层;20-工件;21-第一抛光区域;22-第二抛光区域;30-压盘工装;40-驱动装置;41-驱动杆;10a-第一抛光模具;10b-第二抛光模具;13a,13b-抛光面。Reference signs: 10-standard mold; 10'-initial mold; 10"-cladding mold; 11-mold body; 12-covering layer; 20-workpiece; 21-first polishing area; 22-second polishing area; 30-pressure plate tooling; 40-driving device; 41-driving rod; 10a-first polishing mold; 10b-second polishing mold; 13a, 13b-polishing surface.
具体实施方式Detailed ways
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to explain the technical solutions of the embodiments of this specification more clearly, the accompanying drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some examples or embodiments of this specification. For those of ordinary skill in the art, without exerting any creative efforts, this specification can also be applied to other applications based on these drawings. Other similar scenarios. Unless obvious from the locale or otherwise stated, the same reference numbers in the figures represent the same structure or operation.
应当理解,本文使用的"系统"、"装置"、"单元"和/或"模块"是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。It will be understood that "system", "apparatus", "unit" and/or "module" as used herein are a means of distinguishing between different components, elements, parts, portions or assemblies at different levels. However, said words may be replaced by other expressions if they serve the same purpose.
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,"一"、"一个"、"一种"和/或"该"等词并非特指单数,也可包括复数。一般说来,术语"包括"与"包含"仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。As shown in this specification and claims, words such as "a", "an", "an" and/or "the" do not specifically refer to the singular and may include the plural unless the context clearly indicates an exception. Generally speaking, the terms "include" and "include" only imply the inclusion of clearly identified steps and elements, and these steps and elements do not constitute an exclusive list. The method or apparatus may also include other steps or elements.
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理 各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。Flowcharts are used in this specification to illustrate operations performed by systems according to embodiments of this specification. It should be understood that preceding or following operations are not necessarily performed in exact order. Instead, it can be processed in reverse order or simultaneously various steps. At the same time, you can add other operations to these processes, or remove a step or steps from these processes.
图1是根据一些实施例所述的模具加工系统的示例性硬件和/或软件的示意图。Figure 1 is a schematic diagram of exemplary hardware and/or software of a mold processing system in accordance with some embodiments.
如图1所示,模具加工系统100可以包括控制模块110、表面信息获取模块120、补偿信息获取模块130、加工信息生成模块140、加工模块150、存储模块160、通信模块170和输入/输出模块180。As shown in Figure 1, the mold processing system 100 may include a control module 110, a surface information acquisition module 120, a compensation information acquisition module 130, a processing information generation module 140, a processing module 150, a storage module 160, a communication module 170 and an input/output module. 180.
控制模块110可以与其他模块相关联,用于处理与模具加工系统100相关的信息和数据。在一些实施例中,控制模块110可以控制其它模块(例如,表面信息获取模块120、补偿信息获取模块130、加工信息生成模块140、加工模块150等)的运行状态。在一些实施例中,控制模块110可以管理通信模块170中的数据获取或发送过程。The control module 110 may be associated with other modules for processing information and data related to the mold processing system 100 . In some embodiments, the control module 110 can control the operating status of other modules (eg, surface information acquisition module 120, compensation information acquisition module 130, processing information generation module 140, processing module 150, etc.). In some embodiments, the control module 110 may manage the data acquisition or sending process in the communication module 170 .
表面信息获取模块120可以用于获取模具的表面信息。在一些实施例中,表面信息获取模块120可检测第一模具的第一表面信息,并将第一模具的表面信息发送给控制模块110和/或补偿信息获取模块130。在一些实施例中,表面信息获取模块120可检测第二模具的第二表面信息,并将第二模具的表面信息发送给控制模块110和/或加工信息生成模块140。在一些实施例中,表面信息获取模块120可将第一表面信息和/或第二表面信息发送至存储模块160进行储存,以备其他模块调用。在一些实施例中,表面信息获取模块120包括用于进行轮廓检测以获得表面信息的设备,如接触式轮廓仪或非接触式轮廓仪。The surface information acquisition module 120 may be used to acquire surface information of the mold. In some embodiments, the surface information acquisition module 120 may detect the first surface information of the first mold and send the surface information of the first mold to the control module 110 and/or the compensation information acquisition module 130 . In some embodiments, the surface information acquisition module 120 may detect the second surface information of the second mold, and send the surface information of the second mold to the control module 110 and/or the processing information generation module 140. In some embodiments, the surface information acquisition module 120 may send the first surface information and/or the second surface information to the storage module 160 for storage, ready for call by other modules. In some embodiments, the surface information acquisition module 120 includes a device for performing profile detection to obtain surface information, such as a contact profilometer or a non-contact profilometer.
补偿信息获取模块130可以用于获取可反映模具加工误差的补偿信息。在一些实施例中,补偿信息获取模块130可调用表面信息获取模块120获得的第一表面信息和存储模块160储存的目标表面信息,基于第一表面信息和目标表面信息获得补偿信息。在一些实施例中,补偿信息获取模块130可将获得的补偿信息发送至控制模块110。在一些实施例中,补偿信息获取模块130可将获得的补偿信息发送至存储模块160进行储存,以备控制模块110和/或加工信息生成模块140调用。The compensation information acquisition module 130 may be used to acquire compensation information that can reflect mold processing errors. In some embodiments, the compensation information acquisition module 130 may call the first surface information obtained by the surface information acquisition module 120 and the target surface information stored by the storage module 160 to obtain compensation information based on the first surface information and the target surface information. In some embodiments, the compensation information obtaining module 130 may send the obtained compensation information to the control module 110 . In some embodiments, the compensation information acquisition module 130 may send the obtained compensation information to the storage module 160 for storage, ready for invocation by the control module 110 and/or the processing information generation module 140 .
加工信息生成模块140可以用于生成能够校正模具加工误差的目标加工信息。在一些实施例中,加工信息生成模块140可调用补偿信息获取模块130获取的补偿信息和存储模块160储存的初始加工信息,基于补偿信息和初始加工信息生成待验加工信息。在一些实施例中,加工信息生成模块140可调用表面信息获取模块120获得的第二表面信息以及存储模块160储存的目标表面信息,第二表面信息是基于待验加工信息制备的第二模具的表面信息,基于第二表面信息和目标表面信息,判断第二模具是否满足误差限定要求,若满足则确定待验加工信息为目标加工信息。在一些实施例中,补偿信息获取模块130可将生成的目标加工信息发送至控制模块110。在一些实施例中,补偿信息获取模块130可将生成的目标加工信息发送至存储模块160进行储存,以备控制模块110和/或加工模块150调用。The processing information generation module 140 may be used to generate target processing information capable of correcting mold processing errors. In some embodiments, the processing information generation module 140 can call the compensation information obtained by the compensation information acquisition module 130 and the initial processing information stored by the storage module 160, and generate processing information to be verified based on the compensation information and the initial processing information. In some embodiments, the processing information generation module 140 can call the second surface information obtained by the surface information acquisition module 120 and the target surface information stored by the storage module 160. The second surface information is based on the second mold prepared based on the processing information to be verified. Surface information, based on the second surface information and the target surface information, determine whether the second mold meets the error limit requirements, and if so, determine the processing information to be verified as the target processing information. In some embodiments, the compensation information acquisition module 130 may send the generated target processing information to the control module 110 . In some embodiments, the compensation information acquisition module 130 may send the generated target processing information to the storage module 160 for storage, ready for invocation by the control module 110 and/or the processing module 150 .
加工模块150可以用于成品或半成品模具的加工。在一些实施例中,加工模块150可在控制模块110的控制下,基于加工信息生成模块140生成的目标加工信息制备标准模具。在一些实施例中,加工模块150包括车削子模块、加热子模块和压装子模块。The processing module 150 can be used for processing finished or semi-finished molds. In some embodiments, the processing module 150 may prepare a standard mold based on the target processing information generated by the processing information generation module 140 under the control of the control module 110 . In some embodiments, the machining module 150 includes a turning sub-module, a heating sub-module, and a press-fit sub-module.
车削子模块可以用于进行模具的车削。在一些实施例中,根据加工信息生成模块140发送的待验加工信息,控制模块110可控制车削子模块车削原料制得第二模具。在一些实施例中,根据加工信息生成模块140发送的目标加工信息,控制模块110可控制车削子模块将初始模具10’车削为标准模具10的模具本体11。在一些实施例中,车削子模块包括用于进行车削的设备,如车床、精雕机等。The turning submodule can be used to turn molds. In some embodiments, according to the pending processing information sent by the processing information generation module 140, the control module 110 can control the turning sub-module to turn the raw material to produce the second mold. In some embodiments, according to the target processing information sent by the processing information generation module 140, the control module 110 can control the turning sub-module to turn the initial mold 10' into the mold body 11 of the standard mold 10. In some embodiments, the turning sub-module includes equipment for turning, such as lathes, engraving machines, etc.
加热子模块可以用于进行模具的加热。在一些实施例中,根据预储存在存储模块160中的加热参数,控制模块110可控制加热子模块将车削子模块车削的模具本体11加热至预设温度。在一些实施例中,加热子模块包括用于进行加热的设备,如高频感应线圈等。The heating submodule can be used to heat the mold. In some embodiments, according to the heating parameters pre-stored in the storage module 160, the control module 110 can control the heating sub-module to heat the mold body 11 turned by the turning sub-module to a preset temperature. In some embodiments, the heating sub-module includes equipment for heating, such as high-frequency induction coils.
压装子模块可以用于进行模具的压装。在一些实施例中,根据预储存在存储模块160中的压力参数,控制模块110可控制压装子模块将模具本体11与覆盖层12压实,以制得覆 层模具。在一些实施例中,压装子模块包括用于进行压装的设备,如压盘工装等。The press fitting sub-module can be used to press fit the mold. In some embodiments, according to the pressure parameters pre-stored in the storage module 160, the control module 110 can control the pressing sub-module to compact the mold body 11 and the covering layer 12 to produce the covering layer. layer mold. In some embodiments, the press-fitting sub-module includes equipment for press-fitting, such as a pressure plate tooling, etc.
存储模块160可以用于储存模具加工系统100的各模块(例如,控制模块110、表面信息获取模块120)的指令和/或数据。例如,存储模块160可以储存加工模块150的初始加工信息。又例如,存储模块160可以储存表面信息获取模块120检测的第一模具的第一表面信息和第二模具的第二表面信息。再例如,存储模块160可以储存通信模块170接收的用户输入信息,如用户输入的加热子模块的加热参数或者用于第二模具表面误差判断的误差预设值等。在一些实施例中,存储模块160可以包括大容量储存器、可移动储存器、易失性读写存储器、只读存储器(ROM)等,或其任意组合。The storage module 160 can be used to store instructions and/or data of each module of the mold processing system 100 (eg, the control module 110, the surface information acquisition module 120). For example, the storage module 160 may store initial processing information of the processing module 150 . For another example, the storage module 160 may store the first surface information of the first mold and the second surface information of the second mold detected by the surface information acquisition module 120 . For another example, the storage module 160 can store user input information received by the communication module 170, such as heating parameters of the heating submodule input by the user or error preset values for second mold surface error judgment, etc. In some embodiments, the storage module 160 may include mass storage, removable storage, volatile read-write memory, read-only memory (ROM), etc., or any combination thereof.
通信模块170可以用于信息或数据的交换。在一些实施例中,通信模块170可以用于模具加工系统100内部组件之间的通信,例如,控制模块110、表面信息获取模块120、补偿信息获取模块130、加工信息生成模块140、加工模块150、存储模块160、通信模块170和/或输入/输出模块180之间的通信。The communication module 170 may be used for the exchange of information or data. In some embodiments, the communication module 170 can be used for communication between internal components of the mold processing system 100, such as the control module 110, the surface information acquisition module 120, the compensation information acquisition module 130, the processing information generation module 140, the processing module 150 , storage module 160, communication module 170 and/or input/output module 180.
输入/输出模块180可以获取、传输和发送信号。输入/输出模块180可以与模具加工系统100中的其他组件进行连接或通信。模具加工系统100中的其他组件可以通过输入/输出模块180实现连接或通信。在一些实施例中,输入/输出模块180可以与网络连接,并通过网络获取信息。在一些实施例中,输入/输出模块180可以通过网络或通信模块170获取用户输入信息进行输入。在一些实施例中,输入/输出模块180可以通过网络或通信模块170从控制模块110获取控制指令或提醒。Input/output module 180 can acquire, transmit, and send signals. The input/output module 180 may connect or communicate with other components in the mold processing system 100 . Other components in the mold processing system 100 may be connected or communicated through the input/output module 180 . In some embodiments, the input/output module 180 can be connected to a network and obtain information through the network. In some embodiments, the input/output module 180 may obtain user input information through the network or communication module 170 for input. In some embodiments, the input/output module 180 may obtain control instructions or reminders from the control module 110 through the network or communication module 170 .
应当注意的是,上述有关模具加工系统100的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对模具加工系统100进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,加工信息生成模块140和加工模块150可以为一个模块,该模块可以具有确定目标加工信息和基于目标加工信息制备标准模具10的功能。诸如此类的变形,均在本说明书的一个或多个实施例的保护范围之内。It should be noted that the above description of the mold processing system 100 is only for example and explanation, and does not limit the scope of application of this specification. For those skilled in the art, various modifications and changes can be made to the mold processing system 100 under the guidance of this description. However, such modifications and changes remain within the scope of this specification. For example, the processing information generation module 140 and the processing module 150 may be one module, and the module may have the function of determining target processing information and preparing the standard mold 10 based on the target processing information. Such modifications are within the protection scope of one or more embodiments of this specification.
图2是根据一些实施例所述的工件抛光系统的示例性硬件和/或软件的示意图。Figure 2 is a schematic diagram of example hardware and/or software of a workpiece polishing system in accordance with some embodiments.
如图2所示,工件抛光系统200可以包括控制模块210、抛光区域确定模块220、抛光模块230、存储模块240、通信模块250和输入/输出模块260。As shown in FIG. 2 , the workpiece polishing system 200 may include a control module 210 , a polishing area determination module 220 , a polishing module 230 , a storage module 240 , a communication module 250 and an input/output module 260 .
控制模块210可以与其他模块相关联,用于处理与工件抛光系统200相关的信息和数据。在一些实施例中,控制模块210可以控制其它模块(例如,抛光区域确定模块220、抛光模块230等)的运行状态。在一些实施例中,控制模块210可以管理通信模块250中的数据获取或发送过程。The control module 210 may be associated with other modules for processing information and data related to the workpiece polishing system 200 . In some embodiments, the control module 210 may control the operating status of other modules (eg, polishing area determination module 220, polishing module 230, etc.). In some embodiments, the control module 210 may manage the data acquisition or sending process in the communication module 250.
抛光区域确定模块220用于确定工件的子抛光区域。在一些实施例中,控制模块210将存储模块240存储的工件抛光区域信息发送至抛光区域确定模块220,抛光区域确定模块220基于抛光区域信息确定工件的两个或两个以上的子抛光区域。The polishing area determination module 220 is used to determine the sub-polishing area of the workpiece. In some embodiments, the control module 210 sends the workpiece polishing area information stored in the storage module 240 to the polishing area determination module 220, and the polishing area determination module 220 determines two or more sub-polishing areas of the workpiece based on the polishing area information.
抛光模块230用于进行工件的抛光。在一些实施例中,根据抛光区域确定模块220确定的子抛光区域,控制模块210可控制抛光模块230的对应抛光模具按照对应抛光模具的抛光参数抛光工件的各子抛光区域。其中,抛光参数可调用自存储模块240。在一些实施例中,抛光模块230包括用于操控抛光模具进行工件抛光的抛光设备,抛光设备可以有一个或多个。The polishing module 230 is used for polishing the workpiece. In some embodiments, according to the sub-polishing area determined by the polishing area determination module 220, the control module 210 can control the corresponding polishing mold of the polishing module 230 to polish each sub-polishing area of the workpiece according to the polishing parameters of the corresponding polishing mold. The polishing parameters can be called from the storage module 240 . In some embodiments, the polishing module 230 includes a polishing device for controlling the polishing mold to polish the workpiece, and there may be one or more polishing devices.
存储模块240用于储存工件抛光系统200的各模块(例如,控制模块210、抛光区域确定模块220)的指令和/或数据。例如,存储模块240可以储存抛光模块230的各抛光模具的对应抛光参数。又例如,存储模块240可以储存用户输入的工件的抛光区域信息,以备抛光区域确定模块220调用该抛光区域信息用于确定工件的子抛光区域。在一些实施例中,存储模块240可以包括大容量储存器、可移动储存器、易失性读写存储器、只读存储器(ROM)等,或其任意组合。在一些实施例中,存储模块240与存储模块160可以是同一个模块。The storage module 240 is used to store instructions and/or data of each module of the workpiece polishing system 200 (eg, the control module 210, the polishing area determination module 220). For example, the storage module 240 may store corresponding polishing parameters of each polishing mold of the polishing module 230 . For another example, the storage module 240 can store the polishing area information of the workpiece input by the user, so that the polishing area determination module 220 can call the polishing area information to determine the sub-polishing area of the workpiece. In some embodiments, the storage module 240 may include mass storage, removable storage, volatile read-write memory, read-only memory (ROM), etc., or any combination thereof. In some embodiments, the storage module 240 and the storage module 160 may be the same module.
通信模块250可以用于信息或数据的交换。在一些实施例中,通信模块250可以用于 工件抛光系统200内部组件之间的通信,例如,控制模块210、抛光区域确定模块220、抛光模块230、存储模块240、通信模块250和输入/输出模块260之间的通信。在一些实施例中,通信模块250与通信模块170可以是同一个模块。The communication module 250 may be used for the exchange of information or data. In some embodiments, communication module 250 may be used to Communication between internal components of the workpiece polishing system 200, for example, communication between the control module 210, the polishing area determination module 220, the polishing module 230, the storage module 240, the communication module 250 and the input/output module 260. In some embodiments, the communication module 250 and the communication module 170 may be the same module.
输入/输出模块260可以获取、传输和发送信号。输入/输出模块260可以与工件抛光系统200中的其他组件进行连接或通信。工件抛光系统200中的其他组件可以通过输入/输出模块260实现连接或通信。在一些实施例中,输入/输出模块260可以与网络连接,并通过网络获取信息。在一些实施例中,输入/输出模块260可以通过网络或通信模块250获取用户输入信息进行输入。在一些实施例中,输入/输出模块260可以通过网络或通信模块250从控制模块210获取控制指令或提醒。在一些实施例中,输入/输出模块260与输入/输出模块180可以是同一个模块。Input/output module 260 can acquire, transmit, and send signals. The input/output module 260 may connect or communicate with other components in the workpiece polishing system 200 . Other components in the workpiece polishing system 200 may be connected or communicated through the input/output module 260 . In some embodiments, the input/output module 260 can be connected to a network and obtain information through the network. In some embodiments, the input/output module 260 may obtain user input information through the network or communication module 250 for input. In some embodiments, the input/output module 260 can obtain control instructions or reminders from the control module 210 through the network or communication module 250. In some embodiments, input/output module 260 and input/output module 180 may be the same module.
图3是根据一些实施例所述的模具加工方法的示例性流程示意图。Figure 3 is an exemplary flow diagram of a mold processing method according to some embodiments.
如图3所示,模具加工流程300可以包括步骤310至步骤340。在一些实施例中,模具加工流程300可以由控制设备(如控制模块110)执行。As shown in FIG. 3 , the mold processing process 300 may include steps 310 to 340 . In some embodiments, the mold processing process 300 may be executed by a control device (such as the control module 110).
在步骤310中,获取第一模具的第一表面信息,所述第一模具基于初始加工信息制得。在一些实施例中,步骤310可以由表面信息获取模块120执行。In step 310, first surface information of the first mold produced based on the initial processing information is obtained. In some embodiments, step 310 may be performed by surface information acquisition module 120.
初始加工信息是指与加工设备制作模具相关的信息。在一些实施例中,初始加工信息可以是加工设备设定的初始加工程序。在一些实施例中,初始加工信息可以是加工设备设定的初始运行参数。Initial processing information refers to information related to the processing equipment for making molds. In some embodiments, the initial processing information may be an initial processing program set by the processing equipment. In some embodiments, the initial processing information may be initial operating parameters set by the processing equipment.
第一模具是指加工设备制作的未经误差校正的模具。在一些实施例中,第一模具可以作为呈现加工设备的加工误差的载体。例如,加工设备受保养、维修等因素影响而产生加工误差,第一模具为加工设备基于其初始加工信息制得的,第一模具可将加工设备的加工误差具象化,表现为加工面的面型变形等。The first mold refers to the mold made by the processing equipment without error correction. In some embodiments, the first mold may serve as a vehicle for representing processing errors of the processing equipment. For example, processing equipment is affected by factors such as maintenance and repairs, resulting in processing errors. The first mold is made by the processing equipment based on its initial processing information. The first mold can materialize the processing errors of the processing equipment and manifest itself as the surface of the processed surface. Deformation etc.
表面信息是指反映物体的三维表面形貌的信息。相应的,第一表面信息是指对应反映第一模具的三维表面形貌的信息。在一些实施例中,第一表面信息可包括表征第一模具实际表面曲线的二维数据。例如,第一模具为使用数控车床通过旋转车削制得的模具,使得第一模具经加工得到的加工面为回转面。第一表面信息包括表征该回转面特征的二维数据,如旋转轴线、母线、经线、纬圆等数据。在一些实施例中,第一表面信息可包括表征第一模具实际面型的三维数据。Surface information refers to information that reflects the three-dimensional surface topography of an object. Correspondingly, the first surface information refers to information corresponding to the three-dimensional surface topography of the first mold. In some embodiments, the first surface information may include two-dimensional data characterizing the actual surface curve of the first mold. For example, the first mold is a mold produced by rotational turning using a CNC lathe, so that the processed surface of the first mold is a surface of revolution. The first surface information includes two-dimensional data characterizing the characteristics of the surface of revolution, such as rotation axis, generatrix, longitude, latitude and other data. In some embodiments, the first surface information may include three-dimensional data characterizing the actual surface shape of the first mold.
在一些实施例中,第一表面信息可以通过轮廓检测获得。在一些实施例中,可进行轮廓检测以获得第一表面信息的装置包括接触式轮廓仪和非接触式轮廓仪,例如,接触式轮廓仪可包括电感式轮廓仪、压电式轮廓仪和感应式轮廓仪等,非接触式轮廓仪可包括光学轮廓仪等。In some embodiments, the first surface information may be obtained through contour detection. In some embodiments, the device that can perform profile detection to obtain the first surface information includes a contact profiler and a non-contact profiler. For example, the contact profiler can include an inductive profiler, a piezoelectric profiler, and an induction profiler. Non-contact profiler can include optical profiler, etc.
在一些实施例中,第一表面信息可以是轮廓检测获得的原始表面信息。在一些实施例中,第一表面信息可基于原始表面信息的预处理获得。其中,原始表面信息是通过轮廓检测直接检测得到的。在一些实施例中,控制模块110控制表面信息获取模块120的接触式轮廓仪对第一模具进行表面轮廓检测,以得到二维的原始表面曲线数据,表面信息获取模块120基于该原始表面曲线数据进行预处理,以消除部分误差,获得第一表面信息。In some embodiments, the first surface information may be original surface information obtained by contour detection. In some embodiments, the first surface information may be obtained based on preprocessing of raw surface information. Among them, the original surface information is directly detected through contour detection. In some embodiments, the control module 110 controls the contact profiler of the surface information acquisition module 120 to perform surface profile detection on the first mold to obtain two-dimensional original surface curve data. The surface information acquisition module 120 is based on the original surface curve data. Preprocessing is performed to eliminate some errors and obtain the first surface information.
在一些实施例中,所述预处理可包括滤波处理。在一些实施例中,滤波处理可以包括但不限于平均值滤波、高通滤波、低通滤波、线性插补、限幅滤波或中位值滤波等。In some embodiments, the preprocessing may include filtering. In some embodiments, the filtering process may include, but is not limited to, average filtering, high-pass filtering, low-pass filtering, linear interpolation, limiting filtering, or median filtering, etc.
以平均值滤波作为示例,表面信息获取模块120得到的第一模具的原始表面曲线数据包含一系列的数据点,每个数据点的数据格式为(X,Y)。自初始数据点开始,每1000个数据点的X值和Y值分别取平均值,以代替当前数据点的数值,获得第一表面信息。Taking average filtering as an example, the original surface curve data of the first mold obtained by the surface information acquisition module 120 includes a series of data points, and the data format of each data point is (X, Y). Starting from the initial data point, the X value and Y value of every 1000 data points are averaged respectively to replace the value of the current data point to obtain the first surface information.
以高通滤波作为示例,第一模具的表面粗糙度低于第一阈值(如Ra12.5或Ra6.3),第一模具表面较为光滑,则表面信息获取模块120获得第一模具经轮廓检测得到的原始表面曲线数据后,可使用高通滤波器(如理想高通滤波器、巴特沃斯高通滤波器、高斯高通滤波 器等)对该原始表面曲线数据进行滤波处理。Taking high-pass filtering as an example, the surface roughness of the first mold is lower than the first threshold (such as Ra12.5 or Ra6.3), and the surface of the first mold is relatively smooth, then the surface information acquisition module 120 obtains the first mold through contour detection. After obtaining the original surface curve data, you can use a high-pass filter (such as ideal high-pass filter, Butterworth high-pass filter, Gaussian high-pass filter device, etc.) to filter the original surface curve data.
以低通滤波作为示例,第一模具的表面粗糙度高于第一阈值(如Ra12.5或Ra6.3)且低于第二阈值(如Ra100或Ra50),第一模具表面较为粗糙,则表面信息获取模块120获得第一模具经轮廓检测得到的原始表面曲线数据后,可使用高通滤波器和低通滤波器(如理想低通滤波器、巴特沃斯低通滤波器、高斯低通滤波器等)对该原始表面曲线数据进行滤波处理。Taking low-pass filtering as an example, the surface roughness of the first mold is higher than the first threshold (such as Ra12.5 or Ra6.3) and lower than the second threshold (such as Ra100 or Ra50). The surface of the first mold is rough, then After the surface information acquisition module 120 obtains the original surface curve data of the first mold through contour detection, it can use a high-pass filter and a low-pass filter (such as an ideal low-pass filter, a Butterworth low-pass filter, a Gaussian low-pass filter device, etc.) to filter the original surface curve data.
在一些实施例中,线性插补可以包括直线插补,圆弧插补,抛物线插补,样条线插补等。例如,第一模具的表面存在通过机器视觉或肉眼观察可检测到的毛刺或突起等缺陷,表面信息获取模块120对缺陷位置对应的原始表面曲线数据进行直线插补。In some embodiments, linear interpolation may include linear interpolation, arc interpolation, parabolic interpolation, spline interpolation, etc. For example, if there are defects such as burrs or protrusions on the surface of the first mold that can be detected through machine vision or naked eye observation, the surface information acquisition module 120 performs linear interpolation on the original surface curve data corresponding to the defect location.
在一些实施例中,第一模具为无覆盖层的模具。本说明书一些实施例的模具加工方法可用于加工抛光模具,抛光模具表面具有多孔的柔性覆盖层(如抛光皮),方便附着抛光粉,柔性的覆盖层影响轮廓检测的准确性。第一模具为无覆盖层的模具,则经轮廓检测可得到准确可靠的第一表面信息。In some embodiments, the first mold is an uncoated mold. The mold processing methods of some embodiments of this specification can be used to process polishing molds. The surface of the polishing mold has a porous flexible covering layer (such as polishing leather) to facilitate the attachment of polishing powder. The flexible covering layer affects the accuracy of contour detection. If the first mold is a mold without a covering layer, accurate and reliable first surface information can be obtained through contour detection.
在一些实施例中,第一模具采用金属材料制得,如纯金属材料或合金材料等。金属材料的性质和加工性能使得第一模具便于加工且表面粗糙度符合预期,以利于轮廓检测和对第一表面信息的预处理。在一些实施例中,第一模具优选的采用黄铜制得。In some embodiments, the first mold is made of metal material, such as pure metal material or alloy material. The properties and processing performance of the metal material make the first mold easy to process and the surface roughness meets expectations, so as to facilitate contour detection and preprocessing of the first surface information. In some embodiments, the first mold is preferably made of brass.
在步骤320中,基于所述第一表面信息和目标表面信息获得补偿信息。在一些实施例中,步骤320可以由补偿信息获取模块130执行。In step 320, compensation information is obtained based on the first surface information and the target surface information. In some embodiments, step 320 may be performed by the compensation information acquisition module 130.
目标表面信息是指反映目标模具理论生成的三维表面形貌的信息。其中,目标模具是理论生成的模具。在一些实施例中,目标表面信息可包括反映目标模具理论表面曲线的二维数据。例如,目标模具的理论加工面为椭球面,其目标表面信息可包括表征该椭球面特征的二维数据,如中心坐标、长轴、短轴等数据。The target surface information refers to the information that reflects the three-dimensional surface topography generated by the target mold theory. Among them, the target mold is the theoretically generated mold. In some embodiments, the target surface information may include two-dimensional data reflecting a theoretical surface curve of the target mold. For example, the theoretical processing surface of the target mold is an ellipsoid, and the target surface information may include two-dimensional data characterizing the characteristics of the ellipsoid, such as center coordinates, major axis, minor axis and other data.
在一些实施例中,目标表面信息是基于初始加工信息通过数学预测模型生成的。例如,补偿信息获取模块130可调用储存在存储模块160中的初始加工信息,使用数学预测模型生成目标表面信息。在一些实施例中,目标表面信息是基于用户输入确定的。例如,控制模块110可通过输入/输出模块180接收用户输入的目标表面信息,并储存在存储模块160中。In some embodiments, the target surface information is generated through a mathematical prediction model based on the initial machining information. For example, the compensation information acquisition module 130 can call the initial processing information stored in the storage module 160 and use a mathematical prediction model to generate target surface information. In some embodiments, target surface information is determined based on user input. For example, the control module 110 can receive the target surface information input by the user through the input/output module 180 and store it in the storage module 160 .
补偿信息是指与加工设备的加工误差相关的信息。在一些实施例中,加工误差为系统误差。例如,加工设备的保养或维修因素导致其产生系统误差,使得保养或维修前确定的初始加工信息无法适用于保养或维修后的加工设备,加工设备基于初始加工信息制得的第一模具与目标模具之间的误差超出允许的范围。Compensation information refers to information related to processing errors of processing equipment. In some embodiments, the machining error is a systematic error. For example, the maintenance or repair factors of processing equipment lead to systematic errors, so that the initial processing information determined before maintenance or repair cannot be applied to the processing equipment after maintenance or repair. The first mold and target obtained by the processing equipment based on the initial processing information The error between molds exceeds the allowable range.
在一些实施例中,补偿信息通过第一表面信息与目标表面信息的对比获得。例如,目标模具的理论加工面为回转面,其理论母线为一抛物线,目标表面信息包括表征该理论母线的二维数据,目标表面信息储存在存储模块160中。表面信息获取模块120测得的第一模具加工面的实际母线为另一抛物线,第一表面信息包括表征该实际母线的二维数据,其中理论母线与实际母线上各点的最大曲率半径差值可以大于预设阈值。补偿信息获取模块130可调用理论母线和实际母线的二维数据进行对比计算,得到补偿信息。In some embodiments, the compensation information is obtained by comparing the first surface information with the target surface information. For example, the theoretical processing surface of the target mold is a surface of revolution, and its theoretical bus is a parabola. The target surface information includes two-dimensional data representing the theoretical bus, and the target surface information is stored in the storage module 160 . The actual busbar of the first mold processing surface measured by the surface information acquisition module 120 is another parabola. The first surface information includes two-dimensional data characterizing the actual busbar, in which the maximum curvature radius difference between the theoretical busbar and the actual busbar is Can be greater than the preset threshold. The compensation information acquisition module 130 can call the two-dimensional data of the theoretical bus and the actual bus for comparison and calculation to obtain the compensation information.
本说明书的一些实施例基于第一表面信息和目标表面信息获得补偿信息,通过补偿信息反映第一模具的加工误差,从而可以基于补偿信息对模具加工过程进行校正,进而提高加工精度。Some embodiments of this specification obtain compensation information based on the first surface information and the target surface information. The compensation information reflects the processing error of the first mold, so that the mold processing process can be corrected based on the compensation information, thereby improving the processing accuracy.
关于补偿信息获取的更多内容请参见图4及其描述。See Figure 4 and its description for more information on compensation information acquisition.
在步骤330中,基于所述初始加工信息和所述补偿信息生成目标加工信息。在一些实施例中,步骤330可以由加工信息生成模块140执行。In step 330, target processing information is generated based on the initial processing information and the compensation information. In some embodiments, step 330 may be performed by the processing information generation module 140.
在一些实施例中,目标加工信息是初始加工信息经过一次或多次补偿后生成的。在一些实施例中,目标加工信息可以为目标加工程序或目标加工参数。In some embodiments, the target processing information is generated after one or more compensations of the initial processing information. In some embodiments, the target processing information may be a target processing program or a target processing parameter.
在一些实施例中,初始加工信息为初始加工程序,可基于初始加工程序和补偿信息生 成第一补偿程序。控制模块110调用加工信息生成模块140生成的第一补偿程序,控制加工模块150的加工设备制得模具,若模具符合误差限制要求,则该第一补偿程序即为目标加工程序;若加工模块150的加工设备使用第一补偿程序制得的模具不符合误差限制要求,则重复执行步骤320和步骤330,使加工信息生成模块140对初始加工程序进行多次迭代,直至生成目标加工程序。In some embodiments, the initial processing information is an initial processing program, which can be generated based on the initial processing program and the compensation information. Become the first compensation procedure. The control module 110 calls the first compensation program generated by the processing information generation module 140, and controls the processing equipment of the processing module 150 to produce the mold. If the mold meets the error limit requirements, the first compensation program is the target processing program; if the processing module 150 If the mold produced by the processing equipment using the first compensation program does not meet the error limit requirements, steps 320 and 330 are repeatedly executed to cause the processing information generation module 140 to iterate the initial processing program multiple times until the target processing program is generated.
在一些实施例中,初始加工信息为初始加工参数,可基于初始加工参数和补偿信息生成第一补偿参数。例如,加工设备为车床,其初始加工参数可包括进刀量、进刀角度和进刀速度,基于补偿信息和初始加工参数可生成第一补偿进刀量、第一补偿进刀角度和第一补偿进刀速度。控制模块110调用加工信息生成模块140生成的第一补偿参数,控制模块110基于第一补偿参数重新设定加工模块150的加工设备并制得模具,若重新设定参数后制得的模具符合误差限制要求,则该第一补偿参数即为目标加工参数;否则重复执行步骤320和步骤330,对初始加工参数进行多次更新,直至生成目标加工参数。In some embodiments, the initial processing information is initial processing parameters, and the first compensation parameter can be generated based on the initial processing parameters and the compensation information. For example, the processing equipment is a lathe, and its initial processing parameters may include the feed amount, the feed angle, and the feed speed. Based on the compensation information and the initial processing parameters, the first compensated feed amount, the first compensated feed angle, and the first compensated feed angle may be generated. Compensate the feed speed. The control module 110 calls the first compensation parameters generated by the processing information generation module 140. The control module 110 resets the processing equipment of the processing module 150 based on the first compensation parameters and prepares the mold. If the mold obtained after resetting the parameters meets the error If the restriction requirements are met, then the first compensation parameter is the target processing parameter; otherwise, steps 320 and 330 are repeatedly executed to update the initial processing parameters multiple times until the target processing parameters are generated.
关于目标加工信息生成的更多内容请参见图5及其描述。See Figure 5 and its description for more information on target processing information generation.
在步骤340中,基于所述目标加工信息制备标准模具10,所述标准模具10包括模具本体11和覆盖层12。在一些实施例中,步骤340可以由加工模块150执行。In step 340 , a standard mold 10 is prepared based on the target processing information. The standard mold 10 includes a mold body 11 and a covering layer 12 . In some embodiments, step 340 may be performed by processing module 150.
标准模具10是指符合误差相关限制要求的模具。在一些实施例中,标准模具10的模具本体11由硬质材料制成,如金属材料或合金材料。模具本体11用于为标准模具10提供结构支撑,硬质材料的模具本体11便于加工。在一些实施例中,可用于加工模具本体11的硬质材料包括但不限于黄铜、铝、不锈钢、铸铁等。在一些实施例中,用于加工模具本体11的硬质材料优选为黄铜。Standard mold 10 refers to a mold that meets the error-related limit requirements. In some embodiments, the mold body 11 of the standard mold 10 is made of hard material, such as metal material or alloy material. The mold body 11 is used to provide structural support for the standard mold 10, and the mold body 11 made of hard material facilitates processing. In some embodiments, hard materials that can be used to process the mold body 11 include, but are not limited to, brass, aluminum, stainless steel, cast iron, etc. In some embodiments, the hard material used to process the mold body 11 is preferably brass.
在一些实施例中,标准模具10的覆盖层12由柔性材料制成,如高分子材料。根据其应用场景的不同,标准模具10的覆盖层12具有不同的功能。例如,标准模具10为用于抛光的模具,其覆盖层12具有辅助进行抛光的作用,覆盖层12上设置若干孔洞,以便于抛光粉进入以及抛光粉附着。在一些实施例中,可用于加工覆盖层12的柔性材料包括但不限于聚氨酯、阻尼布、人工合成有机物等。在一些实施例中,用于加工覆盖层12的柔性材料优选为聚氨酯。In some embodiments, the covering layer 12 of the standard mold 10 is made of flexible materials, such as polymer materials. Depending on its application scenarios, the covering layer 12 of the standard mold 10 has different functions. For example, the standard mold 10 is a mold used for polishing, and its covering layer 12 has the function of assisting in polishing. Several holes are provided on the covering layer 12 to facilitate the entry and adhesion of polishing powder. In some embodiments, flexible materials that can be used to process the cover layer 12 include, but are not limited to, polyurethane, damping cloth, synthetic organic matter, and the like. In some embodiments, the flexible material used to fabricate cover 12 is preferably polyurethane.
在一些实施例中,标准模具10由模具本体11和覆盖层12分步加工制备而成的。In some embodiments, the standard mold 10 is manufactured by step-by-step processing of the mold body 11 and the covering layer 12 .
在一些实施例中,模具本体11是基于目标加工信息车削制得的。例如,控制模块110可调用加工信息生成模块140生成的目标加工程序,控制模块110可控制车削子模块的车削装置基于目标加工程序或目标加工参数车削原材料,制得模具本体11。In some embodiments, the mold body 11 is produced by turning based on target processing information. For example, the control module 110 can call the target processing program generated by the processing information generation module 140, and the control module 110 can control the turning device of the turning sub-module to turn the raw material based on the target processing program or target processing parameters to obtain the mold body 11.
在一些实施例中,覆盖层12与模具本体11贴合后经过覆盖层12打磨制得标准模具10。控制模块110可控制加工模块150打磨贴合在模具本体11加工面上的覆盖层12,以减少或消除覆盖层12因贴合产生的褶皱和/或起伏。In some embodiments, the covering layer 12 is attached to the mold body 11 and then polished through the covering layer 12 to obtain the standard mold 10 . The control module 110 can control the processing module 150 to polish the covering layer 12 that is attached to the processing surface of the mold body 11 to reduce or eliminate wrinkles and/or undulations of the covering layer 12 caused by the attachment.
在一些实施例中,覆盖层12与模具本体11贴合后经过覆盖层12车削制得标准模具10。控制模块110可控制加工模块150的车削子模块基于目标加工信息车削贴合在模具本体11加工面上的覆盖层12。覆盖层12与模具本体11贴合后形成的覆层模具无法通过轮廓检测等手段进行误差分析和加工精度控制(柔性覆盖层影响检测准确性),相比于难以进行量化、标准化生产的打磨工艺,基于目标加工信息进行标准化的车削,可保证加工精度和模具成品的一致性,并且提高良品率。In some embodiments, the covering layer 12 is attached to the mold body 11 and then the covering layer 12 is turned to obtain the standard mold 10 . The control module 110 can control the turning sub-module of the processing module 150 to turn the covering layer 12 attached to the processing surface of the mold body 11 based on the target processing information. The coated mold formed after the covering layer 12 is attached to the mold body 11 cannot be used for error analysis and processing accuracy control through contour detection and other means (the flexible covering layer affects the detection accuracy). Compared with the grinding process, which is difficult to quantify and standardize production, , standardized turning based on target processing information can ensure processing accuracy and consistency of mold finished products, and improve the yield rate.
关于标准模具制备的更多内容请参见图6、图7及其描述。For more information on standard mold preparation, see Figures 6 and 7 and their descriptions.
本说明书的一些实施例基于目标加工信息制备标准模具,可使标准模具实现标准化的批量加工,加工精度及成品一致性高。Some embodiments of this specification prepare standard molds based on target processing information, which can enable standardized batch processing of standard molds with high processing accuracy and finished product consistency.
图4是根据一些实施例所述的补偿信息获得过程的示例性流程示意图。Figure 4 is an exemplary flow diagram of a compensation information obtaining process according to some embodiments.
使用轮廓检测装置对模具的三维表面形貌进行检测的过程中,可能存在对应表面形貌的边缘部分的数据失真或数据缺失的问题。例如,控制模块110控制表面信息获取模块120 的接触式轮廓仪检测第一模具。由于接触式轮廓仪是基于预设的启动范围进行轮廓检测的,为使接触式轮廓仪的探针在检测过程中始终与第一模具的表面接触,第一模具的边缘部位需处于该预设启动范围之外。因此,表面信息获取模块120获得的第一模具的第一表面信息缺失第一模具的边缘部位的相关数据,进而导致补偿信息在第一模具的边缘部位存在误差增大的问题。In the process of using a contour detection device to detect the three-dimensional surface topography of the mold, there may be problems with data distortion or missing data at the edge portions corresponding to the surface topography. For example, the control module 110 controls the surface information acquisition module 120 The contact profilometer detects the first mold. Since the contact profiler performs contour detection based on a preset starting range, in order for the probe of the contact profiler to always be in contact with the surface of the first mold during the detection process, the edge of the first mold needs to be in the preset range. outside the startup range. Therefore, the first surface information of the first mold obtained by the surface information acquisition module 120 lacks relevant data of the edge portion of the first mold, which further leads to the problem of increased error in the compensation information at the edge portion of the first mold.
如图4所示,补偿信息获得过程400可以包括步骤410和步骤420。在一些实施例中,补偿信息获得过程400可以由控制设备(如控制模块110)执行。在一些实施例中,补偿信息获得过程400可针对第一模具的主体和边缘分别进行补偿、扩展,以降低误差。As shown in FIG. 4 , the compensation information obtaining process 400 may include step 410 and step 420 . In some embodiments, the compensation information obtaining process 400 may be performed by a control device (such as the control module 110). In some embodiments, the compensation information obtaining process 400 can separately compensate and expand the main body and edges of the first mold to reduce errors.
在步骤410中,基于所述第一表面信息和所述目标表面信息的对比,获得对应所述第一模具主体的主体补偿信息。在一些实施例中,步骤410可以由补偿信息获取模块130的主体补偿子模块执行。In step 410, based on the comparison of the first surface information and the target surface information, body compensation information corresponding to the first mold body is obtained. In some embodiments, step 410 may be performed by the main compensation sub-module of the compensation information acquisition module 130 .
在一些实施例中,可基于轮廓检测的范围确定第一模具的主体和边缘。仅作为示例,第一模具的待测面(加工面)为回转面,其垂直于旋转轴线的截面直径在0mm~50mm范围内。其中,接触式轮廓仪的检测范围可以为第一模具的截面直径在1mm~49mm范围内的表面区域,即对应第一模具的主体;第一模具的截面直径在0mm~1mm范围内以及在49mm~50mm范围内的表面区域,即对应第一模具的边缘。In some embodiments, the body and edges of the first mold may be determined based on the range of contour detection. For example only, the surface to be measured (processed surface) of the first mold is the surface of revolution, and its cross-sectional diameter is perpendicular to the axis of rotation. In the range of 0mm~50mm. Wherein, the detection range of the contact profiler can be the cross-sectional diameter of the first mold The surface area within the range of 1mm to 49mm corresponds to the main body of the first mold; the cross-sectional diameter of the first mold The surface area within the range of 0 mm to 1 mm and the range of 49 mm to 50 mm corresponds to the edge of the first mold.
在一些实施例中,第一模具的主体可基于用户输入确定。例如,控制模块110控制表面信息获取模块120检测第一模具以获得第一表面信息前,用户可通过输入/输出模块180将轮廓检测的起始及终末位置信息发送给控制模块110,控制模块110基于用户输入的起始及终末位置信息确定第一模具的主体范围,并控制表面信息获取模块120进行轮廓检测。In some embodiments, the body of the first mold may be determined based on user input. For example, before the control module 110 controls the surface information acquisition module 120 to detect the first mold to obtain the first surface information, the user can send the start and end position information of the contour detection to the control module 110 through the input/output module 180, and the control module 110 determines the main body range of the first mold based on the start and end position information input by the user, and controls the surface information acquisition module 120 to perform contour detection.
在一些实施例中,第一模具的主体可基于预设规则确定。例如,结合前述的第一模具加工面为回转面的示例,该回转面的母线可以为一弧线,控制模块110控制表面信息获取模块120的轮廓检测仪沿该回转面的母线进行轮廓检测。控制模块110可基于预设规则确定,轮廓检测的起始位置与该母线第一端之间的距离为第一预定值(如1mm、3mm、5mm等),轮廓检测的终末位置与该母线第二端之间的距离为第一预定值,则轮廓检测的起始位置至终末位置间的区域对应第一模具的主体。在一些实施例中,所述预设规则可储存在存储模块160中。In some embodiments, the body of the first mold may be determined based on preset rules. For example, based on the aforementioned example in which the first mold processing surface is a surface of revolution, the generatrix of the surface of revolution may be an arc, and the control module 110 controls the profile detector of the surface information acquisition module 120 to perform contour detection along the generatrix of the surface of revolution. The control module 110 may determine based on the preset rules that the distance between the starting position of the contour detection and the first end of the bus bar is a first predetermined value (such as 1 mm, 3 mm, 5 mm, etc.), and that the distance between the final position of the contour detection and the bus bar is The distance between the second ends is the first predetermined value, and the area between the starting position and the end position of the contour detection corresponds to the main body of the first mold. In some embodiments, the preset rules may be stored in the storage module 160 .
在一些实施例中,对应第一模具主体的主体补偿信息可基于第一表面信息和目标表面信息的对比获得。第一表面信息与目标表面信息之间可能存在误差,通过两者比较获得的主体补偿信息可反映所述误差。例如,结合前述的第一模具加工面为回转面的示例,第一表面信息包括第一模具的母线上对应第一模具主体的二维曲线数据,目标表面信息包括目标模具的母线上对应目标模具主体的二维曲线数据。通过第一表面信息和目标表面信息的数据对比,可获得第一模具的母线上各点与目标模具上对应点的X值和/或Y值差值,即获得主体补偿信息。In some embodiments, the body compensation information corresponding to the first mold body may be obtained based on a comparison of the first surface information and the target surface information. There may be an error between the first surface information and the target surface information, and the main body compensation information obtained by comparing the two may reflect the error. For example, combined with the aforementioned example of the first mold processing surface being a surface of revolution, the first surface information includes two-dimensional curve data corresponding to the first mold body on the generatrix of the first mold, and the target surface information includes the target mold on the generatrix of the target mold. Two-dimensional curve data of the body. By comparing the data of the first surface information and the target surface information, the X value and/or Y value difference between each point on the bus line of the first mold and the corresponding point on the target mold can be obtained, that is, the body compensation information can be obtained.
在步骤420中,基于所述第一表面信息的数据趋势,获得对应所述第一模具边缘的边缘扩展信息。在一些实施例中,步骤420可以由补偿信息获取模块130的边缘补偿子模块执行。In step 420, edge extension information corresponding to the first mold edge is obtained based on the data trend of the first surface information. In some embodiments, step 420 may be performed by the edge compensation sub-module of the compensation information acquisition module 130.
在一些实施例中,第一表面信息可反映第一模具的主体的三维形貌变化,基于第一表面信息的数据趋势进行数值拟合,可获得对应第一模具边缘的边缘表面信息。例如,结合前述的第一模具加工面为回转面的示例,该回转面的母线可以为一折线,控制模块110控制表面信息获取模块120的轮廓检测仪沿该回转面的母线进行轮廓检测。第一模具的第一表面信息包括第一模具的母线上对应第一模具主体的曲线数据,可使用该曲线数据(如端部数据)做线性拟合(如一元线性回归拟合),从而获得对应第一模具边缘的边缘表面信息。In some embodiments, the first surface information may reflect changes in the three-dimensional topography of the main body of the first mold. By performing numerical fitting based on the data trend of the first surface information, edge surface information corresponding to the edge of the first mold may be obtained. For example, based on the aforementioned example in which the first mold processing surface is a surface of revolution, the generatrix of the surface of revolution may be a polyline, and the control module 110 controls the profile detector of the surface information acquisition module 120 to perform contour detection along the generatrix of the surface of revolution. The first surface information of the first mold includes curve data corresponding to the main body of the first mold on the bus line of the first mold. This curve data (such as end data) can be used to perform linear fitting (such as one-variable linear regression fitting), thereby obtaining Edge surface information corresponding to the edge of the first mold.
在一些实施例中,边缘扩展信息可进一步基于边缘表面信息和目标表面信息的对比获得。边缘表面信息与目标表面信息之间可能存在误差,通过两者比较获得的边缘扩展信息可 反映所述误差。例如,结合前述的第一模具加工面为回转面的示例,边缘表面信息包括第一模具的母线上对应第一模具边缘的二维曲线数据,目标表面信息包括目标模具的母线上对应目标模具边缘的二维曲线数据。通过边缘表面信息和目标表面信息的数据对比,可获得第一模具的母线上各点与目标模具上对应点的X值和/或Y值差值,即获得边缘扩展信息。In some embodiments, the edge extension information may be further obtained based on a comparison of edge surface information and target surface information. There may be errors between the edge surface information and the target surface information, and the edge extension information obtained by comparing the two can reflect the error. For example, combined with the aforementioned example of the first mold processing surface being a surface of revolution, the edge surface information includes two-dimensional curve data corresponding to the first mold edge on the generatrix of the first mold, and the target surface information includes the target mold edge corresponding to the generatrix of the target mold. two-dimensional curve data. By comparing the data of the edge surface information and the target surface information, the X value and/or Y value difference between each point on the bus line of the first mold and the corresponding point on the target mold can be obtained, that is, the edge extension information can be obtained.
图5是根据一些实施例所述的目标加工信息生成过程的示例性流程示意图。Figure 5 is an exemplary flow diagram of a target processing information generation process according to some embodiments.
如图5所示,目标加工信息生成过程500可以包括步骤510至步骤540。在一些实施例中,过程500可以由控制设备(如控制模块110)执行。As shown in FIG. 5 , the target processing information generating process 500 may include steps 510 to 540 . In some embodiments, process 500 may be performed by a control device (eg, control module 110).
在步骤510中,基于所述初始加工信息和所述补偿信息生成待验加工信息。在一些实施例中,步骤510可以由加工信息生成模块140执行。在一些实施例中,待验加工信息可用于进行加工误差验证,以此确保生成的目标加工信息的误差校正效果,保证加工精度。In step 510, processing information to be verified is generated based on the initial processing information and the compensation information. In some embodiments, step 510 may be performed by the processing information generation module 140. In some embodiments, the processing information to be verified can be used to verify processing errors, thereby ensuring the error correction effect of the generated target processing information and ensuring processing accuracy.
在步骤520中,获取第二模具的第二表面信息,所述第二模具基于所述待验加工信息制得。在一些实施例中,步骤520可以由表面信息获取模块120执行。In step 520, second surface information of the second mold is obtained, and the second mold is produced based on the processing information to be verified. In some embodiments, step 520 may be performed by surface information acquisition module 120.
在一些实施例中,第二表面信息是指反映第二模具的三维表面形貌的信息。在一些实施例中,第二表面信息可以由表面信息获取模块120进行轮廓检测获得;第二模具可以由加工模块150制得。例如,控制模块110调用加工信息生成模块140生成的待验加工信息,并控制加工模块150的车削子模块根据待验加工信息车削制得第二模具,其中第二模具经车削得到的加工面为回转面;控制模块110控制表面信息获取模块120的接触式轮廓仪对第二模具的加工面进行表面轮廓检测,以得到二维的表面曲线数据。In some embodiments, the second surface information refers to information reflecting the three-dimensional surface topography of the second mold. In some embodiments, the second surface information can be obtained through contour detection by the surface information acquisition module 120; the second mold can be produced by the processing module 150. For example, the control module 110 calls the processing information to be verified generated by the processing information generation module 140, and controls the turning sub-module of the processing module 150 to turn the second mold according to the processing information to be verified, where the processed surface of the second mold obtained by turning is: Surface of revolution; the control module 110 controls the contact profiler of the surface information acquisition module 120 to detect the surface profile of the processed surface of the second mold to obtain two-dimensional surface curve data.
在步骤530中,基于所述第二表面信息和所述目标表面信息,判断所述第二模具的表面误差是否在预设值范围内。在一些实施例中,步骤530可以由加工信息生成模块140执行。In step 530, based on the second surface information and the target surface information, it is determined whether the surface error of the second mold is within a preset value range. In some embodiments, step 530 may be performed by the processing information generation module 140.
在一些实施例中,第二表面信息和目标表面信息均为二维的表面曲线数据,可通过基于第二表面信息和目标表面信息的数据计算得到第二模具的表面误差。其中,第二模具的表面误差是指第二模具的加工面上各点或者具有代表性的一系列特征点与目标模具上各对应点之间的误差。例如,第二表面信息包括第二模具表面的一系列检测点的二维坐标,目标表面信息包括目标模具表面的一系列模拟点的二维坐标,可通过计算检测点与对应模拟点的距离得到该检测点对应的表面误差值。In some embodiments, both the second surface information and the target surface information are two-dimensional surface curve data, and the surface error of the second mold can be calculated based on the data based on the second surface information and the target surface information. The surface error of the second mold refers to the error between each point on the processing surface of the second mold or a representative series of feature points and each corresponding point on the target mold. For example, the second surface information includes the two-dimensional coordinates of a series of detection points on the second mold surface, and the target surface information includes the two-dimensional coordinates of a series of simulation points on the target mold surface, which can be obtained by calculating the distance between the detection points and the corresponding simulation points. The surface error value corresponding to this detection point.
在一些实施例中,第二模具的表面误差处于预设值范围内可以是指最大表面误差小于预设值。第二模具各处的表面误差可相同或不同,其中最大表面误差小于特定预设值即可认为第二模具符合误差限制要求。In some embodiments, the surface error of the second mold being within the preset value range may mean that the maximum surface error is less than the preset value. Surface errors in various parts of the second mold may be the same or different, and if the maximum surface error is less than a specific preset value, it can be considered that the second mold meets the error limit requirements.
在一些实施例中,所述预设值为储存在存储模块160中的可供调用读取的默认值,例如,预设值可以为10μm。在一些实施例中,所述预设值可基于用户输入确定。例如,加工信息生成模块140判断第二模具的表面误差是否在预设值范围内前,控制模块110通过输入/输出模块180向用户发送是否设定预设值的询问信息。用户响应后,控制模块110获取用户输入的预设值,并发送至加工信息生成模块140。In some embodiments, the preset value is a default value stored in the storage module 160 that can be called and read. For example, the preset value may be 10 μm. In some embodiments, the preset value may be determined based on user input. For example, before the processing information generation module 140 determines whether the surface error of the second mold is within the preset value range, the control module 110 sends query information to the user through the input/output module 180 to determine whether to set the preset value. After the user responds, the control module 110 obtains the preset value input by the user and sends it to the processing information generation module 140 .
在步骤540中,基于第二模具的表面误差判断结果,确定目标加工信息。在一些实施例中,步骤540可以由加工信息生成模块140执行。In step 540, target processing information is determined based on the surface error judgment result of the second mold. In some embodiments, step 540 may be performed by the processing information generation module 140.
在一些实施例中,步骤540进一步包括:若判断第二模具的表面误差在预设值范围内,则确定第二模具对应的待验加工信息为目标加工信息。目标加工信息对加工模块150的加工设备(如车床)的系统误差进行校正,使加工模块150可基于目标加工信息进行高精度、标准化的模具加工,可适应于模具的批量加工。In some embodiments, step 540 further includes: if it is determined that the surface error of the second mold is within the preset value range, determining the processing information to be verified corresponding to the second mold as the target processing information. The target processing information corrects the system error of the processing equipment (such as a lathe) of the processing module 150, so that the processing module 150 can perform high-precision, standardized mold processing based on the target processing information, and can be adapted to batch processing of molds.
在一些实施例中,步骤540进一步包括:若判断第二模具的表面误差不在预设值范围内,则本轮过程500终止,并开始执行下一轮步骤320和过程500,直至生成目标加工信息。例如,若加工信息生成模块140判断第二模具的表面误差不在预设值范围内,控制模块110控制加工信息生成模块140终止当前执行的目标加工信息生成过程500。控制模块110将表面信息获取模块120测得的第二表面信息发送至补偿信息获得模块130;控制模块110控制 补偿信息获得模块130执行步骤320,基于第二表面信息和目标表面信息第二次获得补偿信息,控制模块110发送该第二次获得的补偿信息至加工信息生成模块140,并控制加工信息生成模块140执行第二轮过程500。若第二轮过程500判定第三模具的表面误差不在预设范围内,控制模块110将终止第二轮过程500,继续循环执行下一轮步骤320和过程500,直至生成目标加工信息。In some embodiments, step 540 further includes: if it is determined that the surface error of the second mold is not within the preset value range, then the current round of process 500 is terminated, and the next round of steps 320 and process 500 are started until the target processing information is generated. . For example, if the processing information generation module 140 determines that the surface error of the second mold is not within the preset value range, the control module 110 controls the processing information generation module 140 to terminate the currently executed target processing information generation process 500 . The control module 110 sends the second surface information measured by the surface information acquisition module 120 to the compensation information acquisition module 130; the control module 110 controls The compensation information obtaining module 130 executes step 320 to obtain the compensation information for the second time based on the second surface information and the target surface information. The control module 110 sends the compensation information obtained for the second time to the processing information generation module 140 and controls the processing information generation module. 140 executes the second round of process 500 . If the second round of process 500 determines that the surface error of the third mold is not within the preset range, the control module 110 will terminate the second round of process 500 and continue to execute the next round of steps 320 and process 500 in a loop until the target processing information is generated.
本说明书一些实施例的目标加工信息生成过程对加工设备(如加工模块150的车削子模块)的系统误差进行校正,加工设备基于目标加工信息生成过程生成的目标加工信息可批量进行模具加工,能够提升加工精度和标准化程度。The target processing information generation process of some embodiments of this specification corrects the system error of the processing equipment (such as the turning sub-module of the processing module 150). The processing equipment can perform mold processing in batches based on the target processing information generated by the target processing information generation process. Improve processing accuracy and standardization.
图6是根据一些实施例所述的标准模具制备过程的示例性流程示意图。Figure 6 is an exemplary flow diagram of a standard mold preparation process according to some embodiments.
如图6所示,标准模具制备过程600可以包括步骤610至步骤630。在一些实施例中,过程600可以由控制设备(如控制模块110)执行。As shown in FIG. 6 , the standard mold preparation process 600 may include steps 610 to 630 . In some embodiments, process 600 may be performed by a control device (eg, control module 110).
在步骤610中,基于所述目标加工信息对初始模具10’进行车削,制得所述模具本体11。在一些实施例中,步骤610可由加工模块150(如车削子模块)执行。In step 610, the initial mold 10' is turned based on the target processing information to obtain the mold body 11. In some embodiments, step 610 may be performed by a machining module 150 (eg, a turning submodule).
在一些实施例中,初始模具10’为待加工的原料。例如,初始模具10’可以为圆柱状金属原料,初始模具10’的待加工面为平面,基于初始模具10’的待加工面车削模具本体11,模具本体11的加工面为内球面。In some embodiments, the initial mold 10' is the raw material to be processed. For example, the initial mold 10' can be a cylindrical metal raw material, and the surface to be processed of the initial mold 10' is a flat surface. The mold body 11 is turned based on the surface to be processed of the initial mold 10', and the processing surface of the mold body 11 is an inner spherical surface.
在一些实施例中,可基于目标加工信息直接对初始模具10’进行车削,制得模具本体11。例如,加工模块150的车削子模块调用加工信息生成模块140生成的目标加工程序进行初始模具10’的车削,从而得到模具本体11。In some embodiments, the initial mold 10' can be directly turned based on the target processing information to obtain the mold body 11. For example, the turning sub-module of the processing module 150 calls the target processing program generated by the processing information generation module 140 to perform turning of the initial mold 10', thereby obtaining the mold body 11.
在步骤620中,将所述覆盖层12贴附于所述模具本体11上。在一些实施例中,步骤620可由加工模块150的加热子模块和压制子模块执行。In step 620 , the covering layer 12 is attached to the mold body 11 . In some embodiments, step 620 may be performed by the heating submodule and the pressing submodule of the processing module 150 .
在一些实施例中步骤620还进一步包括加热步骤。在所述加热步骤中,加热所述模具本体11。在一些实施例中,所述加热步骤可由加工模块150的加热子模块执行。In some embodiments step 620 further includes a heating step. In the heating step, the mold body 11 is heated. In some embodiments, the heating step may be performed by a heating submodule of the processing module 150 .
在一些实施例中,可通过加热线圈加热模具本体11。优选的,加热线圈为高频感应线圈。加热线圈可以在作为电导体的模具本体11中形成涡电流量,通过电磁感应快速加热模具本体11。In some embodiments, the mold body 11 may be heated by a heating coil. Preferably, the heating coil is a high-frequency induction coil. The heating coil can form an eddy current amount in the mold body 11 as an electrical conductor, and quickly heat the mold body 11 through electromagnetic induction.
在一些实施例中,控制加热过程中加热线圈相对于模具本体11的加热位置可调节模具本体的受热均匀性以及提高加热效率。在一些实施例中,可以基于模具本体的尺寸确定加热线圈相对于模具本体11的加热位置,例如基于模具本体的直径和/或高度来确定加热位置。在一个具体示例中,模具本体11的直径小于预设值(例如,100mm),加热线圈可设置于模具本体11的周侧。当该模具本体11的高度大于加热线圈的高度时,可以使加热线圈的底面与模具本体11的底面平齐。当该模具本体11的高度小于等于加热线圈的高度时,可以使加热线圈的顶面与模具本体11的顶面平齐。在另一个具体示例中,模具本体11的直径大于等于预设值(例如,100mm),加热线圈可设置于模具本体11的底部。在一些实施例中,可通过转动模具本体11使模具本体11受热更均匀。In some embodiments, controlling the heating position of the heating coil relative to the mold body 11 during the heating process can adjust the heating uniformity of the mold body and improve heating efficiency. In some embodiments, the heating position of the heating coil relative to the mold body 11 may be determined based on the dimensions of the mold body, such as the diameter and/or height of the mold body. In a specific example, the diameter of the mold body 11 is smaller than a preset value (for example, 100 mm), and the heating coil may be disposed on the peripheral side of the mold body 11 . When the height of the mold body 11 is greater than the height of the heating coil, the bottom surface of the heating coil can be flush with the bottom surface of the mold body 11 . When the height of the mold body 11 is less than or equal to the height of the heating coil, the top surface of the heating coil can be flush with the top surface of the mold body 11 . In another specific example, the diameter of the mold body 11 is greater than or equal to a preset value (for example, 100 mm), and the heating coil can be disposed at the bottom of the mold body 11 . In some embodiments, the mold body 11 can be heated more evenly by rotating the mold body 11 .
在一些实施例中,加热线圈的轴线穿过待加热的模具本体11。在一些较优的实施例中,模具本体11可以为回转体,加热线圈的轴线与待加热的模具本体11的轴线重合,以提高加热效果。In some embodiments, the axis of the heating coil passes through the mold body 11 to be heated. In some preferred embodiments, the mold body 11 can be a rotary body, and the axis of the heating coil coincides with the axis of the mold body 11 to be heated, so as to improve the heating effect.
在一些实施例中,加热线圈的加热温度为160℃~200℃,如加热温度可约为160℃、165℃、170℃、175℃、180℃、185℃、190℃、195℃或200℃。在一些实施例中,加热线圈的加热温度优选为170℃~190℃。模具本体11加热至适宜温度,可便于结合覆盖层12。In some embodiments, the heating temperature of the heating coil is 160°C to 200°C. For example, the heating temperature may be about 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, or 200°C. . In some embodiments, the heating temperature of the heating coil is preferably 170°C to 190°C. When the mold body 11 is heated to a suitable temperature, the covering layer 12 can be easily combined.
在一些实施例中,步骤620还进一步包括压制步骤。在所述压制步骤中,所述覆盖层12与加热的所述模具本体11压实,使所述覆盖层12贴附于所述模具本体11上。在一些实施例中,所述压制步骤可由加工模块150的压制子模块执行。In some embodiments, step 620 further includes a pressing step. In the pressing step, the covering layer 12 is compacted with the heated mold body 11 so that the covering layer 12 is attached to the mold body 11 . In some embodiments, the pressing step may be performed by the pressing sub-module of processing module 150 .
在一些实施例中,可基于覆盖层12自身的物理特性使覆盖层12与加热的模具本体 11结合。例如,覆盖层12由柔性的高分子材料制成,如聚氨酯。将模具本体11加热至该聚氨酯的熔点范围内,使覆盖层12接触模具本体11的部分融化,该融化的部分与模具本体11紧密结合,使覆盖层12贴附于模具本体11上。In some embodiments, the overlay 12 can be aligned with the heated mold body based on the physical properties of the overlay 12 itself. 11 combined. For example, the covering layer 12 is made of a flexible polymer material, such as polyurethane. The mold body 11 is heated to within the melting point range of the polyurethane, so that the portion of the covering layer 12 that contacts the mold body 11 is melted, and the melted portion is tightly combined with the mold body 11 so that the covering layer 12 is attached to the mold body 11 .
在一些实施例中,加热的模具本体11表面预先设置粘合介质,覆盖层12通过粘合介质与加热的模具本体11结合。例如,将预定量的聚氨酯预融化后涂布在加热的模具本体11上,再将由聚氨酯制成的覆盖层12置于模具本体11上,使覆盖层12与模具本体11通过预融化的聚氨酯粘连结合。在一些实施例中,粘合介质可以为制备覆盖层12的材料,或者粘合介质可以为其他具有粘合作用的材料,本实施例对此不做限制。In some embodiments, the surface of the heated mold body 11 is pre-set with an adhesive medium, and the covering layer 12 is combined with the heated mold body 11 through the adhesive medium. For example, a predetermined amount of polyurethane is pre-melted and then coated on the heated mold body 11, and then a covering layer 12 made of polyurethane is placed on the mold body 11, so that the covering layer 12 and the mold body 11 are adhered to each other through the pre-melted polyurethane. combine. In some embodiments, the adhesive medium may be the material used to prepare the covering layer 12 , or the adhesive medium may be other materials with adhesive effects, which is not limited in this embodiment.
在一些实施例中,覆盖层12与加热的模具本体11通过加压的压盘工装30压实,制得覆层模具10”。示例性的,如图7所示,加热的模具本体11置于工装基体上,覆盖层12置于模具本体11的承压面上。压盘工装30的驱动装置40通过工装支架安装在模具本体11的上方,压盘工装30固定在驱动装置40的驱动杆41上。压盘工装30、覆盖层12和加热的模具本体11在竖直方向上对正,压盘工装30在竖直方向上移动以对覆盖层12与加热的模具本体11加压,使覆盖层12与加热的模具本体11压实,制得覆层模具10”。In some embodiments, the covering layer 12 and the heated mold body 11 are compacted by a pressurized platen tool 30 to produce a coated mold 10". Exemplarily, as shown in Figure 7, the heated mold body 11 is placed On the tooling base, the covering layer 12 is placed on the pressure-bearing surface of the mold body 11. The driving device 40 of the pressure plate tooling 30 is installed above the mold body 11 through the tooling bracket, and the pressure plate tooling 30 is fixed on the driving rod of the driving device 40. 41. The pressure plate tool 30, the covering layer 12 and the heated mold body 11 are aligned in the vertical direction, and the platen tool 30 moves in the vertical direction to pressurize the covering layer 12 and the heated mold body 11, so that The covering layer 12 is compacted with the heated mold body 11 to obtain a covered mold 10".
在一些实施例中,压盘工装30的施压面曲率与模具本体11的承压面曲率配合。曲率配合使得压盘工装30的施压面与模具本体11的承压面对正时,施压面与承压面大致平行,即承压面上各点与施压面上对应点的曲率半径的差值在预设阈值范围(例如,不超过1mm)内,使置于模具本体11的承压面上的覆盖层12各处均匀受力,从而使覆盖层12平整地贴附于模具本体11的承压面上。In some embodiments, the curvature of the pressure surface of the platen tool 30 matches the curvature of the pressure-bearing surface of the mold body 11 . The curvature matching makes the pressure surface of the pressure plate tool 30 and the pressure surface of the mold body 11 in time, and the pressure surface and the pressure surface are roughly parallel, that is, the curvature radius of each point on the pressure surface and the corresponding point on the pressure surface The difference is within the preset threshold range (for example, no more than 1 mm), so that the covering layer 12 placed on the pressure-bearing surface of the mold body 11 is evenly stressed everywhere, so that the covering layer 12 is evenly attached to the mold body. 11 on the pressure-bearing surface.
在一些实施例中,压盘工装30加压的压力范围为0.1Mpa~0.8Mpa。例如,压盘工装30的施压面可以向模具本体11的承压面施加约0.1Mpa、0.2Mpa、0.3Mpa、0.4Mpa、0.5Mpa、0.6Mpa、0.7Mpa或0.8Mpa的压力,使覆盖层12与模具本体11压实贴合。在一些较优的实施例中,压盘工装30加压的压力范围为0.3Mpa~0.6Mpa。例如,模具本体11的承压面(即加工面)为回转面,该回转面的最大截面直径≤50mm,则压盘工装30加压的压力可约为0.3Mpa。又例如,模具本体11的承压面(即加工面)为回转面,该回转面的最大截面直径≤80mm,且最大截面直径≥51mm,则压盘工装30加压的压力可约为0.6Mpa。In some embodiments, the pressure range of the pressure plate tool 30 is 0.1Mpa~0.8Mpa. For example, the pressure surface of the platen tool 30 can apply a pressure of about 0.1Mpa, 0.2Mpa, 0.3Mpa, 0.4Mpa, 0.5Mpa, 0.6Mpa, 0.7Mpa or 0.8Mpa to the pressure-bearing surface of the mold body 11, so that the covering layer 12 is compactly attached to the mold body 11 . In some preferred embodiments, the pressure range of the pressure plate tool 30 is 0.3Mpa~0.6Mpa. For example, if the pressure-bearing surface (i.e., the processing surface) of the mold body 11 is a rotating surface, and the maximum cross-sectional diameter of the rotating surface is ≤ 50 mm, then the pressure exerted by the platen tool 30 can be about 0.3 MPa. For another example, if the pressure-bearing surface (i.e., the processing surface) of the mold body 11 is a rotating surface, and the maximum cross-sectional diameter of the rotating surface is ≤80mm, and the maximum cross-sectional diameter is ≥51mm, then the pressure exerted by the pressure plate tool 30 can be about 0.6Mpa. .
在一些实施例中,压盘工装30的驱动装置40可以为气缸或液压缸。在一些实施例中,压盘工装30的驱动装置40可以为其他具有驱动作用的装置,本实施例不做限制。In some embodiments, the driving device 40 of the platen tool 30 may be a pneumatic cylinder or a hydraulic cylinder. In some embodiments, the driving device 40 of the platen tool 30 can be other devices with a driving function, which is not limited in this embodiment.
在步骤630中,基于所述目标加工信息对所述覆盖层12进行车削,制得所述标准模具10。在一些实施例中,步骤630可由加工模块150的车削子模块执行。In step 630, the covering layer 12 is turned based on the target processing information to prepare the standard mold 10. In some embodiments, step 630 may be performed by the turning submodule of the machining module 150 .
在一些实施例中,覆盖层12与模具本体11压实后,覆盖层12表面存在不可预测及控制的凹凸起伏。基于目标加工信息车削覆层模具10”的覆盖层12,可减少或消除上述凹凸起伏带来的误差。例如,控制模块110调用加工信息生成模块140生成的目标加工程序,控制加工模块150的车削子模块通过目标加工程序进行覆层模具10”的覆盖层12的车削,以消除覆盖层12表面不符合误差限制要求的起伏褶皱,制得标准模具10。In some embodiments, after the covering layer 12 and the mold body 11 are compacted, there are unpredictable and controllable undulations on the surface of the covering layer 12 . Turning the covering layer 12 of the coating mold 10" based on the target processing information can reduce or eliminate the errors caused by the above-mentioned unevenness. For example, the control module 110 calls the target processing program generated by the processing information generation module 140 to control the turning of the processing module 150 The sub-module performs turning of the covering layer 12 of the cladding mold 10" through the target machining program to eliminate the undulating wrinkles on the surface of the covering layer 12 that do not meet the error limit requirements, and prepare the standard mold 10.
在一些实施例中,所述基于所述目标加工信息对覆盖层12进行车削,制得所述标准模具10可进一步包括:基于目标加工信息和覆盖层信息生成覆层补偿信息;基于覆层补偿信息对覆层模具10”的覆盖层12进行车削,制得标准模具10。生成目标加工信息时排除了覆盖层12的影响,覆层补偿信息可以在加工标准模具10时引入对应于覆盖层12的校正,避免覆盖层12被过度车削。例如,加工信息生成模块140基于用户输入的覆盖层信息(如厚度),对目标加工程序进行覆盖层校正(如使加工面整体偏移预定距离),得到覆层补偿程序;控制模块110调用加工信息生成模块140生成的覆层补偿程序,使用覆层补偿程序控制加工模块150的车削子模块进行覆层模具10”的覆盖层12的车削,制得标准模具10。In some embodiments, turning the covering layer 12 based on the target processing information to produce the standard mold 10 may further include: generating covering compensation information based on the target processing information and covering layer information; based on covering layer compensation The information is used to turn the covering layer 12 of the cladding mold 10" to obtain the standard mold 10. The influence of the covering layer 12 is eliminated when generating the target processing information, and the cladding compensation information can be introduced when processing the standard mold 10 corresponding to the covering layer 12 correction to avoid excessive turning of the cover layer 12. For example, the processing information generation module 140 performs cover layer correction (such as shifting the entire processing surface by a predetermined distance) to the target processing program based on the cover layer information (such as thickness) input by the user, Obtain the cladding compensation program; the control module 110 calls the cladding compensation program generated by the processing information generation module 140, and uses the cladding compensation program to control the turning sub-module of the processing module 150 to turn the covering layer 12 of the cladding mold 10" to obtain Standard mold 10.
本说明书一些实施例的标准模具制备过程中,基于目标加工信息对覆层模具10”的覆盖层12进行车削获得标准模具10,与打磨工艺相比,覆层模具10”的车削更易于实现标准 化的批量加工,加工时间短,成品一致性高。In the preparation process of the standard mold in some embodiments of this specification, the covering layer 12 of the cladding mold 10" is turned based on the target processing information to obtain the standard mold 10. Compared with the grinding process, the turning of the cladding mold 10" is easier to achieve the standard. Specialized batch processing, short processing time and high consistency of finished products.
本说明书一些实施例的模具加工方法制备的标准模具可用于进行工件的抛光,有助于实现工件抛光工艺的标准化。工件的抛光工艺通常采用单独的抛光模具对工件的所有抛光区域进行抛光,需要通过频繁调节抛光设备的抛光参数(如摆幅、压力等)来实现。这不仅使得抛光模具的制作难度较高,而且由于难以充分兼顾所有抛光区域的抛光而使得抛光精度有限。另外,频繁调整抛光参数也使得抛光设备的调机难度大,时间长,限制抛光工艺的标准化。本说明书一些实施例中通过使用多个标准模具对工件进行分区抛光,在抛光要求不变的情况下,抛光设备对应每个标准模具的抛光参数不变,无需频繁调机即可对同类工件的对应分区进行批量化、标准化、高精度的抛光,降低抛光设备调机带来的时间成本。同时,多个标准模具分区抛光可降低单个标准模具的加工难度,保障单个标准模具的加工精度,从而进一步提高抛光精度。The standard molds prepared by the mold processing methods of some embodiments of this specification can be used to polish workpieces, helping to standardize the workpiece polishing process. The polishing process of the workpiece usually uses a separate polishing mold to polish all polishing areas of the workpiece, which needs to be achieved by frequently adjusting the polishing parameters (such as swing, pressure, etc.) of the polishing equipment. This not only makes the production of polishing molds more difficult, but also limits the polishing accuracy because it is difficult to fully take into account the polishing of all polishing areas. In addition, frequent adjustments to polishing parameters also make the adjustment of polishing equipment difficult and time-consuming, limiting the standardization of the polishing process. In some embodiments of this specification, multiple standard molds are used to perform zoned polishing on workpieces. When the polishing requirements remain unchanged, the polishing parameters of the polishing equipment corresponding to each standard mold remain unchanged, and similar workpieces can be polished without frequent adjustments. Carry out batch, standardized, high-precision polishing corresponding to the partition, reducing the time cost caused by polishing equipment adjustment. At the same time, zoned polishing of multiple standard molds can reduce the processing difficulty of a single standard mold and ensure the processing accuracy of a single standard mold, thereby further improving the polishing accuracy.
图8是根据一些实施例所述的工件抛光方法的示例性流程示意图。Figure 8 is an exemplary flow diagram of a workpiece polishing method according to some embodiments.
如图8所示,工件抛光流程800可以包括步骤810至步骤830。在一些实施例中,工件抛光流程800可以由控制设备(如控制模块210)执行。在一些实施例中,工件抛光流程800可针对工件的不同抛光区域分区分模具抛光,降低抛光模具加工难度,同时提高抛光精度和效率。As shown in FIG. 8 , the workpiece polishing process 800 may include steps 810 to 830 . In some embodiments, workpiece polishing process 800 may be performed by a control device (eg, control module 210). In some embodiments, the workpiece polishing process 800 can differentiate polishing of molds according to different polishing areas of the workpiece, reducing the difficulty of polishing mold processing while improving polishing accuracy and efficiency.
在一些实施例中,工件20可包括一个待分区抛光的抛光区域,如单面透镜包括一个凸面或凹面的抛光区域。在一些实施例中,工件可包括多个待分区抛光的抛光区域,多个抛光区域在工件表面的分布范围不重叠,如双面透镜包括两个凸面或凹面的抛光区域。对于工件的一个或多个抛光区域中的每一个抛光区域,均可独立地执行流程800进行分区抛光。In some embodiments, the workpiece 20 may include a polishing area to be zoned polished, such as a single-sided lens including a convex or concave polishing area. In some embodiments, the workpiece may include multiple polishing areas to be polished separately, and the distribution range of the multiple polishing areas on the surface of the workpiece does not overlap. For example, a double-sided lens includes two convex or concave polishing areas. For each polishing area of one or more polishing areas of the workpiece, the process 800 can be performed independently to perform zoned polishing.
在步骤810中,确定工件20的至少第一抛光区域21和第二抛光区域22。在一些实施例中,步骤810可以由抛光区域确定模块220执行。In step 810, at least the first polishing area 21 and the second polishing area 22 of the workpiece 20 are determined. In some embodiments, step 810 may be performed by polishing area determination module 220.
在一些实施例中,工件20可具有两个子抛光区域,如第一抛光区域21和第二抛光区域22,工件20的两个子抛光区域即可覆盖工件20的抛光区域。在一些实施例中,工件20还可包括第三抛光区域、第四抛光区域至第N抛光区域,工件20的两个以上的子抛光区域覆盖工件20的抛光区域。对于子抛光区域的数量,本实施例不做限制。In some embodiments, the workpiece 20 may have two sub-polishing areas, such as a first polishing area 21 and a second polishing area 22 , and the two sub-polishing areas of the workpiece 20 may cover the polishing area of the workpiece 20 . In some embodiments, the workpiece 20 may further include a third polishing area, a fourth polishing area to an Nth polishing area, and more than two sub-polishing areas of the workpiece 20 cover the polishing area of the workpiece 20 . This embodiment does not limit the number of sub-polishing areas.
在一些实施例中,可基于抛光区域的曲率半径,确定工件20的不同子抛光区域,如确定至少第一抛光区域21和第二抛光区域22。In some embodiments, different sub-polishing areas of the workpiece 20 may be determined based on the radius of curvature of the polishing area, such as determining at least the first polishing area 21 and the second polishing area 22 .
仅作为示例,工件20为待抛光的单面透镜,其抛光区域为非球面型回转面(凸面),其轴剖面在轴向-径向坐标系内的投影为一抛物线,抛光区域的曲率半径在5mm~35mm之间。抛光区域确定模块220可基于工件20抛光区域的曲率半径范围,确定第一抛光区域21为抛光区域曲率半径为5mm~10mm的区域,确定第二抛光区域22为抛光区域曲率半径为10mm~35mm的区域。工件20的各子抛光区域的曲率半径范围可根据实际加工需求设置,本实施例不做限制。For example only, the workpiece 20 is a single-sided lens to be polished, and its polishing area is an aspherical surface of revolution (convex surface). The projection of its axial section in the axial-radial coordinate system is a parabola. The radius of curvature of the polishing area is Between 5mm~35mm. The polishing area determination module 220 can determine the first polishing area 21 as a polishing area with a curvature radius of 5 mm to 10 mm based on the curvature radius range of the polishing area of the workpiece 20, and determine the second polishing area 22 as a polishing area with a curvature radius of 10 mm to 35 mm. area. The curvature radius range of each sub-polishing area of the workpiece 20 can be set according to actual processing requirements, and is not limited in this embodiment.
在一些实施例中,对于工件20的每个抛光区域而言,基于曲率半径进行抛光区域分区,其子抛光区域的曲率半径不同。例如,工件20具有一个非球面型抛光区域,其中第一抛光区域21和第二抛光区域22覆盖工件20的该抛光区域,第一抛光区域21与第二抛光区域22曲率半径不同,分区抛光以便于达到标准化批量抛光的目的。In some embodiments, for each polishing area of the workpiece 20, the polishing area is partitioned based on the radius of curvature, and the sub-polishing areas have different curvature radii. For example, the workpiece 20 has an aspherical polishing area, in which the first polishing area 21 and the second polishing area 22 cover the polishing area of the workpiece 20. The first polishing area 21 and the second polishing area 22 have different curvature radii, and zone polishing is performed so that To achieve the purpose of standardized batch polishing.
在一些实施例中,可基于预抛光流程确定工件20的不同子抛光区域,如确定至少第一抛光区域21和第二抛光区域22。所述预抛光流程可包括形状特征确定步骤、预抛光步骤和子抛光区域确定步骤。In some embodiments, different sub-polishing areas of the workpiece 20 may be determined based on the pre-polishing process, such as determining at least the first polishing area 21 and the second polishing area 22 . The pre-polishing process may include a shape feature determining step, a pre-polishing step and a sub-polishing area determining step.
在特征确定步骤中,可确定工件20的抛光区域的形状特征。在一些实施例中,形状特征可以包括曲率半径、曲率半径的变化率或曲面面型等,或其任意组合。In the characterization step, shape characteristics of the polished area of the workpiece 20 may be determined. In some embodiments, the shape characteristics may include a radius of curvature, a change rate of the radius of curvature, or a curved surface profile, or any combination thereof.
在预抛光步骤中,可基于工件20抛光区域的形状特征对测试工件的抛光区域进行预抛光,测试工件选取自工件20。 In the pre-polishing step, the polishing area of the test workpiece may be pre-polished based on the shape characteristics of the polishing area of the workpiece 20 , and the test workpiece is selected from the workpiece 20 .
预抛光是指获取测试工件在预定抛光策略(例如,整体抛光策略和/或分区抛光策略)下的抛光结果的过程。在一些实施例中,可以自同批次生产制备的工件20中选取一个或多个作为测试工件进行预抛光。Pre-polishing refers to the process of obtaining the polishing results of a test workpiece under a predetermined polishing strategy (for example, an overall polishing strategy and/or a partitioned polishing strategy). In some embodiments, one or more workpieces 20 produced in the same batch may be selected as test workpieces for pre-polishing.
抛光结果可用于指导工件20抛光区域的分区抛光。在一些实施例中,抛光结果包括测试工件的抛光区域经预抛光后的参数信息。参数信息可用于反映测试工件预抛光前后形状特征的变化。在一些实施例中,参数信息通过对比测试工件的抛光区域经预抛光前后的形状特征来确定。The polishing results can be used to guide zoned polishing of the polishing area of the workpiece 20 . In some embodiments, the polishing results include pre-polished parameter information of the polished area of the test workpiece. Parameter information can be used to reflect the changes in shape characteristics of the test workpiece before and after pre-polishing. In some embodiments, the parameter information is determined by comparing the shape characteristics of the polished area of the test workpiece before and after pre-polishing.
在一些实施例中,参数信息包括抛光去除率。测试工件经预抛光后,两个或两个以上区域的抛光去除率可能存在差异,该抛光去除率的差异可指示工件20抛光策略的优化方向。在一些实施例中,可以通过轮廓检测获取测试工件经预抛光后的抛光去除率。例如,在预抛光前后,对测试工件的抛光区域进行轮廓检测,获得预抛光前曲线(或曲面)数据和预抛光后曲线(或曲面)数据。基于预抛光前曲线(或曲面)数据和预抛光后曲线(或曲面)数据的对比,确定抛光区域各处经预抛光后的抛光去除率。In some embodiments, the parameter information includes polish removal rate. After the test workpiece is pre-polished, there may be differences in the polishing removal rates of two or more areas, and the difference in polishing removal rates may indicate the optimization direction of the polishing strategy for the workpiece 20 . In some embodiments, the polishing removal rate of the test workpiece after pre-polishing can be obtained through contour detection. For example, before and after pre-polishing, perform contour detection on the polished area of the test workpiece to obtain curve (or surface) data before pre-polishing and curve (or surface) data after pre-polishing. Based on the comparison of the curve (or surface) data before pre-polishing and the curve (or surface) data after pre-polishing, the polishing removal rate after pre-polishing in each part of the polishing area is determined.
在一些实施例中,预抛光步骤进一步包括:基于整体抛光策略对测试工件的抛光区域进行预抛光,制得第一测试工件;获取第一测试工件的第一参数信息。In some embodiments, the pre-polishing step further includes: pre-polishing the polishing area of the test workpiece based on the overall polishing strategy to prepare the first test workpiece; and obtaining first parameter information of the first test workpiece.
第一测试工件可用于模拟工件20在整体抛光策略下的抛光效果。在一些实施例中,第一测试工件可以有一个或多个;第一参数信息可以是基于多个第一测试工件的参数信息进行综合分析后确定的。The first test workpiece can be used to simulate the polishing effect of the workpiece 20 under the overall polishing strategy. In some embodiments, there may be one or more first test workpieces; the first parameter information may be determined based on comprehensive analysis of parameter information of multiple first test workpieces.
第一参数信息可用于反映测试工件在整体预抛光前后形状特征的变化。在一些实施例中,第一参考信息可以基于对一个或多个第一测试工件的检测分析来获取。The first parameter information can be used to reflect the changes in shape characteristics of the test workpiece before and after overall pre-polishing. In some embodiments, the first reference information may be obtained based on detection analysis of one or more first test artifacts.
在一些实施例中,测试工件的预抛光通过使用预抛光工装来进行,预抛光工装的抛光面形状特征基于工件20的抛光区域的形状特征和对应抛光策略来确实。其中,第一测试工件是使用第一抛光工装对测试工件进行整体预抛光而制得的,第一预抛光工装的抛光面特征基于工件20的抛光区域的形状特征和整体抛光策略来确定。In some embodiments, the pre-polishing of the test workpiece is performed by using a pre-polishing tool, and the polishing surface shape characteristics of the pre-polishing tool are determined based on the shape characteristics of the polishing area of the workpiece 20 and the corresponding polishing strategy. The first test workpiece is produced by overall pre-polishing the test workpiece using a first polishing tool, and the polishing surface characteristics of the first pre-polishing tool are determined based on the shape characteristics of the polishing area of the workpiece 20 and the overall polishing strategy.
在一个具体示例中,工件20和测试工件的待抛光面是非球面。第一预抛光工装的抛光面可以是与非球面型待抛光面嵌合的另一非球面。或者,第一预抛光工装的抛光面可以是与非球面型待抛光面接触配合的球面,例如抛光面的球面的曲率半径可以为非球面型待抛光面的曲率半径的平均值。在另一个具体示例中,工件20和测试工件的待抛光面是球面。第一预抛光工装的抛光面可以是与球面型待抛光面嵌合的另一球面。或者,第一预抛光工装的抛光面可以是与球面型待抛光面接触配合的非球面,例如抛光面可以为椭球面或其他弧形回转曲面,该椭球面或其他弧形回转曲面的内侧可以与球面型待抛光面外侧特定半径的球面圆相接,两者相接部位曲率半径的差值均在预设阈值范围(例如,不超过0.01mm、0.03mm、0.05mm或0.08mm)内。In one specific example, the surfaces to be polished of the workpiece 20 and the test workpiece are aspherical surfaces. The polishing surface of the first pre-polishing tool may be another aspherical surface that is fitted with the aspherical surface to be polished. Alternatively, the polishing surface of the first pre-polishing tool may be a spherical surface that is in contact with the aspherical surface to be polished. For example, the curvature radius of the spherical surface of the polishing surface may be the average curvature radius of the aspherical surface to be polished. In another specific example, the surfaces to be polished of the workpiece 20 and the test workpiece are spherical surfaces. The polishing surface of the first pre-polishing tool may be another spherical surface fitted with the spherical surface to be polished. Alternatively, the polishing surface of the first pre-polishing tool can be an aspheric surface that is in contact with the spherical surface to be polished. For example, the polishing surface can be an ellipsoid or other arc-shaped surface of revolution, and the inner side of the ellipsoid or other arc-shaped surface of revolution can be It is connected to a spherical circle with a specific radius outside the spherical surface to be polished, and the difference in the curvature radius of the two connecting parts is within the preset threshold range (for example, not exceeding 0.01mm, 0.03mm, 0.05mm or 0.08mm).
在一些实施例中,预抛光步骤还进一步包括:基于第一参数信息和预设阈值条件,生成第一分区抛光策略;基于第一分区抛光策略对测试工件的抛光区域进行预抛光,制得第二测试工件;获取所述第二测试工件的第二参数信息。In some embodiments, the pre-polishing step further includes: generating a first partition polishing strategy based on the first parameter information and a preset threshold condition; pre-polishing the polishing area of the test workpiece based on the first partition polishing strategy to obtain a third Two test workpieces; obtain second parameter information of the second test workpiece.
预设阈值条件可用于分类/筛选抛光区域中抛光结果不同的子抛光区域。在一些实施例中,预设阈值条件包括抛光去除率阈值。例如,测试工件的抛光区域经预抛光后,部分子抛光区域的抛光去除率可能偏低,可以认为其未得到有效抛光,适用于使用抛光去除率阈值设置子抛光区域的分类条件,以进行抛光策略的分区优化。在一些实施例中,抛光去除率阈值可以是固定的,比如可以根据最大抛光去除率和/或最小抛光去除率来计算。例如,抛光去除率阈值可以是最大抛光去除率和最小抛光去除率的平均值,或者可以是最小抛光去除率与经验系数(例如,1.1、1.2、1.3或1.5)的乘积。在另一些实施例中,抛光去除率阈值可以是基于用户输入的经验值。Preset threshold conditions can be used to classify/screen sub-polishing areas with different polishing results in the polishing area. In some embodiments, the preset threshold condition includes a polishing removal rate threshold. For example, after the polished area of the test workpiece is pre-polished, the polishing removal rate of some sub-polished areas may be low, which can be considered to have not been effectively polished. It is suitable to use the polishing removal rate threshold to set the classification conditions of the sub-polished areas for polishing. Partition optimization of strategies. In some embodiments, the polishing removal rate threshold may be fixed, for example, it may be calculated based on the maximum polishing removal rate and/or the minimum polishing removal rate. For example, the polishing removal rate threshold may be the average of the maximum polishing removal rate and the minimum polishing removal rate, or may be the product of the minimum polishing removal rate and an empirical coefficient (eg, 1.1, 1.2, 1.3, or 1.5). In other embodiments, the polishing removal rate threshold may be an empirical value based on user input.
在一些实施例中,预设阈值条件还包括抛光去除率的差值阈值。例如,测试工件的抛 光区域经预抛光后,两个或两个以上子抛光区域的抛光去除率存在差异。在所有子抛光区域的抛光去除率均大于或等于抛光去除率阈值的情况下,一个或多个子抛光区域与抛光去除率最高的子抛光区域的抛光去除率的差值可能偏大,可以认为其抛光精度待优化,适用于使用抛光去除率的差值阈值设置子抛光区域的分类条件,以进行抛光策略的分区优化。In some embodiments, the preset threshold condition further includes a difference threshold of polishing removal rate. For example, the throwing of test artifacts After the light area is pre-polished, there are differences in the polishing removal rates of two or more sub-polished areas. When the polishing removal rate of all sub-polishing areas is greater than or equal to the polishing removal rate threshold, the difference in polishing removal rate between one or more sub-polishing areas and the sub-polishing area with the highest polishing removal rate may be too large, and it can be considered that it The polishing accuracy needs to be optimized, and it is suitable to use the difference threshold of the polishing removal rate to set the classification conditions of the sub-polishing area to perform partitioning optimization of the polishing strategy.
在一些实施例中,整体预抛光可能难以使第一测试工件满足抛光精度要求,可以通过第一参数信息和预设阈值条件的对比确定抛光区域的分区,从而针对性的制定第一分区抛光策略。例如,对于第一测试工件的抛光区域,可以将抛光去除率大于或等于抛光去除率阈值的子抛光区域标记为1类区域,将抛光去除率小于抛光去除率阈值的子抛光区域标记为2类区域,并基于以上分区生成第一分区抛光策略。又例如,前述2类区域中存在部分子抛光区域的抛光去除率差值大于差值阈值的情况,可以将其从2类区域中划分出来标记为3类区域,并基于以上分区生成第一分区抛光策略。In some embodiments, the overall pre-polishing may make it difficult for the first test workpiece to meet the polishing accuracy requirements. The partitioning of the polishing area can be determined by comparing the first parameter information and the preset threshold conditions, thereby formulating a targeted first partitioning polishing strategy. . For example, for the polishing area of the first test workpiece, the sub-polishing area with a polishing removal rate greater than or equal to the polishing removal rate threshold can be marked as a category 1 area, and the sub-polishing area with a polishing removal rate less than the polishing removal rate threshold can be marked as category 2. area, and generate a first partition polishing strategy based on the above partitions. For another example, if there is a situation where the polishing removal rate difference of some sub-polishing areas in the aforementioned Type 2 area is greater than the difference threshold, it can be divided from the Type 2 area and marked as a Type 3 area, and the first partition is generated based on the above partitions. Polishing strategy.
第二测试工件用于模拟工件20在分区抛光策略下的抛光效果。在一些实施例中,第二测试工件是使用第二抛光工装对测试工件进行预抛光而制得的,第二抛光工装的抛光面形状特征基于工件20的抛光区域的形状特征和第一分区抛光策略来确定。例如,工件20和测试工件的待抛光面为非球面,第一分区抛光策略将测试工件的抛光区域划分为1类和2类区域,1类和2类区域使用不同的第二预抛光工装进行预抛光。两个第二预抛光工装中任意一个的抛光面可以是:与对应的待抛光面接触配合的球面;或者,与对应待抛光面嵌合的非球面。又例如,工件20和测试工件的待抛光面为球面,前述的两个第二预抛光工装中任意一个的抛光面可以是:与对应待抛光面接触配合的非球面(例如,椭球面或其他弧形回转曲面);或者,与对应待抛光面嵌合的球面。关于第二预抛光工装的更多内容,可以参见本说明书的其他部分(例如,第一预抛光工装的相关描述)。The second test workpiece is used to simulate the polishing effect of the workpiece 20 under the zoned polishing strategy. In some embodiments, the second test workpiece is produced by pre-polishing the test workpiece using a second polishing tool, and the polishing surface shape characteristics of the second polishing tool are based on the shape characteristics of the polishing area of the workpiece 20 and the first zone polishing strategy to determine. For example, the surfaces to be polished of the workpiece 20 and the test workpiece are aspherical. The first partition polishing strategy divides the polishing area of the test workpiece into type 1 and type 2 areas. The type 1 and type 2 areas are processed using different second pre-polishing tools. Pre-polished. The polishing surface of any one of the two second pre-polishing tools can be: a spherical surface that is in contact with the corresponding surface to be polished; or an aspheric surface that is fitted with the corresponding surface to be polished. For another example, the surfaces to be polished of the workpiece 20 and the test workpiece are spherical surfaces, and the polishing surface of any one of the two aforementioned second pre-polishing tools can be: an aspheric surface (for example, an ellipsoid or other surface) that is in contact with the corresponding surface to be polished. Arc-shaped surface of revolution); or, a spherical surface fitted with the corresponding surface to be polished. For more information about the second pre-polishing tool, please refer to other parts of this specification (for example, the relevant description of the first pre-polishing tool).
需要说明的是,预抛光步骤中,基于不同抛光策略的预抛光使用不同的测试工件来实施。具体的说,测试工件可以有多个,预抛光步骤可以使用多个测试工件中的一个进行预抛光以制得第一测试工件,可以使用多个测试工件中的另一个进行预抛光以制得第二测试工件。It should be noted that in the pre-polishing step, pre-polishing based on different polishing strategies is implemented using different test workpieces. Specifically, there may be multiple test workpieces. The pre-polishing step may use one of the multiple test workpieces for pre-polishing to produce the first test workpiece, and the pre-polishing step may use another of the multiple test workpieces for pre-polishing to produce the first test workpiece. Second test artifact.
第二参数信息用于反映测试工件在分区预抛光前后形状特征的变化。在一些实施例中,第二参考信息可以基于对一个或多个第一测试工件的检测分析来获取。The second parameter information is used to reflect the changes in shape characteristics of the test workpiece before and after zoned pre-polishing. In some embodiments, the second reference information may be obtained based on inspection analysis of one or more first test artifacts.
在子抛光区域确定步骤中,可以基于预抛光结果确定工件20的至少第一抛光区域和第二抛光区域。In the sub-polishing area determining step, at least the first polishing area and the second polishing area of the workpiece 20 may be determined based on the pre-polishing result.
在一些实施例中,子抛光区域确定步骤可进一步包括:基于第一参数信息和预设阈值条件,确定工件20的至少第一抛光区域和第二抛光区域。在一些实施例中,可以基于整体抛光策略对测试工件进行一轮或多轮的整体抛光,并基于该整体抛光的抛光结果进行综合分析获得分区抛光策略(例如,第一分区抛光策略),从而确定工件20的子抛光区域。关于获得该分区抛光策略的更多内容,可以参见本说明书的其他部分(例如,第一分区抛光策略的相关描述)。In some embodiments, the sub-polishing area determining step may further include: determining at least the first polishing area and the second polishing area of the workpiece 20 based on the first parameter information and the preset threshold condition. In some embodiments, one or more rounds of overall polishing can be performed on the test workpiece based on the overall polishing strategy, and a comprehensive analysis is performed based on the polishing results of the overall polishing to obtain a partitioned polishing strategy (for example, a first partitioned polishing strategy), so that The sub-polishing area of the workpiece 20 is determined. For more information on obtaining this partition polishing strategy, please refer to other parts of this specification (for example, the relevant description of the first partition polishing strategy).
在一些实施例中,子抛光区域确定步骤可进一步包括:判断第二测试工件的第二参数信息是否符合预设阈值条件;若是,则基于第一分区抛光策略确定工件的至少第一抛光区域和第二抛光区域。In some embodiments, the step of determining the sub-polishing area may further include: determining whether the second parameter information of the second test workpiece meets a preset threshold condition; if so, determining at least the first polishing area of the workpiece based on the first partition polishing strategy and Second polishing area.
在一些实施例中,预设阈值条件还可用于判断抛光结果是否符合抛光精度要求。子抛光区域确定步骤可以在确定工件20的子抛光区域前,验证基于第一分区抛光策略获得的第二参数信息是否符合抛光精度要求。在第二参数信息符合预设阈值条件的情况下,可以基于第一分区抛光策略确定工件20的子抛光区域;在第二参数信息不符合预设阈值条件的情况下,可以继续进行第二轮或更多轮分区预抛光,直至获得的对应分区抛光策略可以使测试工件(以及工件20)的抛光结果符合抛光精度要求。在一些实施例中,第二轮分区预抛光包括:基于第二参数信息和预测抛光条件,生成第二分区抛光策略;基于第一分区抛光策略对测试工件的抛光区域进行预抛光,制得第二测试工件;获取第二测试工件的第二参数信息。 In some embodiments, the preset threshold condition can also be used to determine whether the polishing result meets the polishing accuracy requirements. The sub-polishing area determination step can verify whether the second parameter information obtained based on the first partition polishing strategy meets the polishing accuracy requirements before determining the sub-polishing area of the workpiece 20 . When the second parameter information meets the preset threshold condition, the sub-polishing area of the workpiece 20 can be determined based on the first partition polishing strategy; when the second parameter information does not meet the preset threshold condition, the second round can be continued. or more rounds of zoned pre-polishing until the obtained corresponding zoned polishing strategy can make the polishing result of the test workpiece (and the workpiece 20 ) meet the polishing accuracy requirements. In some embodiments, the second round of partitioned pre-polishing includes: generating a second partitioned polishing strategy based on the second parameter information and predicted polishing conditions; pre-polishing the polishing area of the test workpiece based on the first partitioned polishing strategy to obtain a third Second test workpiece; obtain the second parameter information of the second test workpiece.
本说明书一些实施例确定工件的不同子抛光区域,作为分区抛光的基础,若工件的抛光精度未达标准,可精确定位需要优化的子抛光区域,便于抛光参数和/或抛光模具的调整。Some embodiments of this specification determine different sub-polishing areas of the workpiece as the basis for partitioned polishing. If the polishing accuracy of the workpiece does not meet the standard, the sub-polishing areas that need to be optimized can be accurately located to facilitate the adjustment of polishing parameters and/or polishing molds.
在步骤820中,使用第一抛光模具10a对所述第一抛光区域21进行抛光。在一些实施例中,步骤820可由抛光模块230的第一抛光子模块执行。In step 820, the first polishing area 21 is polished using the first polishing mold 10a. In some embodiments, step 820 may be performed by the first polishing sub-module of polishing module 230.
第一抛光模具10a用于第一抛光区域21的抛光。在一些实施例中,第一抛光模具10a的抛光面曲率与第一抛光区域21的待抛光面曲率配合。例如,第一抛光区域21为非球面型抛光区域的部分区域,第一抛光模具10a的抛光面为球面。第一抛光模具10a的抛光面上各点与第一抛光区域21的待抛光面上对应点的曲率半径的差值均在预设阈值范围(例如,不超过0.01mm、0.03mm、0.05mm或0.08mm)内,使第一抛光模具10a的抛光面13a与第一抛光区域21的待抛光面对正时,该待抛光面能够与抛光面13a紧密贴合进行抛光。又例如,第一抛光区域21为球面型抛光区域的部分区域,第一抛光模具10a的抛光面为非球面(例如,椭球面或其他弧形回转曲面)。第一抛光模具10a的抛光面与第一抛光区域21的待抛光面相接,相接部位的曲率半径的差值均在预设阈值范围(例如,不超过0.01mm、0.03mm、0.05mm或0.08mm)内,使抛光过程中该待抛光面能够与抛光面在相接部位紧密贴合进行抛光。The first polishing mold 10a is used for polishing the first polishing area 21. In some embodiments, the curvature of the polishing surface of the first polishing mold 10a matches the curvature of the surface to be polished in the first polishing area 21. For example, the first polishing area 21 is a partial area of an aspherical polishing area, and the polishing surface of the first polishing mold 10a is a spherical surface. The difference in curvature radius of each point on the polishing surface of the first polishing mold 10a and the corresponding point on the to-be-polished surface of the first polishing area 21 is within a preset threshold range (for example, no more than 0.01mm, 0.03mm, 0.05mm or 0.08mm), the polishing surface 13a of the first polishing mold 10a and the surface to be polished in the first polishing area 21 are timed, and the surface to be polished can closely fit the polishing surface 13a for polishing. For another example, the first polishing area 21 is a partial area of a spherical polishing area, and the polishing surface of the first polishing mold 10a is an aspheric surface (for example, an ellipsoid or other arc-shaped surface of revolution). The polishing surface of the first polishing mold 10a is connected to the surface to be polished of the first polishing area 21, and the difference in the curvature radius of the connecting parts is within a preset threshold range (for example, no more than 0.01mm, 0.03mm, 0.05mm or 0.08mm), so that the surface to be polished can closely fit with the polishing surface at the connecting part for polishing during the polishing process.
在一些实施例中,可通过第一抛光模具10a的轴向转动、第一抛光模具10a的旋转摆动和工件20的轴向转动中的至少一种进行第一抛光区域21的抛光。In some embodiments, polishing of the first polishing area 21 may be performed by at least one of axial rotation of the first polishing mold 10a, rotational swing of the first polishing mold 10a, and axial rotation of the workpiece 20.
图9是根据一些实施例所述的第一抛光区域抛光过程的示例性结构示意图。在一个具体的实施例中,如图9所示,控制模块210控制抛光模块230的第一抛光子模块对工件20的第一抛光区域21进行抛光,其中,工件20的待抛光面为非球面,第一抛光模具10a的抛光面13a为球面。根据控制模块210的控制指令,第一抛光子模块操控第一抛光模具10a以O1为原点、沿方向w1做旋转摆动,操控第一抛光模具10a以L2为轴线、沿n’1方向做轴向转动,以及操控工件20以L1为轴线、沿方向n1做轴向转动。第一抛光区域21与第一抛光模具10a的抛光面13a曲率配合,在上述旋转摆动和轴向转动过程中,第一抛光模具10a向工件20持续施加压力P1,使抛光面13a与第一抛光区域21之间紧密贴合摩擦,以达到抛光第一抛光区域21的效果。Figure 9 is an exemplary structural schematic diagram of the polishing process of the first polishing area according to some embodiments. In a specific embodiment, as shown in FIG. 9 , the control module 210 controls the first polishing sub-module of the polishing module 230 to polish the first polishing area 21 of the workpiece 20 , where the surface to be polished of the workpiece 20 is an aspherical surface. , the polishing surface 13a of the first polishing mold 10a is a spherical surface. According to the control instructions of the control module 210, the first polishing sub-module controls the first polishing mold 10a to rotate and swing in the direction w1 with O1 as the origin, and controls the first polishing mold 10a to rotate axially in the n'1 direction with L2 as the axis. Rotate and manipulate the workpiece 20 to rotate axially along the direction n1 with L1 as the axis. The first polishing area 21 matches the curvature of the polishing surface 13a of the first polishing mold 10a. During the above-mentioned rotational swing and axial rotation process, the first polishing mold 10a continues to apply pressure P1 to the workpiece 20, so that the polishing surface 13a is in contact with the first polishing mold 13a. The areas 21 are in close contact with each other to achieve the effect of polishing the first polishing area 21 .
在一些实施例中,第一抛光模具10a具有第一抛光参数,第一抛光参数至少包括第一摆幅参数和第一压力参数。在一些实施例中,第一抛光参数还可以包括第一模具自转参数和/或第一工件自转参数。In some embodiments, the first polishing mold 10a has first polishing parameters, and the first polishing parameters at least include a first swing parameter and a first pressure parameter. In some embodiments, the first polishing parameter may also include a first mold rotation parameter and/or a first workpiece rotation parameter.
本说明书一些实施例采用不同的抛光模具、抛光参数对工件的不同子抛光区域进行抛光,降低抛光设备的调机难度。在工件抛光精度满足要求的情况下,完成抛光模具装配并设置对应抛光模具的抛光参数后,抛光设备无需再次进行参数设置,避免频繁调机影响抛光效率。Some embodiments of this specification use different polishing molds and polishing parameters to polish different sub-polishing areas of the workpiece, thereby reducing the difficulty of adjusting the polishing equipment. When the workpiece polishing accuracy meets the requirements, after completing the assembly of the polishing mold and setting the polishing parameters corresponding to the polishing mold, the polishing equipment does not need to set parameters again to avoid frequent machine adjustments that affect polishing efficiency.
在步骤830中,使用第二抛光模具10b对所述第二抛光区域22进行抛光,所述第一抛光模具10a的抛光面13a与所述第二抛光模具10b抛光面13b的曲率半径不同。在一些实施例中,步骤830可由抛光模块230的第二抛光子模块执行。In step 830, the second polishing area 22 is polished using the second polishing mold 10b. The polishing surface 13a of the first polishing mold 10a and the polishing surface 13b of the second polishing mold 10b have different curvature radii. In some embodiments, step 830 may be performed by the second polishing sub-module of polishing module 230.
第二抛光模具10b用于第二抛光区域22的抛光。在一些实施例中,第二抛光模具10b的抛光面13b曲率与第二抛光区域22的待抛光面曲率配合。例如,第二抛光区域22为非球面型抛光区域的部分区域,第二抛光模具10b的抛光面为球面。第二抛光模具10b的抛光面上各点与第二抛光区域22的待抛光面上对应点的曲率半径的差值均在预设阈值范围(例如,不超过0.01mm、0.03mm、0.05mm或0.08mm)内,使第二抛光模具10b的抛光面13b与第二抛光区域22的待抛光面对正时,该待抛光面能够与抛光面13b紧密贴合进行抛光。又例如,第二抛光区域22为球面型抛光区域的部分区域,第二抛光模具10b的抛光面为非球面(例如,椭球面或其他弧形回转曲面)。第二抛光模具10b的抛光面与第二抛光区域22的待抛光面相接,相接部位的曲率半径的差值均在预设阈值范围(例如,不超过0.01mm、0.03mm、0.05mm或0.08mm)内,使抛光过程中该待抛光面能够与抛光面在相接部位紧密贴合进行抛 光。The second polishing mold 10b is used for polishing the second polishing area 22. In some embodiments, the curvature of the polishing surface 13b of the second polishing mold 10b matches the curvature of the surface to be polished in the second polishing area 22. For example, the second polishing area 22 is a partial area of an aspherical polishing area, and the polishing surface of the second polishing mold 10b is a spherical surface. The difference in the curvature radius of each point on the polishing surface of the second polishing mold 10b and the corresponding point on the surface to be polished in the second polishing area 22 is within a preset threshold range (for example, no more than 0.01mm, 0.03mm, 0.05mm or 0.08mm), the polishing surface 13b of the second polishing mold 10b and the surface to be polished in the second polishing area 22 are timed, and the surface to be polished can closely fit the polishing surface 13b for polishing. For another example, the second polishing area 22 is a partial area of a spherical polishing area, and the polishing surface of the second polishing mold 10b is an aspheric surface (for example, an ellipsoid or other arc-shaped surface of revolution). The polishing surface of the second polishing mold 10b is connected with the surface to be polished in the second polishing area 22, and the difference in the curvature radius of the connecting parts is within a preset threshold range (for example, no more than 0.01mm, 0.03mm, 0.05mm or 0.08mm), so that the surface to be polished can closely fit the polishing surface at the connecting part during the polishing process. Light.
在一些实施例中,可通过第二抛光模具10b的轴向转动、第二抛光模具10b的旋转摆动和工件20的轴向转动中的至少一种进行第二抛光区域22的抛光。In some embodiments, polishing of the second polishing area 22 may be performed by at least one of axial rotation of the second polishing mold 10b, rotational swing of the second polishing mold 10b, and axial rotation of the workpiece 20.
图10是根据一些实施例所述的第二抛光区域抛光过程的示例性结构示意图。在一个具体的实施例中,如图10所示,控制模块210控制抛光模块230的第二抛光子模块对工件20的第二抛光区域22进行抛光,其中,工件20的待抛光面为非球面,第二抛光模具10b的抛光面13b为球面。根据控制模块210的控制指令,第二抛光子模块操控第二抛光模具10b以O2为原点、沿方向w2做旋转摆动,操控第二抛光模具10b以L3为轴线、沿n’2方向做轴向转动,以及操控工件20以L1为轴线、沿方向n2做轴向转动。第二抛光区域22与第二抛光模具10b的抛光面13b曲率配合,在上述旋转摆动和轴向转动过程中,第二抛光模具10b向工件20持续施加压力P2,使抛光面13b与第二抛光区域22之间紧密贴合摩擦,以达到抛光第二抛光区域22的效果。Figure 10 is an exemplary structural schematic diagram of the polishing process of the second polishing area according to some embodiments. In a specific embodiment, as shown in Figure 10, the control module 210 controls the second polishing sub-module of the polishing module 230 to polish the second polishing area 22 of the workpiece 20, where the surface to be polished of the workpiece 20 is an aspheric surface. , the polishing surface 13b of the second polishing mold 10b is a spherical surface. According to the control instructions of the control module 210, the second polishing sub-module controls the second polishing mold 10b to rotate and swing in the direction w2 with O2 as the origin, and controls the second polishing mold 10b to rotate axially in the n'2 direction with L3 as the axis. Rotate, and control the workpiece 20 to perform axial rotation along the direction n2 with L1 as the axis. The second polishing area 22 matches the curvature of the polishing surface 13b of the second polishing mold 10b. During the above-mentioned rotational swing and axial rotation process, the second polishing mold 10b continues to apply pressure P2 to the workpiece 20, so that the polishing surface 13b is in contact with the second polishing mold 10b. The areas 22 are in close contact with each other and rubbed together to achieve the effect of polishing the second polishing area 22 .
在一些实施例中,第二抛光模具10b具有第二抛光参数,第二抛光参数至少包括第二摆幅参数和第二压力参数。在一些实施例中,第二抛光参数还可以包括第二模具自转参数和/或第二工件自转参数。In some embodiments, the second polishing mold 10b has second polishing parameters, and the second polishing parameters at least include a second swing parameter and a second pressure parameter. In some embodiments, the second polishing parameter may also include a second mold rotation parameter and/or a second workpiece rotation parameter.
在一些实施例中,不同抛光模具的抛光参数互不相同,如第一抛光模具10a的第一抛光参数和第二抛光模具10b的第二抛光参数不同。抛光参数互不相同是指抛光参数的多种参数中,至少存在一种参数互不相同。例如,第一抛光参数与第二抛光参数不同,其中,第一摆幅参数与第二摆幅参数不同,第一压力参数与第二压力参数相同。In some embodiments, the polishing parameters of different polishing molds are different from each other, for example, the first polishing parameter of the first polishing mold 10a and the second polishing parameter of the second polishing mold 10b are different. The polishing parameters being different from each other means that among the multiple parameters of the polishing parameters, at least one parameter is different from each other. For example, the first polishing parameter is different from the second polishing parameter, the first swing parameter is different from the second swing parameter, and the first pressure parameter is the same as the second pressure parameter.
在一些实施例中,第一抛光模具10a和第二抛光模具10b分别抛光工件20的不同子抛光区域,第一抛光模具10a的抛光面13a与第二抛光模具10b的抛光面13b的曲率半径不同。例如,如图9和图10所示,第一抛光模具10a和第二抛光模具10b分区抛光工件20的非球面型抛光区域。第一抛光模具10a的抛光面13a曲率半径为45mm,第一抛光模具10a抛光工件20的第一抛光区域21;第二抛光模具10b的抛光面13b曲率半径为60mm,第二抛光模具10b抛光工件20的第二抛光区域22。In some embodiments, the first polishing mold 10a and the second polishing mold 10b respectively polish different sub-polishing areas of the workpiece 20, and the polishing surface 13a of the first polishing mold 10a and the polishing surface 13b of the second polishing mold 10b have different curvature radii. . For example, as shown in FIGS. 9 and 10 , the first polishing mold 10 a and the second polishing mold 10 b zone polish the aspherical polishing area of the workpiece 20 . The curvature radius of the polishing surface 13a of the first polishing mold 10a is 45mm, and the first polishing mold 10a polishes the first polishing area 21 of the workpiece 20; the curvature radius of the polishing surface 13b of the second polishing mold 10b is 60mm, and the second polishing mold 10b polishes the workpiece. The second polishing area 22 of 20.
在一些实施例中,第一抛光模具10a和第二抛光模具10b分别抛光工件20的不同子抛光区域,第一抛光模具10a的抛光面13a与第二抛光模具10b的抛光面13b的曲率半径变化率不同。例如,第一抛光模具10a和第二抛光模具10b分区抛光工件20的球面型抛光区域。第一抛光模具10a的抛光面13a和第二抛光模具10b的抛光面13b可以为非球面(例如,椭球面或其他弧形回转曲面)。抛光面13a与第一抛光区域21的待抛光面的相接部位的曲率半径和抛光面13b与第二抛光区域21的待抛光面的相接部位的曲率半径可以相同或相近,但从整体来看,第一抛光模具10a的抛光面13a的曲率半径变化率与第二抛光模具10b的抛光面13b的曲率半径变化率不同,第一抛光模具10a的抛光面13a与第二抛光模具10b的抛光面13b的曲率半径也不同,以便于准确贴合球面上位置不同的子抛光区域。In some embodiments, the first polishing mold 10a and the second polishing mold 10b respectively polish different sub-polishing areas of the workpiece 20, and the curvature radii of the polishing surface 13a of the first polishing mold 10a and the polishing surface 13b of the second polishing mold 10b change. The rates are different. For example, the first polishing mold 10a and the second polishing mold 10b partition the spherical polishing area of the workpiece 20 for polishing. The polishing surface 13a of the first polishing mold 10a and the polishing surface 13b of the second polishing mold 10b may be aspherical surfaces (for example, ellipsoidal surfaces or other arc-shaped revolution surfaces). The radius of curvature of the connecting portion of the polishing surface 13a and the surface to be polished in the first polishing area 21 and the radius of curvature of the connecting portion of the polishing surface 13b and the surface to be polished of the second polishing area 21 may be the same or similar, but overall See, the curvature radius change rate of the polishing surface 13a of the first polishing mold 10a is different from the curvature radius change rate of the polishing surface 13b of the second polishing mold 10b. The curvature radii of the surface 13b are also different in order to accurately fit the sub-polishing areas with different positions on the spherical surface.
在一些实施例中,流程800还可包括第三抛光区域抛光步骤、第四抛光区域抛光步骤至第N抛光区域抛光步骤。每个抛光区域使用与其待抛光面曲率配合的对应抛光模具,并基于不同抛光区域分别设置抛光参数。In some embodiments, the process 800 may further include a third polishing area polishing step, a fourth polishing area polishing step to an Nth polishing area polishing step. Each polishing area uses a corresponding polishing mold that matches the curvature of the surface to be polished, and the polishing parameters are set based on different polishing areas.
在一些实施例中,可使用模具加工流程300制备的标准模具作为子抛光区域的抛光模具,如使用流程300制备的标准模具作为第一抛光模具和/或第二抛光模具。关于可作为第一抛光模具和/或第二抛光模具的标准模具的结构、加工方法的更多内容,请参见图3至图8的相关描述,在此不再赘述。In some embodiments, the standard mold prepared by the mold processing process 300 can be used as the polishing mold of the sub-polishing area, such as using the standard mold prepared by the process 300 as the first polishing mold and/or the second polishing mold. For more information about the structure and processing method of the standard mold that can be used as the first polishing mold and/or the second polishing mold, please refer to the relevant descriptions in Figures 3 to 8, which will not be described again here.
本说明书一些实施例的工件抛光方法使用曲率半径不同的多个抛光模具对工件进行分区抛光,降低每个子抛光区域的抛光模具加工难度。特别的,使用该工件抛光方法确定工件的多个子抛光区域对应的抛光模具、抛光参数后,抛光设备即可进行工件的标准化的批量抛光,过程中无需进一步的设备调试,提高工件的抛光精度和抛光效率。 The workpiece polishing method in some embodiments of this specification uses multiple polishing molds with different curvature radii to polish the workpiece in zones, thereby reducing the difficulty of processing the polishing mold in each sub-polishing area. In particular, after using this workpiece polishing method to determine the polishing molds and polishing parameters corresponding to multiple sub-polishing areas of the workpiece, the polishing equipment can perform standardized batch polishing of the workpieces without further equipment debugging during the process, thereby improving the polishing accuracy and accuracy of the workpieces. Polishing efficiency.
本说明书所披露的模具加工方法和工件抛光方法,可能带来的有益效果包括但不限于:(1)本说明书实施例的模具加工方法对初始加工信息进行一次或多次补偿校正,获得目标加工信息,基于该目标加工信息加工的标准模具可有效减少或消除加工设备的系统误差影响;(2)本说明书实施例的模具加工方法可实现模具标准化的批量生产,成品一致性良好,模具加工精度和加工效率高;(3)本说明书实施例的工件抛光方法分不同子抛光区域、不同抛光模具、不同抛光参数对工件进行精细化抛光,相比使用单一抛光模具完成工件整体抛光,这种精细化抛光可提高工件的抛光精度;(4)相比使用单一抛光模具完成工件整体抛光,使用本说明书实施例的工件抛光方法,可采用多个抛光设备进行连续的抛光作业,无需中途调机,降低抛光难度,提高抛光效率;(5)本说明书实施例的工件抛光方法使用不同的抛光模具进行工件的分区抛光,降低了单个抛光模具的加工难度。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。The possible beneficial effects of the mold processing method and workpiece polishing method disclosed in this specification include but are not limited to: (1) The mold processing method of the embodiment of this specification performs one or more compensation corrections on the initial processing information to obtain target processing Information, the standard mold processed based on the target processing information can effectively reduce or eliminate the impact of systematic errors of the processing equipment; (2) The mold processing method of the embodiment of this specification can achieve standardized batch production of molds, with good consistency of finished products and high mold processing accuracy. and high processing efficiency; (3) The workpiece polishing method in the embodiment of this specification is divided into different sub-polishing areas, different polishing molds, and different polishing parameters to finely polish the workpiece. Compared with using a single polishing mold to complete the overall polishing of the workpiece, this fine Chemical polishing can improve the polishing accuracy of the workpiece; (4) Compared with using a single polishing mold to complete the overall polishing of the workpiece, using the workpiece polishing method of the embodiment of this specification, multiple polishing equipment can be used to perform continuous polishing operations without the need to adjust the machine midway. Reduce the difficulty of polishing and improve the polishing efficiency; (5) The workpiece polishing method in the embodiment of this specification uses different polishing molds to perform partitioned polishing of the workpiece, which reduces the processing difficulty of a single polishing mold. It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
本领域的技术人员应当理解,以上实施例仅为说明本发明,而不对本发明构成限制。凡在本发明的精神和原则内所作的任何修改、等同替换和变动等,均应包含在本发明的保护范围之内。 Those skilled in the art should understand that the above embodiments are only for illustrating the present invention and do not limit the present invention. Any modifications, equivalent substitutions and changes made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.

Claims (24)

  1. 一种模具加工方法,其特征在于,包括:A mold processing method, characterized by including:
    获取第一模具的第一表面信息,所述第一模具基于初始加工信息制得;Obtaining first surface information of the first mold, which is produced based on the initial processing information;
    基于所述第一表面信息和目标表面信息获得补偿信息;Obtain compensation information based on the first surface information and target surface information;
    基于所述初始加工信息和所述补偿信息生成目标加工信息;Generate target processing information based on the initial processing information and the compensation information;
    基于所述目标加工信息制备标准模具,所述标准模具包括模具本体和覆盖层。A standard mold is prepared based on the target processing information, and the standard mold includes a mold body and a covering layer.
  2. 如权利要求1所述的模具加工方法,其特征在于,所述基于所述目标加工信息制备标准模具包括:The mold processing method of claim 1, wherein preparing a standard mold based on the target processing information includes:
    基于所述目标加工信息对初始模具进行车削,制得所述模具本体;Turn the initial mold based on the target processing information to obtain the mold body;
    将所述覆盖层贴附于所述模具本体上;Attach the covering layer to the mold body;
    基于所述目标加工信息对所述覆盖层进行车削,制得所述标准模具。The covering layer is turned based on the target processing information to prepare the standard mold.
  3. 如权利要求2所述的模具加工方法,其特征在于,所述将所述覆盖层贴附于所述模具本体上包括:The mold processing method according to claim 2, wherein attaching the covering layer to the mold body includes:
    加热所述模具本体;heating the mold body;
    所述覆盖层与加热的所述模具本体压实,使所述覆盖层贴附于所述模具本体上。The covering layer is compacted with the heated mold body so that the covering layer adheres to the mold body.
  4. 如权利要求3所述的模具加工方法,其特征在于,所述模具本体通过加热线圈进行加热,待加热的所述模具本体置于所述加热线圈内。The mold processing method according to claim 3, wherein the mold body is heated by a heating coil, and the mold body to be heated is placed in the heating coil.
  5. 如权利要求4所述的模具加工方法,其特征在于,所述加热线圈的加热温度为160℃~200℃。The mold processing method according to claim 4, wherein the heating temperature of the heating coil is 160°C to 200°C.
  6. 如权利要求3所述的模具加工方法,其特征在于,所述覆盖层与加热的所述模具本体通过加压的压盘工装压实,所述压盘工装的施压面曲率与所述模具本体的承压面曲率配合。The mold processing method according to claim 3, characterized in that the covering layer and the heated mold body are compacted by a pressurized platen tooling, and the curvature of the pressure surface of the platen tooling is consistent with that of the mold. The curvature of the pressure-bearing surface of the body matches.
  7. 如权利要求6所述的模具加工方法,其特征在于,所述压盘工装加压的压力范围为0.1Mpa~0.8Mpa。The mold processing method according to claim 6, characterized in that the pressure range of the pressure plate tooling is 0.1Mpa~0.8Mpa.
  8. 如权利要求1所述的模具加工方法,其特征在于,所述补偿信息包括主体补偿信息和边缘扩展信息;所述基于所述第一表面信息和目标表面信息获得补偿信息包括:The mold processing method according to claim 1, wherein the compensation information includes body compensation information and edge extension information; and obtaining the compensation information based on the first surface information and target surface information includes:
    基于所述第一表面信息和所述目标表面信息的对比,获得对应所述第一模具主体的主体补偿信息;Based on the comparison between the first surface information and the target surface information, obtain body compensation information corresponding to the first mold body;
    基于所述第一表面信息的数据趋势,获得对应所述第一模具边缘的边缘扩展信息。Based on the data trend of the first surface information, edge extension information corresponding to the edge of the first mold is obtained.
  9. 如权利要求1所述的模具加工方法,其特征在于,所述基于所述初始加工信息和所述补偿信息生成目标加工信息包括:The mold processing method of claim 1, wherein generating target processing information based on the initial processing information and the compensation information includes:
    基于所述初始加工信息和所述补偿信息生成待验加工信息;Generate processing information to be verified based on the initial processing information and the compensation information;
    获取第二模具的第二表面信息,所述第二模具基于所述待验加工信息制得;Obtain the second surface information of the second mold, which is produced based on the processing information to be verified;
    基于所述第二表面信息和所述目标表面信息,判断所述第二模具的表面误差是否在预设值范围内;Based on the second surface information and the target surface information, determine whether the surface error of the second mold is within a preset value range;
    若是,则确定所述待验加工信息为目标加工信息。If so, the processing information to be verified is determined to be the target processing information.
  10. 一种模具加工系统,其特征在于,所述系统包括:A mold processing system, characterized in that the system includes:
    表面信息获取模块,被配置为获取第一模具的第一表面信息,所述第一模具基于初始加工信息制得; a surface information acquisition module configured to acquire first surface information of the first mold, which is produced based on the initial processing information;
    补偿信息获取模块,被配置为基于所述第一表面信息和目标表面信息获得补偿信息;a compensation information acquisition module configured to obtain compensation information based on the first surface information and the target surface information;
    加工信息生成模块,被配置为基于所述初始加工信息和所述补偿信息生成目标加工信息;以及a processing information generation module configured to generate target processing information based on the initial processing information and the compensation information; and
    加工模块,被配置为基于所述目标加工信息制备标准模具,所述标准模具包括模具本体和覆盖层。A processing module configured to prepare a standard mold based on the target processing information, where the standard mold includes a mold body and a covering layer.
  11. 一种工件抛光方法,其特征在于,所述方法包括:A workpiece polishing method, characterized in that the method includes:
    确定工件的至少第一抛光区域和第二抛光区域;determining at least a first polished area and a second polished area of the workpiece;
    使用第一抛光模具对所述第一抛光区域进行抛光;以及Polish the first polishing area using a first polishing mold; and
    使用第二抛光模具对所述第二抛光区域进行抛光;Use a second polishing mold to polish the second polishing area;
    其中,所述第一抛光模具的抛光面与所述第二抛光模具抛光面的曲率半径不同。Wherein, the polishing surface of the first polishing mold and the polishing surface of the second polishing mold have different curvature radii.
  12. 如权利要求11所述的工件抛光方法,其特征在于,所述第一抛光区域的待抛光面曲率与所述第一抛光模具的抛光面曲率配合;所述第二抛光区域的待抛光面曲率与所述第二抛光模具的抛光面曲率配合。The workpiece polishing method according to claim 11, characterized in that the curvature of the surface to be polished in the first polishing area matches the curvature of the polishing surface of the first polishing mold; the curvature of the surface to be polished in the second polishing area Matching with the curvature of the polishing surface of the second polishing mold.
  13. 如权利要求11所述的工件抛光方法,其特征在于,所述第一抛光模具具有第一抛光参数,所述第一抛光参数至少包括第一摆幅参数和第一压力参数;所述第二抛光模具具有第二抛光参数,所述第二抛光参数至少包括第二摆幅参数和第二压力参数;所述第一抛光参数与所述第二抛光参数不同。The workpiece polishing method according to claim 11, characterized in that the first polishing mold has first polishing parameters, the first polishing parameters at least include a first swing parameter and a first pressure parameter; the second The polishing mold has second polishing parameters, the second polishing parameters include at least a second swing parameter and a second pressure parameter; the first polishing parameter is different from the second polishing parameter.
  14. 如权利要求11所述的工件抛光方法,其特征在于,所述第一抛光模具和/或所述第二抛光模具为标准模具,所述标准模具包括模具本体和覆盖层。The workpiece polishing method according to claim 11, wherein the first polishing mold and/or the second polishing mold are standard molds, and the standard molds include a mold body and a covering layer.
  15. 如权利要求14所述的工件抛光方法,其特征在于,所述标准模具的制备包括:The workpiece polishing method according to claim 14, wherein the preparation of the standard mold includes:
    获取第一模具的第一表面信息,所述第一模具基于初始加工信息制得;Obtaining first surface information of the first mold, which is produced based on the initial processing information;
    基于所述第一表面信息和目标表面信息获得补偿信息;Obtain compensation information based on the first surface information and target surface information;
    基于所述初始加工信息和所述补偿信息生成目标加工信息;Generate target processing information based on the initial processing information and the compensation information;
    基于所述目标加工信息制备标准模具,所述标准模具包括模具本体和覆盖层。A standard mold is prepared based on the target processing information, and the standard mold includes a mold body and a covering layer.
  16. 如权利要求15所述的工件抛光方法,其特征在于,所述基于所述目标加工信息制备标准模具包括:The workpiece polishing method according to claim 15, wherein preparing a standard mold based on the target processing information includes:
    基于所述目标加工信息对初始模具进行车削,制得所述模具本体;Turn the initial mold based on the target processing information to obtain the mold body;
    将所述覆盖层贴附于所述模具本体上;Attach the covering layer to the mold body;
    基于所述目标加工信息对所述覆盖层进行车削,制得所述标准模具。The covering layer is turned based on the target processing information to prepare the standard mold.
  17. 如权利要求11所述的工件抛光方法,其特征在于,所述确定工件的至少第一抛光区域和第二抛光区域包括:The workpiece polishing method according to claim 11, wherein determining at least the first polishing area and the second polishing area of the workpiece includes:
    确定所述工件的抛光区域的形状特征;Determining the shape characteristics of the polished area of the workpiece;
    基于所述形状特征对测试工件的抛光区域进行预抛光,所述测试工件选取自所述工件;Pre-polishing a polished area of a test workpiece selected from the workpiece based on the shape characteristics;
    基于预抛光结果确定所述工件的至少第一抛光区域和第二抛光区域。At least a first polishing area and a second polishing area of the workpiece are determined based on pre-polishing results.
  18. 如权利要求17所述的工件抛光方法,其特征在于,所述预抛光结果包括所述测试工件的抛光区域经预抛光后的参数信息;所述参数信息包括抛光去除率;所述参数信息通过对比所述测试工件的抛光区域经预抛光前后的形状特征来确定。 The workpiece polishing method according to claim 17, wherein the pre-polishing result includes parameter information after pre-polishing the polished area of the test workpiece; the parameter information includes polishing removal rate; the parameter information is obtained by It is determined by comparing the shape characteristics of the polished area of the test workpiece before and after pre-polishing.
  19. 如权利要求18所述的工件抛光方法,其特征在于,所述基于所述形状特征对测试工件的抛光区域进行预抛光包括:The workpiece polishing method according to claim 18, wherein pre-polishing the polishing area of the test workpiece based on the shape characteristics includes:
    基于整体抛光策略对所述测试工件的抛光区域进行预抛光,制得第一测试工件;Pre-polishing the polished area of the test workpiece based on the overall polishing strategy to prepare the first test workpiece;
    获取所述第一测试工件的第一参数信息。Obtain first parameter information of the first test workpiece.
  20. 如权利要求19所述的工件抛光方法,其特征在于,所述基于预抛光结果确定所述工件的至少第一抛光区域和第二抛光区域包括:The workpiece polishing method according to claim 19, wherein determining at least the first polishing area and the second polishing area of the workpiece based on the pre-polishing result includes:
    基于所述第一参数信息和预设阈值条件,确定所述工件的至少第一抛光区域和第二抛光区域。Based on the first parameter information and the preset threshold condition, at least a first polishing area and a second polishing area of the workpiece are determined.
  21. 如权利要求19所述的工件抛光方法,其特征在于,所述预基于所述形状特征对测试工件的抛光区域进行预抛光还包括:The workpiece polishing method according to claim 19, wherein pre-polishing the polishing area of the test workpiece based on the shape characteristics further includes:
    基于所述第一参数信息和预设阈值条件,生成第一分区抛光策略;Generate a first partition polishing strategy based on the first parameter information and preset threshold conditions;
    基于第一分区抛光策略对所述测试工件的抛光区域进行预抛光,制得第二测试工件;Pre-polishing the polishing area of the test workpiece based on the first partition polishing strategy to prepare a second test workpiece;
    获取所述第二测试工件的第二参数信息。Obtain second parameter information of the second test workpiece.
  22. 如权利要求21所述的工件抛光方法,其特征在于,所述基于预抛光结果确定所述工件的至少第一抛光区域和第二抛光区域包括:The workpiece polishing method according to claim 21, wherein determining at least the first polishing area and the second polishing area of the workpiece based on the pre-polishing results includes:
    判断所述第二参数信息是否符合预设阈值条件;Determine whether the second parameter information meets a preset threshold condition;
    若是,则基于第一分区抛光策略确定所述工件的至少第一抛光区域和第二抛光区域。If so, at least a first polishing area and a second polishing area of the workpiece are determined based on the first zoned polishing strategy.
  23. 如权利要求19-22中任一项所述的工件抛光方法,其特征在于,所述测试工件的预抛光通过使用预抛光工装来进行,所述预抛光工装的抛光面形状特征基于所述工件的抛光区域的形状特征和对应抛光策略来确定。The workpiece polishing method according to any one of claims 19 to 22, wherein the pre-polishing of the test workpiece is performed by using a pre-polishing tool, and the polishing surface shape characteristics of the pre-polishing tool are based on the workpiece. The shape characteristics of the polishing area and the corresponding polishing strategy are determined.
  24. 一种工件抛光系统,其特征在于,所述系统包括:A workpiece polishing system, characterized in that the system includes:
    抛光区域确定模块,被配置为:The polishing area determination module is configured as:
    确定工件的至少第一抛光区域和第二抛光区域;determining at least a first polished area and a second polished area of the workpiece;
    抛光模块,被配置为:Polishing module, configured as:
    使用第一抛光模具对所述第一抛光区域进行抛光;Use a first polishing mold to polish the first polishing area;
    使用第二抛光模具对所述第二抛光区域进行抛光;Use a second polishing mold to polish the second polishing area;
    其中,所述第一抛光模具的抛光面与所述第二抛光模具抛光面的曲率半径不同。 Wherein, the polishing surface of the first polishing mold and the polishing surface of the second polishing mold have different curvature radii.
PCT/CN2023/098843 2022-06-10 2023-06-07 Mold processing method, and workpiece polishing method and system WO2023236987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210650123.4 2022-06-10
CN202210650123.4A CN114734213B (en) 2022-06-10 2022-06-10 Mould processing method and system

Publications (1)

Publication Number Publication Date
WO2023236987A1 true WO2023236987A1 (en) 2023-12-14

Family

ID=82287451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098843 WO2023236987A1 (en) 2022-06-10 2023-06-07 Mold processing method, and workpiece polishing method and system

Country Status (2)

Country Link
CN (3) CN114734213B (en)
WO (1) WO2023236987A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734213B (en) * 2022-06-10 2022-09-09 眉山博雅新材料股份有限公司 Mould processing method and system
CN116787300B (en) * 2023-07-01 2024-04-02 广州中誉精密模具有限公司 Polishing control method, device, equipment and storage medium for car lamp mold

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695393A (en) * 1994-11-26 1997-12-09 Loh Optikmaschinen Ag Tool for the precision processing of optical surfaces
TW200631732A (en) * 2005-03-08 2006-09-16 Prec Instr Dev Ct Nat Applied Res Lab Polishing apparatus and method
CN101168239A (en) * 2007-11-24 2008-04-30 国营汉光机械厂 Large die polishing method for infrared aspheric surface optical accessory
CN103465440A (en) * 2013-09-10 2013-12-25 上海康耐特光学股份有限公司 Manufacturing method and lens mould
CN108284369A (en) * 2018-03-27 2018-07-17 广东工业大学 A kind of polishing of Aspheric Ultra-precision Turning and form error compensation method
CN215825024U (en) * 2021-08-27 2022-02-15 南京茂莱光学科技股份有限公司 Machining device for hemispherical lens
CN114734213A (en) * 2022-06-10 2022-07-12 眉山博雅新材料股份有限公司 Mould processing method and system

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772810A (en) * 1980-10-23 1982-05-07 Ricoh Co Ltd Production of precise metal mold
CN1091408C (en) * 1996-01-26 2002-09-25 美国3M公司 Stacked laminate mold and method of making
JPH1029829A (en) * 1996-07-17 1998-02-03 Asahi Glass Co Ltd Bending device for glass plate, bending die and its production
TWI230109B (en) * 2003-04-24 2005-04-01 Prec Machinery Res & Dev Cen Fitting method capable of compensating machining errors of shaft seats
CN102729643A (en) * 2011-03-31 2012-10-17 深圳市大族激光科技股份有限公司 Marking method used in laser processing of three-dimensional surface, and device thereof
CN102169521B (en) * 2011-04-25 2012-08-15 天津职业技术师范大学 Design method for molded surface of automobile cover part die based on molded surface deformation compensation
DE102013224649A1 (en) * 2013-11-29 2015-06-03 Sauer Gmbh Lasertec Machine tool, measuring device, method for creating work data, build-up welding method, workpiece temperature control device
CN103862597B (en) * 2014-02-24 2016-05-04 锦丰科技(深圳)有限公司 A kind of injection mold manufacture method
TWI557586B (en) * 2015-12-14 2016-11-11 財團法人金屬工業研究發展中心 Compensation forming method for gear molds
CN107116139B (en) * 2017-04-28 2018-10-12 天津职业技术师范大学 The design method and cladding member mold of die face
CN107422648A (en) * 2017-08-14 2017-12-01 哈尔滨理工大学 A kind of free form surface ball-end milling hardened steel mold process integrated optimization method
CN109635362B (en) * 2018-11-22 2021-01-08 哈尔滨理工大学 Method for determining sheet stamping springback compensation factor
CN111036778A (en) * 2019-12-25 2020-04-21 浙江金固股份有限公司 Processing method of roller-shaped die
WO2021204468A1 (en) * 2020-04-06 2021-10-14 Saint-Gobain Glass France Process for manufacturing a ceramic bending mold for glass panes
CN111680439A (en) * 2020-05-22 2020-09-18 中国第一汽车股份有限公司 Compensation method for defects of surface products of automobile outer covering parts
CN112454760B (en) * 2020-09-22 2022-05-10 成都飞机工业(集团)有限责任公司 Mold surface deformation compensation mold repairing method for composite material member mold
CN112476164B (en) * 2020-10-16 2022-03-22 中国第一汽车股份有限公司 Method for manually correcting defects of convex surface of die
CN113031516A (en) * 2021-03-01 2021-06-25 上海智能制造功能平台有限公司 Plane compensation trajectory optimization method and device considering diameter of milling cutter
CN113239454B (en) * 2021-04-06 2023-06-13 中国第一汽车股份有限公司 Calculation method of mold profile compensation value
CN114102731B (en) * 2021-11-05 2024-03-15 重庆海尔制冷电器有限公司 Control method of refrigerator liner trimming die replacement system and system
CN114296394A (en) * 2022-01-13 2022-04-08 东莞泰极科技有限公司 CNC machining tool path processing method and workpiece machining process
CN114237155B (en) * 2022-02-24 2022-06-07 深圳市正和楚基科技有限公司 Error prediction and compensation method, system and medium for multi-axis numerical control machining
CN114589579B (en) * 2022-05-10 2022-08-12 眉山博雅新材料股份有限公司 Polishing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695393A (en) * 1994-11-26 1997-12-09 Loh Optikmaschinen Ag Tool for the precision processing of optical surfaces
TW200631732A (en) * 2005-03-08 2006-09-16 Prec Instr Dev Ct Nat Applied Res Lab Polishing apparatus and method
CN101168239A (en) * 2007-11-24 2008-04-30 国营汉光机械厂 Large die polishing method for infrared aspheric surface optical accessory
CN103465440A (en) * 2013-09-10 2013-12-25 上海康耐特光学股份有限公司 Manufacturing method and lens mould
CN108284369A (en) * 2018-03-27 2018-07-17 广东工业大学 A kind of polishing of Aspheric Ultra-precision Turning and form error compensation method
CN215825024U (en) * 2021-08-27 2022-02-15 南京茂莱光学科技股份有限公司 Machining device for hemispherical lens
CN114734213A (en) * 2022-06-10 2022-07-12 眉山博雅新材料股份有限公司 Mould processing method and system
CN115464349A (en) * 2022-06-10 2022-12-13 眉山博雅新材料股份有限公司 Mould processing method and system
CN115609250A (en) * 2022-06-10 2023-01-17 眉山博雅新材料股份有限公司 Mould processing method and system

Also Published As

Publication number Publication date
CN114734213A (en) 2022-07-12
CN114734213B (en) 2022-09-09
CN115464349A (en) 2022-12-13
CN115609250A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2023236987A1 (en) Mold processing method, and workpiece polishing method and system
AU2005205040B2 (en) Device and method for polishing an optical surface, optical component, and method for the production of a polishing tool
CN105834859A (en) Cold-machining technology for high-precision optical lenses
US6872120B2 (en) Method of producing spectacle lens
CN103600284B (en) A kind of superfine processing method with thin-walled large curved surface metal parts
CN109202709A (en) A kind of adaptive grinding head for polishing of pressure control constant pressure
JPS63237025A (en) Method and apparatus for making prescription glasses lens
CN101001709A (en) Raster cutting technology for ophthalmic lenses
CN102490103A (en) Meniscus lens and processing method therefor
CN102269830A (en) Processing method for improving central deviation precision of non-spherical lens
Yan et al. Three-linear-axis grinding of small aperture aspheric surfaces
CN106239835A (en) The bright finish mold insert of a kind of injection mold and manufacture method thereof
CN108655898B (en) Automatic correction and generation method of faucet polishing program
JP2002283204A (en) Manufacturing method of spectacle lens
CN105538085A (en) Special-shaped lens machining method based on computer aided manufacturing (CAM)
CN107052948A (en) A kind of Cassegrain's primary mirror precision processing method and its matched clamp
CN114833523B (en) Method for eliminating concave flanging pit through flexible pressing plate
CN211681361U (en) Polishing tool for optical numerical control precision machining
CN116423370A (en) Lens polishing method
JP3466880B2 (en) Processing method of spherical shape such as lens
JP5404500B2 (en) Lens polishing equipment
JP2022109236A (en) Lens support without using support block in lens surface processing
CN116572143A (en) Method for polishing plane by automatic spherical polishing equipment
JP2001105311A (en) Lens working method
CN117655816A (en) Deterministic grinding and polishing shape-modifying method and system for reflecting surface of carbon fiber antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819152

Country of ref document: EP

Kind code of ref document: A1