WO2023236946A1 - 气体吸附浓集装置 - Google Patents
气体吸附浓集装置 Download PDFInfo
- Publication number
- WO2023236946A1 WO2023236946A1 PCT/CN2023/098584 CN2023098584W WO2023236946A1 WO 2023236946 A1 WO2023236946 A1 WO 2023236946A1 CN 2023098584 W CN2023098584 W CN 2023098584W WO 2023236946 A1 WO2023236946 A1 WO 2023236946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adsorption
- desorption
- gas
- adsorption unit
- module
- Prior art date
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 506
- 238000003795 desorption Methods 0.000 claims abstract description 177
- 230000008929 regeneration Effects 0.000 claims abstract description 59
- 238000011069 regeneration method Methods 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 25
- 239000003463 adsorbent Substances 0.000 claims abstract description 12
- 239000002156 adsorbate Substances 0.000 claims abstract description 11
- 238000012546 transfer Methods 0.000 claims description 28
- 238000009826 distribution Methods 0.000 claims description 18
- 238000011084 recovery Methods 0.000 claims description 18
- 230000007704 transition Effects 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000003032 molecular docking Methods 0.000 claims description 7
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 117
- 239000002957 persistent organic pollutant Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000002912 waste gas Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 102200048773 rs2224391 Human genes 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
Definitions
- the present invention relates to a gas adsorption and concentration device. More specifically, the invention relates to a checkerboard-type gas adsorption and concentration device that uses an adsorption method to concentrate volatile organic pollutants.
- Space velocity is technically a technical index borrowed from the catalytic reaction efficiency of catalysts in the chemical field. It refers to the amount of gas processed by the catalyst per unit time and unit volume under specified conditions.
- the catalyst has been replaced by an adsorbent, and the unit It is usually m 3 /(m 3 catalyst ⁇ h), which can be simplified to h -1 .
- the wind resistance of the adsorption bed is a factor that significantly affects the energy consumption of the entire system. Reducing the thickness of the adsorption bed and reducing the air flow speed while maintaining a certain air velocity can significantly reduce the wind resistance of the adsorption bed, while the removal efficiency can still be guaranteed.
- An adsorption separation device disclosed in the Chinese invention patent document CN110013736A also submitted by the applicant of the present invention includes three functional processing modules: an adsorption sequence, a desorption sequence and a thermal regeneration sequence, which are respectively composed of multiple adsorption units.
- This adsorption separation device can achieve extremely high removal efficiency, extremely high pollutant concentration ratio and maximum heat utilization efficiency in the process of pollutant temperature swing adsorption treatment.
- the adsorption sequence, desorption sequence and thermal regeneration sequence adopt a single series connection in the orderly flow of the adsorption unit.
- the concentration of adsorbate in the adsorption process is usually very low, the ratio of adsorbed gas flow and desorbed gas flow is usually tens to hundreds, or even as high as thousands. This is also the technology of the high concentration ratio of this device. The advantage.
- the desorption sequence and the thermal regeneration sequence can only work inefficiently with a very small flow rate.
- the adsorption function module has large air volume and high wind speed, making the problem of high wind resistance more prominent.
- the number of adsorption units allocated in the adsorption sequence, desorption sequence and thermal regeneration sequence is almost the same, and the resources of the equipment are used in an extremely inefficient state in the desorption sequence and thermal regeneration sequence.
- the object of the present invention is to provide a gas adsorption and concentration device that can solve the problems of high wind resistance during adsorption operations and low efficiency during desorption operations.
- the gas adsorption concentration device includes an adsorption part and a regeneration part.
- the adsorption part includes two or more adsorption modules equipped with multi-stage adsorption units.
- the adsorption units are constituted as fixed adsorption beds provided with adsorbents. When containing When the adsorbate and the adsorbed gas of the basic components pass through the adsorption module, the adsorbate is adsorbed by the adsorbent in the adsorption unit.
- the regeneration part includes at least one desorption module equipped with a multi-stage adsorption unit.
- the gas adsorption concentration device is characterized in that the adsorption unit is transferred between the adsorption part and the regeneration part through the adsorption unit moving device, and circulates during the adsorption and desorption processes.
- the adsorption modules when the adsorption part includes multiple adsorption modules, the adsorption modules may be arranged in a parallel relationship.
- the gas adsorption concentration device may also include a connecting pipeline provided with a movable interface.
- the connecting pipeline realizes the series connection of the adsorption units in each adsorption module of the adsorption part and the connection between the adsorption modules. Parallel connection.
- the connecting pipeline can also realize the series connection of the adsorption units in each desorption module of the regeneration part and the parallel connection between the desorption modules.
- the adsorption unit moving device may be in the form of a chessboard transmission device.
- the chessboard transmission device consists of a plurality of power support wheels fixed on the ground and distributed in a chessboard pattern and fixed on the adsorption unit. It consists of a movable track base that matches the power support wheel moving disc.
- the mobile track base carrying the adsorption unit moves between the power support wheel moving discs in two directions perpendicular to each other, thereby realizing the adsorption unit between the adsorption part and the regeneration part. transfer, as well as the transfer of adsorption units within the adsorption module and desorption module.
- the supporting wheel of the power supporting wheel moving plate can be provided with a hydraulic lifting cylinder.
- the hydraulic lifting cylinder controls the lifting of the supporting wheel to achieve docking and disengagement between the adsorption unit interface and the movable interface of the connecting pipeline below.
- the desorption module may be a variable temperature and pressure variable desorption device.
- the desorption module is replaced by a variable temperature desorption device that uses hot air for desorption and a thermal oxidation incineration device to destroy organic pollutants to a variable temperature and variable pressure device that uses negative pressure and temperature-increasing negative pressure desorption and uses condensation to recover organic pollutants. Desorption device.
- the gas adsorption and concentration device is further provided with an adsorption unit storage section arranged on both sides of the adsorption section and the regeneration section.
- the adsorption unit storage section separates the saturated adsorption units that have completed saturated adsorption from the adsorption section and/or Or remove the blank adsorption unit that has completed desorption regeneration from the connecting pipeline of the regeneration part and re-add it to the connecting pipeline as needed.
- the adsorption part may include a shell, an adsorption gas inlet, an adsorption gas outlet, an adsorption array assembly, an adsorption unit transfer-in position and an adsorption unit transfer-out position.
- the adsorption array assembly is provided with multiple
- the adsorption module includes at least one layer of adsorption units.
- the adsorption array assembly divides the space surrounded by the shell into an air intake distribution box and an exhaust collection box.
- the adsorption gas inlet is connected to the air intake distribution box, and the adsorption gas outlet is connected to the exhaust gas.
- the collection box is connected, and the mechanical support and transfer device is a component of the adsorption array assembly, supporting the movement of the adsorption module in the adsorption function position, moving the adsorption unit that has completed adsorption from the adsorption function position in the adsorption module to the adsorption unit transfer position, and Move the adsorption unit that has completed the regeneration process from the adsorption unit transfer position to the adsorption function position in the adsorption module.
- the adsorption module can include a multi-layer adsorption unit.
- the end of the adsorption module located on the side of the air inlet distribution box is called the head end, and the end located on the side of the exhaust collection box is called the tail end.
- the mechanical support and transfer device will The adsorption unit moves from the head end to the adsorption unit transfer-out position, and the adsorption unit that has completed the regeneration process moves from the adsorption unit transfer-in position to the tail end.
- the adsorption unit moves from the tail end to the head end in the adsorption module.
- the desorption module of the regeneration part may include a desorption module housing, a desorption gas inlet, a desorption gas outlet, a desorption gas heater, an adsorption unit desorption column, an adsorption unit heat recovery column, and an adsorption unit.
- the receiving channel, the adsorption unit sending channel and the corresponding mechanical moving device wherein the desorption gas from the desorption gas supply device is in accordance with the desorption gas inlet ⁇ adsorption unit heat recovery column ⁇ desorption gas heater ⁇ adsorption unit desorption column ⁇
- the desorption gas outlet sequence reaches the desorption gas treatment device through the desorption module, and the mechanical moving device Set the adsorption unit to move within the desorption module in the order of adsorption unit receiving channel ⁇ adsorption unit desorption column ⁇ adsorption unit heat recovery column ⁇ adsorption unit sending channel.
- the adsorption unit receiving channel and the adsorption unit sending channel of the regeneration part can be docked with the adsorption unit transfer-out position and the adsorption unit transfer-in position of the adsorption part respectively, and the adsorption gas and the desorption gas are transferred at the docking point with the help of the transition cabin.
- the transition cabin is connected between the adsorption part and the regeneration part and is provided with valves on both sides.
- the adsorption array assembly may have a sprocket structure, and each adsorption module rotates cyclically on the sprocket as an accessory to the sprocket link.
- the sprocket structure can set the number of chain links according to the flow rate of the adsorbed gas, thereby adjusting the number of adsorption modules.
- the desorption module can be arranged in an inverted U-shaped structure, with the desorption gas heater at the top, and the adsorption unit desorption row and the adsorption unit heat recovery row at the bottom on both sides.
- the regeneration part can include two desorption modules; the desorption gas can be pyrolyzed through the exhaust gas oxidation incineration device (RTO), and the heat generated in the RTO is transported to the desorption module through the heat exchange pipeline as a desorption heat source. ;
- the adsorbent filled in the adsorption unit can be in the form of industrial general granular dosage forms.
- the number of chain links can be set according to the flow rate of the adsorbed gas, and substantial changes in the flow load of the equipment can be achieved without changing the specifications of the main components of the equipment.
- the regeneration processing capacity of the desorption module and the adsorption processing capacity of the adsorption module can be optimally configured according to the concentration ratio.
- an adsorption concentration device with a certain configuration, it can adapt to large changes in the air volume and concentration of the adsorbed gas by adjusting the cycle period of the adsorption module of the adsorption part and the desorption air volume of the desorption module;
- the module device can also choose to adapt to larger changes in the air volume and concentration of the adsorbed gas by turning on different numbers of desorption modules.
- Figure 1a is a schematic diagram of the basic structure of a gas adsorption and concentration device according to the present invention
- Figure 1b is a schematic top view of the power supporting wheel moving plate of the adsorption unit moving device in the device of Figure 1a;
- Figure 2 is a schematic diagram of the structural relationship between the power supporting wheel moving plate of the adsorption unit moving device, the moving track base, and the pipeline docking device of the adsorption unit;
- Figure 3a shows a gas adsorption concentration device provided with two adsorption modules and one desorption module
- Figure 3b is a schematic top view of the power supporting wheel moving plate of the adsorption unit moving device in the device of Figure 3a;
- Figure 4 shows a gas adsorption concentration device provided with four adsorption modules and one desorption module
- Figure 5 shows a gas adsorption concentration device provided with a pressure swing and temperature swing desorption module
- Figure 6 shows a gas adsorption concentration device provided with six adsorption modules and two desorption modules
- Figure 7 shows a gas adsorption concentration device provided with an adsorption unit storage part
- Figure 8 is a comprehensive schematic diagram of a gas adsorption concentration device with a composite array structure, which shows the flow direction of adsorbed gas, desorbed gas and adsorbed mass transfer process.
- the number of "+” in the figure indicates the content of adsorbed mass, and the large hollow bilateral arrows The flow direction of the adsorbed gas is indicated, and the small hollow arrow indicates the flow direction of the desorbed gas;
- Figure 9 is a schematic structural diagram of the device shown in Figure 8, which shows the flow process of the adsorption unit.
- the hollow single-sided arrow in the figure indicates the transfer direction of the adsorption unit;
- FIG 10 is a schematic structural diagram of the device shown in Figure 8.
- the regeneration part is provided with two desorption modules;
- Figure 11 is a partial schematic diagram of the device shown in Figure 8, which shows the heat distribution of the desorption module during the desorption process;
- Figure 12 is a partial schematic diagram of the device shown in Figure 8, showing an adsorption unit filled with adsorbent packing;
- Figure 13 is a schematic structural diagram of the device shown in Figure 8, which shows the combination with RTO;
- Figure 14 is a perspective view of a gas adsorption concentration device with a composite array structure, in which the outer shell and some internal components are partially cut away;
- Figure 15 is a perspective view of the device shown in Figure 14, in which the adsorption part shell is removed, and some components of the desorption module shell and the adsorption part are cut away;
- Figure 16 is a perspective view of the adsorption portion of the device shown in Figure 14, with the adsorption portion housing and one side annular seal removed;
- Figure 17 is a perspective view of the adsorption part of the device shown in Figure 14, which shows the cycle mechanical structure of the adsorption unit of the adsorption part;
- Figure 18 is a partial perspective view of the device shown in Figure 14, which shows the functional structure of the adsorption unit transferred between the adsorption part and the regeneration part and the valve arrangement of the transition chamber;
- Figure 19 is a partial perspective view of the device shown in Figure 14, showing the valve of the transition chamber.
- Embodiment 1 Gas adsorption and concentration device with basic functional settings
- the gas adsorption concentration device includes an adsorption part S1 and a regeneration part S2.
- the adsorption part S1 includes an adsorption module S11 provided with a three-stage adsorption unit S01.
- the regeneration part S2 includes a desorption module S21 equipped with a three-stage adsorption unit S01, two of which have desorption functions and one has a heat recovery function.
- the adsorption unit S01 is transferred between the adsorption part S1 and the regeneration part S2 through the adsorption unit moving device, and circulates during the adsorption and desorption processes.
- the above-mentioned adsorption unit moving device has the form of a checkerboard transmission device.
- the chessboard transmission device is composed of a plurality of power roller moving plates S02 distributed in a chessboard pattern fixed on the ground and a moving rail base S011 fixed on the adsorption unit S01 and matching the power roller moving plate S02.
- the power supporting wheel moving plate S02 is divided into two types: single-rail supporting wheel moving plate S02-1 and double-rail supporting wheel moving plate S02-2.
- the single-rail supporting wheel moving plate S02-1 is equipped with two sets of six supporting wheels S021, so It can only carry the adsorption unit S01 to move in one-dimensional direction horizontally or vertically.
- the one-dimensional movement is marked with a single hollow arrow in Figure 1b; the double-track supporting wheel disc S02-2 is provided with four groups of ten in total.
- the two supporting wheels S021 are therefore able to carry the adsorption unit S01 to move in two-dimensional directions of the lateral and vertical directions.
- the two-dimensional movement is marked by two hollow arrows in Figure 1b.
- the supporting wheel S021 of the above two power supporting wheel moving discs S02 is equipped with a hydraulic lifting cylinder S022. Its function is to control the lifting of the supporting wheel S021 to realize the connection between the adsorption unit interface S012 and the movable interface S031 below. Docking and undocking. In addition, the conversion of the lateral and vertical movements of the adsorption unit S01 is simultaneously realized on the double-rail supporting wheel disc S02-2. The movement of each set of supporting wheels S021 of the power supporting wheel moving plate S02 is synchronously driven by the motor S023 through the belt S024 transmission.
- a transition supporting wheel S02-3 is also provided between the power supporting wheel movable disk S02 with a large distance that the adsorption unit S01 needs to span, in order to assist the power supporting wheel movable disk S02 to smoothly transport the adsorption unit S01.
- the above-mentioned gas adsorption and concentration device realizes the series connection of the adsorption units S01 in each adsorption module/desorption module of the adsorption part/regeneration part and the connection between each adsorption module/desorption module through the connecting pipeline S03 provided with the movable interface S031. Parallel connection.
- this embodiment is also equipped with components such as a waste gas collection and transfer device (WG) S032, a waste gas oxidation and incineration device S033, an waste gas fan S034, an exhaust chimney S035, a desorption fan S036, and a desorption gas filtering device S037.
- WG waste gas collection and transfer device
- the polluted exhaust gas from the exhaust gas collection and transfer device S032 passes through the three adsorption units identified as No. 6, No. 5 and No. 4 in the figure.
- the organic pollutants are adsorbed and retained by the adsorbents in these adsorption units, and then pass through the exhaust gas.
- Fan S034 and exhaust chimney S035 meet emission standards.
- the desorbed gas from the desorption gas filter device S037 and the desorption fan S036 is preheated by the adsorption unit marked No. 3 in the figure and then further heated by the exhaust gas oxidation incineration device S033, and then passes through the adsorption unit marked No. 2 and No. 1 in the figure.
- the adsorption unit carries the released organic pollutants into the exhaust gas oxidation and incineration device S033 again. After oxidation and incineration, it enters the emission chimney S035 to meet the emission standards.
- the adsorption unit marked No. 6 in the figure adsorbs enough organic pollutants to reach a dynamic saturation state, the adsorption unit interface S012 of all adsorption units S01 is separated from the active interface S031, and all adsorption units S01 move sequentially in the direction indicated by the arrow in the figure. , the result is that the adsorption unit marked No. 6 in the figure moves to the original position of the adsorption unit marked No. 1 in the figure, and the adsorption unit marked No.
- This embodiment shows the most basic functional settings of the checkerboard-type gas adsorption and concentration device, and is mainly used to illustrate the functional principles. It cannot yet realize many technical advantages of the present invention listed in the technical description.
- Embodiment 2 A gas adsorption concentration device provided with two adsorption modules and one desorption module
- this device adds an adsorption module based on Embodiment 1.
- the adsorption module S11A and the adsorption module S11B work simultaneously in a parallel relationship, but the working period arrangement needs to be staggered, that is, the time intervals between the adsorption units of the two adsorption modules S11A, S11B and the desorption module S21 are evenly matched.
- the upstream adsorption unit identified as No.
- the adsorption unit interface S012 of all adsorption units S01 of the adsorption module S11A and the desorption module S21 is separated from the active interface S031, and all adsorption units S01 are separated as shown in the figure.
- the direction indicated by the middle arrow moves counterclockwise.
- the result is that the adsorption unit marked No. 6 in the figure moves to the original position of the adsorption unit marked No. 1 in the figure.
- the adsorption unit marked No. 5 in the figure moves to the position marked in the figure.
- Embodiment 3 A gas adsorption concentration device provided with four adsorption modules and one desorption module
- this device adds two more adsorption modules on the basis of Embodiment 2, and also adds a heat recovery adsorption unit and an adsorption unit to be desorbed, with the purpose of not increasing the floor space and increasing the complexity of the device.
- the heat utilization efficiency of the desorption process of the device is further improved and the waiting time of waiting for the adsorption unit to move from the adsorption module to the desorption module during the switching process of the adsorption unit in the desorption module is eliminated.
- Each adsorption module works simultaneously in a parallel relationship, and the working periods are evenly staggered in sequence, that is, the time intervals of the adsorption units of the four adsorption modules and the desorption module are evenly exchanged.
- Embodiment 4 A gas adsorption and concentration device equipped with a pressure swing and temperature swing desorption module
- this device is based on Embodiment 1.
- the desorption module is replaced from a temperature-variable desorption device that uses hot air desorption and a thermal oxidation incineration device to destroy organic pollutants to one that uses negative pressure and temperature-increasing negative pressure to desorb and utilize condensation.
- Temperature and pressure swing desorption device for recovering organic pollutants.
- the adsorption module of this device is not substantially different from that of Embodiment 1.
- the desorption module of the device includes two adsorption units.
- the adsorption unit marked No. 2 in the figure uses negative pressure desorption mode.
- the peripheral functional components include desorption gas filter device S037, throttle valve S041, vacuum pump S042, Liquid storage tank S043 and condenser S044.
- the adsorption unit marked No. 1 in the figure is a heated negative pressure desorption method.
- the peripheral functional components include a pressure reducing valve S045, a desorption fan S036 and a gas heater S046.
- the organic waste gas desorbed by the above two methods is liquefied by the condenser S044 and then enters the liquid storage tank S043 for storage and utilization.
- the non-condensable gas still containing organic pollutants returns to the waste gas inlet pipeline.
- This device is also suitable for the design of multiple adsorption modules corresponding to one regeneration and desorption module.
- Embodiment 5 A gas adsorption concentration device provided with six adsorption modules and two desorption modules
- the device is provided with six adsorption modules and two desorption modules.
- the specific settings of a single adsorption module and a desorption module are the same as those in Embodiment 3.
- the six adsorption modules are connected in parallel, and the adsorption unit can be transferred between the six adsorption modules and the two desorption modules.
- one of the desorption modules can be closed to further increase the concentration ratio of the exhaust gas and reduce desorption energy consumption.
- Embodiment 6 Gas adsorption and concentration device provided with adsorption unit storage unit
- this device adds a heat recovery adsorption unit and an adsorption unit to be desorbed on the basis of Embodiment 2, the functions of which have been described in Embodiment 3, and an adsorption unit storage unit is provided above them.
- the storage part of the adsorption unit is divided into two parts, which are arranged on both sides of the adsorption part S1 and the regeneration part S2.
- the transportation mode of the adsorption unit in the adsorption part S1 can be the same as that of the adsorption part S1 and the regeneration part S2.
- the adsorption function and the desorption function of the adsorption concentration device are allowed to be separated in time.
- one of the two works continuously and the other works intermittently, or both work intermittently, but at completely different periods of time, etc.
- the desorption function works continuously and the adsorption function works intermittently.
- the desorption and destruction process of emission sources with high concentration, large air volume and intermittent operation can work continuously without the high energy consumption and inconsistency of turning on and off the machine. Stable state, thereby achieving the purpose of energy saving and consumption reduction.
- the adsorption part S1 includes a housing 12 , an adsorption gas inlet 121 , an adsorption gas outlet 122 , an adsorption array assembly 11 , an adsorption unit transfer position 13 and an adsorption unit transfer position 14 .
- the adsorption array assembly 11 is provided with two or more adsorption modules S11 including at least one layer of adsorption units S01 in parallel to divide the space enclosed by the casing 12 into an air intake distribution box 123 and an exhaust collection box 124 .
- the adsorbed gas inlet 121 is connected to the intake air distribution box 123, and the adsorbed gas outlet 122 is connected to the exhaust gas collection box 124.
- the adsorbed gas from the gas collection device 15 enters the air intake distribution box 123 through the adsorbed gas inlet 121, passes through the adsorption module S11 on the adsorption array assembly 11 in parallel, and becomes processed clean gas into the exhaust gas.
- the collection box 124 is discharged to the discharge chimney 16 through the adsorbed gas discharge port 122 .
- the adsorption array assembly 11 also includes a mechanical support and transfer device 112, whose function is to mechanically support each adsorption module S11, making it a complete barrier that isolates the intake air distribution box 123 and the exhaust collection box 124, and sequentially completes the adsorption.
- the adsorption unit S01 moves from the adsorption function position in the adsorption module S11 to the adsorption unit transfer-out position 14, and the adsorption unit S01 that has completed the regeneration process moves from the adsorption unit transfer-in position 13 to the adsorption function position in the adsorption module S11.
- the optimized solution of the adsorption module S11 is to include a multi-layer adsorption unit S01.
- the end of the adsorption module S11 located on the side of the intake distribution box 123 is called the head end 1111, and the end located on the side of the exhaust collection box 124 is called the tail end 1112.
- the mechanical support and transfer device 112 moves the adsorption unit S01 from the head end 1111 to the adsorption unit transfer-out position 14, and moves the adsorption unit S01 that has completed the regeneration process from the adsorption unit transfer-in position 13 to the tail end 1112.
- the adsorption unit S01 moves from the tail end 1112 to the head end 1111 in the adsorption module S11.
- the regeneration section S2 includes at least one desorption module S21 provided with a multi-layer adsorption unit S01.
- Each desorption module S21 includes a desorption module housing 21, a desorption gas inlet 212, a desorption gas outlet 213, a desorption gas heater 22, an adsorption unit desorption column 23, an adsorption unit heat recovery column 24, and Attached unit receiving channel 25, adsorption unit sending channel 26 and corresponding mechanical moving device.
- the adsorption unit heat recovery column 24 and the adsorption unit receiving channel 25 are composed of a plurality of stacked adsorption units S01.
- the desorbed gas from the desorbed gas supply device 27 passes through the regeneration module in the order of desorbed gas inlet 212 ⁇ adsorption unit heat recovery column 24 ⁇ desorbed gas heater 22 ⁇ adsorption unit desorption column 23 ⁇ desorbed gas outlet 213 Send it to the desorption gas treatment device (RTO is taken as an example in the figure).
- the mechanical moving device moves the adsorption unit S01 in the desorption module S21 in the order of the adsorption unit receiving channel 25 ⁇ the adsorption unit desorption column 23 ⁇ the adsorption unit heat recovery column 24 ⁇ the adsorption unit sending channel 26.
- the adsorption unit receiving channel 25 and the adsorption unit sending channel 26 of the regeneration part S2 are respectively connected with the adsorption unit transfer-out position 14 and the adsorption unit transfer-in position 13 of the adsorption part S1.
- the adsorbed gas and the desorbed gas are relatively isolated at the docking point by means of a transition cabin.
- the transition cabin is connected between the adsorption part S1 and the regeneration part S2 and is provided with valves on both sides.
- the adsorption array assembly 11 can adopt a sprocket structure. Each adsorption module S11 rotates cyclically on the sprocket as an attachment to the sprocket link.
- the sprocket structure can set the number of chain links according to the flow rate of the adsorbed gas, thereby adjusting the number of adsorption modules S11.
- the regeneration part S2 may be provided with two or more desorption modules S21.
- desorption modules S21 work simultaneously, it is necessary to coordinate the distribution of the adsorption units S11 transferred out from the adsorption part S1 among the desorption modules S21 at appropriate intervals and transfer them back to the adsorption part S1 in the same way.
- the desorption module S21 can be arranged in an inverted U-shaped structure, with the desorption gas heater 22 located above, and the adsorption unit desorption column 23 and the adsorption unit heat recovery column 24 arranged on both sides below.
- the desorbed gas entering the desorption module S21 is preheated by absorbing the heat in the adsorption unit S01 that has completed desorption in the adsorption unit heat recovery column 24, and is then heated to a predetermined desorption temperature by the air heater, and then the adsorption unit is desorbed.
- Attachment 23 performs heating and desorption, and at the same time, the desorbed gas is cooled and leaves the desorption module S21 carrying the adsorbate.
- the adsorption unit S01 passing through the desorption module S21 also undergoes a process of first heating up and then cooling down.
- the adsorption unit S01 can be filled with adsorbent 1101 in the form of ordinary industrial granules, which can reduce the dosage requirements for the adsorbent during commercial promotion, thereby reducing the difficulty of technical implementation and saving equipment manufacturing costs.
- the desorption gas discharged during the desorption operation of the device can be treated by RTO pyrolysis.
- the calorific value contained in the desorption gas exceeds that required by the RTO to maintain operation, the abundant heat generated in the RTO can be used as the desorption gas heating heat source of the desorption module S21 through the heat exchange pipeline.
- Embodiment 7 Gas adsorption and concentration device with chain array structure
- the adsorption part S1 includes a housing 12 , an adsorption gas inlet 121 , an adsorption gas outlet 122 , an adsorption array assembly 11 , an adsorption unit transfer position 13 and an adsorption unit transfer position 14 .
- the adsorption array assembly 11 has twelve adsorption modules S11 including three-layer adsorption units S01 arranged in parallel.
- the adsorption array assembly 11 divides the space enclosed by the housing 12 into an intake air distribution box 123 and an exhaust collection box 124 .
- the adsorbed gas inlet 121 is connected to the intake air distribution box 123, and the adsorbed gas outlet 122 is connected to the exhaust gas collection box 124.
- the mechanical support and transfer device 112 of the adsorption array assembly 11 has a sprocket structure, which mainly includes two pairs of gears 1121 and a chain body 1122 that connects the two pairs of gears 1121 and rotates around the gears.
- Each adsorption module S11 serves as one of the links of the chain body.
- a soft seal 1123 is provided between the chain links, and an annular seal 1124 is provided between the chain body and the housing 12 of the adsorption part S1. The annular seal 1124 rotates synchronously with the chain body 1122.
- An adsorption unit transfer position 13 is provided in the space of the exhaust collecting box 124 below the upper half ring of the chain body of the adsorption array assembly 11, for transferring the adsorption unit S01 that has completed desorption and regeneration into the adsorption array assembly 11.
- An adsorption unit transfer-out position 14 is provided in the space of the air intake distribution box 123 above the upper half ring of the chain body, which is used to transfer the adsorption unit S01 that has completed adsorption out of the adsorption array assembly 11 .
- the adsorption unit transfer position 13 is provided with a tray 131 for positioning and constraining the adsorption module S11 and a hydraulic push rod 132 for pushing the adsorption module S11 into the adsorption module sleeve 1111 .
- a cover plate 141 for positioning and constraining the adsorption module S11 and a hydraulic push rod 142 for pushing the adsorption module S11 out of the adsorption array assembly 11 into the desorption module S21 are provided on the adsorption unit rotation-out position 14 .
- the regeneration part S2 is provided with a desorption module S21, including a desorption module housing 21, a desorption gas inlet 212, a desorption gas outlet 213, a desorption gas heater 22, and an adsorption unit desorption unit.
- Regeneration part S2 The adsorption unit receiving channel 25 of the desorption module S21 is docked with the adsorption unit transfer position 14 of the adsorption part S1 via the receiving transition cabin 214.
- the adsorption unit sending channel 26 of the desorption module S21 of the regeneration part S2 is connected to the adsorption unit transfer position 13 of the adsorption part S1 via the sending transition cabin 215 .
- the receiving transition cabin 214 and the sending transition cabin 215 are respectively provided with transition valves 216 at the communication locations with the shell 12 of the adsorption part S1 and the desorption module shell 21 of the regeneration part S2.
- the opening and closing of the gate plate 2161 of the transition valve 216 is pushed by the multi-stage hydraulic push rod 2162.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
一种气体吸附浓集装置,包括吸附部(S1)和再生部(S2)。吸附部(S1)包括二个或二个以上设置有多级吸附单元(S01)的吸附模块(S11),吸附单元(S01)构成为设置有吸附剂的固定吸附床,当含有吸附质和基础成分的吸附气体穿过吸附模块(S11)时,吸附质被吸附单元(S01)内的吸附剂吸附。再生部(S2)包括至少一个设置有多级吸附单元(S01)的脱附模块(S21),当高温脱附气体通过脱附模块(S21)时,吸附单元(S01)内的吸附质被脱附并由脱附气体携带流出。吸附单元(S01)通过吸附单元移动装置在吸附部(S1)和再生部(S2)之间传递,并在吸附和脱附过程中循环流转。
Description
本发明涉及一种气体吸附浓集装置,更具体地说,本发明涉及一种用吸附法浓集挥发性有机污染物的棋盘式气体吸附浓集装置。
“空速”在技术上是借用化学领域催化剂在催化反应效率上的一个技术指标,是指规定的条件下,单位时间单位体积催化剂处理的气体量,环保领域把催化剂换成了吸附剂,单位通常为m3/(m3催化剂·h),可简化为h-1。
在大流量固定床气体吸附浓集装置中,吸附床的风阻是一个显著影响整个系统能耗的影响因素。在保持一定空速的前提下减小吸附床的厚度、降低气流速度可以显著减小吸附床的风阻,而去除效率仍能得到保障。
在同样由本发明的申请人提交的中国发明专利文件CN110013736A公开的一种吸附分离装置中,包括分别由多个吸附单元组成的吸附序列、脱附序列和热再生序列三个功能处理模块。该吸附分离装置可以实现污染物变温吸附法处理过程中极高的去除效率、极高的污染物浓缩比例和最大限度的热利用效率。
在上述技术方案中,吸附序列、脱附序列和热再生序列在吸附单元的有序流动中采用单一串联方式。在具体应用中,由于吸附过程的吸附质通常浓度很低,吸附气体流量和脱附气体流量的比值通常为几十到几百,甚至高达几千,这也正是该装置高浓缩比例的技术优势所在。
然而,为了实现高浓缩比和吸附单元在各吸附功能模块之间的流动平衡,脱附序列和热再生序列只能以极小的流量低效工作。吸附功能模块风量大风速高,高风阻问题于是更加突出。分配在吸附序列、脱附序列和热再生序列中的吸附单元数量相差无几,设备的资源在脱附序列和热再生序列处于极低效率利用状态。
为此,业内亟需设计一种气体吸附浓集装置,该装置能解决大流量气体吸附浓集装置在吸附作业时的高风阻和脱附作业时的低效率问题。
发明内容
本发明的目的在于提供一种能解决吸附作业时的高风阻和脱附作业时的低效率问题的气体吸附浓集装置。
根据本发明的气体吸附浓集装置包括吸附部和再生部,吸附部包括二个或二个以上设置有多级吸附单元的吸附模块,吸附单元构成为设置有吸附剂的固定吸附床,当含有吸附质和基础成分的吸附气体穿过吸附模块时,吸附质被吸附单元内的吸附剂吸附,再生部包括至少一个设置有多级吸附单元的脱附模块,当高温脱附气体通过脱附模块时,吸附单元内的吸附质被脱附并由脱附气体携带流出。该气体吸附浓集装置的特征在于,吸附单元通过吸附单元移动装置在吸附部和再生部之间传递,并在吸附和脱附过程中循环流转。
在一个较佳实施例中,当吸附部包括多个吸附模块时,吸附模块可以以并联的关系布置。
在又一个较佳实施例中,气体吸附浓集装置还可以包括设有活动接口的连接管路,连接管路实现吸附部的各吸附模块内的吸附单元的串联连接以及各吸附模块之间的并联连接。
或者,连接管路还可以实现再生部的各脱附模块内的吸附单元的串联连接以及各脱附模块之间的并联连接。
在再一个较佳实施例中,吸附单元移动装置可以具有棋盘式传输装置的型式,棋盘式传输装置由固定在地面的多个呈棋盘式分布的动力托轮动盘和固定在吸附单元上且与动力托轮动盘匹配的移动轨道底座组成,承载吸附单元的移动轨道底座在动力托轮动盘之间沿相互垂直的两个方向移动,由此实现吸附单元在吸附部与再生部之间的传递,以及吸附单元在吸附模块与脱附模块内部的传递。
较佳的是,动力托轮动盘的托轮可以设置有液压升降油缸,液压升降油缸通过控制托轮的升降来实现吸附单元接口与其下方的连接管路的活动接口之间的对接和脱离。
在又一个较佳实施例中,脱附模块可以为变温变压脱附装置。在该实施例中,脱附模块由使用热风脱附并利用热氧化焚烧装置摧毁有机污染物的变温脱附装置替换为使用负压及升温负压脱附利用冷凝回收有机污染物的变温变压脱附装置。
在再一个较佳实施例中,气体吸附浓集装置还设置有分列于吸附部和再生部两侧的吸附单元存储部,吸附单元存储部将完成饱和吸附的饱和吸附单元脱离吸附部和/或将完成脱附再生的空白吸附单元脱离再生部的连接管路并根据需要重新加入连接管路。
在一个最优选实施例中,吸附部可以包括壳体、吸附气体进口、吸附气体排口、吸附阵列总成、吸附单元转入位和吸附单元转出位,吸附阵列总成并列设置有多个至少包括一层吸附单元的吸附模块,吸附阵列总成将壳体围成的空间分割成进气分配箱和排气汇集箱,吸附气体进口与进气分配箱连通,吸附气体排口与排气汇集箱连通,机械支持与转运装置作为吸附阵列总成的组成部分,支持吸附模块在吸附功能位移动,将完成吸附的吸附单元从吸附模块内的吸附功能位移动到吸附单元转出位,并将完成再生处理的吸附单元从吸附单元转入位移动到吸附模块内的吸附功能位。
较佳的是,吸附模块可以包括多层吸附单元,吸附模块位于进气分配箱一侧的一端称为头端,位于排气汇集箱一侧的一端称为尾端,机械支持与转运装置将吸附单元从头端移动到吸附单元转出位,并将完成再生处理的吸附单元从吸附单元转入位移动到尾端,吸附单元在吸附模块内从尾端向头端移动。
较佳的是,再生部的脱附模块可以包括脱附模块壳体、脱附气体进口、脱附气体排口、脱附气体加热器、吸附单元脱附列、吸附单元热回收列、吸附单元接收通道、吸附单元发送通道和相应的机械移动装置,其中,来自脱附气体供应装置的脱附气体按照脱附气体进口→吸附单元热回收列→脱附气体加热器→吸附单元脱附列→脱附气体排口的顺序通过脱附模块到达脱附气处理装置,机械移动装
置将吸附单元按照吸附单元接收通道→吸附单元脱附列→吸附单元热回收列→吸附单元发送通道的顺序在脱附模块内移动。
较佳的是,再生部的吸附单元接收通道和吸附单元发送通道可以分别与吸附部的吸附单元转出位和吸附单元转入位对接,吸附气体与脱附气体借助于过渡舱、在对接处相对隔离,过渡舱连接在吸附部和再生部之间并在两侧分别设置有阀门。
较佳的是,吸附阵列总成可以具有链轮结构,每个吸附模块作为链轮链节的附件在链轮上循环转动。
较佳的是,链轮结构可以根据吸附气体的流量设置链节的数量,从而调整吸附模块的数量。
较佳的是,脱附模块可以设置成倒U字形结构,脱附气体加热器位于上方,吸附单元脱附列和吸附单元热回收列分列两侧下方。
此外,再生部可以包括二个脱附模块;脱附气体可以通过废气氧化焚烧装置(RTO)热解处理,并且通过热交换管路将RTO内产生的热量输送到脱附模块内作为脱附热源;吸附单元内装填的吸附剂可以为工业通用颗粒剂型。
根据本发明的气体吸附浓集装置具有以下有益效果:
(i)有效地解决了大流量气体吸附浓集装置吸附作业时的高风阻和脱附作业时的低效率问题。
(ii)能够根据吸附气体的流量设置链节的数量,无需改变设备的主要零部件规格即可实现设备流量负载的大幅度变化。
(iii)能够针对与不同吸附气体的处理工艺,按浓缩比优化配置脱附模块的再生处理能力和吸附模块的吸附处理能力。
(iv)对于确定配置的吸附浓集装置,能够通过调整吸附部的吸附模块的循环周期与脱附模块的脱附风量来适应吸附气体风量、浓度的大幅度变化;对于设置有多个脱附模块的装置,还能够选择通过开启不同数量的脱附模块来适应吸附气体风量、浓度更大幅度的变化。
(v)同时继承了诸如专利文件CN110013736A公开的吸附分离装置在脱附再生过程中高效节能的技术优点。
(vi)通过设计吸附单元存储部,允许吸附浓集装置的吸附功能和脱附功能在时间上能够分离。这样,高浓度、大风量且断续作业的排放源的脱附与摧毁流程能够连续工作,而无需进入开关机时的高能耗和不稳定状态,从而达到节能降耗的目的。
下面将结合附图和实施例对本发明作进一步说明。
图1a是根据本发明的气体吸附浓集装置的基本结构示意图;
图1b是图1a装置中的吸附单元移动装置的动力托轮动盘的俯视示意图;
图2是吸附单元移动装置的动力托轮动盘、移动轨道底座、吸附单元的管路对接装置的结构关系示意图;
图3a示出了设置有两个吸附模块和一个脱附模块的气体吸附浓集装置;
图3b是图3a装置中的吸附单元移动装置的动力托轮动盘的俯视示意图;
图4示出了设置有四个吸附模块和一个脱附模块的气体吸附浓集装置;
图5示出了设置有变压变温脱附模块的气体吸附浓集装置;
图6示出了设置有六个吸附模块和两个脱附模块的气体吸附浓集装置;
图7示出了设置有吸附单元存储部的气体吸附浓集装置;
图8是具有复合阵列结构的气体吸附浓集装置的综合示意图,其中示出了吸附气体、脱附气体流向和吸附质转移过程,图中“+”数目示意吸附质的含量,大空心双边箭头示意吸附气体流向,小空心箭头示意脱附气体流向;
图9是图8所示装置的结构示意图,其中示出了吸附单元的流转过程,图中空心单边箭头示意吸附单元的传递方向;
图10是图8所示装置的结构示意图,图中再生部设置有两个脱附模块;
图11是图8所示装置的局部示意图,其中示出了脱附模块在脱附过程中的热量分布;
图12是图8所示装置的局部示意图,其中示出了装填有吸附剂填料的吸附单元;
图13是图8所示装置的结构示意图,其中示出了与RTO的结合方式;
图14是具有复合阵列结构的气体吸附浓集装置的立体图,其中外壳及部分内部部件被局部剖开;
图15是图14所示装置的立体图,其中去除了吸附部外壳,脱附模块外壳及吸附部部分部件被剖开;
图16是图14所示装置的吸附部的立体图,其中去除了吸附部外壳和一侧环形密封件;
图17是图14所示装置的吸附部的立体图,其中示出了吸附部吸附单元循环机械结构;
图18是图14所示装置的局部立体图,其中示出了吸附单元在吸附部与再生部之间传递的功能结构及过度舱的阀门设置;以及
图19是图14所示装置的局部立体图,其中示出了过度舱的阀门。
实施例1 基本功能设置的气体吸附浓集装置
参见图1a、1b和3,根据本发明的气体吸附浓集装置包括吸附部S1和再生部S2。吸附部S1包括一个设置有三级吸附单元S01的吸附模块S11。再生部S2包括一个设置有三级吸附单元S01的脱附模块S21,其中两级为脱附功能,一级为热回收功能。吸附单元S01通过吸附单元移动装置在吸附部S1和再生部S2之间传递,并在吸附和脱附过程中循环流转。
上述吸附单元移动装置具有棋盘式传输装置的型式。棋盘式传输装置由固定在地面的多个呈棋盘式分布的动力托轮动盘S02和固定在吸附单元S01上且与动力托轮动盘S02匹配的移动轨道底座S011组成。动力托轮动盘S02分为单轨托轮动盘S02-1和双轨托轮动盘S02-2两种,其中,单轨托轮动盘S02-1设置有两组共六个托轮S021,因此只能承载吸附单元S01沿横向或竖向的一维方向运动,该一维方向运动在图1b中用单个空心箭头标识;双轨托轮动盘S02-2设置有四组共十
二个托轮S021,因此能够承载吸附单元S01沿横向和竖向的二维方向运动,该二维方向运动在图1b中用两个空心箭头标识。
如图2所示,上述两种动力托轮动盘S02的托轮S021均设置有液压升降油缸S022,其作用是通过控制托轮S021的升降来实现吸附单元接口S012与其下方的活动接口S031的对接和脱离。此外,在双轨托轮动盘S02-2上还同时实现了吸附单元S01横向和竖向运动的转换。动力托轮动盘S02的每组托轮S021的运动由电机S023通过皮带S024传动同步驱动。在吸附单元S01需要跨越的间距较大的动力托轮动盘S02之间还设置有过渡托轮S02-3,目的是辅助动力托轮动盘S02平稳地输送吸附单元S01。
上述气体吸附浓集装置通过设置有活动接口S031的连接管路S03实现吸附部/再生部的各吸附模块/脱附模块内的吸附单元S01的串联连接以及各吸附模块/脱附模块之间的并联连接。
如图1a所示,该实施例还外设有废气收集转移装置(WG)S032、废气氧化焚烧装置S033、废气风机S034、排放烟囱S035、脱附风机S036和脱附气体过滤装置S037等构件。
图1a和1b中的虚线圆圈表示吸附单元S01周转时不与连接管路S03连接、仅供暂时停顿的空白工位。
工作时,来自废气收集转移装置S032的污染废气依次通过图中标识为6号、5号和4号的三个吸附单元后,有机污染物被这些吸附单元内的吸附剂吸附滞留,然后通过废气风机S034、排放烟囱S035达标排放。来自脱附气体过滤装置S037和脱附风机S036的脱附气体经过图中标识为3号的吸附单元预热再通过废气氧化焚烧装置S033进一步加热,然后依次通过图中标识为2和1号的吸附单元,携带脱出的有机污染物再次进入废气氧化焚烧装置S033,氧化焚烧后进入排放烟囱S035达标排放。当图中标识为6号的吸附单元吸附足够多的有机污染物达到动态饱和状态后,所有吸附单元S01的吸附单元接口S012与活动接口S031脱离,所有吸附单元S01按图中箭头指示方向顺序运动,结果是图中标识为6号的吸附单元运动到图中标识为1号的吸附单元原先所在的位置,图中标识为5号的吸附单
元运动到图中标识为6号的吸附单元原先所在的位置,以此类推,直至所有吸附单元S01的吸附单元接口S012与活动接口S031对合,整个装置开始下一时间段的功能运行。
该实施例展示了棋盘式气体吸附浓集装置最基本的功能设置,主要用来说明功能原理,还不能实现技术说明中列举的本发明的诸多的技术优势。
实施例2 设置有两个吸附模块和一个脱附模块的气体吸附浓集装置
参见图3a和3b,该装置在实施例1的基础上增加了一个吸附模块。吸附模块S11A和吸附模块S11B呈并联关系同时工作,但工作时段安排需要错开,即两个吸附模块S11A、S11B与脱附模块S21交替交换的吸附单元的时间间隔均匀一致。当吸附模块S11A的最上游吸附单元(图中标识为6号)饱和时,吸附模块S11A和脱附模块S21的所有吸附单元S01的吸附单元接口S012与活动接口S031脱离,所有吸附单元S01按图中箭头指示方向逆时针运动,结果是图中标识为6号的吸附单元运动到图中标识为1号的吸附单元原先所在的位置,图中标识为5号的吸附单元运动到图中标识为6号的吸附单元原先所在的位置。吸附模块S11B的最上游吸附单元(图中标识为9号)饱和时,吸附模块S11B和脱附模块S21的所有吸附单元S01的吸附单元接口S012与活动接口S031脱离,所有吸附单元S01按图中箭头指示方向顺时针运动,结果是图中标识为9号的吸附单元运动到上次切换的图中标识为6号的吸附单元原先所在的位置,图中标识为8号的吸附单元运动到图中标识为9号的吸附单元原先所在的位置。如此循环往复。工作时,废气和脱附气体在连接管路S03中的走向亦如图中所示。
实施例3 设置有四个吸附模块和一个脱附模块的气体吸附浓集装置
参见图4,该装置在实施例2的基础上再增加了两个吸附模块,同时增加了一个热回收吸附单元和一个待脱附吸附单元,目的是在不增加占地面积和提高装置复杂性的情况下进一步提高该装置脱附过程的热利用效率同时免除了在脱附模块中吸附单元切换过程中等待吸附单元从吸附模块运动到脱附模块的等待时间。
各吸附模块呈并联关系同时工作,工作时段按顺序均匀错开,即四个吸附模块与脱附模块交替交换的吸附单元的时间间隔均匀一致。
实施例4 设置有变压变温脱附模块的气体吸附浓集装置
参见图5,该装置在实施例1的基础上将脱附模块由使用热风脱附并利用热氧化焚烧装置摧毁有机污染物的变温脱附装置替换为使用负压及升温负压脱附利用冷凝回收有机污染物的变温变压脱附装置。
该装置的吸附模块与实施例1并无实质区别。
该装置的脱附模块包括两个吸附单元,其中图中标注为2号的吸附单元为负压脱附方式,外设的功能部件包括脱附气体过滤装置S037、节流阀S041、真空泵S042、储液罐S043和冷凝器S044。图中标注为1号的吸附单元为加热负压脱附方式,外设的功能部件包括减压阀S045、脱附风机S036和气体加热器S046。用以上两种方式脱附出的有机废气经冷凝器S044液化后进入储液罐S043存储利用,仍含有有机污染物的不凝气重新回到废气进气管路。
该装置也适合多个吸附模块对应一个再生脱附模块的设计。
实施例5 设置有六个吸附模块和两个脱附模块的气体吸附浓集装置
参见图6,该装置设置有六个吸附模块和两个脱附模块。单个吸附模块和脱附模块的具体设置与实施例3无异,六个吸附模块呈并联关系,吸附单元可以在六个吸附模块和两个脱附模块之间流转。在废气浓度降低时可以关闭其中一个脱附模块,进一步提高废气的浓缩比,降低脱附能耗。
实施例6 设置有吸附单元存储部的气体吸附浓集装置
参见图7,该装置在实施例2的基础上增加了一个热回收吸附单元和一个待脱附吸附单元,其作用在实施例3中已有叙述,在此之上设置了吸附单元存储部。吸附单元存储部分成两部分,分列于吸附部S1和再生部S2的两侧。吸附部S1中吸附单元的运输方式可以采用与吸附部S1和再生部S2相同的方式。
通过设计吸附单元存储部,允许吸附浓集装置的吸附功能和脱附功能在时间上能够分离。例如两者之一连续工作而另一个断续工作,或者两者均断续工作,但工作在完全不同的时段等等。在具体应用中,脱附功能连续工作而吸附功能断续工作,高浓度、大风量且断续作业的排放源的脱附与摧毁流程能够连续工作,而无需进入开关机时的高能耗和不稳定状态,从而达到节能降耗的目的。
参见图8至13,其中示出了另一种气体吸附浓集装置的多个实施例。如图8所示,吸附部S1包括壳体12、吸附气体进口121、吸附气体排口122、吸附阵列总成11、吸附单元转入位13和吸附单元转出位14。吸附阵列总成11并列设置有二个或二个以上的至少包括一层吸附单元S01的吸附模块S11,以将壳体12围成的空间分割成进气分配箱123和排气汇集箱124。吸附气体进口121与进气分配箱123连通,吸附气体排口122与排气汇集箱124连通。在该装置工作时,来自气体收集装置15的吸附气体经由吸附气体进口121进入进气分配箱123,并行穿过吸附阵列总成11上的吸附模块S11,变成处理后的洁净气体进入排气汇集箱124并由吸附气体排口122排向排放烟囱16。吸附阵列总成11还包括了机械支持与转运装置112,其功能是机械支持各吸附模块S11,使之成为隔离进气分配箱123和排气汇集箱124的完整屏障,依序将完成吸附的吸附单元S01从吸附模块S11内的吸附功能位移动到吸附单元转出位14,并将完成再生处理的吸附单元S01从吸附单元转入位13移动到吸附模块S11内的吸附功能位。
吸附模块S11的优化方案是包括多层吸附单元S01,吸附模块S11位于进气分配箱123一侧的一端称为头端1111,位于排气汇集箱124一侧的一端称为尾端1112。机械支持与转运装置112将吸附单元S01从头端1111移动到吸附单元转出位14,并将完成再生处理的吸附单元S01从吸附单元转入位13移动到尾端1112。吸附单元S01在吸附模块S11内从尾端1112向头端1111移动。
继续参见图8至9,再生部S2包括至少一个设置有多层吸附单元S01的脱附模块S21。每个脱附模块S21包括脱附模块壳体21、脱附气体进口212、脱附气体排口213、脱附气体加热器22、吸附单元脱附列23、吸附单元热回收列24、吸
附单元接收通道25、吸附单元发送通道26和相应的机械移动装置。吸附单元热回收列24和吸附单元接收通道25由多个层叠的吸附单元S01构成。来自脱附气体供应装置27的脱附气体按脱附气体进口212→吸附单元热回收列24→脱附气体加热器22→吸附单元脱附列23→脱附气体排口213的顺序通过再生模块送往脱附气处理装置(图中以RTO为例)。机械移动装置将吸附单元S01按照吸附单元接收通道25→吸附单元脱附列23→吸附单元热回收列24→吸附单元发送通道26的顺序在脱附模块S21内移动。
再生部S2的吸附单元接收通道25和吸附单元发送通道26分别与吸附部S1的吸附单元转出位14和吸附单元转入位13对接。吸附气体与脱附气体借助于过渡舱在对接处相对隔离,过渡舱连接在吸附部S1和再生部S2之间并在两侧分别设置有阀门。
吸附阵列总成11可以采用链轮结构。每个吸附模块S11作为链轮链节的附件在链轮上循环转动。
链轮结构可以根据吸附气体的流量设置链节的数量,从而调整吸附模块S11的数量。
继续参见图10,再生部S2可以设置两个或更多的脱附模块S21。当多个脱附模块S21同时工作时,需要按适当的间隔协调从吸附部S1转出的吸附单元S11在各个脱附模块S21之间的分配并用相同的方式转回吸附部S1。
参见图11和12,脱附模块S21可以设置成倒U字形结构,脱附气体加热器22位于上方,吸附单元脱附列23和吸附单元热回收列24分列两侧下方。进入脱附模块S21的脱附气体由于吸收吸附单元热回收列24已完成脱附的吸附单元S01内的热量而得到预热,再由空气加热器加热到预定脱附温度,然后对吸附单元脱附列23进行加热脱附,同时脱附气体被冷却,携带吸附质离开脱附模块S21。同样,经过脱附模块S21的吸附单元S01也经过先升温再降温的过程。这两个过程充分表明脱附再生过程是一个高效节能过程。
吸附单元S01内可以装填普通工业颗粒剂型的吸附剂1101,这样在商业推广时可以降低对吸附剂的剂型要求,从而降低技术实施难度并节约设备制造成本。
参见图13,该装置在脱附作业时排出的脱附气体可以通过RTO热解处理。当脱附气体所含的热值超过RTO维持运行所需时,可以通过热交换管路将RTO内产生的富裕热量作为脱附模块S21的脱附气体加热热源。
实施例7 具有链阵结构的气体吸附浓集装置
参见图14至17,吸附部S1包括壳体12、吸附气体进口121、吸附气体排口122、吸附阵列总成11、吸附单元转入位13和吸附单元转出位14。吸附阵列总成11并列设置有十二个包括三层吸附单元S01的吸附模块S11。吸附阵列总成11将壳体12围成的空间分割成进气分配箱123和排气汇集箱124。吸附气体进口121与进气分配箱123连通,吸附气体排口122与排气汇集箱124连通。吸附阵列总成11的机械支持与转运装置112具有链轮结构,主要包括两对齿轮1121和连接两对齿轮1121并绕齿轮转动的链体1122,每个吸附模块S11作为链体的链节之一的附属结构,分别与每个链节相对应。在链节与链节之间设置软体密封件1123,在链体与吸附部S1的壳体12之间设置环形密封件1124,环形密封件1124随链体1122同步转动。
这两种密封件的功能是在各吸附模块S11之间和吸附阵列总成11与壳体12之间形成隔离进气分配箱123和排气汇集箱124的完整屏障。在吸附阵列总成11的链体上半环下方的排气汇集箱124的空间内设置有吸附单元转入位13,用于将完成脱附再生的吸附单元S01转入吸附阵列总成11。在链体上半环上方的进气分配箱123的空间内设置有吸附单元转出位14,用于将完成吸附的吸附单元S01转出吸附阵列总成11。在吸附单元转入位13设置对吸附模块S11起定位约束作用的托盘131和将吸附模块S11推入吸附模块套筒1111的液压推送杆132。在吸附单元转出位14上设置对吸附模块S11起定位约束作用的盖板141和将吸附模块S11推出吸附阵列总成11进入脱附模块S21的液压推送杆142。
参见图15、18和19,再生部S2设置有脱附模块S21,包括脱附模块壳体21、脱附气体进口212、脱附气体排口213、脱附气体加热器22、吸附单元脱附列23、吸附单元热回收列24、吸附单元接收通道25、吸附单元发送通道26。再生部S2
的脱附模块S21的吸附单元接收通道25与吸附部S1的吸附单元转出位14经由接受过渡舱214对接。再生部S2的脱附模块S21的吸附单元发送通道26与吸附部S1的吸附单元转入位13经由发送过渡舱215对接。接受过渡舱214和发送过渡舱215分别在与吸附部S1的壳体12和再生部S2的脱附模块壳体21的连通处设置有过渡阀门216。过渡阀门216的闸板2161的开闭由多级液压推送杆2162推动执行。
Claims (15)
- 一种气体吸附浓集装置,包括吸附部(S1)和再生部(S2),所述吸附部(S1)包括二个或二个以上设置有多级吸附单元(S01)的吸附模块(S11),所述吸附单元(S01)构成为设置有吸附剂的固定吸附床,当含有吸附质和基础成分的吸附气体穿过所述吸附模块(S11)时,所述吸附质被所述吸附单元(S01)内的所述吸附剂吸附,所述再生部(S2)包括至少一个设置有多级吸附单元(S01)的脱附模块(S21),当高温脱附气体通过所述脱附模块(S21)时,所述吸附单元(S01)内的所述吸附质被脱附并由脱附气体携带流出,其中,所述吸附单元(S01)通过吸附单元移动装置在所述吸附部(S1)和所述再生部(S2)之间传递,并在吸附和脱附过程中循环流转。
- 如权利要求1所述的气体吸附浓集装置,其特征在于,当所述吸附部(S1)包括多个吸附模块(S11)时,所述吸附模块(S11)以并联的关系布置。
- 如权利要求1所述的气体吸附浓集装置,其特征在于,所述气体吸附浓集装置还包括设有活动接口(S031)的连接管路(S03),所述连接管路(S03)实现所述吸附部(S1)的各吸附模块(S11)内的所述吸附单元(S01)的串联连接以及各吸附模块(S11)之间的并联连接。
- 如权利要求1所述的气体吸附浓集装置,其特征在于,所述气体吸附浓集装置还包括设有活动接口(S031)的连接管路(S03),所述连接管路(S03)实现所述再生部(S2)的各脱附模块(S21)内的所述吸附单元(S01)的串联连接以及各脱附模块(S21)之间的并联连接。
- 如权利要求1所述的气体吸附浓集装置,其特征在于,所述吸附单元移动装置具有棋盘式传输装置的型式,所述棋盘式传输装置由固定在地面的多个呈棋盘式分布的动力托轮动盘(S02)和固定在所述吸附单元(S01)上且与所述动力托轮动盘(S02)匹配的移动轨道底座(S011)组成,承载所述吸附单元(S01)的所述移动轨道底座(S011)在所述动力托轮动盘(S02)之间沿相互垂直的两个方向移动,由此实现所述吸附单元(S01)在所述吸附部(S1)与所述再生部(S2)之间的传递,以及所述吸附单元(S01)在所述吸附模块(S11)与所述脱附模块(S21)内部的传递。
- 如权利要求5所述的气体吸附浓集装置,其特征在于,所述动力托轮动盘(S02)的托轮(S021)设置有液压升降油缸(S022),所述液压升降油缸(S022)通过控制所述托轮(S021)的升降来实现所述吸附单元接口(S012)与其下方的连接管路(S03)的活动接口(S031)之间的对接和脱离。
- 如权利要求1所述的气体吸附浓集装置,其特征在于,所述脱附模块为变温变压脱附装置。
- 如权利要求1所述的气体吸附浓集装置,其特征在于,所述气体吸附浓集装置还设置有分列于所述吸附部(S1)和所述再生部(S2)两侧的吸附单元存储部,所述吸附单元存储部将完成饱和吸附的饱和吸附单元脱离所述吸附部(S1)和/或将完成脱附再生的空白吸附单元脱离所述再生部(S2)的所述连接管路(S03)并根据需要重新加入所述连接管路(S03)。
- 根据权利要求1所述的气体吸附浓集装置,其特征在于,所述吸附部(S1)包括壳体(12)、吸附气体进口(121)、吸附气体排口(122)、吸附阵列总成(11)、吸附单元转入位(13)和吸附单元转出位(14),所述吸附阵列总成(11)并列设置有多个至少包括一层吸附单元(S01)的吸附模块(S11),所述吸附阵 列总成(11)将所述壳体(12)围成的空间分割成进气分配箱(123)和排气汇集箱(124),所述吸附气体进口(121)与所述进气分配箱(123)连通,所述吸附气体排口(122)与所述排气汇集箱(124)连通,机械支持与转运装置(112)作为所述吸附阵列总成(11)的组成部分,支持所述吸附模块(S11)在吸附功能位移动,将完成吸附的所述吸附单元(S01)从所述吸附模块(S11)内的所述吸附功能位移动到所述吸附单元转出位(14),并将完成再生处理的所述吸附单元(S01)从所述吸附单元转入位(13)移动到所述吸附模块(S11)内的所述吸附功能位。
- 根据权利要求9所述的气体吸附浓集装置,其特征在于,所述吸附模块(S11)包括多层吸附单元(S01),所述吸附模块(S11)位于所述进气分配箱(123)一侧的一端称为头端(1111),位于所述排气汇集箱(124)一侧的一端称为尾端(1112),所述机械支持与转运装置(112)将所述吸附单元(S01)从所述头端(1111)移动到所述吸附单元转出位(14),并将完成再生处理的所述吸附单元(S01)从所述吸附单元转入位(13)移动到所述尾端(1112),所述吸附单元(S01)在吸附模块(S11)内从所述尾端(1112)向所述头端(1111)移动。
- 根据权利要求10所述的气体吸附浓集装置,其特征在于,所述再生部(S2)的所述脱附模块(S21)包括脱附模块壳体(21)、脱附气体进口(212)、脱附气体排口(213)、脱附气体加热器(22)、吸附单元脱附列(23)、吸附单元热回收列(24)、吸附单元接收通道(25)、吸附单元发送通道(26)和相应的机械移动装置,其中,来自脱附气体供应装置(27)的脱附气体按照脱附气体进口(212)-吸附单元热回收列(24)-脱附气体加热器(22)-吸附单元脱附列(23)-脱附气体排口(213)的顺序通过所述脱附模块(S21)到达脱附气处理装置,所述机械移动装置将所述吸附单元(S01)按照所述吸附单元接收通道(25)-所述吸附单元脱附列(23)-所述吸附单元热回收列(24)-所述吸附单元发送通道(26)的顺序在所述脱附模块(S21)内移动。
- 根据权利要求11所述的气体吸附浓集装置,其特征在于,所述再生部(S2)的所述吸附单元接收通道(25)和所述吸附单元发送通道(26)分别与所述吸附部(S1)的所述吸附单元转出位(14)和所述吸附单元转入位(13)对接,吸附气体与脱附气体借助于过渡舱(214、215)在对接处相对隔离,所述过渡舱连接在所述吸附部(S1)和所述再生部(S2)之间并在两侧分别设置有阀门(216)。
- 根据权利要求12所述的气体吸附浓集装置,其特征在于,所述吸附阵列总成(11)具有链轮结构,每个吸附模块(S11)作为链轮链节的附件在所述链轮上循环转动。
- 根据权利要求13所述的气体吸附浓集装置,其特征在于,所述链轮结构根据吸附气体的流量设置链节的数量,从而调整所述吸附模块(S11)的数量。
- 根据权利要求14所述的气体吸附浓集装置,其特征在于,所述脱附模块(S11)设置成倒U字形结构,所述脱附气体加热器(22)位于上方,所述吸附单元脱附列(23)和所述吸附单元热回收列(24)分列两侧下方。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210721544.1 | 2022-06-06 | ||
CN202210721544.1A CN117225136A (zh) | 2022-06-06 | 2022-06-06 | 链阵式废气吸附浓集装置 |
CN202310634637.5A CN116672846A (zh) | 2023-05-31 | 2023-05-31 | 气体吸附浓集装置 |
CN202310634637.5 | 2023-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023236946A1 true WO2023236946A1 (zh) | 2023-12-14 |
Family
ID=89117670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/098584 WO2023236946A1 (zh) | 2022-06-06 | 2023-06-06 | 气体吸附浓集装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023236946A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110013736A (zh) * | 2018-07-09 | 2019-07-16 | 上海深城环保设备工程有限公司 | 一种气体吸附分离装置 |
CN110917808A (zh) * | 2018-09-20 | 2020-03-27 | 上海深城环保设备工程有限公司 | 铸造烟气有机污染物的脱除方法及装置 |
KR102372470B1 (ko) * | 2020-09-28 | 2022-03-10 | (주) 에덴 | 체인형 회전체를 이용한 VOCs 농축 제거 시스템 |
CN217829472U (zh) * | 2022-06-06 | 2022-11-18 | 上海深城环保设备工程有限公司 | 复合阵列式废气吸附浓集装置 |
-
2023
- 2023-06-06 WO PCT/CN2023/098584 patent/WO2023236946A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110013736A (zh) * | 2018-07-09 | 2019-07-16 | 上海深城环保设备工程有限公司 | 一种气体吸附分离装置 |
CN110917808A (zh) * | 2018-09-20 | 2020-03-27 | 上海深城环保设备工程有限公司 | 铸造烟气有机污染物的脱除方法及装置 |
KR102372470B1 (ko) * | 2020-09-28 | 2022-03-10 | (주) 에덴 | 체인형 회전체를 이용한 VOCs 농축 제거 시스템 |
CN217829472U (zh) * | 2022-06-06 | 2022-11-18 | 上海深城环保设备工程有限公司 | 复合阵列式废气吸附浓集装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110013736B (zh) | 一种气体吸附分离装置 | |
CN110772927B (zh) | 并列管式气体吸附浓集装置 | |
CN101791506B (zh) | 工业有机废气活性炭床等离子体集成净化技术及装置 | |
CN111389175B (zh) | 串联靶向吸附及并联脱附有机废气处理装置 | |
CN217829472U (zh) | 复合阵列式废气吸附浓集装置 | |
CN108744866A (zh) | 一种组合式油气净化装置及净化工艺 | |
CN115999308A (zh) | 基于MOFs吸附剂的直接空气碳捕集及利用系统和方法 | |
CN213824071U (zh) | 一种活性炭吸脱附催化燃烧设备 | |
CN107537276A (zh) | 一种分散式有机废气的治理技术及其设备 | |
WO2023236946A1 (zh) | 气体吸附浓集装置 | |
CN210729078U (zh) | 用于处理含VOCs的废活性炭的水蒸气集中脱附系统 | |
CN216537693U (zh) | 一种连续空气直接捕集二氧化碳系统 | |
CN115193246A (zh) | 胺系吸附剂解吸二氧化碳捕集装置 | |
CN114602288B (zh) | 一种气体吸附分离系统 | |
CN216260039U (zh) | 一种旋转式吸附催化一体化装置 | |
CN210729079U (zh) | 一种移动式氮气脱附再生系统集成车 | |
CN115487641A (zh) | 旋转对接矩阵式气体处理装置 | |
CN210729077U (zh) | 一种用于处理含VOCs的废活性炭的氮气集中脱附系统 | |
CN117225136A (zh) | 链阵式废气吸附浓集装置 | |
CN216295683U (zh) | 聚散式废气净化装置 | |
CN220633649U (zh) | 沸石分子筛固定床和单塔电RTO联合处理VOCs装置 | |
CN111054179B (zh) | 扫描脱附吸附浓集装置 | |
CN116672846A (zh) | 气体吸附浓集装置 | |
CN115804996A (zh) | 聚散式废气净化装置 | |
CN217698583U (zh) | 一种催化燃烧吸附脱附系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23819111 Country of ref document: EP Kind code of ref document: A1 |