CN107944116A - 一种针对时变结构的瞬态能量响应高效预示方法 - Google Patents

一种针对时变结构的瞬态能量响应高效预示方法 Download PDF

Info

Publication number
CN107944116A
CN107944116A CN201711144389.7A CN201711144389A CN107944116A CN 107944116 A CN107944116 A CN 107944116A CN 201711144389 A CN201711144389 A CN 201711144389A CN 107944116 A CN107944116 A CN 107944116A
Authority
CN
China
Prior art keywords
mrow
mfrac
msub
msup
subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711144389.7A
Other languages
English (en)
Other versions
CN107944116B (zh
Inventor
费庆国
陈强
吴邵庆
李彦斌
杨轩
田志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201711144389.7A priority Critical patent/CN107944116B/zh
Publication of CN107944116A publication Critical patent/CN107944116A/zh
Application granted granted Critical
Publication of CN107944116B publication Critical patent/CN107944116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Complex Calculations (AREA)

Abstract

本发明提供了一种针对时变结构的瞬态能量响应高效预示方法,基于时变结构的能量密度控制方程,结合时变结构各子系统在不同频带内的时变内损耗因子和子系统间的时变耦合损耗因子,建立时变结构各子系统的瞬态能量控制方程,给定初始边界参数,采用四阶‑五阶Runge‑Kutta算法计算得到时变结构各子系统的瞬态能量响应。本发明发现了能量密度控制方程中内损耗因子引起的功率流动项,对空间体积积分后建立了时变结构各子系统的能量控制方程,从而将能量分析方法推广到了时变结构的动力学响应分析,拓展了目前能量分析方法的研究范围。同时,相比于传统的离散化方法,本发明采用能量的方法建立结构各子系统的能量控制方程,显著提高了计算分析的效率。

Description

一种针对时变结构的瞬态能量响应高效预示方法
技术领域
本发明涉及一种统计能量分析方法,具体涉及一种瞬态能量响应预示方法。
背景技术
随着现代科学技术的飞速发展,实际的工程结构逐渐向大型化和复杂化发展,其中很多结构是随时间变化的结构,其主要动力学特征在于质量、刚度、阻尼随时间的变化,如服役过程中受变温载荷作用下飞行器的刚度随时间的变化、输油过程中油箱质量随时间的变化等。此外,时变工程结构经常会面临着冲击载荷的作用,如火箭的发射与级间分离,冲击载荷对结构的安全、可靠运行有着重要的影响,因此冲击载荷作用下时变结构的动力学响应准确预示问题日益突出。
目前针对时变结构较为通用的瞬态能量响应预示方法是采用Newmark-beta等数值方法或时间有限元方法等求解时变结构的动力学方程,这些方法均需要对结构进行离散化处理,将结构依照分析频率和结构特征划分为若干单元。当分析频率升高或结构较为复杂时,需要较多的网格来描述结构的动力学特征,这大大增加了计算时间并降低了分析效率。由于冲击载荷的频率范围最高可达10000Hz,具有明显的宽频特性,因此采用统计能量分析方法对宽频载荷作用下的时变结构的动力学响应进行表征是一种高效的方法。目前的统计能量分析方法仅能对固定结构进行瞬态能量进行分析,不适用于具有时变特征的工程结构。
发明内容
发明目的:本发明的目的在于针对现有技术的不足,提供一种针对时变结构的瞬态能量响应高效预示方法,解决了目前传统离散化方法计算效率低、统计能量分析方法不能适用于时变结构的问题。
技术方案:本发明提供了一种针对时变结构的瞬态能量响应高效预示方法,包括以下步骤:
(1)根据结构的几何模型建立统计能量分析模型,并将其划分为各个子系统,定义或计算得到子系统在不同频带内的时变内损耗因子和子系统间的时变耦合损耗因子;
(2)基于时变结构的能量密度控制方程,结合时变结构各子系统在不同频带内的时变内损耗因子和子系统间的时变耦合损耗因子,建立时变结构各子系统的瞬态能量控制方程:
其中,ηi(t)为子系统i随时间t变化的内损耗因子,ηij(t)为子系统i与子系统j间随时间t变化的耦合损耗因子,ηji(t)为子系统j与子系统i间随时间t变化的耦合损耗因子,ω为分析频带的中心频率,Ei(t)为子系统i随时间t变化的能量,Pi(t)为子系统i随时间t变化的输入功率,N为子系统的个数;
(3)给定初始边界参数,采用四阶-五阶Runge-Kutta算法计算得到时变结构各子系统的瞬态能量响应。
进一步,步骤(2)所述能量密度控制方程为:
其中,c(s,t)为时间t和空间s相关的能量密度,I(s,t)为为时间t和空间s相关的功率流,Pdiss为能量损耗项;
将I(s,t)=ce(s,t)、Pdiss=ωη(t)e(s,t)代入能量密度控制方程,其中c为波在系统传播的速度,η(t)为结构随时间t变化的阻尼损耗因子,得功率流I(S,t)的表达式为:
将I(s,t)的表达式分别对时间t和空间s求偏导,然后两式相减得:
的表达式代入得:
对体积积分得:
其中,Pin为子系统i随时间变化的输入功率,ei(s,t)为系统i的能量密度,代入上式得时变结构子系统i的瞬态能量控制方程:
进一步,步骤(3)通过给定结构各子系统的初始边界参数,即t=0时刻的初始能量E1(0),E2(0),…EN(0)、t=0时刻的初始能量变化率以及输入功率P1(t),P2(t),…PN(t),设定求解时间和时间步长,采用四阶-五阶Runge-Kutta算法求解瞬能量控制方程组成的变系数二阶微分线性方程组,计算得到结构各子系统的瞬态能量响应。
有益效果:针对目前能量分析方法不能适用于时变结构的问题,本发明基于传统的能量分析方法,通过考虑结构子系统的内损耗因子和子系统间耦合损耗因子的时变特性,推导得到了时变结构的能量密度控制方程,首次发现了能量密度控制方程中内损耗因子引起的功率流动项,对空间体积积分后建立了时变结构各子系统的能量控制方程,从而将能量分析方法推广到了时变结构的动力学响应分析,拓展了目前能量分析方法的研究范围。同时,相比于传统的离散化方法,本发明采用能量的方法建立结构各子系统的能量控制方程,显著提高了计算分析的效率。
附图说明
图1为实施例L型折板结构的几何模型示意图;
图2为实施例L型折板结构的统计能量分析模型示意图;
图3为实施例L型折板结构的结构温度随时间的变化示意图;
图4为实施例L型折板结构的结构弹性模量随时间的变化示意图;
图5为实施例板2对板1的耦合损耗因子随时间的变化示意图;
图6为实施例板2的能量随时间变化示意图。
具体实施方式
下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
如图1所示,选取夹角为90°的L型折板结构几何模型,竖直方向上的板定义为板1,水平方向上的板定义为板2。板1长、宽、厚尺寸为L1×L2×h=400mm×400mm×1.5mm,板2长、宽、厚尺寸为L1×L2×h=400mm×400mm×1.5mm。板材料为TA7钛合金,其材料参数为:密度为4420kg/m3,泊松比为0.33,结构阻尼为2%,不同温度下弹性模量如表1所示:
表1 TA7材料随温度变化的弹性模量
具体操作如下:
(1)根据几何特征将L型折板结构划分为板1和板2两个子系统,其统计能量分析模型如图2所示,其中η1(t)为子系统1随时间t变化的内损耗因子,η2(t)为子系统2随时间t变化的内损耗因子,η12(t)为子系统1与子系统2间随时间t变化的耦合损耗因子,η21(t)为子系统2与子系统1间随时间t变化的耦合损耗因子,ω为分析频带的中心频率,E1(t)为子系统1随时间t变化的能量,E2(t)为子系统2随时间t变化的能量,P1(t)为子系统1随时间t变化的输入功率,P2(t)为子系统2随时间t变化的输入功率。设定结构在t=0时刻所受温度载荷为20℃,在1s内线性升高至500℃,结构温度变化如图3所示。取1800Hz~2240Hz频段为分析频段,分析频段中心频率为2000Hz。计算分析中仅考虑温度变化对结构材料参数的影响,结构弹性模量随时间变化如图4所示。板1的内损耗因子η1(t)为0.01,由波方法计算可得0s-1s内板1对板2的耦合损耗因子η12(t),如图5所示。
(2)建立结构各子系统的瞬态功率平衡方程:
其中:ω=2π×2000rad/s=12566.36rad/s。
(3)给定初始边界参数,采用四阶-五阶Runge-Kutta算法计算得到结构各子系统的瞬态能量响应:
代入初始边界条件:E1(0)=1,E2(0)=0,P1(t)=0,P2(t)=0,设定求解时间为0.2s,采用四阶-五阶Runge-Kutta算法进行求解,即可计算得到如图6中灰色虚线所示的板2随时间变化的能量,图中黑色实线为传统离散方法Newmark-beta法得到的板2随时间变化的能量。由图6中两线的重合部分可知,本发明方法与离散化方法Newmark-beta法得到的结果变化趋势和峰值能量基本一致,均呈现出周期性下降的趋势。而由灰色虚线与黑色实线不重合部分可知,相比于离散化Newmark-beta法,本发明方法能更好的捕捉能量下降的峰值,这主要是由于离散化方法在计算时有较多的近似处理,只能保证大致的计算精度。

Claims (3)

1.一种针对时变结构的瞬态能量响应高效预示方法,其特征在于:包括以下步骤:
(1)根据结构的几何模型建立统计能量分析模型,并将其划分为各个子系统,定义或计算得到子系统在不同频带内的时变内损耗因子和子系统间的时变耦合损耗因子;
(2)基于时变结构的能量密度控制方程,结合时变结构各子系统在不同频带内的时变内损耗因子和子系统间的时变耦合损耗因子,建立时变结构各子系统的瞬态能量控制方程:
<mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>dE</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <msub> <mi>d&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>i</mi> </mrow> <mi>N</mi> </munderover> <msub> <mi>&amp;eta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <msub> <mi>&amp;omega;E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>i</mi> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&amp;omega;E</mi> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
其中,ηi(t)为子系统i随时间t变化的内损耗因子,ηij(t)为子系统i与子系统j间随时间t变化的耦合损耗因子,ηji(t)为子系统j与子系统i间随时间t变化的耦合损耗因子,ω为分析频带的中心频率,Ei(t)为子系统i随时间t变化的能量,Pi(t)为子系统i随时间t变化的输入功率,N为子系统的个数;
(3)给定初始边界参数,采用四阶-五阶Runge-Kutta算法计算得到时变结构各子系统的瞬态能量响应。
2.根据权利要求1所述的针对时变结构的瞬态能量响应高效预示方法,其特征在于:步骤(2)所述能量密度控制方程为:
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>s</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </mrow>
其中,e(s,t)为时间t和空间s相关的能量密度,I(s,t)为为时间t和空间s相关的功率流,Pdiss为能量损耗项;
将I(s,t)=ce(s,t)、Pdiss=ωη(t)e(s,t)代入能量密度控制方程,其中c为波在系统传播的速度,η(t)为结构随时间t变化的阻尼损耗因子,得功率流I(s,t)的表达式为:
<mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <msup> <mi>c</mi> <mn>2</mn> </msup> <mrow> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> </mrow>
将I(s,t)的表达式分别对时间t和空间s求偏导,然后两式相减得:
<mrow> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>s</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </mrow>
的表达式代入得:
<mrow> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow>
对体积积分得:
<mrow> <msub> <mo>&amp;Integral;</mo> <mi>V</mi> </msub> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;eta;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mi>e</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow>
其中,∫Vei(s,t)=Ei(t),Pin为子系统i随时间变化的输入功率,ei(s,t)为系统i的能量密度,代入上式得时变结构子系统i的瞬态能量控制方程:
<mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&amp;omega;</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>dE</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <msub> <mi>d&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>i</mi> </mrow> <mi>N</mi> </munderover> <msub> <mi>&amp;eta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <msub> <mi>&amp;omega;E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>i</mi> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&amp;omega;E</mi> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
3.根据权利要求1所述的针对时变结构的瞬态能量响应高效预示方法,其特征在于:步骤(3)通过给定结构各子系统的初始边界参数,即t=0时刻的初始能量E1(0),E2(0),…EN(0)、t=0时刻的初始能量变化率以及输入功率P1(t),P2(t),…PN(t),设定求解时间和时间步长,采用四阶-五阶Runge-Kutta算法求解瞬能量控制方程组成的变系数二阶微分线性方程组,计算得到结构各子系统的瞬态能量响应。
CN201711144389.7A 2017-11-16 2017-11-16 一种针对时变结构的瞬态能量响应高效预示方法 Active CN107944116B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711144389.7A CN107944116B (zh) 2017-11-16 2017-11-16 一种针对时变结构的瞬态能量响应高效预示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711144389.7A CN107944116B (zh) 2017-11-16 2017-11-16 一种针对时变结构的瞬态能量响应高效预示方法

Publications (2)

Publication Number Publication Date
CN107944116A true CN107944116A (zh) 2018-04-20
CN107944116B CN107944116B (zh) 2019-01-29

Family

ID=61932750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711144389.7A Active CN107944116B (zh) 2017-11-16 2017-11-16 一种针对时变结构的瞬态能量响应高效预示方法

Country Status (1)

Country Link
CN (1) CN107944116B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816638A (zh) * 2019-01-03 2019-05-28 电子科技大学 基于动态环境特征和加权贝叶斯分类器的缺陷提取方法
CN110954340A (zh) * 2019-12-11 2020-04-03 中国汽车工程研究院股份有限公司 一种使用瞬态激励获取复杂结构耦合损耗因子的测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916241A (zh) * 2010-08-06 2010-12-15 北京理工大学 一种基于时频分布图的时变结构模态频率辨识方法
CN102411673A (zh) * 2011-08-18 2012-04-11 西北工业大学 一种计算声振系统中高频动力学响应的方法
CN102982196A (zh) * 2012-10-30 2013-03-20 北京理工大学 基于时变公分母模型的时频域时变结构模态参数辨识方法
CN106844906A (zh) * 2017-01-04 2017-06-13 东南大学 基于有限元法和功率输入法的统计能量分析参数获取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916241A (zh) * 2010-08-06 2010-12-15 北京理工大学 一种基于时频分布图的时变结构模态频率辨识方法
CN102411673A (zh) * 2011-08-18 2012-04-11 西北工业大学 一种计算声振系统中高频动力学响应的方法
CN102982196A (zh) * 2012-10-30 2013-03-20 北京理工大学 基于时变公分母模型的时频域时变结构模态参数辨识方法
CN106844906A (zh) * 2017-01-04 2017-06-13 东南大学 基于有限元法和功率输入法的统计能量分析参数获取方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
宁玮等: "统计能量分析法中参数灵敏度分析", 《系统仿真学报》 *
宋海洋等: "瞬态统计能量分析法中动态响应误差分析", 《舰船科学技术》 *
毛伯永等: "冲击载荷识别的瞬态统计能量分析方法", 《振动与冲击》 *
陈飞: "统计能量参数的实验分析及载荷识别研究", 《中国优秀硕士论文全文数据库 基础科学辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816638A (zh) * 2019-01-03 2019-05-28 电子科技大学 基于动态环境特征和加权贝叶斯分类器的缺陷提取方法
CN109816638B (zh) * 2019-01-03 2021-05-14 电子科技大学 基于动态环境特征和加权贝叶斯分类器的缺陷提取方法
CN110954340A (zh) * 2019-12-11 2020-04-03 中国汽车工程研究院股份有限公司 一种使用瞬态激励获取复杂结构耦合损耗因子的测试方法

Also Published As

Publication number Publication date
CN107944116B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN108304600B (zh) 一种高超声速飞行器转捩位置预测方法
CN106844906B (zh) 基于有限元法和功率输入法的统计能量分析参数获取方法
CN109670625B (zh) 基于无迹卡尔曼滤波最小二乘支持向量机的NOx排放浓度预测方法
CN105205327B (zh) 一种基于工况的乙烯生产能效动态评估方法
CN106055791A (zh) 基于预估校正算法的飞行器全局气动优化方法
CN112052522B (zh) 一种基于疲劳强度的船体结构优化简化计算方法
CN107944116A (zh) 一种针对时变结构的瞬态能量响应高效预示方法
CN111079228A (zh) 一种基于流场预测的气动外形优化方法
CN110008620B (zh) 一种分析动态载荷条件下α-Fe应变率敏感系数的方法
CN114722655B (zh) 一种基于局部有限寿命疲劳约束条件的结构拓扑优化方法
CN111859809A (zh) 基于模糊理论的燃气轮机系统故障模式及影响分析方法
CN104992004A (zh) 一种管道止裂预测用临界单位面积损伤应变能的确定方法
CN106577377A (zh) 一种基于鱼类游泳能力的过鱼设施水流速度的设计方法
CN111522235B (zh) 参数自整定的mimo异因子紧格式无模型控制方法
CN104615863A (zh) 一种带控制面的三自由度机翼的颤振边界预测方法
CN103472343B (zh) 一种高电压设备状态预测方法
Zhou et al. Grouping response method for equivalent static wind loads based on a modified LRC method
CN112231842B (zh) 一种基于疲劳强度的无人机结构设计方法
CN109441287A (zh) 一种风机塔筒门框参数设计方法
CN110472358B (zh) 基于粒子群优化算法的飞机机电系统密封结构长寿命设计方法
Piot et al. Mesoscopic modeling of discontinuous dynamic recrystallization: steady-state grain size distributions
CN113742948A (zh) 一种超高强度抽油杆p-s-n曲线拟合新模型及方法
CN113591272A (zh) 基于预应力修正的复杂管路结构疲劳损伤评估方法和系统
Song et al. Finite element model correction method based on surrogate model with multiple working conditions and multiple measurement points
Guo et al. Research on deformation control technology of back plate based on vibration aging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 210009 No. 87 Dingjiaqiao, Gulou District, Nanjing City, Jiangsu Province

Applicant after: Southeast University

Address before: No. 2, four archway in Xuanwu District, Nanjing, Jiangsu

Applicant before: Southeast University

GR01 Patent grant
GR01 Patent grant