WO2023234124A1 - Binding protective tape - Google Patents

Binding protective tape Download PDF

Info

Publication number
WO2023234124A1
WO2023234124A1 PCT/JP2023/019198 JP2023019198W WO2023234124A1 WO 2023234124 A1 WO2023234124 A1 WO 2023234124A1 JP 2023019198 W JP2023019198 W JP 2023019198W WO 2023234124 A1 WO2023234124 A1 WO 2023234124A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
protective tape
binding
parts
mass
Prior art date
Application number
PCT/JP2023/019198
Other languages
French (fr)
Japanese (ja)
Inventor
洋亮 楯
学 三浦
莉緒 鈴木
大輔 吉村
水貴 蓮見
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023234124A1 publication Critical patent/WO2023234124A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a binding protective tape.
  • the binding protective tape can be suitably used for binding and protecting high-voltage cables for electric vehicles and hybrid vehicles, wire harnesses for automobiles, and the like.
  • Patent Documents 1 and 2 Polyvinyl chloride-based binding and protective tapes are used that have a base material made of polyvinyl chloride resin coated with an adhesive on one side. It is also known that the cuttability and abrasion resistance of polyvinyl chloride binding and protective tape can be improved by arranging hard wire rods that are harder than polyvinyl chloride resin in a predetermined cutting direction and embedding them in the base material. (Patent Document 3).
  • An object of the present invention is to provide a binding protective tape that has an excellent balance between flexibility and protective performance, and also has excellent tape storage stability.
  • the base material contains a polyvinyl chloride resin, a plasticizer, a filler, and
  • a sliding property-imparting agent By containing a sliding property-imparting agent and setting the content of the sliding property-imparting agent to 1 to 10 parts by mass based on 100 parts by mass of the polyvinyl chloride resin, the tape has an excellent balance between flexibility and protective performance. It has been found that a binding protective tape with excellent storage stability can be obtained.
  • a binding protective tape comprising a base material and an adhesive layer formed on one side of the base material
  • the base material is composed of a resin composition containing a polyvinyl chloride resin, a plasticizer, a filler, and a slidability imparting agent,
  • the content of the sliding property imparting agent is 1 to 10 parts by mass based on 100 parts by mass of the polyvinyl chloride resin.
  • Binding protection tape [2] Install Nitto Denko Corporation No. 1 on the sample stage.
  • the coefficient of kinetic friction on the surface of the base material is fixed using 5000NS double-sided tape and measured using an R contactor based on ASTM D1894 under the conditions of a load of 200 g and a test speed of 2.5 mm/sec. 0.06 to 0.26, The binding protective tape according to [1].
  • the binding protection tape is fixed to the sample stage via the adhesive layer, and the measurement is performed using an R contactor based on ASTM D1894 under the conditions of a load of 200 g and a test speed of 2.5 mm/sec.
  • the dynamic friction coefficient of the back surface of the base material of the binding protective tape is 0.13 to 0.60.
  • the slidability imparting agent is one selected from the group consisting of linear polyorganosiloxane, crosslinked polyorganosiloxane, silica, talc, glass fiber, and fluororesin. ] to [3].
  • the binding protective tape according to any one of [3].
  • the linear polydimethylsiloxane has a kinematic viscosity of 2,000,000 mm 2 /s or more at 25°C.
  • a binding protective tape that has an excellent balance between flexibility and protective performance, and also has excellent tape storage stability.
  • a binding protective tape according to an embodiment of the present invention includes a base material and an adhesive layer formed on one side of the base material. Each configuration will be described in detail below.
  • the base material according to one embodiment of the present invention contains a polyvinyl chloride resin, a plasticizer, a filler, and a sliding property imparting agent, and the content of the sliding property imparting agent is based on 100 parts by mass of the polyvinyl chloride resin. is composed of a resin composition having 1 to 10 parts by mass.
  • the polyvinyl chloride resin in one embodiment of the present invention preferably has an average degree of polymerization of 1000 to 1500, and two or more types of polyvinyl chloride resins having different average degrees of polymerization may be used. If the average degree of polymerization is less than 1000, sufficient strength (wear resistance) may not be obtained due to insufficient entanglement of polymer chains. If the average degree of polymerization is higher than 1500, gelation may be difficult and film forming properties may deteriorate.
  • the plasticizer in one embodiment of the present invention is not particularly limited as long as it can impart flexibility to the base material.
  • examples include trimellitic acid esters, adipic acid esters, phthalic acid esters, epoxy plasticizers, isophthalic acid esters, terephthalic acid esters, and phosphoric acid plasticizers. From the viewpoint of plasticizing effect on polyvinyl chloride resin and low bleed-out, phthalate esters are preferred. These plasticizers may be used alone or in combination of two or more.
  • phthalate ester plasticizer examples include DINP (diisononyl phthalate), DHP (diheptyl phthalate), DOP (di-2-ethylhexyl phthalate), and n-DOP (diisononyl phthalate). -n-octyl) and diisodecyl phthalate (DIDP).
  • phthalic acid and carbon atoms of 9 to 10 such as DINP (diisononyl phthalate) and diisodecyl phthalate (DIDP), are recommended. Diesters with alcohols are preferred. These plasticizers may be used alone or in combination of two or more.
  • the content of the plasticizer is preferably 38 to 60 parts by weight, more preferably 40 to 50 parts by weight based on 100 parts by weight of the polyvinyl chloride resin. Specifically, for example, it is preferably 38, 40, 42, 43, 44, 45, 46, 48, 50, 55, or 60 parts by mass, and within the range between any two of the numerical values exemplified here. It may be.
  • the plasticizer in an amount of 38 parts by mass or more, the flexibility of the base material is improved and, for example, it is possible to reduce the occurrence of floating in the binding protection tape by improving the followability when it is wound around an electric wire or the like.
  • the wear resistance of the base material can be improved and good protective performance can be obtained.
  • the content of the plasticizer means the total amount of the plasticizer used in combination.
  • the filler in one embodiment of the present invention is not particularly limited as long as it can increase the amount of the base material and improve the hardness.
  • inorganic fillers are preferred from the viewpoint of achieving both a reinforcing effect and flexibility.
  • Examples of the inorganic filler in an embodiment of the present invention include calcium carbonate, aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, calcium hydroxide, potassium hydroxide, barium hydroxide, triphenyl phosphite, and ammonium polyphosphate.
  • polyphosphoric acid amide zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, molybdenum oxide, guanidine phosphate, hydrotalcite, smectite, zinc borate, zinc borate anhydride, zinc metaborate, barium metaborate, antimony oxide, pentoxide
  • examples include antimony, red phosphorus, alumina, boehmite, bentonite, sodium silicate, calcium silicate, calcium sulfate, magnesium carbonate, and carbon black. From the viewpoint of both reinforcing effect and flexibility, calcium carbonate and carbon black are preferred. These fillers may be used alone or in combination of two or more.
  • the content of the filler is preferably 10 to 60 parts by weight, more preferably 20 to 40 parts by weight, based on 100 parts by weight of the polyvinyl chloride resin. Specifically, for example, it is 10, 15, 20, 25, 30, 35, 40, 45, 50, or 60 parts by mass, and may be within a range between any two of the numerical values exemplified here. .
  • the filler in an amount of 10 parts by mass or more, the wear resistance of the base material can be improved and good protective performance can be obtained.
  • the amount of the filler By controlling the amount of the filler to 60 parts by mass or less, the flexibility of the base material is improved and, for example, it is possible to reduce the occurrence of floating in the binding protective tape due to the improved followability when it is wound around electric wires or the like.
  • the content of the filler means the total amount of the filler used together.
  • the sliding properties imparting agent in one embodiment of the present invention is not particularly limited as long as it can impart sliding properties to the base material.
  • Examples include polyorganosiloxane, silica, talc, glass fiber, fluororesin, boron nitride, molybdenum disulfide, ultra-high molecular weight polyethylene resin, and the like. From the viewpoint of achieving both slidability and flexibility, polyorganosiloxane is preferred.
  • the polyorganosiloxane include linear polyorganosiloxane, crosslinked polyorganosiloxane, and the like. These slidability imparting agents may be used alone or in combination of two or more.
  • the slidability imparting agent must be uniformly dispersed in the resin composition from the viewpoint of slidability and prevention of plate-out (a phenomenon in which a part of the resin composition separates and adheres to the molding machine). is preferred.
  • the polyorganosiloxane in one embodiment of the present invention is not particularly limited as long as it has a polyorganosiloxane structure.
  • the polyorganosiloxane structure is a polymer having -Si-O- repeating units in the main chain and organic groups in the side chains. Examples of the repeating unit include those represented by the following structural formula.
  • R 1 and R 2 are each independently an organic group selected from an alkyl group, a polyoxyalkylene group, a fluorine-containing group, and a chlorophenyl group. From the viewpoint of slidability, an alkyl group is preferred. Examples of the alkyl group include a methyl group and an ethyl group from the viewpoint of slidability. These polyorganosiloxane structures may be used alone or in combination of two or more types.
  • the polyorganosiloxane in one embodiment of the present invention may be a linear polyorganosiloxane in which siloxane bonds in the main chain are linearly bonded.
  • Examples of the linear polyorganosiloxane include linear polydimethylsiloxane, linear polymethylphenylsiloxane, and linear polymethylhydrogensiloxane. From the viewpoint of sliding properties, linear polydimethylsiloxane is preferred. These other linear polyorganosiloxanes may be used alone or in combination of two or more types.
  • the kinematic viscosity at 25° C. of the linear polyorganosiloxane is preferably 2 million mm 2 /s or more, more preferably 5 million mm 2 /s or more.
  • the upper limit of the kinematic viscosity is not particularly limited, but from the viewpoint of ease of handling and dispersibility, it is preferably 50 million mm 2 /s or less. Specifically, for example, it is 2 million, 5 million, 15 million, 20 million, 25 million, 30 million, 40 million, or 50 million mm 2 /s, and between any two of the numerical values exemplified here. It may be within the range.
  • the kinematic viscosity at 25° C. of the linear polyorganosiloxane is a value measured by, for example, a kinematic viscometer.
  • the kinematic viscosity of linear polyorganosiloxane can be controlled by adjusting the molecular weight.
  • the kinematic viscosity at 25 ° C. of the linear polyorganosiloxane means the average kinematic viscosity when the linear polyorganosiloxane used together is combined. do.
  • the polyorganosiloxane in one embodiment of the present invention may have a structure in which linear polyorganosiloxane is crosslinked, or a structure in which siloxane bonds are crosslinked in a three-dimensional network. From the viewpoint of sliding properties, polyorganosiloxanes in which linear polyorganosiloxanes are crosslinked are preferred. These crosslinked polyorganosiloxanes may be used alone or in combination of two or more types.
  • the slidability imparting agent in one embodiment of the present invention may be silica, talc, glass fiber, fluororesin, or the like.
  • the content of the sliding properties imparting agent is 1 to 10 parts by weight, more preferably 3 to 7 parts by weight, based on 100 parts by weight of the polyvinyl chloride resin. Specifically, it is, for example, 1, 2, 4, 6, 8, or 10 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the content of the slidability imparting agent By setting the content of the slidability imparting agent to 1 part by mass or more, the wear resistance of the base material can be improved and good protective performance can be obtained.
  • the content of the sliding property imparting agent means the total amount of the sliding property imparting agent used together.
  • the resin composition in this embodiment may contain other additives such as colorants, stabilizers, antioxidants, ultraviolet absorbers, lubricants, etc., as necessary, within the range that does not impede the effects of the present invention. can.
  • the thickness of the base material of the binding protective tape in this embodiment varies depending on the intended use and application, but is preferably 180 to 330 ⁇ m, more preferably 180 to 250 ⁇ m. Specifically, for example, it is 180, 185, 190, 195, 200, 205, 210, 220, 250, 280, 300, or 330 ⁇ m, and is within the range between any two of the numerical values exemplified here. It's okay.
  • the base material thickness By setting the base material thickness to 180 ⁇ m or more, the wear resistance of the base material can be improved and good protection performance can be obtained.
  • the thickness of the base material By setting the thickness of the base material to 330 ⁇ m or less, the flexibility of the base material is improved, and for example, it is possible to reduce the occurrence of floating in the binding protective tape due to the improved followability when it is wound around an electric wire or the like.
  • the structure of the base material of the binding protective tape in this embodiment is preferably a single-layer structure from the viewpoint of simplifying the manufacturing process and manufacturing equipment.
  • the resin composition for manufacturing the base material according to this embodiment includes a polyvinyl chloride resin, a plasticizer, a filler, a sliding property imparting agent, and, if necessary, a heat stabilizer, a light absorber, and a pigment. It can be obtained by melting and kneading other additives.
  • the melt-kneading method is not particularly limited, but various mixers and kneaders equipped with heating devices such as twin-screw extruders, continuous and batch-type kneaders, rolls, and Banbury mixers can be used.
  • the materials are mixed so as to be uniformly dispersed, and the resulting mixture is molded into a base material by a conventional molding method such as a calendar method, a T-die method, or an inflation method.
  • a calendar molding machine is preferable from the viewpoint of productivity, color change, uniformity of shape, etc.
  • the roll arrangement method in calender molding may be a known method such as an L-shape, an inverted L-shape, or a Z-shape, and the roll temperature is usually set at 150 to 200°C, preferably 155 to 190°C.
  • the base material is manufactured by Nitto Denko Corporation.
  • the dynamic friction coefficient of the base material surface is 0.0, measured using an R contactor based on ASTM D1894 at a load of 200 g and a test speed of 2.5 mm/sec. It is preferably from 0.06 to 0.26, more preferably from 0.10 to 0.25. Specifically, for example, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, or 0. 26, and may be within the range between any two of the numerical values exemplified here.
  • the dynamic friction coefficient of the base material surface By setting the dynamic friction coefficient of the base material surface to 0.06 or more, the flexibility of the binding protection tape is improved, and for example, when it is wrapped around electric wires, the following properties are improved and the occurrence of lifting of the binding protection tape is reduced. can.
  • the dynamic friction coefficient of the base material surface By setting the dynamic friction coefficient of the base material surface to 0.26 or less, the abrasion resistance of the binding protective tape can be improved and good protective performance can be obtained.
  • the coefficient of dynamic friction on the surface of the base material can be controlled by adjusting the type and content of the slidability imparting agent contained in the resin composition used to manufacture the base material.
  • the dynamic friction coefficient of the base material surface of the base material according to the present embodiment can be measured by the following procedure using, for example, an automatic friction and wear analyzer TS-501 manufactured by Kyowa Interface Science Co., Ltd.
  • the base material sample is cut to a width of 50 mm and a length of 100 mm, and fixed to the sample stage using double-sided tape (No. 5000NS manufactured by Nitto Denko Corporation).
  • An R contactor based on ASTM D1894 is placed on the back surface of the bonded base material sample, and the dynamic friction coefficient is measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
  • the tensile modulus in terms of thickness of the base material is preferably 5 to 9 N/mm, more preferably 6 to 9 N/mm. Specifically, it is, for example, 5, 6, 7, 8, or 9 N/mm, and may be within a range between any two of the numerical values exemplified here.
  • the tensile modulus of elasticity converted to the thickness of the base material By setting the tensile modulus of elasticity converted to the thickness of the base material to 9 N/mm or less, the flexibility of the base material is improved, and for example, when wrapped around electric wires, etc., the binding protection tape will not float due to improved followability. can be reduced.
  • the tensile modulus of elasticity converted to the thickness of the base material can be controlled by adjusting the type and content of the slidability imparting agent contained in the resin composition used for manufacturing the base material.
  • the thickness-converted tensile modulus of the base material according to the present embodiment can be obtained from the value of the tensile modulus by the following procedure.
  • a binding tape test piece with a width of 19 mm and a length of 200 mm is clamped and fixed between the chuck parts of a tensile tester so that the distance between the chucks is 100 mm.
  • the test piece is pulled at a speed of 300 mm/min at a room temperature of 23° C. and a relative humidity of 50% RH to measure tensile stress and strain.
  • the ratio of tensile stress to strain between 0.01 and 0.05% strain is calculated by linear regression, and the value is defined as the tensile modulus.
  • the product of the tensile elastic modulus thus obtained and the tape total thickness (unit: mm) is defined as the tensile elastic modulus converted to thickness.
  • the adhesive in the adhesive layer of the binding protective tape according to this embodiment is preferably a rubber adhesive, and may be either a solvent type or an emulsion type.
  • the rubber-based adhesive preferably contains one or more rubbers selected from natural rubber or synthetic rubber and a tackifying resin, and more preferably a mixture of natural rubber, synthetic rubber, and tackifying resin. preferable.
  • the mixing ratio of the tackifier resin is preferably 50 to 150 parts by mass per 100 parts by mass of the rubber component of the mixture containing natural rubber and synthetic rubber.
  • Examples of the natural rubber and synthetic rubber include natural rubber-methyl methacrylate copolymer latex, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, methyl methacrylate-butadiene copolymer, and the like. These may be used alone or in combination of two or more.
  • the tackifying resin can be selected in consideration of softening point, compatibility with each component, etc.
  • emulsions such as aromatic hydrocarbon resins may be mentioned. These may be used alone or in combination of two or more.
  • the rubber adhesive can be freely selected from a solvent type and an emulsion type, but an emulsion type that generates less VOC is preferable.
  • the binding protective tape according to the present embodiment may be provided between the base material and the adhesive layer for the purpose of improving the adhesion between the base material and the adhesive layer within a range that does not impede the effects of the present invention.
  • a primer layer may also be provided.
  • the thickness of the undercoat layer is usually 0.1 to 1 ⁇ m, more preferably 0.3 to 0.5 ⁇ m, and the thickness of the undercoat layer is preferably smaller than the thickness of the base material.
  • the undercoat forming the undercoat layer is preferably one consisting of 25 to 300 parts by mass of an acrylonitrile-butadiene copolymer based on 100 parts by mass of a graft polymer obtained by graft polymerizing methyl methacrylate to natural rubber.
  • the graft polymer obtained by graft-polymerizing methyl methacrylate onto natural rubber used in the primer is preferably one in which 70-50 mass % of natural rubber is graft-polymerized with 30-50 mass % methyl methacrylate. If the ratio of methyl methacrylate in the graft polymer is less than 30% by mass, the adhesion between methyl methacrylate and the film base material may deteriorate, and delamination of the binding protective tape may occur. Moreover, if the ratio of methyl methacrylate is more than 50% by mass, the undercoat itself will harden and be unable to follow the deformation of the film base material, which may cause delamination of the binding protective tape.
  • the acrylonitrile-butadiene copolymer used in the primer includes medium nitrile type (acrylonitrile 25-30% by mass, butadiene 75-70% by mass), medium-high nitrile type (acrylonitrile 31-35% by mass, butadiene 69-65% by mass). %) high nitrile type (acrylonitrile 36-43% by mass, butadiene 64-57% by mass). These may be used alone or in combination of two or more.
  • the binding protection tape according to the present embodiment can be produced by, for example, applying an undercoat to one side of a base material, removing the solvent sufficiently in a drying oven, applying an adhesive, and then applying it in a drying oven in the same way as the undercoat. After sufficiently removing the solvent, an adhesive is applied to obtain a binding protective tape.
  • Coating methods for the primer include the gravure method, spray method, kiss roll method, bar method, knife method, etc., and methods for applying the adhesive include the comma method, lip die method, gravure method, and roll method. , slot die method, etc.
  • the thickness of the primer layer is usually 0.1 to 1 ⁇ m, more preferably 0.3 to 0.5 ⁇ m. Further, the thickness of the adhesive layer varies depending on the purpose and application, but is usually 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • ⁇ Dynamic friction coefficient on the back side of the binding protective tape base material> an R contactor based on ASTM D1894 is used, a load of 200 g and a test speed of 2.5 mm/sec are used when the binding protection tape is fixed to the measurement stage via an adhesive layer.
  • the dynamic friction coefficient of the back surface of the binding protective tape base material measured under the following conditions is preferably 0.13 to 0.60, more preferably 0.23 to 0.58. Specifically, for example, 0.13, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, or 0. It is preferably 60, and may be within a range between any two of the numerical values exemplified here.
  • the back surface of the binding protective tape base material means the surface of the binding protective tape base material that is opposite to the surface on which the adhesive layer is formed.
  • the coefficient of dynamic friction on the surface of the base material increases, the coefficient of dynamic friction on the back surface of the base material of the binding protective tape tends to increase as well. Therefore, it can be controlled by adjusting the dynamic friction coefficient of the base material surface within the above-mentioned range.
  • the coefficient of dynamic friction on the back side of the base material of the binding protective tape tends to be a larger value than the coefficient of dynamic friction on the surface of the base material, but due to the above relationship,
  • the coefficient of dynamic friction on the back surface of the base material of the binding protective tape can be controlled within a desired range.
  • the dynamic friction coefficient of the back surface of the binding protective tape base material can be controlled by adjusting the dynamic friction coefficient of the base material surface within the above-mentioned range.
  • the back surface dynamic friction coefficient of the binding protective tape base material in the binding protective tape according to the present embodiment can be measured by the following procedure using, for example, an automatic friction and wear analysis device TS-501 manufactured by Kyowa Interface Science Co., Ltd.
  • the binding protective tape sample is cut into 50 mm width x 100 mm length and fixed to the sample stage via the adhesive layer of the binding protective tape sample.
  • An R contactor based on ASTM D1894 is placed on the back of the bonded protective tape sample, and the dynamic friction coefficient is measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
  • the binding protective tape according to the present embodiment is suitably used as a binding protective tape for binding high-voltage cables and wire harnesses of electric vehicles and hybrid vehicles, for example.
  • Linear polydimethylsiloxane (kinematic viscosity 1 million mm 2 /s at 25°C): Product name "AK1000000”, manufactured by Asahi Kasei Wacker Silicone Co., Ltd.
  • Crosslinked polydimethylsiloxane (linear Polyorganosiloxane (crosslinked polyorganosiloxane): Product name "KMP-597", manufactured by Shin-Etsu Chemical Co., Ltd.
  • Silica Product name "HDK H-18", manufactured by Asahi Kasei Wacker Silicone Co., Ltd.
  • Talc Product Glass fiber: Product name: "Himicron HE5", manufactured by Takehara Chemical Industry Co., Ltd.
  • Glass fiber Product name: "Milled fiber EPH80M-10A", manufactured by Nippon Electric Glass Co., Ltd.
  • Fluororesin Product name: "Dyneon PTFE Micro Powder TF9207Z”, manufactured by 3M ( 3) Plasticizer Phthalate ester plasticizer, diisononyl phthalate: Product name "DINP”, manufactured by J-Plus Co., Ltd.
  • Filler Calcium carbonate Product name "Calcease (registered trademark) P", manufactured by Kamishima Chemical Industry Co., Ltd. Manufactured by Co., Ltd.
  • a polyvinyl chloride resin, a sliding property imparting agent, a plasticizer, and a filler were melt-kneaded in the compositions shown in Tables 1 and 2 using a Banbury mixer so as to be uniformly dispersed, and then heated to a roll temperature of 165 using a calendar molding machine.
  • a base material of a predetermined thickness was produced at °C.
  • ⁇ Preparation of binding protective tape> ⁇ Materials used> (1) Base material Base material created by the above process (2) Undercoat layer Mixture emulsion of graft polymer latex obtained by graft polymerizing methyl methacrylate to natural rubber and acrylonitrile butadiene copolymer emulsion: Product name KT4612A, E-Tech Co., Ltd. (3) Adhesive layer made by HA LATEX Co., Ltd.
  • the thickness of the undercoat layer after drying was 0.3 ⁇ m, and the thickness of the adhesive layer after drying was 20 ⁇ m.
  • ⁇ Dynamic friction coefficient of base material surface The measurement was performed using an automatic friction and wear analyzer TS-501 manufactured by Kyowa Interface Science Co., Ltd. according to the following procedure.
  • the base material sample was cut to a width of 50 mm and a length of 100 mm, and was fixed to a sample stage using double-sided tape (No. 5000NS manufactured by Nitto Denko Corporation).
  • An R contactor based on ASTM D1894 was placed on the back surface of the bonded base material sample, and the dynamic friction coefficient was measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
  • ⁇ Dynamic friction coefficient of binding protective tape> The measurement was performed using an automatic friction and wear analyzer TS-501 manufactured by Kyowa Interface Science Co., Ltd. according to the following procedure.
  • the binding protective tape sample was cut into 50 mm width x 100 mm length, and was affixed and fixed to a sample stage via an adhesive layer.
  • An R contactor based on ASTM D1894 was placed on the back of the bonded protective tape sample, and the dynamic friction coefficient was measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
  • ⁇ Tensile modulus/tensile modulus converted to thickness A binding tape test piece with a width of 19 mm and a length of 200 mm was clamped and fixed between the chuck parts of a tensile testing machine so that the distance between the chucks was 100 mm. The test piece was pulled at a speed of 300 mm/min at a room temperature of 23° C. and a relative humidity of 50% RH, and tensile stress and strain were measured. The ratio of tensile stress to strain between 0.01 and 0.05% strain was calculated by linear regression, and the value was defined as the tensile modulus. Further, the product of the tensile elastic modulus and the total tape thickness (unit: mm) was used as the tensile elastic modulus converted into thickness.
  • the durometer A hardness of the base material samples stacked to a thickness of 6 mm or more was measured using an Asker rubber hardness meter A type (type A indenter based on ASTM D2240) manufactured by Kobunshi Keiki Co., Ltd. (room temperature: 23° C., humidity: 50% RH).
  • Abrasion resistance was evaluated according to the following procedure. It was conducted in accordance with ISO6722-1 (2001). The base material sample was wrapped twice around a cylinder with a diameter of 10 mm and fixed with tape or the like. From above, the surface of the sample was abraded at a speed of 1500 mm/min using sandpaper whose hard material was fused alumina and had a particle size of 150 ⁇ m. The abrasion distance (mm) until a hole appeared in the sample was measured (room temperature: 23° C., humidity: 50% RH). The wear distance (mm) until a hole appeared in the sample was evaluated using the following criteria.
  • a base material with an excellent evaluation of abrasion distance has high abrasion resistance, so it can be expected that excellent protection performance can be achieved in a binding protective tape manufactured using the base material.
  • Wear distance is 1000 mm or more
  • Wear distance is 800 mm or more and less than 1000 mm
  • Wear distance is less than 800 mm
  • the binding protective tape using the base material according to the example and the binding protective tape according to the example have an excellent balance of flexibility and protective performance, and furthermore, the binding protective tape using the base material according to the example Since the material has excellent storage stability, it is expected that a binding protective tape using this base material will have excellent storage stability.
  • the protective binding tape using the base material according to the comparative example is inferior in one or more aspects of the balance between flexibility and protective performance and the storage stability of the protective binding tape.
  • the binding protective tape according to the present invention has an excellent balance between flexibility and protective performance, and also has excellent tape storage stability.
  • the binding protective tape according to the present invention can be suitably used for binding and protecting high-voltage cables for electric vehicles and hybrid vehicles, wire harnesses for automobiles, etc., and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesive Tapes (AREA)
  • Package Frames And Binding Bands (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a binding protective tape that has an excellent balance between flexibility and protective performance, and also has excellent tape storage stability. The present invention provides a binding protective tape having a substrate and an adhesive layer formed on one side of the substrate, wherein the substrate is composed of a resin composition containing a polyvinyl chloride resin, a plasticizer, a filler, and a slidability imparting agent, and the content of the slidability imparting agent in the resin composition is 1-10 parts by mass with respect to 100 parts by mass of the polyvinyl chloride resin.

Description

結束保護テープBinding protective tape
 本発明は、結束保護テープに関する。当該結束保護テープは、電気自動車、ハイブリッド動車の高圧ケーブルや自動車のワイヤーハーネスなどの結束及び保護の用途に好適に利用可能である。 The present invention relates to a binding protective tape. The binding protective tape can be suitably used for binding and protecting high-voltage cables for electric vehicles and hybrid vehicles, wire harnesses for automobiles, and the like.
 自動車のワイヤーハーネスの結束及び保護の用途に、適度な柔軟性と伸長性を有し、難燃性、機械的強度、耐熱変形性、電気絶縁性、及び成形加工性などの点に優れ、さらに比較的安価であるという理由から、ポリ塩化ビニル樹脂からなる基材の片面に粘着剤を塗布したポリ塩化ビニル系結束保護テープが使用されている(特許文献1~2)。また、ポリ塩化ビニル樹脂より硬質の硬質線材を所定の切断方向に配列して基材に埋設させることにより、ポリ塩化ビニル系結束保護テープの切断性と耐摩耗性を向上させることが知られている(特許文献3)。 Used for bundling and protecting automotive wire harnesses, it has appropriate flexibility and extensibility, and has excellent flame retardancy, mechanical strength, heat deformation resistance, electrical insulation, and moldability. Because it is relatively inexpensive, polyvinyl chloride-based binding and protective tapes are used that have a base material made of polyvinyl chloride resin coated with an adhesive on one side (Patent Documents 1 and 2). It is also known that the cuttability and abrasion resistance of polyvinyl chloride binding and protective tape can be improved by arranging hard wire rods that are harder than polyvinyl chloride resin in a predetermined cutting direction and embedding them in the base material. (Patent Document 3).
特開平8-259909号公報Japanese Patent Application Publication No. 8-259909 特開2012-184369号公報Japanese Patent Application Publication No. 2012-184369 特開平9-71031JP 9-71031
 本発明は、柔軟性と保護性能のバランスに優れ、さらにテープの保管安定性に優れた結束保護テープを提供することを課題とする。 An object of the present invention is to provide a binding protective tape that has an excellent balance between flexibility and protective performance, and also has excellent tape storage stability.
 本発明者らの検討の結果、基材と、前記基材の片面に形成された粘着剤層とを有する結束保護テープにおいて、前記基材に、ポリ塩化ビニル樹脂、可塑剤、充填剤、及び摺動性付与剤を含有させ、前記ポリ塩化ビニル樹脂100質量部に対する前記摺動性付与剤の含有量を1~10質量部とすることによって、柔軟性と保護性能のバランスに優れ、さらにテープの保管安定性に優れた結束保護テープが得られることを見出した。
 即ち、本発明は、
 [1] 基材と、前記基材の片面に形成された粘着剤層とを有する結束保護テープであって、
 前記基材は、ポリ塩化ビニル樹脂、可塑剤、充填剤、及び摺動性付与剤を含有する樹脂組成物から構成され、
 前記樹脂組成物における、前記ポリ塩化ビニル樹脂100質量部に対する前記摺動性付与剤の含有量が1~10質量部である、
結束保護テープ。
 [2] 試料ステージに日東電工社製Nо.5000NSの両面テープを用いて前記基材を固定し、ASTM D1894に基づくR接触子を使用し、荷重200g、試験速度2.5mm/secの条件で測定される、前記基材表面の動摩擦係数が0.06~0.26である、
[1]に記載の結束保護テープ。
 [3] 試料ステージに前記粘着剤層を介して前記結束保護テープを固定し、ASTM D1894に基づくR接触子を使用し、荷重200g、試験速度2.5mm/secの条件で測定される、前記結束保護テープの基材背面の動摩擦係数が0.13~0.60である、
[1]に記載の結束保護テープ。
 [4] 前記摺動性付与剤が、直鎖状のポリオルガノシロキサン、架橋されたポリオルガノシロキサン、シリカ、タルク、ガラス繊維、およびフッ素樹脂からなる群から選択されるいずれかである、[1]~[3]のいずれか一つに記載の結束保護テープ。
 [5] 前記摺動性付与剤が、直鎖状のポリジメチルシロキサンである、[1]~[4]のいずれか一つに記載の結束保護テープ。
 [6] 前記直鎖状のポリジメチルシロキサンの、25℃における動粘度が200万mm/s以上である、[4]に記載の結束保護テープ。
 [7] 前記樹脂組成物における、前記ポリ塩化ビニル樹脂100質量部に対する前記可塑剤の含有量が38~60質量部である、[1]~[6]のいずれか一つに記載の結束保護テープ。
 [8] 前記樹脂組成物における、前記ポリ塩化ビニル樹脂100質量部に対する前記充填剤の含有量が10~60質量部である、[1]~[7]のいずれか一つに記載の結束保護テープ。
 [9] 前記基材の厚みが、180~330μmである、[1]~[8]のいずれか一つに記載の結束保護テープ。
 [10] 前記基材の厚み換算した引張弾性率が、5~9N/mmである、[1]~[9]のいずれか一つに記載の結束保護テープ。
に関する。
As a result of studies by the present inventors, in a binding protective tape having a base material and an adhesive layer formed on one side of the base material, the base material contains a polyvinyl chloride resin, a plasticizer, a filler, and By containing a sliding property-imparting agent and setting the content of the sliding property-imparting agent to 1 to 10 parts by mass based on 100 parts by mass of the polyvinyl chloride resin, the tape has an excellent balance between flexibility and protective performance. It has been found that a binding protective tape with excellent storage stability can be obtained.
That is, the present invention
[1] A binding protective tape comprising a base material and an adhesive layer formed on one side of the base material,
The base material is composed of a resin composition containing a polyvinyl chloride resin, a plasticizer, a filler, and a slidability imparting agent,
In the resin composition, the content of the sliding property imparting agent is 1 to 10 parts by mass based on 100 parts by mass of the polyvinyl chloride resin.
Binding protection tape.
[2] Install Nitto Denko Corporation No. 1 on the sample stage. The coefficient of kinetic friction on the surface of the base material is fixed using 5000NS double-sided tape and measured using an R contactor based on ASTM D1894 under the conditions of a load of 200 g and a test speed of 2.5 mm/sec. 0.06 to 0.26,
The binding protective tape according to [1].
[3] The binding protection tape is fixed to the sample stage via the adhesive layer, and the measurement is performed using an R contactor based on ASTM D1894 under the conditions of a load of 200 g and a test speed of 2.5 mm/sec. The dynamic friction coefficient of the back surface of the base material of the binding protective tape is 0.13 to 0.60.
The binding protective tape according to [1].
[4] The slidability imparting agent is one selected from the group consisting of linear polyorganosiloxane, crosslinked polyorganosiloxane, silica, talc, glass fiber, and fluororesin. ] to [3]. The binding protective tape according to any one of [3].
[5] The binding protective tape according to any one of [1] to [4], wherein the sliding properties imparting agent is linear polydimethylsiloxane.
[6] The binding protective tape according to [4], wherein the linear polydimethylsiloxane has a kinematic viscosity of 2,000,000 mm 2 /s or more at 25°C.
[7] The binding protection according to any one of [1] to [6], wherein the content of the plasticizer in the resin composition is 38 to 60 parts by mass based on 100 parts by mass of the polyvinyl chloride resin. tape.
[8] The binding protection according to any one of [1] to [7], wherein the content of the filler in the resin composition is 10 to 60 parts by mass based on 100 parts by mass of the polyvinyl chloride resin. tape.
[9] The binding protective tape according to any one of [1] to [8], wherein the base material has a thickness of 180 to 330 μm.
[10] The binding protective tape according to any one of [1] to [9], wherein the base material has a thickness-converted tensile modulus of 5 to 9 N/mm.
Regarding.
 本発明によれば、柔軟性と保護性能のバランスに優れ、さらにテープの保管安定性に優れた結束保護テープを提供することができる。 According to the present invention, it is possible to provide a binding protective tape that has an excellent balance between flexibility and protective performance, and also has excellent tape storage stability.
<用語の説明>
 本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
<Explanation of terms>
In the present specification, for example, the description "A to B" means greater than or equal to A and less than or equal to B.
 以下、本発明の実施形態について、詳細に説明する。本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。以下に示す実施形態中で示した各種特徴事項は互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Various features shown in the embodiments described below can be combined with each other. Further, the invention is established independently for each characteristic matter.
<結束保護テープの構成>
 本発明の一実施形態にかかる結束保護テープは、基材と、前記基材の片面に形成された粘着剤層とを有する。以下、各構成について、詳細に説明する。
<Composition of binding protective tape>
A binding protective tape according to an embodiment of the present invention includes a base material and an adhesive layer formed on one side of the base material. Each configuration will be described in detail below.
<基材>
 本発明の一実施形態にかかる基材は、ポリ塩化ビニル樹脂、可塑剤、充填剤、及び摺動性付与剤を含有し、ポリ塩化ビニル樹脂100質量部に対する前記摺動性付与剤の含有量が1~10質量部である樹脂組成物から構成される。
<Base material>
The base material according to one embodiment of the present invention contains a polyvinyl chloride resin, a plasticizer, a filler, and a sliding property imparting agent, and the content of the sliding property imparting agent is based on 100 parts by mass of the polyvinyl chloride resin. is composed of a resin composition having 1 to 10 parts by mass.
<ポリ塩化ビニル樹脂>
 本発明の一実施形態におけるポリ塩化ビニル樹脂としては、平均重合度1000~1500のものが好ましく、平均重合度の異なるポリ塩化ビニル樹脂を2種類以上使用してもよい。平均重合度が1000未満では、ポリマー鎖の絡み合いが不足して十分な強度(耐摩耗性)が得られない場合がある。平均重合度が1500より高いと、ゲル化しづらいため製膜性が悪化する場合がある。
<Polyvinyl chloride resin>
The polyvinyl chloride resin in one embodiment of the present invention preferably has an average degree of polymerization of 1000 to 1500, and two or more types of polyvinyl chloride resins having different average degrees of polymerization may be used. If the average degree of polymerization is less than 1000, sufficient strength (wear resistance) may not be obtained due to insufficient entanglement of polymer chains. If the average degree of polymerization is higher than 1500, gelation may be difficult and film forming properties may deteriorate.
<可塑剤>
 本発明の一実施形態における可塑剤は、基材に柔軟性を付与できるものであれば特に限定されない。例えば、トリメリット酸エステル、アジピン酸エステル、フタル酸エステル、エポキシ系可塑剤、イソフタル酸エステル、テレフタル酸エステル、リン酸系可塑剤が挙げられる。ポリ塩化ビニル樹脂に対する可塑化効果やブリードアウトの少なさの観点から、フタル酸エステルが好ましい。これらの可塑剤は、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Plasticizer>
The plasticizer in one embodiment of the present invention is not particularly limited as long as it can impart flexibility to the base material. Examples include trimellitic acid esters, adipic acid esters, phthalic acid esters, epoxy plasticizers, isophthalic acid esters, terephthalic acid esters, and phosphoric acid plasticizers. From the viewpoint of plasticizing effect on polyvinyl chloride resin and low bleed-out, phthalate esters are preferred. These plasticizers may be used alone or in combination of two or more.
<フタル酸エステル>
 本発明の一実施形態におけるフタル酸エステル系可塑剤としては、例えば、DINP(フタル酸ジイソノニル)、DHP(フタル酸ジヘプチル)、DOP(フタル酸ジ-2-エチルヘキシル)、n-DOP(フタル酸ジ-n-オクチル)、フタル酸ジイソデシル(DIDP)が挙げられる。ポリ塩化ビニル樹脂に対する可塑化効果やブリードアウトの少なさ、人体への影響の小ささの観点から、DINP(フタル酸ジイソノニル)、フタル酸ジイソデシル(DIDP)等の、フタル酸と炭素数9~10のアルコールとのジエステルが好ましい。これらの可塑剤は、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Phthalate ester>
Examples of the phthalate ester plasticizer in one embodiment of the present invention include DINP (diisononyl phthalate), DHP (diheptyl phthalate), DOP (di-2-ethylhexyl phthalate), and n-DOP (diisononyl phthalate). -n-octyl) and diisodecyl phthalate (DIDP). From the viewpoint of plasticizing effect on polyvinyl chloride resin, low bleed-out, and low impact on the human body, phthalic acid and carbon atoms of 9 to 10, such as DINP (diisononyl phthalate) and diisodecyl phthalate (DIDP), are recommended. Diesters with alcohols are preferred. These plasticizers may be used alone or in combination of two or more.
 本発明の一実施形態における、可塑剤の含有量は、ポリ塩化ビニル樹脂100質量部に対して38~60質量部であることが好ましく、より好ましくは40~50質量部である。具体的には例えば、38、40、42、43、44、45、46、48、50、55、又は60質量部であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。可塑剤を38質量部以上とすることにより、基材の柔軟性が向上し、例えば電線等に巻きつけた際の追従性の向上により結束保護テープに浮きが生じることを低減できる。可塑剤を60質量部以下とすることで、基材の耐摩耗性を向上させ、良好な保護性能が得られる。
 なお、可塑剤を併用する場合には、可塑剤の含有量は、併用する可塑剤の合計量を意味する。
In one embodiment of the present invention, the content of the plasticizer is preferably 38 to 60 parts by weight, more preferably 40 to 50 parts by weight based on 100 parts by weight of the polyvinyl chloride resin. Specifically, for example, it is preferably 38, 40, 42, 43, 44, 45, 46, 48, 50, 55, or 60 parts by mass, and within the range between any two of the numerical values exemplified here. It may be. By using the plasticizer in an amount of 38 parts by mass or more, the flexibility of the base material is improved and, for example, it is possible to reduce the occurrence of floating in the binding protection tape by improving the followability when it is wound around an electric wire or the like. By controlling the amount of plasticizer to 60 parts by mass or less, the wear resistance of the base material can be improved and good protective performance can be obtained.
In addition, when a plasticizer is used in combination, the content of the plasticizer means the total amount of the plasticizer used in combination.
<充填剤>
 本発明の一実施形態における充填剤は、基材を増量し、硬度を向上できるものであれば特に限定されない。例えば、補強効果と柔軟性の両立の観点から、無機質充填剤が好ましい。
<Filler>
The filler in one embodiment of the present invention is not particularly limited as long as it can increase the amount of the base material and improve the hardness. For example, inorganic fillers are preferred from the viewpoint of achieving both a reinforcing effect and flexibility.
<無機質充填剤>
 本発明の一実施形態における無機質充填剤としては、例えば、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化カルシウム、水酸化カリウム、水酸化バリウム、トリフェニルホスファイト、ポリリン酸アンモニウム、ポリリン酸アミド、酸化ジルコニウム、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化モリブデン、リン酸グアニジン、ハイドロタルサイト、スメクタイト、硼酸亜鉛、無水硼酸亜鉛、メタ硼酸亜鉛、メタ硼酸バリウム、酸化アンチモン、五酸化アンチモン、赤燐、アルミナ、ベーマイト、ベントナイト、珪酸ソーダ、珪酸カルシウム、硫酸カルシウム、炭酸マグネシウム、カーボンブラックが挙げられる。補強効果と柔軟性の両立の観点から、炭酸カルシウム、カーボンブラックが好ましい。これらの充填剤は、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Inorganic filler>
Examples of the inorganic filler in an embodiment of the present invention include calcium carbonate, aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, calcium hydroxide, potassium hydroxide, barium hydroxide, triphenyl phosphite, and ammonium polyphosphate. , polyphosphoric acid amide, zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, molybdenum oxide, guanidine phosphate, hydrotalcite, smectite, zinc borate, zinc borate anhydride, zinc metaborate, barium metaborate, antimony oxide, pentoxide Examples include antimony, red phosphorus, alumina, boehmite, bentonite, sodium silicate, calcium silicate, calcium sulfate, magnesium carbonate, and carbon black. From the viewpoint of both reinforcing effect and flexibility, calcium carbonate and carbon black are preferred. These fillers may be used alone or in combination of two or more.
 本発明の一実施形態における、充填剤の含有量は、ポリ塩化ビニル樹脂100質量部に対して10~60質量部であることが好ましく、より好ましくは20~40質量部である。具体的には例えば、10、15、20、25、30、35、40、45、50、又は60質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。充填剤を10質量部以上とすることで、基材の耐摩耗性を向上させ、良好な保護性能が得られる。充填剤を60質量部以下とすることで、基材の柔軟性が向上し、例えば電線等に巻きつけた際の追従性の向上により結束保護テープに浮きが生じることを低減できる。
 なお、充填剤を併用する場合には、充填剤の含有量は、併用する充填剤の合計量を意味する。
In one embodiment of the present invention, the content of the filler is preferably 10 to 60 parts by weight, more preferably 20 to 40 parts by weight, based on 100 parts by weight of the polyvinyl chloride resin. Specifically, for example, it is 10, 15, 20, 25, 30, 35, 40, 45, 50, or 60 parts by mass, and may be within a range between any two of the numerical values exemplified here. . By using the filler in an amount of 10 parts by mass or more, the wear resistance of the base material can be improved and good protective performance can be obtained. By controlling the amount of the filler to 60 parts by mass or less, the flexibility of the base material is improved and, for example, it is possible to reduce the occurrence of floating in the binding protective tape due to the improved followability when it is wound around electric wires or the like.
In addition, when a filler is used together, the content of the filler means the total amount of the filler used together.
<摺動性付与剤>
 本発明の一実施形態における摺動性付与剤は、基材に摺動性を付与できるものであれば特に限定されない。例えば、ポリオルガノシロキサン、シリカ、タルク、ガラス繊維、フッ素樹脂、窒化ホウ素、二硫化モリブデン、超高分子量ポリエチレン樹脂等が挙げられる。摺動性と柔軟性の両立の観点から、ポリオルガノシロキサンが好ましい。ポリオルガノシロキサンとしては、例えば、直鎖状のポリオルガノシロキサン、架橋されたポリオルガノシロキサン等が挙げられる。
 これらの摺動性付与剤は、単独で使用しても2種類以上を組み合わせて使用してもよい。なお、摺動性付与剤は、摺動性とプレートアウト(樹脂組成物の一部が分離して成形機に付着する現象)防止の観点から、樹脂組成物中に均一に分散されていることが好ましい。
<Slidability imparting agent>
The sliding properties imparting agent in one embodiment of the present invention is not particularly limited as long as it can impart sliding properties to the base material. Examples include polyorganosiloxane, silica, talc, glass fiber, fluororesin, boron nitride, molybdenum disulfide, ultra-high molecular weight polyethylene resin, and the like. From the viewpoint of achieving both slidability and flexibility, polyorganosiloxane is preferred. Examples of the polyorganosiloxane include linear polyorganosiloxane, crosslinked polyorganosiloxane, and the like.
These slidability imparting agents may be used alone or in combination of two or more. In addition, the slidability imparting agent must be uniformly dispersed in the resin composition from the viewpoint of slidability and prevention of plate-out (a phenomenon in which a part of the resin composition separates and adheres to the molding machine). is preferred.
<ポリオルガノシロキサン>
<ポリオルガノシロキサン構造>
 本発明の一実施形態におけるポリオルガノシロキサンとは、ポリオルガノシロキサン構造を有するものであれば特に限定されない。ポリオルガノシロキサン構造とは、主鎖に-Si-О-の繰り返し単位を有し、側鎖に有機基を有するポリマーである。繰り返し単位としては、例えば、以下の構造式で示されるものが挙げられる。
<Polyorganosiloxane>
<Polyorganosiloxane structure>
The polyorganosiloxane in one embodiment of the present invention is not particularly limited as long as it has a polyorganosiloxane structure. The polyorganosiloxane structure is a polymer having -Si-O- repeating units in the main chain and organic groups in the side chains. Examples of the repeating unit include those represented by the following structural formula.
 式中、R及びRは、それぞれ独立にアルキル基、ポリオキシアルキレン基、フッ素含有基、クロロフェニル基から選択される有機基である。摺動性の観点から、アルキル基が好ましい。
 アルキル基としては、例えば、摺動性の観点から、メチル基及びエチル基が挙げられる。
 これらのポリオルガノシロキサン構造は、単独で使用しても2種類以上を組み合わせて使用してもよい。
In the formula, R 1 and R 2 are each independently an organic group selected from an alkyl group, a polyoxyalkylene group, a fluorine-containing group, and a chlorophenyl group. From the viewpoint of slidability, an alkyl group is preferred.
Examples of the alkyl group include a methyl group and an ethyl group from the viewpoint of slidability.
These polyorganosiloxane structures may be used alone or in combination of two or more types.
<直鎖状のポリオルガノシロキサン>
 本発明の一実施形態におけるポリオルガノシロキサンは、主鎖のシロキサン結合が直鎖状に結合した、直鎖状のポリオルガノシロキサンであってもよい。直鎖状のポリオルガノシロキサンとしては、例えば、直鎖状のポリジメチルシロキサン、直鎖状のポリメチルフェニルシロキサン、直鎖状のポリメチルハイドロジェンシロキサン等が挙げられる。摺動性の観点から、直鎖状のポリジメチルシロキサンが好ましい。
 これらの他の直鎖状のポリオルガノシロキサンは、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Linear polyorganosiloxane>
The polyorganosiloxane in one embodiment of the present invention may be a linear polyorganosiloxane in which siloxane bonds in the main chain are linearly bonded. Examples of the linear polyorganosiloxane include linear polydimethylsiloxane, linear polymethylphenylsiloxane, and linear polymethylhydrogensiloxane. From the viewpoint of sliding properties, linear polydimethylsiloxane is preferred.
These other linear polyorganosiloxanes may be used alone or in combination of two or more types.
<直鎖状のポリオルガノシロキサンの動粘度>
 本発明の一実施形態における、直鎖状のポリオルガノシロキサンの25℃における動粘度は、200万mm/s以上であることが好ましく、500万mm/s以上であることがさらに好ましい。動粘度の上限は、特に限定されないが、取り扱いやすさや分散性の観点から、5000万mm/s以下であることが好ましい。具体的には、例えば、200万、500万、1500万、2000万、2500万、3000万、4000万、又は5000万mm/sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。動粘度を200万mm/s以上とすることで、基材の耐摩耗性を向上させ、良好な保護性能が得られる。また、テープの保管安定性が向上する。
<Kinematic viscosity of linear polyorganosiloxane>
In one embodiment of the present invention, the kinematic viscosity at 25° C. of the linear polyorganosiloxane is preferably 2 million mm 2 /s or more, more preferably 5 million mm 2 /s or more. The upper limit of the kinematic viscosity is not particularly limited, but from the viewpoint of ease of handling and dispersibility, it is preferably 50 million mm 2 /s or less. Specifically, for example, it is 2 million, 5 million, 15 million, 20 million, 25 million, 30 million, 40 million, or 50 million mm 2 /s, and between any two of the numerical values exemplified here. It may be within the range. By setting the kinematic viscosity to 2,000,000 mm 2 /s or more, the wear resistance of the base material can be improved and good protective performance can be obtained. Moreover, the storage stability of the tape is improved.
 本発明の一実施形態における、直鎖状のポリオルガノシロキサンの25℃における動粘度は、例えば動粘度計により測定される値である。直鎖状のポリオルガノシロキサンの動粘度は、分子量を調整することにより制御することができる。
 なお、直鎖状のポリオルガノシロキサンを併用する場合には、直鎖状のポリオルガノシロキサンの25℃における動粘度は、併用する直鎖状のポリオルガノシロキサンを合わせた場合の平均動粘度を意味する。
In one embodiment of the present invention, the kinematic viscosity at 25° C. of the linear polyorganosiloxane is a value measured by, for example, a kinematic viscometer. The kinematic viscosity of linear polyorganosiloxane can be controlled by adjusting the molecular weight.
In addition, when using a linear polyorganosiloxane together, the kinematic viscosity at 25 ° C. of the linear polyorganosiloxane means the average kinematic viscosity when the linear polyorganosiloxane used together is combined. do.
<架橋されたポリオルガノシロキサン>
 本発明の一実施形態におけるポリオルガノシロキサンは、保管安定性の観点から、直鎖状のポリオルガノシロキサンが架橋された構造、シロキサン結合が三次元網目状に架橋された構造であってもよい。摺動性の観点から、直鎖状のポリオルガノシロキサンが架橋されたポリオルガノシロキサンが好ましい。
 これらの架橋されたポリオルガノシロキサンは、単独で使用しても2種類以上を組み合わせて使用してもよい。
<Crosslinked polyorganosiloxane>
From the viewpoint of storage stability, the polyorganosiloxane in one embodiment of the present invention may have a structure in which linear polyorganosiloxane is crosslinked, or a structure in which siloxane bonds are crosslinked in a three-dimensional network. From the viewpoint of sliding properties, polyorganosiloxanes in which linear polyorganosiloxanes are crosslinked are preferred.
These crosslinked polyorganosiloxanes may be used alone or in combination of two or more types.
 本発明の一実施形態における摺動性付与剤は、シリカ、タルク、ガラス繊維、フッ素樹脂等であってもよい。 The slidability imparting agent in one embodiment of the present invention may be silica, talc, glass fiber, fluororesin, or the like.
<摺動性付与剤の含有量>
 本発明の一実施形態における、摺動性付与剤の含有量は、ポリ塩化ビニル樹脂100質量部に対して1~10質量部であり、より好ましくは3~7質量部である。具体的には例えば、1、2、4、6、8、又は10質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。摺動性付与剤の含有量を1質量部以上とすることで、基材の耐摩耗性を向上させ、良好な保護性能が得られる。摺動性付与剤の含有量を10質量部以下とすることで、テープの保管安定性が向上する。
 なお、摺動性付与剤を併用する場合には、摺動性付与剤の含有量は、併用する摺動性付与剤の合計量を意味する。
<Content of sliding property imparting agent>
In one embodiment of the present invention, the content of the sliding properties imparting agent is 1 to 10 parts by weight, more preferably 3 to 7 parts by weight, based on 100 parts by weight of the polyvinyl chloride resin. Specifically, it is, for example, 1, 2, 4, 6, 8, or 10 parts by mass, and may be within a range between any two of the numerical values exemplified here. By setting the content of the slidability imparting agent to 1 part by mass or more, the wear resistance of the base material can be improved and good protective performance can be obtained. By controlling the content of the slidability imparting agent to 10 parts by mass or less, the storage stability of the tape is improved.
In addition, when using a sliding property imparting agent together, the content of the sliding property imparting agent means the total amount of the sliding property imparting agent used together.
<その他添加剤>
 また、本実施形態における樹脂組成物には必要に応じて本発明の効果を阻害しない範囲で、その他添加剤として着色剤、安定剤、酸化防止剤、紫外線吸収剤、滑剤等を配合することができる。
<Other additives>
In addition, the resin composition in this embodiment may contain other additives such as colorants, stabilizers, antioxidants, ultraviolet absorbers, lubricants, etc., as necessary, within the range that does not impede the effects of the present invention. can.
<基材の厚さ>
 本実施形態における結束保護テープの基材厚みは、使用目的や用途等に応じて様々であるが、180~330μmであることが好ましく、より好ましくは180~250μmである。具体的には、例えば、180、185、190、195、200、205、210、220、250、280、300、又は330μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。基材厚みを180μm以上とすることで、基材の耐摩耗性を向上させ、良好な保護性能が得られる。基材厚みを330μm以下とすることで、基材の柔軟性が向上し、例えば電線等に巻きつけた際の追従性の向上により結束保護テープに浮きが生じることを低減できる。
<Thickness of base material>
The thickness of the base material of the binding protective tape in this embodiment varies depending on the intended use and application, but is preferably 180 to 330 μm, more preferably 180 to 250 μm. Specifically, for example, it is 180, 185, 190, 195, 200, 205, 210, 220, 250, 280, 300, or 330 μm, and is within the range between any two of the numerical values exemplified here. It's okay. By setting the base material thickness to 180 μm or more, the wear resistance of the base material can be improved and good protection performance can be obtained. By setting the thickness of the base material to 330 μm or less, the flexibility of the base material is improved, and for example, it is possible to reduce the occurrence of floating in the binding protective tape due to the improved followability when it is wound around an electric wire or the like.
<基材の構造>
 本実施形態における結束保護テープの基材の構造は、製造プロセスや製造設備が簡便である観点から、単層構造であることが好ましい。
<Structure of base material>
The structure of the base material of the binding protective tape in this embodiment is preferably a single-layer structure from the viewpoint of simplifying the manufacturing process and manufacturing equipment.
<基材の製造方法>
 本実施形態にかかる基材を製造するための樹脂組成物は、ポリ塩化ビニル樹脂、可塑剤、充填剤、及び摺動性付与剤、ならびに、必要に応じて熱安定剤、光吸収剤、顔料、その他添加剤などを溶融混練して得ることができる。溶融混練方法は特に限定されるものではないが、二軸押出機、連続式及びバッチ式のニーダー、ロール、バンバリーミキサー等の加熱装置を備えた各種混合機、混練機が使用でき、前記樹脂組成物が均一分散するように混合し、得られる混合物を慣用の成形方法であるカレンダー法、Tダイ法、インフレーション法等により基材に成形する。成形機は生産性、色変え、形状の均一性などの面からカレンダー成形機が好ましい。カレンダー成形におけるロール配列方式は、例えば、L型、逆L型、Z型などの公知の方式を採用でき、また、ロール温度は通常150~200℃、好ましくは155~190℃に設定される。
<Method for manufacturing base material>
The resin composition for manufacturing the base material according to this embodiment includes a polyvinyl chloride resin, a plasticizer, a filler, a sliding property imparting agent, and, if necessary, a heat stabilizer, a light absorber, and a pigment. It can be obtained by melting and kneading other additives. The melt-kneading method is not particularly limited, but various mixers and kneaders equipped with heating devices such as twin-screw extruders, continuous and batch-type kneaders, rolls, and Banbury mixers can be used. The materials are mixed so as to be uniformly dispersed, and the resulting mixture is molded into a base material by a conventional molding method such as a calendar method, a T-die method, or an inflation method. As the molding machine, a calendar molding machine is preferable from the viewpoint of productivity, color change, uniformity of shape, etc. The roll arrangement method in calender molding may be a known method such as an L-shape, an inverted L-shape, or a Z-shape, and the roll temperature is usually set at 150 to 200°C, preferably 155 to 190°C.
<基材表面の動摩擦係数>
 本発明の一実施形態において、基材を日東電工社製Nо.5000NSの両面テープで測定ステージに固定した場合の、ASTM D1894に基づくR接触子を使用し、荷重200g、試験速度2.5mm/secの条件で測定される、基材表面の動摩擦係数が0.06~0.26であることが好ましく、さらに好ましくは0.10~0.25である。具体的には、例えば、0.06、0.08、0.10、0.12、0.14、0.16、0.18、0.20、0.22、0.24、又は0.26であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。基材表面の動摩擦係数を0.06以上とすることにより、結束保護テープの柔軟性が向上し、例えば電線等に巻きつけた際の追従性の向上により結束保護テープに浮きが生じることを低減できる。基材表面の動摩擦係数を0.26以下とすることにより、結束保護テープの耐摩耗性を向上させ、良好な保護性能が得られる。
<Dynamic friction coefficient of base material surface>
In one embodiment of the present invention, the base material is manufactured by Nitto Denko Corporation. When fixed to the measurement stage with 5000 NS double-sided tape, the dynamic friction coefficient of the base material surface is 0.0, measured using an R contactor based on ASTM D1894 at a load of 200 g and a test speed of 2.5 mm/sec. It is preferably from 0.06 to 0.26, more preferably from 0.10 to 0.25. Specifically, for example, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, or 0. 26, and may be within the range between any two of the numerical values exemplified here. By setting the dynamic friction coefficient of the base material surface to 0.06 or more, the flexibility of the binding protection tape is improved, and for example, when it is wrapped around electric wires, the following properties are improved and the occurrence of lifting of the binding protection tape is reduced. can. By setting the dynamic friction coefficient of the base material surface to 0.26 or less, the abrasion resistance of the binding protective tape can be improved and good protective performance can be obtained.
 基材表面の動摩擦係数は、基材の製造に用いる樹脂組成物に含有される摺動性付与剤の種類や含有量を調整することにより制御することが可能である。 The coefficient of dynamic friction on the surface of the base material can be controlled by adjusting the type and content of the slidability imparting agent contained in the resin composition used to manufacture the base material.
<基材表面の動摩擦係数の測定>
 本実施形態にかかる基材における基材表面の動摩擦係数は、例えば、協和界面科学社製自動摩擦摩耗解析装置TS-501を用いて以下の手順により測定することができる。
基材サンプルを幅50mm×長さ100mmに切断し、試料ステージに両面テープ(日東電工社製Nо.5000NS)を使用して固定する。
 貼り合せた基材サンプル背面に、ASTM D1894に基づくR接触子を乗せ、荷重200g、試験速度2.5mm/secの条件で動摩擦係数を測定する(室温23℃、湿度50%RH)。
<Measurement of dynamic friction coefficient of base material surface>
The dynamic friction coefficient of the base material surface of the base material according to the present embodiment can be measured by the following procedure using, for example, an automatic friction and wear analyzer TS-501 manufactured by Kyowa Interface Science Co., Ltd.
The base material sample is cut to a width of 50 mm and a length of 100 mm, and fixed to the sample stage using double-sided tape (No. 5000NS manufactured by Nitto Denko Corporation).
An R contactor based on ASTM D1894 is placed on the back surface of the bonded base material sample, and the dynamic friction coefficient is measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
<基材の厚み換算した引張弾性率>
 本実施形態にかかる基材について、基材の厚み換算した引張弾性率は、5~9N/mmであることが好ましく、より好ましくは6~9N/mmである。具体的には、例えば、5、6、7、8、又は9N/mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。基材の厚み換算した引張弾性率を5N/mm以上とすることにより、基材の保護性能とのバランスが達成できる。基材の厚み換算した引張弾性率を9N/mm以下とすることにより、基材の柔軟性が向上し、例えば電線等に巻きつけた際の追従性の向上により結束保護テープに浮きが生じることを低減できる。
 基材の厚み換算した引張弾性率は、基材の製造に用いる樹脂組成物に含有される摺動性付与剤の種類や含有量を調整することにより制御することが可能である。
<Tensile modulus converted to base material thickness>
Regarding the base material according to the present embodiment, the tensile modulus in terms of thickness of the base material is preferably 5 to 9 N/mm, more preferably 6 to 9 N/mm. Specifically, it is, for example, 5, 6, 7, 8, or 9 N/mm, and may be within a range between any two of the numerical values exemplified here. By setting the tensile modulus of elasticity converted to the thickness of the base material to 5 N/mm or more, a balance with the protection performance of the base material can be achieved. By setting the tensile modulus of elasticity converted to the thickness of the base material to 9 N/mm or less, the flexibility of the base material is improved, and for example, when wrapped around electric wires, etc., the binding protection tape will not float due to improved followability. can be reduced.
The tensile modulus of elasticity converted to the thickness of the base material can be controlled by adjusting the type and content of the slidability imparting agent contained in the resin composition used for manufacturing the base material.
<基材の厚み換算した引張弾性率の測定>
 本実施形態にかかる基材の、厚み換算した引張弾性率は、以下の手順により、引張弾性率の値から得ることができる。
 幅19mm、長さ200mmの結束テープ試験片を、チャック間距離が100mmとなるように引張試験機のチャック部に挟んで固定する。室温23℃、相対湿度50%RHの環境下、300mm/minの速さで試験片を引っ張り、引張応力と歪みとを測定する。歪み0.01~0.05%間の引張応力と歪との比を、線形回帰により算出した値を引張弾性率とする。
 このようにして得られた引張弾性率とテープ総厚(単位:mm)の積を、厚み換算した引張弾性率とする。
<Measurement of tensile modulus converted to base material thickness>
The thickness-converted tensile modulus of the base material according to the present embodiment can be obtained from the value of the tensile modulus by the following procedure.
A binding tape test piece with a width of 19 mm and a length of 200 mm is clamped and fixed between the chuck parts of a tensile tester so that the distance between the chucks is 100 mm. The test piece is pulled at a speed of 300 mm/min at a room temperature of 23° C. and a relative humidity of 50% RH to measure tensile stress and strain. The ratio of tensile stress to strain between 0.01 and 0.05% strain is calculated by linear regression, and the value is defined as the tensile modulus.
The product of the tensile elastic modulus thus obtained and the tape total thickness (unit: mm) is defined as the tensile elastic modulus converted to thickness.
<粘着剤層>
 本実施形態にかかる結束保護テープの粘着材層の粘着剤は、ゴム系粘着剤が好ましく、溶剤型、エマルジョン型の何れであってもよい。ゴム系粘着剤としては、天然ゴムまたは合成ゴムから選択される1種以上のゴムと、粘着付与樹脂を含有するものが好ましく、天然ゴム、合成ゴム、及び粘着付与樹脂の混合物であることがさらに好ましい。粘着付与樹脂の混合割合は、天然ゴム及び合成ゴムを含有する混合物のゴム成分100質量部に対し、粘着付与樹脂50~150質量部含有することが好ましい。
<Adhesive layer>
The adhesive in the adhesive layer of the binding protective tape according to this embodiment is preferably a rubber adhesive, and may be either a solvent type or an emulsion type. The rubber-based adhesive preferably contains one or more rubbers selected from natural rubber or synthetic rubber and a tackifying resin, and more preferably a mixture of natural rubber, synthetic rubber, and tackifying resin. preferable. The mixing ratio of the tackifier resin is preferably 50 to 150 parts by mass per 100 parts by mass of the rubber component of the mixture containing natural rubber and synthetic rubber.
 前記天然ゴム及び合成ゴムとしては、天然ゴム-メチルメタアクリレート共重合体ラテックス、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、メタクリル酸メチル-ブタジエン共重合体などが挙げられる。これらは単独で又は2種以上を混合して選択して使用してもよい。 Examples of the natural rubber and synthetic rubber include natural rubber-methyl methacrylate copolymer latex, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, methyl methacrylate-butadiene copolymer, and the like. These may be used alone or in combination of two or more.
 前記粘着付与樹脂としては、軟化点、各成分との相溶性等を考慮して選択することができる。例えば、テルペン樹脂、ロジン樹脂、水添ロジン樹脂、クマロン・インデン樹脂、スチレン系樹脂、脂肪族系石油樹脂、脂環族系石油樹脂、テルペン-フェノール樹脂、キシレン系樹脂、その他脂肪族炭化水素樹脂又は芳香族炭化水素樹脂等のエマルジョンが挙げられる。これらは単独で用いてもよく、二種類以上を混合して用いてもよい。 The tackifying resin can be selected in consideration of softening point, compatibility with each component, etc. For example, terpene resin, rosin resin, hydrogenated rosin resin, coumaron/indene resin, styrene resin, aliphatic petroleum resin, alicyclic petroleum resin, terpene-phenol resin, xylene resin, and other aliphatic hydrocarbon resins. Alternatively, emulsions such as aromatic hydrocarbon resins may be mentioned. These may be used alone or in combination of two or more.
 前記ゴム系粘着剤は、溶剤型、エマルジョン型を自由に選択できるが、好ましくは、VOCの発生量が少ないエマルジョン型がよい。 The rubber adhesive can be freely selected from a solvent type and an emulsion type, but an emulsion type that generates less VOC is preferable.
<下塗剤層> <Undercoat layer>
 また、本実施形態にかかる結束保護テープは、必要に応じて本発明の効果を阻害しない範囲で、基材と粘着剤層の密着性を向上させる目的で、基材と粘着剤層の間に下塗剤層を設けてもよい。
 この場合、後述のように、下塗剤層の厚みは通常0.1~1μm、より好ましくは0.3~0.5μmであり、下塗剤層の厚みが基材の厚みより小さいことが好ましい。
In addition, the binding protective tape according to the present embodiment may be provided between the base material and the adhesive layer for the purpose of improving the adhesion between the base material and the adhesive layer within a range that does not impede the effects of the present invention. A primer layer may also be provided.
In this case, as described below, the thickness of the undercoat layer is usually 0.1 to 1 μm, more preferably 0.3 to 0.5 μm, and the thickness of the undercoat layer is preferably smaller than the thickness of the base material.
 前記下塗剤層を形成する下塗剤としては、天然ゴムにメチルメタアクリレートをグラフト重合させたグラフト重合体100質量部に対し、アクリロニトリル-ブタジエン共重合体25~300質量部からなるものが好ましい。 The undercoat forming the undercoat layer is preferably one consisting of 25 to 300 parts by mass of an acrylonitrile-butadiene copolymer based on 100 parts by mass of a graft polymer obtained by graft polymerizing methyl methacrylate to natural rubber.
 前記下塗剤に用いられる天然ゴムにメチルメタアクリレートをグラフト重合させたグラフト重合体は、天然ゴム70~50質量%にメチルメタアクリレート30~50質量%グラフト重合させたものが好ましい。グラフト重合体中のメチルメタアクリレートの比率が30質量%未満だと、メチルメタアクリレートとフィルム基材との密着性が悪くなって、結束保護テープの層間剥離が起こる場合がある。また、メチルメタアクリレートの比率が50質量%より多いと、下塗剤自体が硬化してフィルム基材の変形に追従できなくなり、結束保護テープの層間剥離が起こる場合がある。 The graft polymer obtained by graft-polymerizing methyl methacrylate onto natural rubber used in the primer is preferably one in which 70-50 mass % of natural rubber is graft-polymerized with 30-50 mass % methyl methacrylate. If the ratio of methyl methacrylate in the graft polymer is less than 30% by mass, the adhesion between methyl methacrylate and the film base material may deteriorate, and delamination of the binding protective tape may occur. Moreover, if the ratio of methyl methacrylate is more than 50% by mass, the undercoat itself will harden and be unable to follow the deformation of the film base material, which may cause delamination of the binding protective tape.
 前記下塗剤に用いられるアクリロニトリル-ブタジエン共重合体としては、中ニトリルタイプ(アクリロニトリル25~30質量%、ブタジエン75~70質量%)、中高ニトリルタイプ(アクリロニトリル31~35質量%、ブタジエン69~65質量%)高ニトリルタイプ(アクリロニトリル36~43質量%、ブタジエン64~57質量%)等がある。これらは、単独で使用するか、あるいは2種類以上を併用してもよい。 The acrylonitrile-butadiene copolymer used in the primer includes medium nitrile type (acrylonitrile 25-30% by mass, butadiene 75-70% by mass), medium-high nitrile type (acrylonitrile 31-35% by mass, butadiene 69-65% by mass). %) high nitrile type (acrylonitrile 36-43% by mass, butadiene 64-57% by mass). These may be used alone or in combination of two or more.
<結束保護テープの製造方法>
 本実施形態にかかる結束保護テープは、例えば、基材の片面に下塗剤を塗工し、乾燥炉により溶媒を十分に除去させた後、粘着剤を塗工し、下塗剤と同様に乾燥炉により溶媒を十分に除去させたうえで、粘着剤を塗工し結束保護テープが得られる。なお、下塗剤の塗工方式としては、グラビア方式、スプレー方式、キスロール方式、バー方式、ナイフ方式等が挙げられ、粘着剤の塗工方式としては、コンマ方式、リップダイ方式、グラビア方式、ロール方式、スロットダイ方式等が挙げられる。下塗剤層の厚みは通常0.1~1μm、より好ましくは0.3~0.5μmである。また、粘着剤層の厚みは使用目的や用途等に応じて様々であるが、通常5~50μm、より好ましくは10~30μmである。
<Manufacturing method of binding protective tape>
The binding protection tape according to the present embodiment can be produced by, for example, applying an undercoat to one side of a base material, removing the solvent sufficiently in a drying oven, applying an adhesive, and then applying it in a drying oven in the same way as the undercoat. After sufficiently removing the solvent, an adhesive is applied to obtain a binding protective tape. Coating methods for the primer include the gravure method, spray method, kiss roll method, bar method, knife method, etc., and methods for applying the adhesive include the comma method, lip die method, gravure method, and roll method. , slot die method, etc. The thickness of the primer layer is usually 0.1 to 1 μm, more preferably 0.3 to 0.5 μm. Further, the thickness of the adhesive layer varies depending on the purpose and application, but is usually 5 to 50 μm, more preferably 10 to 30 μm.
<結束保護テープ基材背面の動摩擦係数>
 本発明の別の一実施形態において、結束保護テープを粘着剤層を介して測定ステージに固定した場合の、ASTM D1894に基づくR接触子を使用し、荷重200g、試験速度2.5mm/secの条件で測定される、結束保護テープ基材背面の動摩擦係数が0.13~0.60であることが好ましく、さらに好ましくは0.23~0.58である。具体的には、例えば、0.13、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50、0.55、又は0.60であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。結束保護テープ基材背面の動摩擦係数を0.13以上とすることにより、結束保護テープの柔軟性が向上し、例えば電線等に巻きつけた際の追従性の向上により結束保護テープに浮きが生じることを低減できる。結束保護テープ基材背面の動摩擦係数を0.60以下とすることにより、結束保護テープの耐摩耗性を向上させ、良好な保護性能が得られる。
 なお、結束保護テープ基材背面とは、結束保護テープの基材における、粘着剤層が形成されている表面の反対側の表面を意味する。
<Dynamic friction coefficient on the back side of the binding protective tape base material>
In another embodiment of the present invention, an R contactor based on ASTM D1894 is used, a load of 200 g and a test speed of 2.5 mm/sec are used when the binding protection tape is fixed to the measurement stage via an adhesive layer. The dynamic friction coefficient of the back surface of the binding protective tape base material measured under the following conditions is preferably 0.13 to 0.60, more preferably 0.23 to 0.58. Specifically, for example, 0.13, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, or 0. It is preferably 60, and may be within a range between any two of the numerical values exemplified here. By setting the dynamic friction coefficient of the back of the binding protective tape base material to 0.13 or more, the flexibility of the binding protective tape is improved, and for example, when it is wrapped around electric wires, the binding protection tape becomes loose due to improved followability. This can reduce the By setting the dynamic friction coefficient of the back surface of the binding protection tape base material to 0.60 or less, the abrasion resistance of the binding protection tape can be improved and good protection performance can be obtained.
Note that the back surface of the binding protective tape base material means the surface of the binding protective tape base material that is opposite to the surface on which the adhesive layer is formed.
 結束保護テープ基材背面の動摩擦係数は、例えば、基材の厚みを同等とした場合には、基材表面の動摩擦係数が上昇すると結束保護テープの基材背面の動摩擦係数も上昇する傾向があることから、基材表面の動摩擦係数を上述の範囲に調整することによって制御することができる。基材に粘着剤層を設けて結束保護テープとした場合に、結束保護テープの基材背面の動摩擦係数は、基材表面の動摩擦係数より大きな値となる傾向があるが、上述の関係により、基材表面の動摩擦係数を所定の範囲に調整することによって結束保護テープの基材背面の動摩擦係数を所望の範囲に制御することができる。また、基材の厚みが大きくなると、粘着剤層を設けることによる結束保護テープの基材背面の動摩擦係数の変化への影響が小さくなる傾向があることから、基材の厚みが大きい場合においても、やはり、基材表面の動摩擦係数を上述の範囲に調整することによって結束保護テープ基材背面の動摩擦係数を制御することができる。 For example, when the thickness of the base material is the same, as the coefficient of dynamic friction on the surface of the base material increases, the coefficient of dynamic friction on the back surface of the base material of the binding protective tape tends to increase as well. Therefore, it can be controlled by adjusting the dynamic friction coefficient of the base material surface within the above-mentioned range. When a binding protective tape is made by providing an adhesive layer on a base material, the coefficient of dynamic friction on the back side of the base material of the binding protective tape tends to be a larger value than the coefficient of dynamic friction on the surface of the base material, but due to the above relationship, By adjusting the coefficient of dynamic friction on the surface of the base material within a predetermined range, the coefficient of dynamic friction on the back surface of the base material of the binding protective tape can be controlled within a desired range. In addition, as the thickness of the base material increases, the effect of providing an adhesive layer on the change in the coefficient of dynamic friction on the back side of the base material of the binding protective tape tends to decrease, so even when the thickness of the base material is large, Again, the dynamic friction coefficient of the back surface of the binding protective tape base material can be controlled by adjusting the dynamic friction coefficient of the base material surface within the above-mentioned range.
<結束保護テープ基材背面の動摩擦係数の測定>
 本実施形態にかかる結束保護テープにおける結束保護テープ基材背面動摩擦係数は、例えば、協和界面科学社製自動摩擦摩耗解析装置TS-501を用いて以下の手順により測定することができる。
 結束保護テープサンプルを幅50mm×長さ100mmに切断し、試料ステージに結束保護テープサンプルの粘着剤層を介して固定する。
 貼り合せた結束保護テープサンプル背面に、ASTM D1894に基づくR接触子を乗せ、荷重200g、試験速度2.5mm/secの条件で動摩擦係数を測定する(室温23℃、湿度50%RH)。
<Measurement of the coefficient of dynamic friction on the back side of the binding protective tape base material>
The back surface dynamic friction coefficient of the binding protective tape base material in the binding protective tape according to the present embodiment can be measured by the following procedure using, for example, an automatic friction and wear analysis device TS-501 manufactured by Kyowa Interface Science Co., Ltd.
The binding protective tape sample is cut into 50 mm width x 100 mm length and fixed to the sample stage via the adhesive layer of the binding protective tape sample.
An R contactor based on ASTM D1894 is placed on the back of the bonded protective tape sample, and the dynamic friction coefficient is measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
<結束保護テープの用途>
 本実施形態にかかる結束保護テープは、例えば、電気自動車やハイブリッド自動車の高圧ケーブルやワイヤーハーネス結束用の結束保護テープとして好適に使用される。
<Applications of binding protective tape>
The binding protective tape according to the present embodiment is suitably used as a binding protective tape for binding high-voltage cables and wire harnesses of electric vehicles and hybrid vehicles, for example.
 以下に実施例をあげて本発明を更に詳細に説明する。また、これらはいずれも例示的なものであって、本発明の内容を限定するものではない。 The present invention will be explained in more detail with reference to Examples below. Further, all of these are illustrative and do not limit the content of the present invention.
<基材の作製>
<使用材料>
(1)ポリ塩化ビニル樹脂
 塩化ビニルのホモポリマー、平均重合度1000:製品名「TH-1000」、大洋塩ビ(株)製
(2)摺動性付与剤
 直鎖状ポリジメチルシロキサン(25℃における動粘度2500万mm/s):製品名「GENIOPLAST GUM」、旭化成ワッカーシリコーン(株)製
 直鎖状ポリジメチルシロキサン(25℃における動粘度200万mm/s):製品名「DMF100-200M」、冨田マテックス(株)製
 直鎖状ポリジメチルシロキサン(25℃における動粘度100万mm/s):製品名「AK1000000」、旭化成ワッカーシリコーン(株)製
 ポリジメチルシロキサンの架橋物(直鎖状のポリオルガノシロキサンが架橋されたポリオルガノシロキサン):製品名「KMP-597」、信越化学工業(株)製
 シリカ:製品名「HDK H-18」、旭化成ワッカーシリコーン(株)製
 タルク:製品名「ハイミクロンHE5」、竹原化学工業(株)製
 ガラス繊維:製品名「ミルドファイバーEPH80M-10A」、日本電気硝子(株)製
 フッ素樹脂:製品名「ダイニオンPTFEマイクロパウダーTF9207Z」、3M製
(3)可塑剤
 フタル酸エステル系可塑剤、フタル酸ジイソノニル:製品名「DINP」、(株)ジェイプラス製
(4)充填剤
 炭酸カルシウム:製品名「カルシーズ(登録商標)P」、神島化学工業(株)製
<Preparation of base material>
<Materials used>
(1) Polyvinyl chloride resin Homopolymer of vinyl chloride, average degree of polymerization 1000: Product name "TH-1000", manufactured by Taiyo Vinyl Co., Ltd. (2) Sliding agent Linear polydimethylsiloxane (at 25°C) Kinematic viscosity 25 million mm 2 /s): Product name "GENIOPLAST GUM", manufactured by Asahi Kasei Wacker Silicone Co., Ltd. Linear polydimethylsiloxane (Kinematic viscosity 2 million mm 2 /s at 25°C): Product name "DMF100-200M"", manufactured by Tomita Matex Co., Ltd. Linear polydimethylsiloxane (kinematic viscosity 1 million mm 2 /s at 25°C): Product name "AK1000000", manufactured by Asahi Kasei Wacker Silicone Co., Ltd. Crosslinked polydimethylsiloxane (linear Polyorganosiloxane (crosslinked polyorganosiloxane): Product name "KMP-597", manufactured by Shin-Etsu Chemical Co., Ltd. Silica: Product name "HDK H-18", manufactured by Asahi Kasei Wacker Silicone Co., Ltd. Talc: Product Glass fiber: Product name: "Himicron HE5", manufactured by Takehara Chemical Industry Co., Ltd. Glass fiber: Product name: "Milled fiber EPH80M-10A", manufactured by Nippon Electric Glass Co., Ltd. Fluororesin: Product name: "Dyneon PTFE Micro Powder TF9207Z", manufactured by 3M ( 3) Plasticizer Phthalate ester plasticizer, diisononyl phthalate: Product name "DINP", manufactured by J-Plus Co., Ltd. (4) Filler Calcium carbonate: Product name "Calcease (registered trademark) P", manufactured by Kamishima Chemical Industry Co., Ltd. Manufactured by Co., Ltd.
 ポリ塩化ビニル樹脂、摺動性付与剤、可塑剤、及び充填剤を表1および表2に示す配合にてバンバリーミキサーで均一に分散するように溶融混練したのち、カレンダー成形機により、ロール温度165℃にて所定の厚さの基材を作製した。 A polyvinyl chloride resin, a sliding property imparting agent, a plasticizer, and a filler were melt-kneaded in the compositions shown in Tables 1 and 2 using a Banbury mixer so as to be uniformly dispersed, and then heated to a roll temperature of 165 using a calendar molding machine. A base material of a predetermined thickness was produced at ℃.
<結束保護テープの作製>
<使用材料>
(1)基材
 上述の工程で作成した基材
(2)下塗り層
 天然ゴムにメチルメタクリレートをグラフト重合させたグラフト重合体ラテックスとアクリロニトリルブタジエン共重合体エマルジョンの混合物エマルジョン:製品名KT4612A、株式会社イーテック社製
(3)粘着剤層
 天然ゴムラテックス(株式会社レヂテックス社製、製品名:HA LATEX)60質量部(固形分)と、天然ゴムにメチルメタクリレートをグラフト重合させたグラフト重合体ラテックス(株式会社レヂテックス社製、製品名:MG-40S)40質量部(固形分)と、石油樹脂系エマルジョン粘着付与剤(荒川化学工業株式会社社製、製品名:AP-1100-NT)135質量部(固形分)を混ぜたもの
<Preparation of binding protective tape>
<Materials used>
(1) Base material Base material created by the above process (2) Undercoat layer Mixture emulsion of graft polymer latex obtained by graft polymerizing methyl methacrylate to natural rubber and acrylonitrile butadiene copolymer emulsion: Product name KT4612A, E-Tech Co., Ltd. (3) Adhesive layer made by HA LATEX Co., Ltd. 60 parts by mass (solid content) of natural rubber latex (manufactured by HA LATEX Co., Ltd., product name: HA LATEX Co., Ltd.) and a graft polymer latex made by graft polymerizing methyl methacrylate to natural rubber (Co., Ltd.) 40 parts by mass (solid content) of Regitex Co., Ltd., product name: MG-40S, and 135 parts by mass (solid content) of petroleum resin emulsion tackifier (manufactured by Arakawa Chemical Co., Ltd., product name: AP-1100-NT). ) mixed with
 基材の片面に下塗剤をグラビア方式により塗工し、乾燥炉により溶媒を十分に除去させた後、粘着剤をコンマ方式により塗工し、下塗剤と同様に乾燥炉により溶媒を十分に除去させて、結束保護テープを作製した。下塗り剤層の乾燥後の厚みは0.3μm、粘着剤層の乾燥後の厚みは20μmであった。 Apply the primer to one side of the base material using the gravure method, thoroughly remove the solvent in a drying oven, then apply the adhesive using the comma method, and remove the solvent thoroughly using the drying oven in the same way as the primer. In this way, a binding protective tape was produced. The thickness of the undercoat layer after drying was 0.3 μm, and the thickness of the adhesive layer after drying was 20 μm.
<基材及び結束保護テープの物性>
 以下に示す測定条件により、基材及び結束保護テープの物性の測定及び評価を実施した。結果を表1および表2に示す。なお、表中、PVCはポリ塩化ビニル樹脂、DINPはフタル酸ジイソノニル、PDMSはポリジメチルシロキサン、PTFEはポリテトラフルオロエチレンを意味する。
<Physical properties of base material and binding protective tape>
The physical properties of the base material and the binding protective tape were measured and evaluated under the measurement conditions shown below. The results are shown in Tables 1 and 2. In addition, in the table, PVC means polyvinyl chloride resin, DINP means diisononyl phthalate, PDMS means polydimethylsiloxane, and PTFE means polytetrafluoroethylene.
<基材表面の動摩擦係数>
 協和界面科学社製自動摩擦摩耗解析装置TS-501を用いて以下の手順により測定した。
基材サンプルを幅50mm×長さ100mmに切断し、試料ステージに両面テープ(日東電工社製Nо.5000NS)を使用して固定した。
 貼り合せた基材サンプル背面に、ASTM D1894に基づくR接触子を乗せ、荷重200g、試験速度2.5mm/secの条件で動摩擦係数を測定した(室温23℃、湿度50%RH)。
<Dynamic friction coefficient of base material surface>
The measurement was performed using an automatic friction and wear analyzer TS-501 manufactured by Kyowa Interface Science Co., Ltd. according to the following procedure.
The base material sample was cut to a width of 50 mm and a length of 100 mm, and was fixed to a sample stage using double-sided tape (No. 5000NS manufactured by Nitto Denko Corporation).
An R contactor based on ASTM D1894 was placed on the back surface of the bonded base material sample, and the dynamic friction coefficient was measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
<結束保護テープの動摩擦係数>
 協和界面科学社製自動摩擦摩耗解析装置TS-501を用いて以下の手順により測定した。
結束保護テープサンプルを幅50mm×長さ100mmに切断し、粘着剤層を介して試料ステージに貼り付けて固定した。
 貼り合せた結束保護テープサンプル背面に、ASTM D1894に基づくR接触子を乗せ、荷重200g、試験速度2.5mm/secの条件で動摩擦係数を測定した(室温23℃、湿度50%RH)。
<Dynamic friction coefficient of binding protective tape>
The measurement was performed using an automatic friction and wear analyzer TS-501 manufactured by Kyowa Interface Science Co., Ltd. according to the following procedure.
The binding protective tape sample was cut into 50 mm width x 100 mm length, and was affixed and fixed to a sample stage via an adhesive layer.
An R contactor based on ASTM D1894 was placed on the back of the bonded protective tape sample, and the dynamic friction coefficient was measured under the conditions of a load of 200 g and a test speed of 2.5 mm/sec (room temperature: 23° C., humidity: 50% RH).
<引張弾性率/厚み換算した引張弾性率>
 幅19mm、長さ200mmの結束テープ試験片を、チャック間距離が100mmとなるように引張試験機のチャック部に挟んで固定した。室温23℃、相対湿度50%RHの環境下、300mm/minの速さで試験片を引っ張り、引張応力と歪みとを測定した。歪み0.01~0.05%間の引張応力と歪との比を、線形回帰により算出した値を引張弾性率とした。
 また、引張弾性率とテープ総厚(単位:mm)の積を厚み換算した引張弾性率とした。
<Tensile modulus/tensile modulus converted to thickness>
A binding tape test piece with a width of 19 mm and a length of 200 mm was clamped and fixed between the chuck parts of a tensile testing machine so that the distance between the chucks was 100 mm. The test piece was pulled at a speed of 300 mm/min at a room temperature of 23° C. and a relative humidity of 50% RH, and tensile stress and strain were measured. The ratio of tensile stress to strain between 0.01 and 0.05% strain was calculated by linear regression, and the value was defined as the tensile modulus.
Further, the product of the tensile elastic modulus and the total tape thickness (unit: mm) was used as the tensile elastic modulus converted into thickness.
<硬度>
 厚み6mm以上に重ねた基材サンプルに高分子計器社製アスカーゴム硬度計A型(ASTM D2240に基づくタイプA圧子)を用いてデュロメータA硬さを測定した(室温23℃、湿度50%RH)。
<Hardness>
The durometer A hardness of the base material samples stacked to a thickness of 6 mm or more was measured using an Asker rubber hardness meter A type (type A indenter based on ASTM D2240) manufactured by Kobunshi Keiki Co., Ltd. (room temperature: 23° C., humidity: 50% RH).
<保護性能>
 以下の手順に従って、耐摩耗性により評価した。
 ISO6722-1(2001)に準拠して実施した。基材サンプルを直径10mmの円筒に2周巻き付けてテープ等で固定した。その上から、硬質材が溶融アルミナ、粒度150μmの紙やすりにて速度1500mm/minでサンプル表面を摩耗させた。サンプルに穴が開くまでの摩耗距離(mm)を測定した(室温23℃、湿度50%RH)。サンプルに穴が開くまでの摩耗距離(mm)について、以下の判断基準により評価した。摩耗距離の評価が優れている基材であれば、摩耗耐性が高いため、当該基材を用いて製造される結束保護テープにおいて優れた保護性能が達成できることが予想できる。
◎:摩耗距離が1000mm以上
○:摩耗距離が800mm以上1000mm未満
×:摩耗距離が800mm未満
<Protection performance>
Abrasion resistance was evaluated according to the following procedure.
It was conducted in accordance with ISO6722-1 (2001). The base material sample was wrapped twice around a cylinder with a diameter of 10 mm and fixed with tape or the like. From above, the surface of the sample was abraded at a speed of 1500 mm/min using sandpaper whose hard material was fused alumina and had a particle size of 150 μm. The abrasion distance (mm) until a hole appeared in the sample was measured (room temperature: 23° C., humidity: 50% RH). The wear distance (mm) until a hole appeared in the sample was evaluated using the following criteria. A base material with an excellent evaluation of abrasion distance has high abrasion resistance, so it can be expected that excellent protection performance can be achieved in a binding protective tape manufactured using the base material.
◎: Wear distance is 1000 mm or more ○: Wear distance is 800 mm or more and less than 1000 mm ×: Wear distance is less than 800 mm
<柔軟性>
 以下の手順に従って、電線結束時の浮きの有無により評価した。
 直径15mmと10mmの電線束に結束保護テープサンプルをらせん状に2周巻き(ハーフラップ)して結束した。この結束電線を直径50mmのマンドレルに1周巻き付けたときの、結束保護テープサンプルと電線束との間の浮き(剥がれによる隙間)の有無を確認した。結束保護テープサンプルと電線束との間の浮きについて、以下の判断基準により評価した。
◎:電線径15mmと10mmのいずれにおいても浮きが無かった
○:電線径15mmでは浮きは無く、電線径10mmでは浮きがあった
×:電線径15mmと10mmのいずれにおいても浮きがあった
<Flexibility>
The following procedure was followed to evaluate the presence or absence of floating wires during binding.
A binding protective tape sample was wound spirally around electric wire bundles having diameters of 15 mm and 10 mm twice (half-wrap) to bind them. When this bundled wire was wound once around a mandrel having a diameter of 50 mm, the presence or absence of lifting (gap due to peeling) between the binding protective tape sample and the wire bundle was checked. Lifting between the binding protection tape sample and the wire bundle was evaluated using the following criteria.
◎: There was no floating when the wire diameter was 15 mm and 10 mm. ○: There was no floating when the wire diameter was 15 mm, and there was floating when the wire diameter was 10 mm. ×: There was floating when the wire diameter was 15 mm and 10 mm.
<テープの保管安定性>
 以下の手順及び評価基準により評価した。
 加熱前の基材サンプルについてEDX分析(エネルギー分散型X線分析)を行い、基材サンプル中のSi量を定量した。基材サンプルをオーブンで100℃において168時間加熱した。加熱後の基材サンプル表面に析出したシリコーンを除去後、基材サンプルについてEDX分析を行い、加熱後の基材サンプル中のSi量を定量した。加熱前後におけるSi減少率を算出し、以下の基準により評価した。保管安定性の評価が優れている基材であれば、保管安定性が高いため、当該基材を用いて製造される結束保護テープにおいて優れた保管安定性が達成できることが予想できる。
◎:Siの減少率が5質量%未満
○:Siの減少率が5質量%以上、20質量%未満
×:Siの減少率が20質量%以上
<Tape storage stability>
Evaluation was made using the following procedures and evaluation criteria.
EDX analysis (energy dispersive X-ray analysis) was performed on the base material sample before heating, and the amount of Si in the base material sample was quantified. The substrate sample was heated in an oven at 100° C. for 168 hours. After removing the silicone deposited on the surface of the heated base sample, EDX analysis was performed on the base sample to quantify the amount of Si in the heated base sample. The Si reduction rate before and after heating was calculated and evaluated based on the following criteria. A base material with an excellent evaluation of storage stability has high storage stability, so it can be expected that excellent storage stability can be achieved in a binding protective tape manufactured using the base material.
◎: Si reduction rate is less than 5% by mass ○: Si reduction rate is 5% by mass or more and less than 20% by mass ×: Si reduction rate is 20% by mass or more
 表1および表2の結果より、実施例にかかる基材を用いた結束保護テープ、および、実施例にかかる結束保護テープは、柔軟性と保護性能のバランスに優れ、さらに、実施例にかかる基材の保管安定性が優れていることから、当該基材を用いた結束保護テープは、保管安定性に優れていること予想される。他方、比較例にかかる基材を用いた結束保護テープは、柔軟性と保護性能のバランス、および結束保護テープの保管安定性の一つ以上の観点において劣ることが分かる。 From the results in Tables 1 and 2, the binding protective tape using the base material according to the example and the binding protective tape according to the example have an excellent balance of flexibility and protective performance, and furthermore, the binding protective tape using the base material according to the example Since the material has excellent storage stability, it is expected that a binding protective tape using this base material will have excellent storage stability. On the other hand, it can be seen that the protective binding tape using the base material according to the comparative example is inferior in one or more aspects of the balance between flexibility and protective performance and the storage stability of the protective binding tape.
 本発明にかかる結束保護テープは、柔軟性と保護性能のバランスに優れ、さらにテープの保管安定性に優れている。本発明にかかる結束保護テープは、電気自動車、ハイブリッド自動車の高圧ケーブルや自動車のワイヤーハーネスなどの結束及び保護の用途に好適に用いることができ、産業上の利用可能性を有する。 The binding protective tape according to the present invention has an excellent balance between flexibility and protective performance, and also has excellent tape storage stability. The binding protective tape according to the present invention can be suitably used for binding and protecting high-voltage cables for electric vehicles and hybrid vehicles, wire harnesses for automobiles, etc., and has industrial applicability.

Claims (10)

  1.  基材と、前記基材の片面に形成された粘着剤層とを有する結束保護テープであって、
     前記基材は、ポリ塩化ビニル樹脂、可塑剤、充填剤、及び摺動性付与剤を含有する樹脂組成物から構成され、
     前記樹脂組成物における、前記ポリ塩化ビニル樹脂100質量部に対する前記摺動性付与剤の含有量が1~10質量部である、
    結束保護テープ。
    A binding protective tape comprising a base material and an adhesive layer formed on one side of the base material,
    The base material is composed of a resin composition containing a polyvinyl chloride resin, a plasticizer, a filler, and a slidability imparting agent,
    In the resin composition, the content of the sliding property imparting agent is 1 to 10 parts by mass based on 100 parts by mass of the polyvinyl chloride resin.
    Binding protection tape.
  2.  試料ステージに日東電工社製Nо.5000NSの両面テープを用いて前記基材を固定し、ASTM D1894に基づくR接触子を使用し、荷重200g、試験速度2.5mm/secの条件で測定される、前記基材表面の動摩擦係数が0.06~0.26である、
    請求項1に記載の結束保護テープ。
    Nitto Denko Corporation No. 2 was installed on the sample stage. The coefficient of kinetic friction on the surface of the base material is fixed using 5000NS double-sided tape and measured using an R contactor based on ASTM D1894 under the conditions of a load of 200 g and a test speed of 2.5 mm/sec. 0.06 to 0.26,
    The binding protective tape according to claim 1.
  3.  試料ステージに前記粘着剤層を介して前記結束保護テープを固定し、ASTM D1894に基づくR接触子を使用し、荷重200g、試験速度2.5mm/secの条件で測定される、前記結束保護テープの基材背面の動摩擦係数が0.13~0.60である、
    請求項1に記載の結束保護テープ。
    The binding protective tape is fixed to the sample stage via the adhesive layer, and is measured using an R contactor based on ASTM D1894 under the conditions of a load of 200 g and a test speed of 2.5 mm/sec. The dynamic friction coefficient of the back surface of the base material is 0.13 to 0.60,
    The binding protective tape according to claim 1.
  4.  前記摺動性付与剤が、直鎖状のポリオルガノシロキサン、架橋されたポリオルガノシロキサン、シリカ、タルク、ガラス繊維、およびフッ素樹脂からなる群から選択されるいずれかである、請求項1~請求項3のいずれか一項に記載の結束保護テープ。 Claims 1 to 3, wherein the sliding properties imparting agent is one selected from the group consisting of linear polyorganosiloxane, crosslinked polyorganosiloxane, silica, talc, glass fiber, and fluororesin. The binding protective tape according to any one of Item 3.
  5.  前記摺動性付与剤が、直鎖状のポリジメチルシロキサンである、請求項1~請求項3のいずれか一項に記載の結束保護テープ。 The binding protective tape according to any one of claims 1 to 3, wherein the sliding properties imparting agent is linear polydimethylsiloxane.
  6.  前記直鎖状のポリジメチルシロキサンの、25℃における動粘度が200万mm/s以上である、請求項4に記載の結束保護テープ。 The binding protective tape according to claim 4, wherein the linear polydimethylsiloxane has a kinematic viscosity at 25° C. of 2 million mm 2 /s or more.
  7.  前記樹脂組成物における、前記ポリ塩化ビニル樹脂100質量部に対する前記可塑剤の含有量が38~60質量部である、請求項1~請求項3のいずれか一項に記載の結束保護テープ。 The binding protective tape according to any one of claims 1 to 3, wherein the content of the plasticizer in the resin composition is 38 to 60 parts by mass based on 100 parts by mass of the polyvinyl chloride resin.
  8.  前記樹脂組成物における、前記ポリ塩化ビニル樹脂100質量部に対する前記充填剤の含有量が10~60質量部である、請求項1~請求項3のいずれか一項に記載の結束保護テープ。 The binding protective tape according to any one of claims 1 to 3, wherein the content of the filler in the resin composition is 10 to 60 parts by mass based on 100 parts by mass of the polyvinyl chloride resin.
  9.  前記基材の厚みが、180~330μmである、請求項1~請求項3のいずれか一項に記載の結束保護テープ。 The binding protective tape according to any one of claims 1 to 3, wherein the base material has a thickness of 180 to 330 μm.
  10.  前記基材の厚み換算した引張弾性率が、5~9N/mmである、請求項1~請求項3のいずれか一項に記載の結束保護テープ。 The binding protective tape according to any one of claims 1 to 3, wherein the base material has a thickness-converted tensile modulus of 5 to 9 N/mm.
PCT/JP2023/019198 2022-05-30 2023-05-23 Binding protective tape WO2023234124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087865 2022-05-30
JP2022087865 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023234124A1 true WO2023234124A1 (en) 2023-12-07

Family

ID=89024811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019198 WO2023234124A1 (en) 2022-05-30 2023-05-23 Binding protective tape

Country Status (2)

Country Link
TW (1) TW202407068A (en)
WO (1) WO2023234124A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291243A (en) * 1995-04-21 1996-11-05 Zeon Kasei Co Ltd Vinyl chloride resin composition for powder molding and laminate using the same
US6541558B1 (en) * 1996-10-09 2003-04-01 Res Development Corporation Thermoplastic polymers with dispersed fluorocarbon additives
JP3888431B2 (en) * 2001-11-28 2007-03-07 住友電装株式会社 Wire harness protective material and wire harness using the same
WO2014077280A1 (en) * 2012-11-13 2014-05-22 矢崎総業株式会社 Polyvinyl chloride resin composition for automobile electric wires and ultrathin low-voltage electric wire for automobiles
CN111748162A (en) * 2020-06-30 2020-10-09 江门市支点光电科技有限公司 Heat-conducting PVC composition and preparation method thereof
WO2021029403A1 (en) * 2019-08-15 2021-02-18 デンカ株式会社 Adhesive tape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291243A (en) * 1995-04-21 1996-11-05 Zeon Kasei Co Ltd Vinyl chloride resin composition for powder molding and laminate using the same
US6541558B1 (en) * 1996-10-09 2003-04-01 Res Development Corporation Thermoplastic polymers with dispersed fluorocarbon additives
JP3888431B2 (en) * 2001-11-28 2007-03-07 住友電装株式会社 Wire harness protective material and wire harness using the same
WO2014077280A1 (en) * 2012-11-13 2014-05-22 矢崎総業株式会社 Polyvinyl chloride resin composition for automobile electric wires and ultrathin low-voltage electric wire for automobiles
WO2021029403A1 (en) * 2019-08-15 2021-02-18 デンカ株式会社 Adhesive tape
CN111748162A (en) * 2020-06-30 2020-10-09 江门市支点光电科技有限公司 Heat-conducting PVC composition and preparation method thereof

Also Published As

Publication number Publication date
TW202407068A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
TWI826375B (en) tape
JP7075936B2 (en) Adhesive tape base material, adhesive tape and its manufacturing method
JP5572546B2 (en) Adhesive film
JP6003023B2 (en) Electric wires / cables and compositions
CN111183197B (en) Adhesive sheet, protective material, and wire harness
US20110152459A1 (en) Release Liner
JP2007100069A (en) Flame-retardant resin composition suppressed in whitening at bending deformation
EP1533339B1 (en) Resin composition for use in release film and release film produced therefrom
WO2018168990A1 (en) Adhesive sheet, protective material and wiring harness
JP5629424B2 (en) Film base and adhesive tape
JP2006022122A (en) Non-halogenic flame-retardant pressure-sensitive adhesive tape and its manufacturing method
WO2023234124A1 (en) Binding protective tape
WO2023234125A1 (en) Binding protective tape
WO2022107883A1 (en) Adhesive tape and use of same
JP4611705B2 (en) Film base and adhesive tape
JP4878153B2 (en) Film base for adhesive tape and adhesive tape
JP4601040B2 (en) Binding tape
JP5336110B2 (en) Covered wire for wire harness
KR20180092074A (en) Composition for heat shrinkable tube and heat shrinkable tube formed from the same
JP2005263845A (en) Bundling tape
JP2001002839A (en) Flame-retarded composition and adhesive member
JP2019104848A (en) Composite material and molded article of the same
JPH10180836A (en) Protective coating material, long sized molded product using the material, and multi-layer integral type long sized molded product
WO1996025456A1 (en) Flame retardant polymer composition
JP2010037499A (en) Flame-retardant resin composition, covered electric wire and cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815883

Country of ref document: EP

Kind code of ref document: A1