WO2023236047A1 - Power-assisted drive assembly - Google Patents

Power-assisted drive assembly Download PDF

Info

Publication number
WO2023236047A1
WO2023236047A1 PCT/CN2022/097404 CN2022097404W WO2023236047A1 WO 2023236047 A1 WO2023236047 A1 WO 2023236047A1 CN 2022097404 W CN2022097404 W CN 2022097404W WO 2023236047 A1 WO2023236047 A1 WO 2023236047A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
mounting part
spindle
motor
drive assembly
Prior art date
Application number
PCT/CN2022/097404
Other languages
French (fr)
Inventor
Yuk Chun Jon CHAN
Original Assignee
Chan Yuk Chun Jon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chan Yuk Chun Jon filed Critical Chan Yuk Chun Jon
Priority to PCT/CN2022/097404 priority Critical patent/WO2023236047A1/en
Publication of WO2023236047A1 publication Critical patent/WO2023236047A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K19/00Cycle frames
    • B62K19/30Frame parts shaped to receive other cycle parts or accessories
    • B62K19/34Bottom brackets

Definitions

  • the present invention relates to a power-assisted drive assembly for use particularly, but not exclusively, in a manually driven apparatus.
  • the invention also relates particularly, but not exclusively, to a power-assisted drive assembly installable to a pedal cycle such as a bicycle.
  • a hub motorpower-assisted drive unit cannot utilize gear shifting or offer any changeability of gear ratio for the output generated by the power-assisted drive unit.
  • Another shortcoming of the hub motor arrangement is that it can offer only very limited torque output, in which such arrangement is only capable for propelling bicycles on smooth roads.
  • a hub motor arrangement further lacks the integration of torque sensing arrangement making it not suitable for using as a power-assisted drive unit.
  • an in-wheel motor fails or requires maintenance, for instance, it often requires the wheel to be removed thus disabling the bicycle. Further, in case of a motor failure or maintenance, the wheel accommodating the in-wheel motor may no longer be rotatable such that it is not even possible to propel the bicycle by manually pedaling.
  • the hub motor arrangement is not genuinely designed to be retrofittable to the frame of existing bicycles with multi speed gearing in place. If a conventional multi speed bicycle is to be retrofitted with the hub motor, numerous parts, i.e., the rear wheels, rear sprocket and derailleur would have to be removed from the bicycle rendering the bicycle without gear changing ability.
  • a power-assisted drive assembly for fitting on a bottom bracket shell of a bicycle comprising:
  • a main housing rotatably supporting the drive spindle and defining a spindle axis, the main housing comprising a spindle supporting portion and a motor mounting portion;
  • a motor mounted on the motor mounting portion and drivably connected to the drive spindle, the motor having a drive axis offset to the spindle axis;
  • gear mechanism drivably connected to the motor and the sprocket assembly, the gear mechanism comprising a second one-way spray clutch;
  • the main housing comprises a mounting arrangement for engagement with a bottom bracket shell of the pedal cycle
  • the mounting arrangement comprises:
  • a first mounting part connected to the spindle support portion and insertable into the bottom bracket shell from a driving side
  • the drive spindle is rotatably supporting by the mounting arrangement
  • the first mounting part is adapted for coupling with the second mounting part through a coupling engagement adapted for exerting a pressure on two sides of the bottom bracket shell for securing the drive assembly with the bottom bracket shell.
  • each of the first mounting part and the second mounting part lie concentric with the spindle axis.
  • the coupling engagement between the first mounting part and the second mounting part is a thread engagement.
  • each of the first mounting part and the second mounting part comprises a hollow shank adapted for accommodating the drive spindle.
  • one end of the second mounting part is provided an annular flange for abutment with the non-driving side of the bottom bracket shell, and is formed with a circular recess for accommodating a spindle bearing.
  • the splines are provided on the circumferential surface of the annual flange for facilitating rotating of the second mounting part by a tool.
  • the spindle axis is offset from a nearest surface of the motor housing by at least 25 mm.
  • the thread engagement between the first mounting part and the second mounting part provides an engageable thread within a range of 15mm to 30mm.
  • the main housing further comprises a motor housing which conceals the motor.
  • the main housing further comprises a drivetrain cavity spatially connecting the spindle supporting portion and the motor mounting portion.
  • the main housing further comprises a wiring cavity in the motor mounting portion, the wiring cavity is spatially isolated from the drivetrain cavity.
  • a plurality of fins is provided on the outside of the motor housing.
  • the plurality of fins runs in a direction parallel with a traveling direction of the bicycle.
  • the motor housing is arranged so that an inner surface of the motor housing lies in proximity to a surface of the motor.
  • the assembly further comprising an additional mounting arrangement for securing the drive assembly to a downtube of the bicycle.
  • a method of installing a power-assisted drive assembly to a pedal cycle comprising the sequenced steps of:
  • the method comprises a step of further securing the power-assisted drive assembly to a downtube of the bicycle via using an additional mounting arrangement.
  • the method further comprises a step of attaching a crank arm on each end of the drive spindle.
  • a method of retrofitting the power-assisted drive assembly to a pedal cycle comprising steps ofremoving all parts supported by a bottom bracket shell of the pedal cycle, detaching the bottom bracket from the bottom bracket shell, andperforming the method according to the forgoing.
  • a bicycle installed with a power-assisted drive assembly according to the foregoing.
  • Figure 1 shows a perspective view of a power-assisted drive assembly according to the present invention
  • Figure 2 shows another perspective view of the power-assisted drive assembly according to the present invention
  • Figure 3 is a view showing a main housing of the power-assisted drive assembly
  • Figure 4 is another view showing the main housing of the power-assisted drive assembly
  • Figure 5 is a view showing a sprocket assembly detached from the power-assisted drive assembly as shown in Figure 1 and Figure 2;
  • Figure 6a is an exploded view of the sprocket assembly according to an embodiment of the present invention.
  • Figure 6b is an exploded view of a sprocket assembly according to another embodiment of the present invention.
  • Figure 7 is a view showing a gear mechanism of the power-assisted drive assembly
  • Figure 8 is an exploded view showing the coupling of the sprocket assembly with a drive gear
  • Figure 9 is a view showing the coupling of a drive spindle, a torque sensing assembly and a sprag clutch mounted withina drive gear, toa main housing;
  • Figure 10 is a view showing the torque sensing assembly
  • Figure 11 is an exploded view showing a first sprag clutch within a counter gear
  • Figure 12 is an exploded view showing a second sprag clutch within the drive gear
  • Figure 13 is an exploded view showing the coupling of the mounting arrangement for the power-assisted drive assembly
  • Figure 14 is a section view showing internal structure of the power-assisted drive assembly.
  • Figure 15 is an enlargement of a highlighted area in the section view of Figure 14.
  • pedaling cycle generally refers to a manually driven vehicle powered by pedaling cycle motor by a rider, i.e., a bicycle.
  • Bottom bracket shell essentially refers tothe part of the bicycle frame where the spindle goes through and supporting the bottom bracket or bottom bracket bearings.
  • Driving side essentially refers to the side of the bicycle which the drivetrain (i.e., chainring, sprockets, etc. ) is mounted, while “non-driving” side is the side opposite to the driving side.
  • “Chainline” generally refers to the distance between the centreline of the bicycle frame and the average centreline of the chainring, it can also refer to how straight the chain runs between the front and rear sprockets of the bicycle. In particular, a correct chainline is crucial for drivetrain reliability and usability.
  • “Spline connection” typically refers to the connection between two relatively rotatable components, for example, a shaft with external spline and a hub with internal spline, for transmission of torque or rotation.
  • “Thread engagement” refers to the engagement between two complementarily threaded parts, such as a bolt and a nut, while “thread engagement length” refers tothe axial distance through which the fully formed threads of both the nut and bolt are in contact.
  • a “sprag clutch” is a one-way freewheel clutch resembling a roller bearing but, instead of cylindrical rollers, non-revolving asymmetric sprags, or other elements allowing single direction rotation, are used.
  • Figure 1 and figure 2 illustrate an embodiment of the power-assisted drive assembly 100 according to the present invention.
  • a pedal cycle equipped with the power-assisted drive assembly 100 at least two drive modes may be provided, namely, a pedaling mode in which the rider manually pedals the pedal cycle, and a power-assisted mode of which the motor delivers an assistive power to the chainring with the rider simultaneously pedaling the pedal cycle.
  • the power-assisted drive assembly includes a main housing 1 for enclosing various internal components of the power-assisted drive assembly 100.
  • the main housing 1 can be divided into two portions, namely, a spindle supporting portion 2and a motor mounting portion 3.
  • the two portions are integrally formed with the main housing.
  • the spindle supporting portion 2 is provided with a through bore 4 for a drive spindle 5 to pass through.
  • the spindle supporting portion 2 rotatably supports the drive spindle 5 through at least one ball bearing provided therebetween (not shown) .
  • the rotation of the spindle 5 defines a spindle axis, or a pedalling axis, which the crank arms and pedals (not shown) revolve about.
  • the drive spindle 5 includes two ends each adapted for removably coupling with a crank arm through a spline connection, as shown in Figure 1 and Figure 2.
  • the power-assisted drive assembly includes a sprocket assembly 10 for a drivable engagement with a chain (not shown) connecting to, for instance, a rear wheel sprocket of a pedal cycle for supplying driving force.
  • the sprocket assembly 10 includes a chainring 12 attached to a sprocket body 11.
  • the chainring 12 can bedetached from the sprocket body11 for facilitating the replacement of chainring.
  • the sprocket body 11 and the chainring 12 are coupled through a thread engagement.
  • the chainring 12 may be provided with an annular extension 13protruding a certain width in its axial direction. Threads are provided on the inner side of the annular extension 13.
  • acorresponding annular extension 14 may be formed on the sprocket body 11 with threads on its outer side.
  • the thread engagement between the two annular extensions13, 14 allows the chainring 12 to bereleasablycoupled with the sprocket body 11.
  • the thread engagement between the two annual extensions 13, 14 would preferably have at least 5 mm of engagement length.
  • the width of the annularextensions of the chainring 12 and the sprocket body 11 determines the axial position of the chainring 12, hence the chainline.
  • the axial position of the chainring 12, or the chainline may be adjusted.
  • Such mounting method allows a small chainring to be used while maintaining a desirable chainline or chain alignment.
  • FIG. 6b shows an alternative embodiment of the sprocket assembly 20.
  • the sprocket assembly 20 includes three parts, namely, a sprocket body, a chainring 22 and a retaining member 25.
  • the sprocket body 21 is provided with an outer flange portion 24 for supporting the chainring 22.
  • a spline engagement arrangement is provided between the two parts, as shown.
  • the retaining member 25 is a threaded collar for coupling with the sprocket body 21 through a thread engagement.
  • the sprocket assembly 10, 20 may be rotatably supported by the spindle supporting portion 2 of the main housing 1 through one or more ball bearings.
  • the power-assisted drive assembly 100 includes a gear mechanism 30 housed within the main housing 1.
  • the gear mechanism30 occupies an internal spaceof the main housing 1 spanning across the spindle supporting portion 2 and the motor mounting portion 3.
  • the internal space may also be referred as the gear cavity 15, as shown in Figure 3 and Figure 4.
  • the gear mechanism30 is provided for transferring drive power from a motor 50 to the chainring 12, 22 of the sprocket assembly 10, 20 for drivinga wheel of the pedal cycle through a chain (not shown) .
  • the gear mechanism 30 includesreductions gears for mechanically connecting the motor 50 and the sprocket assembly 10, 20.
  • the reduction gears are situated between the motor 50 and adrive gear 31, as can be seen in Figure 7.
  • a double reduction gear arrangement is adopted in the gear mechanism 30, which includes a pinion gear 32 attached to the output shaft 33 of the motor 50, a counter gearassembly 34, and a drive gear 31.
  • the counter gear assembly 34 includes a first counter gear 34arotatably supported on a counter shaft35via a first sprag clutch 71 and meshes with the pinion gear 32, whilst a second counter gear 34b is fixed provided on the counter shaft 35.
  • the first counter gear 34a can be rotated relative to the second counter gear 34b only in a single direction.
  • the second counter gear 34b meshes withdrive gear 31 to provide an amplificated torque.
  • the drive gear 31 is rotatably supported by the spindle supporting portion 2 of the main housing 1, for instance, by a ball bearing, and lies concentric with the drive spindle 5.
  • the gear mechanism 30 may be able to provide a reduction gear ratio ofup to about1: 15, but a different reduction gear ratio may be adopted according to different speed or torque requirements.
  • helical gears with inclined teeth are used in the gear mechanism 30 for maximizing durability and efficiency.
  • the motor 50 is an outrunner motor which includes a stator surrounded by a rotor, with the pinion gear 32 is provided on the rotor which drivably connects with the gear mechanism 30.
  • the rotor of the motor is cylindrical shaped having an inner circumferential wall, with a plurality of permanent magnets circumferentially arranged thereon.
  • the stator of the motor is a stator stack housingmetallic winding.
  • permanent magnet synchronous motor is used for powering the drive assembly, and more preferably, a brushless DC outrunner motor is used for high torque application, for example, providing assistive power for a mountain bike.
  • the drive gear 31 is essentiallya ring gearand is rotatably supported in the spindle supporting portion 2 by a ballbearing.
  • the drive gear 31 may be positioned concentrically within the chainring 12, 22 of the sprocket assembly 10, 20, i.e., see Figure 2, so as to minimize interference with the sprocket assembly 10, 20 in the axial direction.
  • This arrangement serves to maintain the axial position of the chainring 12, 22 for achieving a desirable chainline.
  • the size of the drive gear 31 would be limited by the size of the chainring 12, 22.
  • a smaller chainring would be preferred for providing a desirable torque output in application such as a mountain bike.
  • the power-assisted drive assembly can accept a chainring with a number of teeth as low as 34, i.e., a 34T chainring.
  • the sprocket assembly10, 20 may adopt a releasable coupling arrangement with the drive gear 31.
  • the drive gear 31 includes an annular lip 35for engagement with a centre opening16, 26 of the sprocket body 11, 21 through a spline connection.
  • inter-engageable splines 38a are provided on the circumferential side of an annular protruding edge 39 of the drive gear 31 for engagement with the complementary slots 38b provided on the centre opening16, 26 of the sprocket body 11, 21.
  • a locking member 40 is used to restrict axial movement of the sprocket body 11, 21 with respect to the drive gear 31.
  • the locking member 40 may be a lock plate detachably coupled to the drive gear 31 for acting against the sprocket body 11, 21.
  • the lock plate 40 is provided with a threaded portion 41 for engagement with the annular protruding edge 39 of the drive gear 31,
  • the lock plate40 includes a flanged-out portion 42 for abutting a peripheral potion of the centre opening 16, 26 of the sprocket body 11, 21.
  • a plurality of notches 43 may be provided on the lock plate 40 for engagement with a specific tool which facilitates the tightening or loosening of the lock plate 40.
  • the power-assisted drive assembly 100 includes a torque sensing assembly 60.
  • the torque sensing assembly 60 situates between the drive spindle 5 and the drive gear 31and forms part of the drivetrain.
  • the torque sensing assembly 60 includes a torque sensor (not shown) which is a measurement device which converts a torque measurement into an electrical signal that can be measured by an on-board computing device associated with the power-assisted drive assembly 100.
  • the on-board computing device controls the output of motor to provide a predetermined amount of assisting power to the sprocket according to the torque measured at the drive spindle 5 generated by a rider during pedalling.
  • the type of torque sensor used in the present invention is a reaction torque sensor, or a static torque sensor.
  • the torque sensing assembly includes two components, a first sensing part 61for interfacing withthe drive gear 31 through a second sprag clutch 65 (shown in Figure 9) , and a second sensingpart 62engageable withthe drive spindle 5 through a splined connection therebetween. Due to the effect of the second sprag clutch 65, the first sensingpart 61couples and rotates with the drive gear 31in only one direction, and the second sensing part62 couplesand rotates with the drive spindle 5.
  • the rotation resulted from the pedaling motion generates shear forces between the two sensing parts 61, 62.
  • the shear force is captured by the strain gauges and transduced into electrical current readable by the on-board computing device.
  • the torque input from the drive spindle istransferred to the drive gear and the sprocket through the torque sensing assembly with minimal loss.
  • a one-way sprag clutch 71 isprovided within the gear mechanism 30.
  • the one-way sprag clutch 71 rotatably supports the first counter gear 34a in the gear mechanism 30.
  • the first sprag clutch may be provided within the first counter gear 34a rotatably supporting the counter shaft 35.
  • the second counter gear 34b may be integrally formed with the counter gear shaft and is adapted to engage the one-waysprag clutch 71.
  • the first counter gear 34a, the one-way sprag clutch 71, the second counter gear 34b and the counter gear shaft 35 constitute a one-way counter gear assembly 34.
  • the counter gear assembly 34 is rotatably supported by the main housing 1 by ball bearings 36. Based on the counter gearassembly 34, the first counter gear 34a only transfers power to the second counter gear 34b ina single direction, in this case, in anti-clockwise direction, and free-wheels in the other direction, i.e., in clockwise direction.
  • the motor 50 is only effective in transferring rotational power to the sprocket assembly 10, 20 in clockwise direction thus is able to propel the pedal cycle in the forward direction.
  • the rotational power is transferred from the drive spindle 5 to the sprocket assembly 10, 20hence causes the second counter gear 34b and counter gear shaft 35 to freewheel within the one-way sprag clutch 71. That is, when the rider pedals in forward direction, the sprocket assembly 10, 20 drivably disconnects with the motor 50 which is in the unpowered state.
  • the sprocket assembly 10, 20 drivably disconnects with the drive spindle 5 in only one directionsuch that the motor’s power would be bypassed at the drive spindle 5, or the crank arms, so as to prevent or reduce the motor’s torque transmitted to the crank arms which may interfere with the pedaling motion of the rider.
  • the drivetrain may further include anotherone-way sprag clutch 72 for selectively disconnecting the drive spindle 5 and the sprocket assembly 10, 20 while the motor50 is in forward motion, i.e., with the output shaft 33 rotating in clockwise direction.
  • the one-way sprag clutch 72 isdisposedbetween the drive gear 31 and first sensing part 61 of the torque sensing assembly 60. Accordingly, the one-way sprag clutch 72 allows the sprocket assembly 10, 20, rotating in forward or clockwise direction, to freewheel with respect to the drive spindle 5. Consequently, under the power-assisted mode the sprocket assembly 10, 20 can be driven by both the crank arms and the motor50without causing undesirable amount of feedback force at the crank arms due to the motor’s torque.
  • the main housing 1 includes a mounting arrangement 80 for securing the power-assisted drive assembly 100 to a frame of, for instance, a bicycle.
  • the mounting arrangement 80 is provided for detachably engaging with the bottom bracket shell of the bicycle frame (not shown) .
  • the mounting arrangement 80 generally includes a first mounting part 81 and a second mounting part 82.
  • the first mounting part 81 extends from the spindle support portion 2.
  • the second mounting part 82 is essentially a continuation or an extension of the first mounting part 81 and is detachably engageable with the first mounting part 81.
  • One end of the second mounting part 82 is provided with an annular flange 83, and is formed with a circular recess 84 for accommodating a spindle bearing (not shown) .
  • the peripheral surface of the annual flange 83 of the second mounting part 82 may be toothed or serrated for facilitating rotation by a tool, for example, a wrench with a complementary socket.
  • Each of the first mounting part 81 and the second mounting part 82 includes a hollow shank structure with a centre through-hole 85 for accommodating the drive spindle 5.
  • the first mounting part 81 is adapted to be insertable into the bottom bracket shell from a driving side
  • the second mounting portion 82 is adapted to be insertable into the bottom bracket shell from a non-driving side.
  • the first mounting part 81 is integrally formed with the spindle support portion 2, as shown in Figure 2, or it can be formed as a separate part attachable to the spindle support portion 2.
  • a releasable engagement may be provided between the first mounting part 81 and the second mounting part 82.
  • a free end of the second mounting portion 82 may include an engagement end 86, i.e., a threaded shank, for engagement with a receiving end 87, i.e., a complementary threaded bore, provided on the first mounting part 81, or vice versa.
  • the outer diameters of the first and second mounting portions 81, 82 are slightly smaller than the inner diameter of the bottom bracket shell.
  • the fit between the first and second mounting part 81, 82 and the bottom bracket shell should be free of interference, i.e., a clearance fit.
  • the first and second mounting portions 81, 82 are required to be aligned axially within the bottom bracket shell.
  • the first and second mounting portions 81, 82 once engaged, form a hollow shank within the bottom bracket shell, with the first mounting part 81and the second mounting part 82 positioned concentric with the drive spindle 5 or the spindle axis.
  • the first and second mounting parts 81, 82 together serve as a bottom bracket extending through the entire width of the bottom bracket shell for rotatably supporting the drive spindle 5.
  • the first mounting part 81 and the second mounting part 82 may provide engageable threads 86, 87with a range of 15mm to 30mm in length for accommodating bottom bracket shells of different widths.
  • the main housing 1 may be formed such that the motor mounting portion 2 lies directly under the bottom bracket shell of the bicycle with the power-assisted drive assembly 100 is mounted.
  • an uppermost surface 88 of the motor mounting portion 3 should be spaced apart from the spindle axis at a certain distance, for example, 25mm-30mm. Such an arrangement would provide sufficient clearance for fitting the power-assisted drive assembly 100 to bottom bracket shells having different wall thickness.
  • the main housing 1 further includes a motor housing 6for housing the motor 50.
  • the motor housing 6 surrounds the circumferential side of the motor 50 and its inner surface lies in proximity to the motor 50.
  • a plurality of fins 7 may be provided on the outer surface of the motor housing 50.
  • the plurality of fins 7 runs in a direction parallel with a traveling direction of the bicycle. The fins 7 serve to direct airflow to contact with the motor housing 6 along the traveling direction, thereby carrying the heat away from the power-assisted drive assembly 100.
  • the main housing 1 includes a gear cavity 15 spatially connecting the spindle supporting portion 2 and the motor mounting portion 3, as shown in Figure 3 and Figure 4.
  • the gear cavity 15 houses and preferably conceals the gear mechanism 30.
  • the main housing 1 further includes a wiring cavity 17 in the motor mounting portion 3.
  • the wiring cavity 17 serves to provide a space for accommodating the lead wires connecting to the motor 50, or other electronic components, such as controllers, for operating the motor 50.
  • the wiring cavity 17 is spatially isolated from the drivetrain cavity 15 and is preferably sealed against water or dust ingression.
  • a detachable cover 16 may be provided for sealing the wiring cavity 17 and providing access to the same once detached.
  • FIG 14 and Figure 15 are section views generally illustrating the positional relationships between the various mentioned components of the power-assisted drive assembly 100.
  • crank arms are each attached to an end of the drive spindle 5 through a spline connection.
  • the power-assisted drive assembly 100 may optionally include an additional mounting arrangement 90 for securing the assembly 100to the bottom bracket shell on the non-driving side.
  • the additional mounting arrangement 90 may be positioned on the motor mounting portion 3 of the main housing 1.
  • the additional mounting arrangement may be an extension from the motor mounting portion 3may be an L-shape bracket 90adapted forattaching to the non-driving side of the bottom bracket shell.
  • the annular flange 83 acts against the non-driving side of the bottom bracket shell and the L-shape bracket 90 therebetween, as shown.
  • the power-assisted drive assembly as described in the above may be retrofitted to a pedal cycle, such as a multi speed mountain bike with a standardized bottom bracket shell, either a threaded or press fit shell.
  • a pedal cycle such as a multi speed mountain bike with a standardized bottom bracket shell, either a threaded or press fit shell.
  • all the moving parts including but not limited to crank arms, sprocket, drive spindle, spindle bearings, and bottom brackets would be removed from the bottom bracket shell of the frame.
  • the first step involves inserting the first mounting part 81 into the bottom bracket shell from a driving side of the bicycle frame. While maintaining the first mounting part 81 in the bottom bracket shell, the second mounting part 82 can be inserted into the bottom bracket shell from a non-driving side. Next, the threaded shank of the second mounting part 82 is inserted into the threaded bore 81a of the first mounting part 81 by rotating the second mounting part 82 relative to the first mounting part 81 in a tightening direction. Upon the second mounting part 82 is fully tightened, the drive assembly 100is aligned to a position directly under the bottom bracket shell.
  • the second mounting part 82 is further tightened until the drive assembly 100is secured in position.
  • the mounting method as described in the foregoing allows for the replacement of spindles with different lengths, along with a second mounting part of a required length, as needed. This provides the added versatility for the drive assembly 100 to fit different types of bicycle frame having bottom bracket shell of different widths.
  • the drive spindle 5 is inserted through the first and second mounting parts 81, 82 from the driving side, with the splines on the drive spindle 5 in engagement with the torque sensing assembly 60, thereby drivably connecting the drive spindle 5 with the drive gear 31.
  • the drive spindle 5 connects to the second sensing part 62 of the torque sensing assembly 60 through the spline connection provided therebetween, thereby drivably connects the drive spindle 5 to the drive gear 31 through the one-way sprag clutch 72.
  • a spindle bearing 8 is then inserted into the bearing seat at the second mounting part 82 for rotatably supporting the drive spindle 5 at the non-driving side.
  • the power-assisted drive assembly 100 may be further secured to the bicycle frame by securing the motor mounting portion 3 of the main housing 1 to the downtube of the bicycle frame through the additional mounting arrangement (not shown) .
  • a mid-drive motor system would be considered a more superior and desirable arrangement than a hub motor arrangement when converting a conventional self-pedaling bicycle to a power-assisted bicycle.
  • a mid-drive motor system can provide unparallel gearing versatility and efficiency. If using a motor of a considerable size in the mid-drive system, it can lead to insufficient bottom ground clearance and would greatly hinder rideability particularly, in offroad situations. Therefore, it is desirable to have a mid-drive system, such as what has been discussed in the foregoing sections, which utilizes an outrunner type motor with a relatively smaller diameter, yet providing sufficient torque output for powering a mountain bike.
  • the overall size of the mid-drive system is reduced while the ground clearance can be enhanced.
  • an overall smaller mid-drive system can provide more clearance between the bottom bracket shell and the motor housing, which adds the flexibility for the mid-drive system to be compatible with bottom bracket shells of different sizes and frames of different geometries.
  • the mid-drive system as discussed further provides the robustness to support spindles with larger diameters which may be required for satisfying reliability need for heavy-duty applications, i.e., offroad riding.

Abstract

A power-assisted drive assembly for installing on a pedal cycle comprising a sprocket assembly, a drive spindle drivably connected to the sprocket assembly through a one-way sprag clutch, a main housing rotatably supporting the drive spindle and defining a spindle axis, the main housing comprising a spindle supporting portion and a motor mounting portion, a motor mounted on the motor mounting portion and drivably connected to the drive spindle, the motor having a drive axis offset to the spindle axis, and a gear mechanism drivably connected to the motor and the sprocket assembly. The gear mechanism comprises a second one-way spray clutch. The main housing comprises a mounting arrangement for engagement with a bottom bracket shell of the pedal cycle. The mounting arrangement comprises a first mounting part connected to the spindle support portion and insertable into the bottom bracket shell from a driving side, and a second mounting part insertable into the bottom bracket shell from a non-driving side. The drive spindle is rotatably supporting by the mounting arrangement, the first mounting part is adapted for coupling with the second mounting part through a coupling engagement adapted for exerting a pressure on two sides of the bottom bracket shell for securing the drive assembly with the bottom bracket shell.

Description

POWER-ASSISTED DRIVE ASSEMBLY FIELD OF THE INVENTION
The present invention relates to a power-assisted drive assembly for use particularly, but not exclusively, in a manually driven apparatus. The invention also relates particularly, but not exclusively, to a power-assisted drive assembly installable to a pedal cycle such as a bicycle.
BACKGROUND OF THE INVENTION
It is known to provide some manually propellable pedal cycles such as bicycles with anelectric powered drive unit to assist a rider in propelling the same, especially ascending a slope, although the drive unit may often be used to power the bicycle over any other terrain.
It is also known to utilize an in-wheel motor, or a hub motor, in a power-assisted bicycle such that a gear mechanism can be omitted and the resulting drive unit is simple to manufacture. For such a known power-assisted bicycle using an in-wheel motor, it can be manufactured by simply replacing a hub of one wheel with an in-wheel motor, while the pedals drive the rear wheel through a sprocket and a chain in a generally conventional mechanical arrangement. In such an arrangement, no motor drive force need be transferred through the bicycle chain. Therefore, a pedal driving force and a motor driving force can be delivered separately from each other.
Amajor drawback of the known in-wheel or hub motor arrangement is that it can only provide limited torque output. A hub motorpower-assisted drive unitcannot utilize gear shifting or offer any changeability of gear ratio for the output generated by the power-assisted drive unit. Another shortcoming of the hub motor arrangement is that it can offer only very limited torque output, in which such arrangement is only capable for propelling bicycles on smooth roads. A hub motor arrangement further lacks the integration of torque sensing arrangement making it not suitable for using as a power-assisted drive unit.
It also creates production and assembly complications as well as replacement parts problems. In the event that an in-wheel motor fails or requires maintenance, for instance, it often requires the wheel to be removed thus disabling the bicycle. Further, in case of a motor failure or maintenance, the wheel accommodating the in-wheel motor may no longer be rotatable such that it is not even possible to propel the bicycle by manually pedaling. Most of all, the hub motor arrangement is not genuinely designed to be retrofittable to the frame of existing bicycles with multi speed gearing in place. If a conventional multi speed bicycle is to be retrofitted with the hub motor, numerous parts, i.e., the rear wheels, rear sprocket and derailleur would have to be removed from the bicycle rendering the bicycle without gear changing ability.
The foregoing is just some of the common technical issues encountered with  conventional power-assisted drive units.
SUMMARY OF THE INVENTION
According to the first aspect of the present invention, there is provided a power-assisted drive assembly for fitting on a bottom bracket shell of a bicycle comprising:
a sprocket assembly;
a drive spindle drivably connected to the sprocket assembly through a one-way sprag clutch;
a main housing rotatably supporting the drive spindle and defining a spindle axis, the main housing comprising a spindle supporting portion and a motor mounting portion;
a motor mounted on the motor mounting portion and drivably connected to the drive spindle, the motor having a drive axis offset to the spindle axis;
a gear mechanism drivably connected to the motor and the sprocket assembly, the gear mechanism comprising a second one-way spray clutch;
wherein the main housing comprises a mounting arrangement for engagement with a bottom bracket shell of the pedal cycle, the mounting arrangement comprises:
a first mounting part connected to the spindle support portion and insertable into the bottom bracket shell from a driving side, and
a second mounting part insertable into the bottom bracket shell from a non-driving side,
wherein the drive spindle is rotatably supporting by the mounting arrangement, the first mounting part is adapted for coupling with the second mounting part through a coupling engagement adapted for exerting a pressure on two sides of the bottom bracket shell for securing the drive assembly with the bottom bracket shell.
In an embodiment, each of the first mounting part and the second mounting part lie concentric with the spindle axis.
In an embodiment, the coupling engagement between the first mounting part and the second mounting part is a thread engagement.
In an embodiment, each of the first mounting part and the second mounting part comprises a hollow shank adapted for accommodating the drive spindle.
In an embodiment, one end of the second mounting part is provided an annular flange for abutment with the non-driving side of the bottom bracket shell, and is formed with a circular recess for accommodating a spindle bearing.
In an embodiment, the splines are provided on the circumferential surface of the annual flange for facilitating rotating of the second mounting part by a tool.
In an embodiment, the spindle axis is offset from a nearest surface of the motor  housing by at least 25 mm.
In an embodiment, the thread engagement between the first mounting part and the second mounting part provides an engageable thread within a range of 15mm to 30mm.
In an embodiment, the main housing further comprises a motor housing which conceals the motor.
In an embodiment, the main housing further comprises a drivetrain cavity spatially connecting the spindle supporting portion and the motor mounting portion.
In an embodiment, the main housing further comprises a wiring cavity in the motor mounting portion, the wiring cavity is spatially isolated from the drivetrain cavity.
In an embodiment, a plurality of fins is provided on the outside of the motor housing.
In an embodiment, the plurality of fins runs in a direction parallel with a traveling direction of the bicycle.
In an embodiment, the motor housing is arranged so that an inner surface of the motor housing lies in proximity to a surface of the motor.
In an embodiment, the assembly further comprising an additional mounting arrangement for securing the drive assembly to a downtube of the bicycle.
According to a second aspect of the present invention, there is provided a method of installing a power-assisted drive assembly to a pedal cycle, comprising the sequenced steps of:
a) providing the power-assisted drive assembly according to any one of claim 1 to claim 15;
b) inserting the first mounting part to the drive side of a bottom bracket shell of the pedal cycle;
c) inserting the second mounting part to the non-drive side of the bottom bracket;
d) engaging an engaging end of the second mounting part to a receiving end of the first mounting part;
e) aligning the power-assisted assembly to a position under the bottom bracket shell;
f) tightening the second mounting part against the first mounting part, thereby generating a pressure exerting on the sides of the bottom bracket shell;
g) inserting the drive spindle, from the driving side, through the mounting arrangement and engaging the drive spindle with the gear mechanism, and
h) locking the drive spindle in place by mounting a stopper at the non-driving side of the drive spindle.
In an embodiment, the method comprises a step of further securing the power-assisted drive assembly to a downtube of the bicycle via using an additional mounting arrangement.
In an embodiment, the method further comprisesa step of attaching a crank arm on each end of the drive spindle.
According to a third aspect of the present invention, there is provided a method of retrofitting the power-assisted drive assembly to a pedal cycle comprising steps ofremoving all parts supported by a bottom bracket shell of the pedal cycle, detaching the bottom bracket from the bottom bracket shell, andperforming the method according to the forgoing.
According to a fourth aspect of the present invention, there is provided a bicycle installed with a power-assisted drive assembly according to the foregoing.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be more specifically described by way of example only with reference to the accompanying drawings, in which:
Figure 1 shows a perspective view of a power-assisted drive assembly according to the present invention;
Figure 2 shows another perspective view of the power-assisted drive assembly according to the present invention;
Figure 3 is a view showing a main housing of the power-assisted drive assembly;
Figure 4 is another view showing the main housing of the power-assisted drive assembly;
Figure 5 is a view showing a sprocket assembly detached from the power-assisted drive assembly as shown in Figure 1 and Figure 2;
Figure 6a is an exploded view of the sprocket assembly according to an embodiment of the present invention;
Figure 6b is an exploded view of a sprocket assembly according to another embodiment of the present invention;
Figure 7 is a view showing a gear mechanism of the power-assisted drive assembly;
Figure 8 is an exploded view showing the coupling of the sprocket assembly with a drive gear;
Figure 9 is a view showing the coupling of a drive spindle, a torque sensing assembly and a sprag clutch mounted withina drive gear, toa main housing;
Figure 10 is a view showing the torque sensing assembly;
Figure 11 is an exploded view showing a first sprag clutch within a counter gear;
Figure 12 is an exploded view showing a second sprag clutch within the drive gear;
Figure 13 is an exploded view showing the coupling of the mounting arrangement for the power-assisted drive assembly;
Figure 14 is a section view showing internal structure of the power-assisted drive  assembly; and
Figure 15 is an enlargement of a highlighted area in the section view of Figure 14.
The figures herein are for illustrative purposes only and are not necessarily drawn to scale.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings. Apparently, the described embodiments are merely some but not all of the embodiments of the present invention. All other embodiments based on the embodiments of the present invention and obtained by a person of ordinary skill in the art without investing creative efforts shall fall within the scope of the present invention.
In the following, a number of terms are used throughout the description and the claims of which their definitions should be taken according to their broadest meaning according to a person skilled in the art. In particular, “pedal cycle” generally refers to a manually driven vehicle powered by pedaling cycle motor by a rider, i.e., a bicycle. “Bottom bracket shell” essentially refers tothe part of the bicycle frame where the spindle goes through and supporting the bottom bracket or bottom bracket bearings. “Driving side” essentially refers to the side of the bicycle which the drivetrain (i.e., chainring, sprockets, etc. ) is mounted, while “non-driving” side is the side opposite to the driving side. “Chainline” generally refers to the distance between the centreline of the bicycle frame and the average centreline of the chainring, it can also refer to how straight the chain runs between the front and rear sprockets of the bicycle. In particular, a correct chainline is crucial for drivetrain reliability and usability. “Spline connection” typically refers to the connection between two relatively rotatable components, for example, a shaft with external spline and a hub with internal spline, for transmission of torque or rotation. “Thread engagement” refers to the engagement between two complementarily threaded parts, such as a bolt and a nut, while “thread engagement length” refers tothe axial distance through which the fully formed threads of both the nut and bolt are in contact. A “sprag clutch” is a one-way freewheel clutch resembling a roller bearing but, instead of cylindrical rollers, non-revolving asymmetric sprags, or other elements allowing single direction rotation, are used.
Figure 1 and figure 2 illustrate an embodiment of the power-assisted drive assembly 100 according to the present invention. In a pedal cycle equipped with the power-assisted drive assembly 100, at least two drive modes may be provided, namely, a pedaling mode in which the rider manually pedals the pedal cycle, and a power-assisted mode of which the motor delivers an assistive power to the chainring with the rider simultaneously pedaling the pedal cycle.
Referring to Figure 3 and Figure 4, the power-assisted drive assembly includes a main housing 1 for enclosing various internal components of the power-assisted drive assembly  100. Specifically, as shown, the main housing 1 can be divided into two portions, namely, a spindle supporting portion 2and a motor mounting portion 3. Preferably, the two portions are integrally formed with the main housing. The spindle supporting portion 2 is provided with a through bore 4 for a drive spindle 5 to pass through. The spindle supporting portion 2 rotatably supports the drive spindle 5 through at least one ball bearing provided therebetween (not shown) . Naturally, the rotation of the spindle 5 defines a spindle axis, or a pedalling axis, which the crank arms and pedals (not shown) revolve about. The drive spindle 5 includes two ends each adapted for removably coupling with a crank arm through a spline connection, as shown in Figure 1 and Figure 2.
The power-assisted drive assembly includes a sprocket assembly 10 for a drivable engagement with a chain (not shown) connecting to, for instance, a rear wheel sprocket of a pedal cycle for supplying driving force. Referring to Figure 5, the sprocket assembly 10 includes a chainring 12 attached to a sprocket body 11. Preferably, as shown in Figure 6a and Figure 6b, the chainring 12 can bedetached from the sprocket body11 for facilitating the replacement of chainring. For instance, as shown in Figure 6a, the sprocket body 11 and the chainring 12 are coupled through a thread engagement. Specifically, as shown, the chainring 12may be provided with an annular extension 13protruding a certain width in its axial direction. Threads are provided on the inner side of the annular extension 13. Complementarily, acorresponding annular extension 14 may be formed on the sprocket body 11 with threads on its outer side. The thread engagement between the two annular extensions13, 14 allows the chainring 12 to bereleasablycoupled with the sprocket body 11. To provide a desired coupling strength, the thread engagement between the two  annual extensions  13, 14 would preferably have at least 5 mm of engagement length. Moreover, the width of the annularextensions of the chainring 12 and the sprocket body 11 determines the axial position of the chainring 12, hence the chainline. Through providing an annular extension of a different width, either on the chainring 12 or the sprocket body 11, or both, the axial position of the chainring 12, or the chainline, may be adjusted. Such mounting method allows a small chainring to be used while maintaining a desirable chainline or chain alignment.
Figure 6b shows an alternative embodiment of the sprocket assembly 20. The sprocket assembly 20 includes three parts, namely, a sprocket body, a chainring 22 and a retaining member 25. Specifically, the sprocket body 21 is provided with an outer flange portion 24 for supporting the chainring 22. In order to restrict relatively rotation between the sprocket body 21 and the chainring 22, a spline engagement arrangement is provided between the two parts, as shown. Moreover, the retaining member 25 is a threaded collar for coupling with the sprocket body 21 through a thread engagement. In particular, the retaining member 25, upon engagement and tightened to the sprocket body 21, acts against the chainring 22 in the axial direction towards the outer flange portion 24, thereby securing the chainring 22 on the sprocket body 21. Through providing a chainring 22 of a different size or different number of teeth, the drive ratio for the pedal cycle may therefore be altered. The  sprocket  assembly  10, 20 may be rotatably supported by the spindle supporting portion 2 of the main housing 1 through one or more ball bearings.
Referring to Figure 7, the power-assisted drive assembly 100 includes a gear mechanism 30 housed within the main housing 1. The gear mechanism30 occupies an internal spaceof the main housing 1 spanning across the spindle supporting portion 2 and the motor mounting portion 3. The internal space may also be referred as the gear cavity 15, as shown in Figure 3 and Figure 4. Situated within the gear cavity 11, the gear mechanism30 is provided for transferring drive power from a motor 50 to the  chainring  12, 22 of the  sprocket assembly  10, 20 for drivinga wheel of the pedal cycle through a chain (not shown) . The gear mechanism 30includesreductions gears for mechanically connecting the motor 50 and the  sprocket assembly  10, 20. The reduction gearsare situated between the motor 50 and adrive gear 31, as can be seen in Figure 7. In the present embodiment, a double reduction gear arrangement is adopted in the gear mechanism 30, which includes a pinion gear 32 attached to the output shaft 33 of the motor 50, a counter gearassembly 34, and a drive gear 31.
As shown in Figure 11, the counter gear assembly 34 includes a first counter gear 34arotatably supported on a counter shaft35via a first sprag clutch 71 and meshes with the pinion gear 32, whilst a second counter gear 34b is fixed provided on the counter shaft 35. Through the sprag clutch, the first counter gear 34a can be rotated relative to the second counter gear 34b only in a single direction. The second counter gear 34b meshes withdrive gear 31 to provide an amplificated torque. The drive gear 31 is rotatably supported by the spindle supporting portion 2 of the main housing 1, for instance, by a ball bearing, and lies concentric with the drive spindle 5. For instance, the gear mechanism 30may be able to provide a reduction gear ratio ofup to about1: 15, but a different reduction gear ratio may be adopted according to different speed or torque requirements. Advantageously, helical gears with inclined teeth are used in the gear mechanism 30 for maximizing durability and efficiency.
In an embodiment, the motor 50 is an outrunner motor which includes a stator surrounded by a rotor, with the pinion gear 32 is provided on the rotor which drivably connects with the gear mechanism 30. Specifically, the rotor of the motor is cylindrical shaped having an inner circumferential wall, with a plurality of permanent magnets circumferentially arranged thereon. The stator of the motor is a stator stack housingmetallic winding. Generally, permanent magnet synchronous motoris used for powering the drive assembly, and more preferably, a brushless DC outrunner motor is used for high torque application, for example, providing assistive power for a mountain bike.
As illustrated in the Figure 8 and Figure 9, the drive gear 31is essentiallya ring gearand is rotatably supported in the spindle supporting portion 2 by a ballbearing. To maximize the usage of space, the drive gear 31 may be positioned concentrically within the  chainring  12, 22 of the  sprocket assembly  10, 20, i.e., see Figure 2, so as to minimize  interference with the  sprocket assembly  10, 20 in the axial direction. This arrangement serves to maintain the axial position of the  chainring  12, 22 for achieving a desirable chainline. However, under such arrangement the size of the drive gear 31 would be limited by the size of the  chainring  12, 22. Typically, a smaller chainring would be preferred for providing a desirable torque output in application such as a mountain bike. In the present embodiment, the power-assisted drive assembly can accept a chainring with a number of teeth as low as 34, i.e., a 34T chainring.
Preferably, the sprocket assembly10, 20 may adopt a releasable coupling arrangement with the drive gear 31. In particular, the drive gear 31 includes an annular lip 35for engagement with a centre opening16, 26 of the  sprocket body  11, 21 through a spline connection. For instance, inter-engageable splines 38a are provided on the circumferential side of an annular protruding edge 39 of the drive gear 31 for engagement with the complementary slots 38b provided on the centre opening16, 26 of the  sprocket body  11, 21. To maintain the engagement between the  sprocket assembly  10, 20 and the drive gear 31, a locking member 40is used to restrict axial movement of the  sprocket body  11, 21 with respect to the drive gear 31. Specifically, as shown in Figure 8, the locking member 40 may be a lock plate detachably coupled to the drive gear 31 for acting against the  sprocket body  11, 21. For instance, the lock plate 40 is provided with a threaded portion 41 for engagement with the annular protruding edge 39 of the drive gear 31, The lock plate40 includes a flanged-out portion 42 for abutting a peripheral potion of the  centre opening  16, 26 of the  sprocket body  11, 21. As the lock plate 40 is engaged and tightened against the drive gear 31, the lock plate 40 acts against the  sprocket body  11, 21 in the axial direction thereby maintaining the  sprocket assembly  10, 20 coupled to the drive gear 31. Advantageously, as shown in Figure 13, a plurality of notches 43may be provided on the lock plate 40 for engagement with a specific tool which facilitates the tightening or loosening of the lock plate 40.
In order to control the power output in correlation to the rider’s pedaling effort, the power-assisted drive assembly 100 includes a torque sensing assembly 60. Referring to Figure 9, the torque sensing assembly 60 situates between the drive spindle 5 and the drive gear 31and forms part of the drivetrain. Essentially, the torque sensing assembly 60 includes a torque sensor (not shown) which is a measurement device which converts a torque measurement into an electrical signal that can be measured by an on-board computing device associated with the power-assisted drive assembly 100. The on-board computing device controls the output of motor to provide a predetermined amount of assisting power to the sprocket according to the torque measured at the drive spindle 5 generated by a rider during pedalling. For instance, the type of torque sensor used in the present invention is a reaction torque sensor, or a static torque sensor. As illustrated in Figure 10, the torque sensing assembly includes two components, a first sensing part 61for interfacing withthe drive gear 31 through a second sprag clutch 65 (shown in Figure 9) , and a second sensingpart 62engageable withthe drive spindle 5 through a splined connection therebetween. Due to the effect of the second sprag clutch 65, the first sensingpart 61couples and rotates with the drive  gear 31in only one direction, and the second sensing part62 couplesand rotates with the drive spindle 5. When the drive spindle 5 is subjected to a load, such as pedaling by the rider, the rotation resulted from the pedaling motion generates shear forces between the two sensing  parts  61, 62. The shear force is captured by the strain gauges and transduced into electrical current readable by the on-board computing device. As a static type sensor, there would be only miniscule to no relative movement exhibit between the first sensing part 61 and the second sensing part 62. Desirably, the torque input from the drive spindle istransferred to the drive gear and the sprocket through the torque sensing assembly with minimal loss.
During the pedaling mode, the motor 50, if it is drivably connected to the  sprocket assembly  10, 20, imposes rolling resistance in the drivetrain in its unpowered state resulting in loss of the rider’s energy. Therefore, it would be desirable to have the motor 50 drivably disconnected with the  sprocket assembly  10, 20 during pedaling by the rider. To minimize energy loss caused by the motor 50 during pedaling, a one-way sprag clutch 71isprovided within the gear mechanism 30. As shown in Figure. 11, the one-way sprag clutch 71 rotatably supports the first counter gear 34a in the gear mechanism 30. For instance, the first sprag clutch may be provided within the first counter gear 34a rotatably supporting the counter shaft 35. The second counter gear 34b may be integrally formed with the counter gear shaft and is adapted to engage the one-waysprag clutch 71. The first counter gear 34a, the one-way sprag clutch 71, the second counter gear 34b and the counter gear shaft 35 constitute a one-way counter gear assembly 34. The counter gear assembly 34 is rotatably supported by the main housing 1 by ball bearings 36. Based on the counter gearassembly 34, the first counter gear 34a only transfers power to the second counter gear 34b ina single direction, in this case, in anti-clockwise direction, and free-wheels in the other direction, i.e., in clockwise direction. As a result, the motor 50 is only effective in transferring rotational power to the  sprocket assembly  10, 20 in clockwise direction thus is able to propel the pedal cycle in the forward direction. Contrariwise, asthe rider applies a forward pedaling motion to the crank arms, the rotational power is transferred from the drive spindle 5 to the sprocket assembly 10, 20hence causes the second counter gear 34b and counter gear shaft 35 to freewheel within the one-way sprag clutch 71. That is, when the rider pedals in forward direction, the  sprocket assembly  10, 20 drivably disconnects with the motor 50 which is in the unpowered state.
During the power-assisted mode, the  sprocket assembly  10, 20 drivably disconnects with the drive spindle 5 in only one directionsuch that the motor’s power would be bypassed at the drive spindle 5, or the crank arms, so as to prevent or reduce the motor’s torque transmitted to the crank arms which may interfere with the pedaling motion of the rider. According to Figure 12, the drivetrain may further include anotherone-way sprag clutch 72 for selectively disconnecting the drive spindle 5 and the  sprocket assembly  10, 20 while the motor50 is in forward motion, i.e., with the output shaft 33 rotating in clockwise direction. Precisely, the one-way sprag clutch 72isdisposedbetween the drive gear 31 and first sensing part 61 of the torque sensing assembly 60. Accordingly, the one-way sprag clutch 72 allows the  sprocket assembly  10, 20, rotating in forward or clockwise direction, to freewheel with  respect to the drive spindle 5. Consequently, under the power-assisted mode the  sprocket assembly  10, 20 can be driven by both the crank arms and the motor50without causing undesirable amount of feedback force at the crank arms due to the motor’s torque.
Referring back to Figure 1, Figure 2, the main housing 1 includes a mounting arrangement 80 for securing the power-assisted drive assembly 100 to a frame of, for instance, a bicycle. As specifically depicted in Figure 13, the mounting arrangement 80is provided for detachably engaging with the bottom bracket shell of the bicycle frame (not shown) . The mounting arrangement 80generally includes a first mounting part 81 and a second mounting part 82. The first mounting part 81 extends from the spindle support portion 2. The second mounting part 82 is essentially a continuation or an extension of the first mounting part 81 and is detachably engageable with the first mounting part 81. One end of the second mounting part 82 is provided with an annular flange 83, and is formed with a circular recess 84 for accommodating a spindle bearing (not shown) . The peripheral surface of the annual flange 83 of the second mounting part 82 may be toothed or serrated for facilitating rotation by a tool, for example, a wrench with a complementary socket. Each of the first mounting part 81 and the second mounting part 82 includes a hollow shank structure with a centre through-hole 85 for accommodating the drive spindle 5. Moreover, the first mounting part 81is adapted to be insertable into the bottom bracket shell from a driving side, while the second mounting portion 82 is adapted to be insertable into the bottom bracket shell from a non-driving side. Preferably, the first mounting part 81 is integrally formed with the spindle support portion 2, as shown in Figure 2, or it can be formed as a separate part attachable to the spindle support portion 2. A releasable engagement may be provided between the first mounting part 81 and the second mounting part 82. For instance, as shown in Figure 13, a free end of the second mounting portion 82 may include an engagement end 86, i.e., a threaded shank, for engagement with a receiving end 87, i.e., a complementary threaded bore, provided on the first mounting part 81, or vice versa.
To allow for insertion, the outer diameters of the first and second mounting  portions  81, 82 are slightly smaller than the inner diameter of the bottom bracket shell. Preferably, the fit between the first and second mounting  part  81, 82 and the bottom bracket shell should be free of interference, i.e., a clearance fit. Upon engagement, the first and second mounting  portions  81, 82 are required to be aligned axially within the bottom bracket shell. The first and second mounting  portions  81, 82, once engaged, form a hollow shank within the bottom bracket shell, with the first mounting part 81and the second mounting part 82 positioned concentric with the drive spindle 5 or the spindle axis. Further engagement of the second mounting part 82 with the first mounting part 81, i.e., tightening of the second mounting part 82, allows for a pressure to be exerted on the driving side and the non-driving sides of the bottom bracket shell thereby securing the main housing 1to the bottom bracket shell. As the power-assisted drive assembly 100 is mounted to the bottom bracket shell, the first and second mounting  parts  81, 82 together serve as a bottom bracket extending through the entire width of the bottom bracket shell for rotatably supporting the drive spindle 5. Preferably, the  first mounting part 81 and the second mounting part 82 may provide engageable threads 86, 87with a range of 15mm to 30mm in length for accommodating bottom bracket shells of different widths.
Preferably, the main housing 1 may be formed such that the motor mounting portion 2 lies directly under the bottom bracket shell of the bicycle with the power-assisted drive assembly 100 is mounted. Preferably, an uppermost surface 88 of the motor mounting portion 3should be spaced apart from the spindle axis at a certain distance, for example, 25mm-30mm. Such an arrangement would provide sufficient clearance for fitting the power-assisted drive assembly 100 to bottom bracket shells having different wall thickness.
The main housing 1 further includes a motor housing 6for housing the motor 50. Preferably, the motor housing 6 surrounds the circumferential side of the motor 50 and its inner surface lies in proximity to the motor 50. Advantageously, the motor housing 6, made out of heat conductive metallic material, such as aluminum alloy, functions as a heatsink for the motor 50. On the outer surface of the motor housing 50, a plurality of fins 7 may be provided. In particular, the plurality of fins 7 runs in a direction parallel with a traveling direction of the bicycle. The fins 7 serve to direct airflow to contact with the motor housing 6 along the traveling direction, thereby carrying the heat away from the power-assisted drive assembly 100.
The main housing 1 includes a gear cavity 15 spatially connecting the spindle supporting portion 2 and the motor mounting portion 3, as shown in Figure 3 and Figure 4. The gear cavity 15 houses and preferably conceals the gear mechanism 30. Preferably, the main housing 1 further includes a wiring cavity 17 in the motor mounting portion 3. The wiring cavity 17 serves to provide a space for accommodating the lead wires connecting to the motor 50, or other electronic components, such as controllers, for operating the motor 50. Specifically, the wiring cavity 17 is spatially isolated from the drivetrain cavity 15 and is preferably sealed against water or dust ingression. A detachable cover 16 may be provided for sealing the wiring cavity 17 and providing access to the same once detached.
Figure 14 and Figure 15 are section views generally illustrating the positional relationships between the various mentioned components of the power-assisted drive assembly 100. In particular, as shown, crank arms are each attached to an end of the drive spindle 5 through a spline connection.
According to an embodiment, the power-assisted drive assembly 100 may optionally include an additional mounting arrangement 90 for securing the assembly 100to the bottom bracket shell on the non-driving side. The additional mounting arrangement 90 may be positioned on the motor mounting portion 3 of the main housing 1. For instance, as shown in Figure 14, the additional mounting arrangement may be an extension from the motor mounting portion 3may be an L-shape bracket 90adapted forattaching to the non-driving side  of the bottom bracket shell. Upon tightening of the mounting  portions  81, 82, the annular flange 83 acts against the non-driving side of the bottom bracket shell and the L-shape bracket 90 therebetween, as shown.
The power-assisted drive assembly as described in the above may be retrofitted to a pedal cycle, such as a multi speed mountain bike with a standardized bottom bracket shell, either a threaded or press fit shell. Before retrofitting the power-assisted drive assembly, all the moving parts, including but not limited to crank arms, sprocket, drive spindle, spindle bearings, and bottom brackets would be removed from the bottom bracket shell of the frame.
To install the power-assisted drive assembly 100 to a bicycle frame, the first step involves inserting the first mounting part 81 into the bottom bracket shell from a driving side of the bicycle frame. While maintaining the first mounting part 81 in the bottom bracket shell, the second mounting part 82 can be inserted into the bottom bracket shell from a non-driving side. Next, the threaded shank of the second mounting part 82 is inserted into the threaded bore 81a of the first mounting part 81 by rotating the second mounting part 82 relative to the first mounting part 81 in a tightening direction. Upon the second mounting part 82 is fully tightened, the drive assembly 100is aligned to a position directly under the bottom bracket shell. The second mounting part 82 is further tightened until the drive assembly 100is secured in position. The mounting method as described in the foregoing allows for the replacement of spindles with different lengths, along with a second mounting part of a required length, as needed. This provides the added versatility for the drive assembly 100 to fit different types of bicycle frame having bottom bracket shell of different widths.
Following the mounting of the drive assembly to the bicycle frame, the drive spindle 5 is inserted through the first and second mounting  parts  81, 82 from the driving side, with the splines on the drive spindle 5 in engagement with the torque sensing assembly 60, thereby drivably connecting the drive spindle 5 with the drive gear 31. Specifically, the drive spindle 5 connects to the second sensing part 62 of the torque sensing assembly 60 through the spline connection provided therebetween, thereby drivably connects the drive spindle 5 to the drive gear 31 through the one-way sprag clutch 72. A spindle bearing 8 is then inserted into the bearing seat at the second mounting part 82 for rotatably supporting the drive spindle 5 at the non-driving side. To secure the drive spindle 5 in place, a stopper 9 is mounted on the non-driving side of the drive spindle 5 immediate to the spindle bearing 9. Lastly, a crank arm 95 is attached to each end of the drive spindle 5. Optionally, the power-assisted drive assembly 100 may be further secured to the bicycle frame by securing the motor mounting portion 3 of the main housing 1 to the downtube of the bicycle frame through the additional mounting arrangement (not shown) .
As those skilled in the art would appreciate, a mid-drive motor system would be considered a more superior and desirable arrangement than a hub motor arrangement when converting a conventional self-pedaling bicycle to a power-assisted bicycle. Particularly,  when retrofitting a drive system to mountain bikes, a mid-drive motor system can provide unparallel gearing versatility and efficiency. If using a motor of a considerable size in the mid-drive system, it can lead to insufficient bottom ground clearance and would greatly hinder rideability particularly, in offroad situations. Therefore, it is desirable to have a mid-drive system, such as what has been discussed in the foregoing sections, which utilizes an outrunner type motor with a relatively smaller diameter, yet providing sufficient torque output for powering a mountain bike. With the motor having a much smaller diameter, the overall size of the mid-drive system is reduced while the ground clearance can be enhanced. Moreover, an overall smaller mid-drive system can provide more clearance between the bottom bracket shell and the motor housing, which adds the flexibility for the mid-drive system to be compatible with bottom bracket shells of different sizes and frames of different geometries. The mid-drive system as discussed further provides the robustness to support spindles with larger diameters which may be required for satisfying reliability need for heavy-duty applications, i.e., offroad riding.
The foregoing only illustrates and describes examples whereby the present invention may be carried out, and that modifications and/or alterations may be made thereto without departing from the spirit of the invention.
It should be understood that although the specification is described in terms of embodiments, not every embodiment includes only a single technical solution. This description of the specification is merely for the sake of clarity. Those skilled in the art should regard the specification as a whole, and the technical solutions in the embodiments can also be combined appropriately to form other embodiments that can be understood by those skilled in the art.
All references specifically cited herein are hereby incorporated by reference in their entireties. However, the citation or incorporation of such a reference is not necessarily an admission as to its appropriateness, citability, and/or availability as prior art to/against the present invention.
It is appreciated that the protection scope of the present invention is defined by the appended claims rather than the foregoing description, and it is therefore intended that all changes that fall within the meaning and scope of equivalency of the claims are included in the present invention and any reference signs in the claims should not be regarded as limiting the involved claims.

Claims (20)

  1. A power-assisted drive assembly for installing on a pedal cycle comprising:
    a sprocket assembly;
    a drive spindle drivably connected to the sprocket assembly through a one-way sprag clutch;
    a main housing rotatably supporting the drive spindle and defining a spindle axis, the main housing comprising a spindle supporting portion and a motor mounting portion;
    a motor mounted on the motor mounting portion and drivably connected to the drive spindle, the motor having a drive axis offset to the spindle axis;
    a gear mechanism drivably connected to the motor and the sprocket assembly, the gear mechanism comprising a second one-way spray clutch;
    wherein the main housing comprises a mounting arrangement for engagement with a bottom bracket shell of the pedal cycle, the mounting arrangement comprises
    a first mounting part connected to the spindle support portion and insertable into the bottom bracket shell from a driving side, and
    a second mounting part insertable into the bottom bracket shell from a non-driving side,
    wherein the drive spindle is rotatably supporting by the mounting arrangement, the first mounting part is adapted for coupling with the second mounting part through a coupling engagement adapted for exerting a pressure on two sides of the bottom bracket shell for securing the drive assembly with the bottom bracket shell.
  2. The power-assisted drive assembly according to claim 1, wherein each of the first mounting part and the second mounting part lie concentric with the spindle axis.
  3. The power-assisted drive assembly according to claim 1 or claim 2, wherein the coupling engagement between the first mounting part and the second mounting part is a thread engagement.
  4. The power-assisted drive assembly according to any of the preceding claims, wherein each of the first mounting part and the second mounting part comprises a hollow shank adapted for accommodating the drive spindle.
  5. The power-assisted drive assembly according to claim 4, wherein one end of the second mounting part is provided an annular flange for abutment with the non-driving side of the bottom bracket shell, and is formed with a circular recess for accommodating a spindle bearing.
  6. The power-assisted drive assembly according to claim 5, wherein splines are provided on the circumferential surface of the annual flange for facilitating rotating of the second mounting part by a tool.
  7. The power-assisted drive assembly according to any of the preceding claims, wherein the spindle axis is offset from a nearest surface of the motor housing by at least 25 mm.
  8. The power-assisted drive assembly according to any of the preceding claims, wherein the thread engagement between the first mounting part and the second mounting part provides an engageable thread within a range of 15mm to 30mm.
  9. The power-assisted drive assembly according to any of the preceding claims, wherein the main housing further comprises a motor housing which conceals the motor.
  10. The power-assisted drive assembly according to any of the preceding claims, wherein the main housing further comprises a drivetrain cavity spatially connecting the spindle supporting portion and the motor mounting portion.
  11. The power-assisted drive assembly according to claim 10, wherein the main housing further comprises a wiring cavity in the motor mounting portion, the wiring cavity is spatially isolated from the drivetrain cavity.
  12. The power-assisted drive assembly according to claim 10, wherein a plurality of fins is provided on the outside of the motor housing.
  13. The power-assisted drive assembly according to claim 12, wherein the plurality of fins runs in a direction parallel with a traveling direction of the bicycle.
  14. The power-assisted drive assembly according to any one of the preceding claims, wherein the motor housing is arranged so that an inner surface of the motor housing lies in proximity to a surface of the motor.
  15. The power-assisted drive assembly according to any one of the preceding claims, further comprising an additional mounting arrangement for securing the drive assembly to a downtube of the bicycle.
  16. A method of installing a power-assisted drive assembly to a pedal cycle, comprising the sequenced steps of:
    a) providing the power-assisted drive assembly according to any one of claim 1 to claim 15;
    b) inserting the first mounting part to the drive side of a bottom bracket shell of the pedal cycle;
    c) inserting the second mounting part to the non-drive side of the bottom  bracket;
    d) engaging an engaging end of the second mounting part to a receiving end of the first mounting part;
    e) aligning the power-assisted assembly to a position under the bottom bracket shell;
    f) tightening the second mounting part against the first mounting part, thereby generating a pressure exerting on the sides of the bottom bracket shell;
    g) inserting the drive spindle, from the driving side, through the mounting arrangement and engaging the drive spindle with the gear mechanism, and
    h) locking the drive spindle in place by mounting a stopper at the non-driving side of the drive spindle.
  17. The method according to claim 16, further comprising the step of further securing the power-assisted drive assembly to a downtube of the bicycle via using an additional mounting arrangement.
  18. The method according to claim 16, further comprising the step of attaching a crank arm on each end of the drive spindle.
  19. A method of retrofitting the power-assisted drive assembly to a pedal cycle comprising the steps of:
    removing all parts supported by a bottom bracket shell of the pedal cycle;
    detaching the bottom bracket from the bottom bracket shell; and
    performing the method according to any one of claim 16 to claim 18.
  20. A bicycle installed with a power-assisted drive assembly according to any one of claim 1 to claim 15.
PCT/CN2022/097404 2022-06-07 2022-06-07 Power-assisted drive assembly WO2023236047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097404 WO2023236047A1 (en) 2022-06-07 2022-06-07 Power-assisted drive assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/097404 WO2023236047A1 (en) 2022-06-07 2022-06-07 Power-assisted drive assembly

Publications (1)

Publication Number Publication Date
WO2023236047A1 true WO2023236047A1 (en) 2023-12-14

Family

ID=89117349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097404 WO2023236047A1 (en) 2022-06-07 2022-06-07 Power-assisted drive assembly

Country Status (1)

Country Link
WO (1) WO2023236047A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736449A2 (en) * 1995-04-03 1996-10-09 Suzuki Kabushiki Kaisha Power assist apparatus of power assisted bicycle
CN1153499A (en) * 1995-06-14 1997-07-02 精工爱普生株式会社 Driving force auxiliary device
JPH09328092A (en) * 1996-06-11 1997-12-22 Mitsubishi Heavy Ind Ltd Bicycle with assist electric motor
US5941333A (en) * 1998-01-07 1999-08-24 Giant Manufacturing Co., Ltd. Bicycle with a planetary-gear-train type transmission and an auxilliary electrical transmission
JP2001130476A (en) * 1999-11-08 2001-05-15 Mitsubishi Heavy Ind Ltd Electric power-assisted bicycle
CN1622894A (en) * 2001-12-28 2005-06-01 新时代技研株式会社 Electrically powered assist bicycle
US20120312618A1 (en) * 2011-06-10 2012-12-13 Yet Chan Motorized driving device
US20170183057A1 (en) * 2015-12-27 2017-06-29 Typhoon Bicycles Limited Electric Bicycle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736449A2 (en) * 1995-04-03 1996-10-09 Suzuki Kabushiki Kaisha Power assist apparatus of power assisted bicycle
CN1153499A (en) * 1995-06-14 1997-07-02 精工爱普生株式会社 Driving force auxiliary device
JPH09328092A (en) * 1996-06-11 1997-12-22 Mitsubishi Heavy Ind Ltd Bicycle with assist electric motor
US5941333A (en) * 1998-01-07 1999-08-24 Giant Manufacturing Co., Ltd. Bicycle with a planetary-gear-train type transmission and an auxilliary electrical transmission
JP2001130476A (en) * 1999-11-08 2001-05-15 Mitsubishi Heavy Ind Ltd Electric power-assisted bicycle
CN1622894A (en) * 2001-12-28 2005-06-01 新时代技研株式会社 Electrically powered assist bicycle
US20120312618A1 (en) * 2011-06-10 2012-12-13 Yet Chan Motorized driving device
US20170183057A1 (en) * 2015-12-27 2017-06-29 Typhoon Bicycles Limited Electric Bicycle

Similar Documents

Publication Publication Date Title
US7770682B2 (en) Power assist system and method for a vehicle
US5433284A (en) Electrical bicycle
EP0980821B1 (en) Motor drive unit for electric motor-operated vehicle
US20140069231A1 (en) Bicycle drive unit
TWI621564B (en) Bicycle drive unit
TW201438959A (en) Bicycle drive unit
EP2735501B1 (en) Centrally-positioned power output mechanism of power-assisted bicycle
EP0968113A1 (en) Unitary power module for electric vehicles
EP2381566A2 (en) Magnetic Pole Sensor Structure in Assist Unit
TWI793189B (en) Transmission systems for vehicles
WO2023236047A1 (en) Power-assisted drive assembly
WO2021129066A1 (en) Central drive device and bicycle having said device
WO2023236046A1 (en) Power-assisted drive assembly
TWM462709U (en) Bicycle drive unit
CN115459520A (en) Hub motor and power-assisted electric bicycle
CN211663398U (en) Middle-mounted driving device and bicycle with same
US20220289335A1 (en) Apparatus for the electric propulsion of a vehicle, in particular of a human-powered vehicle
EP3980322B1 (en) Electric gearmotor assembly for bicycles
CN111391960A (en) Chain wheel direct-drive type middle shaft transmission mechanism
CN111391961A (en) Middle shaft transmission device of electric bicycle
CN218431605U (en) Electric power-assisted bicycle middle-arranged motor with torque coupling device
WO2024057822A1 (en) Drive unit and electric vehicle
CN217216273U (en) Drive device and electric vehicle
WO2024060578A1 (en) Wheel hub motor and power-assisted electric bicycle
CN117842257A (en) Quick-mounting type large-reduction-ratio electric power assisting middle motor assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945194

Country of ref document: EP

Kind code of ref document: A1