WO2023236966A1 - 光模块散热组件及光通信设备 - Google Patents

光模块散热组件及光通信设备 Download PDF

Info

Publication number
WO2023236966A1
WO2023236966A1 PCT/CN2023/098715 CN2023098715W WO2023236966A1 WO 2023236966 A1 WO2023236966 A1 WO 2023236966A1 CN 2023098715 W CN2023098715 W CN 2023098715W WO 2023236966 A1 WO2023236966 A1 WO 2023236966A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
optical module
optical
heat
dissipation structure
Prior art date
Application number
PCT/CN2023/098715
Other languages
English (en)
French (fr)
Inventor
焦泽龙
王旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023236966A1 publication Critical patent/WO2023236966A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the field of optical communication technology, and in particular, to an optical module heat dissipation component and optical communication equipment.
  • double-layer optical cages have the advantages of high integration and simple board-level layout.
  • the bottom optical module in the double-layer optical cage has a small space for heat dissipation and is difficult to dissipate effectively. As a result, double-layer optical cages cannot be widely used. .
  • the purpose of this application is to provide an optical module heat dissipation assembly and optical communication equipment to solve the above-mentioned problem that the bottom optical module in the existing double-layer optical cage is difficult to effectively dissipate heat.
  • optical module heat dissipation assembly which includes:
  • At least two layers of optical modules there are at least two layers of optical modules, at least two layers of the optical modules are arranged in a stack, and the heat dissipation direction of the lowest layer optical module is away from the adjacent optical modules located on the upper layer;
  • a heat dissipation structure the heat dissipation structure is in thermal conductive contact with one end of the lowest layer optical module in the heat dissipation direction;
  • a heat exchanger with refrigerant stored in the heat exchanger
  • a driving pump is connected to the heat exchanger, and the driving pump is used to control the circulating flow of the refrigerant between the heat dissipation structure and the heat exchanger.
  • the optical module heat dissipation assembly made the heat dissipation direction of the bottom optical module toward the side of the circuit board.
  • the heat dissipation structure can contact the surface of the bottom optical module facing the circuit board to conduct heat, thereby making the bottom optical module
  • the heat can be transferred directly to the heat dissipation structure.
  • the refrigerant can be driven by the drive pump to circulate between the heat dissipation structure and the heat exchanger. During the circulation process, the refrigerant can take away the heat transferred to the heat dissipation structure, thereby achieving continuous heat dissipation for the lowest optical module. Cool down.
  • the heat dissipation structure can be a box-shaped structure with a small thickness, which can realize the flow of refrigerant. Through the principle of refrigerant flow and cooling, the overall volume of the heat dissipation structure can be designed to be smaller without the need to design fins, so that the most efficient use can be made.
  • the space between the bottom optical module and the circuit board can be arranged, or a hole can be made on the circuit board so that the heat dissipation structure is embedded in the hole on the circuit board, making the connection easy and the heat dissipation effect excellent.
  • the at least two-layer optical module is a two-layer optical module, and the heat dissipation direction of the upper optical module is away from the bottom optical module; the upper optical module is facing away from the bottom optical module.
  • a heat dissipation device is provided on one side.
  • the heat dissipation device may be a traditional radiator with fins for heat dissipation. Since the heat dissipation direction of the upper optical module is away from the bottom optical film block, that is, the heat dissipation direction of the upper optical module is opposite to the heat dissipation direction of the bottom optical module, towards the side where the heat dissipation device is located, so that the heat can be transferred to the heat dissipation device and passed through the fins. Chip heat dissipation.
  • the double-layer optical module can have a good heat dissipation effect.
  • the uploaded optical module can also use the optical module heat dissipation component for heat dissipation. That is, the heat dissipation structure can be in contact with the surface of the top of the upper optical module to conduct heat, thereby realizing heat dissipation using refrigerant.
  • the at least two-layer optical module is a three-layer optical module, the heat dissipation direction of the middle layer optical module is away from the bottom layer optical module, and the heat dissipation direction of the top layer optical module is away from the middle layer optical module.
  • the heat dissipation structure is in thermal contact with the bottom layer optical module, the middle layer optical module and the top layer optical module respectively.
  • the optical modules on each layer can be cooled by refrigerant through the corresponding heat dissipation structure, so that there is no need to arrange traditional radiators and avoid poor heat dissipation caused by limited fin height.
  • the heat dissipation structure corresponding to each layer of optical modules is arranged on one side of the corresponding heat dissipation direction of the optical module, so that the heat of the optical module can be mainly transferred to the heat dissipation structure, and effective heat dissipation is achieved through the refrigerant.
  • the heat dissipation structure is provided with a cavity and an inlet and an outflow port connected to the cavity.
  • the cavity is connected to the driving pump through the inlet and the outflow port respectively. connected to the heat exchanger.
  • the refrigerant can flow into the cavity from the inlet. Since the heat dissipation structure is in contact with the optical module, the optical module can conduct heat to the heat dissipation structure. The heat of the heat dissipation structure can exchange heat with the refrigerant in the cavity. Through the refrigerant, the heat exchanger can be realized. The heat dissipation structure is cooled as a whole, and the refrigerant with a higher temperature can flow out of the cavity from the outlet. The refrigerant with a higher temperature undergoes heat exchange again in the heat exchanger to output a refrigerant with a lower temperature from the heat exchanger. The refrigerant again participates in the next heat dissipation cycle.
  • the continuous heat dissipation of the optical module can be achieved through the flow of refrigerant.
  • the inflow port is connected to the liquid outlet of the heat exchanger through a pipeline, and the outflow port is connected to the inflow end of the driving pump through a pipeline; or, the inflow port is connected to the liquid outlet of the heat exchanger through a pipeline. It is connected with the liquid inlet of the heat exchanger through a pipeline, and the outflow port is connected with the outflow end of the drive pump through a pipeline.
  • the optical module heat dissipation assembly includes a main pipeline and at least two heat dissipation loops, and at least one of the heat exchangers and at least one of the heat dissipation structures are connected in series in each heat dissipation loop;
  • the drive pump includes A plurality of micro-pumps are connected in series in the main pipeline, and the main pipeline is respectively connected in series with the at least two heat dissipation circuits.
  • the two heat dissipation circuits are connected in parallel through the main pipe.
  • the power sources of the two heat dissipation circuits come from micro-pumps connected in series on the main pipe. Since there are at least two micro-pumps connected in series on the main pipe, when one of the micro-pumps fails, Or when only one micropump can work normally, since the main pipeline is connected in series with the two heat dissipation circuits, the micro pump that can work normally can still provide power for the refrigerant of the two heat dissipation circuits at the same time, and the two heat dissipation circuits are still connected in parallel.
  • the refrigerant in each heat dissipation circuit can only cool down the optical modules in the corresponding circuit, so that the optical modules in each heat dissipation circuit can still maintain a better heat dissipation effect.
  • the optical module heat dissipation assembly includes a main pipeline and at least two heat dissipation loops, and each heat dissipation loop is connected in series with at least one of the heat exchanger, at least one of the heat dissipation structure and at least one of the driver.
  • Pump; the main pipeline is respectively connected in series with the at least two heat dissipation circuits.
  • the heat dissipation structure includes a base and a cover, the cavity is provided on the base, and the cover is fastened to the base to close the cavity.
  • the cover body can be welded to the base, thereby achieving reliable connection and fixation between the cover body and the base, and on the other hand, ensuring the sealing effect of the cavity.
  • the heat dissipation structure can be in thermal contact with the optical module through the cover, and the refrigerant in the cavity can conduct heat exchange with the heat of the cover, thereby achieving heat dissipation and cooling of the heat dissipation structure and the optical module.
  • a recessed space for arranging pipelines is provided at the bottom of the base, and the inlet and the outflow outlet are provided on a side of the cavity close to the recessed space.
  • the pipelines can be arranged in the recessed space.
  • the recessed space can facilitate the arrangement of the pipelines and the connection between the pipelines and the inlet and outlet. Through the side walls of the recessed space Can realize pipeline constraints.
  • a plurality of shovel teeth are provided in the cavity, and the inlet and the outflow outlet are respectively located on both sides of the shovel teeth.
  • the refrigerant flowing into the cavity from the inlet needs to pass through the shovel teeth first for heat dissipation, and then can flow out from the outflow outlet after passing through the shovel teeth.
  • the shovel teeth can be directly processed and formed on the base, or they can be welded to the base.
  • the shovel teeth can transfer heat to the base, and the base can conduct heat exchange with the air medium to dissipate heat. That is to say, on the one hand, the heat dissipation structure can dissipate heat through the refrigerant, and on the other hand, it can dissipate heat naturally through the shovel teeth and the base, which has a good heat dissipation effect.
  • the heat dissipation structure further includes an elastic member, one end of the elastic member is in contact with the base, and the other end of the elastic member is used for installation on the optical communication device.
  • the base can be supported on an elastic member, and the elastic member can provide elastic force to the base, so that the base appears as a "suspended" structure.
  • the optical module When the optical module is installed on the optical communication equipment, the optical module can be connected to the cover of the heat dissipation structure. The heat dissipation structure is pressed down as a whole, and the elastic part is compressed through the base. The reaction force of the elastic part can ensure that the cover plate can reliably contact the optical module.
  • the elastic member is a spring or a metal elastic piece.
  • the optical module heat dissipation assembly further includes a fixing frame, the fixing frame is provided with positioning holes; the base is provided with positioning protrusions, and the positioning protrusions cooperate with the positioning holes. . This not only ensures the accuracy of the installation positions of multiple heat dissipation structures, but also facilitates installation operations.
  • the second aspect of this application also provides an optical communication device, which includes:
  • a plurality of single boards are connected to the system backplane.
  • at least one optical module heat dissipation component provided by the first aspect of the present application is provided.
  • the optical module The lowest optical module in the heat dissipation assembly is close to the single board.
  • a third aspect of this application also provides an optical communication device, which includes a single board and the optical module heat dissipation component provided in the first aspect of this application, and the optical module heat dissipation component is disposed on the single board.
  • the single board includes a circuit board, the circuit board is provided with a through hole, and the heat dissipation structure is passed through the through hole.
  • the circuit board can be a printed circuit board (PCB), and the PCB board can be equipped with A through hole is provided, and the heat dissipation structure 1 can be movably inserted into the through hole.
  • This through hole can provide a larger layout space for the heat dissipation structure 1 under the existing structural layout conditions of the optical communication equipment, which is conducive to arranging the heat dissipation structure 1 below the lowest optical module to avoid occupying additional space.
  • Figure 1 is a state diagram of a double-layer light cage in practical application
  • Figure 2 is a schematic structural diagram of an optical module heat dissipation component provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of an optical module heat dissipation component provided by another embodiment of the present application.
  • Figure 4 is the state diagram of the heat dissipation structure in application (1)
  • Figure 5 is an exploded view of the heat dissipation structure
  • Figure 6 is a schematic diagram of the heat dissipation structure from a bottom perspective
  • Figure 7a is a schematic diagram of the refrigerant circulation flow when two micro-pumps are connected in series in the main pipeline in the optical module heat dissipation assembly provided by an embodiment of the present application;
  • Figure 7b is a schematic diagram of the refrigerant circulation flow when only one micro-pump in Figure 7a is working normally;
  • Figure 7c is a schematic structural diagram of two micropumps connected in series in the main pipeline in the optical module heat dissipation assembly provided by this application;
  • Figure 8a is a schematic diagram of the refrigerant circulation flow when two micropumps are connected in series in different heat dissipation circuits in the optical module heat dissipation assembly provided by another embodiment of the present application;
  • Figure 8b is a schematic diagram of the refrigerant circulation flow when only one micropump in Figure 8a is working normally;
  • Figure 9 is a state diagram showing the installation of elastic parts in the heat dissipation structure
  • Figure 10 is a schematic diagram of an optical communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of an optical communication device provided by another embodiment of the present application.
  • Figure 12 is a schematic diagram of an optical communication device provided by yet another embodiment of the present application.
  • connection can be a fixed connection, a detachable connection, or an integral connection.
  • Connection, or electrical connection may be direct or indirect through an intermediary.
  • Light cages generally include single-layer and multi-layer light cages.
  • Multi-layer light cages can be double-layer light cages, three-layer light cages, or even more layers of light cages.
  • the light cage 100 is a double-layered light cage as an example for explanation.
  • Figure 1 shows the actual double-layer light cage.
  • the state diagram in the application is shown in Figure 1.
  • the existing double-layer optical cage 100 includes two layers of optical modules.
  • the two layers of optical modules are located on the same side of the circuit board 200 and are stacked in the up and down direction. Among them, for the optical module 101a located above, since there are no other optical modules above it, there is a relatively large space, and a heat sink can be arranged to dissipate heat for the optical module 101a above.
  • the heat dissipation space of the lower optical module 101b is relatively large. Small and difficult to dissipate heat. If you consider arranging a heat sink between the lower optical module 101b and the circuit board 200, since the heat sink usually has longer fins, there is not enough space between the lower optical module 101b and the circuit board 200. Arrange a radiator with fins in space; if the length of the fins is reduced, good heat dissipation effect cannot be achieved. Therefore, for the existing double-layer optical cage 100, the heat dissipation effect of the optical module 101b below it is poor, which has great limitations in the application process.
  • the embodiment of the present application provides an optical module heat dissipation component and optical communication equipment, wherein the optical module heat dissipation component is applied to the optical communication equipment.
  • the optical communication equipment can be a switch, an optical junction box, an optical terminal, etc., which will not be discussed here. Specific limitations.
  • Figure 2 is a schematic structural diagram of an optical module heat dissipation assembly provided by an embodiment of the present application.
  • the optical module heat dissipation assembly includes at least two layers of optical modules, a heat dissipation structure 1, a heat exchanger 2 and a driving pump. 3.
  • the at least two layers of optical modules are arranged in a stack, and the heat dissipation direction of the lowest layer optical module is away from the adjacent optical modules located on the upper layer.
  • the at least two-layer optical module may have two, three or more layers.
  • the optical module having two layers is taken as an example for description.
  • the bottom optical module is close to the circuit board 200
  • the upper optical module 102 a is located above the bottom optical module 102 b and away from the circuit board 200 .
  • the heat dissipation structure 1 is in thermal contact with one end of the bottom optical module 102 b in the heat dissipation direction.
  • the heat dissipation direction of the bottom optical module 102 b is downward, that is, toward the side where the circuit board 200 is located.
  • the optical module has the characteristics of one-way main conduction, that is, the heat of the optical module is mainly transferred in a single direction.
  • the heat dissipation direction of the bottom optical module 102b is toward the side of the circuit board 200, and the heat dissipation structure 1 can be in contact with the surface of the bottom optical module 102b facing the circuit board 200 for heat conduction, so that the heat of the bottom optical module 102b can be directly transferred to the heat dissipation structure 1.
  • the driving pump 3 is used to control the circulating flow of the refrigerant between the heat dissipation structure 1 and the heat exchanger 2.
  • the heat dissipation structure 1 can be a box-shaped structure with a small thickness, which can realize the flow of refrigerant.
  • the overall volume of the heat dissipation structure 1 can be designed to be smaller, without the need to design fins, so that
  • the space between the bottom optical module 102b and the circuit board 200 can be used for arrangement, or a hole can be made on the circuit board 200 so that the heat dissipation structure 1 is embedded in the hole on the circuit board 200, which facilitates connection and provides excellent heat dissipation effect.
  • the optical module stack is provided with two layers.
  • the heat dissipation direction of the upper optical module 102a is away from the bottom optical module 102b.
  • a heat dissipation device 300 is provided on one side.
  • there is a relatively large space above the upper optical module 102a and the heat dissipation device 300 can be arranged to realize heat dissipation of the upper optical module 102a.
  • the heat dissipation device 300 can be a traditional heat sink, and the heat sink has fins 301 for heat dissipation.
  • the heat dissipation direction of the upper optical module 102a is away from the bottom optical film block, that is, the heat dissipation direction of the upper optical module 102a is opposite to the heat dissipation direction of the bottom optical module 102b.
  • the heat dissipation device 300 and the optical module heat dissipation component provided in this embodiment the double-layer optical module can have a good heat dissipation effect.
  • the uploaded optical module can also use the optical module heat dissipation component for heat dissipation, that is, the heat dissipation structure 1 can be in contact with the surface of the top of the upper optical module 102a to conduct heat, thereby realizing heat dissipation using refrigerant.
  • Figure 3 is a schematic structural diagram of an optical module heat dissipation component provided by another embodiment of the present application.
  • the optical module can be stacked in three layers and is mainly used for high-density output. port scene. Stacking three layers of optical modules in a limited space will cause the space around each layer of optical modules to be further compressed. Especially for the topmost optical module, it is difficult to dissipate heat by arranging traditional radiators with fins. First of all, the fins need to have a certain height to achieve heat dissipation, but there is not enough space around the topmost optical module to arrange a heat sink with a higher fin height. If the fin height is reduced, the effect will be poor. Of course, the optical module in the middle cannot dissipate heat effectively due to space limitations.
  • the heat dissipation direction of the middle layer optical module 103b is away from the bottom optical module 103a
  • the heat dissipation direction of the topmost optical module 103c is away from the middle layer optical module 103b
  • the heat dissipation structure 1 is respectively connected with the top layer optical module 103b.
  • the bottom optical module 103a, the middle optical module 103b and the topmost optical module 103c are in thermal contact. That is to say, the optical modules on each layer can dissipate heat through refrigerant through the corresponding heat dissipation structure 1, so that there is no need to arrange a traditional radiator and avoid poor heat dissipation caused by limited fin height.
  • the heat dissipation structure 1 corresponding to each layer of optical modules is arranged on one side corresponding to the heat dissipation direction of the optical module, so that the heat of the optical module can be mainly transferred to the heat dissipation structure 1, and effective heat dissipation is achieved through the refrigerant.
  • Figure 4 is a state diagram (1) of the heat dissipation structure in application
  • Figure 5 is an exploded view of the heat dissipation structure
  • Figure 6 is a schematic diagram of the heat dissipation structure 1 from a bottom perspective.
  • the heat dissipation structure 1 is provided with a chamber 13 and an inlet 121 and an outflow port 122 connected with the chamber 13.
  • the chamber 13 is connected with the drive pump 3 and the heat exchanger 2 through the inlet 121 and the outflow port 122 respectively.
  • the refrigerant can flow into the cavity 13 from the inlet 121.
  • the optical module can conduct heat to the heat dissipation structure 1, and the heat of the heat dissipation structure 1 can perform heat exchange with the refrigerant in the cavity 13.
  • the entire heat dissipation structure 1 can be cooled by the refrigerant, and the refrigerant with a higher temperature can flow out of the cavity 13 from the outlet 122 , and the refrigerant with a higher temperature undergoes heat exchange again in the heat exchanger 2 to pass from the heat exchanger 2
  • the refrigerant with lower temperature is output, and the refrigerant with lower temperature participates in the next heat dissipation cycle again.
  • the continuous heat dissipation of the optical module can be achieved through the flow of refrigerant.
  • the exterior of structure 1 is designed with fins and other structures, thus effectively saving space.
  • Figure 7a is a schematic diagram of the refrigerant circulation flow when two micropumps are connected in series in the main pipeline in the optical module heat dissipation assembly provided by an embodiment of the present application.
  • the heat dissipation structure The inflow port 121 of 1 is connected to the liquid outlet of the heat exchanger 2 through the pipeline 5 , and the outflow port 122 of the heat dissipation structure 1 is connected to the inflow end of the drive pump 3 through the pipeline 5 .
  • the driving pump 3 can provide power for the circulation of refrigerant.
  • the driving pump 3 can provide power to cause the refrigerant in the heat exchanger 2 to flow directly into the heat dissipation structure 1 through the pipeline.
  • the refrigerant that has undergone heat exchange in the cavity 13 can flow back to the driving pump 3 through the outflow port 122 of the heat dissipation structure 1 , and further flow back into the heat exchanger 2 through the driving pump 3 .
  • Figure 8a is a schematic diagram of the refrigerant circulation flow when two micropumps are connected in series in different heat dissipation circuits in the optical module heat dissipation assembly provided by another embodiment of the present application.
  • Inlet 121 is connected to the liquid inlet of the heat exchanger 2 through the pipeline 5
  • the outflow port 122 is connected to the outflow end of the drive pump 3 through the pipeline 5.
  • the driving pump 3 provides power to cause the heat exchanger 2 to output lower-temperature refrigerant.
  • the lower-temperature refrigerant is first input into the cavity 13 of the heat dissipation structure 1 through the driving pump 3 , the refrigerant that has undergone heat exchange in the cavity 13 directly flows back to the heat exchanger 2 through the pipeline.
  • connection positions of the drive pump 3 and the heat exchanger 2 can be interchanged, and the specific design can be based on actual connection requirements.
  • Figure 7a is a schematic diagram of the refrigerant circulation flow when two micropumps are connected in series in the main pipeline in the optical module heat dissipation assembly provided by an embodiment of the present application.
  • Figure 7c is a schematic diagram of the optical module heat dissipation assembly provided by the present application.
  • the structural schematic diagram of two micropumps connected in series in the main pipeline in the module heat dissipation assembly is shown in Figure 7a and Figure 7c.
  • the optical module heat dissipation assembly includes a main pipeline 51 and at least two heat dissipation loops 4a.
  • Each heat dissipation loop 4a is connected in series with at least A heat exchanger 2 and at least one heat dissipation structure 1;
  • the driving pump 3 includes a plurality of micro-pumps 31, the plurality of micro-pumps 31 are connected in series in the main pipeline 51, and the main pipeline 51 is respectively connected in series with at least two heat dissipation circuits 4a.
  • the number of micropumps 31 connected in series is preferably two.
  • FIG. 7b is a schematic diagram of the refrigerant circulation flow when only one micropump 31 in Figure 7a is working normally.
  • each heat dissipation circuit 4a can only dissipate and cool down the optical modules in the corresponding circuit, so that the optical modules in each heat dissipation circuit 4a can still maintain a better heat dissipation effect.
  • Figure 8a is a schematic diagram of the refrigerant circulation flow when two micropumps are connected in series in different heat dissipation circuits in the optical module heat dissipation assembly provided by another embodiment of the present application.
  • the optical module heat dissipation assembly includes a main pipeline 51 and at least two heat dissipation circuits 4b. Each heat dissipation circuit 4b is connected in series with at least one heat exchanger 2, at least one heat dissipation structure 1 and at least one drive pump 3.
  • the main pipeline 51 is connected to at least two heat dissipation circuits 4b.
  • the cooling circuit 4b is connected in series.
  • the main pipeline 51 is a pipeline only used for transmitting refrigerant.
  • FIG. 8b is a schematic diagram of the refrigerant circulation flow when only one micropump in Figure 8a is working normally. As shown in Figure 8b, when the micropump 31 in one heat dissipation circuit 4b fails, the micropump 31 in the other heat dissipation circuit 4b is normal. When working, two small heat dissipation loops 4b are connected in series to form a larger large circulation loop 4c. In this large circulation loop 4c, the optical modules originally in the two heat dissipation loops 4b are connected in series.
  • the heat exchangers 2 are connected in series, and the micropump 31 that can work normally provides power for the entire large circulation loop 4c.
  • the refrigerant passes through all the optical modules in sequence. Since in the large circulation loop 4c, the optical modules connected in series The number is the sum of the number of optical modules in the two heat dissipation circuits 4b. As the refrigerant passes through all the optical modules in sequence, the temperature of the refrigerant gradually increases, which has limited heat dissipation effect for subsequent optical modules.
  • each micro-pump 31 in series on the main pipeline 51 Even if there is only one micro-pump 31 working normally, it can still be realized that the refrigerant in each heat dissipation circuit 4b only reacts to the light in the corresponding heat dissipation circuit 4b.
  • the module dissipates heat, thereby improving the heat dissipation efficiency of each heat dissipation circuit 4b and improving the heat dissipation effect.
  • the heat dissipation structure 1 includes a base 12 and a cover 11 .
  • the cavity 13 is provided on the base 12 .
  • the cover 11 is fastened to the base 12 for closing the cavity 13 .
  • the cover 11 can be welded to the base 12, so that a reliable connection and fixation between the cover 11 and the base 12 can be achieved, and on the other hand, the sealing effect of the cavity 13 can be ensured.
  • the heat dissipation structure 1 can be in thermal contact with the optical module through the cover 11 , and the refrigerant in the cavity 13 can conduct heat exchange with the heat of the cover 11 , thereby achieving heat dissipation and cooling of the heat dissipation structure 1 and the optical module.
  • a recessed space 14 for arranging pipelines is provided at the bottom of the base 12 , and the inlet 121 and the outflow outlet 122 are provided on the side of the cavity 13 close to the recessed space 14 .
  • the inflow port 121 and the outflow port 122 can be connected to the drive pump 3 or the heat exchanger 2 through pipelines respectively. Since the pipeline 5 has a certain volume, the pipeline 5 is arranged from above or from the side of the heat dissipation structure 1 , it will take up more space, and it is inconvenient to constrain and manage the pipeline 5. In this embodiment, by providing a recessed space 14 at the bottom of the base 12, the pipeline 5 can be arranged in the recessed space 14. The recessed space 14 can facilitate the arrangement of the pipeline 5, and facilitate the connection between the pipeline 5 and the inlet 121. The connection of the outflow port 122 can constrain the pipeline 5 through the side wall of the recessed space 14 .
  • the pipeline in order to reduce the bridging force of the pipeline, can use corrugated pipes.
  • a plurality of shovel teeth 15 are provided in the cavity 13 , and the inlet 121 and the outflow port 122 are respectively located on both sides of the shovel teeth 15 . That is to say, one side of the shovel teeth 15 is provided with an inlet 121, and the other side of the shovel teeth 15 is provided with an outflow port 122.
  • the refrigerant flowing from the inlet 121 to the cavity 13 needs to first pass through the shovel teeth 15 for heat dissipation. After 15 seconds, it can flow out from the outlet 122.
  • the shovel teeth 15 can be directly processed and formed on the base 12, or they can be welded to the base 12.
  • the shovel teeth 15 can transfer heat to the base 12, and the base 12 can conduct heat exchange with the air medium to achieve heat dissipation. That is to say, the heat dissipation structure 1 can dissipate heat through the refrigerant on the one hand, and can dissipate heat naturally through the shovel teeth 15 and the base 12 on the other hand, and has a good heat dissipation effect.
  • the heat dissipation structure 1 also includes an elastic member 6. One end of the elastic member 6 is in contact with the base 12, and the other end of the elastic member 6 is used to be installed on the optical communication equipment.
  • the base 12 can be supported on the elastic member 6, and the elastic member 6 can provide elastic force for the base 12, so that the base 12 presents a "suspended" structure.
  • the optical module When the optical module is installed on the optical communication equipment, the optical module can It contacts the cover of the heat dissipation structure 1 and presses down the entire heat dissipation structure 1. The elastic member 6 is compressed through the base 12. The reaction force of the elastic member 6 can ensure that the cover can reliably contact the optical module.
  • the elastic member 6 may be a spring or a metal elastic piece.
  • One end of the spring or metal spring can be fixed on the casing of the optical communication device, and the other end can be in contact with or fixedly connected to the base 12 of the heat dissipation structure 1 .
  • optical communication equipment generally has multiple groups of optical modules, such as 2 groups, 4 groups, 8 groups, etc., and each group of optical modules can include 1, 2, 3 or more layers.
  • the lowest optical modules in each group of optical modules can each be in thermal contact with a heat dissipation structure 1, and some of the heat dissipation structures 1 can be connected in series in one heat dissipation circuit, and other parts of the heat dissipation structures 1 can be connected in series in another heat dissipation circuit.
  • Figure 9 is a state diagram of the elastic member installed in the heat dissipation structure.
  • the optical module heat dissipation assembly also includes a fixed Frame 7, the fixing frame 7 is provided with positioning holes 71, and the base 12 of the heat dissipation structure 1 is provided with positioning protrusions 123, and the positioning protrusions 123 cooperate with the positioning holes 71.
  • the fixing bracket 7 is an integral structure and has a certain length.
  • One fixing bracket 7 can fix multiple scattered objects.
  • Thermal Structure 1 is positioned. This not only ensures the accuracy of the installation positions of the multiple heat dissipation structures 1, but also facilitates the installation operation.
  • FIG 10 is a schematic diagram of an optical communication device provided by an embodiment of the present application.
  • an embodiment of the present application also provides an optical communication device, which includes a system backplane 8 and a plurality of single units. Board 9, multiple single boards 9 are connected to the system backplane 8.
  • the system backplane 8 can provide reliable support for the multiple single boards 9 and also help dissipate the heat of the single boards 9.
  • the single board 9 may specifically include a bracket 203 and a circuit board 200.
  • the bracket 203 may provide support for the circuit board 200.
  • One side of the bracket 203 may have a port from which the optical module may be inserted and electrically connected to the circuit board 200.
  • the circuit board 200 may be a printed circuit board (PCB).
  • the PCB may be provided with a through hole 202 , and the heat dissipation structure 1 may be movably inserted into the through hole 202 .
  • This through hole 202 can provide a larger layout space for the heat dissipation structure 1 under the existing structural layout conditions of the optical communication equipment, which is beneficial to arranging the heat dissipation structure 1 below the lowest optical module to avoid occupying additional space.
  • an elastic member 6 can be provided below the heat dissipation structure 1.
  • the elastic member 6 can provide elastic force for the heat dissipation structure 1.
  • the elastic member 6 may be a spring or a metal elastic piece.
  • one end of the elastic member 6 can be in contact with the heat dissipation structure 1, and the other end of the elastic member 6 can be in contact with the bracket 203.
  • the elastic member 6 can also be in contact with the heat dissipation structure 1.
  • the outer casing of the optical communication equipment is in contact with each other, such as a chassis, etc.
  • the optical communication equipment also includes a chassis, in which the system backplane 8 and multiple single boards 9 can be packaged.
  • a chassis in which the system backplane 8 and multiple single boards 9 can be packaged.
  • FIG 11 is a schematic diagram of an optical communication device provided by another embodiment of the present application.
  • another embodiment of the present application also provides an optical communication device, which includes a single board 9 and an optical communication device of the present application.
  • the optical module heat dissipation component is disposed on the single board 9 .
  • the optical communication equipment may also include a casing, which is small in size and can enclose a single board 9 and an optical module heat dissipation component.
  • a fan 400 module may also be configured inside the casing to achieve heat dissipation within the casing.
  • the volume of this casing is much smaller than the volume of the above-mentioned chassis, so it can be used in scenarios with limited space.
  • the optical module heat dissipation component can also be applied to the heat dissipation of the heat-generating device 201 on the circuit board 200 .
  • Figure 12 is a schematic diagram of an optical communication device provided by another embodiment of the present application. As shown in Figure 12, many components can be integrated on the circuit board 200. For some components with high heating rates, due to the circuit board Due to the limited space around the 200, it is difficult to arrange a radiator. It can only dissipate heat naturally through the air. The heat dissipation effect is poor and heat accumulation is easy.
  • the optical module heat dissipation component can be thermally contacted with the heating device 201 on the circuit board 200, so that the heat can be dissipated through the refrigerant in the optical module heat dissipation component, which improves the heat dissipation component of the heating device 201.
  • the heat dissipation effect is good, and the heat dissipation structure 1 in the optical module heat dissipation assembly is small in size and can be arranged using the space around the circuit board 200 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种光模块散热组件及光通信设备,其中,该光模块散热组件包括至少两层光模块(102a、102b、103a、103b、103c)、散热结构(1)、换热器(2)和驱动泵(3),至少两层光模块(102a、102b、103a、103b、103c)叠层设置,最底层光模块(102b、103a)的散热方向背离位于上层的相邻的光模块(102a、103b);散热结构(1)与最底层光模块(102b、103a)在散热方向的一端导热接触;换热器(2)内存储有冷媒;驱动泵(3)与换热器(2)相连,用于控制冷媒在散热结构(1)和换热器(2)之间循环流动。从而实现对最底层光模块(102b、103a)的持续散热降温。通过冷媒流动降温的原理,可以使整体体积设计较小,无需设计翅片,且安装方便,散热效果优异。

Description

光模块散热组件及光通信设备
本申请要求于2022年06月09日提交中国国家知识产权局、申请号为202210651921.9、申请名称为“光模块散热组件及光通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块散热组件及光通信设备。
背景技术
随着网络设备容量的增长,光模块的速率越来越高,从10G→25G→100G→400→800G→1.6T,带来的是功耗越来越高,光通信设备内的发热器件需要具有良好的散热才能保证设备的端口密度和产品的性能。一般而言,双层光笼子具有集成度高,板级排布简洁的优点,但是,双层光笼子中的最下层光模块散热空间小,难以有效散热,导致双层光笼子不能被广泛应用。
发明内容
本申请的目的在于提供一种光模块散热组件及光通信设备,以解决上述现有双层光笼子中的最下层光模块难以有效散热的问题。
本申请的第一方面提供了一种光模块散热组件,其包括:
至少两层光模块,至少两层所述光模块叠层设置,最底层光模块的散热方向背离位于上层的相邻的光模块;
散热结构,所述散热结构与所述最底层光模块在所述散热方向的一端导热接触;
换热器,所述换热器内存储有冷媒;
驱动泵,所述驱动泵与所述换热器相连,所述驱动泵用于控制所述冷媒在所述散热结构和所述换热器之间循环流动。
本申请提供的光模块散热组件,通过使最底层光模块的散热方向朝向电路板所在一侧,散热结构可以与最底层光模块上朝向电路板一侧的表面接触导热,从而使最底层光模块的热量可以直接传递至散热结构上。同时,冷媒可以受驱动泵的作用在散热结构和换热器之间循环流动,该冷媒在循环过程中可以将传递到散热结构上的热量带走,从而实现了对最底层光模块的持续散热降温。该散热结构可以为一种盒状结构,具有较小的厚度,可以实现冷媒的流过,通过冷媒流动降温的原理,可以使散热结构整体体积设计较小,无需设计翅片,从而可以利用最底层光模块和电路板之间的空间进行布置,或者也可以在电路板上开孔,使散热结构嵌入在电路板上的孔中,连接方便,散热效果优异。
在一种可能的设计中,所述至少两层光模块为两层光模块,所述上层光模块的散热方向背离所述最底层光模块;所述上层光模块在背离所述最底层光模块的一侧设置有散热装置。
其中,上层光模块的上方具有相对较大的空间,可以通过布置散热装置实现对上层光模块的散热。该散热装置可以为传统散热器,散热器具有用于散热的翅片。由于上层光模块的散热方向背离最底层光膜块,即上层光模块的散热方向与最底层光模块的散热方向相反,朝向散热装置所在一侧,从而可以将热量传递至散热装置,并通过翅片散热。由此,通过散热装置和本实施例提供的光模块散热组件的配合,可以使双层光模块具有良好的散热效果。当然,上传光模块也可以采用该光模块散热组件进行散热,即散热结构可以与上层光模块顶部的表面接触导热,实现利用冷媒散热。
在一种可能的设计中,所述至少两层光模块为三层光模块,中间层光模块的散热方向背离所述最底层光模块,最顶层光模块的散热方向背离所述中间层光模块;所述散热结构分别与所述最底层光模块、所述中间层光模块和所述最顶层光模块导热接触。
其中,每层的光模块均可以通过对应的散热结构进行冷媒散热,从而可以无需布置传统散热器,避免翅高受限而导致散热不良。其中,与各层光模块对应的散热结构均布置于对应光模块散热方向的一侧,从而可以是光模块的热量主要传递至散热结构,并通过冷媒实现有效散热。
在一种可能的设计中,所述散热结构设置有容腔和与所述容腔连通的流入口和流出口,所述容腔通过所述流入口和所述流出口分别与所述驱动泵和所述换热器连通。
其中,冷媒可以从流入口流入至容腔,由于散热结构与光模块接触,光模块可以将热量传导至散热结构,散热结构的热量可以与容腔内的冷媒进行热交换,通过冷媒可以实现对散热结构整体进行降温,温度较高的冷媒可以从流出口流出容腔,温度较高的冷媒在换热器中再次进行热交换,以从换热器输出温度较低的冷媒,温度较低的冷媒再次参与下一次的循环散热。由此,通过冷媒的流动,可以实现对光模块的持续散热,为了实现冷媒的循环流动,仅需在散热结构的内部设置容腔及流入口和流出口即可,无需在散热结构的外部设计翅片等结构,从而有效节省了空间。
在一种可能的设计中,所述流入口通过管路与所述换热器的出液口连通,所述流出口通过管路与所述驱动泵的流入端连通;或者,所述流入口通过管路与所述换热器的进液口连通,所述流出口通过管路与所述驱动泵的流出端连通。
在一种可能的设计中,所述光模块散热组件包括主管路和至少两个散热回路,每个散热回路中串联至少一个所述换热器和至少一个所述散热结构;所述驱动泵包括多个微泵,多个所述微泵串联在所述主管路中,所述主管路分别与所述至少两个散热回路串联。
其中,两个散热回路彼此通过主管路并联,两个散热回路的动力源均来自于串联在主管路上的微泵,由于主管路上串联的微泵至少为两个,当其中一个微泵失效时,或者只有一个微泵能够正常工作时,由于主管路分别与两个散热回路串联,此时仍然可以通过能够正常工作的微泵同时为两个散热回路的冷媒提供动力,两个散热回路仍然为并联的形式,每个散热回路中的冷媒可以仅对相应回路中的光模块进行散热降温,使各个散热回路中的光模块仍然能够保持较佳的散热效果。
在一种可能的设计中,所述光模块散热组件包括主管路和至少两个散热回路,每个散热回路中串联至少一个所述换热器、至少一个所述散热结构和至少一个所述驱动 泵;所述主管路分别与所述至少两个散热回路串联。
在一种可能的设计中,所述散热结构包括底座和盖体,所述容腔设置于所述底座,所述盖体扣合于所述底座,用于封闭所述容腔。
其中,盖体可以焊接在底座上,从而可以实现盖体与底座之间的可靠连接固定,另一方面可以保证对容腔的密封效果。散热结构可以通过盖体与光模块导热接触,容腔内的冷媒可以与盖体的热量进行热交换,从而实现对散热结构和光模块的散热降温。
在一种可能的设计中,所述底座的底部设置有用于布置管路的凹陷空间,所述流入口和所述流出口设置于所述容腔靠近所述凹陷空间的一侧。
其中,通过在底座的底部设置凹陷空间,可以使管路布置在凹陷空间中,该凹陷空间可以方便管路的布置,以及便于管路与流入口和流出口的连接,通过凹陷空间的侧壁可以实现对管路的约束。
在一种可能的设计中,所述容腔内设置有多个铲齿,所述流入口和所述流出口分别位于所述铲齿的两侧。
其中,从流入口流入至容腔的冷媒需要先经过铲齿进行散热,经过铲齿后可以从流出口流出。其中铲齿可以在底座上直接加工成型,也可以焊接在底座上,铲齿可以将热量传递给底座,底座可以与空气介质进行热交换实现散热。也就是说,该散热结构一方面可以通过冷媒散热,另一方面可以通过铲齿及底座进行自然散热,具有良好的散热效果。
在一种可能的设计中,所述散热结构还包括弹性件,所述弹性件的一端与所述底座抵接,所述弹性件的另一端用于安装在光通信设备上。
其中,底座可以支撑在弹性件上,该弹性件可以为底座提供弹性力,使底座呈现为一种“悬浮”结构,当光模块安装在光通信设备上时,光模块可以与散热结构的盖板接触,并将散热结构整体下压,通过底座使弹性件压缩,弹性件的反作用力可以保证盖板能够与光模块可靠接触。
在一种可能的设计中,所述弹性件为弹簧或金属弹片。
在一种可能的设计中,所述光模块散热组件还包括固定架,所述固定架上设置有定位孔;所述底座上设置有定位凸起,所述定位凸起与所述定位孔配合。从而既保证了多个散热结构安装位置的准确性,有方便了安装操作。
本申请的第二方面还提供了一种光通信设备,其中,包括:
系统背板;
多个单板,多个所述单板均连接于所述系统背板,在每个所述单板上,均设置有至少一个本申请第一方面提供的光模块散热组件,所述光模块散热组件中最底层光模块靠近于所述单板。
本申请的第三方面还提供了一种光通信设备,其中,包括单板和本申请第一方面提供的光模块散热组件,所述光模块散热组件设置于所述单板上。
在一种可能的设计中,所述单板包括电路板,所述电路板设置有通孔,所述散热结构穿设于所述通孔。
其中,电路板可以为印刷电路板(Printed circuit boards,PCB),PCB板上可以设 置有通孔,散热结构1可活动地穿设在该通孔中。该通孔可以在光通信设备即有的结构布局条件下为散热结构1提供了更大的布置空间,有利于将散热结构1布置于最底层光模块的下方,避免额外占用空间。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为双层光笼子在实际应用中的状态图;
图2为本申请一种实施例提供的光模块散热组件的结构示意图;
图3为本申请另一种实施例提供的光模块散热组件的结构示意图;
图4为散热结构在应用中的状态图(一);
图5为散热结构的爆炸图;
图6为散热结构在底部视角的示意图;
图7a为本申请一种实施例提供的光模块散热组件中两个微泵串联在主管路中时冷媒循环流动的示意图;
图7b为图7a中仅有一个微泵正常工作时冷媒循环流动的示意图;
图7c为本申请提供的光模块散热组件中两个微泵串联在主管路中的结构示意图;
图8a为本申请另一种实施例提供的光模块散热组件中两个微泵分别串联在不同的散热回路中时冷媒循环流动的示意图;
图8b为图8a中仅有一个微泵正常工作时冷媒循环流动的示意图;
图9为弹性件在散热结构中安装的状态图;
图10为本申请一种实施例提供的光通信设备的示意图;
图11为本申请另一种实施例提供的光通信设备的示意图;
图12为本申请又一种实施例提供的光通信设备的示意图。
附图标记:
100-光笼子;
101a-上方的光模块;
101b-下方的光模块;
102a-上层光模块;
102b-最底层光模块;
103a-最底层光模块;
103b-中间层光模块;
103c-最顶层光模块;
200-电路板;
201-发热器件;
202-通孔;
203-支架;
300-散热装置;
301-翅片;
400-风扇;
1-散热结构;
11-盖体;
12-底座;
121-流入口;
122-流出口;
123-定位凸起;
13-容腔;
14-凹陷空间;
15-铲齿;
2-换热器;
3-驱动泵;
31-微泵;
4a-散热回路;
4b-散热回路;
4c-大循环回路;
5-管路;
51-主管路;
6-弹性件;
7-固定架;
71-定位孔;
8-系统背板;
9-单板。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
光笼子一般包括单层和多层,多层光笼子可以为双层光笼子、三层光笼子,甚至更多层光笼子。以光笼子100为双层光笼子为例进行说明。图1为双层光笼子在实际 应用中的状态图,如图1所示,现有的双层光笼子100包括两层光模块,两层光模块均位于电路板200的同一侧,且在上下方向叠层设置。其中,对于位于上方的光模块101a而言,由于其上方无其它光模块,具有相对较大的空间,可以布置散热器来对上方的光模块101a进行散热。但对于位于下方的光模块101b,由于下方的光模块101b的顶部与上方的光模块101a较贴近,且下方的光模块101b的底部贴近于电路板200,导致下方的光模块101b散热空间相对较小,难以散热,如果考虑在下方的光模块101b和电路板200之间布置散热器,由于散热器上通常具有较长的翅片,在下方的光模块101b和电路板200之间没有足够的空间布置具有翅片的散热器;而如果将翅片的长度削减,则无法达到良好的散热效果。因此,对于现有的双层光笼子100而言,其下方的光模块101b散热效果差,在应用过程中具有较大的限制。
本申请实施例提供了一种光模块散热组件及光通信设备,其中,该光模块散热组件应用于该光通信设备,该光通信设备可以为交换机、光交接箱、光端机等,在此不做具体限定。
其中,图2为本申请一种实施例提供的光模块散热组件的结构示意图,如图2所示,该光模块散热组件包括至少两层光模块、散热结构1、换热器2和驱动泵3。该至少两层的光模块叠层设置,最底层光模块的散热方向背离位于上层的相邻的光模块。该至少两层的光模块可以具有两层、三层或者更多层,本实施例以光模块具有两层为例进行说明。该最底层光模块靠近于电路板200,上层光模块102a位于最底层光模块102b的上方,远离电路板200。
如图2所示,散热结构1与最底层光模块102b在散热方向的一端导热接触,该最底层光模块102b的散热方向朝下,即朝向电路板200所在一侧。需要说明的是,光模块具有单向主传导的特性,即光模块的热量主要向单一的方向传递,本实施例中,最底层光模块102b的散热方向朝向电路板200所在一侧,散热结构1可以与最底层光模块102b上朝向电路板200一侧的表面接触导热,使最底层光模块102b的热量可以直接传递至散热结构1上。
换热器2内存储有冷媒,驱动泵3与换热器2相连,驱动泵3用于控制冷媒在散热结构1和换热器2之间循环流动,该冷媒在循环过程中可以将传递到散热结构1上的热量带走,从而实现了对最底层光模块102b的持续散热降温。该散热结构1可以为一种盒状结构,具有较小的厚度,可以实现冷媒的流过,通过冷媒流动降温的原理,可以使散热结构1整体体积设计较小,无需设计翅片,从而可以利用最底层光模块102b和电路板200之间的空间进行布置,或者也可以在电路板200上开孔,使散热结构1嵌入在电路板200上的孔中,连接方便,散热效果优异。
在一种具体的实现方式中,如图2所示,光模块叠层设置有两层,上层光模块102a的散热方向背离最底层光模块102b,上层光模块102a在背离最底层光模块102b的一侧设置有散热装置300。本实施例中,上层光模块102a的上方具有相对较大的空间,可以通过布置散热装置300实现对上层光模块102a的散热。该散热装置300可以为传统散热器,散热器具有用于散热的翅片301。由于上层光模块102a的散热方向背离最底层光膜块,即上层光模块102a的散热方向与最底层光模块102b的散热方向相反, 朝向散热装置300所在一侧,从而可以将热量传递至散热装置300,并通过翅片301散热。由此,通过散热装置300和本实施例提供的光模块散热组件的配合,可以使双层光模块具有良好的散热效果。当然,上传光模块也可以采用该光模块散热组件进行散热,即散热结构1可以与上层光模块102a顶部的表面接触导热,实现利用冷媒散热。
在另一种具体的实现方式中,图3为本申请另一种实施例提供的光模块散热组件的结构示意图,如图3所示,光模块可以叠层设置有三层,主要应用于高密出端口的场景。在有限的空间内叠层设置三层光模块,会导致各层光模块周围的空间进一步压缩,尤其对于最顶层的光模块而言,难以通过布置传统的具有翅片的散热器进行散热,退一步讲,翅片需要具有一定的高度来实现散热,但最顶层的光模块周围没有足够的空间布置具有较高翅高的散热器,如果削减翅高,则会造成效果不佳。当然,对于中间的光模块也会因空间限制而不能有效散热。
为此,本实施例中,如图3所示,中间层光模块103b的散热方向背离最底层光模块103a,最顶层光模块103c的散热方向背离中间层光模块103b,散热结构1分别与最底层光模块103a、中间层光模块103b和最顶层光模块103c导热接触。也就是说,每层的光模块均可以通过对应的散热结构1进行冷媒散热,从而可以无需布置传统散热器,避免翅高受限而导致散热不良。其中,与各层光模块对应的散热结构1均布置于对应光模块散热方向的一侧,从而可以是光模块的热量主要传递至散热结构1,并通过冷媒实现有效散热。
具体地,图4为散热结构在应用中的状态图(一),图5为散热结构的爆炸图,图6为散热结构1在底部视角的示意图,如图4至图6所示,散热结构1设置有容腔13和与容腔13连通的流入口121和流出口122,容腔13通过流入口121和流出口122分别与驱动泵3和换热器2连通。其中,冷媒可以从流入口121流入至容腔13,由于散热结构1与光模块接触,光模块可以将热量传导至散热结构1,散热结构1的热量可以与容腔13内的冷媒进行热交换,通过冷媒可以实现对散热结构1整体进行降温,温度较高的冷媒可以从流出口122流出容腔13,温度较高的冷媒在换热器2中再次进行热交换,以从换热器2输出温度较低的冷媒,温度较低的冷媒再次参与下一次的循环散热。由此,通过冷媒的流动,可以实现对光模块的持续散热,为了实现冷媒的循环流动,仅需在散热结构1的内部设置容腔13及流入口121和流出口122即可,无需在散热结构1的外部设计翅片等结构,从而有效节省了空间。
具体地,在一种连接方式中,图7a为本申请一种实施例提供的光模块散热组件中两个微泵串联在主管路中时冷媒循环流动的示意图,如图7a所示,散热结构1的流入口121通过管路5与换热器2的出液口连通,散热结构1的流出口122通过管路5与驱动泵3的流入端连通。驱动泵3可以提供冷媒循环流动的动力,采用本实施例的连接方式形成的循环回路中,驱动泵3可以提供动力使换热器2内的冷媒通过管路直接流入至散热结构1内的容腔13中,在容腔13内经过热交换的冷媒可以通过散热结构1的流出口122回流至驱动泵3,并进一步通过驱动泵3回流至换热器2中。
在另一种连接方式中,图8a为本申请另一种实施例提供的光模块散热组件中两个微泵分别串联在不同的散热回路中时冷媒循环流动的示意图,如图8a所示,流入口 121通过管路5与换热器2的进液口连通,流出口122通过管路5与驱动泵3的流出端连通。采用本实施例的连接方式形成的循环回路中,驱动泵3提供动力使换热器2输出温度较低的冷媒,温度较低的冷媒首先经过驱动泵3输入至散热结构1的容腔13中,在容腔13内经过热交换的冷媒通过管路直接回流至换热器2中。
也就是说,驱动泵3和换热器2的连接位置可以互换,具体可以根据实际连接需求进行设计。
具体地,在一种实施例中,图7a为本申请一种实施例提供的光模块散热组件中两个微泵串联在主管路中时冷媒循环流动的示意图,图7c为本申请提供的光模块散热组件中两个微泵串联在主管路中的结构示意图,如图7a和图7c所示,光模块散热组件包括主管路51和至少两个散热回路4a,每个散热回路4a中串联至少一个换热器2和至少一个散热结构1;驱动泵3包括多个微泵31,多个微泵31串联在主管路51中,主管路51分别与至少两个散热回路4a串联。本申请中,串联的微泵31的数量优选为两个。
也就是说,两个散热回路4a彼此通过主管路51并联,两个散热回路4a的动力源均来自于串联在主管路51上的微泵31。图7b为图7a中仅有一个微泵31正常工作时冷媒循环流动的示意图,如图7b所示,由于主管路51上串联的微泵31至少为两个,当其中一个微泵31失效时,或者只有一个微泵31能够正常工作时,由于主管路51分别与两个散热回路4a串联,此时仍然可以通过能够正常工作的微泵31同时为两个散热回路4a的冷媒提供动力,两个散热回路4a仍然为并联的形式,每个散热回路4a中的冷媒可以仅对相应回路中的光模块进行散热降温,使各个散热回路4a中的光模块仍然能够保持较佳的散热效果。
在另一种实施例中,图8a为本申请另一种实施例提供的光模块散热组件中两个微泵分别串联在不同的散热回路中时冷媒循环流动的示意图,如图8a所示,光模块散热组件包括主管路51和至少两个散热回路4b,每个散热回路4b中串联至少一个换热器2、至少一个散热结构1和至少一个驱动泵3,主管路51分别与至少两个散热回路4b串联。本实施例中,主管路51为一种仅用于传输冷媒的管路,主管路51上不串联微泵31,微泵31串联在相应的散热回路4b中,以对相应的散热回路4b提供动力。图8b为图8a中仅有一个微泵正常工作时冷媒循环流动的示意图,如图8b所示,当一个散热回路4b中的微泵31失效,而另一个散热回路4b中的微泵31正常工作时,此时两个小的散热回路4b串联为一个较大的大循环回路4c,在这个大循环回路4c中,原本在两个散热回路4b中的光模块串联,两个散热回路4b中的换热器2串联,能够正常工作的微泵31为整个大循环回路4c提供动力,在循环过程中,使冷媒依次经过所有的光模块,由于在大循环回路4c中,串联的光模块的数量为两个散热回路4b的光模块的数量之和,在冷媒依次经过所有的光模块的过程中,冷媒的温度逐渐升高,这对于后面的光模块的散热效果有限。而对于将各个微泵31串联在主管路51上的方案而言,即使仅存在一个微泵31正常工作的情况下,仍然能够实现各个散热回路4b中的冷媒仅对相应散热回路4b中的光模块进行散热,从而可以提升各个散热回路4b的散热效率,提升散热效果。
作为一种具体的实现方式,散热结构1包括底座12和盖体11,容腔13设置于底座12,盖体11扣合于底座12,用于封闭容腔13。
其中,盖体11可以焊接在底座12上,从而可以实现盖体11与底座12之间的可靠连接固定,另一方面可以保证对容腔13的密封效果。散热结构1可以通过盖体11与光模块导热接触,容腔13内的冷媒可以与盖体11的热量进行热交换,从而实现对散热结构1和光模块的散热降温。
作为一种具体的实现方式,底座12的底部设置有用于布置管路的凹陷空间14,流入口121和流出口122设置于容腔13靠近凹陷空间14的一侧。
可以理解的是,流入口121和流出口122可以分别通过管路连接到驱动泵3或换热器2,由于管路5具有一定的体积,使管路5从散热结构1的上方或侧面布置,会占用较多的空间,且不便于对管路5的约束管理。本实施例中,通过在底座12的底部设置凹陷空间14,可以使管路5布置在凹陷空间14中,该凹陷空间14可以方便管路5的布置,以及便于管路5与流入口121和流出口122的连接,通过凹陷空间14的侧壁可以实现对管路5的约束。
其中,为了降低管路桥接力,管路可以采用波纹管。
作为一种具体的实现方式,容腔13内设置有多个铲齿15,流入口121和流出口122分别位于铲齿15的两侧。也就是说,铲齿15的一侧设置流入口121,铲齿15的另一侧设置流出口122,从流入口121流入至容腔13的冷媒需要先经过铲齿15进行散热,经过铲齿15后可以从流出口122流出。其中铲齿15可以在底座12上直接加工成型,也可以焊接在底座12上,铲齿15可以将热量传递给底座12,底座12可以与空气介质进行热交换实现散热。也就是说,该散热结构1一方面可以通过冷媒散热,另一方面可以通过铲齿15及底座12进行自然散热,具有良好的散热效果。
作为一种具体的实现方式,散热结构1还包括弹性件6,弹性件6的一端与底座12抵接,弹性件6的另一端用于安装在光通信设备上。
其中,底座12可以支撑在弹性件6上,该弹性件6可以为底座12提供弹性力,使底座12呈现为一种“悬浮”结构,当光模块安装在光通信设备上时,光模块可以与散热结构1的盖板接触,并将散热结构1整体下压,通过底座12使弹性件6压缩,弹性件6的反作用力可以保证盖板能够与光模块可靠接触。
具体地,弹性件6可以为弹簧或金属弹片。其中,弹簧或金属弹片的一端可以固定在光通信设备的外壳上,另一端可以与散热结构1的底座12接触或固定连接。
可以理解的是,光通信设备中一般具有多组光模块,例如2组、4组、8组等,每组光模块可以包括1层、2层、3层或更多层。各组光模块中的最底层光模块均可以分别与一个散热结构1导热接触,而部分散热结构1可以串联在一个散热回路中,另一部分散热结构1可以串联在另一个散热回路中。图9为弹性件在散热结构中安装的状态图,如图9所示,为了保证多个散热结构1有序排列,且能够准确对应于相对应的光模块,该光模块散热组件还包括固定架7,固定架7上设置有定位孔71,散热结构1的底座12上设置有定位凸起123,定位凸起123与定位孔71配合。
其中,该固定架7为一整体结构,具有一定的长度,一个固定架7可以对多个散 热结构1进行定位。从而既保证了多个散热结构1安装位置的准确性,有方便了安装操作。
图10为本申请一种实施例提供的光通信设备的示意图,如图10所示,本申请的一种实施例中还提供了一种光通信设备,其包括系统背板8和多个单板9,多个单板9均连接于系统背板8,系统背板8可以为多个单板9提供可靠的支撑,还有助于对单板9的散热。在每个单板9上,均设置有至少一个本申请任意实施例提供的光模块散热组件,光模块散热组件中的最底层光模块靠近于单板9。
其中,单板9可以具体包括支架203和电路板200,支架203可以为电路板200提供支撑,支架203的一侧可以具有端口,光模块可以从端口插入,并能够与电路板200电连接。其中,如图2所示,电路板200可以为印刷电路板(Printed circuit boards,PCB),PCB板上可以设置有通孔202,散热结构1可活动地穿设在该通孔202中。该通孔202可以在光通信设备即有的结构布局条件下为散热结构1提供了更大的布置空间,有利于将散热结构1布置于最底层光模块的下方,避免额外占用空间。
此外,如图2所示,散热结构1的下方可以设置有弹性件6,弹性件6可以为散热结构1提供弹性力,当光模块压在散热结构1上时,弹性件6受压变形,其反作用力可以保证散热结构1与光模块可靠接触。其中,弹性件6具体可以为弹簧或金属弹片。如图2所示,以弹性件6为金属弹片为例,弹性件6的一端可以与散热结构1抵接,弹性件6的另一端可以与支架203抵接,当然,弹性件6也可以与该光通信设备的外壳抵接,例如机箱等。
该光通信设备还包括机箱,系统背板8和多个单板9均可以封装在机箱中。此外,机箱中可以具有多个风扇400模组,该风扇400模组可以实现对机箱内部的散热。
图11为本申请另一种实施例提供的光通信设备的示意图,如图11所示,本申请的另一种实施例中还提供了一种光通信设备,其包括单板9和本申请任意实施例提供的光模块散热组件,光模块散热组件设置于单板9上。本实施例中的单板9仅具有一个,可以独立使用。该光通信设备还可以包括壳体,该壳体尺寸较小,可以将一个单板9和光模块散热组件封装其中,壳体内也可以配置一个风扇400模组,以实现对壳体内的散热。该壳体的体积远小于上述机箱的体积,因此可以应用在空间受限的场景。
此外,该光模块散热组件除了可以应用于光模块的散热之外,还可以应用于电路板200上的发热器件201的散热。图12为本申请又一种实施例提供的光通信设备的示意图,如图12所示,电路板200上可以集成众多元器件,对于部分发热率较高的元器件而言,由于受电路板200周围空间的限制,难以布置散热器,只能通过空气自然散热,散热效果差,容易积热。而通过采用本申请提供的光模块散热组件,可以使光模块散热组件与电路板200上的发热器件201导热接触,从而可以通过光模块散热组件中的冷媒进行散热,提升了对发热器件201的散热效果,且该光模块散热组件中的散热结构1体积小,可以利用电路板200周围的空间进行布置。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种光模块散热组件,其特征在于,包括:
    至少两层光模块,至少两层所述光模块叠层设置,最底层光模块的散热方向背离位于上层的相邻的光模块;
    散热结构,所述散热结构与所述最底层光模块在所述散热方向的一端导热接触;
    换热器,所述换热器内存储有冷媒;
    驱动泵,所述驱动泵与所述换热器相连,所述驱动泵用于控制所述冷媒在所述散热结构和所述换热器之间循环流动。
  2. 根据权利要求1所述的光模块散热组件,其特征在于,所述至少两层光模块为两层光模块,上层光模块的散热方向背离所述最底层光模块;
    所述上层光模块在背离所述最底层光模块的一侧设置有散热装置。
  3. 根据权利要求1所述的光模块散热组件,其特征在于,所述至少两层光模块为三层光模块,中间层光模块的散热方向背离所述最底层光模块,最顶层光模块的散热方向背离所述中间层光模块;
    所述散热结构分别与所述最底层光模块、所述中间层光模块和所述最顶层光模块导热接触。
  4. 根据权利要求1所述的光模块散热组件,其特征在于,所述散热结构设置有容腔和与所述容腔连通的流入口和流出口,所述容腔通过所述流入口和所述流出口分别与所述驱动泵和所述换热器连通。
  5. 根据权利要求4所述的光模块散热组件,其特征在于,所述流入口通过管路与所述换热器的出液口连通,所述流出口通过管路与所述驱动泵的流入端连通;
    或者,所述流入口通过管路与所述换热器的进液口连通,所述流出口通过管路与所述驱动泵的流出端连通。
  6. 根据权利要求5所述的光模块散热组件,其特征在于,所述光模块散热组件包括主管路和至少两个散热回路,每个散热回路中串联至少一个所述换热器和至少一个所述散热结构;
    所述驱动泵包括多个微泵,多个所述微泵串联在所述主管路中,所述主管路分别与所述至少两个散热回路串联。
  7. 根据权利要求5所述的光模块散热组件,其特征在于,所述光模块散热组件包括主管路和至少两个散热回路,每个散热回路中串联至少一个所述换热器、至少一个所述散热结构和至少一个所述驱动泵;
    所述主管路分别与所述至少两个散热回路串联。
  8. 根据权利要求4-7任一项所述的光模块散热组件,其特征在于,所述散热结构包括底座和盖体,所述容腔设置于所述底座,所述盖体扣合于所述底座,用于封闭所述容腔。
  9. 根据权利要求8所述的散热组件,其特征在于,所述底座的底部设置有用于布置管路的凹陷空间,所述流入口和所述流出口设置于所述容腔靠近所述凹陷空间的一侧。
  10. 根据权利要求8所述的光模块散热组件,其特征在于,所述容腔内设置有多个铲齿,所述流入口和所述流出口分别位于所述铲齿的两侧。
  11. 根据权利要求8所述的光模块散热组件,其特征在于,所述散热结构还包括弹性件,所述弹性件的一端与所述底座抵接,所述弹性件的另一端用于安装在光通信设备上。
  12. 根据权利要求11所述的光模块散热组件,其特征在于,所述弹性件为弹簧或金属弹片。
  13. 根据权利要求8所述的光模块散热组件,其特征在于,所述光模块散热组件还包括固定架,所述固定架上设置有定位孔;
    所述底座上设置有定位凸起,所述定位凸起与所述定位孔配合。
  14. 一种光通信设备,其特征在于,包括:
    系统背板;
    多个单板,多个所述单板均连接于所述系统背板,在每个所述单板上,均设置有至少一个权利要求1-13任一项所述的光模块散热组件,所述光模块散热组件中最底层光模块靠近于所述单板。
  15. 一种光通信设备,其特征在于,包括单板和权利要求1-13任一项所述的光模块散热组件,所述光模块散热组件设置于所述单板上。
  16. 根据权利要求14或15所述的光通信设备,其特征在于,所述单板包括电路板,所述电路板设置有通孔,所述散热结构穿设于所述通孔。
PCT/CN2023/098715 2022-06-09 2023-06-06 光模块散热组件及光通信设备 WO2023236966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210651921.9A CN117250699A (zh) 2022-06-09 2022-06-09 光模块散热组件及光通信设备
CN202210651921.9 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023236966A1 true WO2023236966A1 (zh) 2023-12-14

Family

ID=89117593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098715 WO2023236966A1 (zh) 2022-06-09 2023-06-06 光模块散热组件及光通信设备

Country Status (2)

Country Link
CN (1) CN117250699A (zh)
WO (1) WO2023236966A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204362490U (zh) * 2015-01-07 2015-05-27 加弘科技咨询(上海)有限公司 一种高效散热光模块装置
CN106098657A (zh) * 2016-08-15 2016-11-09 华南理工大学 一种电液动力微泵驱动的小型液冷系统与方法
CN110146956A (zh) * 2019-04-25 2019-08-20 东南大学 一种光模块的内部热输运微结构
US20190387650A1 (en) * 2018-06-14 2019-12-19 Cisco Technology, Inc. Heat sink for pluggable module cage
CN110806620A (zh) * 2018-08-06 2020-02-18 华为技术有限公司 单板及网络设备
US20200229321A1 (en) * 2019-01-14 2020-07-16 Cisco Technology, Inc. Liquid cooled optical cages for optical modules
CN113138446A (zh) * 2020-01-20 2021-07-20 华为技术有限公司 光模块的散热结构及通信设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204362490U (zh) * 2015-01-07 2015-05-27 加弘科技咨询(上海)有限公司 一种高效散热光模块装置
CN106098657A (zh) * 2016-08-15 2016-11-09 华南理工大学 一种电液动力微泵驱动的小型液冷系统与方法
US20190387650A1 (en) * 2018-06-14 2019-12-19 Cisco Technology, Inc. Heat sink for pluggable module cage
CN110806620A (zh) * 2018-08-06 2020-02-18 华为技术有限公司 单板及网络设备
US20200229321A1 (en) * 2019-01-14 2020-07-16 Cisco Technology, Inc. Liquid cooled optical cages for optical modules
CN110146956A (zh) * 2019-04-25 2019-08-20 东南大学 一种光模块的内部热输运微结构
CN113138446A (zh) * 2020-01-20 2021-07-20 华为技术有限公司 光模块的散热结构及通信设备

Also Published As

Publication number Publication date
CN117250699A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
JP7164618B2 (ja) インテリジェント車両における車載コンピュータ装置及びインテリジェント車両
CA2820330C (en) Two-phase cooling system for electronic components
US8953317B2 (en) Wicking vapor-condenser facilitating immersion-cooling of electronic component(s)
JPS6336695Y2 (zh)
US7327570B2 (en) Fluid cooled integrated circuit module
US7604040B2 (en) Integrated liquid cooled heat sink for electronic components
US6704200B2 (en) Loop thermosyphon using microchannel etched semiconductor die as evaporator
US20060021737A1 (en) Liquid cooling device
US20130056178A1 (en) Ebullient cooling device
US20200404805A1 (en) Enhanced cooling device
EP1708263B1 (en) Cooling jacket
EP2065935B1 (en) Cooling apparatus
TW201334679A (zh) 散熱模組
TW200529735A (en) A liquid cooling system and an electronic apparatus having the same therein
JP5874935B2 (ja) 平板型冷却装置及びその使用方法
US20040140084A1 (en) Heat dissipating device with forced coolant and air flow
WO2023236966A1 (zh) 光模块散热组件及光通信设备
CN210014475U (zh) 一种散热器、空调室外机和空调器
CN210014478U (zh) 一种散热器、空调室外机和空调器
CN210014477U (zh) 一种散热器、空调室外机和空调器
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN113448027B (zh) 光模块散热结构、光模块及光通信设备
US11924996B2 (en) Liquid-cooling devices, and systems, to cool multi-chip modules
JP4521250B2 (ja) 放熱装置およびその製造方法
WO2023092326A1 (zh) 散热板、电子组件及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819131

Country of ref document: EP

Kind code of ref document: A1