WO2023236668A1 - 应用于开关电源的开关周期自适应控制方法 - Google Patents

应用于开关电源的开关周期自适应控制方法 Download PDF

Info

Publication number
WO2023236668A1
WO2023236668A1 PCT/CN2023/089621 CN2023089621W WO2023236668A1 WO 2023236668 A1 WO2023236668 A1 WO 2023236668A1 CN 2023089621 W CN2023089621 W CN 2023089621W WO 2023236668 A1 WO2023236668 A1 WO 2023236668A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
valley
switching
power supply
Prior art date
Application number
PCT/CN2023/089621
Other languages
English (en)
French (fr)
Inventor
胡成煜
王乃龙
Original Assignee
北京芯格诺微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯格诺微电子有限公司 filed Critical 北京芯格诺微电子有限公司
Publication of WO2023236668A1 publication Critical patent/WO2023236668A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the technical fields of integrated circuits and communications, and in particular to a switching cycle adaptive control method applied to switching power supplies.
  • the switching power supply operates in discontinuous current mode (DCM) or boundary current mode (CRM).
  • DCM discontinuous current mode
  • CCM boundary current mode
  • the main switch is turned on (bottom conduction), thereby reducing switching losses.
  • the frequency control strategy of this kind of switching power supply is: after the inductor is demagnetized according to the load power, wait for a few valleys and then turn on the next PWM.
  • the existing technology requires a control method that can implement switching cycle adaptation with different modulation valleys for different bus voltages, so as to suppress the increase in switching losses caused when the bus voltage is in a high-voltage state.
  • the technical purpose to be achieved by the present invention is to provide a switching cycle adaptive control method applied to a switching power supply.
  • the control method can implement adaptive modulation of the switching cycle with different modulation valleys for different bus voltages to suppress the occurrence of changes in the bus voltage. Switching losses caused by high voltage conditions increase.
  • the present invention provides a switching cycle adaptive control method applied to switching power supplies.
  • the method includes:
  • the reference valley value P and the power valley value Q are added to obtain the valley number required by the switching element in the switching power supply from closing to opening again, and the switching element is controlled at the P+Q+1th valley Open;
  • the closed-loop control is PI closed-loop control.
  • the power threshold is a proportion of the output power relative to the maximum output power of the switching power supply.
  • Another aspect of the present invention is to provide a switching cycle adaptive control system applied to switching power supplies.
  • the system includes: a bus voltage detection module 1, a loop control module 2 and a valley mapping module 3;
  • the bus voltage detection module 1 is used to set a voltage threshold for the bus voltage and form a voltage partition according to the voltage threshold; at the same time, the bus voltage detection module 1 obtains the bus voltage and determines the voltage partition to which it belongs;
  • the valley mapping module 3 sets different reference valley values P for different voltage divisions; sets different power valley values Q for different power divisions; at the same time, the valley mapping module 3 sets different reference valley values P according to the voltage division of the bus voltage. and the power partition of the output power to determine the real-time reference valley value P and power valley value Q;
  • the valley number mapping module 3 adds the reference valley value P and the power valley value Q to obtain the valley number required by the switching element in the switching power supply from closing to reopening, and controls the switching element in the first P+Q+1 valley opens.
  • the closed-loop control is PI closed-loop control.
  • different reference valley values P are set for different voltage partitions. Specifically, the reference valley value P set for the voltage partition of the high-voltage part is greater than the reference valley value P set for the voltage partition of the low-voltage part. .
  • different power valley values Q are set for different power partitions. Specifically, the power valley value Q set for the power partition of the high-power part is smaller than the power valley value Q set for the power partition of the low-power part. Power valley value Q.
  • one or more embodiments of the present invention may have the following inventive points and advantages:
  • the present invention by dividing the bus voltage into voltage zones and sampling different reference valleys for high voltage and low voltage, the problem of excessive frequency of the PWM modulation signal caused when the bus voltage is high voltage is suppressed, thereby suppressing The switching loss of the switching power supply is too high under high voltage conditions.
  • Figure 1 is a schematic structural diagram of the switching cycle adaptive control system of the present invention
  • FIG. 2 is a schematic flowchart of the switching cycle adaptive control method of the present invention.
  • the switching cycle adaptive control system applied to switching power supplies of the present invention includes a bus voltage detection module 1, a loop control module 2 and a valley mapping module 3.
  • the bus voltage detection module 1 performs partition judgment on the input bus voltage to obtain voltage partitions of the bus voltage.
  • the zoning judgment of the input bus voltage includes detecting the sinusoidal waveform of the bus AC voltage, and calculating the peak value, average value or root mean square value of the bus voltage based on the sinusoidal waveform of the bus AC voltage.
  • the voltage division of the bus voltage is determined based on the root mean square value of the sinusoidal waveform.
  • the voltage partition refers to a voltage value section formed according to a preset voltage threshold. For example, in this embodiment, the first preset voltage threshold is set to 127V, and the second preset voltage threshold is set to 230V.
  • the voltage value segment formed by the value and the second preset voltage threshold is: the voltage value is less than the first preset voltage threshold to form the first voltage partition, that is, the voltage value is ⁇ 127V as the first voltage partition; the voltage value is greater than or equal to the above-mentioned A preset voltage threshold and less than or equal to the second preset voltage threshold form the second voltage division, that is, 127V ⁇ voltage value ⁇ 230V is the second voltage division; the voltage value greater than the second preset voltage threshold forms the third voltage division, that is Voltage value >230V is the third voltage division.
  • the root mean square value of the sinusoidal waveform obtained above is compared with the first preset voltage threshold and the second preset voltage threshold of the above voltage partition to determine the voltage partition in which the bus voltage is located.
  • the loop control module 2 performs PI closed-loop control based on the preset reference voltage and the output voltage value fed back by the load end. Through the proportional link (P control) in the PI closed loop, it reacts in proportion to the preset reference voltage and the output voltage value fed back by the load terminal. The difference between the output voltages fed back by the load terminal, and the PI closed-loop controller adjusts the output voltage value to reduce the difference. At the same time, the static error is eliminated through the integral link (I control) in the PI closed loop, and the error-free degree of the PI closed loop control is improved. The loop control module 2 simultaneously obtains the output power of the current switching power supply according to the output voltage adjusted by the PI closed-loop control and the rated current value of the switching current.
  • P control proportional link
  • I control integral link
  • the valley number mapping module 3 includes a reference valley number judgment module and a power valley number judgment module.
  • the reference valley number judgment module is set with different reference valley values P for different voltage partitions.
  • the above-mentioned three voltage thresholds formed by the first preset voltage threshold of 127V and the second preset voltage threshold of 230V are used.
  • Each voltage partition, that is, the first voltage partition, the second voltage partition, and the third voltage partition are set to have a unique corresponding reference valley value P, where the valley value corresponding to the first voltage partition is 0, and the valley value corresponding to the second voltage partition is 0.
  • the corresponding valley value is 1, and the corresponding valley value of the third voltage partition is 2.
  • the valley value of the voltage partition corresponding to the high voltage area will increase. That is, the greater the bus voltage, the greater the reference valley value P. Therefore, the switching element in the switching power supply will be turned on before the next time. The number of valleys passed will increase, thereby extending the period of the PWM modulation signal and reducing the frequency of the PWM modulation signal.
  • the power valley judgment module sets different output power value partitions according to the output power output by the loop control module 2, and corresponding to each power value partition is set a unique corresponding power valley value Q.
  • the corresponding power valley value Q is 2;
  • the corresponding power valley value Q is 3;
  • the corresponding power valley value Q is 4;
  • the valley number mapping module 3 adds the reference valley value P and the power valley value Q to obtain the valley number required by the switching element in the switching power supply from closing to opening again, that is, the switching element is at the P+Q+1th A valley opens.
  • the PWM modulation signal of the switching power supply is changed, thereby suppressing the increase in switching losses caused by the excessive frequency of the PWM modulation signal when the bus voltage is high.
  • FIG. 2 is a schematic flow chart of the switching cycle adaptive control method of the present invention applied to switching power supplies.
  • the control method flow of this embodiment includes:
  • Close-loop control is performed on the reference voltage and output voltage of the switching power supply to obtain the output power of the switching power supply.
  • set the power partition for the output power of the switching power supply is performed on the reference voltage and output voltage of the switching power supply.
  • Different base valley values P are set according to different bus voltage zones; different power valley values Q are set for different power value zones, and the real-time base valley value P and power valley value are determined according to the bus voltage and output power. Q.
  • the reference valley value P and the power valley value Q are added to obtain the valley number required by the switching element in the switching power supply from closing to opening again, and the switching element is controlled at the P+Q+1th valley Open.
  • the frequency of the PWM modulation signal of the switching power supply is adjusted according to the number of valleys required, thereby adaptively adjusting the switching cycle to reduce switching power consumption.
  • the set voltage partitions and power value partitions in this embodiment can be adjusted according to the precision of the control. That is, in order to cope with more complex voltage partition situations and output power requirements, a larger number of voltage partitions and power value partitions can be set to achieve more precise control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种应用于开关电源的开关周期自适应控制方法,包括对母线电压设置电压阈值并形成电压分区;获取母线电压并确定其所属电压分区;对开关电源的输出功率设定功率阈值并形成功率分区;对开关电源的基准电压和输出电压进行闭环控制以获取开关电源的输出功率并确定其所属功率分区;对不同的电压分区设定不同的基准谷数值P;对不同的功率分区设定不同的功率谷数值Q;根据母线电压的电压分区及输出功率的功率分区确定实时的基准谷数值P和功率谷数值Q;将所述基准谷数值P与功率谷数值Q相加以获得开关电源中开关元件自关闭起到再次打开过程中所需历经了谷数;根据所需历经的谷数调节开关电源的PWM调制信号的频率。

Description

应用于开关电源的开关周期自适应控制方法 技术领域
本发明涉及集成电路与通讯技术领域,尤其涉及一种应用于开关电源的开关周期自适应控制方法。
背景技术
现有技术中,准谐振反激式开关电源被广泛应用于低功耗的应用场合。准谐振控制状态下,开关电源工作在断续电流模式(DCM)或边界电流模式(CRM)下,当流过储能元件的电流下降至零后,储能元件和功率开关的寄生电容开始谐振,当功率开关两端的谐振电压在其最小电压值时主开关被导通(谷底导通),从而减小开关损耗。这种开关电源的频率控制策略是:根据负载功率大小决定电感退磁以后,再等待几个谷之后开通下一个PWM。当开关电源的负载功率越小时,开通下一个PWM前等待的谷数越多,进而导致开关电源的驱动PWM频率越低。这样“数谷式”的频率-负载曲线,相比于常见的单条或多条预设固定频率-负载曲线,对宽范围的输入/输出电压具有更良好的自适应性。尤其在LED照明和快充应用中,同一个电源需要支持的最大输出电压可以达到最小输出电压的5倍以上。如果采用固定频率曲线,因为输出电压巨大差异造成的退磁时间的巨大差异,无法同时优化工作在两端输出电压下的效率,而往往只能靠多条曲线来补救。这带来了设计的复杂性,成本的增加和切换曲线时的风险。因此现有的“数谷式”方案是一种更适合宽输出电压的控制方法。
但是,这种根据负载功率调制谷数开通的做法虽然对宽输出电压来说比较有优势,但针对不同的母线电压(输入开关电源的交流AC电压)没有做到优化。在Flyback或Boost的开关电源电路拓扑中,同样的峰值电流和电感量的情况下,开通时间与母线电压成反比关系。因此在同等峰值电流的情况下,低压的开通时间可以是高压的数倍。且对于boost拓扑这个问题则更为严重,因为在同等输出 功率的情况下,峰值电流也和母线电压成反比。由此,在同等负载功率情况下,母线电压为低压时的开通时间可能达到母线电压为高压的十倍以上。进而,在输出电压和输出负载功率相近的情况下,如果在母线电压为高压和低压下都是数同样的谷数开通下一个PWM,则高压时的PWM频率就会高于甚至远远高于低压时。进而导致在高压状态下的开关损耗增大。
由此可见,现有技术中需要一种能够针对不同的母线电压实施不同调制谷数的开关周期自适应的控制方法,以抑制在在母线电压为高压状态下所造成的开关损耗增加。
发明内容
本发明所要实现的技术目的在于提供一种应用于开关电源的开关周期自适应控制方法,该控制方法能够针对不同的母线电压实施不同调制谷数的开关周期自适应的调制,以抑制在在母线电压为高压状态下所造成的开关损耗增加。
基于上述技术目的,本发明提供一种应用于开关电源的开关周期自适应控制方法,所述方法包括:
对母线电压设置电压阈值,并根据电压阈值形成电压分区;获取母线电压并确定其所属电压分区;
对开关电源的输出功率设定功率阈值,并根据功率阈值形成功率分区;对开关电源的基准电压和输出电压进行闭环控制以获取开关电源的输出功率并确定其所属功率分区;
对不同的电压分区设定不同的基准谷数值P;对不同的功率分区设定不同的功率谷数值Q;根据母线电压的电压分区及输出功率的功率分区确定实时的基准谷数值P和功率谷数值Q;
将所述基准谷数值P与功率谷数值Q相加以获得开关电源中开关元件自关闭起到再次打开过程中所需历经了谷数,并控制所述开关元件在第P+Q+1个谷底打开;
根据所需历经的谷数调节开关电源的PWM调制信号的频率。
在一个实施例中,所述电压阈值为母线电压的均方根值。
在一个实施例中,所述闭环控制为PI闭环控制。
在一个实施例中,所述对不同的电压分区设定不同的基准谷数值P,具体为,对高压部分的电压分区设定基准谷数值P大于对低压部分的电压分区设定的基准谷数值。
在一个实施例中,所述功率阈值为输出功率相对于开关电源最大输出功率的占比。
在一个实施例中,所述对不同的功率分区设定不同的功率谷数值Q,具体为,对高功率部分的功率分区设定的功率谷数值Q小于对低功率部分的功率分区设定的功率谷数值Q。
本发明的另一方面还在于提供一种应用于开关电源的开关周期自适应控制系统,所述系统包括:母线电压检测模块1、环路控制模块2和谷数映射模块3;
所述母线电压检测模块1用于对母线电压设置电压阈值,并根据电压阈值形成电压分区;同时所述母线电压检测模块1获取母线电压并确定其所属电压分区;
所述环路控制模块2用于对开关电源的输出功率设定功率阈值,并根据功率阈值形成功率分区;所述环路控制模块2对开关电源的基准电压和输出电压进行闭环控制以获取开关电源的输出功率并确定其所属功率分区;
所述谷数映射模块3对不同的电压分区设定不同的基准谷数值P;对不同的功率分区设定不同的功率谷数值Q;同时,所述谷数映射模块3根据母线电压的电压分区及输出功率的功率分区确定实时的基准谷数值P和功率谷数值Q;
所述谷数映射模块3将所述基准谷数值P与功率谷数值Q相加以获得开关电源中开关元件自关闭起到再次打开过程中所需历经了谷数,并控制所述开关元件在第P+Q+1个谷底打开。
在一个实施例中,所述电压阈值为母线电压的均方根值。
在一个实施例中,所述闭环控制为PI闭环控制。
在一个实施例中,所述对不同的电压分区设定不同的基准谷数值P,具体为,对高压部分的电压分区设定基准谷数值P大于对低压部分的电压分区设定的基准谷数值。
在一个实施例中,所述功率阈值为输出功率相对于开关电源最大输出功率的占比。
在一个实施例中,所述对不同的功率分区设定不同的功率谷数值Q,具体为,对高功率部分的功率分区设定的功率谷数值Q小于对低功率部分的功率分区设定的功率谷数值Q。
与现有技术相比,本发明的一个或多个实施例可以具有如下发明点及优势:
本发明中通过对母线电压进行电压分区,并针对高电压和低电压采样不同的基准谷数,从而抑制了在母线电压为高压状态下造成的PWM调制信号的频率过高的问题,从而抑制了在高压状态下开关电源的开关损耗过高的缺陷。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明的开关周期自适应控制系统的结构示意图;
图2是本发明的开关周期自适应控制方法的流程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合附图对本发明作进一步地详细说明。
实施例
如图1-2所示,本发明的应用于开关电源的开关周期自适应控制系统包括母线电压检测模块1、环路控制模块2和谷数映射模块3。
其中,所述母线电压检测模块1对输入的母线电压进行分区判断从而获得母线电压的电压分区。所述对输入的母线电压进行分区判断包括检测母线交流电压的正弦波形,并根据母线交流电压的正弦波形计算母线电压的峰值、平均值或均方根值。本实施例中根据正弦波形的均方根值来确定母线电压的电压分区。所述电压分区是指根据预设的电压阈值所形成的电压数值区段,例如本实施例中设定第一预设电压阈值为127V,第二预设电压阈值为230V。由上述第一预设电压阈 值和第二预设电压阈值所形成的电压数值区段即为:电压数值小于第一预设电压阈值形成第一电压分区,即电压数值<127V为第一电压分区;电压数值大于等于述第一预设电压阈值,且小于等于第二预设电压阈值形成第二电压分区,即127V≤电压数值≤230V为第二电压分区;电压数值大于第二预设电压阈值形成第三电压分区,即电压数值>230V为第三电压分区。将上述获得的正弦波形的均方根值与上述电压分区的第一预设电压阈值和第二预设电压阈值进行对比,以确定母线电压所处的电压分区。
所述环路控制模块2根据预设的基准电压与由负载端反馈的输出电压值进行PI闭环控制,通过PI闭环中的比例环节(P控制)即时成比例的反应预设的基准电压与由负载端反馈的输出电压之间的差值,并由PI闭环控制器调节输出电压值以减少差值。同时通过PI闭环中的积分环节(I控制)消除静差,提高PI闭环控制的无差度。所述环路控制模块2同时根据PI闭环控制所调节的输出电压及开关电流额定电流值获得当前开关电源的输出功率。
所述谷数映射模块3包括基准谷数判断模块和功率谷数判断模块。所述基准谷数判断模块针对不同的电压分区设定有不同的基准谷数值P,本实施例中针对前述的由第一预设电压阈值为127V和第二预设电压阈值为230V形成的三个电压分区,即第一电压分区、第二电压分区和第三电压分区中的每一个设定有唯一对应的基准谷数值P,其中第一电压分区对应的谷数值为0,第二电压分区对应的谷数值为1,第三电压分区对应的谷数值为2。通过上述基准谷数值P的设置可以看出对应于高电压区的电压分区的谷数值会增加,即母线电压越大时,基准谷数值P越大,因此开关电源中开关元件在下一次导通前所经过的谷数会增加,从而延长了PWM调制信号的周期,降低了PWM调制信号的频率。所述功率谷数判断模块根据由环路控制模块2所输出的输出功率设定有不同输出功率值分区,且对应于每一个功率值分区设定有唯一对应的功率谷数值Q。
本实施例中:
当环路控制模块2所输出的输出功率大于开关电源最大输出功率的60%时,所对应的功率谷数值Q为1;
当环路控制模块2所输出的输出功率大于开关电源最大输出功率的50%,且小于或等于开关电源最大输出功率的60%时,所对应的功率谷数值Q为2;
当环路控制模块2所输出的输出功率大于开关电源最大输出功率的40%,且小于或等于开关电源最大输出功率的50%时,所对应的功率谷数值Q为3;
当环路控制模块2所输出的输出功率小于或等于开关电源最大输出功率的40%时,所对应的功率谷数值Q为4;
所述谷数映射模块3将基准谷数值P与功率谷数值Q相加以获得开关电源中开关元件自关闭起到再次打开过程中所需历经了谷数,即开关元件在第P+Q+1个谷底打开。
由于基准谷数值P与功率谷数值Q的调节作用,改变了开关电源的PWM调制信号,从而实现了抑制在母线电压为高压时造成的PWM调制信号频率过高导致的开关损耗增加。
如图2所示的本发明的应用于开关电源的开关周期自适应控制方法流程示意图,本实施例的控制方法流程包括:
对母线电压设置电压阈值,并依据电压阈值形成电压分区;获取母线电压并确定其所属电压分区。
对开关电源的基准电压和输出电压进行闭环控制以获取开关电源的输出功率。同时对开关电源的输出功率设定功率分区。
根据不同的母线电压分区设定有不同的基准谷数值P;针对不同的功率值分区设定有不同的功率谷数值Q,并根据母线电压及输出功率确定实时的基准谷数值P和功率谷数值Q。
将所述基准谷数值P与功率谷数值Q相加以获得开关电源中开关元件自关闭起到再次打开过程中所需历经了谷数,并控制所述开关元件在第P+Q+1个谷底打开。
根据所需历经的谷数调节开关电源的PWM调制信号的频率,从而自适应地调整开关周期以降低开关功耗。
本实施例中的设定的电压分区和功率值分区是可以根据对控制的精细程度进行调整的。即为了应对更为复杂的电压分区情况和输出功率要求,可以设置更多数量的电压分区和功率值分区,从而实现更为精细的控制。
以上所述,仅为本发明的具体实施案例,本发明的保护范围并不局限于此,任何熟悉本技术的技术人员在本发明所述的技术规范内,对本发明的修改或替 换,都应在本发明的保护范围之内。

Claims (10)

  1. 一种应用于开关电源的开关周期自适应控制方法,其特征在于,所述方法包括:
    对母线电压设置电压阈值,并根据电压阈值形成电压分区;获取母线电压并确定其所属电压分区;
    对开关电源的输出功率设定功率阈值,并根据功率阈值形成功率分区;对开关电源的基准电压和输出电压进行闭环控制以获取开关电源的输出功率并确定其所属功率分区;
    对不同的电压分区设定不同的基准谷数值P;对不同的功率分区设定不同的功率谷数值Q;根据母线电压的电压分区及输出功率的功率分区确定实时的基准谷数值P和功率谷数值Q;
    将所述基准谷数值P与功率谷数值Q相加以获得开关电源中开关元件自关闭起到再次打开过程中所需历经了谷数,并控制所述开关元件在第P+Q+1个谷底打开;
    根据所需历经的谷数调节开关电源的PWM调制信号的频率。
  2. 根据权利要求1所述的应用于开关电源的开关周期自适应控制方法,其特征在于,所述电压阈值为母线电压的均方根值;所述闭环控制为PI闭环控制。
  3. 根据权利要求1所述的应用于开关电源的开关周期自适应控制方法,所述对不同的电压分区设定不同的基准谷数值P,具体为,对高压部分的电压分区设定基准谷数值P大于对低压部分的电压分区设定的基准谷数值。
  4. 根据权利要求1所述的应用于开关电源的开关周期自适应控制方法,所述功率阈值为输出功率相对于开关电源最大输出功率的占比。
  5. 根据权利要求4所述的应用于开关电源的开关周期自适应控制方法,所述对不同的功率分区设定不同的功率谷数值Q,具体为,对高功率部分的功率分区设定的功率谷数值Q小于对低功率部分的功率分区设定的功率谷数值Q。
  6. 一种应用于开关电源的开关周期自适应控制系统,所述系统包括:母线电压检测模块1、环路控制模块2和谷数映射模块3;
    所述母线电压检测模块1用于对母线电压设置电压阈值,并根据电压阈值形成电压分区;同时所述母线电压检测模块1获取母线电压并确定其所属电压分区;
    所述环路控制模块2用于对开关电源的输出功率设定功率阈值,并根据功率阈值形成功率分区;所述环路控制模块2对开关电源的基准电压和输出电压进行闭环控制以获取开关电源的输出功率并确定其所属功率分区;
    所述谷数映射模块3对不同的电压分区设定不同的基准谷数值P;对不同的功率分区设定不同的功率谷数值Q;同时,所述谷数映射模块3根据母线电压的电压分区及输出功率的功率分区确定实时的基准谷数值P和功率谷数值Q;
    所述谷数映射模块3将所述基准谷数值P与功率谷数值Q相加以获得开关电源中开关元件自关闭起到再次打开过程中所需历经了谷数,并控制所述开关元件在第P+Q+1个谷底打开。
  7. 根据权利要求6所述的应用于开关电源的开关周期自适应控制系统,其特征在于,所述电压阈值为母线电压的均方根值;所述闭环控制为PI闭环控制。
  8. 根据权利要求6所述的应用于开关电源的开关周期自适应控制系统,其特征在于,所述对不同的电压分区设定不同的基准谷数值P,具体为,对高压部分的电压分区设定基准谷数值P大于对低压部分的电压分区设定的基准谷数值。
  9. 根据权利要求6所述的应用于开关电源的开关周期自适应控制系统,其特征在于,所述功率阈值为输出功率相对于开关电源最大输出功率的占比。
  10. 根据权利要求7所述的应用于开关电源的开关周期自适应控制系统,其特征在于,所述对不同的功率分区设定不同的功率谷数值Q,具体为,对高功率部分的功率分区设定的功率谷数值Q小于对低功率部分的功率分区设定的功率谷数值Q。
PCT/CN2023/089621 2022-06-06 2023-04-20 应用于开关电源的开关周期自适应控制方法 WO2023236668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210629125.5 2022-06-06
CN202210629125.5A CN114977741B (zh) 2022-06-06 2022-06-06 应用于开关电源的开关周期自适应控制方法

Publications (1)

Publication Number Publication Date
WO2023236668A1 true WO2023236668A1 (zh) 2023-12-14

Family

ID=82959534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089621 WO2023236668A1 (zh) 2022-06-06 2023-04-20 应用于开关电源的开关周期自适应控制方法

Country Status (2)

Country Link
CN (1) CN114977741B (zh)
WO (1) WO2023236668A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114977741B (zh) * 2022-06-06 2023-05-26 北京芯格诺微电子有限公司 应用于开关电源的开关周期自适应控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361652A (zh) * 2007-08-07 2009-02-11 深圳迈瑞生物医疗电子股份有限公司 自适应阈值的波形峰谷识别方法和装置
US20140055107A1 (en) * 2012-07-31 2014-02-27 Texas Instruments Incorporated Adaptive inductor peak current control of a switching regulator for mechanical noise reduction
US20150078037A1 (en) * 2013-09-18 2015-03-19 Inno-Tech Co., Ltd. Power control device for dynamically adjusting frequency
CN107742984A (zh) * 2017-09-28 2018-02-27 广州金升阳科技有限公司 波谷控制电路及波谷控制方法
CN111460850A (zh) * 2019-01-02 2020-07-28 中国移动通信有限公司研究院 数据处理方法及装置、电子设备及存储介质
CN114977741A (zh) * 2022-06-06 2022-08-30 北京芯格诺微电子有限公司 应用于开关电源的开关周期自适应控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329911A (zh) * 2015-07-09 2017-01-11 无锡矽瑞微电子股份有限公司 基于vcc电压检测的开关电源三端恒流控制框架
CN108352782B (zh) * 2015-10-26 2019-04-05 戴洛格半导体公司 自适应谷模式开关
CN207410218U (zh) * 2017-10-17 2018-05-25 深圳市富满电子集团股份有限公司 谷底开关控制电路及开关电源
CN111404361A (zh) * 2020-04-29 2020-07-10 杭州必易微电子有限公司 开关模式供电电路及其控制方法和控制电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361652A (zh) * 2007-08-07 2009-02-11 深圳迈瑞生物医疗电子股份有限公司 自适应阈值的波形峰谷识别方法和装置
US20140055107A1 (en) * 2012-07-31 2014-02-27 Texas Instruments Incorporated Adaptive inductor peak current control of a switching regulator for mechanical noise reduction
US20150078037A1 (en) * 2013-09-18 2015-03-19 Inno-Tech Co., Ltd. Power control device for dynamically adjusting frequency
CN107742984A (zh) * 2017-09-28 2018-02-27 广州金升阳科技有限公司 波谷控制电路及波谷控制方法
CN111460850A (zh) * 2019-01-02 2020-07-28 中国移动通信有限公司研究院 数据处理方法及装置、电子设备及存储介质
CN114977741A (zh) * 2022-06-06 2022-08-30 北京芯格诺微电子有限公司 应用于开关电源的开关周期自适应控制方法

Also Published As

Publication number Publication date
CN114977741B (zh) 2023-05-26
CN114977741A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US10651669B2 (en) Phase shift control method for charging circuit
CN108028605B (zh) 具有保持操作的转换器
CN106411139B (zh) 一种宽输出范围llc变流器的控制方法
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
CN106787760B (zh) 全桥谐振直流/直流变换器及其控制方法
CN201557292U (zh) 一种高效率恒流led驱动器
US11228241B2 (en) Voltage conversion circuit and control method thereof
CN206313667U (zh) 全桥谐振直流/直流变换器
CN104682745A (zh) 一种隔离式电压变换电路、控制电路及其控制方法
WO2023236668A1 (zh) 应用于开关电源的开关周期自适应控制方法
WO2020015391A1 (zh) 一种提高开关电源输出精度的控制方法
CN202997938U (zh) 高功率因数恒流驱动电路及恒流装置
CN109451628A (zh) 基于GaN器件的单级隔离型LED驱动电源
CN110445387B (zh) 一种化成分容用电源的拓扑结构和控制方法
CN112311222A (zh) 一种基于复合预测电流控制的改进型无桥dbpfc变换器及控制方法
CN104065283B (zh) 无桥式pfc交流直流电源变换器
CN115642805A (zh) 基于ZVS的六开关buck-boost变换器
CN103516194B (zh) 功率因数校正电路和开关电源模块、功率因数校正方法
CN101931329B (zh) Llc拓扑效率优化方法、系统及llc拓扑系统
CN104779807B (zh) 一种应用在分布式电源中的llc谐振变换器
CN104022672B (zh) 用于软开关zvt变换器的自适应可调延时电路
CN108566091B (zh) Dc/dc变换器及其控制方法
CN209593841U (zh) 基于GaN器件的单级隔离型LED驱动电源
CN115664169A (zh) 一种针对双向四开关Buck-Boost的准峰值电流控制方法
CN109194135A (zh) 一种谐振状态可调型功率变换器的自适应效率优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818835

Country of ref document: EP

Kind code of ref document: A1