WO2023236556A1 - 发动机爆炸冲击载荷计算方法及系统 - Google Patents

发动机爆炸冲击载荷计算方法及系统 Download PDF

Info

Publication number
WO2023236556A1
WO2023236556A1 PCT/CN2023/074225 CN2023074225W WO2023236556A1 WO 2023236556 A1 WO2023236556 A1 WO 2023236556A1 CN 2023074225 W CN2023074225 W CN 2023074225W WO 2023236556 A1 WO2023236556 A1 WO 2023236556A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
load
mass
calculation
impact load
Prior art date
Application number
PCT/CN2023/074225
Other languages
English (en)
French (fr)
Inventor
高坤
陈国强
刘宽
宫继儒
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Publication of WO2023236556A1 publication Critical patent/WO2023236556A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Definitions

  • This application belongs to the technical field of engine impact assessment, and specifically relates to an engine explosion impact load calculation method and system.
  • This application proposes an engine explosion impact load calculation method, which uses load calculation and calculation processing, and finally evaluates the calculation results, which can check the engine reliability.
  • a method for calculating engine explosion impact load including:
  • Load calculation steps Calculate the intermediate process quantities of the explosion impact load based on the mass of the engine assembly, and use the intermediate process quantities to calculate the impact loads in the Z direction and XY direction respectively;
  • Calculation and processing steps Process the engine model to obtain the finite element model, and set the suspension stiffness and boundary conditions for the finite element model;
  • the maximum value of the acceleration load at the center of mass in the three directions of X, Y, and Z is extracted as the actual explosion impact load of the engine for calculation.
  • the mass of the engine assembly includes wet weight mass.
  • the processing of the engine model specifically includes: meshing the engine model, and controlling the mesh nodes within a set range.
  • the suspension stiffness is replaced by a spring unit, and the stiffness in the spring unit needs to be set to static stiffness;
  • the engine material is set to Ruili damping
  • the load application point is established at the center point of the engine bottom, and a rigid coupling constraint is established between the load application point and the engine base.
  • an evaluation step is also included: extracting the maximum principal stress of the calculation result, and evaluating the calculation result based on the tensile strength of the required evaluation material.
  • an engine explosion impact load calculation system including:
  • Load calculation module configured to: calculate blast impact based on the mass of the engine assembly
  • the intermediate load process quantity is used to calculate the impact load in the Z direction and XY direction respectively;
  • the calculation processing module is configured to: process the engine model to obtain a finite element model, and set suspension stiffness and boundary conditions for the finite element model;
  • the loading module is configured to: load the Z-direction and XY-direction impact loads to the load application point position of the above-mentioned finite element model, and calculate the acceleration of the engine center of mass;
  • the maximum value of the acceleration load at the center of mass in the three directions of X, Y, and Z is extracted as the actual explosion impact load of the engine for calculation.
  • an evaluation module configured to: extract the maximum principal stress of the calculation result, and evaluate the calculation result based on the tensile strength of the required evaluation material.
  • the calculation processing module when setting the suspension stiffness and boundary conditions, the calculation processing module:
  • the suspension stiffness is replaced by a spring unit, and the stiffness in the spring unit needs to be set to static stiffness;
  • the engine material is set to Ruili damping
  • the load application point is established at the center point of the engine bottom, and a rigid coupling constraint is established between the load application point and the engine base.
  • This application considers the mass of the engine assembly when calculating the engine explosion impact load. Simply input the engine mass, and the Z-direction and XY-direction impact loads can be calculated. The explosion impact load can be accurately obtained, and the explosion can be provided for subsequent model loading. Shocking input.
  • This application deals with the engine model and sets the engine mounting stiffness and boundary conditions.
  • the Z-direction and XY-direction loads calculated in the first step can be loaded to the load application point position while meeting the required requirements. , achieving accurate calculation of the acceleration of the engine's center of mass.
  • Figure 2 is a schematic diagram of the positions of a1, a2, t1, t2 in the impact load spectrum
  • Figure 3 is a schematic diagram of the positions of a3, a4, t3, and t4 in the impact load spectrum
  • Figure 4 is a schematic diagram of the engine load calculation program interface
  • Figure 5 is a schematic diagram of the calculated center of mass acceleration load.
  • a method for calculating engine explosion impact load including:
  • Load calculation steps Calculate the intermediate process quantities of the explosion impact load based on the mass of the engine assembly, and use the intermediate process quantities to calculate the impact loads in the Z direction and XY direction respectively;
  • Loading step Load the Z-direction and XY-direction impact loads to the above finite element model load At the application point position, calculate the engine center of mass acceleration;
  • the main purpose of load calculation is to calculate the explosion impact load and provide explosion impact input for subsequent calculation model loading.
  • the mass of the engine assembly (including wet weight mass such as lubricating oil) is provided as input to the load calculation part.
  • T1 i*time_interval_1#The first period of time
  • T2 i*time_interval_2#The second period of time
  • T3 i*time_interval_1#The first period of time
  • T4 i*time_interval_2#The second period of time
  • time_interval_1 is the image of the first segment
  • time_interval_2 is the time interval of the second segment.
  • the interface for writing the engine load calculation program is shown in Figure 4. Just input the engine mass, and the Z-direction and XY-direction impact loads can be calculated.
  • the main purpose of the calculation processing part is to process the engine model that needs to be calculated.
  • the engine model is meshed.
  • the mesh type uses C3D4 units. Considering the calculation cost, the mesh nodes are controlled to less than 1 million.
  • the finite element model is obtained.
  • the engine mount stiffness and boundary conditions need to be set.
  • the mount stiffness is replaced by a spring unit, the stiffness in the spring unit needs to be set to static stiffness, and the spring damping ratio is set to 0.05. .
  • the engine material needs to be set to Ruili damping, the coefficients of Ruili damping are set to 0.25 and 0.003 respectively, and the coefficients of the other items are set to 0.
  • the load application point is established at the center point of the engine bottom, and the RBE2 rigid coupling constraint is established between the load application point and the engine base.
  • the implicit dynamics calculation method is used to load the Z-direction and XY-direction loads calculated in the first step to the load application point, that is, the rigid coupling constraint point, to calculate the engine center of mass acceleration.
  • the load application point that is, the rigid coupling constraint point
  • the calculated center of mass acceleration load is shown in Figure 5.
  • Implicit dynamics is to extract the load, load it into the static calculation model, re-establish the calculation model, use the static calculation method, and load the impact load to the center of mass.
  • the engine mesh model needs to be modified to C3D10M unit.
  • the center of mass acceleration load is the input of the static calculation.
  • the maximum principal stress is calculated through statics, and the calculation results are evaluated based on the tensile strength of the required evaluation material. During evaluation, if the maximum principal stress ⁇ tensile strength limit, the evaluation requirements are met, and vice versa.
  • an engine explosion impact load calculation system including:
  • the load calculation module is configured to: calculate the intermediate process quantities of the explosion impact load based on the mass of the engine assembly, and use the intermediate process quantities to calculate the impact loads in the Z direction and XY direction respectively;
  • the calculation processing module is configured to: process the engine model to obtain a finite element model, and set suspension stiffness and boundary conditions for the finite element model;
  • the loading module is configured to: load the Z-direction and XY-direction impact loads to the load application point position of the above-mentioned finite element model, and calculate the acceleration of the engine center of mass;
  • an evaluation module is also included, which is configured to: extract the maximum principal stress of the calculation result, and evaluate the calculation result based on the tensile strength of the required evaluation material.
  • the calculation processing module when setting the suspension stiffness and boundary conditions, the calculation processing module:
  • the suspension stiffness is replaced by a spring unit, and the stiffness in the spring unit needs to be set to static stiffness;
  • the purpose of this embodiment is to provide a computer-readable storage medium.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • a computer program can The instructions implement each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams.
  • These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了发动机爆炸冲击载荷计算方法及系统,包括:载荷计算步骤:基于发动机总成的质量计算爆炸冲击载荷中间过程量,利用中间过程量分别计算Z向与XY向的冲击载荷;计算处理步骤:对发动机模型进行处理获得有限元模型,针对有限元模型设置悬置刚度以及边界条件;加载步骤:将Z向与XY向冲击载荷加载到上述有限元模型载荷施加点位置处,计算发动机质心加速度;提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。

Description

发动机爆炸冲击载荷计算方法及系统
本申请要求于2022年6月10日提交中国专利局、申请号为202210652167.0、发明名称为“一种发动机爆炸冲击载荷计算方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于发动机冲击评估技术领域,具体涉及一种发动机爆炸冲击载荷计算方法及系统。
背景技术
由于爆炸冲击波的能量较大,需要校核发动机在这种特殊场景下的可靠性。爆炸冲击波:爆炸后产生的空气介质或液体介质的压力波动。现有发动机在设计过程中,针对抗冲击计算,无准确的对发动机抗冲击进行评估。
另外,由于发动机在这种特殊工作场景可靠性校核与常规产品可靠性校核需求存在不同,因此,常规产品的可靠性校核无法应用至发动机冲击可靠性评估中。
发明内容
本申请提出了一种发动机爆炸冲击载荷计算方法,利用载荷计算与计算处理,最后对计算结果进行评价,能够实现对发动机可靠性的校核。
第一方面,公开了一种发动机爆炸冲击载荷计算方法,包括:
载荷计算步骤:基于发动机总成的质量计算爆炸冲击载荷中间过程量,利用中间过程量分别计算Z向与XY向的冲击载荷;
计算处理步骤:对发动机模型进行处理获得有限元模型,针对有限元模型设置悬置刚度以及边界条件;
加载步骤:将Z向与XY向冲击载荷加载到上述有限元模型载荷施加点位置处,计算发动机质心加速度;
提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。
可选地,所述发动机总成的质量包含湿重质量。
可选地,所述对发动机模型进行处理,具体包括:对发动机模型进行网格划分,网格节点控制在设定范围内。
可选地,设置悬置刚度以及边界条件时:
悬置刚度用弹簧单元代替,弹簧单元中的刚度需要设置为静刚度;
在发动机质心处设置发动机质量;
发动机材料设置为瑞丽阻尼;
载荷施加点在发动机底部中心点处建立,载荷施加点与发动机底座建立刚性耦合约束。
可选地,还包括评估步骤:提取计算结果的最大主应力,以所需评价材料的抗拉强度对计算结果进行评价。
第二方面,公开了一种发动机爆炸冲击载荷计算系统,包括:
载荷计算模块,被配置为:基于发动机总成的质量计算爆炸冲击 载荷中间过程量,利用中间过程量分别计算Z向与XY向的冲击载荷;
计算处理模块,被配置为:对发动机模型进行处理获得有限元模型,针对有限元模型设置悬置刚度以及边界条件;
加载模块,被配置为:将Z向与XY向冲击载荷加载到上述有限元模型载荷施加点位置处,计算发动机质心加速度;
提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。
可选地,还包括评估模块,被配置为:提取计算结果的最大主应力,以所需评价材料的抗拉强度对计算结果进行评价。
可选地,所述计算处理模块在设置悬置刚度以及边界条件时:
悬置刚度用弹簧单元代替,弹簧单元中的刚度需要设置为静刚度;
在发动机质心处设置发动机质量;
发动机材料设置为瑞丽阻尼;
载荷施加点在发动机底部中心点处建立,载荷施加点与发动机底座建立刚性耦合约束。
本申请在发动机爆炸冲击载荷计算是考虑了发动机总成的质量,只需输入发动机质量,Z向与XY向冲击载荷就可以计算得出,能够准确的获得爆炸冲击载荷,作为后续模型加载提供爆炸冲击的输入。
本申请针对发动机模型进行了处理,设置发动机悬置刚度与边界条件,通过上述设置能够在满足所需要求的前提下,将第一步计算出的Z向与XY向载荷加载到载荷施加点位置处,实现对发动机质心加速度的准确计算。
附图说明
图1为发动机冲击可靠性计算方法计算流程图;
图2为a1、a2、t1、t2、在冲击载荷谱中的位置示意图;
图3为a3、a4、t3、t4在冲击载荷谱中的位置示意图;
图4为发动机载荷计算程序界面示意图;
图5为计算出的质心加速度载荷示意图。
具体实施方式:
除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一:
参见附图1所示,在本实施例中,公开了一种发动机爆炸冲击载荷计算方法,包括:
载荷计算步骤:基于发动机总成的质量计算爆炸冲击载荷中间过程量,利用中间过程量分别计算Z向与XY向的冲击载荷;
计算处理步骤:对发动机模型进行处理获得有限元模型,针对有限元模型设置悬置刚度以及边界条件;
加载步骤:将Z向与XY向冲击载荷加载到上述有限元模型载荷 施加点位置处,计算发动机质心加速度;
提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。
该方法主要分为两部分,分别是载荷计算与计算处理部分,最后对计算结果进行评价。载荷计算部分,开发出了全新的载荷计算程序。
载荷计算步骤:
载荷计算主要目的是计算爆炸冲击载荷,为后面计算模型加载提供爆炸冲击的输入。
首先,提供发动机总成的质量(包含润滑油等湿重质量),作为载荷计算部分的输入。
根据整机质量,计算爆炸冲击载荷中间过程量,如下:
b7=320*(m/5)-0.5
c7=7.5*(m/5)-0.4
d7=4.5
b8=280*(m/5)-0.5
c8=6*(m/5)-0.4
d8=3
根据上述中间过程量b7、c7、d7、b8、c8、d8计算Z向(垂向)与XY向(横向)的冲击载荷。
Z向冲击载荷计算如下:
a1=0.5*b7
v1=2/3*c7
t1=2.5*π*c7/(3*b7*9.8)*1000
t2=2.5*d7/(100*v1)*1000-t1
a2=-π*v1/2*(1000/42.8)/9.8
XY向冲击载荷计算如下:
a3=0.5*b8
v3=2/3*c8
t3=2*π*c8/(3*b8*9.8)*1000
t4=2*d8/(100*v3)*1000-t1
a4=-π*v3/2*(1000/42.8)/9.8
其中,a1、a2、t1、t2、a3、a4、t3、t4的在冲击载荷谱中的位置如图2、3所示。
Z向的函数图像:
T1=i*time_interval_1#第一段的时间
w1=π/t1
fun_cur_1=a1*9.8*sin(w1*T1)#t1段的函数
T2=i*time_interval_2#第二段的时间
w2=π/t2
fun_cur_2=a2*9.8*sin(w2*T2)#t2段的函数
XY向的函数图像:
T3=i*time_interval_1#第一段的时间
w1=π/t3
fun_cur_1=a3*9.8*sin(w1*T1)#t1段的函数
T4=i*time_interval_2#第二段的时间
w2=π/t4
fun_cur_2=a4*9.8*sin(w2*T2)#t2段的函数
其中,i为0到30的按顺序排列的整数,time_interval_1为第一段的图像,time_interval_2为第二段的时间的间隔。当i=30时,T1=t1,T2=t2,T3=t3,T4=t4;
编写出发动机载荷计算程序界面如图4所示。只需输入发动机质量,Z向与XY向冲击载荷就可以计算得出。
计算处理步骤:
计算处理部分的主要目的是,处理所需计算的发动机模型,首先对发动机模型进行网格划分,网格类型采用C3D4单元,考虑到计算成本,网格节点控制到100万以内。网格模型处理完毕后得到有限元模型,接下来需要设置发动机悬置刚度与边界条件,其中,悬置刚度用弹簧单元代替,弹簧单元中的刚度需要设置为静刚度,弹簧阻尼比设置为0.05。在发动机质心处设置发动机质量。发动机材料需要设置为瑞丽阻尼,瑞丽阻尼的系数分别设置为0.25与0.003,其余项系数设置为0。载荷施加点在发动机底部中心点处建立,载荷施加点与发动机底座建立RBE2刚性耦合约束。
处理完有限元模型后,采用隐式动力学计算方法,将第一步计算出的Z向与XY向载荷加载到载荷施加点位置处,即刚性耦合约束点,计算发动机质心加速度。以某款发动机为例,计算出的质心加速度载荷如图5所示。
最后,计算模型强度并评估计算结果
提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。隐式动力学是提取载荷,加载到静力学计算模型中,重新建立计算模型,采用静力学计算方法,将冲击载荷加载到质心处,此时的发动机网格模型需要修改为C3D10M单元。
计算结果评估时,质心加速度载荷是静力学计算的输入,通过静力学计算最大主应力,以所需评价材料的抗拉强度对计算结果进行评价。评价时,最大主应力<抗拉强度限值,即为满足评价要求,反之则不满足。
实施例二:
基于实施例一的方法,本申请公开了一种发动机爆炸冲击载荷计算系统,包括:
载荷计算模块,被配置为:基于发动机总成的质量计算爆炸冲击载荷中间过程量,利用中间过程量分别计算Z向与XY向的冲击载荷;
计算处理模块,被配置为:对发动机模型进行处理获得有限元模型,针对有限元模型设置悬置刚度以及边界条件;
加载模块,被配置为:将Z向与XY向冲击载荷加载到上述有限元模型载荷施加点位置处,计算发动机质心加速度;
提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。
在本实施例子中,还包括评估模块,被配置为:提取计算结果的最大主应力,以所需评价材料的抗拉强度对计算结果进行评价。
在本实施例子中,计算处理模块在设置悬置刚度以及边界条件时:
悬置刚度用弹簧单元代替,弹簧单元中的刚度需要设置为静刚度;
在发动机质心处设置发动机质量;
发动机材料设置为瑞丽阻尼;
载荷施加点在发动机底部中心点处建立,载荷施加点与发动机底座建立刚性耦合约束。
实施例三:
本实施例的目的是提供一种计算机装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法的步骤。
实施例四
本实施例的目的是提供一种计算机可读存储介质。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述方法的步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序 指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (10)

  1. 发动机爆炸冲击载荷计算方法,其特征是,包括:
    载荷计算步骤:基于发动机总成的质量计算爆炸冲击载荷中间过程量,利用中间过程量分别计算Z向与XY向的冲击载荷;
    计算处理步骤:对发动机模型进行处理获得有限元模型,针对有限元模型设置悬置刚度以及边界条件;
    加载步骤:将Z向与XY向冲击载荷加载到上述有限元模型载荷施加点位置处,计算发动机质心加速度;
    提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。
  2. 如权利要求1所述的发动机爆炸冲击载荷计算方法,其特征是,所述发动机总成的质量包含湿重质量。
  3. 如权利要求1所述的发动机爆炸冲击载荷计算方法,其特征是,所述对发动机模型进行处理,包括:对发动机模型进行网格划分,网格节点控制在设定范围内。
  4. 如权利要求1所述的发动机爆炸冲击载荷计算方法,其特征是,设置悬置刚度以及边界条件时:
    悬置刚度设置为弹簧单元,所述弹簧单元中的刚度设置为静刚度;
    在发动机质心处设置发动机质量;
    发动机材料设置为瑞丽阻尼;
    载荷施加点在发动机底部中心点处建立,载荷施加点与发动机底座建立刚性耦合约束。
  5. 如权利要求1-4任一所述的发动机爆炸冲击载荷计算方法,其 特征是,还包括评估步骤:提取计算结果的最大主应力,以所需评价材料的抗拉强度对计算结果进行评价。
  6. 发动机爆炸冲击载荷计算系统,其特征是,包括:
    载荷计算模块,被配置为:基于发动机总成的质量计算爆炸冲击载荷中间过程量,利用中间过程量分别计算Z向与XY向的冲击载荷;
    计算处理模块,被配置为:对发动机模型进行处理获得有限元模型,针对有限元模型设置悬置刚度以及边界条件;
    加载模块,被配置为:将Z向与XY向冲击载荷加载到上述有限元模型载荷施加点位置处,计算发动机质心加速度;
    提取X、Y、Z三个方向质心处的加速度载荷最大值,作为计算发动机的实际爆炸冲击载荷。
  7. 如权利要求6所述的发动机爆炸冲击载荷计算系统,其特征是,还包括评估模块,被配置为:提取计算结果的最大主应力,以所需评价材料的抗拉强度对计算结果进行评价。
  8. 如权利要求6所述的发动机爆炸冲击载荷计算系统,其特征是,所述计算处理模块在设置悬置刚度以及边界条件时:
    悬置刚度设置为弹簧单元,所述弹簧单元中的刚度设置为静刚度;
    在发动机质心处设置发动机质量;
    发动机材料设置为瑞丽阻尼;
    载荷施加点在发动机底部中心点处建立,载荷施加点与发动机底座建立刚性耦合约束。
  9. 一种计算机装置,包括存储器、处理器及存储在存储器上并可在 处理器上运行的计算机程序,其特征是,所述处理器执行所述程序时实现上述权利要求1-5任一所述的方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征是,该程序被处理器执行时执行上述权利要求1-5任一所述的方法的步骤。
PCT/CN2023/074225 2022-06-10 2023-02-02 发动机爆炸冲击载荷计算方法及系统 WO2023236556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210652167.0 2022-06-10
CN202210652167.0A CN115204002A (zh) 2022-06-10 2022-06-10 一种发动机爆炸冲击载荷计算方法及系统

Publications (1)

Publication Number Publication Date
WO2023236556A1 true WO2023236556A1 (zh) 2023-12-14

Family

ID=83576206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074225 WO2023236556A1 (zh) 2022-06-10 2023-02-02 发动机爆炸冲击载荷计算方法及系统

Country Status (2)

Country Link
CN (1) CN115204002A (zh)
WO (1) WO2023236556A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118568866A (zh) * 2024-08-02 2024-08-30 浙江远算科技有限公司 一种海工结构船撞仿真分析方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115204002A (zh) * 2022-06-10 2022-10-18 潍柴动力股份有限公司 一种发动机爆炸冲击载荷计算方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090012751A1 (en) * 2006-01-27 2009-01-08 National University Corporation Nagoya University Method and program for structure analysis by finite element method
CN101858713A (zh) * 2009-04-01 2010-10-13 利弗莫尔软件技术公司 有限元分析中的爆炸模拟
CN112380739A (zh) * 2020-10-21 2021-02-19 西安航天动力测控技术研究所 一种外部加载冲击压力载荷的固体发动机冲击起爆仿真评估方法
CN115204002A (zh) * 2022-06-10 2022-10-18 潍柴动力股份有限公司 一种发动机爆炸冲击载荷计算方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090012751A1 (en) * 2006-01-27 2009-01-08 National University Corporation Nagoya University Method and program for structure analysis by finite element method
CN101858713A (zh) * 2009-04-01 2010-10-13 利弗莫尔软件技术公司 有限元分析中的爆炸模拟
CN112380739A (zh) * 2020-10-21 2021-02-19 西安航天动力测控技术研究所 一种外部加载冲击压力载荷的固体发动机冲击起爆仿真评估方法
CN115204002A (zh) * 2022-06-10 2022-10-18 潍柴动力股份有限公司 一种发动机爆炸冲击载荷计算方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118568866A (zh) * 2024-08-02 2024-08-30 浙江远算科技有限公司 一种海工结构船撞仿真分析方法和系统

Also Published As

Publication number Publication date
CN115204002A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2023236556A1 (zh) 发动机爆炸冲击载荷计算方法及系统
Prokop et al. Performance enhancement of limited-bandwidth active automotive suspensions by road preview
Lefebvre et al. An H-infinity-based control design methodology dedicated to the active control of vehicle longitudinal oscillations
Dong et al. Application of inerter to aircraft landing gear suspension
CN104834763B (zh) 获取发动机辐射噪声的方法及发动机设计优化方法
CN107292011B (zh) 确定车身连接点的静刚度的方法及装置
CN103455645B (zh) 一种全箭模态提取方法
CN107341276A (zh) 一种对发动机性能进行评估的方法及系统
CN111027242A (zh) 一种电池包模组等效仿真模型建立方法
CN112149221B (zh) 考虑液体附加质量的油箱流固耦合瞬态分析方法及系统
Dzitkowski et al. Method of active and passive vibration reduction of synthesized bifurcated drive systems of machines to the required values of amplitudes
CN113449376A (zh) 列车车下吊挂设备减振器的选取方法、系统及设备
CN107944116A (zh) 一种针对时变结构的瞬态能量响应高效预示方法
CN114357649A (zh) 一种空气涡轮起动机涡轮转子弹性支承设计优化方法
CN109635326B (zh) 机械结构及航空液压管路震动失效灵敏度分析方法
JP2016021172A (ja) 車両シミュレーションシステム
Liu et al. Optimal control for automotive seat suspension system based on acceleration based particle swarm optimization
Adduri et al. Car body optimization considering crashworthiness, NVH and static responses
CN114329796B (zh) 一种无源悬架控制器的优化设计方法
Rababah et al. Passive suspension modeling and analysis of a full car model
CN112016222B (zh) 基于装配体有限元模型与正交试验法的模态优化方法
CN114462283B (zh) 一种减震器上安装座冲击强度分析方法及存储介质
CN106156447A (zh) 一种含全局振动模态识别的结构优化方法和系统
Beltran Development of an Empirical Spring Aid Model for Automotive Applications
Ryu et al. Improvement of virtual vehicle analysis efficiency with optimal modes selection in flexible multi-body dynamics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818724

Country of ref document: EP

Kind code of ref document: A1