WO2023236506A1 - 一种定位方法、设备及存储介质 - Google Patents

一种定位方法、设备及存储介质 Download PDF

Info

Publication number
WO2023236506A1
WO2023236506A1 PCT/CN2022/141511 CN2022141511W WO2023236506A1 WO 2023236506 A1 WO2023236506 A1 WO 2023236506A1 CN 2022141511 W CN2022141511 W CN 2022141511W WO 2023236506 A1 WO2023236506 A1 WO 2023236506A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrival time
base stations
positioning point
positioning
electronic device
Prior art date
Application number
PCT/CN2022/141511
Other languages
English (en)
French (fr)
Inventor
朱先飞
庞涛
梁宇杰
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2023236506A1 publication Critical patent/WO2023236506A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present disclosure relates to the technical field of positioning and navigation, and in particular to a positioning method, device and storage medium.
  • LBS Location Based Services
  • the purpose of the embodiments of the present disclosure is to provide a positioning method, device and storage medium to improve positioning accuracy.
  • the specific technical solutions are as follows:
  • an embodiment of the present disclosure provides a positioning method, which method includes:
  • the initial positioning point is corrected to obtain the corrected positioning point of the device to be positioned.
  • the step of obtaining the arrival time difference of the channel sounding reference signal between the device to be located and the two base stations includes:
  • the arrival time difference between the two determined arrival times is calculated.
  • the method further includes:
  • At least three arrival times are obtained with confidence levels higher than the preset threshold, use the at least three arrival times to determine two arrival time differences;
  • the corrected positioning point of the device to be positioned is determined.
  • the method further includes:
  • an inertial navigation algorithm is used to determine the corrected positioning point of the device to be positioned.
  • the step of generating a correction curve based on the arrival time difference and the coordinates of the two base stations includes:
  • a curve on the target base station side of the hyperbola is determined to be the correction curve, and the target base station is the base station closest to the device to be positioned among the two base stations.
  • the step of using the correction curve to correct the initial positioning to obtain the corrected positioning point of the device to be positioned includes:
  • the coordinate point on the correction curve corresponding to the shortest Euclidean distance is determined to be the correction positioning point of the device to be positioned.
  • an electronic device including:
  • An acquisition unit used to acquire the arrival time difference of the channel detection reference signal between the device to be positioned and the two base stations;
  • a generation unit configured to generate a correction curve based on the arrival time difference and the coordinates of the two base stations
  • a determination unit configured to use an inertial navigation algorithm to determine the initial positioning point of the device to be positioned
  • a positioning unit is configured to use the correction curve to correct the initial positioning point to obtain a corrected positioning point of the device to be positioned.
  • the acquisition unit is specifically used to:
  • the arrival time difference between the two determined arrival times is calculated.
  • the positioning unit is also used to:
  • At least three arrival times are obtained with confidence levels higher than the preset threshold, use the at least three arrival times to determine two arrival time differences;
  • the corrected positioning point of the device to be positioned is determined.
  • the positioning unit is also used to:
  • an inertial navigation algorithm is used to determine the corrected positioning point of the device to be positioned.
  • the generation unit is specifically used to:
  • a curve on the target base station side of the hyperbola is determined to be the correction curve, and the target base station is the base station closest to the device to be positioned among the two base stations.
  • the positioning unit is specifically used to:
  • the coordinate point on the correction curve corresponding to the shortest Euclidean distance is determined to be the correction positioning point of the device to be positioned.
  • embodiments of the present disclosure provide an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus;
  • Memory used to store computer programs
  • the processor is used to implement any of the positioning method steps when executing the program stored in the memory.
  • embodiments of the present disclosure provide a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program is executed by a processor, any one of the positioning method steps described above is implemented.
  • Embodiments of the present disclosure also provide a computer program product containing instructions that, when run on a computer, cause the computer to perform any of the above-described positioning method steps.
  • Figure 1 is a schematic flowchart of a first positioning method provided by an embodiment of the present disclosure.
  • Figure 2 is a schematic diagram of a PDR pedestrian trajectory provided by an embodiment of the present disclosure.
  • Figure 3 is a second schematic flowchart of a positioning method provided by an embodiment of the present disclosure.
  • Figure 4 is a third schematic flowchart of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 5 is a correction schematic diagram of the inertial navigation trajectory and correction curve provided by an embodiment of the present disclosure.
  • Figure 6 is a fourth schematic flowchart of a positioning method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • Non-line of sight The line of sight of two points of communication is blocked, each other cannot see each other, and more than 50% of the Fresnel zone is blocked. Due to the non-ideal channel environment, non-line-of-sight propagation between terminals and base stations is common. For example, in areas with complex environmental terrain, there may be obstructions between terminals and base stations, causing the measured values of various signal characteristics to be detected. Errors occur, thus affecting positioning accuracy.
  • Non-line-of-sight error If the signal propagates in a non-line-of-sight manner between the terminal and the base station, there will be an additional delay in the arrival time measurement, that is, a non-line-of-sight error.
  • Time Difference of Arrival refers to the recording of multiple signals arriving continuously by the signal receiving end under the working modes of a single receiver, multiple event synchronization transmitters and multiple synchronization signal transmitters.
  • the time difference is an important positioning parameter in 5G positioning.
  • the PDR algorithm can sense the acceleration and direction angle of pedestrians during travel through the three-axis acceleration value and direction angle in the absence of beacons, and use these data to predict walking The route is relatively positioned to achieve the purpose of positioning and tracking pedestrians.
  • LBS With the continuous development of positioning technology, LBS has received more and more widespread attention. In the development of modern science and technology, LBS has high requirements for positioning accuracy. If the positioning deviation is too large, the application value will be lost.
  • the TDOA positioning method is a terminal positioning method in cellular networks that uses the time difference between multiple base station signals arriving at the terminal to determine the terminal location. This method has relatively low network requirements and high positioning accuracy, and has become a research hotspot. However, when using the TDOA positioning method, the terminal needs to be able to measure three different base stations, and the three base stations need to be deployed in a triangle. In non-ideal channel environments such as indoors, affected by factors such as non-visual and non-line-of-sight, the terminal can measure three reliable base stations, and the positioning accuracy is low.
  • the inertial navigation positioning method is a kind of autonomous navigation without the help of external signals.
  • the PDR algorithm is used to sense the acceleration and direction angle of the pedestrian during the traveling process through the three-axis acceleration value and direction angle of the acceleration, and use the acceleration and direction angle data to predict the walking The route is relatively positioned to achieve the purpose of locating pedestrians.
  • the inertial navigation positioning method is a completely autonomous positioning method that does not require the deployment of infrastructure and has low positioning cost. However, due to the influence of factors such as sensor drift, the positioning accuracy has accumulated errors, the positioning accuracy is low, and the inertial navigation positioning time is longer. The longer the cumulative error, the lower the positioning accuracy.
  • the method includes steps S11 to S14.
  • the electronic device can be a device to be positioned or a positioning platform, which is not limited.
  • the device to be positioned may be a mobile terminal such as a smartphone, a wearable device, a drone, a mobile robot, or other non-mobile devices with positioning requirements, which are not specifically limited in the embodiments of the present disclosure.
  • Step S11 Obtain the arrival time difference of the channel sounding reference signal between the device to be positioned and the two base stations.
  • a channel sounding signal (Sounding Reference Signal, SRS) can be used to obtain channel state information to estimate channel quality.
  • SRS Signal Reference Signal
  • the device to be located can send SRS signals to surrounding base stations, and the base stations can also send SRS signals to the device to be located.
  • the device to be positioned can obtain the Time of Arrival (TOA) from each surrounding base station to the device to be positioned, based on the TOA from each base station to the device to be positioned. , the TDOA from every two base stations to the device to be positioned can be obtained, and then the electronic device can obtain the TDOA from every two base stations to the device to be positioned.
  • TOA Time of Arrival
  • the base station can obtain the TOA from the device to be positioned to the base station.
  • the base station passes the TOA to the electronic device, and then the electronic device obtains the TOA from each two base stations to the device to be positioned.
  • TDOA time difference
  • Step S12 Generate a correction curve based on the arrival time difference and the coordinates of the two base stations.
  • the base station database stores the coordinates of the built base stations, and the electronic device can obtain the coordinates of the base stations through the base station database.
  • the coordinates of the base station can be the coordinates of the base station in the world coordinate system, or the coordinates indicating the true geographical location of the base station.
  • the electronic device can determine the distance difference between the device to be located and the two base stations based on the TDOA, using the coordinates of the two base stations as the focus. , based on the coordinates of the two base stations corresponding to the distance difference and arrival time difference, a hyperbola is constructed, and based on the hyperbola, the correction curve is determined.
  • the electronic device can directly use the hyperbola as a calibration curve.
  • the electronic device can determine the base station that is close to the device to be positioned as the target base station based on the TOA between the device to be positioned and each base station, and then convert the hyperbola into A curve on the target base station side is the calibration curve.
  • Step S13 Use an inertial navigation algorithm to determine the initial positioning point of the device to be positioned.
  • the inertial navigation algorithm may be a PDR algorithm, a fourth-order Runge-Kutta algorithm, or the like.
  • the device to be positioned can be equipped with an inertial measurement unit (IMU) such as an accelerometer and a gyroscope.
  • IMU inertial measurement unit
  • the device to be positioned uses the installed IMU to obtain inertial navigation data such as acceleration, angular velocity, and gravity acceleration of the movement of the device to be positioned, and Pass these inertial navigation data to electronic devices. Based on these inertial navigation data, the electronic device uses an inertial navigation algorithm to obtain the movement trajectory of the device to be positioned, and then determines the positioning point of the device to be positioned as the initial positioning point.
  • Figure 2 is a schematic diagram of using the PDR algorithm to determine the movement trajectory of the device to be positioned.
  • E and N represent displacements in two different directions.
  • the electronic device obtains the acceleration and angular velocity of the device to be positioned, it integrates to obtain the moving speed and direction of the device to be positioned, and then integrates the speed to obtain the displacement.
  • the electronic device can determine the movement trajectory of the device to be positioned, thereby achieving the purpose of locating the device to be positioned.
  • the electronic device can use formula (1) and formula (2) to determine the trajectory points on the movement trajectory of the device to be located.
  • E0 and N0 are the initial positions of the device to be positioned
  • Ek and Nk are the positions of the k-th positioning point on the movement trajectory of the device to be positioned
  • dn represents the displacement of positioning point n of the device to be positioned
  • ⁇ n represents the device to be positioned.
  • the electronic device can use any positioning point on the movement trajectory of the device to be positioned as the initial positioning point of the device to be positioned. After obtaining the initial positioning point, the electronic device corrects the initial positioning point. The corrected initial positioning point can more accurately describe the position of the device to be positioned.
  • the electronic device can first execute step S11 and step S12, and then execute step S13, or it can execute step S13 first, and then execute step S11 and step S12, or it can execute step S11, step S12, and step S13 at the same time. There is no specific limit on this.
  • Step S14 Use the calibration curve to correct the initial positioning point to obtain the corrected positioning point of the device to be positioned.
  • the electronic device after obtaining the TDOA between the device to be positioned and two base stations, and the coordinates of the two base stations, the electronic device generates a correction curve, and uses the correction curve to correct the initial positioning point.
  • the corrected initial positioning The point is the correction positioning point of the device to be positioned. Correcting the positioning point can more accurately indicate the location information of the device to be positioned, improving positioning accuracy.
  • the electronic device can calculate the shortest Euclidean distance between the initial positioning point and the correction curve, and determine the coordinate point on the correction curve corresponding to the shortest Euclidean distance as the correction positioning point of the device to be positioned.
  • the electronic device calculates the shortest Euclidean distance between the initial positioning point and the correction curve, thereby determining the correction positioning point of the device to be positioned.
  • the electronic device cooperates with the TDOA positioning method and the inertial navigation algorithm to obtain more accurate positioning results.
  • the European shortest distance method is used to correct the initial positioning point. It is very intuitive to use, easy to implement, and can achieve better correction effects.
  • the electronic device can calculate the shortest Kovsky distance between the initial positioning point and the calibration curve, and use the coordinate point corresponding to the shortest Kovsky distance on the calibration curve as the calibration positioning point of the device to be positioned. .
  • the electronic device may determine a target circle with the initial positioning point as the center, the target circle being a circle tangent to the calibration curve, and the tangent point between the target circle and the calibration curve being the calibration positioning point of the device to be positioned.
  • the electronic device can also use other methods to correct the initial positioning using the correction curve, which is not limited.
  • the TDOA positioning method and the inertial navigation algorithm work together.
  • the electronic device is based on the TDOA positioning method
  • the correction curve is obtained based on the TDOA
  • the initial positioning point of the device to be positioned is determined based on the inertial navigation algorithm
  • the correction curve is used to determine the initial positioning point of the device to be positioned. Calibrate the initial positioning point.
  • the TDOA positioning method has high accuracy and no cumulative error. Therefore, the correction curve obtained based on the TDOA positioning method is used to correct the initial positioning point obtained based on the inertial navigation algorithm.
  • the corrected positioning point effectively reduces the cost of inertial navigation positioning. It solves the problem of excessive cumulative error and improves the positioning accuracy.
  • the correction curve can be determined, realizing the positioning of the device to be positioned, and solving the problem when less than 3
  • the problem of being unable to use the TDOA positioning method for positioning is improved, which improves the positioning accuracy in non-ideal channel environments such as indoors.
  • the embodiment of the present disclosure also provides a positioning method.
  • the method may include step S31-step S35, where step S31-step S32 is an implementation of step S11.
  • step S33-step S35 is the same as the above-mentioned step S12-step S14.
  • Step S31 Obtain the arrival time of the channel sounding reference signal between the device to be located and multiple base stations and the confidence level of each arrival time.
  • the confidence of the arrival time between the device to be positioned and the base station is: the credibility of the arrival time between the device to be positioned and the base station. The higher the confidence level of the arrival time, the higher the confidence level of the arrival time.
  • the arrival time between the device to be positioned and a base station is affected by factors such as distance and NLOS. There will be a certain error in the arrival time between the device to be positioned and a base station.
  • the electronic device can estimate the location of the device to be located based on the movement trajectory of the device to be located (referred to as the estimated location point); combined with the coordinates of the estimated location point and the base station, predict the arrival time of the SRS between the device to be located and the base station (referred to as the estimated location point for short). Estimated arrival time).
  • the electronic device can calculate the difference between the predicted arrival time and the detected real arrival time between the device to be located and the base station, and determine the confidence of the real arrival time based on the difference in arrival time. Among them, the larger the difference, the smaller the confidence; the smaller the difference, the greater the confidence.
  • the electronic device may use the reciprocal of the difference in arrival time as the confidence of the arrival time.
  • the electronic device may pre-configure the corresponding relationship between the difference in arrival time and the confidence level. After obtaining the difference in arrival time, the electronic device determines the confidence corresponding to the calculated difference in arrival time as the confidence in the arrival time based on the preconfigured correspondence between the difference in arrival time and the confidence.
  • the electronic device may also use other methods to determine the confidence level of the arrival time, which is not limited.
  • the electronic device when locating the device to be positioned, the electronic device obtains the arrival time of the channel detection reference signal between the device to be positioned and multiple base stations, and obtains the confidence of each arrival time.
  • Step S32 If two arrival times with confidence levels higher than the preset threshold are obtained, calculate the arrival time difference between the two determined arrival times.
  • the electronic device can set a threshold in advance, that is, a preset threshold.
  • a threshold in advance
  • the size of the preset threshold can be set according to actual needs.
  • the electronic device After acquiring multiple arrival times and arrival time confidences, the electronic device acquires the arrival times whose confidence is higher than the preset threshold from the multiple arrival times. If the number of arrival times obtained with a confidence level higher than the preset threshold is 2, that is, two arrival times with a confidence level higher than the preset threshold are obtained, the electronic device calculates the distance between the two determined arrival times. When the time difference is reached, steps S333 to S35 are executed.
  • the electronic device can use the TDOA positioning method to position the device to be positioned. For example: the electronic device uses at least three arrival times to determine two TDOAs; based on these two TDOAs, the corrected positioning of the device to be positioned is determined. point. Specifically, the electronic device can determine the distance difference between the device to be positioned and the two base stations based on two TDOAs. Using the coordinates of the two base stations as the focus and the distance difference as the long axis, two sets of hyperbolas can be obtained. The intersection point of the hyperbola is the position of the device to be positioned. The electronic device can use the intersection point of the two sets of hyperbola as the correction positioning point of the device to be positioned, that is, the positioning of the device to be positioned is completed.
  • the electronic device acquires at least one arrival time with a confidence level higher than the preset threshold, that is, the electronic device only acquires one arrival time with a confidence level higher than the preset threshold, or the electronic device does not acquire confidence. If the arrival time is higher than the preset threshold, the electronic device does not obtain enough arrival time with high confidence, and uses the inertial navigation algorithm to determine the corrected positioning point of the device to be positioned, and realize the positioning of the device to be positioned.
  • the specific implementation process please refer to the description of step S13.
  • the electronic device obtains the arrival time between the device to be located and at least three base stations and the confidence of each arrival time, and based on the number of arrival times whose confidence is higher than a preset threshold, To choose different positioning methods, when determining the movement trajectory of the device to be positioned, the device to be positioned is moving, and the base stations around it are always changing. According to the number of arrival times with a confidence level higher than the preset threshold, select Appropriate positioning methods further improve positioning accuracy.
  • the embodiment of the present disclosure also provides a positioning method.
  • the method may include step S41-step S46, where step S41 is the same as the above-mentioned step S11, and step S45-step S46 is the same as the above-mentioned step S13-step S14, and step S42-step S44 is an implementation manner of step S12.
  • Step S42 Determine the distance difference between the device to be located and the two base stations based on the arrival time difference.
  • the distance between the device to be positioned and a base station can be determined based on the arrival time between the device to be positioned and the base station. Therefore, after the electronic device obtains the arrival time difference between the device to be positioned and the two base stations, it can determine the distance difference between the device to be positioned and the two base stations.
  • Step S43 Construct a hyperbola based on the coordinates of the two base stations corresponding to the distance difference and arrival time difference.
  • the two focus points of the hyperbola are the coordinates of the two base stations.
  • the electronic device determines the distance difference between the device to be positioned and the two base stations, it uses the coordinates of the two base stations as the focus and the distance difference as the long axis to construct a hyperbola.
  • Step S44 Determine a curve on the target base station side of the hyperbola as the correction curve, and the target base station is the base station closest to the device to be positioned among the two base stations.
  • the arrival time of the SRS between the device to be positioned and the two base stations can be obtained. It can also be judged that the device to be positioned is closer to that base station, and the electronic device will be closer to the base station to be positioned.
  • the curve on the side of the base station closer to the device is used as the correction curve. Based on the correction curve, the electronic device corrects the initial positioning point to obtain the corrected positioning point of the device to be positioned.
  • the electronic device constructs a hyperbola based on the distance difference between the device to be positioned and the two base stations, and selects a single curve on one side of the base station closer to the device to be positioned from the hyperbola as the correction curve. In this way, there is no need to use two calibration curves for correction, which improves the efficiency of positioning.
  • the hyperbola can be used as a correction curve.
  • the electronic device uses each curve in the calibration curve to calibrate the initial positioning point respectively to obtain two correction positioning points.
  • the electronic device uses the correction positioning point on the curve on the side of the base station that is closer to the device to be positioned as the positioning point to be positioned.
  • the device's calibration anchor point is closer to the device to be positioned as the positioning point to be positioned.
  • Step 1 The 5G Location Management Function (LMF) module (or third-party platform) collects TDOA parameters.
  • the TDOA parameters include the TOA and TDOA of the SRS between the device to be positioned and the base station, and will be passed to the electronic device.
  • LMF 5G Location Management Function
  • Step 2 IMU data such as gravity acceleration, acceleration, and angular acceleration collected by the device to be positioned.
  • Step 3 The electronic device obtains the TDOA parameters from the 5G LMF module and obtains the coordinates of the corresponding base station from the base station database.
  • Step 4 If three TOAs with confidence levels higher than the preset threshold are obtained, the electronic device uses the TDOA positioning method and uses TDOA to determine the correction positioning point of the device to be positioned, such as point A in Figure 5.
  • Step 5 After the device to be positioned moves one step, the electronic device uses the inertial navigation algorithm based on the IMU data to determine the initial positioning point of the device to be positioned, such as point B in Figure 5.
  • the electronic device can determine the base station that is close to the device to be positioned, and construct a positioning plane based on the TDOA of the two TOAs and the coordinates of the two base stations corresponding to the two TOAs. hyperbola, and the single curve on the base station side of the hyperbola that is closest to the device to be positioned is used as the correction curve.
  • the electronic device calculates the shortest Euclidean distance between the initial positioning point and the calibration curve, and determines the coordinate point on the calibration curve corresponding to the shortest Euclidean distance, which is the calibration positioning point of the device to be positioned, such as point B' in Figure 5.
  • the electronic device uses the TDOA positioning method, and the electronic device uses TDOA to determine the correction positioning point of the device to be positioned.
  • the electronic device will use the initial positioning point of the device to be positioned determined by the inertial navigation algorithm as a correction for the device to be positioned. location point.
  • the electronic device Every time the device to be positioned moves one step, the electronic device performs the above step five to form a calibration curve sequence, as well as a series of initial positioning points (C, D, etc.) and correction positioning points (C', D', etc.) until the positioning is completed. .
  • the electronic device may include:
  • the acquisition unit 71 is used to acquire the arrival time difference of the channel sounding reference signal between the device to be positioned and the two base stations;
  • Generating unit 72 configured to generate a correction curve according to the arrival time difference and the coordinates of the two base stations
  • the determination unit 73 is used to determine the initial positioning point of the device to be positioned using an inertial navigation algorithm
  • the positioning unit 74 is configured to use the correction curve to correct the initial positioning point to obtain the corrected positioning point of the device to be positioned.
  • the acquisition unit 71 is specifically used to:
  • the arrival time difference between the two determined arrival times is calculated.
  • the positioning unit 74 is also used to:
  • At least three arrival times are obtained with confidence levels higher than the preset threshold, use the at least three arrival times to determine two arrival time differences;
  • the corrected positioning point of the device to be positioned is determined.
  • the positioning unit 74 is also used to:
  • an inertial navigation algorithm is used to determine the corrected positioning point of the device to be positioned.
  • the generating unit 72 is specifically used to:
  • a curve on the target base station side of the hyperbola is determined to be the correction curve, and the target base station is the base station closest to the device to be positioned among the two base stations.
  • the positioning unit 74 is specifically used for:
  • the coordinate point on the correction curve corresponding to the shortest Euclidean distance is determined to be the correction positioning point of the device to be positioned.
  • the TDOA positioning method and the inertial navigation algorithm work together.
  • the electronic device is based on the TDOA positioning method
  • the correction curve is obtained based on the TDOA
  • the initial positioning point of the device to be positioned is determined based on the inertial navigation algorithm
  • the correction curve is used to determine the initial positioning point of the device to be positioned. Calibrate the initial positioning point.
  • the TDOA positioning method has high accuracy and no cumulative error. Therefore, the correction curve obtained based on the TDOA positioning method is used to correct the initial positioning point obtained based on the inertial navigation algorithm.
  • the corrected positioning point effectively reduces the cost of inertial navigation positioning. It solves the problem of excessive cumulative error and improves the positioning accuracy.
  • the correction curve can be determined, realizing the positioning of the device to be positioned, and solving the problem when less than 3
  • the problem of being unable to use the TDOA positioning method for positioning is improved, which improves the positioning accuracy in non-ideal channel environments such as indoors.
  • the embodiment of the present disclosure also provides an electronic device, as shown in Figure 8, including a processor 81, a communication interface 82, a memory 83, and a communication bus 84, wherein the processor 81, the communication interface 82, and the memory 83 communicate through the communication bus 84 complete mutual communication,
  • Memory 83 used to store computer programs
  • the processor 81 is used to implement the steps of any of the above positioning methods when executing the program stored in the memory 83 .
  • the communication bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the above-mentioned electronic devices and other devices.
  • the memory may include random access memory (Random Access Memory, RAM) or non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory may also be at least one storage device located far away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processor, DSP), special integrated Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, any of the above positioning method steps are implemented. .
  • a computer program product containing instructions is also provided, which, when run on a computer, causes the computer to perform any positioning method step in the above embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the present disclosure is applicable to the field of positioning and navigation technology to solve the problem of inaccurate location-based positioning in related technologies, so as to achieve the effect that the corrected initial positioning point can more accurately describe the position of the device to be positioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开实施例提供了一种定位方法、设备及存储介质。具体实现方案为获取待定位设备与两个基站之间的信道探测参考信号的到达时间差;根据到达时间差和两个基站的坐标,生成校正曲线;采用惯性导航算法,确定待定位设备的初始定位点;利用校正曲线,对初始定位点进行校正,得到待定位设备的校正定位点。采用本公开实施例提供的技术方案,能提高定位的精度。

Description

一种定位方法、设备及存储介质
相关申请的交叉引用
本公开要求于2022年06月07日提交的申请号为202210641618.0、名称为“一种定位方法、设备及存储介质”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及定位导航技术领域,特别是涉及一种定位方法、设备及存储介质。
背景技术
随着互联网技术的不断发展,智能手机、可穿戴设备、无人机、移动机器人等众多新型移动设备受到了人们的追捧。在这些移动设备中,人们对于其中的位置信息的需求越来越高,位置感知发挥了越来越重要的作用。由于基于位置的服务(Location Based Services,LBS)潜在的社会价值和商业价值,受到了人们广泛的关注。
发明内容
本公开实施例的目的在于提供一种定位方法、设备及存储介质,以提高定位的精度。具体技术方案如下:
第一方面,本公开实施例提供了一种定位方法,所述方法包括:
获取待定位设备与两个基站之间的信道探测参考信号的到达时间差;
根据所述到达时间差和所述两个基站的坐标,生成校正曲线;
采用惯性导航算法,确定所述待定位设备的初始定位点;
利用所述校正曲线,对所述初始定位点进行校正,得到所述待定位设备的校正定位点。
在一些实施例中,所述获取待定位设备与两个基站之间的信道探测参考信号的到达时间差的步骤,包括:
获取待定位设备与多个基站之间的信道探测参考信号的到达时间和每个到达时间的置信度;
若获取到置信度高于预设阈值的两个到达时间,计算所确定的两个到达时间之间的到达时间差。
在一些实施例中,所述方法还包括:
若获取到置信度高于预设阈值的至少三个到达时间,则利用所述至少三个到达时间,确定两个到达时间差;
利用所述两个到达时间差,确定所述待定位设备的校正定位点。
在一些实施例中,所述方法还包括:
若获取到置信度高于预设阈值的至多一个到达时间,则采用惯性导航算法,确定所述待定位设备的校正定位点。
在一些实施例中,所述根据所述到达时间差和所述两个基站的坐标,生成校正曲线的步骤,包括:
根据所述到达时间差,确定所述待定位设备与所述两个基站之间的距离差;
根据所述距离差和所述到达时间差对应的两个基站的坐标,构建双曲线,所述双曲线的两个焦点为所述两个基站的坐标;
确定所述双曲线中目标基站侧的一条曲线为校正曲线,所述目标基站为所述两个基站中与所述待定位设备近的基站。
在一些实施例中,所述利用所述校正曲线,对所述初始定位进行校正,得到所述待定位设备的校正定位点的步骤,包括:
计算所述初始定位点与所述校正曲线之间的最短欧式距离;
确定所述最短欧式距离对应的所述校正曲线上的坐标点,为所述待定位设备的校正定位点。
第二方面,本公开实施例提供了一种电子设备,包括:
获取单元,用于获取待定位设备与两个基站之间的信道探测参考信号的到达时间差;
生成单元,用于根据所述到达时间差和所述两个基站的坐标,生成校正曲线;
确定单元,用于采用惯性导航算法,确定所述待定位设备的初始定位点;
定位单元,用于利用所述校正曲线,对所述初始定位点进行校正,得到所述待定位设备的校正定位点。
在一些实施例中,所述获取单元,具体用于:
获取待定位设备与多个基站之间的信道探测参考信号的到达时间和每个 到达时间的置信度;
若获取到置信度高于预设阈值的两个到达时间,计算所确定的两个到达时间之间的到达时间差。
在一些实施例中,所述定位单元,还用于:
若获取到置信度高于预设阈值的至少三个到达时间,则利用所述至少三个到达时间,确定两个到达时间差;
利用所述两个到达时间差,确定所述待定位设备的校正定位点。
在一些实施例中,所述定位单元,还用于:
若获取到置信度高于预设阈值的至多一个到达时间,则采用惯性导航算法,确定所述待定位设备的校正定位点。
在一些实施例中,所述生成单元,具体用于:
根据所述到达时间差,确定所述待定位设备与所述两个基站之间的距离差;
根据所述距离差和所述到达时间差对应的两个基站的坐标,构建双曲线,所述双曲线的两个焦点为所述两个基站的坐标;
确定所述双曲线中目标基站侧的一条曲线为校正曲线,所述目标基站为所述两个基站中与所述待定位设备近的基站。
在一些实施例中,所述定位单元,具体用于:
计算所述初始定位点与所述校正曲线之间的最短欧式距离;
确定所述最短欧式距离对应的所述校正曲线上的坐标点,为所述待定位设备的校正定位点。
第三方面,本公开实施例提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
存储器,用于存放计算机程序;
处理器,用于执行存储器上所存放的程序时,实现任一所述的定位方法步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现任一所述的定位方法步骤。
本公开实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一所述的定位方法步骤。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的实施例。
图1为本公开实施例提供的定位方法的第一种流程示意图。
图2为本公开实施例提供的PDR行人航迹的示意图。
图3为本公开实施例提供的定位方法的第二种流程示意图。
图4为本公开实施例提供的定位方法的第三种流程示意图。
图5为本公开实施例提供的惯性导航轨迹与校正曲线的一种校正示意图。
图6为本公开实施例提供的定位方法的第四种流程示意图。
图7为本公开实施例提供的电子设备的一种结构示意图。
图8为本公开实施例提供的电子设备的一种结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员基于本公开所获得的所有其他实施例,都属于本公开保护的范围。
为便于理解,下面对本公开实施例中出现的术语进行解释说明。
非视距(not line of sight,NLOS):通信的两点视线受阻,彼此看不到对方,菲涅尔区大于50%的范围被阻挡。由于非理想的信道环境,使得终端和基站之间非视距传播普遍存在,如在环境地形较为复杂的区域,终端和基站之间可能有遮挡的存在,使得检测到的各种信号特征测量值出现误差,从而影响定位精度。
非视距误差:如果信号在终端和基站之间以非视距的方式进行传播,到达时间测量值中会出现一个附加时延,即非视距误差。
到达时间差(Time Difference of Arrival,TDOA):指的是在单一接收器,多个事件同步发射器和多种同步信号发射器的工作模式下,信号接收端对连续抵达的多个信号所记录下的时间差,是5G定位中的一个重要的定位参数。
行人航位推算(Pedestrain Dead Reckoning,PDR)算法:PDR算法能在无信标条件下,通过加速度三轴加速度值和方向角感知行人在行进过程中的加速度和方向角,并利用这些数据对行走路线进行相对定位,从而达到对行人进行定位跟踪的目的。
随着定位技术的不断发展,LBS越来越受到广泛的关注。在现代科技发展生活中,LBS对定位精度具有很高的要求,若定位偏差过大,则会失去应用价值。
目前,主要有以下几种主流的定位方法:
(1)TDOA定位方法:TDOA定位方法是一种蜂窝网络中的终端定位方法,利用多个基站信号到达终端的时间差来确定终端位置。这种方法对网络的要求相对较低,并且定位精度较高,已经成为研究的热点。但使用TDOA定位方法时,需要终端能够测量到3个不同的基站,且3个基站需要呈三角形部署。而在室内等非理想的信道环境中,受非可视、非视距等因素的影响,终端能够测量到3个可靠的基站,定位精度较低。
(2)惯性导航定位方法:惯性导航定位方法是一种不借助外部信号的自主性导航。惯性导航定位方法中,在无信标条件下,采用PDR算法,通过加速度的三轴加速度值和方向角感知行人在行进过程中的加速度和方向角,并利用加速度和方向角这些数据,对行走路线进行相对定位,从而达到对行人进行定位的目的。惯性导航定位方法是一种完全自主的定位方式,无需布设基础设施,定位成本低,但由于传感器漂移等因素的影响,定位精度存在着累积误差,定位精度较低,并且惯性导航定位的时间越长,累积误差越大,定位精度越低。
为解决上述问题,提高室内等非理想的信道环境中的定位精度,本公开实施例提供了一种定位方法,如图1所示,该方法包括步骤S11-步骤S14。为便于描述,下面以电子设备为执行主体进行说明,并不起限定作用。该电 子设备可以为待定位设备,也可以为定位平台,对此不进行限定。待定位设备可以为智能手机、可穿戴设备、无人机、移动机器人等移动终端,也可以是其他具有定位需求的非移动设备,本公开实施例对此并不作具体限定。
步骤S11,获取待定位设备与两个基站之间的信道探测参考信号的到达时间差。
本公开实施例中,信道探测信号(Sounding Reference Signal,SRS)可以用来获取信道状态信息,以估计信道质量。
在一些实施例中,在通信的过程中,待定位设备可以向周围的基站发送SRS信号,基站也可以向待定位设备发送SRS信号。
一个示例中,在周围基站发送的SRS信号到达待定位设备后,待定位设备可以获得周围每个基站到待定位设备的达到时间(Time of Arrival,TOA),基于每个基站到待定位设备TOA,可获得每两个基站到待定位设备的TDOA,进而电子设备获得到每两个基站到待定位设备的TDOA。
另一个示例中,待定位设备发送的SRS信号到达基站后,基站可以获得待定位设备到该基站的TOA,基站将该TOA传递给电子设备,进而电子设备获得到每两个基站到待定位设备的TDOA。
步骤S12,根据到达时间差和两个基站的坐标,生成校正曲线。
本公开实施例中,基站数据库中存储着已建成的基站的坐标,电子设备可以通过基站数据库来获取基站的坐标。基站的坐标可以是基站在世界坐标系下的坐标,也可以是表明基站真实地理位置的坐标。
在一些实施例中,电子设备在获取到待定位设备与两个基站之间的TDOA后,可以根据TDOA,确定待定位设备到两个基站之间的距离差,以两个基站的坐标作为焦点,根据距离差和到达时间差对应的两个基站的坐标,构建双曲线,基于该双曲线,确定校正曲线。
一个示例中,电子设备可以直接将该双曲线作为校正曲线。
另一示例中,为了降低后续计算的复杂度,电子设备可以基于待定位设备与每个基站之间的TOA,确定两个基站中与待定位设备近的基站为目标基站,进而将双曲线中目标基站侧的一条曲线为校正曲线。
步骤S13,采用惯性导航算法,确定待定位设备的初始定位点。
本公开实施例中,惯性导航算法可以为PDR算法、或四阶龙格库塔算法 等。
待定位设备上可以安装有加速度计、陀螺仪等惯性测量单元(Inertial Measurement Unit,IMU),待定位设备利用安装的IMU,获得待定位设备移动的加速度、角速度、重力加速度等惯性导航数据,并将这些惯性导航数据传递给电子设备。电子设备基于这些惯性导航数据,采用惯性导航算法,获得待定位设备的移动轨迹,进而确定待定位设备的定位点,作为初始定位点。
参见图2,图2为采用PDR算法确定待定位设备的移动轨迹的一种示意图,图2中,E和N表示两个不同方向上的位移。电子设备获得了待定位设备的加速度和角速度后,经过积分得到待定位设备的移动速度和移动方向,再对速度进行积分得到位移。在初始位置已知的情况下,电子设备可以确定出待定位设备的移动轨迹,实现对待定位设备定位的目的。
本公开实施例中,电子设备可以使用公式(1)和公式(2)来确定出待定位设备移动轨迹上的轨迹点。
Figure PCTCN2022141511-appb-000001
Figure PCTCN2022141511-appb-000002
其中,E0和N0为待定位设备的初始位置,Ek和Nk为待定位设备移动轨迹上的第k个定位点的位置,dn表示待定位设备的定位点n的位移,θ n表示待定位设备的定位点n的方向角。
本公开实施例中,电子设备可以将待定位设备的移动轨迹上的任意一个定位点作为待定位设备的初始定位点。在得到初始定位点后,电子设备对该初始定位点进行校正,校正后的初始定位点能更准确地描述待定位设备的位置。
本公开实施例中,电子设备可以先执行步骤S11和步骤S12,再执行步骤S13,也可以先执行步骤S13,再执行步骤S11和步骤S12,也可以步骤S11和步骤S12,步骤S13同时执行,对此并不做具体限定。
步骤S14,利用校正曲线,对初始定位点进行校正,得到待定位设备的校正定位点。
本公开实施例中,电子设备在获取到待定位设备与连个基站间的TDOA,以及两个基站的坐标后,生成校正曲线,通过校正曲线,对初始定位点进行校正,校正后的初始定位点即为待定位设备的校正定位点。校正定位点能够 更准确地表明待定位设备的位置信息,提高了定位精度。
在一些实施例中,电子设备可以计算初始定位点与校正曲线之间的最短欧式距离,确定最短欧式距离对应的校正曲线上的坐标点,为待定位设备的校正定位点。
本公开实施例中,电子设备计算初始定位点与校正曲线之间的最短欧式距离,从而确定出待定位设备的校正定位点。电子设备将TDOA定位方法与惯性导航算法相互协作,得到的定位结果更为准确。另外。采用欧式最短距离方法对初始定位点进行校正,使用起来非常直观,易于实现,能到达更好地校正效果。
在另一些实施例中,电子设备可以计算初始定位点与校正曲线之间的最短可夫斯基距离,将校正曲线上最短可夫斯基距离对应的坐标点,作为待定位设备的校正定位点。
在另一些实施例中,电子设备可以确定以初始定位点为圆心的目标圆,目标圆为与校正曲线相切的圆,将目标圆与校正曲线的切点为待定位设备的校正定位点。
本公开实施例中,电子设备还可以采用其他方式,利用校正曲线,对初始定位进行校正,对此不进行限定。
本公开实施例提供的技术方案中,TDOA定位方法与惯性导航算法协同作用,电子设备基于TDOA定位方法,基于TDOA得到校正曲线,基于惯性导航算法确定待定位设备的初始定位点,使用校正曲线对初始定位点进行校正。TDOA定位方法的精度较高,不存在累计误差,因此,使用基于TDOA定位方法得到的校正曲线,对基于惯性导航算法得到的初始定位点进行校正,校正后的定位点有效的降低了惯性导航定位中累计误差过大的问题,提高了定位的精度。
另外,本公开实施例提供的技术方案中,只需要获取到待定位设备与两个基站之间的到达时间差,就可以确定出校正曲线,实现了待定位设备的定位,解决了当少于3个基站时,无法使用TDOA定位方法进行定位的问题,提高了室内等非理想的信道环境中的定位精度。
基于图1所示实施例,本公开实施例还提供了一种定位方法,如图3所示,该方法可以包括步骤S31-步骤S35,其中,步骤S31-步骤S32为步骤S11 的一种实现方式,步骤S33-步骤S35与上述步骤S12-步骤S14相同。
步骤S31,获取待定位设备与多个基站之间的信道探测参考信号的到达时间和每个到达时间的置信度。
本公开实施例中,待定位设备与基站之间到达时间的置信度为:待定位设备与基站之间的到达时间的可信度。到达时间的置信度越高,到达时间的可信度越高。
待定位设备与基站之间的到达时间受距离以及NLOS等因素的影响,待定位设备与一个基站之间的到达时间会有一定的误差。电子设备可以基于待定位设备的移动轨迹,估计待定位设备的位置(简称估计位置点);结合估计位置点和基站的坐标,预测待定位设备与该基站之间的SRS的到达时间(简称为预测到达时间)。电子设备可以计算预测到达时间和探测到的待定位设备与基站之间真实的到达时间的差值,基于到达时间的差值,确定该真实的到达时间的置信度。其中,差值越大,置信度越小;差值越小,置信度越大。
在一些实施例中,电子设备可以将到达时间的差值的倒数作为到达时间的置信度。
在另一些实施例中,电子设备可以预配置到达时间的差值与置信度的对应关系。在得到到达时间的差值之后,电子设备根据预配置的到达时间的差值与置信度的对应关系,确定计算得到的到达时间的差值对应的置信度,作为到达时间的置信度。
本公开实施例中,电子设备还可以采用其他方式确定到达时间的置信度,对此不进行限定。
本公开实施例中,在对待定位设备进行定位时,电子设备获取待定位设备与多个基站之间的信道探测参考信号的到达时间,并获取每个到达时间的置信度。
步骤S32,若获取到置信度高于预设阈值的两个到达时间,计算所确定的两个到达时间之间的到达时间差。
本公开实施例中,电子设备可以预先设置一个阈值,即预设阈值。当到达时间的置信度高于该预设阈值时,则表明这个到达时间是可靠的。预设阈值的大小可以根据实际需求进行设定。
电子设备在获取到多个到达时间和到达时间的置信度后,从多个到达时 间中,获取置信高于预设阈值的到达时间。若获取到置信度高于预设阈值的到达时间的个数为2,即,获取到置信度高于预设阈值的两个到达时间,则电子设备计算所确定的两个到达时间之间的到达时间差,进而执行步骤S333-步骤S35。
在一些实施例中,若电子设备获取到置信度高于预设阈值的至少三个到达时间,则表明至少有三个基站与待定位设备的通信是可靠的。这种情况下,电子设备可以使用TDOA定位方法,来实现对待定位设备的定位,如:电子设备利用至少三个到达时间,确定两个TDOA;根据这两个TDOA,确定待定位设备的校正定位点。具体的,电子设备可以根据两个TDOA,确定待定位设备到两个基站之间的距离差,分别以两个基站坐标为焦点,距离差为长轴,可以得到两组双曲线,这两组双曲线的交点即为待定位设备的位置,电子设备可以将两组双曲线的交点作为待定位设备的校正定位点,也即完成了对待定位设备的定位。
在一些实施例中,若电子设备获取到置信度高于预设阈值的至多一个到达时间,也就是电子设备只获取到一个置信度高于预设阈值的到达时间,或者电子设备没有获取到置信度高于预设阈值的到达时间,则电子设备没有获取到足够的置信度较高的到达时间,采用惯性导航算法,确定出待定位设备的校正定位点,实现对待定位设备的定位。具体实施过程可参见步骤S13的描述。
本公开实施例提供的技术方案中,电子设备获取待定位设备与至少三个基站之间的到达时间和每个到达时间的置信度,根据置信度高于预设阈值的到达时间的个数,来选择不同的定位方法,在确定待定位设备的移动轨迹时,待定位设备是在移动的,其周围的基站一直也在变化,根据置信度高于预设阈值的到达时间的个数,选择合适的定位方法,进一步地提高了定位的精度。
基于图1所示实施例,本公开实施例还提供了一种定位方法,如图4所示,该方法可以包括步骤S41-步骤S46,其中,步骤S41与上述步骤S11相同,步骤S45-步骤S46与上述步骤S13-步骤S14相同,步骤S42-步骤S44为步骤S12的一种实现方式。
步骤S42,根据到达时间差,确定待定位设备与两个基站之间的距离差。
本公开实施例中,通过待定位设备与一个基站的之间的到达时间,就可 以确定出待定位设备与该基站之间的距离。故电子设备获取待定位设备与两个基站之间的到达时间差后,就可以确定出待定位设备与两个基站之间的距离差。
步骤S43,根据距离差和到达时间差对应的两个基站的坐标,构建双曲线,双曲线的两个焦点为两个基站的坐标。
本公开实施例中,电子设备在确定出待定位设备与两个基站之间的距离差后,以两个基站的坐标作为焦点,距离差作为长轴,构建双曲线。
步骤S44,确定双曲线中目标基站侧的一条曲线为校正曲线,目标基站为两个基站中与待定位设备近的基站。
本公开实施例中,待定位设备每移动一步,就能获得待定位设备与两个基站之间SRS的到达时间,也就可以判断出待定位设备离那个基站位置更近,电子设备将离待定位设备更近的基站一侧的曲线作为校正曲线。电子设备基于该校正曲线,对初始定位点进行校正,得到待定位设备的校正定位点。
本公开实施例提供的技术方案中,电子设备基于待定位设备与两个基站的距离差,构建双曲线,从双曲线中选取距离待定位设备较近的基站的一侧单曲线作为校正曲线。这样,无需使用两条校正曲线进行校正,提高了定位的效率。
一些实施例中,电子设备根据距离差和到达时间差对应的两个基站的坐标,构建双曲线后,可以将该双曲线作为校正曲线。电子设备使用校正曲线中的每条曲线,分别对初始定位点进行校正,得到两个校正定位点,电子设备将离待定位设备更近的基站一侧的曲线上的校正定位点,作为待定位设备的校正定位点。
下面结合图5所示的惯性导航轨迹与与校正曲线的校正示意图,以及图6所示的定位方法的流程图,对本公开实施例提供的定位方法进行详细说明。
步骤一,5G定位管理功能(Location Management Function,LMF)模块(或第三方平台)采集TDOA参数,该TDOA参数包括待定位设备与基站之间SRS的TOA以及TDOA,并将传递电子设备。
步骤二,待定位设备采集的重力加速度、加速度、角加速度等IMU数据。
步骤三,电子设备从5G LMF模块中获取TDOA参数,并从基站数据库中获取相应基站的坐标。
步骤四,若获取到3个置信度高于预设阈值的TOA,则电子设备采用TDOA定位方法,利用TDOA确定待定位设备的校正定位点,如图5中的点A。
步骤五,待定位设备移动一步后,电子设备基于IMU数据,采用惯性导航算法,确定待定位设备的初始定位点,如图5中的点B。
若获取到置信度高于预设阈值的两个TOA,电子设备可确定距离待定位设备近的基站,并根据两个TOA的TDOA和两个TOA对应的两个基站的坐标,构建定位平面上的双曲线,并将双曲线中距离待定位设备近的基站侧的单曲线作为校正曲线。电子设备计算初始定位点与校正曲线之间的最短欧式距离,确定最短欧式距离对应的校正曲线上的坐标点,为待定位设备的校正定位点,如图5中的点B'。
若获取到置信度高于预设阈值的至少三个TOA,则电子设备采用TDOA定位方法,电子设备利用TDOA确定待定位设备的校正定位点。
若获取到置信度高于预设阈值的一个TOA或未获取到置信度高于预设阈值的TOA,则电子设备将采用惯性导航算法所确定待定位设备的初始定位点作为待定位设备的校正定位点。
待定位设备每移动一步,则电子设备执行一次上述步骤五,形成校正曲线序列,以及一系列的初始定位点(C、D等)以及校正定位点(C'、D'等),直至定位结束。
与上述定位方法对应,本公开实施例还提供了一种电子设备,如图7所示,该电子设备可以包括:
获取单元71,用于获取待定位设备与两个基站之间的信道探测参考信号的到达时间差;
生成单元72,用于根据所述到达时间差和所述两个基站的坐标,生成校正曲线;
确定单元73,用于采用惯性导航算法,确定所述待定位设备的初始定位点;
定位单元74,用于利用所述校正曲线,对所述初始定位点进行校正,得到所述待定位设备的校正定位点。
在一些实施例中,所述获取单元71,具体用于:
获取待定位设备与多个基站之间的信道探测参考信号的到达时间和每个到达时间的置信度;
若获取到置信度高于预设阈值的两个到达时间,计算所确定的两个到达时间之间的到达时间差。
在一些实施例中,所述定位单元74,还用于:
若获取到置信度高于预设阈值的至少三个到达时间,则利用所述至少三个到达时间,确定两个到达时间差;
利用所述两个到达时间差,确定所述待定位设备的校正定位点。
在一些实施例中,所述定位单元74,还用于:
若获取到置信度高于预设阈值的至多一个到达时间,则采用惯性导航算法,确定所述待定位设备的校正定位点。
在一些实施例中,所述生成单元72,具体用于:
根据所述到达时间差,确定所述待定位设备与所述两个基站之间的距离差;
根据所述距离差和所述到达时间差对应的两个基站的坐标,构建双曲线,所述双曲线的两个焦点为所述两个基站的坐标;
确定所述双曲线中目标基站侧的一条曲线为校正曲线,所述目标基站为所述两个基站中与所述待定位设备近的基站。
在一些实施例中,所述定位单元74,具体用于:
计算所述初始定位点与所述校正曲线之间的最短欧式距离;
确定所述最短欧式距离对应的所述校正曲线上的坐标点,为所述待定位设备的校正定位点。
本公开实施例提供的技术方案中,TDOA定位方法与惯性导航算法协同作用,电子设备基于TDOA定位方法,基于TDOA得到校正曲线,基于惯性导航算法确定待定位设备的初始定位点,使用校正曲线对初始定位点进行校正。TDOA定位方法的精度较高,不存在累计误差,因此,使用基于TDOA定位方法得到的校正曲线,对基于惯性导航算法得到的初始定位点进行校正,校正后的定位点有效的降低了惯性导航定位中累计误差过大的问题,提高了定位的精度。
另外,本公开实施例提供的技术方案中,只需要获取到待定位设备与两 个基站之间的到达时间差,就可以确定出校正曲线,实现了待定位设备的定位,解决了当少于3个基站时,无法使用TDOA定位方法进行定位的问题,提高了室内等非理想的信道环境中的定位精度。
本公开实施例还提供了一种电子设备,如图8所示,包括处理器81、通信接口82、存储器83和通信总线84,其中,处理器81,通信接口82,存储器83通过通信总线84完成相互间的通信,
存储器83,用于存放计算机程序;
处理器81,用于执行存储器83上所存放的程序时,实现上述任一定位方法的步骤。
通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本公开提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一定位方法步骤。
在本公开提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一定位方法步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于电子设备、存储介质和计算机程序产品实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
工业实用性
本公开适用于定位导航技术领域,用以解决相关技术中基于位置的定位不准确的问题,达到校正后的初始定位点能更准确地描述待定位设备的位 置的效果。
以上所述仅为本公开的较佳实施例,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本公开的保护范围内。

Claims (15)

  1. 一种定位方法,所述方法包括:
    获取待定位设备与两个基站之间的信道探测参考信号的到达时间差;
    根据所述到达时间差和所述两个基站的坐标,生成校正曲线;
    采用惯性导航算法,确定所述待定位设备的初始定位点;
    利用所述校正曲线,对所述初始定位点进行校正,得到所述待定位设备的校正定位点。
  2. 根据权利要求1所述的方法,其中,所述获取待定位设备与两个基站之间的信道探测参考信号的到达时间差的步骤,包括:
    获取待定位设备与多个基站之间的信道探测参考信号的到达时间和每个到达时间的置信度;
    若获取到置信度高于预设阈值的两个到达时间,计算所确定的两个到达时间之间的到达时间差。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    若获取到置信度高于预设阈值的至少三个到达时间,则利用所述至少三个到达时间,确定两个到达时间差;
    利用所述两个到达时间差,确定所述待定位设备的校正定位点。
  4. 根据权利要求2或3所述的方法,其中,所述方法还包括:
    若获取到置信度高于预设阈值的至多一个到达时间,则采用惯性导航算法,确定所述待定位设备的校正定位点。
  5. 根据权利要求1所述的方法,其中,所述根据所述到达时间差和所述两个基站的坐标,生成校正曲线的步骤,包括:
    根据所述到达时间差,确定所述待定位设备与所述两个基站之间的距离差;
    根据所述距离差和所述到达时间差对应的两个基站的坐标,构建双曲线,所述双曲线的两个焦点为所述两个基站的坐标;
    确定所述双曲线中目标基站侧的一条曲线为校正曲线,所述目标基站为所述两个基站中与所述待定位设备近的基站。
  6. 根据权利要求1所述的方法,其中,所述利用所述校正曲线,对所述初始定位进行校正,得到所述待定位设备的校正定位点的步骤,包括:
    计算所述初始定位点与所述校正曲线之间的最短欧式距离;
    确定所述最短欧式距离对应的所述校正曲线上的坐标点,为所述待定位设备的校正定位点。
  7. 一种电子设备,包括:
    获取单元,用于获取待定位设备与两个基站之间的信道探测参考信号的到达时间差;
    生成单元,用于根据所述到达时间差和所述两个基站的坐标,生成校正曲线;
    确定单元,用于采用惯性导航算法,确定所述待定位设备的初始定位点;
    定位单元,用于利用所述校正曲线,对所述初始定位点进行校正,得到所述待定位设备的校正定位点。
  8. 根据权利要求7所述的电子设备,其中,所述获取单元,具体用于:
    获取待定位设备与多个基站之间的信道探测参考信号的到达时间和每个到达时间的置信度;
    若获取到置信度高于预设阈值的两个到达时间,计算所确定的两个到达时间之间的到达时间差。
  9. 根据权利要求8所述的电子设备,其中,所述定位单元,还用于:
    若获取到置信度高于预设阈值的至少三个到达时间,则利用所述至少三个到达时间,确定两个到达时间差;
    利用所述两个到达时间差,确定所述待定位设备的校正定位点。
  10. 根据权利要求8或9所述的电子设备,其中,所述定位单元,还用于:
    若获取到置信度高于预设阈值的至多一个到达时间,则采用惯性导航算法,确定所述待定位设备的校正定位点。
  11. 根据权利要求7所述的电子设备,其中,所述生成单元,具体用于:
    根据所述到达时间差,确定所述待定位设备与所述两个基站之间的距离差;
    根据所述距离差和所述到达时间差对应的两个基站的坐标,构建双曲线,所述双曲线的两个焦点为所述两个基站的坐标;
    确定所述双曲线中目标基站侧的一条曲线为校正曲线,所述目标基站为 所述两个基站中与所述待定位设备近的基站。
  12. 根据权利要求7所述的电子设备,其中,所述定位单元,具体用于:
    计算所述初始定位点与所述校正曲线之间的最短欧式距离;
    确定所述最短欧式距离对应的所述校正曲线上的坐标点,为所述待定位设备的校正定位点。
  13. 一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
    存储器,用于存放计算机程序;
    处理器,用于执行存储器上所存放的程序时,实现权利要求1-6任一所述的方法步骤。
  14. 一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-6任一所述的方法步骤。
  15. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现权利要求1-6任一项所述的方法。
PCT/CN2022/141511 2022-06-07 2022-12-23 一种定位方法、设备及存储介质 WO2023236506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210641618.0A CN117241224A (zh) 2022-06-07 2022-06-07 一种定位方法、设备及存储介质
CN202210641618.0 2022-06-07

Publications (1)

Publication Number Publication Date
WO2023236506A1 true WO2023236506A1 (zh) 2023-12-14

Family

ID=89093482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141511 WO2023236506A1 (zh) 2022-06-07 2022-12-23 一种定位方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117241224A (zh)
WO (1) WO2023236506A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710987A (zh) * 2005-06-10 2005-12-21 重庆邮电学院 基于手持中继的移动终端跟踪定位系统及定位方法
US20150148059A1 (en) * 2013-11-26 2015-05-28 At&T Intellectual Property I, L.P. Time distance of arrival based mobile device location detection with disturbance scrutiny
CN111212476A (zh) * 2020-04-21 2020-05-29 杭州优智联科技有限公司 基于调频连续波的多基站超宽带定位方法
CN111505570A (zh) * 2020-04-23 2020-08-07 四川星网云联科技有限公司 基于线性搜索的超宽带二维定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710987A (zh) * 2005-06-10 2005-12-21 重庆邮电学院 基于手持中继的移动终端跟踪定位系统及定位方法
US20150148059A1 (en) * 2013-11-26 2015-05-28 At&T Intellectual Property I, L.P. Time distance of arrival based mobile device location detection with disturbance scrutiny
CN111212476A (zh) * 2020-04-21 2020-05-29 杭州优智联科技有限公司 基于调频连续波的多基站超宽带定位方法
CN111505570A (zh) * 2020-04-23 2020-08-07 四川星网云联科技有限公司 基于线性搜索的超宽带二维定位方法

Also Published As

Publication number Publication date
CN117241224A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
US9584981B2 (en) Method and apparatus for real-time, mobile-based positioning according to sensor and radio frequency measurements
US9432964B2 (en) Method and apparatus for determining locations of access points
US9560489B2 (en) Reducing location search space
US8918103B2 (en) Location data regression
US9832615B2 (en) Mobile device sensor and radio frequency reporting techniques
US10327218B2 (en) Robust downlink positioning
US9769622B2 (en) Indoor location survey assisted by a motion path on a venue map
CN107645702B (zh) 位置标定方法、装置和系统
KR101674993B1 (ko) 단말의 실내 위치를 측정하는 방법 및 사용자 단말
KR20210088678A (ko) 위치결정 방법 및 장치
WO2019001175A1 (zh) 一种定位纠偏方法及装置
TW201625041A (zh) 訊號強度分佈建立方法及無線定位系統
WO2019052575A1 (zh) 定位无线设备的方法、装置、设备及存储介质
CN108513353B (zh) 基于双信标节点实现移动机器人定位的方法
US11864056B2 (en) Developing a fingerprint map for determining an indoor location of a wireless device
WO2023236506A1 (zh) 一种定位方法、设备及存储介质
TW201621273A (zh) 行動定位裝置及其定位方法
CN108834053B (zh) 一种定位方法、装置及设备
JP6644205B2 (ja) 通信装置、制御方法、及び制御プログラム
US11085992B2 (en) System and method for positioning a terminal device
CN112584489A (zh) 一种空间位置标定方法及系统
KR20230000064A (ko) 측위 장치 및 방법
KR20240053387A (ko) 차량 및 노드 측위방법
CN115866745A (zh) 室内定位方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945634

Country of ref document: EP

Kind code of ref document: A1