WO2023236635A1 - 回热器、回气管路系统、气路回热方法与制冷设备 - Google Patents

回热器、回气管路系统、气路回热方法与制冷设备 Download PDF

Info

Publication number
WO2023236635A1
WO2023236635A1 PCT/CN2023/085209 CN2023085209W WO2023236635A1 WO 2023236635 A1 WO2023236635 A1 WO 2023236635A1 CN 2023085209 W CN2023085209 W CN 2023085209W WO 2023236635 A1 WO2023236635 A1 WO 2023236635A1
Authority
WO
WIPO (PCT)
Prior art keywords
return air
exhaust
outlet
pipe
regenerator
Prior art date
Application number
PCT/CN2023/085209
Other languages
English (en)
French (fr)
Inventor
余圣辉
Original Assignee
合肥美的电冰箱有限公司
合肥华凌股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的电冰箱有限公司, 合肥华凌股份有限公司, 美的集团股份有限公司 filed Critical 合肥美的电冰箱有限公司
Publication of WO2023236635A1 publication Critical patent/WO2023236635A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes

Definitions

  • the present application relates to the field of refrigeration technology, and in particular to a regenerator, a return air pipeline system, a gas circuit reheat method and refrigeration equipment.
  • the return air heat exchange tubes of refrigerators on the market generally use the bonding of capillary tubes and return air heat exchange tubes to achieve heat transfer to improve energy efficiency and solve problems such as condensation.
  • this is often due to the thermal resistance between the two pipes when they are bonded, resulting in Heat exchange efficiency is low.
  • the length of the return air heat exchange tube assembly is long, resulting in higher costs; comparative studies show that when the capillary tube is wound and placed in the heat return tube, the capillary tube collides violently with the tank, resulting in increased noise, especially for mixed refrigerant side cooling. Side throttling has poor throttling effect when there is gas-phase refrigerant in the pipeline.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of this application is to propose a regenerator, a return air piping system, a gas path reheat method and a refrigeration equipment, so as to solve the problem in the prior art that the heat exchange tube and the capillary tube cooperate to achieve cooling and throttling at the same time. resulting in low heat exchange efficiency.
  • the application proposes a regenerator.
  • the regenerator is installed in a refrigeration equipment.
  • the regenerator includes: a casing, a heat exchange cavity is formed inside the casing, and a heat exchange cavity is formed on the casing.
  • the return air outlet and the return air inlet of the heat exchange cavity, the return air inlet is used to receive the refrigerant of the evaporator, the return air outlet is used to transport the refrigerant to the compressor; the exhaust pipe, the exhaust The pipe is arranged in the heat exchange cavity and is arranged in a coil. Both ends of the exhaust pipe extend out of the housing and are formed with an exhaust inlet and an exhaust outlet located outside the heat exchange cavity.
  • the gas inlet is used to receive the refrigerant of the condenser, and the exhaust outlet is used to transport the refrigerant into the capillary tube.
  • the regenerator by arranging the exhaust pipe in the heat exchange cavity, the refrigerant in the condenser enters the exhaust pipe through the exhaust inlet, and the heat exchange cavity in the shell is used to receive the refrigerant in the evaporator.
  • Low temperature steam, cold in the exhaust pipe The low-temperature steam in the refrigerant and heat exchange cavity exchanges heat through the wall of the exhaust pipe, so that the temperature of the refrigerant in the exhaust pipe is reduced and the heat exchange efficiency is improved.
  • the exhaust pipe is configured to extend in a spiral spiral along the axial direction of the housing.
  • the return air outlet is located at one end of the housing and adjacent to the exhaust inlet, and the return air inlet is located at the other end of the housing and adjacent to the exhaust outlet.
  • the air inlet direction of the exhaust inlet is parallel to the air outlet direction of the return air outlet, and the air outlet direction of the exhaust outlet is parallel to the air inlet direction of the return air inlet.
  • the regenerator is arranged vertically in the refrigeration equipment, the return air outlet is provided above the return air inlet, and the exhaust inlet is provided above the exhaust outlet. above.
  • the orifice of the exhaust outlet is smaller than the orifice of the return air outlet, and the orifice of the exhaust outlet is smaller than the orifice of the return air inlet.
  • the housing is provided with a return air outlet pipe, the return air outlet is provided on the return air outlet pipe, and the return air outlet pipe and the housing are integrally formed and screwed together. Or connected by welding, the housing is provided with a return air inlet pipe, the return air inlet is provided on the return air inlet pipe, the return air inlet pipe and the housing are integrally formed, screwed together, or Welded together.
  • a thermal conductive portion is provided inside the housing, and the thermal conductive portions are spaced apart along the axial direction of the housing.
  • the return air piping system includes: the above-mentioned recuperator, compressor, condenser, capillary tube and evaporator, wherein the compressor is connected to the condenser, and the condenser is connected to the return air piping system.
  • the exhaust inlet of the heater, the exhaust outlet is connected to the capillary tube, the capillary tube is connected to the evaporator, the evaporator is connected to the return air inlet, and the return air outlet is connected to the compressor.
  • the exhaust outlet is connected to the capillary tube
  • the return air inlet is connected to the evaporator
  • the return air outlet is connected to the compressor
  • the liquid in the condenser Entering the exhaust pipe of the regenerator the low-temperature steam in the evaporator enters the heat exchange cavity in the shell.
  • the liquid in the exhaust pipe and the steam in the heat exchange cavity exchange heat, thereby improving the heat exchange efficiency of the return air piping system.
  • the length of the return air pipeline is reduced, the refrigerant charge is reduced, the energy efficiency is improved, the refrigerant sound and compressor noise are reduced, the exhaust pressure of the system is significantly improved, and the system volume is reduced and the cost is reduced.
  • this application proposes a gas circuit heat recovery method for refrigeration equipment.
  • the refrigeration equipment includes the above-mentioned return air piping system of the refrigeration equipment, and the method includes: the refrigerant discharged from the condenser first undergoes centralized heat exchange through the regenerator, and then passes through the capillary tube. Throttle.
  • the refrigerant discharged from the condenser first flows into the regenerator for centralized heat exchange and cooling, and then flows into the capillary tube for cooling. Throttle and reduce pressure.
  • this method changes the traditional method of cooling and throttling at the same time, significantly improving the heat recovery efficiency of the gas circuit of the refrigeration equipment, while reducing the system exhaust pressure, thereby realizing the compression of high-pressure refrigerant by the medium and low back pressure compressor, reducing the It reduces compressor costs and improves energy efficiency, enabling the application of medium and low back pressure compressors in the cryogenic field.
  • this application proposes a refrigeration equipment.
  • the refrigeration equipment includes the above-mentioned return air piping system of the refrigeration equipment. As a result, the refrigeration effect of the refrigeration equipment is significantly improved, while the cost is reduced.
  • Figure 1 is a schematic diagram of a regenerator in an embodiment of the present application
  • Figure 2 is a cross-sectional view along the A-A direction in Figure 1 of the present application;
  • Figure 3 is a cross-sectional view along the B-B direction in Figure 1 of the present application.
  • Figure 4 is a cross-sectional view along the C-C direction in Figure 1 of the present application.
  • Figure 5 is a schematic diagram of the return air piping system in the embodiment of the present application.
  • Figure 6 is a schematic diagram of the refrigeration equipment in the embodiment of the present application.
  • features defined by “first” and “second” may explicitly or implicitly include one or more of these features, which are used to distinguish and describe features without distinction of order or importance.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • the present application proposes a regenerator 100 .
  • the regenerator 100 of the present application is used in the refrigeration equipment 2000, and its main function is to transfer heat between hot and cold fluids.
  • the specific type of the refrigeration equipment 2000 is not limited, such as freezers and refrigerators.
  • the regenerator 100 includes: a housing 10 and an exhaust pipe 20 .
  • a heat exchange chamber 101 is formed inside the shell 10.
  • the shell 10 is provided with a return air outlet 1021 and a return air inlet 1031 that communicate with the heat exchange chamber 101.
  • the return air inlet 1031 is used to receive the refrigerant of the evaporator 500, and the return air outlet 1021 is used to transport refrigerant into the compressor 200;
  • the exhaust pipe 20 is located in the heat exchange chamber 101, and the exhaust pipe 20 is arranged in a coiled manner. Both ends of the exhaust pipe 20 extend out of the casing 10, and the exhaust pipe 20 The two ends of 20 are respectively formed with an exhaust inlet 201 and an exhaust outlet 202 located outside the heat exchange cavity 101.
  • the exhaust inlet 201 is used to receive the refrigerant of the condenser 300, and the exhaust outlet 202 is used to transport the refrigerant into the capillary tube 400. .
  • the exhaust pipe 20 is placed in the heat exchange cavity 101 formed inside the shell 10.
  • the exhaust pipe 20 separates the heat exchange cavity 101 into two parts of the space.
  • the space in the exhaust pipe 20 is used to receive the heat from the condenser.
  • the refrigerant flows into 300, and the remaining space in the heat exchange cavity 101 is used to receive the steam delivered by the evaporator 500.
  • the steam and the refrigerant in the exhaust pipe 20 transfer heat to each other through the wall of the exhaust pipe 20.
  • the refrigerant in the exhaust pipe 20 The temperature is reduced, and then enters the capillary tube 400 through the exhaust outlet 202 in the exhaust pipe 20, so that the heat exchange efficiency of the regenerator 100 is significantly improved, and the structure of the regenerator 100 is relatively simple.
  • the coil is arranged in the housing 10, which greatly reduces the volume of the entire regenerator 100, is easy to use and install, has low cost, and is suitable for promotion and use in various industries.
  • the regenerator 100 of the embodiment of the present application by arranging the exhaust pipe 20 in the heat exchange chamber 101, the condenser 300 The refrigerant in the exhaust pipe 20 enters the exhaust pipe 20 through the exhaust inlet 201.
  • the heat exchange cavity 101 in the casing 10 is used to receive the low-temperature steam in the evaporator 500.
  • the refrigerant in the exhaust pipe 20 and the heat exchange cavity 101 The low-temperature steam exchanges heat through the pipe wall of the exhaust pipe 20, so that the temperature of the refrigerant in the exhaust pipe 20 is reduced and the heat exchange efficiency is improved.
  • the material used to make the regenerator 100 is not particularly limited, as long as it can play a role in heat transfer.
  • the application fields of the regenerator 100 in this application are not particularly limited, including but not limited to refrigerator and freezer refrigeration systems.
  • the exhaust pipe 20 is configured to extend along a spiral coil along the axial direction of the housing 10 .
  • the exhaust pipe 20 is equivalent to increasing the length of the exhaust pipe 20 in the same shell volume, thereby increasing the length of the exhaust pipe 20.
  • the heat exchange area of the refrigerant and steam in the heat exchange cavity 101 improves the heat exchange efficiency.
  • the structure of the exhaust pipe 20 can also be a linear structure, which can also play the role of heat transfer, air intake and air return, and save the cost of using the exhaust pipe 20, and can be selected and used according to specific actual scenarios.
  • the return air outlet 1021 is located at one end of the housing 10, and the return air outlet 1021 is adjacent to the exhaust inlet 201, and the return air inlet 1031 is located at the other end of the housing 10, and the return air inlet 1031 is located at the other end of the housing 10, and the return air outlet 1021 is adjacent to the exhaust inlet 201.
  • the air inlet 1031 is adjacent to the exhaust outlet 202.
  • the return air outlet 1021 and the exhaust inlet 201 are located at the same end of the housing 10, and the return air inlet 1031 and the exhaust inlet 201 are located at the same end of the housing 10, so that the refrigerant in the exhaust pipe 20 and the steam in the heat exchange chamber 101 Reverse flow further increases heat transfer efficiency.
  • the air inlet direction of the exhaust inlet 201 is parallel to the air outlet direction of the return air outlet 1021
  • the air outlet direction of the exhaust outlet 202 is parallel to the air inlet direction of the return air inlet 1031 .
  • the flow direction of the refrigerant in the condenser 300 entering the exhaust pipe 20 is parallel to the direction in which steam is discharged from the heat exchange chamber 101
  • the flow direction of the refrigerant flowing into the exhaust pipe 20 from the condenser 300 and out of the exhaust pipe 20 is parallel.
  • the heat exchange between the refrigerant in the exhaust pipe 20 and the steam in the heat exchange chamber 101 is relatively uniform, ensuring the quality of heat transfer.
  • the regenerator 100 is arranged vertically in the refrigeration equipment 2000 , the return air outlet 1021 is located above the return air inlet 1031 , and the exhaust inlet 201 is located above the exhaust outlet 202 . above.
  • the refrigerant in the condenser 300 enters the exhaust pipe 20 from the exhaust inlet 201 and is discharged from the exhaust outlet 202.
  • the refrigerant in the evaporator 500 It enters from the return air inlet 1031 and is discharged from the return air outlet 1021, that is, the exhaust direction is from top to bottom, and the return air direction is from bottom to top.
  • the refrigerant flows into the exhaust pipe 20 from the exhaust outlet 202 using its own gravity. outflow to prevent the return air from causing liquid impact on the compressor 200, so that the exhaust and return air flow in reverse for heat exchange, fully increasing the heat exchange area of the return air and the exhaust, and improving the heat exchange efficiency between the two.
  • the orifice of the exhaust outlet 202 is smaller than the orifice of the return air outlet 1021,
  • the orifice of the exhaust outlet 202 is smaller than the orifice of the return air inlet 1031 .
  • the flow rate of the refrigerant in the evaporator 500 entering the heat exchange chamber 101 is relatively large, and the flow rate of the refrigerant in the condenser 300 entering the exhaust pipe 20 is relatively small, so that the refrigerant flowing into the exhaust pipe 20 can Get cooled down faster and more efficiently.
  • the housing 10 is provided with a return air outlet pipe 102, the return air outlet 1021 is provided on the return air outlet pipe 102, and the return air outlet pipe 102 and the housing 10 are integrated.
  • the shell 10 is provided with a return air inlet pipe 103, the return air inlet 1031 is located on the return air inlet pipe 103, the return air inlet pipe 103 and the shell 10 are integrally formed and screwed together Or welded connection.
  • the outer wall of the shell 10 is connected to the return air outlet pipe 102 and the return air inlet pipe 103, and the heat exchange chamber 101 formed in the shell 10 is connected to the return air outlet pipe 102 and the return air inlet pipe 103.
  • the return air outlet The manner in which the pipe 102 and the return air inlet pipe 103 are connected to the housing 10 is not particularly limited, and may include but is not limited to integral molding, screw connection or welding connection.
  • the housing 10 is provided with an exhaust inlet pipe 2011, the exhaust inlet 201 is provided on the exhaust inlet pipe 2011, and the exhaust inlet pipe 2011 and the housing 10 are integrally formed. , screwed connection or welding connection, the housing 10 is provided with an exhaust outlet pipe 2021, the exhaust outlet 202 is located on the exhaust outlet pipe 2021, the exhaust outlet pipe 2021 and the shell 10 are integrally formed, screwed or connected. Welded together. That is to say, the outer wall of the casing 10 is connected to the exhaust inlet pipe 2011 and the exhaust outlet pipe 2021, and the heat exchange cavity 101 formed in the casing 10 is connected to the exhaust inlet pipe 2011 and the exhaust outlet pipe 2021. At the same time, the exhaust inlet pipe 2011 and the exhaust outlet pipe 2021 are connected.
  • the manner in which the pipe 2011 and the exhaust outlet pipe 2021 are connected to the housing 10 is not particularly limited, and may include but is not limited to integral molding, screw connection or welding connection.
  • a thermal conductive portion (not shown) is provided inside the housing 10 , and the thermal conductive portions are spaced apart along the axial direction of the housing 10 .
  • a heat conductive part is provided on the wall of the exhaust pipe 20 located inside the housing 10. The heat conductive part may be a thread or a fin, thereby increasing the heat conduction efficiency.
  • regenerator 100 of the present application will be described below with reference to the accompanying drawings.
  • the regenerator 100 includes a housing 10 and an exhaust pipe 20.
  • a heat exchange chamber 101 is formed inside the housing 10.
  • the housing 10 is provided with a return air outlet 1021 and a return air outlet 1021 connected to the heat exchange chamber 101.
  • the return air inlet 1031 is used to receive the refrigerant of the evaporator 500, and the return air outlet 1021 is used to transport the refrigerant to the compressor 200;
  • the exhaust pipe 20 is located in the heat exchange chamber 101 and is arranged in a coiled manner. Both ends of the air pipe 20 extend out of the shell 10 and are formed with an exhaust inlet 201 and an exhaust outlet 202 located outside the heat exchange cavity 101.
  • the exhaust inlet 201 is used to receive the refrigerant of the condenser 300, and the exhaust outlet 202 is used to Transport the refrigerant into the capillary tube 400.
  • the exhaust pipe 20 is configured to extend spirally in the axial direction of the housing 10 .
  • the return air outlet 1021 is located at one end of the housing 10 and adjacent to the exhaust inlet 201
  • the return air inlet 1031 is located at the other end of the housing 10 and adjacent to the exhaust outlet 202
  • the air inlet direction of the exhaust inlet 201 is parallel to the air outlet direction of the return air outlet 1021
  • the air outlet direction of the exhaust outlet 202 is parallel to the air inlet direction of the return air inlet 1031 .
  • Regenerator 100 in production The cooling equipment 2000 is arranged in a vertical direction, the return air outlet 1021 is located above the return air inlet 1031 , and the exhaust inlet 201 is located above the exhaust outlet 202 .
  • the orifice of the exhaust outlet 202 is smaller than the orifice of the return air outlet 1021
  • the orifice of the exhaust outlet 202 is smaller than the orifice of the return air inlet 1031 .
  • the casing 10 is provided with a return air outlet pipe 102.
  • the return air outlet 1021 is located on the return air outlet pipe 102.
  • the return air outlet pipe 102 and the casing 10 are integrally formed.
  • the casing 10 is provided with a return air inlet pipe 103.
  • the return air inlet 1031 is provided on the return air inlet pipe 103, and the return air inlet pipe 103 and the housing 10 are integrally formed.
  • the housing 10 is provided with an exhaust outlet pipe 2021.
  • the exhaust outlet 202 is located on the exhaust outlet pipe 2021.
  • the exhaust outlet pipe 2021 and the housing 10 are integrally formed.
  • the housing 10 is provided with an exhaust inlet pipe 2011.
  • the exhaust inlet 201 is located on the exhaust inlet pipe 2011, and the exhaust inlet pipe 2011 and the housing 10 are integrally formed.
  • this application proposes a return air piping system 1000.
  • the return air piping system 1000 includes: a regenerator 100, a compressor 200, a condenser 300, a capillary tube 400 and an evaporator 500, wherein the compressor 200 is connected to the condenser 300, The condenser 300 is connected to the exhaust inlet 201 of the regenerator 100, the exhaust outlet 202 is connected to the capillary tube 400, the capillary tube 400 is connected to the evaporator 500, the evaporator 500 is connected to the return air inlet 1031, and the return air outlet 1021 is connected to the compressor 200.
  • the heat exchange efficiency of the return air piping system 1000 is improved, while the length of the return air piping is reduced, the refrigerant charge is reduced, the energy efficiency is improved, the refrigerant sound and the noise of the compressor 200 are reduced, and the exhaust pressure of the system is significantly improved. , and the system volume is reduced and the cost is reduced. It should be noted that the features and advantages described above for the regenerator 100 are also applicable to the return air pipeline system 1000 and will not be described again here.
  • the working process of the return air piping system 1000 is as follows: the compressor 200 compresses the low-temperature and low-pressure refrigerant into a high-temperature and high-pressure gas refrigerant, and then the refrigerant enters the condenser 300, and the condenser 300 cools the refrigerant. , the refrigerant condenses into a liquid, then enters the exhaust pipe 20 of the regenerator 100 from the exhaust inlet 201 of the regenerator 100, flows into the capillary tube 400 through the exhaust outlet 202 of the exhaust pipe 20, and the capillary tube 400 descends After pressure throttling, the refrigerant flows into the evaporator 500.
  • the refrigerant absorbs heat in the evaporator 500 and turns into a low-temperature gas. Then the gas enters the heat exchange chamber 101 of the regenerator 100 through the return air inlet 1031 of the regenerator 100.
  • the low-temperature gas in the heat exchange chamber 101 exchanges heat with the liquid refrigerant flowing into the exhaust pipe 20 in the condenser 300, and then flows into the compressor 200 through the return air outlet 1021.
  • the liquid refrigerant in the exhaust pipe 20 The temperature of the liquid refrigerant has been reduced before entering the capillary tube 400 for throttling and pressure reduction, achieving an efficient heat exchange throttling mode of cooling first and then throttling.
  • this application proposes a gas path heat recovery method for refrigeration equipment 2000.
  • the refrigeration equipment 2000 includes the above-mentioned return air piping system 1000.
  • the method includes: the refrigerant discharged from the condenser 300 first undergoes centralized heat exchange through the regenerator 100, and then is throttled through the capillary tube 400.
  • this application provides a refrigeration device 2000.
  • the refrigeration equipment 2000 includes the return air pipeline system 1000 of the above-mentioned refrigeration equipment 2000.
  • the specific type of the refrigeration equipment 2000 is not particularly limited, and may be a refrigerator or a freezer. It should be noted that the features and advantages described above for the regenerator 100, the return air piping system 1000, and the gas circuit heat recovery method of the refrigeration equipment 2000 are also applicable to the refrigeration equipment 2000, and will not be described again here.
  • regenerator 100 and return air pipeline system 1000 are applied in the refrigeration equipment 2000.
  • Refrigeration equipment 2000 is a refrigerator, and the refrigerants are R600a and R290.
  • the refrigerant charge is reduced from the original 60g R600a and 55g R290 to 50g R600a and 48g R290 respectively.
  • the results showed that the exhaust pressure of the refrigerator was reduced by 0.2bar, 5.5bar for R600a and 12.4bar for R290, and the energy consumption was improved by 2% and 1.5% respectively; the noise of the whole machine did not change significantly.
  • the refrigeration equipment 2000 is a cryogenic sleeper cabinet, and the refrigerant is R600a mixed with R170, or R600a mixed with R1150: the regenerator of this application is applied to the cryogenic sleeper cabinet, and a return air tank with an internal volume of 0.3L is used as the regenerator. Compared with the traditional coil regenerator, the system volume is reduced by 0.8L, and the refrigerant charge is reduced from the original 130g R600a and 50g R170 to 90g R600a and 40g R290.
  • the 32°C ambient temperature test results show that the exhaust outlet temperature is -27°C, the temperature difference between the exhaust outlet and the return air inlet is 0.1°C, the exhaust inlet is 35°C, and the return air outlet is 28°C, indicating that the heat exchange efficiency of the regenerator of this application is high, and the exhaust pressure of the prototype is 20bar when the operation is stable. , indicating that the use of the regenerator of the present application can fully reduce the exhaust temperature, reduce the refrigerant charging amount, and reduce the cost of the regenerator; compared with the plate replacement prototype, the noise power of the entire machine is reduced by 2dB.
  • the refrigeration equipment 2000 is a deep-freezing refrigerator, and the refrigerant is R600a mixed with R744: the regenerator of this application is applied to the R290 refrigerator system, the prototype is filled with 40g R600a and 8g R744, and the PD operates at an ambient temperature of 25°C.
  • the pressure detection is greater than 3Mpa. After running for 2 minutes, the system pressure dropped to 28bar. After stabilization, the evaporator inlet temperature was -53°C, indicating that R744 started to refrigerate.
  • the use of the regenerator of this application can achieve low and medium back pressure compressor compression of high-pressure refrigerant.

Abstract

一种回热器(100)、回气管路系统(1000)、气路回热方法与制冷设备(2000),回热器(100)包括壳体(10)和排气管(20),壳体(10)形成有换热腔(101),壳体(10)上设有连通换热腔(101)的回气出口(1021)和回气进口(1031),回气进口(1031)用于接收蒸发器(500)的冷媒,回气出口(1021)用于将冷媒输送至压缩机(200)内,排气管(20)设在换热腔(101)内且呈盘绕布置,排气管(20)的两端形成有排气进口(201)和排气出口(201),排气进口(201)用于接收冷凝器(300)的冷媒,排气出口(202)用于将冷媒输送至毛细管(400)内。

Description

回热器、回气管路系统、气路回热方法与制冷设备
相关申请的交叉引用
本申请基于申请号为202210653795.0、申请日为2022年06月09日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及制冷技术领域,尤其是涉及一种回热器、回气管路系统、气路回热方法与制冷设备。
背景技术
目前市面上冰箱的回气换热管一般采用毛细管和回气换热管的贴合传热实现能效提升和解决凝露等问题,但其往往因为两种管道在贴合时存在热阻,导致换热效率低下。另外,回气换热管组件的长度较长,导致成本较高;对比研究表明,将毛细管缠绕置于回热管内,毛细管与罐体碰撞激烈,导致噪音升高,特别是对于混合冷媒边降温边节流在管路中存在气相冷媒时节流效果差。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种回热器、回气管路系统、气路回热方法与制冷设备,以解决现有技术中换热管与毛细管相配合使得降温和节流同时进行导致的换热效率低下的问题。
在本申请的一个方面,本申请提出了一种回热器。根据本申请的实施例,所述回热器安装在制冷设备中,所述回热器包括:壳体,所述壳体的内部形成有换热腔,所述壳体上设有连通所述换热腔的回气出口和回气进口,所述回气进口用于接收蒸发器的冷媒,所述回气出口用于将所述冷媒输送至压缩机内;排气管,所述排气管设在所述换热腔内且呈盘绕布置,所述排气管的两端延伸出所述壳体且形成有位于所述换热腔外的排气进口和排气出口,所述排气进口用于接收冷凝器的冷媒,所述排气出口用于将所述冷媒输送至毛细管内。
根据本申请实施例的回热器,通过将排气管设在换热腔内,冷凝器中的冷媒通过排气进口进入排气管内,壳体内的换热腔则用于接收蒸发器内的低温蒸汽,排气管中的冷 媒和换热腔中的低温蒸汽通过排气管的管壁进行换热,从而排气管中的冷媒温度得以降低,换热效率得以提高。
一些实施例中,所述排气管构造为沿所述壳体的轴线方向沿螺旋线盘绕延伸。
一些实施例中,所述回气出口位于所述壳体的一端且邻近所述排气进口,所述回气进口位于所述壳体的另一端且邻近所述排气出口。
一些实施例中,所述排气进口的进气方向平行于所述回气出口的出气方向,所述排气出口的出气方向平行于所述回气进口的进气方向。
一些实施例中,所述回热器在所述制冷设备中沿竖直方向布置,所述回气出口设在所述回气进口的上方,所述排气进口设在所述排气出口的上方。
一些实施例中,所述排气出口的孔口小于所述回气出口的孔口,所述排气出口的孔口小于所述回气进口的孔口。
一些实施例中,所述壳体上设有回气出管,所述回气出口设在所述回气出管上,所述回气出管和所述壳体为一体成型、螺接相连或焊接相连,所述壳体上设有回气进管,所述回气进口设在所述回气进管上,所述回气进管和所述壳体为一体成型、螺接相连或焊接相连。
一些实施例中,所述壳体的内部设有导热部,所述导热部沿所述壳体的轴线方向间隔开设置。
在本申请的第二个方面,本申请提出了一种回气管路系统。根据本申请的实施例,回气管路系统包括:上述的回热器、压缩机、冷凝器、毛细管和蒸发器,其中,所述压缩机连接所述冷凝器,所述冷凝器连接所述回热器的所述排气进口,所述排气出口连接所述毛细管,所述毛细管连接所述蒸发器,所述蒸发器连接所述回气进口,所述回气出口连接所述压缩机。
根据本申请实施例的回气管路系统,通过将回热器的排气进口连接冷凝器,排气出口连接毛细管,回气进口连接蒸发器,回气出口连接压缩机,则冷凝器中的液体进入回热器的排气管内,蒸发器中低温蒸汽进入壳体内的换热腔中,排气管内的液体和换热腔中的蒸汽进行换热,从而回气管路系统的换热效率得以提高,同时降低了回气管路长度,制冷剂充注量减少,能效改善,冷媒音和压缩机噪音均降低,系统的排气压力显著改善,并且系统容积减少,成本降低。
在本申请的第三个方面,本申请提出了一种制冷设备的气路回热方法。根据本申请的实施例,所述制冷设备包括上述的制冷设备的回气管路系统,所述方法包括:所述冷凝器排出的冷媒先通过所述回热器集中换热,再经过所述毛细管节流。
根据本申请实施例的制冷设备的气路回热方法,通过将回气管路系统应用在制冷设备中,冷凝器排出的冷媒先流入回热器中进行集中换热降温,然后再流入毛细管中进行节流降压。由此,该方法改变了边降温边节流的传统方法,使得制冷设备的气路回热效率显著提高,同时降低了系统排气压力,进而实现了中低背压压缩机压缩高压制冷剂,降低了压缩机成本并提升能效,实现了中低背压压缩机在深冷领域的应用。
在本申请的第四个方面,本申请提出了一种制冷设备。根据本申请的实施例,制冷设备包括上述的制冷设备的回气管路系统。由此,制冷设备的制冷效果显著提高,同时成本得以降低。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请的实施例中回热器的示意图;
图2是本申请图1中沿A-A方向的剖面图;
图3是本申请图1中沿B-B方向的剖面图;
图4是本申请图1中沿C-C方向的剖面图;
图5是本申请的实施例中回气管路系统的示意图;
图6是本申请的实施例中制冷设备的示意图。
附图标记:
100、回热器;1000、回气管路系统;2000、制冷设备;
10、壳体;101、换热腔;102、回气出管;1021、回气出口;103、回气进管;1031、
回气进口;
20、排气管;201、排气进口;2011、排气进管;202、排气出口;2021、排气出管;
200、压缩机;300、冷凝器;400、毛细管;500、蒸发器。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“长度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,用于区别描述特征,无顺序之分,无轻重之分。
在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的一个方面,本申请提出了一种回热器100。本申请的回热器100用于制冷设备2000中,主要作用是实现冷热流体间进行传递热量,其中制冷设备2000的具体种类不受限制,例如冰柜和冰箱。根据本申请的实施例,如图1-图4所示,回热器100包括:壳体10、排气管20。
壳体10的内部形成有换热腔101,壳体10上设有连通换热腔101的回气出口1021和回气进口1031,回气进口1031用于接收蒸发器500的冷媒,回气出口1021用于将冷媒输送至压缩机200内;排气管20设在换热腔101内,且排气管20呈盘绕布置,排气管20的两端延伸出壳体10,且排气管20的两端分别形成有位于换热腔101外的排气进口201和排气出口202,排气进口201用于接收冷凝器300的冷媒,排气出口202用于将冷媒输送至毛细管400内。
可以理解为,排气管20放置在壳体10内部形成的换热腔101内,排气管20将换热腔101分隔为两部分空间,排气管20内的空间用于接收从冷凝器300中流入的冷媒,换热腔101中其余空间用于接收蒸发器500输送的蒸汽,蒸汽和排气管20中的冷媒通过排气管20壁面相互传递热量,排气管20中的冷媒的温度得以降低,然后通过排气管20中的排气出口202进入毛细管400中,从而回热器100的换热效率得到显著提高,且该回热器100结构相对简单,通过将排气管20盘绕设在壳体10内,将整个回热器100的体积大大缩小,易于使用和安装,成本较低,适合在各行业进行推广使用。
根据本申请实施例的回热器100,通过将排气管20设在换热腔101内,冷凝器300 中的冷媒通过排气进口201进入排气管20内,壳体10内的换热腔101则用于接收蒸发器500内的低温蒸汽,排气管20中的冷媒和换热腔101中的低温蒸汽通过排气管20的管壁进行换热,从而排气管20中的冷媒温度得以降低,换热效率得以提高。需要说明的是,制作回热器100的材料并不受特别限制,只要能起到传热的作用即可。本申请中的回热器100应用领域也不受特别限制,包括但不限于冰箱、冰柜制冷系统。
一些实施例中,如图2所示,排气管20构造为沿壳体10的轴线方向沿螺旋线盘绕延伸。具体的,通过将排气管20在换热腔101中设置成螺旋盘绕形状,相当于在同样的壳体体积中,增加了排气管20的长度,从而可以增大排气管20中的冷媒和换热腔101中蒸汽的换热面积,提升换热效率。
可选地,排气管20的构造还可以是线状结构,同样可以起到传热、进气和回气的作用,并且节省排气管20使用成本,可以根据具体实际场景选择使用。
一些实施例中,如图2-图4所示,回气出口1021位于壳体10的一端,且回气出口1021邻近排气进口201,回气进口1031位于壳体10的另一端,且回气进口1031邻近排气出口202。例如,回气出口1021和排气进口201位于壳体10的同一端,回气进口1031和排气进口201位于壳体10同一端,使得排气管20中的冷媒和换热腔101中蒸汽逆向流动,进一步增大换热的效率。
一些实施例中,如图2-图4所示,排气进口201的进气方向平行于回气出口1021的出气方向,排气出口202的出气方向平行于回气进口1031的进气方向。具体的,冷凝器300中冷媒进入排气管20的流向平行于蒸汽从换热腔101中排出的方向,并且从冷凝器300中流入排气管20中的冷媒排出排气管20的流向平行于蒸发器500中蒸汽的流入方向,从而排气管20中的冷媒和换热腔101中蒸汽之间换热较为均匀,保证传热的质量。
一些实施例中,如图2所示,回热器100在制冷设备2000中沿竖直方向布置,回气出口1021设在回气进口1031的上方,排气进口201设在排气出口202的上方。具体的,通过将回热器100竖直方向设置在制冷设备2000中,冷凝器300中的冷媒从排气进口201进入排气管20,从排气出口202排出,同时蒸发器500中的冷媒从回气进口1031进入,从回气出口1021排出,即排气方向是自上而下,回气方向是自下而上,利用流入排气管20中冷媒的自身的重力从排气出口202流出,防止回气对压缩机200产生液击,从而排气和回气逆向流动换热,充分增加了回气和排气的换热面积,提升了两者间的换热效率。
一些实施例中,如图2-图4所示,排气出口202的孔口小于回气出口1021的孔口, 排气出口202的孔口小于回气进口1031的孔口。具体的,蒸发器500中的冷媒进入换热腔101的流量相对更大,冷凝器300中的冷媒进入排气管20中的流量相对较小,使得排气管20中所流进的冷媒可以更快更高效地被降温。
一些实施例中,如图2-图4所示,壳体10上设有回气出管102,回气出口1021设在回气出管102上,回气出管102和壳体10为一体成型、螺接相连或焊接相连,壳体10上设有回气进管103,回气进口1031设在回气进管103上,回气进管103和壳体10为一体成型、螺接相连或焊接相连。也就是说,壳体10外壁连接回气出管102和回气进管103,并且壳体10内形成的换热腔101和回气出管102和回气进管103相通,同时回气出管102和回气进管103和壳体10连接的方式不受特别限定,例如包括但不限于一体成型、螺接相连或焊接相连。
可选地,如图2-图4所示,壳体10上设有排气进管2011,排气进口201设在排气进管2011上,排气进管2011和壳体10为一体成型、螺接相连或焊接相连,壳体10上设有排气出管2021,排气出口202设在排气出管2021上,排气出管2021和壳体10为一体成型、螺接相连或焊接相连。也就是说,壳体10外壁连接排气进管2011和排气出管2021,并且壳体10内形成的换热腔101和排气进管2011和排气出管2021相通,同时排气进管2011和排气出管2021和壳体10连接的方式不受特别限定,例如包括但不限于一体成型、螺接相连或焊接相连。
一些实施例中,如图3所示,壳体10的内部设有导热部(未示出),导热部沿壳体10的轴线方向间隔开设置。具体的,在位于壳体10内部的排气管20的管壁上设置导热部,导热部可以是螺纹或翅片,从而可以增加导热效率。
下面结合附图,描述本申请回热器100的一个具体实施例。
参考图1-图4,回热器100包括壳体10和排气管20,壳体10的内部形成有换热腔101,壳体10上设有连通换热腔101的回气出口1021和回气进口1031,回气进口1031用于接收蒸发器500的冷媒,回气出口1021用于将冷媒输送至压缩机200内;排气管20设在换热腔101内且呈盘绕布置,排气管20的两端延伸出壳体10且形成有位于换热腔101外的排气进口201和排气出口202,排气进口201用于接收冷凝器300的冷媒,排气出口202用于将冷媒输送至毛细管400内。排气管20构造为沿壳体10的轴线方向沿螺旋线盘绕延伸。
回气出口1021位于壳体10的一端且邻近排气进口201,回气进口1031位于壳体10的另一端且邻近排气出口202。排气进口201的进气方向平行于回气出口1021的出气方向,排气出口202的出气方向平行于回气进口1031的进气方向。回热器100在制 冷设备2000中沿竖直方向布置,回气出口1021设在回气进口1031的上方,排气进口201设在排气出口202的上方。排气出口202的孔口小于回气出口1021的孔口,排气出口202的孔口小于回气进口1031的孔口。
壳体10上设有回气出管102,回气出口1021设在回气出管102上,回气出管102和壳体10为一体成型,壳体10上设有回气进管103,回气进口1031设在回气进管103上,回气进管103和壳体10为一体成型。壳体10上设有排气出管2021,排气出口202设在排气出管2021上,排气出管2021和壳体10为一体成型,壳体10上设有排气进管2011,排气进口201设在排气进管2011上,排气进管2011和壳体10为一体成型。
在本申请的第二个方面,本申请提出了一种回气管路系统1000。
如图5所示,根据本申请的实施例的回气管路系统1000包括:回热器100、压缩机200、冷凝器300、毛细管400和蒸发器500,其中,压缩机200连接冷凝器300,冷凝器300连接回热器100的排气进口201,排气出口202连接毛细管400,毛细管400连接蒸发器500,蒸发器500连接回气进口1031,回气出口1021连接压缩机200。
由此,回气管路系统1000的换热效率得以提高,同时降低了回气管路长度,制冷剂充注量减少,能效改善,冷媒音和压缩机200噪音均降低,系统的排气压力显著改善,并且系统容积减少,成本降低。需要说明的是,上述针对回热器100所描述的特征和优点同样适用于该回气管路系统1000,此处不再赘述。
下面结合附图,描述本申请回气管路系统1000的具体实施过程。
参考图5,该回气管路系统1000的工作过程如下:压缩机200将低温低压的制冷剂压缩成高温高压的气体制冷剂,然后制冷剂进入冷凝器300中,冷凝器300对制冷剂进行降温,制冷剂冷凝为液体,然后从回热器100的排气进口201进入回热器100的排气管20中,经排气管20的排气出口202流进毛细管400中,毛细管400进行降压节流后,制冷剂流入蒸发器500,制冷剂在蒸发器500中吸热变成低温气体,然后气体经回热器100的回气进口1031进入回热器100的换热腔101中,在换热腔101中的低温气体和冷凝器300中流入排气管20中的液体制冷剂进行换热,然后经回气出口1021流入压缩机200中,如此循环,从而排气管20中的液体制冷剂在未进入毛细管400节流降压前温度已经得到降低,实现先降温后节流的高效换热节流模式。
在本申请的第三个方面,本申请提出了一种制冷设备2000的气路回热方法。
根据本申请的实施例的制冷设备2000包括上述回气管路系统1000,该方法包括:冷凝器300排出的冷媒先通过回热器100集中换热,再经过毛细管400节流。
需要说明的是,上述针对回热器100、回气管路系统1000所描述的特征和优点同样 适用于该制冷设备2000的气路回热方法,此处不再赘述。在传统回热方法中,通常是采用边降温边节流的方式,此种方法效率差,所使用回热设备的成本高。本申请提出先集中降温再节流降压的气路回热方法,改变传统的制冷系统中通过等焓节流原理进行降温节流,采用等熵节流的原理进行先降温再节流,使得换热效率大大提升。
在本申请的第四个方面,如图6所示,本申请提出了一种制冷设备2000。
根据本申请的实施例的制冷设备2000包括上述制冷设备2000的回气管路系统1000。具体的,制冷设备2000的具体类型并不受特别限制,可以是冰箱、冰柜。需要说明的是,上述针对回热器100、回气管路系统1000和制冷设备2000的气路回热方法所描述的特征和优点同样适用于该制冷设备2000,此处不再赘述。
下面描述将上述回热器100以及回气管路系统1000应用在制冷设备2000中的具体实施例。
实施例1
制冷设备2000为冰箱,制冷剂为R600a和R290,在冰箱的回气管路系统中:制冷剂充注量分别由母本60g R600a和55gR290降低为50g R600a和48g R290。经过测试,结果表明,冰箱排气压力均降低0.2bar,R600a为5.5bar,R290为12.4bar,能耗分别改善了2%和1.5%;整机噪音无明显变化。
实施例2
制冷设备2000为深冷卧柜,制冷剂为R600a混R170、R600a混R1150:将本申请的回热器应用于深冷卧柜中,采用0.3L内容积的回气罐做回热器,与传统的盘管式回热器相比,系统容积减少0.8L,制冷剂充注量由母本130g R600a和50g R170降低为90g R600a和40g R290。32℃环温测试结果表明,排气出口温度为-27℃,排气出口与回气进口温差为0.1℃,排气入口35℃,回气出口28℃,说明本申请的回热器换热效率高,运行稳定时样机排气压力为20bar,说明采用本申请的回热器能够充分降低排气温度,降低冷媒充注量,降低回热器成本;与板换样机对比,整机噪音声功率降低2dB。
实施例3
制冷设备2000为深冷冰箱,制冷剂为R600a混R744:将本申请的回热器应用于R290冰箱系统中,样机灌注40g R600a和8g R744,25℃环温下PD运行,压力检测开机瞬间大于3Mpa,运行2min后,系统压力降低到28bar,稳定后蒸发器入口温度-53℃,说明R744开始制冷,采用本申请回热器可以实现低中背压压缩机压缩高压冷媒。
在本说明书的描述中,参考术语“一些实施例”、“可选地”、“进一步地”或“一 些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种回热器,其中,所述回热器安装在制冷设备中,所述回热器包括:
    壳体,所述壳体的内部形成有换热腔,所述壳体上设有连通所述换热腔的回气出口和回气进口,所述回气进口用于接收蒸发器的冷媒,所述回气出口用于将所述冷媒输送至压缩机内;
    排气管,所述排气管设在所述换热腔内且呈盘绕布置,所述排气管的两端延伸出所述壳体且形成有位于所述换热腔外的排气进口和排气出口,所述排气进口用于接收冷凝器的冷媒,所述排气出口用于将所述冷媒输送至毛细管内。
  2. 根据权利要求1所述的回热器,其中,所述排气管构造为沿所述壳体的轴线方向沿螺旋线盘绕延伸。
  3. 根据权利要求1或2所述的回热器,其中,所述回气出口位于所述壳体的一端且邻近所述排气进口,所述回气进口位于所述壳体的另一端且邻近所述排气出口。
  4. 根据权利要求1-3中任一项所述的回热器,其中,所述排气进口的进气方向平行于所述回气出口的出气方向,所述排气出口的出气方向平行于所述回气进口的进气方向。
  5. 根据权利要求1-4中任一项所述的回热器,其中,所述回热器在所述制冷设备中沿竖直方向布置,所述回气出口设在所述回气进口的上方,所述排气进口设在所述排气出口的上方。
  6. 根据权利要求1至5中任一项所述的回热器,其中,所述排气出口的孔口小于所述回气出口的孔口,所述排气出口的孔口小于所述回气进口的孔口。
  7. 根据权利要求1至6中任一项所述的回热器,其中,所述壳体上设有回气出管,所述回气出口设在所述回气出管上,所述回气出管和所述壳体为一体成型、螺接相连或焊接相连,所述壳体上设有回气进管,所述回气进口设在所述回气进管上,所述回气进管和所述壳体为一体成型、螺接相连或焊接相连。
  8. 根据权利要求1至7中任一项所述的回热器,其中,所述壳体的内部设有导热部,所述导热部沿所述壳体的轴线方向间隔开设置。
  9. 一种制冷设备的回气管路系统,其中,包括:
    根据权利要求1至8中任一项所述的回热器;
    压缩机、冷凝器、毛细管、蒸发器,其中,所述压缩机连接所述冷凝器,所述冷凝器连接所述回热器的所述排气进口,所述排气出口连接所述毛细管,所述毛细管连接所述蒸发器,所述蒸发器连接所述回气进口,所述回气出口连接所述压缩机。
  10. 一种制冷设备的气路回热方法,其中,所述制冷设备包括如权利要求9所述的制冷设备的回气管路系统,所述方法包括:所述冷凝器排出的冷媒先通过所述回热器集中换热,再经过所述毛细管节流。
  11. 一种制冷设备,其中,包括如权利要求9所述的制冷设备的回气管路系统。
PCT/CN2023/085209 2022-06-09 2023-03-30 回热器、回气管路系统、气路回热方法与制冷设备 WO2023236635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210653795.0 2022-06-09
CN202210653795.0A CN115790004A (zh) 2022-06-09 2022-06-09 回热器、回气管路系统、气路回热方法与制冷设备

Publications (1)

Publication Number Publication Date
WO2023236635A1 true WO2023236635A1 (zh) 2023-12-14

Family

ID=85431178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085209 WO2023236635A1 (zh) 2022-06-09 2023-03-30 回热器、回气管路系统、气路回热方法与制冷设备

Country Status (2)

Country Link
CN (1) CN115790004A (zh)
WO (1) WO2023236635A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115790004A (zh) * 2022-06-09 2023-03-14 合肥美的电冰箱有限公司 回热器、回气管路系统、气路回热方法与制冷设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862151A (zh) * 2005-05-12 2006-11-15 乐金电子(天津)电器有限公司 回热式制冷循环系统空调器
CN101979938A (zh) * 2010-11-29 2011-02-23 四川长虹空调有限公司 热泵空调的回热方法及回热结构
KR20110129756A (ko) * 2010-05-26 2011-12-02 마이콜 주식회사 튜브형 열교환기
CN102954631A (zh) * 2012-11-26 2013-03-06 海信科龙电器股份有限公司 一种制冷系统
CN109059359A (zh) * 2018-08-08 2018-12-21 珠海凌达压缩机有限公司 一种压缩机及压缩机制冷系统
CN110360771A (zh) * 2019-07-23 2019-10-22 青岛海尔空调器有限总公司 家电设备
CN212961911U (zh) * 2020-06-01 2021-04-13 苏州黑盾环境股份有限公司 一种带回热装置的机柜空调器
CN115031447A (zh) * 2022-06-10 2022-09-09 合肥美的电冰箱有限公司 回热器、制冷系统及制冷设备
CN217685986U (zh) * 2022-06-09 2022-10-28 合肥美的电冰箱有限公司 回热器、制冷系统及制冷设备
CN217876563U (zh) * 2022-06-09 2022-11-22 合肥美的电冰箱有限公司 制冷系统及制冷设备
CN115790004A (zh) * 2022-06-09 2023-03-14 合肥美的电冰箱有限公司 回热器、回气管路系统、气路回热方法与制冷设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862151A (zh) * 2005-05-12 2006-11-15 乐金电子(天津)电器有限公司 回热式制冷循环系统空调器
KR20110129756A (ko) * 2010-05-26 2011-12-02 마이콜 주식회사 튜브형 열교환기
CN101979938A (zh) * 2010-11-29 2011-02-23 四川长虹空调有限公司 热泵空调的回热方法及回热结构
CN102954631A (zh) * 2012-11-26 2013-03-06 海信科龙电器股份有限公司 一种制冷系统
CN109059359A (zh) * 2018-08-08 2018-12-21 珠海凌达压缩机有限公司 一种压缩机及压缩机制冷系统
CN110360771A (zh) * 2019-07-23 2019-10-22 青岛海尔空调器有限总公司 家电设备
CN212961911U (zh) * 2020-06-01 2021-04-13 苏州黑盾环境股份有限公司 一种带回热装置的机柜空调器
CN217685986U (zh) * 2022-06-09 2022-10-28 合肥美的电冰箱有限公司 回热器、制冷系统及制冷设备
CN217876563U (zh) * 2022-06-09 2022-11-22 合肥美的电冰箱有限公司 制冷系统及制冷设备
CN115790004A (zh) * 2022-06-09 2023-03-14 合肥美的电冰箱有限公司 回热器、回气管路系统、气路回热方法与制冷设备
CN115031447A (zh) * 2022-06-10 2022-09-09 合肥美的电冰箱有限公司 回热器、制冷系统及制冷设备

Also Published As

Publication number Publication date
CN115790004A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN201944952U (zh) 一种带过冷装置的空调
WO2023236635A1 (zh) 回热器、回气管路系统、气路回热方法与制冷设备
KR20070089260A (ko) 냉장고
CN108361884A (zh) 空调系统
CN100580345C (zh) 空调的二次节流再冷却装置
CN202973644U (zh) 一种高效冷水机组
CN201463387U (zh) 一种双循环工业冷水机组
JP2001280862A (ja) ブライン熱交換器
WO2023236627A1 (zh) 回热器、制冷系统和制冷设备
CN201945082U (zh) 一体式工业冷水机组
CN104792056A (zh) 一种与回热式制冷机气耦合的jt节流制冷机
TW550366B (en) Cold storage type freezing machine
CN114739031B (zh) 一种稀释制冷系统
WO2021213548A1 (zh) 换热设备、热水器和空调
CN215638160U (zh) 一种空调换热系统、空调器
CN217465053U (zh) 制冷设备
CN206037476U (zh) 一种风冷热泵系统
CN218379961U (zh) 复叠式制冷系统和冰箱
CN217155078U (zh) 冷冻/冷藏车用螺旋强化传热管同轴套管热交换器
CN206281235U (zh) 一种水冷低温并联机组
CN218210154U (zh) 一种单级压缩超低温制冷系统及制冷设备
CN107883495A (zh) 空调系统
CN219014673U (zh) 制冷系统、空调以及冷库
CN218096704U (zh) 回热器、制冷系统及制冷设备
CN111964188B (zh) 一种热虹吸管-蒸汽压缩复合制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818803

Country of ref document: EP

Kind code of ref document: A1