WO2023236425A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2023236425A1
WO2023236425A1 PCT/CN2022/129247 CN2022129247W WO2023236425A1 WO 2023236425 A1 WO2023236425 A1 WO 2023236425A1 CN 2022129247 W CN2022129247 W CN 2022129247W WO 2023236425 A1 WO2023236425 A1 WO 2023236425A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
signal
sub
optical module
line
Prior art date
Application number
PCT/CN2022/129247
Other languages
English (en)
French (fr)
Inventor
张加傲
杨世海
刘飞
王欣南
慕建伟
张强
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221457024.6U external-priority patent/CN217693343U/zh
Priority claimed from CN202221698323.9U external-priority patent/CN217766937U/zh
Priority claimed from CN202210767137.4A external-priority patent/CN115220160B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2023236425A1 publication Critical patent/WO2023236425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • H04B10/43Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an optical module.
  • optical communication technology optical modules are tools for realizing mutual conversion of optical and electrical signals. They are one of the key components in optical communication equipment. With the development of optical communication technology, the transmission rate of optical modules continues to increase.
  • differential drive As the rate gradually increases, differential drive has stronger driving capability, strong anti-interference ability, and accurate timing positioning. Differential signal transmission is mostly used in signal transmission.
  • optical module including:
  • a circuit board with a first sub-output pad and a second sub-output pad on its upper surface
  • a laser driver chip is disposed on the upper surface of the circuit board and connected to the first sub-output pad and the second sub-output pad;
  • the lower surface of the circuit board is provided with:
  • the first sub-differential pad is electrically connected to the first sub-output pad
  • the second sub-differential pad is electrically connected to the first sub-output pad
  • a first capacitor connected between the first sub-differential pad and the first capacitor pad
  • the second differential line has one end connected to the second capacitor pad
  • the first resistance pad is wire-connected to the first capacitor pad
  • a first resistor connected between the first negative electrode pad and the first resistance pad
  • the EML laser is also connected to the second differential line.
  • optical module including:
  • the lower shell is covered with the upper shell to form a wrapping cavity
  • a circuit board arranged inside the packaging cavity
  • a first resistor connected between the first resistor pad and the first ground conductive area
  • the circuit board is provided with a first differential drive signal line and a second differential drive signal line; the first differential drive signal line is connected to the signal line; the second differential drive signal line is connected to the second resistor pad connection;
  • An EML laser is provided on the first grounded conductive area, and the EML laser includes: a negative electrode pad, an electric absorption modulation pad and a luminescent pad;
  • the negative electrode pad is connected to the first ground conductive area, the electroabsorption modulation pad is connected to the first resistance pad, and the electroabsorption modulation pad is connected to the signal line.
  • Figure 1 is a connection diagram of an optical communication system according to some embodiments.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments.
  • Figure 3 is a structural diagram of an optical module according to some embodiments.
  • Figure 4 is an exploded view of an optical module according to some embodiments.
  • Figure 5 is an exploded structural diagram of a light emitting device according to some embodiments.
  • Figure 6 is another exploded structural schematic diagram of a light emitting device according to some embodiments.
  • Figure 7 is a schematic partial structural diagram of a light emitting device according to some embodiments.
  • Figure 8 is a schematic diagram of a cross-sectional structure of a ceramic substrate according to some embodiments.
  • Figure 9 is a schematic diagram of the upper surface structure of a ceramic substrate according to some embodiments.
  • Figure 10 is a schematic structural diagram of a circuit board according to some embodiments.
  • Figure 11 is a partial structural schematic diagram of the lower surface of a circuit board according to some embodiments.
  • Figure 12 is a schematic diagram of the connection between a circuit board and a COC (Chip On Carrier) structure according to some embodiments;
  • Figure 13 is an equivalent circuit schematic diagram of a light emitting component according to some embodiments.
  • Figure 14 is a partial schematic diagram of the tenth layer of a circuit board according to some embodiments.
  • Figure 15 is a schematic diagram of the seventh layer of a circuit board according to some embodiments.
  • Figure 16 is a schematic structural diagram of the fourth layer of a circuit board according to some embodiments.
  • Figure 17 is a schematic structural diagram of the first layer of a circuit board according to some embodiments.
  • Figure 18 is a schematic structural diagram of the upper surface of a circuit board according to some embodiments.
  • Figure 19 is a schematic structural diagram of the upper surface of another circuit board according to some embodiments.
  • Figure 20 is a schematic diagram of the upper surface structure of a ceramic substrate according to some embodiments.
  • Figure 21 is a schematic diagram 2 of the upper surface structure of a ceramic substrate according to some embodiments.
  • Figure 22 is a schematic cross-sectional structural diagram of a ceramic substrate according to some embodiments.
  • Figure 23 is a schematic diagram 1 of the connection between the ceramic substrate and the circuit board according to some embodiments.
  • Figure 24 is a second schematic diagram of the connection between the ceramic substrate and the circuit board according to some embodiments.
  • optical signals are used to carry information to be transmitted, and the optical signals carrying information are transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since light has passive transmission characteristics when transmitted through optical fibers or optical waveguides, low-cost, low-loss information transmission can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by computers and other information processing equipment are electrical signals. Therefore, in order to distinguish between information transmission equipment such as optical fibers or optical waveguides and computers and other information processing equipment To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • Optical modules realize the mutual conversion function of the above-mentioned optical signals and electrical signals in the field of optical communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection Mainly used for power supply, I2C signal transmission, data information transmission and grounding; optical network terminals transmit electrical signals to computers and other information processing equipment through network cables or wireless fidelity technology (Wi-Fi).
  • Figure 1 is a connection diagram of an optical communication system.
  • the optical communication system includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103.
  • the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of thousands of meters (6 kilometers to 8 kilometers). On this basis, if a repeater is used, unlimited distance transmission can be theoretically achieved. Therefore, in a common optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can usually reach several kilometers, tens of kilometers, or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: router, switch, computer, mobile phone, tablet computer, television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing device 2000 and the remote server 1000 is completed by the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to access the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port is configured to access the optical network terminal 100, so that The optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical module 200 realizes mutual conversion between optical signals and electrical signals, thereby establishing an information connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101. Since the optical module 200 is a tool for converting optical signals and electrical signals and does not have the function of processing data, the information does not change during the above-mentioned photoelectric conversion process.
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 provided on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 Establish a two-way electrical signal connection.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100 serves as the host computer of the optical module 200 and can monitor the optical module. 200 job.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT), etc.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101, the optical module 200, the optical network terminal 100 and the network cable 103.
  • Figure 2 is a structural diagram of an optical network terminal. In order to clearly show the connection relationship between the optical module 200 and the optical network terminal 100, Figure 2 only shows the structure of the optical network terminal 100 related to the optical module 200. As shown in Figure 2, the optical network terminal 100 also includes a circuit board 105 provided in the housing, a cage 106 provided on the surface of the circuit board 105, a heat sink 107 provided on the cage 106, and electrical connections provided inside the cage 106. device.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has fins and other protrusions that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the optical module 200 is fixed by the cage 106.
  • the heat generated by the optical module 200 is conducted to the cage 106, and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection.
  • Figure 3 is a structural diagram of an optical module according to some embodiments.
  • the optical module 200 includes a shell, a circuit board 300 and an optical transceiver component disposed in the shell.
  • the housing includes an upper housing 201 and a lower housing 202.
  • the upper housing 201 is covered on the lower housing 202 to form the above-mentioned housing with two openings; the outer contour of the housing generally presents a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 is closed On the two lower side plates 2022 of the lower housing 202, the above-mentioned housing is formed.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the upper case 201 includes a cover plate 2011 and two lower side plates 2022 located on both sides of the cover plate 2011.
  • the two upper side plates of the cover plate 2011 are vertically arranged, and are combined with the two lower side plates 2022 to realize that the upper housing 201 is covered on the lower housing 202 .
  • the direction of the connection line between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at an end of the optical module 200 and the opening 205 is located at a side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger of the circuit board 300 extends from the electrical port 204 and is inserted into the host computer (for example, the optical network terminal 100); the opening 205 is an optical port configured to access the external optical fiber 101 so that the external The optical fiber 101 connects the optical transceiver components inside the optical module 200 .
  • the assembly method of combining the upper housing 201 and the lower housing 202 facilitates the installation of the circuit board 300, optical transceiver components and other components into the housing, and the upper housing 201 and the lower housing 202 form packaging protection for these components.
  • the upper housing 201 and the lower housing 202 form packaging protection for these components.
  • the upper housing 201 and the lower housing 202 are generally made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the optical module 200 also includes an unlocking component located outside its housing.
  • the unlocking component is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixation between the optical module 200 and the host computer. connect.
  • the unlocking component is located on the outer walls of the two lower side plates 2022 of the lower housing 202 and has a snapping component that matches the host computer cage (for example, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the host computer, the optical module 200 is fixed in the cage of the host computer by the engaging parts of the unlocking part.
  • the engaging parts of the unlocking part move accordingly, thereby changing the engaging parts.
  • the connection relationship with the host computer is to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit wiring, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit wiring to realize functions such as power supply, electrical signal transmission, and grounding.
  • Electronic components include, for example, capacitors, resistors, transistors, and Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • Chips include, for example, Microcontroller Unit (MCU), laser driver chip, limiting amplifier (limiting amplifier), clock and data recovery (Clock and Data Recovery, CDR) chip, power management chip, digital signal processing (Digital Signal Processing, DSP) chip.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also perform a load-bearing function. For example, the rigid circuit board can smoothly carry the above-mentioned electronic components and chips; when the optical transceiver component is located on the circuit board, the rigid circuit board The circuit board can also provide smooth loading; the rigid circuit board can also be inserted into the electrical connector in the host computer cage.
  • the circuit board 300 also includes gold fingers formed on its end surface, and the gold fingers are composed of a plurality of mutually independent pins.
  • the circuit board 300 is inserted into the cage 106 and electrically connected to the electrical connector in the cage 106 by the gold finger.
  • the golden fingers can be provided only on one side of the circuit board 300 (for example, the upper surface shown in FIG. 4 ), or can be provided on the upper and lower surfaces of the circuit board 300 to adapt to situations where a large number of pins are required.
  • the golden finger is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
  • a flexible circuit board can be used to connect the rigid circuit board and the optical transceiver component.
  • the optical transceiver component includes an optical transmitting device and an optical receiving device.
  • the optical transmitting device is configured to transmit an optical signal
  • the optical receiving device is configured to receive an optical signal.
  • the light emitting device and the light receiving device are combined together to form an integrated optical transceiver component.
  • FIG. 5 is a schematic exploded structure diagram of a light emitting device provided by the present disclosure
  • Figure 6 is another exploded structural schematic diagram of a light emitting device provided by the present disclosure
  • the following is a schematic view of the light emitting part of the optical module of the present disclosure in conjunction with Figures 5 and 6
  • the overall structure is explained.
  • the light emitting device 400 includes an emission cover 401 and a housing 402.
  • the emission cover 401 and the housing 402 are connected together.
  • the emission cover 401 covers the housing 402 from above, and one side of the housing 402
  • the wall has an opening 404 for the insertion of the circuit board 300, and the other side wall of the housing 402 has a through hole for the insertion of the fiber optic adapter 403.
  • the circuit board 300 extends into the housing 402 through the opening 404, and the circuit board 300 is fixed to the lower housing 202; the circuit board 300 is plated with metal traces, and the optical devices can be electrically connected to the corresponding metal traces through wiring. connection to achieve electrical connection between the optical device in the housing 402 and the circuit board 300 .
  • the signal light emitted by the light-emitting device is injected into the through hole, and the optical fiber adapter 403 extends into the through hole 405 to couple and receive the signal light.
  • This assembly structure design allows the optical fiber adapter 403 to move forward and backward in the through hole 405, and the optical fiber can be adjusted. The required size between the light emitting device and the optical fiber plug.
  • the optical fiber adapter can be moved backward (towards the outside of the cavity) in the through hole to meet the connection size requirements; when the optical fiber is long, The fiber adapter can be moved forward (towards the inside of the cavity) in the through hole to straighten the fiber and avoid bending the fiber.
  • the fiber optic adapter 403 is inserted into the through hole to achieve fixation with the light emitting device 400; during the assembly process, the fiber optic adapter 403 can move in the through hole to select a fixing position.
  • One side wall of the housing 402 has an opening 404 for inserting the circuit board 300 , and the other side wall of the housing 402 has a through hole for inserting the fiber optic adapter 403 .
  • the optical device in the housing 402 can optionally be connected to the circuit board 300 through pins, where the pins are designed to have a shape that matches the lower housing, and one end of the pin is inserted into the inside of the lower housing, and This end is plated with metal traces, and the optical device can be electrically connected to the corresponding metal traces through wiring.
  • One end of the pin placed on the shell 402 is provided with a plurality of pins electrically connected to the metal traces.
  • the pins are inserted into the circuit board 300 and welded together to achieve electrical connection between the optical device in the housing 402 and the circuit board 300.
  • the pins on the pins can also be directly welded to the circuit board 300, To achieve electrical connection between the optical device in the housing 402 and the circuit board 300 .
  • the light-emitting sub-device 500 in the housing 402 converts the electrical signal into an optical signal, and then the optical signal enters the optical fiber adapter 403 and is transmitted to Outside the optical module.
  • the light-emitting device has a packaging structure to package laser chips.
  • the existing packaging structures include coaxial packaging TO-CAN (Transistor Outline package-CAN), silicon light packaging, and chip-on-board lens assembly packaging COB-LENS (Chip On Board-LENS), micro-optical XMD (10G igabit Miniature Device Muti Source Agreement, 10G optical device multi-source agreement, where X represents the 10G rate) package.
  • Packaging is also divided into airtight packaging and non-airtight packaging. On the one hand, packaging provides a stable and reliable working environment for the laser chip, and on the other hand, it forms external electrical connections and optical output.
  • optical modules will use different packages to produce light-emitting devices.
  • Laser chips can emit light from the vertical cavity surface or from the edge.
  • the different light emitting directions of laser chips will also affect the choice of packaging form.
  • the light emitting device may be provided with one or more sets of COC structures.
  • FIG. 7 is a partial structural schematic diagram of a light emitting device provided by the present disclosure; as shown in FIG. 7 , the COC structure in the present disclosure includes: a substrate, which is disposed in the housing 402 . Alumina ceramics, aluminum nitride ceramics, etc. The functional circuit of the laser chip is engraved on the surface of the ceramic substrate, which is used for signal transmission, such as a transmission line. The surface of the ceramic substrate is equipped with an EML (Electro-absorption Modulated Laser) laser. The EML laser is an integrated device of the laser DFB and the electro-absorption modulator EA.
  • EML Electro-absorption Modulated Laser
  • the laser DFB converts the electrical signal into an optical signal
  • the electro-absorption modulator EA converts the optical signal. After encoding and modulation, it is output so that the output optical signal carries information.
  • the EML laser is provided with a luminescent pad 5033, an electric absorption modulation pad 5032 and a negative electrode pad 5031.
  • the negative electrode pad is arranged on the lower surface of the EML laser, and the luminescent pad and the electric absorption modulation pad are arranged on the upper surface of the EML laser.
  • FIG. 8 is a schematic cross-sectional structural diagram of a ceramic substrate provided by the present disclosure.
  • the ceramic substrate is provided with a stacked first sub-ceramic substrate 510 and a second sub-ceramic substrate 520 , where the first sub-ceramic substrate 510 is disposed above the second sub-ceramic substrate, and the first sub-ceramic substrate 510 There is a ground layer 530 between it and the second sub-ceramic substrate 520, which is a signal return layer.
  • Figure 9 is a schematic diagram of the upper surface structure of a ceramic substrate provided by the present disclosure. As shown in Figure 9, the upper surface of the first sub-ceramic substrate is provided with a first EML ground conductive area 5011, a signal conductive area 5012 and a DFB (Distributed FeedBack, distributed feedback laser) power supply pad 5013.
  • a first EML ground conductive area 5011 the upper surface of the first sub-ceramic substrate is provided with a first EML ground conductive area 5011, a signal conductive area 5012 and a DFB (Distributed FeedBack, distributed feedback laser) power supply pad 5013.
  • DFB Distributed FeedBack, distributed feedback laser
  • Golden Finger introduces the electrical signal to the laser driver chip.
  • the laser driver chip transmits the electrical signal to the EML laser, and then uses the EML laser to convert the electrical signal into an optical signal.
  • the laser driver chip and EML lasers are connected through wires, which have a certain characteristic impedance. Since the output impedance of the laser driver chip is rated, when the output impedance of the EML laser does not match the characteristic impedance, there will be a problem in the signal transmission between the laser driver chip and the laser. Loss, reducing the integrity of the signal. Therefore, in order to ensure the integrity of the signal, it is necessary to ensure that the impedance output by the EML laser matches the characteristic impedance. It should be noted that the matching here means that the impedance value output by the EML laser reaches the characteristic impedance. The impedance value, that is, the impedance value output by the EML laser is consistent with the characteristic impedance value.
  • the signal conductive area 5012 has a specific signal impedance
  • the EML laser has a specific laser impedance
  • the laser impedance is greater than the signal impedance.
  • the EML laser has a matching circuit in parallel.
  • the impedance required to match the EML optical device is called the matching impedance below.
  • the EA (Electroabsorption, electric absorption) matching resistor 5014 is connected between the first matching resistance pad 5015 and the first EML ground conductive area 5011; the first matching resistance pad and the electroabsorption modulation pad 5032 of the EML laser are wired connect.
  • the impedance of the first matching resistor 5015 connected in parallel with the electroabsorption modulator is equal to the value of the characteristic impedance of the driver chip and the EML laser, ensuring signal integrity.
  • the EA matching resistor has an impedance matching function, which ultimately makes the impedance of the EML laser consistent with the characteristic impedance. Since the space of the ceramic substrate is small, the first matching resistor generally uses a thin film resistor, which passes through a piece of the ceramic substrate. Area sintered. For convenience of description, in this disclosure, the circuit in which the first matching resistor and the electroabsorption modulator are connected in parallel is called an EA matching circuit.
  • the upper surface of the first sub-ceramic substrate is also provided with a DFB power supply pad, which is wired to the light-emitting pad 5033 of the EML laser.
  • the optical module provided by this disclosure includes 8 COC structures, which are arranged in the housing 402, and the other end is connected to the circuit board.
  • the electrical absorption modulation area of the EML laser is modulated.
  • Each COC structure contains 1 EML laser, and the light-emitting device includes 8 EML lasers.
  • the laser in the COC structure can be disposed toward the upper casing or the lower casing.
  • the laser of the disclosed optical module is disposed toward the lower casing, and the DSP chip is disposed on the upper surface of the circuit board.
  • FIG 10 is a schematic structural diagram of a circuit board according to an example.
  • the circuit board 300 includes: a first board layer 301, a second board layer 302, and a third board layer 303 that are stacked in sequence. , the fourth plate layer 304, the fifth plate layer 305, the sixth plate layer 306, the seventh plate layer 307, the eighth plate layer 308, the ninth plate layer 309, the tenth plate layer 310, every two adjacent plates
  • the layers are filled with a dielectric layer, which is made of insulating material, such as fiberglass or epoxy resin.
  • the second layer 302, the third layer 303, the fourth layer 304, the fifth layer 305, the sixth layer 306, the seventh layer 307, the eighth layer 308, and the The nine-layer 309 can also be called the middle layer.
  • the DSP chip is disposed on the upper surface of the circuit board, that is, located above the first layer, and the COC structure is connected to the circuit wiring on the lower surface of the circuit board.
  • FIG. 11 is a partial structural schematic diagram of the lower surface of a circuit board according to an example
  • FIG. 12 is a schematic diagram of the connection between a circuit board and a COC structure according to an example.
  • Figure 13 is an equivalent circuit schematic diagram of the light emitting component provided by the present disclosure.
  • the driver chip outputs two differential signals, one of which is connected in series with the first capacitor C1 and the first resistor R1 and then connected to ground; the other differential signal line is connected in series with the second capacitor C2, and the second resistor is connected in parallel with the EML laser to form EA parallel circuit.
  • One end of the EA parallel circuit is connected in series with the second capacitor C2, and the other end is connected to ground.
  • the driver chip is built inside the DSP chip.
  • FIG. 14 is a partial schematic diagram of the tenth layer of a circuit board according to an example.
  • the tenth layer of the circuit board includes: a differential signal area, which receives the modulation signal of the DSP chip and is electrically connected to the signal conductive area in the COC structure.
  • the differential signal area is provided with multiple groups of differential signal circuits, wherein the first group of differential signal circuits includes: a first differential signal circuit and a second differential signal circuit.
  • the first differential signal circuit includes: a first sub-differential pad 3105, a first capacitor pad 3106, a first resistor pad 3107, and a first ground pad 3101; the first capacitor 311 is connected across the first capacitor pad 3106 and Between the first sub-differential pads 3105, the first resistor 312 is connected across the first resistor pad 3107 and the first ground pad 3011.
  • the first resistor pad and the first capacitor pad may be integrated.
  • the circuit design made by etching the copper plate can also be connected by wires between the first resistor pad and the first capacitor pad.
  • the second differential signal circuit includes: a second sub-differential pad 3108, a second capacitor pad 3109 and a second sub-differential line 3104.
  • the second capacitor 313 is connected across the second sub-differential pad 3108 and the second capacitor pad 3109. In between, one end of the second sub-differential line 3104 is connected to the second capacitor pad, and the other end is connected to the signal conductive area 5012 in the COC structure.
  • the first sub-differential pad is connected to the first sub-differential output pin of the DSP chip through a via hole
  • the second sub-differential pad is connected to the second sub-differential output pin of the DSP chip through a via hole.
  • the sub-differential lines at the first end (left end) of the multiple groups of differential signal circuits in the differential signal area are dispersedly distributed at the end of the circuit board.
  • FIG. 15 is a schematic diagram of a seventh layer of a circuit board according to an example.
  • the seventh board layer In order to maintain the bending performance of the circuit board, there is no through hole between the first layer and the tenth layer in the middle area of the circuit board.
  • the seventh board layer In order to connect the dispersed differential signal line group near the edge of the circuit board to the pins of the TOP (top) layer DSP chip, the seventh board layer is provided with a signal transition area. Multiple sets of signal transition lines are provided in the signal transition area, one end of which is connected to the signal guide line of the fourth board layer through a via hole, and the other end is connected to the differential signal circuit of the tenth board layer.
  • the signal transition area is provided with a first set of signal transition lines, the first end of which is connected to the first set of signal lead lines 3041 through via holes.
  • the first group of signal transition lines 3071 includes: a first sub-signal transition line 30711 and a second sub-signal transition line 30712.
  • the first end of the first sub-signal transition line 30711 is connected to the first sub-signal transition line in the first group of signal guide lines.
  • the signal guide line 30411 is connected, and the other end is connected to the first sub-differential pad;
  • the first end of the second sub-signal transition line 30712 is connected to the second sub-signal guide line in the second group of signal guide lines, and the other end is connected to the first sub-differential pad.
  • ground vias are distributed around each group of signal transition lines to provide return ground for signals from adjacent groups of signal transition lines.
  • the ground vias surrounding each group of signal transition lines shield the external signals of the group of signal transition lines, reducing the impact of the signal transition lines on signals within the signal guide lines, which is beneficial to reducing signal noise.
  • the signal transition area is provided with a first group of signal transition lines 3071, a second group of signal transition lines 3072, a third group of signal transition lines 3073, a fourth group of signal transition lines 3074, and a fifth group of signal transition lines.
  • 3075, the sixth group of signal transition lines 3076, the seventh group of signal transition lines 3077, and the eighth group of signal transition lines 3078 are respectively connected to the group of differential signal circuits corresponding to the tenth board layer.
  • the signal transition area is provided with a first group of signal transition lines 3071, a second group of signal transition lines 3072, a third group of signal transition lines 3073, a fourth group of signal transition lines 3074, a fifth group of signal transition lines 3075, and a sixth group of signal transition lines.
  • the first ends of line 3076, the seventh group of signal transition lines 3077, and the eighth group of signal transition lines 3078 are arranged side by side on a straight line, and are at the same distance from the first end of the circuit board; the first ends of each adjacent group of signal transition lines The two ends are arranged staggered.
  • the second ends of the second group of signal transition lines 3072, the fourth group of signal transition lines 3074, the sixth group of signal transition lines 3076, and the eighth group of signal transition lines 3078 are arranged side by side on a straight line, and are aligned with the first end of the circuit board. The distance is the same.
  • the distance between the second end of the first group of signal transition lines 3071 and the first end of the circuit board is greater than the distance between the second end of the second group of signal transition lines 3072 and the first end of the circuit board.
  • the distance between the first end of the first sub-signal transition line and the first end of the second sub-signal transition line is smaller than the distance between the second end of the first sub-signal transition line and the second end of the second sub-signal transition line. Pitch.
  • the via holes connecting the surface layers are laser holes with a smaller radius.
  • the via holes connecting the middle board layer at both ends are mechanical holes.
  • the radius of the mechanical hole is larger than the radius of the laser hole.
  • this disclosure refers to the via hole between the tenth board layer and the seventh board layer as the first via hole. It can be seen from the figure that the first via hole is located at the second end (right end) of the differential signal area of the tenth board layer, and at the first end (left end) of the signal transition area of the seventh board layer.
  • the distance between the sub-differential pads of each group of signal transition lines and the first end (left end) of the circuit board is the same, and the intervals between adjacent groups of signal transition lines are the same.
  • FIG. 16 is a schematic structural diagram of the fourth layer of a circuit board according to an example.
  • the fourth board layer is provided with a signal guide area, in which multiple sets of signal guide lines are set. In order to increase the distance between different groups of signal lines and reduce signal interference, different groups of signal guide lines are directed in different directions.
  • the fourth board layer is provided with a first group of signal guide lines 3041, a second group of signal guide lines 3042, and a third group of signal guide lines 3043, and the extending direction is toward the first group of signal guide lines in the width direction of the circuit board.
  • extending sideways; the fourth group of signal guide lines 3044, the fifth group of signal guide lines 3045, the sixth group of signal guide lines 3046, the seventh group of signal guide lines 3047, and the eighth group of signal guide lines 3048 are to
  • the second side of the circuit board in the width direction extends to form a first group of signal guide lines, a second group of signal guide lines, a third group of signal guide lines, a fourth group of signal guide lines, and a fifth group of signal guide lines.
  • the first ends of the leads, the sixth group of signal guide lines, the seventh group of signal guide lines, and the eighth group of signal guide lines are close to the circuit board and are scattered relative to the second end.
  • the hole is connected to the corresponding drive output pin of the laser; and the second end of the fourth group of signal guide lines 3044, the sixth group of signal guide lines 3046 and the eighth group of signal guide lines 3048 is connected to the corresponding pin of the circuit board through the via hole.
  • ground vias are distributed around each group of signal guide lines to provide return ground for signals adjacent to the signal guide lines.
  • the ground vias surrounding each group of signal guide lines shield external signals from the signal guide lines, reducing the influence of external signals from the signal guide lines on signals within the signal guide lines, which is beneficial to reducing signal noise.
  • the first group of signal lead lines 3041 includes: a first sub-signal lead line 30411 and a second sub-signal lead line 30412, which are respectively connected to the first sub-output pad 30111 and the second sub-output pad 30112 through via holes.
  • the distance between the first end of the first sub-signal guide line 30411 and the first end of the second sub-signal guide line 30412 is larger than the second end of the first sub-signal guide line 30411 and the second sub-signal guide line.
  • the via hole between the fourth layer and the seventh layer is called the second via hole, and the via hole between the fourth layer and the first layer is the third via hole.
  • the via hole between the fourth board layer and the seventh board layer is a mechanical hole, which is larger in diameter than the first via hole. If the second vias of different groups of signal guide lines are arranged side by side, the first end of the signal guide area needs to occupy a larger space. Therefore, the second via holes at the left ends of adjacent groups of signal guide lines are staggered left and right to save space.
  • the second vias of adjacent groups of signal guide lines are not on the same straight line, which increases the distance between the second vias of adjacent groups of signal lines, which is beneficial to reducing signal crosstalk between different second vias and improving communication quality.
  • the second via holes of adjacent groups of signal guide lines are not on the same straight line, which is beneficial to improving the bending ability of the circuit board.
  • the first ends of the first group of signal guide lines 3041, the third group of signal guide lines 3043, the fifth group of signal guide lines 3045, and the seventh group of signal guide lines 3047 are located on the same straight line. Connect to the signal transition line corresponding to the base air board layer through the second via hole.
  • the first ends of the second group of signal guide lines 3042, the fourth group of signal guide lines 3044, the sixth group of signal guide lines 3046, and the eighth group of signal guide lines 3048 are located on the same straight line, and are connected to each other through the second via hole. Connect the signal transition lines corresponding to the base gas plate layer.
  • first end of the first group of signal guide lines 3041 and the first end of the second group of signal guide lines 3042 are not on the same straight line, and the first end of the first group of signal guide lines 3041 is not on the same straight line as the first end of the circuit board.
  • the distance is greater than the distance between the first end of the second group of signal guide lines 3042 and the first end of the circuit board.
  • the second end of the set of signal transition lines on the seventh board layer is connected to the first end of the set of signal guide lines on the fourth board layer through a second via hole.
  • Their positions in the horizontal direction of the circuit board correspond one to one, and are not shown here. Let’s go over them one by one.
  • the pins of the laser driver chip are concentrated on the DSP chip, and other functional pins are provided adjacent to them, such as light receiving signal pins connected to the light receiving component.
  • the distribution range of the second end of the signal transition area is more concentrated than the second end of the signal transition area.
  • the first group of signal guiding lines 3041, the second group of signal guiding lines 3042, the third group of signal guiding lines 3043, the fifth group of signal guiding lines 3045 and the seventh group of signal guiding lines 3047 The second ends of the seventh group of signal guide lines 3047 are arranged adjacently in sequence, and the other side of the seventh group of signal guide lines 3047 is a blank area for the layout of the light receiving signal lines.
  • the length of the group signal transition line is shorter than the length of the group signal guide line. You can also set the length of the group signal transition line to be longer than the length of the group signal guide line as needed.
  • the projection of the signal guidance area on the first board layer does not cover other functional areas of the DSP chip.
  • FIG. 17 is a schematic structural diagram of the first layer of a circuit board according to an example
  • FIG. 18 is a schematic structural diagram of an upper surface of a circuit board according to an example.
  • a DSP chip 314 is provided on the upper surface of the circuit board, and a laser driver is provided therein.
  • the laser driver is provided with eight sets of drive output pins
  • the upper surface is provided with multiple sets of corresponding output pads, including: a first set of output pads 3011, a second set of output pads 3012, and a third set of output pads.
  • the first group of output pads 3011, the second group of output pads 3012, the third group of output pads 3013, the fifth group of output pads 3015, and the seventh group of output pads 3017 are arranged between the laser driver and the circuit board. ; That is, the output pins corresponding to the first group of output pads 3011, the second group of output pads 3012, the third group of output pads 3013, the fifth group of output pads 3015, and the seventh group of output pads 3017 are set in the laser driver the lower surface.
  • the corresponding pins of the fourth group of output pads 3014, the sixth group of output pads 3016, and the eighth group of output pads 3018 are arranged close to the edge of the laser driver, and are connected to corresponding circuits on the circuit board in the form of pins.
  • ground vias are set around each set of output pads and connected to the ground layer of the circuit board to provide a reflow ground for the signals on the output pads.
  • the ground vias surrounding each group of output pads shield external signals from the drive output pins, reducing the impact of external signals on the output pads on signals within the output pads, which is beneficial to reducing signal noise.
  • the first group of output pads 3011 includes a first sub-output pad 30111 and a second sub-output pad 30112, and is a group of differential signal pads.
  • the upper surface of the circuit board is provided with a fourth surface layer signal line, a sixth surface layer signal line, and an eighth surface layer signal line to facilitate the fourth group
  • the signals output by the output pads 3014, the sixth group of output pads 3016, and the eighth group of output pads 3018 propagate on the upper surface of the circuit board.
  • the second end of the fourth surface layer signal line is connected to the fourth group of output pads 3014, and the other end is provided with a fourth surface layer via hole to introduce the signal output by the fourth group of output pads 3014 into the middle layer of the circuit board.
  • the first end of the fourth surface layer via hole is disposed on the fourth board layer.
  • the second end of the sixth surface layer signal line is connected to the sixth group output pad, and the first end is provided with a sixth surface layer via hole to introduce the signal output by the sixth group output pad into the middle layer of the circuit board .
  • the other end of the sixth surface layer via hole is provided on the fourth board layer.
  • the second end of the eighth surface layer signal line is connected to the eighth group output pad, and the first end is provided with an eighth surface layer via hole to introduce the signal output by the eighth group output pad into the middle layer of the circuit board.
  • the other end of the eighth surface layer via hole is provided on the fourth board layer.
  • the via hole between the fourth layer and the first layer is called the third via hole, which is a laser hole. Adjacent vias are neatly arranged.
  • the optical module provided by the present disclosure includes a laser driver chip, which is disposed on the upper surface of the circuit board. It is provided with a first set of differential output pins to carry differential drive signals.
  • the lower surface of the circuit board is provided with a first set of differential signal circuits.
  • the first group of differential output pins includes a first sub-differential output pin and a second sub-differential output pin, and the differential impedance of the first sub-differential output pin and the second sub-differential output pin is the first differential impedance.
  • the first differential signal circuit includes: a first sub-differential pad, a first capacitor pad, a first resistor pad, and a first ground pad; the first capacitor is connected across the first capacitor pad and the first sub-differential pad.
  • the first resistor is connected across the first resistor pad and the first ground pad.
  • the circuit design between the first resistor pad and the first capacitor pad can be an integrated copper plate etched, or it can be A wire is connected between the first resistor pad and the first capacitor pad.
  • the second differential signal circuit includes: a second sub-differential pad, a second capacitor pad and a second sub-differential line. The second capacitor is connected between the second sub-differential pad and the second capacitor pad.
  • the differential line is connected to the second capacitor pad, and the other end is connected to the signal conductive area in the COC structure.
  • the first sub-differential output pin is connected in series with the first capacitor and the first resistor and then connected to ground.
  • the second sub-differential output pin is connected in series with the second capacitor and is connected to the EA matching circuit through the second sub-differential line to realize the laser driver chip.
  • the differential output is matched to the single-ended input of the electroabsorption modulator.
  • the first resistor is a matching resistor, which is the same as the impedance of the first sub-differential output pin, so that the output impedance of the first sub-differential output pin is balanced.
  • the first capacitor and the second capacitor can avoid the impact of backflow from the ground area on the laser driver chip.
  • the line between the first sub-differential output pin and the first capacitor pad is called the first signal line; the line between the second sub-differential output pin and the second capacitor pad is called Second signal line.
  • the distance from the first sub-differential output pin to the first capacitor pad is equal to the distance from the second sub-differential output pin to the second capacitor pad.
  • distance; and the widths of the traces of the first differential signal circuit and the second differential circuit are as equal as possible. That is, the widths of surface signal lines, signal guide lines, and signal transition lines in the same group are equal, and the mutual distance between surface signal lines, signal guide lines, and signal transition lines in the same group is greater than or equal to 3 times their own widths.
  • the width of the first sub-signal transition line is equal to the width of the second sub-signal transition line.
  • the distance between the first sub-signal transition line and the second sub-signal transition line is three times the width of the first sub-signal transition line.
  • the distance between the first sub-signal transition line and the second sub-signal transition line is the distance between the center of the first sub-signal transition line and the center of the second sub-signal transition line.
  • FIG. 19 is a schematic structural diagram of another upper surface of a circuit board according to an example.
  • a common mode suppression inductor 316 may also be provided between the first differential signal circuit and the second differential signal circuit. As shown in FIG. 17 , one end of the common mode suppression inductor is disposed between the first capacitor and the first resistor, and the other end is disposed between the second capacitor and the second resistor. The common mode suppression inductor is provided across the first capacitor pad and the second capacitor pad.
  • the circuit board is also provided with a first EA power circuit, and the output end of the first EA power circuit is connected to the second sub-differential line to provide DC power for the electroabsorption modulation area.
  • the first negative electrode pad is provided with a first power supply pad 3102 and a second power supply pad 3103.
  • the first power supply pad 3102 is a DFB power supply and is wired to the light-emitting area of the EML laser in the COC structure. It is the EML The light-emitting area of the laser is powered.
  • the second power supply pad 3103 is a temperature control power supply pad that provides power for the TEC in the light emitting device.
  • optical module An example of another optical module provided by the present disclosure is given below.
  • the EML laser is provided with a luminescent pad, an electric absorption modulation pad and a negative electrode pad.
  • the negative electrode pad is arranged on the lower surface of the EML laser, and the luminescent pad and the electric absorption modulation pad are arranged on the upper surface of the EML laser.
  • FIG. 20 is a schematic diagram 1 of the upper surface structure of a ceramic substrate provided by the present disclosure.
  • FIG. 21 is a schematic diagram 2 of the upper surface structure of a ceramic substrate provided by the disclosure.
  • Figure 21 is a diagram of the surface-mounted electrical device in Figure 20.
  • a first grounded conductive area 6011 is provided on the upper surface of the ceramic substrate, and a first avoidance portion 50111 is provided in the first grounded conductive area 6011.
  • the first ground conductive area 6011 is provided with a first escape portion 50111
  • the first escape portion 50111 is provided with an opening in which a signal line 6012 is disposed.
  • the first ground conductive area 6011 forms a tendency to surround the signal line, providing a return ground for the information carried in the signal line 6012, which is beneficial to reducing signal noise.
  • the first ground conductive area 6011 is provided with a second avoidance portion 50112 in which a first resistance pad 6013 is disposed. There is a certain gap between the first resistance pad 6013 and the first ground conductive area 6011.
  • a first resistor 504 is provided between the first resistance pad 6013 and the first ground conductive area 6011.
  • the first resistor 504 has an impedance matching function, which ultimately makes the impedance output by the EML laser 503 consistent with the characteristic impedance. Therefore, the first thin film resistor can be called a matching resistor; due to the small space of the ceramic substrate, generally the first thin film resistor 504 has an impedance matching function.
  • a resistor 504 is a thin film resistor, which is formed by sintering an area of a ceramic substrate.
  • the first ground conductive area 6011 is provided with a third avoidance portion 50113 in which a second resistance pad 6015 is disposed. There is a certain gap between the second resistance pad 6015 and the first ground conductive area 6011.
  • a second resistor 505 is provided between the second resistor pad 6015 and the first ground conductive area 6011.
  • the second resistor 505 has an impedance matching function, which ultimately makes the impedance output by the EML laser 503 consistent with the characteristic impedance. Therefore, the second resistor 505 can be called a matching resistor; due to the small space of the ceramic substrate, generally the second resistor 505 has an impedance matching function.
  • the second resistor 505 uses a thin film resistor, which is sintered through an area of the ceramic substrate.
  • the first ground conductive area 6011 is provided with a fourth avoidance portion 50114, in which a power supply transfer pad 6014 is disposed.
  • the EML laser 503 includes: an electroabsorption modulation pad 5032, a light emitting pad 5033, and a negative electrode pad.
  • the electroabsorption modulation pad 5032 and the first resistance pad 6013 are connected through wire bonding.
  • a first conductive wire is provided between the electroabsorption modulation pad 5032 and the first resistance pad 6013.
  • the first conductive wire may be a gold wire, a silver wire, or a metal wire made of other conductive materials.
  • the first conductor is a gold wire.
  • first escape part 50111 and the third escape part 50113 are connected with each other.
  • the first escape part 50111 and the third escape part 50113 may or may not communicate with each other.
  • the electroabsorption modulation pad 5032 is also connected to the signal line.
  • a second conductive line is provided between the electroabsorption modulation pad 5032 and the signal line.
  • the second conductive line may be a gold wire, a silver wire, or a metal wire made of other conductive materials.
  • the second conductor is a gold wire.
  • the first resistance pad 6013 is connected to the signal line through the first conductive line, the electroabsorption modulation pad 5032, and the second conductive line.
  • One end of the first resistor 504 is connected to the first resistor pad 6013, and the other end of the first resistor 504 is connected to the first ground conductive region 6011.
  • the negative electrode pad of the EML laser 503 is connected to the first ground conductive area 6011. According to some embodiments of the present disclosure, the negative electrode pad of the EML laser 503 is connected to the first ground conductive area 6011 through conductive glue or solder.
  • a second conductive line is provided between the electroabsorption modulation pad 5032 and the signal line.
  • the negative electrode pad of the EML laser 503 is connected to the first ground conductive area 6011. Combined with the setting of the first resistor 504, the first resistor 504 and the EML laser 503 The electrical absorption modulation areas are connected in parallel, and the first resistor 504 has a resistance matching function.
  • Golden Finger introduces the electrical signal to the laser driver chip.
  • the laser driver chip transmits the electrical signal to the EML laser 503, and then uses the EML laser 503 to convert the electrical signal into an optical signal.
  • the laser driver The chip and the EML laser 5033 are connected through a wire. This wire has a certain characteristic impedance. Since the output impedance of the laser driver chip is rated, when the output impedance of the EML laser 503 does not match the characteristic impedance, there will be a gap between the laser driver chip and the laser. There will be loss in the transmission signal, which reduces the integrity of the signal.
  • the matching here means that the EML laser 503
  • the output impedance value reaches the characteristic impedance value, that is, the output impedance value of the EML laser 503 is consistent with the characteristic impedance value.
  • the first resistor 504 is connected in parallel with the electroabsorption modulation region of the EML laser 503, so that the impedance value output by the EML laser 503 is consistent with the characteristic impedance value.
  • the light-emitting pad 5033 of the EML laser 503 is connected to the power supply transfer pad 6014.
  • the light-emitting pad 5033 of the EML laser 503 and the power supply transfer pad 6014 are connected through a third wire.
  • the third conductor may be a gold wire, a silver wire, or a metal wire made of other conductive materials. In order to improve the service life of the optical module and avoid unstable performance of metal wires due to temperature, humidity and other environments, the third conductor is a gold wire.
  • the power supply transfer pad 6014 also has a power supply pin connection on the circuit board to provide power for the EML laser 503.
  • the power supply transfer pad 6014 is disposed between the power supply pin of the circuit board and the light-emitting pad 5033 of the EML laser 503, dividing the electrical connection between the power supply pin of the circuit board and the light-emitting pad 5033 of the EML laser 503 into two.
  • the section is completed, and a fourth wire is set between the power supply pin and the power supply transfer pad 6014.
  • the light-emitting pad 5033 and the power supply transfer pad 6014 are connected through the third wire, which avoids the connection between the power supply pin and the light-emitting pad of the EML laser 503.
  • the excessive conductivity between 5033 leads to collapse, which improves the stability of the optical module.
  • FIG. 22 is a schematic cross-sectional structural diagram of a ceramic substrate provided by the present disclosure.
  • the ceramic substrate is provided with a stacked first sub-ceramic substrate 510 and a second sub-ceramic substrate 520 , where the first sub-ceramic substrate 510 is disposed above the second sub-ceramic substrate, and the first sub-ceramic substrate 510 There is a ground layer 530 between it and the second sub-ceramic substrate 520, which is a signal return layer.
  • the first sub-ceramic substrate 510 is provided with one or more via holes 540, one end of the via hole is connected to the first ground conductive area 6011, and the other end is connected to the ground layer.
  • signal connection pads are provided at both ends of the signal line on the ceramic substrate for wiring.
  • the first end of the signal line is provided with a first signal pad
  • the second end is provided with a second signal pad
  • a signal connection line is provided between the first signal pad and the second signal pad.
  • the width of the first signal pad is greater than the width of the signal connection line
  • the width of the second signal pad is greater than the width of the signal connection line.
  • the circuit board is provided with a ground pin, which is connected to the first ground conductive area 6011 through a wire.
  • the wire position between the circuit board and the ceramic substrate should be shortened as much as possible to reduce loss.
  • Figure 23 is a schematic diagram 1 of the connection between the ceramic substrate and the circuit board provided by the present disclosure. As shown in Figure 23, this disclosure provides an example.
  • the driving signal output by the laser driving chip is a differential signal
  • the circuit board is provided with a first differential driving signal line 701 and a second differential driving signal line 702.
  • the first differential driving signal line 701 is connected to the signal line 6012 on the ceramic substrate
  • the second differential driving signal line 702 is connected to the second resistance pad 6015.
  • the ground signal line 703 is connected to the first ground conductive area 6011.
  • the first differential driving signal line 701 is connected to the first end of the signal line, and the signal carried therein is transmitted to the second end of the signal line 6012 through the first end of the signal line 6012.
  • the second end of the signal line is connected to the electroabsorption modulation pad 5032 of the EML laser 503 .
  • the second differential driving signal line 702 is connected to the second resistance pad 6015, and the second resistor 505 is provided between the second resistance pad 6015 and the first ground conductive region 6011.
  • the signal in the first differential drive signal line 701 is transmitted to the electroabsorption modulation pad 5032 through the signal line, and the signal in the second differential drive signal line 702 is passed through the second resistor pad 6015, the second resistor 505, and the first ground conductive area.
  • 6011 is connected to the negative electrode pad of EML laser 503.
  • the first differential driving signal line 701 and the second differential driving signal line 702 have the same width and the same length.
  • the first differential driving signal line 701 is also connected to the driving chip 705
  • the second differential driving signal line 702 is also connected to the driving chip 705 .
  • the first end of the first differential drive signal line 701 is connected to the driver chip 705, the second end of the first differential drive signal line 701 is wire-connected to the first end of the signal line 6012; the first end of the second differential drive signal line 702
  • the second end of the second differential drive signal line 702 is connected to the first end of the second resistor pad 6015 by wire bonding.
  • the first end of the first differential drive signal line 701 is flush with the first end of the second differential drive signal line 702 ;
  • the second end of the first differential drive signal line 701 is flush with the second end of the second differential drive signal line 702.
  • the distance between the second resistance pad 6015 and the second end of the second differential drive signal line 702 is equal to the minimum distance between the first ground conductive region 6011 and the second end of the first differential drive signal line 701 .
  • the conductor between the first ground conductive area 6011 and the second end of the first differential drive signal line 701 is disposed at the shortest distance between the first ground conductive area 6011 and the first differential drive signal line 701 .
  • the power supply transfer pad 6014 also has a power supply pin connection 704 on the circuit board to provide power for the EML laser 503.
  • the power supply transfer pad 6014 is disposed between the power supply pin of the circuit board and the light-emitting pad 5033 of the EML laser 503, dividing the electrical connection between the power supply pin of the circuit board and the light-emitting pad 5033 of the EML laser 503 into two.
  • the section is completed, and a fourth wire is set between the power supply pin and the power supply transfer pad 6014.
  • the light-emitting pad 5033 and the power supply transfer pad 6014 are connected through the third wire, which avoids the connection between the power supply pin and the light-emitting pad of the EML laser 503.
  • the excessive conductivity between 5033 leads to collapse, which improves the stability of the optical module.
  • Figure 24 is a second schematic diagram of the connection between the ceramic substrate and the circuit board provided by the present disclosure. As shown in Figure 24, this disclosure also provides another example. If the driving signal output by the laser driving chip is a single-ended signal, the circuit board is provided with a driving signal line 706, and the driving signal line is connected to the signal line on the ceramic substrate. The second resistance pad 6015 is not connected to the circuit board.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块,包括: 激光驱动芯片;电路板(300)设有第一子输出焊盘(30111)和第二子输出焊盘(30112),与激光驱动芯片的差分输出引脚连接;第一电容(311),跨接于第一子差分焊盘(3105)与第一电容焊盘(3106)之间;第二电容(313),跨接于第二子差分焊盘(3108)与第二电容焊盘(3109)之间。第二差分线,一端与第二电容焊盘(3109)连接。第一电阻(312),跨接于第一负极焊盘与第一电阻焊盘(3107)之间,第一电阻焊盘(3107)的另一端与第一负极焊盘连接。EML激光器(503),EA 匹配电阻(5014)与EML激光器(503)并联;EML激光器(503)还与第二差分线连接。

Description

一种光模块
相关申请的交叉引用
本公开要求在2022年06月10日提交中国专利局、申请号为202221457024.6,在2022年06月30日提交中国专利局、申请号为202210767137.4,在2022年06月30日提交中国专利局、申请号为202221698323.9的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
随着速率的逐渐升高,差分驱动具有更强的驱动能力、抗干扰能力强、时序定位准确,在信号传输上多采用差分信号传输。
发明内容
本公开公开了一种光模块,包括:
电路板,其上表面设有第一子输出焊盘和第二子输出焊盘;
激光驱动芯片,设置于所述电路板的上表面,与所述第一子输出焊盘和所述第二子输出焊盘连接;
所述电路板的下表面设有:
第一子差分焊盘,与所述第一子输出焊盘电连接;
第二子差分焊盘,与所述第一子输出焊盘电连接;
第一电容焊盘;
第一电容,跨接于所述第一子差分焊盘与所述第一电容焊盘之间;
第二电容焊盘;
第二电容,跨接于所述第二子差分焊盘与所述第二电容焊盘之间;
第二差分线,一端与所述第二电容焊盘连接;
第一负极焊盘;
第一电阻焊盘,与所述第一电容焊盘导线连接;
第一电阻,跨接于所述第一负极焊盘与所述第一电阻焊盘之间;
基板,其下表面设置EML激光器,EA匹配电阻与所述EML激光器并联;
所述EML激光器还与所述第二差分线连接。
本公开公开了另一种光模块,包括:
上壳体;
下壳体,与所述上壳体盖合形成包裹腔体;
电路板,设置于所述包裹腔体内部;
基板,表面设有第一接地导电区、第一电阻焊盘、第二电阻焊盘和信号线,所述第一接地导电区与所述电路板上的接地信号线连接;
第一电阻,跨接于所述第一电阻焊盘与所述第一接地导电区之间;
第二电阻,跨接于所述第二电阻焊盘与所述第一接地导电区之间;
所述电路板上设有第一差分驱动信号线和第二差分驱动信号线;所述第一差分驱动信号线与所述信号线连接;所述第二差分驱动信号线与所述第二电阻焊盘连接;
所述第一接地导电区上设有EML激光器,所述EML激光器包括:负极焊盘、电吸收调制焊盘和发光焊盘;
所述负极焊盘与所述第一接地导电区连接,所述电吸收调制焊盘与所述第一电阻焊盘连接,所述电吸收调制焊盘与所述信号线连接。
附图说明
为了更清楚地说明本公开中的相关技术,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种光通信系统的连接关系图;
图2为根据一些实施例的一种光网络终端的结构图;
图3为根据一些实施例的一种光模块的结构图;
图4为根据一些实施例的一种光模块的分解图;
图5为根据一些实施例的一种光发射器件的分解结构示意图;
图6为根据一些实施例的光发射器件的另一分解结构示意图;
图7为根据一些实施例的一种光发射器件的局部结构示意图;
图8为根据一些实施例的一种陶瓷基板剖面结构示意图一;
图9为根据一些实施例的一种陶瓷基板的上表面结构示意图一;
图10为根据一些实施例的一种电路板结构示意图;
图11为根据一些实施例的一种电路板下表面的局部结构示意图;
图12为根据一些实施例的一种电路板与COC(Chip On Carrier,芯片载板)结构体连接示意图;
图13为根据一些实施例的光发射组件的等效电路示意图;
图14为根据一些实施例的一种电路板的第十板层局部示意图;
图15为根据一些实施例的一种电路板第七板层的示意图;
图16为根据一些实施例的一种电路板第四板层的结构示意图;
图17为根据一些实施例的一种电路板第一板层的结构示意图;
图18为根据一些实施例的一种电路板上表面的结构示意图;
图19为根据一些实施例的另一种电路板上表面的结构示意图;
图20为根据一些实施例的一种陶瓷基板的上表面结构示意图一;
图21为根据一些实施例的一种陶瓷基板的上表面结构示意图二;
图22为根据一些实施例的一种陶瓷基板剖面结构示意图;
图23为根据一些实施例的陶瓷基板与电路板连接示意图一;
图24为根据一些实施例的陶瓷基板与电路板连接示意图二。
具体实施方式
光通信系统中,使用光信号携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光通过光纤或光波导传输时具有无源传输特性,因此可以实现低成本、低损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要用于供电、I2C信号传输、数据信息传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为光通信系统的连接关系图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在通常的光通信系统中,远端服务器1000与光网络终端100之间的距离通常可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000之间的连接由光纤101与网线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口,光口被配置为接入光纤101,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立信息连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光信号与电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络终端100包括大致呈长方体的壳体(housing),以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使 得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105表面的笼子106,设置在笼子106上的散热器107,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建议双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图。如图3所示,光模块200包括壳体(shell),设置于壳体内的电路板300及光收发组件。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开的一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指从电口204伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光收发组件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发组件等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300和光收发组件等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件,解锁部件被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件位于下壳体202的两个下侧板2022的外壁上,具有与上位机笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件时,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、限幅放大器(limiting amplifier)、时钟数据恢复(Clock and Data Recovery,CDR)芯片、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳地承载;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。例如,硬性电路板与光收发组件之间可以采用柔性电路板连接。
光收发组件包括光发射器件及光接收器件,光发射器件被配置为实现光信号的发射,光接收器件被配置为实现光信号的接收。示例地,光发射器件及光接收器件结合在一起,形成一体地光收发组件。
图5为本公开提供的一种光发射器件的分解结构示意图;图6为本公开提供的光发射器件的另一分解结构示意图;下面结合图5和图6对本公开光模块的光发射部分的整体结构进行说明。如图5、图6所示,光发射器件400包括发射盖板401和外壳402,发射盖板401和外壳402盖合连接,具体发射盖板401从上方盖合外壳402,外壳402的一侧壁具有开口404,用于电路板300的插入,外壳402的另一侧壁具有通孔,用于光纤适配器403的插入。
具体地,电路板300通过开口404伸入外壳402中,电路板300与下壳体202固定;电路板300上镀有金属走线,光学器件可以通过打线的方式与对应的金属走线电连接,以实现外壳402内的光学器件与电路板300的电连接。
光发射器件发射的信号光射入该通孔,光纤适配器403伸入通孔405中以耦合接收信号光,这种配装结构设计可以使得光纤适配器403在通孔405中前后移动,可以调节光纤在光发射器件及光纤插头之间的需求尺寸,当光纤较短时,可以在通孔中将光纤适配器向后(向腔体外部方向)移动,以满足连接尺寸要求;当光纤较长时,可以在通孔中将光纤适配器向前(向腔体内部方向)移动,以拉直光纤,避免光纤弯曲。光纤适配器403插入 通孔中以实现与光发射器件400的固定;装配过程中,光纤适配器403可以在通孔中移动以选择固定位置。
外壳402的一侧壁具有开口404,用于电路板300的插入,外壳402的另一侧壁具有通孔,用于光纤适配器403的插入。
本实施例设置外壳402内的光学器件可选地还可以通过引脚与电路板300连接,其中,引脚设计为与下壳体相适配的形状,引脚一端插入下壳体内部,并且在该端上镀有金属走线,光学器件可以通过打线的方式与对应的金属走线电连接,引脚置于外壳402的一端设有多个与金属走线电连接的管脚,通过将管脚插入电路板300中并焊接在一起,进而实现外壳402内的光学器件与电路板300的电连接,当然,也可以通过将引脚上的管脚直接与电路板300焊接在一起,以实现外壳402内的光学器件与电路板300的电连接。
在信号发射过程中,外壳402内的光发射子器件500在接收到电路板300传输来的电信号后,会将该电信号转换成光信号,然后该光信号进入光纤适配器403后,发射至光模块外部。
光发射器件具有封装结构,以将激光芯片等封装起来,已有的封装结构包括同轴封装TO-CAN(Transistor Outline package-CAN)、硅光封装、板上芯片透镜组件封装COB-LENS(Chip On Board-LENS)、微光学XMD(10G igabit Miniature Device Muti Source Agreement,10G光器件多源协议,其中X代表10G速率)封装。封装还分为气密性封装及非气密性封装,封装一方面为激光芯片提供稳定、可靠的工作环境,另一方面形成对外的电连接及光输出。
根据产品设计及工艺,光模块会采用不同的封装以制作光发射器件。激光芯片有垂直腔面出光,也有边发光,激光芯片出光方向的不同也会影响对封装形态的选择。各种封装之间具有明显的技术区别,不论从结构还是从工艺都是不同的技术方向,本领域技术人员知晓,虽然不同封装实现的目的具有一定的相同点,但是不同封装属于不同的技术路线,不同的封装技术之间不会相互给与技术启示。
光发射器件可设有一组或多组COC结构体。
以下参见图7至图9,其中,图7为本公开提供的一种光发射器件的局部结构示意图;如图7所示,本公开中COC结构体包括:基板,设置于外壳402内,选氧化铝陶瓷、氮化铝陶瓷等。陶瓷基板表面雕刻有激光器芯片的功能电路,用于信号的传输,如传输线。陶瓷基板的表面设有EML(Electro-absorption Modulated Laser)激光器,EML激光器为激光器DFB与电吸收调制器EA与的集成器件,激光器DFB将电信号转换为光信号,电吸收调制器EA对光信号进行编码调制后输出,使得输出的光信号携带信息。EML激光器设有发光焊盘5033、电吸收调制焊盘5032和负极焊盘5031,负极焊盘设置于EML激光器的下表面,发光焊盘、电吸收调制焊盘设置于EML激光器的上表面。
图8为本公开提供的一种陶瓷基板剖面结构示意图一。结合图8所示,陶瓷基板设有叠加的第一子陶瓷基板510和第二子陶瓷基板520,其中第一子陶瓷基板510设置于第二子陶瓷基板的上方,且第一子陶瓷基板510与第二子陶瓷基板520之间设有接地层530,为信号回流层。
图9为本公开提供的一种陶瓷基板的上表面结构示意图。如图9中所示,第一子陶瓷基板的上表面设置第一EML接地导电区5011、信号导电区5012和DFB(Distributed FeedBack,分布式反馈激光器)供电焊盘5013。
在光模块模进行信号发送时,金手指将电信号引入到激光器驱动芯片,激光器驱动芯片将该电信号传输到EML激光器,然后利用EML激光器将该电信号转化为光信号,其中激光器驱动芯片和EML激光器之间通过导线连接,该导线存在一定地特性阻抗,由于激光器驱动芯片输出的阻抗额定,当EML激光器输出的阻抗与该特性阻抗不匹配时,激光器驱动芯片和激光器之间传输信号会有损耗,降低信号的完整性,因此为了保证信号的完整性,需要保证EML激光器输出的阻抗与该特性阻抗相匹配,需要说明的是,此处的匹配含义是指使EML激光器输出的阻抗值达到特性阻抗值,也就是,EML激光器输出的阻抗值与特性阻抗值一致。
信号导电区5012具有特定的信号阻抗,而EML激光器具有特定的激光器阻抗,且激光器阻抗大于信号阻抗。为实现特性阻抗,EML激光器并联有匹配电路。为方便描述,以下将与EML蒋光器匹配需要的阻抗称为匹配阻抗。
EA(Electroabsorption,电吸收)匹配电阻5014跨接于第一匹配电阻焊盘5015与第一EML接地导电区5011之间;第一匹配电阻焊盘与EML激光器的电吸收调制焊盘5032通过打线连接。第一匹配电阻5015与电吸收调制器并联后的阻抗,等于驱动芯片和EML激光器的特性阻抗的值,保证信号的完整性。
为方便制备,EA匹配电阻具备阻抗匹配作用,最终使EML激光器的阻抗与该特性阻抗相一致;由于陶瓷基板的空间较小,一般第一匹配电阻采用的是薄膜电阻,其通过陶瓷基板的一块区域烧结而成。为方便表述,本公开将第一匹配电阻与电吸收调制器并联后的电路称为EA匹配电路。
第一子陶瓷基板的上表面还设有DFB供电焊盘,与EML激光器的发光焊盘5033打线连接。
本公开提供的光模块,包括8个COC结构体,设置于外壳402内,另一端与电路板连接。为实现对电路板上设有驱动芯片,与COC结构体中的信号导电区电连接,对EML激光器的电吸收调制区进行调制。每个COC结构体中包含1个EML激光器,光发射器件包括8个EML激光器。
COC结构体中的激光器可朝向上壳体设置,也可朝向下壳体设置,为方便表述,本公开光模块的激光器朝向下壳体设置,DSP芯片设置于电路板的上表面。
图10为根据示例示出的一种电路板结构示意图,本公开以十个板层为例,电路板300包括:依次叠加的第一板层301、第二板层302、第三板层303、第四板层304、第五板层305、第六板层306、第七板层307、第八板层308、第九板层309、第十板层310,每两个相邻的板层的之间填充有介质层,介质层为绝缘材质,如填充有玻璃纤维或环氧树脂等介质。为方便表述,本公开中第二板层302、第三板层303、第四板层304、第五板层305、第六板层306、第七板层307、第八板层308、第九板层309又可称为中间板层。DSP芯片设置于电路板的上表面,即位于第一板层的上方,而COC结构体与电路板下表面的电路打线连接。
图11为根据示例示出的一种电路板下表面的局部结构示意图,图12为根据示例示出的一种电路板与COC结构体连接示意图。图13为本公开提供的光发射组件的等效电路示意图。如图中所示,驱动芯片输出两路差分信号,其中一路与第一电容C1、第一电阻R1串联后接地;另一路差分信号线与第二电容C2串联,第二电阻与EML激光器并联形成EA并联电路。EA并联电路的一端与第二电容C2串联,另一端接地。本公开中驱动芯片 内置于DSP芯片的内部。
图14为根据示例示出的一种电路板的第十板层局部示意图。电路板的第十板层包括:差分信号区,接收DSP芯片的调制信号,与COC结构体中的信号导电区电连接。差分信号区设有多组差分信号电路,其中第一组差分信号电路包括:第一差分信号电路和第二差分信号电路。第一差分信号电路包括:第一子差分焊盘3105、第一电容焊盘3106、第一电阻焊盘3107、第一接地焊盘3101;第一电容311跨接于第一电容焊盘3106与第一子差分焊盘3105之间,第一电阻312跨接于第一电阻焊盘3107与第一接地焊盘3011之间,第一电阻焊盘与第一电容焊盘之间可以是一体式铜板蚀刻而成的电路设计,也可以在第一电阻焊盘与第一电容焊盘之间导线连接。
第二差分信号电路包括:第二子差分焊盘3108、第二电容焊盘3109和第二子差分线3104,第二电容313跨接于第二子差分焊盘3108与第二电容焊盘3109之间,第二子差分线3104的一端与第二电容焊盘连接,另一端与COC结构体中信号导电区5012打线连接。
第一子差分焊盘与DSP芯片的第一子差分输出引脚通过过孔连接,第二子差分焊盘与DSP芯片的第二子差分输出引脚通过过孔连接。
为实现与COC结构体的打线连接,差分信号区的多组差分信号电路的第一端(左端)的子差分线分散分布于电路板的端部。
图15为根据示例示出的一种电路板第七板层的示意图。为保持电路板的弯折性能,电路板中间区域不存在由第一板层与第十板层之间贯通的通孔。为将靠近电路板边缘的分散分布的差分信号线组与TOP(顶)层DSP芯片的引脚连接,第七板层设有信号过渡区。信号过渡区内设置多组信号过渡线,其一端通过过孔与第四板层的信号导引线连接,另一端与第十板层的差分信号电路连接。如,信号过渡区设有第一组信号过渡线,其第一端与第一组信号导引线3041通过过孔连接。其中第一组信号过渡线3071包括:第一子信号过渡线30711和第二子信号过渡线30712,第一子信号过渡线30711的第一端与第一组信号导引线中的第一子信号导引线30411连接,另一端与第一子差分焊盘连接;第二子信号过渡线30712的第一端与第二组信号导引线中的第二子信号导引线连接,另一端与第二子差分焊盘里连接。为了避免不同组信号过渡线之间的信号干扰,每组组信号过渡线的四周分布接地过孔,为临近组信号过渡线的信号提供回流地。同时,围绕每组信号过渡线的接地过孔对组信号过渡线外部信号进行屏蔽,减少信号过渡线对信号导引线内信号的影响,有利于减少信号噪声。
如图15中所示,信号过渡区设有第一组信号过渡线3071、第二组信号过渡线3072、第三组信号过渡线3073、第四组信号过渡线3074、第五组信号过渡线3075、第六组信号过渡线3076、第七组信号过渡线3077、第八组信号过渡线3078,分别与第十板层对应的组差分信号电路连接。信号过渡区设有第一组信号过渡线3071、第二组信号过渡线3072、第三组信号过渡线3073、第四组信号过渡线3074、第五组信号过渡线3075、第六组信号过渡线3076、第七组信号过渡线3077、第八组信号过渡线3078的第一端并列排布在一条直线上,且与电路板第一端的距离相同;各相邻组信号过渡线的第二端交错排列。
第二组信号过渡线3072、第四组信号过渡线3074、第六组信号过渡线3076、第八组信号过渡线3078第二端并列排布在一条直线上,且与电路板第一端的距离相同。
其中,第一组信号过渡线3071的第二端与电路板第一端的距离,大于第二组信号过渡线3072第二端与电路板第一端的距离。
第一子信号过渡线的第一端和第二子信号过渡线的第一端之间的间距,小于第一子信号过渡线的第二端和第二子信号过渡线的第二端之间的间距。
通常连接表层(包括第一板层和第十板层)的过孔为激光孔,具有较小的半径。而两端连接中间板层的过孔为机械孔。机械孔的半径大于激光孔的半径。
为方便表述,本公开将第十板层与第七板层之间的过孔称为第一过孔。由图中可知,第一过孔位于第十板层差分信号区的第二端(右端),而在第七板层信号过渡区的第一端(左端)。
每组信号过渡线的子差分焊盘距离电路板的第一端(左端)的距离一致,相邻的组信号过渡线的间隔相同。
因第四板层与第十板层之间的厚度较大,直接采用过孔将第四板层与第十板层连接将使得过孔的开孔长度较大,电路板的承压能力变弱,因此在第七板层设有信号过渡区,第四板层设有信号导引区。图16为根据示例示出的一种电路板第四板层的结构示意图。参照图16所示,第四板层设有信号导引区,其内设置多组信号导引线,为了增加不同组信号线之间的距离,减少信号干扰,不同组信号导引线向不同的方向延伸,第四板层设有第一组信号导引线3041、第二组信号导引线3042、第三组信号导引线3043,其延伸方向为向电路板的宽度方向的第一侧延伸;第四组信号导引线3044、第五组信号导引线3045、第六组信号导引线3046、第七组信号导引线3047、第八组信号导引线3048,为向电路板的宽度方向的第二侧延伸,使得为第一组信号导引线、第二组信号导引线、第三组信号导引线、第四组信号导引线、第五组信号导引线、第六组信号导引线、第七组信号导引线、第八组信号导引线的第一端靠近电路板,且相对第二端分布分散。
第一组信号导引线3041、第二组信号导引线3042、第三组信号导引线3043、第五组信号导引线3045和第七组信号导引线3047的第而端通过过孔与激光器对应的驱动输出引脚连接;而第四组信号导引线3044、第六组信号导引线3046和第八组信号导引线3048的第二端通过过孔与电路板对应的表层信号线连接。
为了避免不同组信号导引线之间的信号干扰,每组信号导引线的四周分布接地过孔,为临近信号导引线的信号提供回流地。同时,围绕每组信号导引线的接地过孔对信号导引线外部信号进行屏蔽,减少信号导引线外部信号对信号导引线内信号的影响,有利于减少信号噪声。
第一组信号导引线3041包括:第一子信号导引线30411和第二子信号导引线30412,通过过孔分别与第一子输出焊盘30111和第二子输出焊盘30112连接。第一子信号导引线30411的第一端和第二子信号导引线30412的第一端之间的间距,大于第一子信号导引线30411的第二端和第二子信号导引线30412的第二端之间的间距。
第四板层与第七板层之间的过孔称为第二过孔,第四板层与第一板层之间的过孔为第三过孔。第四板层与第七板层之间的过孔为机械孔,比第一过孔的直径大。如不同组信号导引线的第二过孔并列排列,则信号导引区的第一端需要占据的空间较大。因此,相邻组信号导引线的左端第二过孔左右交错排列,以节约空间。相邻组信号导引线的第二过孔不在同一直线上,增加了相邻组信号线的第二过孔的距离,有利于减少不同第二过孔之间的信号串扰,提高通信质量。相邻组信号导引线的第二过孔不在同一直线上,有利于提高电路板的弯折能力。
如图中所示,第一组信号导引线3041、第三组信号导引线3043、第五组信号导引线 3045、第七组信号导引线3047的第一端位于同一直线上,通过第二过孔与底气板层对应的信号过渡线连接。第二组信号导引线3042、第四组信号导引线3044、第六组信号导引线3046、第八组信号导引线3048的第一端位于同一直线上,通过第二过孔与底气板层对应的信号过渡线连接。且第一组信号导引线3041的第一端与第二组信号导引线3042的第一端不在同一条直线上,第一组信号导引线3041的第一端与电路板第一端的距离,大于第二组信号导引线3042的第一端与电路板第一端的距离。
第七板层的组信号过渡线的第二端与第四板层的组信号导引线的第一端通过第二过孔连接,其在电路板水平方向的位置一一对应,在此不在一一赘述。
通常,为方便芯片规划,激光驱动芯片的引脚在DSP芯片的位置集中,其相邻位置设有其他功能引脚,如,与光接收组件连接的光接收信号引脚。为了将多组信号线与激光驱动芯片的引脚连接,信号过渡区的第二端分布范围比信号过渡区的第二端集中。如图中所示,第一组信号导引线3041、第二组信号导引线3042、第三组信号导引线3043、第五组信号导引线3045和第七组信号导引线3047的第二端依次相邻排列,第七组信号导引线3047的另一侧为空白区域,用于光接收信号线的布局。
本示例中,组信号过渡线的长度小于组信号导引线的长度,也可根据需要将组信号过渡线的长度设置为大于组信号导引线的长度。
为避免信号串扰,信号导引区在第一板层的投影不覆盖DSP芯片的其他功能区。
图17为根据示例示出的一种电路板第一板层的结构示意图,图18为根据示例示出的一种电路板上表面的结构示意图。结合图17和图18所示,为实现对光发射器件中的8个EML激光器的电吸收调制区的调制信号的输入,电路板的上表面设有DSP芯片314,其内设置有激光驱动器。在本公开中激光驱动器设有八组驱动输出引脚,上表面设有与其对应的多组输出焊盘,包括:第一组输出焊盘3011、第二组输出焊盘3012、第三组输出焊盘3013、第四组输出焊盘3014、第五组输出焊盘3015、第六组输出焊盘3016、第七组输出焊盘3017和第八组输出焊盘3018。
其中,第一组输出焊盘3011、第二组输出焊盘3012、第三组输出焊盘3013、第五组输出焊盘3015、第七组输出焊盘3017设置于激光驱动器与电路板之间;即第一组输出焊盘3011、第二组输出焊盘3012、第三组输出焊盘3013、第五组输出焊盘3015、第七组输出焊盘3017对应的输出引脚设置于激光驱动器的下表面。第四组输出焊盘3014、第六组输出焊盘3016、和第八组输出焊盘3018对应的引脚设置于靠近激光驱动器的边缘,以引脚的形式与电路板上对应的电路连接。
为了方便驱动输出引脚内的信号回流,减少信号损耗,在每组输出焊盘周围设置接地过孔,与电路板的接地层连接,为输出焊盘的信号提供回流地。同时,围绕每组输出焊盘的接地过孔对驱动输出引脚外部信号进行屏蔽,减少输出焊盘外部信号对输出焊盘内信号的影响,有利于减少信号噪声。
第一组输出焊盘3011包括第一子输出焊盘30111和第二子输出焊盘30112,为一组差分信号焊盘。
因激光驱动器的八组驱动输出引脚距离较近,容易对周边信号产生影响,电路板的上表面设有第四表层信号线、第六表层信号线和第八表层信号线,方便第四组输出焊盘3014、第六组输出焊盘3016、和第八组输出焊盘3018输出的信号在电路板的上表面进行传播。
第四表层信号线的第二端与第四组输出焊盘3014连接,另一端设有第四表层过孔, 将第四组输出焊盘3014输出的信号导入电路板的中间层。在本示例中,第四表层过孔的第一端设置于第四板层。同样的,第六表层信号线的第二端与第六组组输出焊盘连接,第一端设有第六表层过孔,将第六组组输出焊盘输出的信号导入电路板的中间层。在本示例中,第六表层过孔的另一端设置于第四板层。第八表层信号线的第二端与第八组组输出焊盘连接,第一端设有第八表层过孔,将第八组组输出焊盘输出的信号导入电路板的中间层。在本示例中,第八表层过孔的另一端设置于第四板层。
第四板层与第一板层之间的过孔之间称为第三过孔,为激光孔。相邻的过孔整齐排列。
结合图12所示,电路板下表面的局部结构示意图可知,本公开提供的光模块包括激光驱动芯片,设置于电路板的上表面,其设置第一组差分输出引脚,携带差分驱动信号。电路板的下表面设有第一组差分信号电路。其中,第一组差分输出引脚包括第一子差分输出引脚和第二子差分输出引脚,第一子差分输出引脚和第二子差分输出引脚的差分阻抗为第一差分阻抗。第一差分信号电路包括:第一子差分焊盘、第一电容焊盘、第一电阻焊盘、第一接地焊盘;第一电容跨接于第一电容焊盘与第一子差分焊盘之间,第一电阻跨接于第一电阻焊盘与第一接地焊盘之间,第一电阻焊盘与第一电容焊盘之间可以是一体式铜板蚀刻而成的电路设计,也可以在第一电阻焊盘与第一电容焊盘之间导线连接。第二差分信号电路包括:第二子差分焊盘、第二电容焊盘和第二子差分线,第二电容跨接于第二子差分焊盘与第二电容焊盘之间,第二子差分线的一端与第二电容焊盘连接,另一端与COC结构体中信号导电区打线连接。第一子差分输出引脚与第一电容、第一电阻串联后接地,第二子差分输出引脚与第二电容串联后,经第二子差分线与EA匹配电路连接,实现将激光驱动芯片的差分输出与电吸收调制器的单端输入相匹配。
第一电阻为匹配电阻,与第一子差分输出引脚的阻抗相同,使得第一子差分输出引脚的输出阻抗均衡。第一电容与第二电容,可避免由接地区返回的回流对激光驱动芯片的影响。
为方便表述,本公开中第一子差分输出引脚到第一电容焊盘之间的线路称为第一信号线;第二子差分输出引脚到第二电容焊盘之间的线路称为第二信号线。
进一步,为减少差模转共模的量值,第一子差分输出引脚到第一电容焊盘的走线的距离,等于第二子差分输出引脚到第二电容焊盘的走线的距离;且第一差分信号电路与第二差分电路的走线的宽度尽可能相等。即同组的表层信号线、信号导引线、信号过渡线的宽度相等,且同组的表层信号线、信号导引线、信号过渡线的相互距离,大于或等于自身宽度的3倍。
如,第一子信号过渡线的宽度,等于第二子信号过渡线的宽度。第一子信号过渡线的与第二子信号过渡线的间距为第一子信号过渡线的宽度的三倍。
第一子信号过渡线的与第二子信号过渡线的间距,为第一子信号过渡线的中心与第二子信号过渡线的中心的距离。
图19为根据示例示出的另一种电路板上表面的结构示意图。为减少差模转共模的量值,还可以在第一差分信号电路和第二差分信号电路之间设置共模抑制电感316。如图17中所示,共模抑制电感的一端设置于第一电容与第一电阻之间,另一端设置于第二电容与第二电阻之间。共模抑制电感的跨接于设置于第一电容焊盘与第二电容焊盘上。
电路板上还设有第一EA电源电路,第一EA电源电路的输出端与第二子差分线连接,为电吸收调制区提供直流电源。
第一负极焊盘内设有第一供电焊盘3102、第二供电焊盘3103,其中,第一供电焊盘3102为DFB电源,与COC结构中的EML激光器的发光区打线连接,为EML激光器的发光区供电。第二供电焊盘3103为温控供电焊盘,为光发射器件中TEC提供电源。
下面给出本公开提供的另一种光模块的举例说明。
EML激光器设有发光焊盘、电吸收调制焊盘和负极焊盘,负极焊盘设置于EML激光器的下表面,发光焊盘、电吸收调制焊盘设置于EML激光器的上表面。
图20为本公开提供的一种陶瓷基板的上表面结构示意图一,图21为本公开提供的一种陶瓷基板的上表面结构示意图二。其中,图21为图20表面贴装电器件后的图示,如图20中所示,陶瓷基板的上表面设置第一接地导电区6011,第一接地导电区6011设有第一避让部50111、第二避让部50112、第三避让部50113和第四避让部50114。第一接地导电区6011设有第一避让部50111,第一避让部50111设有一开口,其内设有信号线6012。在本公开中第一接地导电区6011对信号线形成包围趋势,为信号线6012内携带的信息提供回流地,有利于减少信号噪声。
第一接地导电区6011设有第二避让部50112,其内设置第一电阻焊盘6013,第一电阻焊盘6013与第一接地导电区6011之间存在一定的间隙。第一电阻焊盘6013与第一接地导电区6011之间设置第一电阻504。为方便制备,第一电阻504具备阻抗匹配作用,最终使EML激光器503输出的阻抗与该特性阻抗相一致,因此可以将第一薄膜电阻称为匹配电阻;由于陶瓷基板的空间较小,一般第一电阻504采用的是薄膜电阻,其通过陶瓷基板的一块区域烧结而成。
第一接地导电区6011设有第三避让部50113,其内设置第二电阻焊盘6015,第二电阻焊盘6015与第一接地导电区6011之间存在一定的间隙。第二电阻焊盘6015与第一接地导电区6011之间设置第二电阻505。为方便制备,第二电阻505具备阻抗匹配作用,最终使EML激光器503输出的阻抗与该特性阻抗相一致,因此可以将第二电阻505称为匹配电阻;由于陶瓷基板的空间较小,一般第二电阻505采用的是薄膜电阻,其通过陶瓷基板的一块区域烧结而成。
第一接地导电区6011设有第四避让部50114,其内设置供电转接焊盘6014。EML激光器503包括:电吸收调制焊盘5032、发光焊盘5033和负极焊盘。电吸收调制焊盘5032与第一电阻焊盘6013通过打线连接。通常,电吸收调制焊盘5032与第一电阻焊盘6013之间设置第一导电线,第一导线可以为金线、银线或其他导电材质的金属线。为提高光模块的使用寿命,避免因温度、湿度等环境造成金属线的性能不稳定,第一导线是金线。
在本公开中,第一避让部50111与第三避让部50113相互连通。第一避让部50111与第三避让部50113相互连通也可不连通。
电吸收调制焊盘5032还与信号线连接。在本公开中,电吸收调制焊盘5032与信号线之间设置第二导电线,第二导线可以为金线、银线或其他导电材质的金属线。为提高光模块的使用寿命,避免因温度、湿度等环境造成金属线的性能不稳定,第二导线是金线。
通过以上设置,第一电阻焊盘6013经第一导电线、电吸收调制焊盘5032、第二导电线与信号线连接。第一电阻504的一端与第一电阻焊盘6013连接,第一电阻504的另一端与第一接地导电区6011连接。
EML激光器503的负极焊盘与第一接地导电区6011连接,根据本公开的一些实施例,EML激光器503的负极焊盘与第一接地导电区6011通过导电胶或焊锡连接。
电吸收调制焊盘5032与信号线之间设置第二导电线,EML激光器503的负极焊盘与第一接地导电区6011连接,结合第一电阻504的设置,第一电阻504与EML激光器503的电吸收调制区并联,第一电阻504具有电阻匹配的作用。
在光模块模进行信号发送时,金手指将电信号引入到激光器驱动芯片,激光器驱动芯片将该电信号传输到EML激光器503,然后利用EML激光器503将该电信号转化为光信号,其中激光器驱动芯片和EML激光器5033之间通过导线连接,该导线存在一定地特性阻抗,由于激光器驱动芯片输出的阻抗额定,当EML激光器503输出的阻抗与该特性阻抗不匹配时,激光器驱动芯片和激光器之间传输信号会有损耗,降低信号的完整性,因此为了保证信号的完整性,需要保证EML激光器503输出的阻抗与该特性阻抗相匹配,需要说明的是,此处的匹配含义是指使EML激光器503输出的阻抗值达到特性阻抗值,也就是,EML激光器503输出的阻抗值与特性阻抗值一致。第一电阻504与EML激光器503的电吸收调制区并联,使得EML激光器503输出的阻抗值与特性阻抗值一致。
EML激光器503的发光焊盘5033与供电转接焊盘6014连接。EML激光器503的发光焊盘5033与供电转接焊盘6014通过第三导线连接。第三导线可以为金线、银线或其他导电材质的金属线。为提高光模块的使用寿命,避免因温度、湿度等环境造成金属线的性能不稳定,第三导线是金线。
供电转接焊盘6014还有电路板上供电引脚连接,为EML激光器503提供电源。供电转接焊盘6014设置于电路板的供电引脚与EML激光器503的发光焊盘5033之间,将电路板的供电引脚与EML激光器503的发光焊盘5033之间的电连接分为两段完成,供电引脚与供电转接焊盘6014之间设置第四导线,发光焊盘5033与供电转接焊盘6014通过第三导线连接,避免了供电引脚与EML激光器503的发光焊盘5033之间的导电过长导致塌陷,提高了光模块的稳定性。
图22为本公开提供的一种陶瓷基板剖面结构示意图。结合图22所示,陶瓷基板设有叠加的第一子陶瓷基板510和第二子陶瓷基板520,其中第一子陶瓷基板510设置于第二子陶瓷基板的上方,且第一子陶瓷基板510与第二子陶瓷基板520之间设有接地层530,为信号回流层。为实现第一接地导电区6011与接地层530的连接,第一子陶瓷基板510设置一个或一个以上的过孔540,过孔的一端与第一接地导电区6011,另一端与接地层连接。
在本公开中,为方便各导线的连接,陶瓷基板上的信号线的两端设置信号连接焊盘,用于打线。根据本公开的一些实施例,信号线的第一端设有第一信号焊盘,第二端设有第二信号焊盘,第一信号焊盘与第二信号焊盘之间为信号连接线。其中,第一信号焊盘的宽度大于信号连接线的宽度,第二信号焊盘的宽度大于信号连接线的宽度。
电路板设有接地引脚,与第一接地导电区6011通过导线连接。电路板与陶瓷基板之间的导线位置应尽可能的缩短,以减少损耗。
图23为本公开提供的陶瓷基板与电路板连接示意图一。如图23所示,本公开提供了一种示例,激光驱动芯片输出的驱动信号为差分信号,则电路板设有第一差分驱动信号线701和第二差分驱动信号线702。第一差分驱动信号线701与陶瓷基板上的信号线6012连接,第二差分驱动信号线702与第二电阻焊盘6015连接。接地信号线703与第一接地导电区6011连接。
在申请示例中,第一差分驱动信号线701与信号线的第一端连接,其内携带的信号经 信号线6012的第一端传递至信号线6012的第二端。信号线的第二端与EML激光器503的电吸收调制焊盘5032连接。第二差分驱动信号线702与第二电阻焊盘6015连接,第二电阻焊盘6015与将第一接地导电区6011之间设置第二电阻505。第一差分驱动信号线701内的信号经信号线传递至电吸收调制焊盘5032,第二差分驱动信号线702内的信号经第二电阻焊盘6015、第二电阻505、第一接地导电区6011与EML激光器503的负极焊盘连接。
第一差分驱动信号线701与第二差分驱动信号线702的宽度相同、长度相同。第一差分驱动信号线701还与驱动芯片705连接,第二差分驱动信号线702还与驱动芯片705连接。第一差分驱动信号线701的第一端与驱动芯片705连接,第一差分驱动信号线701的第二端与信号线6012的第一端打线连接;第二差分驱动信号线702的第一端与驱动芯片705连接,第二差分驱动信号线702的第二端与第二电阻焊盘6015的第一端打线连接。为减少差分驱动信号线之间的长度差,保证阻抗的连续性,减小信号的反射,第一差分驱动信号线701的第一端与第二差分驱动信号线702的第一端平齐设置;第一差分驱动信号线701的第二端与第二差分驱动信号线702的第二端平齐设置。第二电阻焊盘6015与第二差分驱动信号线702的第二端的距离,等于第一接地导电区6011与第一差分驱动信号线701的第二端的最小距离。第一接地导电区6011与第一差分驱动信号线701的第二端之间的导线设置于第一接地导电区6011与第一差分驱动信号线701的最短距离处。
供电转接焊盘6014还有电路板上供电引脚连接704,为EML激光器503提供电源。供电转接焊盘6014设置于电路板的供电引脚与EML激光器503的发光焊盘5033之间,将电路板的供电引脚与EML激光器503的发光焊盘5033之间的电连接分为两段完成,供电引脚与供电转接焊盘6014之间设置第四导线,发光焊盘5033与供电转接焊盘6014通过第三导线连接,避免了供电引脚与EML激光器503的发光焊盘5033之间的导电过长导致塌陷,提高了光模块的稳定性。
图24为本公开提供的陶瓷基板与电路板连接示意图二。如图24所示,本公开还提供了另一种示例,激光驱动芯片输出的驱动信号为单端信号,则电路板设有驱动信号线706,驱动信号线与陶瓷基板上的信号线连接。第二电阻焊盘6015不与电路板连接。
由于以上实施方式均是在其他方式之上引用结合进行说明,不同实施例之间均具有相同的部分,本说明书中各个实施例之间相同、相似的部分互相参见即可。在此不再详细阐述。
需要说明的是,在本说明书中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或暗示这些实体或操作之间存在任何这种实际的关系或顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的电路结构、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种电路结构、物品或者设备所固有的要素。在没有更多限制的情况下,有语句“包括一个……”限定的要素,并不排除在包括所述要素的电路结构、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践本公开的公开后,将容易想到本公开的其他实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求的内容指出。
以上所述的本公开实施方式并不构成对本公开保护范围的限定。

Claims (30)

  1. 一种光模块,包括:电路板,其上表面设有第一子输出焊盘和第二子输出焊盘;
    激光驱动芯片,设置于所述电路板的上表面,与所述第一子输出焊盘和所述第二子输出焊盘连接;
    所述电路板的下表面设有:
    第一子差分焊盘,与所述第一子输出焊盘电连接;
    第二子差分焊盘,与所述第一子输出焊盘电连接;
    第一电容焊盘;
    第一电容,跨接于所述第一子差分焊盘与所述第一电容焊盘之间;
    第二电容焊盘;
    第二电容,跨接于所述第二子差分焊盘与所述第二电容焊盘之间;
    第二差分线,一端与所述第二电容焊盘连接;
    第一负极焊盘;
    第一电阻焊盘,与所述第一电容焊盘导线连接;
    第一电阻,跨接于所述第一负极焊盘与所述第一电阻焊盘之间;
    基板,其下表面设置EML激光器,EA匹配电阻与所述EML激光器并联;
    所述EML激光器还与所述第二差分线连接。
  2. 根据权利要求1所述的光模块,其中,所述电路板包括第一中间层,所述第一中间层设有第一子信号导引线和第二子信号导引线;
    所述第一子信号导引线与所述第一子输出焊盘电连接;
    所述第二子信号导引线与所述第二子输出焊盘电连接;
    所述第一子信号导引线与所述第二子信号导引线的宽度相同。
  3. 根据权利要求2所述的光模块,其中,所述第一子信号导引线与所述第二子信号导引线之间的间距大于或等于所述第一子信号导引线的宽度的三倍。
  4. 根据权利要求1所述的光模块,其中,所述第一电阻的阻抗与激光驱动芯片的差分阻抗相同。
  5. 根据权利要求1所述的光模块,其中,所述第一子输出焊盘和所述第二子输出焊盘的四周设置接地过孔。
  6. 根据权利要求5所述的光模块,其中,所述基板包括:第一EML接地导电区、信号导电区;
    所述第一EML接地导电区与所述EML激光器的负极焊盘连接;
    所述信号导电区与所述EML激光器的电吸收调制焊盘连接;
    所述EA匹配电阻的一端与所述电吸收调制焊盘打线连接,另一端与所述第一EML接地导电区电连接;
    所述第一EML接地导电区与所述第一负极焊盘导线连接。
  7. 根据权利要求6所述的光模块,其中,所述EML激光器还包括:发光焊盘;
    所述基板设有DFB供电焊盘,与所述发光焊盘打线连接;
    所述电路板还设有第一供电焊盘,位于所述第一负极焊盘的中间区域;
    所述第一供电焊盘与所述DFB供电焊盘打线连接。
  8. 根据权利要求6所述的光模块,其中,所述信号导电区与所述第二差分线打线连接。
  9. 根据权利要求1所述的光模块,其中,所述电路板的下表面设有:共模抑制电感,一端与所述第一电容焊盘连接,另一端与所述第二电容焊盘连接。
  10. 根据权利要求2所述的光模块,其中,所述电路板包括第二中间层,位于所述第一中间层的下方;
    所述第二中间层设有第一子信号过渡线和第二子信号过渡线;
    所述第一子信号过渡线的一端与所述第一子信号导引线电连接,另一端与所述第一子差分焊盘电连接;
    所述第二子信号过渡线的一端与所述第二子信号导引线电连接,另一端与所述第二子差分焊盘电连接。
  11. 根据权利要求1所述的光模块,其中,所述电路板包括:第一板层、第一中间层、第二中间层和第十板层;
    激光驱动器,设置于所述第一板层的上表面;
    所述第一板层设有多组输出焊盘与所述激光驱动器焊接;
    第三过孔,一端与所述第一板层连接,另一端与所述第一中间层连接;
    第一中间层,设置于所述第一板层和所述第二中间层之间,设有多组信号导引线;
    第二中间层,设置于所述第十板层和所述第一中间层之间;
    第二过孔,一端与所述第二中间板层连接,另一端与所述第一中间层连接;
    相邻的所述组信号导引线的第二过孔距离所述电路板的第一端的距离不同;
    所述第二过孔的直径大于所述第一过孔直径。
  12. 根据权利要求11所述的光模块,其中,所述多组输出焊盘包括:第一组输出焊盘和第四组输出焊盘;
    所述第一板层设有第四表层信号线,其第二端与所述第四组输出焊盘连接;
    所述多组信号过渡线包括:第一组信号过渡线和第四组过渡导引线;所述第一组信号导引线的第一端与所述第一组信号过渡线的第二端连接;所述第四组信号导引线的第一端与所述第四组信号过渡线的第二端连接;
    所述第一组信号导引线的第二端与所述第一组输出焊盘连接;所述第四组信号导引线的第二端与所述第一组输出焊盘连接第四表层信号线的第一端连接。
  13. 根据权利要求12所述的光模块,其中,所述第一组信号导引线的第一端与所述电路板第一端的距离,大于所述第四组信号导引线的第一端与所述电路板第一端的距离。
  14. 根据权利要求12所述的光模块,其中,相邻的各组信号导引线的第一端与所述电路板的第一端的距离不同。
  15. 根据权利要求12所述的光模块,其中,所述第一组信号导引线的第二端与所述第二组信号导引线的第二端的距离,大于所述第一组输出焊盘和所述第四组输出焊盘之间的距离。
  16. 根据权利要求12所述的光模块,其中,所述第一组信号导引线的长度大于所述第一组信号过渡线的长度;
    所述第四组信号导引线的长度大于所述第四组信号过渡线的长度。
  17. 根据权利要求12所述的光模块,其中,所述第十板层设有多组差分信号电路,与所述第二中间层通过第一过孔连接;
    所述组差分信号电路包括:
    跨接于第一电容焊盘与第一子差分焊盘之间的第一电容;
    跨接于第一电阻焊盘与第一接地焊盘之间的第一电阻;
    跨接于第二子差分焊盘与第二电容焊盘之间第二电容;
    所述第一组信号过渡线包括:第一子信号过渡线和第二子信号过渡线;
    所述第一子差分焊盘与第一子信号过渡线电连接;所述第二子差分焊盘与第二子信号过渡线电连接。
  18. 根据权利要求17所述的光模块,其中,所述组差分信号电路还包括:共模抑制电感,一端与所述第一电容焊盘连接,另一端与所述第二电容焊盘连接。
  19. 根据权利要求17所述的光模块,其中,所述第一过孔的直径小于所述第二过孔的直径。
  20. 根据权利要求17所述的光模块,其中,相邻的所述第二过孔的间距,大于相邻的所述第三过孔的间距。
  21. 一种光模块,包括:上壳体;
    下壳体,与所述上壳体盖合形成包裹腔体;
    电路板,设置于所述包裹腔体内部;
    基板,表面设有第一接地导电区、第一电阻焊盘、第二电阻焊盘和信号线,所述第一接地导电区与所述电路板上的接地信号线连接;
    第一电阻,跨接于所述第一电阻焊盘与所述第一接地导电区之间;
    第二电阻,跨接于所述第二电阻焊盘与所述第一接地导电区之间;
    所述电路板上设有第一差分驱动信号线和第二差分驱动信号线;所述第一差分驱动信号线与所述信号线连接;所述第二差分驱动信号线与所述第二电阻焊盘连接;
    所述第一接地导电区上设有EML激光器,所述EML激光器包括:负极焊盘、电吸收调制焊盘和发光焊盘;
    所述负极焊盘与所述第一接地导电区连接,所述电吸收调制焊盘与所述第一电阻焊盘连接,所述电吸收调制焊盘与所述信号线连接。
  22. 根据权利要求21所述的光模块,其中,所述电路板上设置驱动芯片,与所述第一差分驱动信号线和所述第二差分驱动信号线;所述第一差分驱动信号线的第一端与所述驱动芯片连接,所述第一差分驱动信号线的第二端与所述信号线打线连接;
    所述第二差分驱动信号线的第一端与所述驱动芯片连接,所述第二差分驱动信号线的第一端与所述第二电阻焊盘打线连接。
  23. 根据权利要求21所述的光模块,其中,所述第二电阻焊盘与所述第二差分驱动信号线的最小距离,等于所述第一差分驱动信号线与所述信号线的最小距离。
  24. 根据权利要求21所述的光模块,其中,所述第一电阻为薄膜电阻,所述第二电阻为薄膜电阻。
  25. 根据权利要求21所述的光模块,其中,所述第一接地导电区设置第一避让区,所述信号线设置于所述第一避让区内,所述第一接地导电区还设有第三避让部,所述第二电阻焊盘设置于所述第三避让部内,所述第一避让部与所述第三避让部连通。
  26. 根据权利要求25所述的光模块,其中,所述第一接地导电区还设有第二避让部,所述第一电阻焊盘设置于所述第二避让部内。
  27. 根据权利要求21所述的光模块,其中,所述第一接地导电区还设有第四避让部,所述第四避让部内设有供电转接焊盘;
    所述供电引脚与所述供电转接焊盘连接。
  28. 根据权利要求21所述的光模块,其中,所述基板包括:
    第一子基板;
    第二子基板,所述第一接地导电区设置于所述第二基板的上表面;
    接地层,设置于所述第一子基板与所述第二子基板之间,所述第一接地导电区与所述接地层之间通过过孔连接。
  29. 根据权利要求21所述的光模块,其中,所述电路板上设置接地引脚,与所述第一接地导电区连接。
  30. 根据权利要求21所述的光模块,其中,所述信号线的第一端设有第一信号焊盘,与所述电路板连接;
    所述信号线的第二端设有第二信号焊盘,与所述电吸收调制焊盘连接;
    所述第一接地导电区围绕所述信号线的三面设置,所述信号线的第二端处设有一开口。
PCT/CN2022/129247 2022-06-10 2022-11-02 一种光模块 WO2023236425A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202221457024.6 2022-06-10
CN202221457024.6U CN217693343U (zh) 2022-06-10 2022-06-10 一种光模块
CN202221698323.9 2022-06-30
CN202221698323.9U CN217766937U (zh) 2022-06-30 2022-06-30 一种光模块
CN202210767137.4A CN115220160B (zh) 2022-06-30 2022-06-30 一种光模块
CN202210767137.4 2022-06-30

Publications (1)

Publication Number Publication Date
WO2023236425A1 true WO2023236425A1 (zh) 2023-12-14

Family

ID=89117471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129247 WO2023236425A1 (zh) 2022-06-10 2022-11-02 一种光模块

Country Status (1)

Country Link
WO (1) WO2023236425A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646356A (zh) * 2018-03-19 2018-10-12 青岛海信宽带多媒体技术有限公司 一种光模块
CN113009646A (zh) * 2019-12-20 2021-06-22 青岛海信宽带多媒体技术有限公司 一种光模块
US20210239925A1 (en) * 2020-01-30 2021-08-05 CIG Photonics Japan Limited Optical module and optical transmission device
WO2021218463A1 (zh) * 2020-04-26 2021-11-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN114035288A (zh) * 2021-11-30 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022083366A1 (zh) * 2020-10-20 2022-04-28 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022105413A1 (zh) * 2020-11-18 2022-05-27 青岛海信宽带多媒体技术有限公司 一种光模块
CN115220160A (zh) * 2022-06-30 2022-10-21 青岛海信宽带多媒体技术有限公司 一种光模块
CN217693343U (zh) * 2022-06-10 2022-10-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN217766937U (zh) * 2022-06-30 2022-11-08 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646356A (zh) * 2018-03-19 2018-10-12 青岛海信宽带多媒体技术有限公司 一种光模块
CN113009646A (zh) * 2019-12-20 2021-06-22 青岛海信宽带多媒体技术有限公司 一种光模块
US20210239925A1 (en) * 2020-01-30 2021-08-05 CIG Photonics Japan Limited Optical module and optical transmission device
WO2021218463A1 (zh) * 2020-04-26 2021-11-04 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022083366A1 (zh) * 2020-10-20 2022-04-28 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022105413A1 (zh) * 2020-11-18 2022-05-27 青岛海信宽带多媒体技术有限公司 一种光模块
CN114035288A (zh) * 2021-11-30 2022-02-11 青岛海信宽带多媒体技术有限公司 一种光模块
CN217693343U (zh) * 2022-06-10 2022-10-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN115220160A (zh) * 2022-06-30 2022-10-21 青岛海信宽带多媒体技术有限公司 一种光模块
CN217766937U (zh) * 2022-06-30 2022-11-08 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
WO2021227643A1 (zh) 一种光模块
CN112965190A (zh) 一种光模块
CN213659029U (zh) 一种光模块
CN114035287A (zh) 一种光模块
CN216772051U (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114488438B (zh) 一种光模块
WO2022111034A1 (zh) 一种光模块
WO2022052842A1 (zh) 一种光模块
CN214278492U (zh) 一种光模块
WO2021114714A1 (zh) 一种光模块
CN217693343U (zh) 一种光模块
CN115220160B (zh) 一种光模块
WO2023030457A1 (zh) 光模块
CN217766937U (zh) 一种光模块
WO2024016905A1 (zh) 光模块及激光组件
CN217484550U (zh) 一种光模块及激光组件
WO2022193734A1 (zh) 一种光模块
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN216772052U (zh) 一种光模块
WO2023236425A1 (zh) 一种光模块
WO2022127594A1 (zh) 一种光模块
WO2021244101A1 (zh) 一种光模块
CN113281853B (zh) 一种光模块
CN217718170U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945554

Country of ref document: EP

Kind code of ref document: A1