WO2023234026A1 - Method for manufacturing electroformed component, method for manufacturing electroformed pipe, and electroforming device - Google Patents
Method for manufacturing electroformed component, method for manufacturing electroformed pipe, and electroforming device Download PDFInfo
- Publication number
- WO2023234026A1 WO2023234026A1 PCT/JP2023/018401 JP2023018401W WO2023234026A1 WO 2023234026 A1 WO2023234026 A1 WO 2023234026A1 JP 2023018401 W JP2023018401 W JP 2023018401W WO 2023234026 A1 WO2023234026 A1 WO 2023234026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electroformed
- wire
- electroformed layer
- electroforming
- layer
- Prior art date
Links
- 238000005323 electroforming Methods 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000007689 inspection Methods 0.000 claims abstract description 59
- 230000002159 abnormal effect Effects 0.000 claims description 47
- 238000012360 testing method Methods 0.000 claims description 15
- 238000011282 treatment Methods 0.000 claims description 8
- 230000037361 pathway Effects 0.000 abstract 2
- 238000004140 cleaning Methods 0.000 description 47
- 238000006073 displacement reaction Methods 0.000 description 34
- 239000007788 liquid Substances 0.000 description 22
- 238000005238 degreasing Methods 0.000 description 21
- 238000001035 drying Methods 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 230000002093 peripheral effect Effects 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 238000004876 x-ray fluorescence Methods 0.000 description 13
- 239000003550 marker Substances 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 102220486681 Putative uncharacterized protein PRO1854_S10A_mutation Human genes 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000009659 non-destructive testing Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/02—Tubes; Rings; Hollow bodies
Definitions
- the present invention relates to a method for manufacturing an electroformed member, a method for manufacturing an electroformed pipe, and an electroforming device.
- Electroformed tubes are used, for example, as probes for testing objects to be tested, such as integrated circuits (ICs).
- ICs integrated circuits
- a nickel layer is formed by electroforming around a stainless steel wire coated with gold plating.
- the cross-sectional area of the wire is reduced.
- a gap is formed between the outer circumferential surface of the wire and the inner circumferential surface of the nickel layer.
- the wire is removed by pulling the wire with the gap formed.
- the state of the electroformed layer may change depending on the conditions for forming the electroformed layer around the wire rod. For example, a portion of the wire may be cut out to inspect the state of the electroformed layer. In this case, the conditions for forming the electroformed layer are changed depending on the inspection result of the state of the electroformed layer.
- a portion of the wire is cut out, it is necessary to interrupt the formation of the electroformed layer. For this reason, it may become difficult to improve the productivity of electroformed members and electroformed pipes.
- One example of the object of the present invention is to improve the productivity of electroformed members and electroformed pipes. Other objects of the invention will become apparent from the description herein.
- One aspect of the present invention is forming an electroforming layer around the wire in an electroforming tank disposed on a route through which the wire is conveyed; Inspecting the state of the electroformed layer by an inspection unit disposed in the path; changing conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
- a method for manufacturing an electroformed member comprising:
- One aspect of the present invention is A method for manufacturing the above-mentioned electroformed member, removing the wire from the electroformed layer;
- a method for manufacturing an electroformed tube comprising:
- One aspect of the present invention is The route along which the wire rod is transported, an electroforming tank disposed in the path and forming an electroforming layer around the wire; an inspection section disposed on the path and inspecting the state of the electroformed layer; a control unit that changes conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
- This is an electroforming device equipped with.
- productivity of electroformed members and electroformed pipes can be improved.
- FIG. 1 is a flowchart showing a method for manufacturing an electroformed pipe according to Embodiment 1.
- FIG. 1 is a front view of an electroforming apparatus according to Embodiment 1.
- FIG. 1 is a diagram for explaining a method for manufacturing an electroformed pipe according to Embodiment 1.
- FIG. 1 is a diagram for explaining a method for manufacturing an electroformed pipe according to Embodiment 1.
- FIG. 1 is a diagram for explaining a method for manufacturing an electroformed pipe according to Embodiment 1.
- FIG. It is a figure for explaining arrangement of four film thickness gauges concerning a modification.
- It is a figure for explaining arrangement of four film thickness gauges concerning a modification.
- 7 is a flowchart showing a method for manufacturing an electroformed pipe according to Embodiment 2.
- FIG. FIG. 3 is a front view of an electroforming apparatus according to a second embodiment.
- FIG. 1 is a flowchart showing a method for manufacturing an electroformed pipe according to Embodiment 1.
- FIG. 2 is a front view of the electroforming apparatus 1A according to the first embodiment.
- 3 to 5 are diagrams for explaining the method for manufacturing an electroformed tube according to the first embodiment.
- the electroformed tube according to the embodiment can be used, for example, as a probe for testing an object to be tested such as an IC.
- the method for manufacturing an electroformed tube according to Embodiment 1 will be simply referred to as the method according to Embodiment 1.
- an X direction, a Y direction, and a Z direction are defined.
- the Z direction is a direction parallel to the vertical direction.
- the X direction is one of the horizontal directions perpendicular to the Z direction.
- the Y direction is one of the horizontal directions perpendicular to the Z direction and the X direction.
- the direction indicated by the arrow in the X direction is defined as the right direction of the electroforming apparatus 1A.
- the direction indicated by the Y-direction arrow is defined as the rear direction of the electroforming apparatus 1A.
- the direction indicated by the Z-direction arrow is defined as the upward direction of the electroforming apparatus 1A.
- a white circle with an X indicating the X direction, Y direction, or Z direction indicates that the direction indicated by the arrow in the direction indicated by the white circle is the direction from the front to the back of the page.
- an electroformed member 300A is manufactured in an electroforming apparatus 1A through a degreasing step S1A to an abnormal part removal step S8A.
- an electroformed pipe is manufactured from the electroformed member 300A through a wire rod removal step S9A and an electroformed layer cutting step S10A.
- the electroforming apparatus 1A includes a control section 5A, a delivery reel 12A, a tension jig 14A, a conveyance roller 16A, a pair of auxiliary rollers 18A, a degreasing tank 21A, a first cleaning tank 22A, an electroforming tank 23A, It includes a second cleaning tank 24A, a drying tank 25A, an imaging section 30A, a film thickness meter 40A, a pair of centering rollers 42A, and a marker 50A.
- the electroforming apparatus 1A according to the first embodiment includes a path 2A along which the wire 100A is conveyed. Path 2A is located between delivery reel 12A and tension jig 14A.
- the control unit 5A is, for example, a computer such as a personal computer or a microcomputer.
- the control unit 5A controls the operation of the electroforming device 1A.
- a program that executes the operation of at least one step in the flowchart shown in FIG. 1 is stored in a storage unit (not shown).
- the operation of the electroforming apparatus 1A is controlled by the control unit 5A executing the program as a computer.
- the wire 100A is sent from the delivery reel 12A toward the tensioning jig 14A.
- the left end portion of the wire 100A is wound around a delivery reel 12A.
- the right end portion of the wire 100A is stretched by a tensioning jig 14A.
- the wire 100A has conductivity.
- the wire 100A is made of stainless steel, for example.
- the wire 100A may be made of a material different from stainless steel.
- the wire 100A may be made of iron, copper, gold, silver, brass, nickel, aluminum, carbon, plastic, resin, or the like.
- the axial direction of the wire 100A is substantially parallel to the X direction.
- the cross section of the wire 100A perpendicular to the X direction has a substantially circular shape.
- the diameter of the wire 100A perpendicular to the X direction is, for example, 10 ⁇ m or more and 500 ⁇ m or less.
- the outer peripheral surface of the wire 100A may be covered with metal.
- the degreasing step S1A is performed.
- the wire rod 100A is sent out from the delivery reel 12A and then sent to the degreasing tank 21A.
- a degreasing liquid 21A1 is stored in the degreasing tank 21A.
- the wire 100A passes through the inside of the degreasing tank 21A while being impregnated with the degreasing liquid 21A1. Thereby, deposits such as oil and dirt present on the outer peripheral surface of the wire 100A can be removed. Therefore, in a state where deposits are present on the outer peripheral surface of the wire 100A, it may be difficult to form the electroformed layer 200A shown in FIG. 3 on the outer peripheral surface of the wire 100A in the electroforming bath 23A. Therefore, by removing the deposit from the outer peripheral surface of the wire 100A, a homogeneous electroformed layer 200A can be formed on the outer peripheral surface of the wire 100A.
- a first cleaning step S2A is performed.
- the wire 100A is sent to the first cleaning tank 22A after passing through the degreasing tank 21A.
- a first cleaning liquid 22A1 is stored in the first cleaning tank 22A.
- the wire 100A passes through the first cleaning tank 22A while being impregnated with the first cleaning liquid 22A1. As a result, the outer peripheral surface of the wire 100A is cleaned by the first cleaning liquid 22A1.
- electroforming step S3A is performed.
- the wire rod 100A passes through the first cleaning tank 22A, and then is sent to the electroforming tank 23A.
- An electroforming liquid 23A1 is stored in the electroforming tank 23A.
- the wire 100A passes through the electroforming tank 23A while being impregnated with the electroforming liquid 23A1.
- the electroforming liquid 23A1 is impregnated with an anode (not shown).
- the wire 100A and the electroforming liquid 23A1 are electrically connected to a power source (not shown). This allows the wire 100A to operate as a cathode.
- an electroformed layer 200A is formed on the outer peripheral surface of the wire 100A.
- the electroformed layer 200A is made of, for example, metals such as nickel, gold, copper, palladium, rhodium, platinum, and silver, or alloys thereof.
- the thickness of the electroformed layer 200A perpendicular to the X direction is, for example, 5 ⁇ m or more and 100 ⁇ m or less.
- the type of electroforming liquid 23A1 is determined by predetermined conditions such as the material of the electroforming layer 200A.
- the electroforming liquid 23A1 contains, for example, a nickel sulfate solution or a nickel sulfamate solution, and also contains a brightening agent and a bit prevention agent as necessary.
- a second cleaning step S4A is performed.
- the wire rod 100A is sent to the second cleaning tank 24A after passing through the electroforming tank 23A.
- a second cleaning liquid 24A1 is stored in the second cleaning tank 24A.
- the wire 100A passes through the second cleaning tank 24A while being impregnated with the second cleaning liquid 24A1. As a result, the electroformed layer 200A formed on the outer peripheral surface of the wire 100A is cleaned.
- one electroforming tank 23A and one second cleaning tank 24A are provided. As a result, a single electroformed layer 200A is formed. However, the electroformed layer 200A may have multiple layers. Further, the number of electroforming tanks 23A and second cleaning tanks 24A may vary depending on the number of layers included in the electroforming layer 200A. For example, when the electroformed layer 200A includes two layers of different materials, the two electroforming tanks 23A and the two second cleaning tanks 24A may be arranged alternately in the X direction. In this example, a plurality of electroforming processes S3A and a plurality of second cleaning processes S4A are performed alternately.
- a predetermined sacrificial layer may be provided between the outer peripheral surface of the wire 100A and the inner peripheral surface of the electroformed layer 200A.
- the sacrificial layer is removed, for example, by etching before removing the wire 100A from the electroformed layer 200A.
- a gap can be formed between the outer peripheral surface of the wire 100A and the inner peripheral surface of the electroformed layer 200A. Therefore, the wire 100A can be more easily removed from the electroformed layer 200A than in the case where the gap does not exist.
- a drying step S5A is performed.
- the wire 100A and the electroformed layer 200A are sent to the drying tank 25A after passing through the second cleaning tank 24A.
- the wire 100A and the electroformed layer 200A are dried in the drying tank 25A. This makes it possible to remove the second cleaning liquid 24A1 that adheres to the outer peripheral surface of the electroformed layer 200A when the wire 100A and the electroformed layer 200A pass through the second cleaning tank 24A.
- an inspection step S6A is performed.
- the wire 100A passes through the drying tank 25A, and then passes below the imaging section 30A via a conveyance roller 16A and a pair of auxiliary rollers 18A.
- the wire 100A passes below the imaging section 30A, and then passes below the film thickness gauge 40A.
- a pair of centering rollers 42A are arranged on both sides of the film thickness meter 40A in the X direction.
- the imaging unit 30A includes an image sensor such as a CCD (charge coupled device) image sensor or a CMOS (complementary metal oxide semiconductor) image sensor.
- the imaging unit 30A images a portion of the wire 100A passing below the imaging unit 30A.
- the control unit 5A recognizes the position of the wire 100A from the image captured by the imaging unit 30A through object recognition. Thereby, the control unit 5A uses the centering roller 42A to align the wire 100A with the film thickness meter 40A based on the recognition result of the position of the wire 100A.
- the film thickness meter 40A inspects the thickness of the electroformed layer 200A by X-ray fluorescence (XRF) analysis.
- XRF X-ray fluorescence
- the film thickness meter 40A can measure the thickness in the Z direction of the portion of the electroformed layer 200A located above the wire 100A when viewed from the X direction. If XRF analysis is used, the thickness of electroformed layer 200A can be inspected by non-destructive testing. In this case, even the portion where the thickness of the electroformed layer 200A has been tested can be used as an electroformed pipe.
- the method for inspecting the thickness of the electroformed layer 200A is not limited to XRF analysis.
- the thickness of the electroformed layer 200A may be inspected by non-destructive testing other than XRF analysis.
- the position where the film thickness meter 40A is placed is not limited to the example shown in FIG. 2.
- the position where the film thickness meter 40A is arranged can be changed depending on the part where the thickness of the electroformed layer 200A is inspected.
- the film thickness gauge 40A may be placed below the wire 100A.
- the film thickness meter 40A can inspect the thickness in the Z direction of the portion of the electroformed layer 200A located below the wire 100A when viewed from the X direction.
- the control unit 5A changes the conditions for forming the electroformed layer 200A in the electroforming tank 23A according to the test results of the film thickness meter 40A. Specifically, the control unit 5A determines that the thickness in the Z direction of the portion of the electroformed layer 200A located above the wire 100A when viewed from the X direction is a predetermined reference value by referring to the test results of the film thickness meter 40A. It is determined whether or not there is a deviation from the actual value. The control unit 5A can determine a portion where the thickness of the electroformed layer 200A deviates from the predetermined reference value as an abnormal portion of the electroformed layer 200A. That is, the control unit 5A and the film thickness meter 40A are capable of detecting an abnormal portion of the electroformed layer 200A.
- the control unit 5A can change the conditions for forming the electroformed layer 200A in the electroforming tank 23A when an abnormal part exists in the electroformed layer 200A. Therefore, the thickness of the electroformed layer 200A can be made substantially uniform in the X direction by feedback control of the control unit 5A.
- the control unit 5A may change the moving speed of the wire 100A in the electroforming tank 23A depending on the test result of the film thickness meter 40A.
- the conditions changed by the feedback control of the control unit 5A are not limited to the moving speed of the wire 100A in the electroforming tank 23A.
- the film thickness gauge 40A is movable substantially parallel to the X direction. For this reason, the control unit 5A may move the film thickness meter 40A to the right at substantially the same moving speed as the rightward moving speed of the wire 100A.
- the control unit 5A may move the film thickness meter 40A to the right at substantially the same moving speed as the rightward moving speed of the wire 100A.
- the control unit 5A can move the film thickness meter 40A toward the right to inspect the thickness of the electroformed layer 200A of a portion of the wire 100A, and then return the thickness meter 40A toward the left. Thereby, the film thickness meter 40A can continue to inspect the thickness of the electroformed layer 200A on other parts of the wire 100A. Even in an inspection different from the XRF analysis using the film thickness meter 40A, the control unit 5A may move the film thickness meter 40A approximately in synchronization with the wire 100A. Also in this case, the thickness of the electroformed layer 200A can be tested more accurately than when the film thickness meter 40A is fixed without moving. However, the control unit 5A may fix the film thickness meter 40A without moving it.
- the electroformed layer 200A when inspecting the thickness state of the electroformed layer 200A, there is no need to cut out a portion of the wire 100A. Therefore, when inspecting the state of the thickness of the electroformed layer 200A, there is no need to interrupt the formation of the electroformed layer 200A in the electroforming tank 23A.
- the electroformed layer 200A can be formed in the electroforming tank 23A while inspecting the thickness of the electroformed layer 200A using the film thickness gauge 40A. Thereby, the electroformed layer 200A can be formed continuously over time while performing feedback control of the control section 5A. Therefore, in the method according to the first embodiment, productivity of the electroformed member 300A and the electroformed pipe can be improved.
- an identifier assigning step S7A is performed.
- the wire 100A passes below the film thickness meter 40A and then passes below the marker 50A.
- the marker 50A gives an identifier to the abnormal part of the electroformed layer 200A by referring to the determination result of the abnormal part of the electroformed layer 200A by the control unit 5A. Therefore, the user of the electroforming apparatus 1A obtains information about the abnormal part of the electroformed layer 200A, such as the presence or absence, position, size, and range of the abnormal part of the electroformed layer 200A, from the identifier given to the electroformed layer 200A. can be obtained. Therefore, the quality of the electroformed member 300A and the electroformed pipe can be improved.
- the productivity of the electroformed member 300A and the electroformed pipe can be improved.
- methods for providing the identifier include laser irradiation, paint application, and the like.
- the identifier is, for example, a portion of the electroformed layer 200A that is irradiated with a laser or a portion that is coated with paint.
- an abnormal part removal step S8A is performed.
- the portion of the electroformed member 300A including the wire 100A and the electroformed layer 200A to which the identifier is attached is removed.
- the portion of the electroformed member 300A that has passed below the marker 50A is pulled by the tension jig 14A, and the portion of the electroformed member 300A is removed.
- abnormal portions of the electroformed layer 200A are removed. Therefore, the quality of the electroformed member 300A and the electroformed pipe can be improved.
- the productivity of the electroformed member 300A and the electroformed pipe can be improved.
- the method for removing the abnormal portion of the electroformed layer 200A is not particularly limited.
- the wire 100A and the electroformed layer 200A may be cut so that the abnormal part of the electroformed layer 200A is separated from the periphery of the abnormal part of the electroformed layer 200A.
- the abnormal part removal step S8A may be performed at a location different from the electroforming apparatus 1A.
- a predetermined length of the right end of the electroformed member 300A is cut out while the right end of the electroformed member 300A is pulled by the tension jig 14A.
- the portion to which the identifier of the cut-out portion of the electroforming member 300A is attached is removed.
- a wire removal step S9A is performed.
- the wire rod 100A is removed from the electroformed member 300A.
- the wire 100A may be pulled out from the electroformed layer 200A by pulling at least one of both ends of the wire 100A.
- the method for removing the wire 100A is not limited to this example.
- an electroformed layer cutting step S10A is performed.
- the electroformed layer 200A is cut into a plurality of pieces P. Each cut out P piece becomes an electroformed pipe. In this way, the electroformed tube according to the embodiment is manufactured.
- the method for manufacturing an electroformed pipe is not limited to the method according to Embodiment 1.
- the control unit 5A changes the conditions for forming the electroformed layer 200A in the electroforming tank 23A, depending on the state of the thickness of the electroformed layer 200A.
- the control unit 5A may change the conditions for forming the electroformed layer 200A depending on the thickness of the electroformed layer 200A and the state of different characteristics.
- the control unit 5A may refer to the composition state of the material included in the electroformed layer 200A.
- the composition of the material included in the electroformed layer 200A is inspected, for example, by non-destructive testing such as XRF analysis.
- XRF analysis non-destructive testing
- adding an identifier to the abnormal portion of the electroformed layer 200A and removing the abnormal portion of the electroformed layer 200A are performed as treatments for the abnormal portion of the electroformed layer 200A.
- the treatment applied to the abnormal portion of the electroformed layer 200A is not limited to these.
- the process performed on the abnormal part of the electroformed layer 200A may be only one of adding an identifier to the abnormal part of the electroformed layer 200A and removing the abnormal part of the electroformed layer 200A.
- FIGS. 6 and 7 are diagrams for explaining the arrangement of four film thickness gauges 40A1 according to a modification.
- the method for manufacturing an electroformed pipe according to the modification will be simply referred to as the method according to the modification.
- the method according to the modification is the same as the method according to the first embodiment except for the following points.
- an electroformed layer 200A1 is formed around the wire 100A1 in the electroforming tank 23A in the same manner as the method according to the first embodiment. After passing through the electroforming tank 23A, the wire rod 100A1 is sent to a position where four film thickness gauges 40A1 are arranged.
- the four film thickness gauges 40A1 are arranged at approximately equal intervals around the wire 100A1 when viewed from the X direction. Specifically, when viewed from the X direction, the four film thickness gauges 40A1 are arranged above, below, in front of, and behind the wire 100A1. Each film thickness meter 40A1 inspects the thickness of the electroformed layer 200A1 by XRF analysis. Therefore, the film thickness meter 40A1 disposed above the wire 100A1 can inspect the thickness in the Z direction of the portion of the electroformed layer 200A1 located above the wire 100A1 when viewed from the X direction.
- the film thickness meter 40A1 disposed below the wire 100A1 can inspect the thickness in the Z direction of the portion of the electroformed layer 200A1 located below the wire 100A1 when viewed from the X direction.
- the film thickness meter 40A1 disposed in front of the wire 100A1 can inspect the thickness in the Y direction of the portion of the electroformed layer 200A1 located in front of the wire 100A1 when viewed from the X direction.
- the film thickness gauge 40A1 placed behind the wire 100A1 can inspect the thickness in the Y direction of the portion of the electroformed layer 200A1 located behind the wire 100A1 when viewed from the X direction.
- the control unit 5A controls the operation of the four film thickness gauges 40A1 in the same manner as the method according to the first embodiment.
- the control unit 5A changes the conditions for forming the electroformed layer 200A1 in the electroforming tank 23A according to the test results of the four film thickness gauges 40A1.
- the control unit 5A can determine a portion where the uniformity of the thickness of the electroformed layer 200A1 deviates from a predetermined standard as an abnormal portion of the electroformed layer 200A1.
- the control unit 5A can change the conditions for forming the electroformed layer 200A1 in the electroforming tank 23A when an abnormal portion of the electroformed layer 200A1 exists. Therefore, the uniformity of the thickness of the electroformed layer 200A1 can be maintained in the X direction by feedback control of the control unit 5A.
- the control unit 5A may change the moving speed of the wire rod 100A1 in the electroforming tank 23A according to the inspection results of the four film thickness gauges 40A1.
- the conditions changed by the feedback control of the control unit 5A are not limited to the moving speed of the wire rod 100A1 in the electroforming tank 23A.
- the four film thickness gauges 40A1 are arranged offset from each other in the X direction. Therefore, compared to the case where the four film thickness gauges 40A1 are aligned with each other in the X direction, mutual interference of X-rays irradiated in the XRF analysis of each film thickness gauge 40A1 can be suppressed. Even in an inspection different from the XRF analysis using each film thickness gauge 40A1, the four film thickness gauges 40A1 may be arranged offset from each other in the X direction. Also in this case, mutual interference between inspections of the film thickness gauges 40A1 can be suppressed compared to the case where the four film thickness gauges 40A1 are aligned with each other in the X direction. Further, some of the four film thickness gauges 40A1 may be aligned with each other in the X direction.
- the four film thickness gauges 40A1 according to the modification are movable substantially parallel to the X direction. Therefore, by moving the four film thickness gauges 40A1 approximately in synchronization with the wire rod 100A1 in the same manner as the method according to the first embodiment, sufficient X-ray intensity can be obtained in the XRF analysis using the four film thickness gauges 40A1. Obtainable.
- the number of film thickness gauges 40A1 arranged around the wire 100A1 is not limited to the examples shown in FIGS. 6 and 7. For example, only two, only three, or five or more film thickness gauges 40A1 may be arranged around the wire 100A1.
- the abnormal portion of the electroformed layer 200A1 may be subjected to a predetermined treatment in the same manner as the method according to the first embodiment.
- the quality of the electroformed member and the electroformed pipe can be improved in the same manner as the method according to the first embodiment.
- productivity of electroformed members and electroformed pipes can be improved.
- FIG. 8 is a flowchart showing a method for manufacturing an electroformed pipe according to the second embodiment.
- FIG. 9 is a front view of an electroforming apparatus 1B according to the second embodiment.
- the electroforming apparatus 1B according to the second embodiment is the same as the electroforming apparatus 1A according to the first embodiment except for the following points.
- the method for manufacturing an electroformed tube according to the second embodiment will be simply referred to as the method according to the second embodiment.
- the electroforming apparatus 1B includes a control section 5B, a delivery reel 12B, a tension jig 14B, a conveyance roller 16B, a degreasing tank 21B, a first cleaning tank 22B, an electroforming tank 23B, a second cleaning tank 24B, It includes a drying tank 25B, a first displacement gauge 42B, a second displacement gauge 44B, and a marker 50B.
- a degreasing liquid 21B1 is stored in the degreasing tank 21B.
- a first cleaning liquid 22B1 is stored in the first cleaning tank 22B.
- An electroforming liquid 23B1 is stored in the electroforming tank 23B.
- a second cleaning liquid 24B1 is stored in the second cleaning tank 24B.
- the electroforming apparatus 1B includes a path 2B along which the wire rod 100B is conveyed. Path 2B is located between delivery reel 12B and tension jig 14B.
- the degreasing tank 21B, the first cleaning tank 22B, the electroforming tank 23B, the second cleaning tank 24B, the drying tank 25B, the first displacement meter 42B, the second displacement meter 44B, and the marker 50B are arranged on the path 2B.
- the first inspection step S6B1 is performed.
- the wire rod 100B is sent out from the delivery reel 12B and then passes below the first displacement meter 42B. Details of the first inspection step S6B1 will be described later.
- the wire 100B passes through a degreasing tank 21B, a first cleaning tank 22B, an electroforming tank 23B, a second cleaning tank 24B, and a drying tank 25B.
- the degreasing step S1B is performed in the degreasing tank 21B, first cleaning tank 22B, electroforming tank 23B, second cleaning tank 24B, and drying tank 25B, respectively.
- an electroforming layer 200B is formed on the outer circumferential surface of the wire 100B in the same manner as the electroforming tank 23A according to the first embodiment.
- a second inspection step S6B2 is performed.
- the wire rod 100B passes below the second displacement meter 44B via the conveyance roller 16B. Details of the second inspection step S6B2 will be described later.
- the wire rod 100B passes below the marker 50B.
- the identifier assigning step S7B is performed in the same manner as the method according to the first embodiment.
- an abnormal part removing step S8B is performed in the same manner as the method according to the first embodiment.
- the abnormal portion of the electroformed member 300B is removed.
- a wire rod removal step S9B and an electroformed layer cutting step S10B are performed in the same manner as the method according to the first embodiment. In this way, an electroformed tube is manufactured from the electroformed member 300B.
- the first displacement meter 42B and the second displacement meter 44B are laser displacement meters.
- the first displacement meter 42B inspects the state of the wire 100B before the electroformed layer 200B is formed. Specifically, the first displacement meter 42B measures the distance in the Z direction from the first displacement meter 42B to the upper surface of the wire 100B before the electroformed layer 200B is formed.
- the second displacement meter 44B inspects the state of the electroformed layer 200B after the electroformed layer 200B is formed. Specifically, the second displacement meter 44B measures the distance in the Z direction from the second displacement meter 44B to the top surface of the electroformed layer 200B around the wire 100B after the electroformed layer 200B is formed. There is.
- the control unit 5B forms the electroformed layer 200B in the electroforming tank 23B in the same manner as the method according to the first embodiment, according to the inspection results of the first displacement meter 42B and the second displacement meter 44B. conditions can be changed. Therefore, in the same manner as the method according to the first embodiment, productivity of the electroformed member 300B and the electroformed pipe can be improved.
- the state of the thickness of the electroformed layer 200B can be inspected at a lower cost than the method according to the first embodiment.
- first displacement gauge 42B and the second displacement gauge 44B are arranged are not limited to the example shown in FIG. 9.
- the first displacement meter 42B and the second displacement meter 44B may be arranged below the wire rod 100B.
- the first displacement meter 42B and the second displacement meter 44B can inspect the thickness in the Z direction of the portion of the electroformed layer 200B located below the wire rod 100B when viewed from the X direction.
- a plurality of pairs of displacement meters, the first displacement meter 42B and the second displacement meter 44B, may be arranged around the wire 100B when viewed from the X direction.
- the uniformity of the thickness of the electroformed layer 200B in the circumferential direction of the wire rod 100B when viewed from the X direction can be inspected in the same manner as the method according to the modification.
- the electroforming device includes a marker.
- the electroforming device does not need to be equipped with a marker.
- the electroforming device can change the conditions for forming the electroformed layer in the electroforming bath according to the state of the electroformed layer without assigning an identifier to the abnormal part of the electroformed layer. .
- the method for manufacturing an electroformed member includes the steps of: forming an electroforming layer around the wire in an electroforming tank disposed on a route through which the wire is conveyed; The method includes a step of inspecting the state of the electroformed layer, and a step of changing conditions for forming the electroformed layer in the electroforming tank depending on the state of the electroformed layer.
- the “inspection section” corresponds to the "film thickness meter”, “first displacement meter”, and “second displacement meter” in the above-described embodiment or modification.
- the step of inspecting the state of the electroformed layer is performed by the inspection section that is movable at substantially the same moving speed as the moving speed of the wire along the route.
- the thickness of the electroformed layer can be accurately inspected compared to the case where the wire is fixed without moving.
- the step of inspecting the state of the electroformed layer is performed by the plurality of inspection sections arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire.
- the step of inspecting the state of the electroformed layer is performed by at least some of the plurality of inspection units that are arranged substantially parallel to and offset from each other in the axial direction of the wire rod. There is.
- mutual interference between the inspections of the respective inspection sections can be suppressed compared to the case where at least some of the inspection sections are aligned substantially parallel to each other in the axial direction of the wire rod.
- the step of inspecting the state of the electroformed layer includes the inspection results of the wire before the electroformed layer is formed around the wire and the electroformed layer formed around the wire. The inspection is performed by the inspection section with reference to the inspection results of the electroformed layer after the electroforming.
- the state of the electroformed layer can be inspected at a lower cost than when radiation is used.
- the method for manufacturing an electroformed member further includes a step of performing a predetermined treatment on an abnormal portion of the electroformed layer detected by inspecting the state of the electroformed layer.
- the quality of the electroformed member and the electroformed pipe can be improved by subjecting the abnormal part to appropriate processing such as adding an identifier to the abnormal part and removing the abnormal part. Further, by applying the appropriate treatment to the abnormal portion, it is possible to improve the productivity of electroformed members and electroformed pipes.
- the step of subjecting the abnormal portion of the electroformed layer to the predetermined treatment includes at least one of adding an identifier to the abnormal portion and removing the abnormal portion.
- the quality of the electroformed member and the electroformed pipe can be improved. Moreover, productivity of electroformed members and electroformed pipes can be improved.
- a method for manufacturing an electroformed pipe includes the above-described method for manufacturing an electroformed member, and a step of removing the wire from the electroformed layer.
- the electroforming device includes a path along which the wire is conveyed, an electroforming tank disposed on the path and forming an electroformed layer around the wire, and an electroforming tank disposed on the path and configured to form an electroformed layer around the wire. and a control section that changes conditions for forming the electroformed layer in the electroforming tank depending on the state of the electroformed layer.
- the “inspection section” corresponds to the "film thickness meter”, “first displacement meter”, and “second displacement meter” in the above-described embodiment or modification.
- the inspection section is movable at substantially the same moving speed as the moving speed of the wire along the route.
- the thickness of the electroformed layer can be accurately inspected as compared to the case where the wire is fixed without moving, similar to the second aspect.
- the plurality of inspection parts that inspect the state of the electroformed layer are arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire.
- At least some of the plurality of inspection sections are arranged substantially parallel to the axial direction of the wire and shifted from each other.
- the inspection unit includes an inspection result of the wire before the electroformed layer is formed around the wire, and an inspection result of the electroformed layer after the electroformed layer is formed around the wire. The state of the electroformed layer is inspected with reference to the inspection results.
- the state of the electroformed layer can be inspected at a lower cost than when radiation is used.
- the electroforming apparatus further includes a processing section that performs predetermined processing on an abnormal portion of the electroformed layer detected by inspecting the state of the electroformed layer.
- the "processing unit” corresponds to the "marker" in the above-described embodiment or modification.
- the quality of the electroformed member and the electroformed pipe can be improved in the same manner as in aspect 6. Moreover, productivity of electroformed members and electroformed pipes can be improved.
- the predetermined process includes at least one of assigning an identifier to the abnormal portion and removing the abnormal portion.
- the quality of the electroformed member and the electroformed pipe can be improved. Moreover, productivity of electroformed members and electroformed pipes can be improved.
- 1A, 1B electroforming device 2A, 2B route, 5A, 5B control unit, 12A, 12B delivery reel, 14A, 14B tension jig, 16A, 16B conveyance roller, 18A auxiliary roller, 21A, 21B degreasing tank, 21A1, 21B1 Degreasing liquid, 22A, 22B First cleaning tank, 22A1, 22B1 First cleaning liquid, 23A, 23B Electroforming tank, 23A1, 23B1 Electroforming liquid, 24A, 24B Second cleaning tank, 24A1, 24B1 Second cleaning liquid, 25A, 25B drying tank, 30A imaging club, 40A, 40A1 membrane, 42a core roller, 42B's first displacement meter, 44B's second displacement, 50A, 50B marker, 100A1,100B line material, 200A, 200A1,200B Denki Casting layer, 300A, 300B electroformed member, S1A, S1B degreasing process, S2A, S2B first cleaning process, S3A, S3B electroforming process
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Electroplating Methods And Accessories (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
A method for manufacturing an electroformed component, provided with: a step for forming an electroformed layer around a wire in an electroforming tank disposed on a pathway along which the wire is transported; a step for inspecting the state of the electroformed layer by means of an inspection unit disposed on the pathway; and a step for changing, according to the state of the electroformed layer, a condition for forming the electroformed layer in the electroforming tank.
Description
本発明は、電鋳部材の製造方法、電鋳管の製造方法及び電鋳装置に関する。
The present invention relates to a method for manufacturing an electroformed member, a method for manufacturing an electroformed pipe, and an electroforming device.
近年、電鋳部材及び電鋳管を製造するための様々な方法が開発されている。線材の周囲に電鋳層を形成することで、線材及び電鋳層を備える電鋳部材が製造される。電鋳部材から線材を除去することで電鋳管が製造される。電鋳管は、例えば、集積回路(IC)等の検査対象物を検査するためのプローブに用いられている。例えば、特許文献1に記載の方法では、金めっきによって被膜されたステンレス製の線材の周囲に電鋳によってニッケル層を形成する。次いで、線材の少なくとも一端を引っ張ることで、線材の断面積を低減させる。これによって、線材の外周面とニッケル層の内周面との間に隙間が形成される。次いで、当該隙間が形成された状態で線材を引っ張ることで線材を除去する。
In recent years, various methods have been developed for manufacturing electroformed members and electroformed pipes. By forming an electroformed layer around the wire, an electroformed member including the wire and the electroformed layer is manufactured. An electroformed tube is manufactured by removing the wire from the electroformed member. Electroformed tubes are used, for example, as probes for testing objects to be tested, such as integrated circuits (ICs). For example, in the method described in Patent Document 1, a nickel layer is formed by electroforming around a stainless steel wire coated with gold plating. Next, by pulling at least one end of the wire, the cross-sectional area of the wire is reduced. As a result, a gap is formed between the outer circumferential surface of the wire and the inner circumferential surface of the nickel layer. Next, the wire is removed by pulling the wire with the gap formed.
電鋳部材及び電鋳管の製造では、線材の周囲に電鋳層を形成する条件に応じて、電鋳層の厚さ等の、電鋳層の状態が変化することがある。例えば、線材の一部分を切り出して、電鋳層の状態が検査されることがある。この場合、電鋳層の状態の検査結果に応じて、電鋳層を形成するための条件が変更される。しかしながら、線材の一部分を切り出した場合、電鋳層の形成を中断する必要がある。このため、電鋳部材及び電鋳管の生産性が向上しにくくなることがある。
In the production of electroformed members and electroformed pipes, the state of the electroformed layer, such as the thickness of the electroformed layer, may change depending on the conditions for forming the electroformed layer around the wire rod. For example, a portion of the wire may be cut out to inspect the state of the electroformed layer. In this case, the conditions for forming the electroformed layer are changed depending on the inspection result of the state of the electroformed layer. However, when a portion of the wire is cut out, it is necessary to interrupt the formation of the electroformed layer. For this reason, it may become difficult to improve the productivity of electroformed members and electroformed pipes.
本発明の目的の一例は、電鋳部材及び電鋳管の生産性を向上させることにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。
One example of the object of the present invention is to improve the productivity of electroformed members and electroformed pipes. Other objects of the invention will become apparent from the description herein.
本発明の一態様は、
線材が搬送される経路に配置された電鋳槽において前記線材の周囲に電鋳層を形成する工程と、
前記経路に配置された検査部によって前記電鋳層の状態を検査する工程と、
前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する工程と、
を備える、電鋳部材の製造方法である。 One aspect of the present invention is
forming an electroforming layer around the wire in an electroforming tank disposed on a route through which the wire is conveyed;
Inspecting the state of the electroformed layer by an inspection unit disposed in the path;
changing conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
A method for manufacturing an electroformed member, comprising:
線材が搬送される経路に配置された電鋳槽において前記線材の周囲に電鋳層を形成する工程と、
前記経路に配置された検査部によって前記電鋳層の状態を検査する工程と、
前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する工程と、
を備える、電鋳部材の製造方法である。 One aspect of the present invention is
forming an electroforming layer around the wire in an electroforming tank disposed on a route through which the wire is conveyed;
Inspecting the state of the electroformed layer by an inspection unit disposed in the path;
changing conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
A method for manufacturing an electroformed member, comprising:
本発明の一態様は、
上述の電鋳部材の製造方法と、
前記電鋳層から前記線材を除去する工程と、
を備える、電鋳管の製造方法である。 One aspect of the present invention is
A method for manufacturing the above-mentioned electroformed member,
removing the wire from the electroformed layer;
A method for manufacturing an electroformed tube, comprising:
上述の電鋳部材の製造方法と、
前記電鋳層から前記線材を除去する工程と、
を備える、電鋳管の製造方法である。 One aspect of the present invention is
A method for manufacturing the above-mentioned electroformed member,
removing the wire from the electroformed layer;
A method for manufacturing an electroformed tube, comprising:
本発明の一態様は、
線材が搬送される経路と、
前記経路に配置され、前記線材の周囲に電鋳層が形成される電鋳槽と、
前記経路に配置され、前記電鋳層の状態を検査する検査部と、
前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する制御部と、
を備える電鋳装置である。 One aspect of the present invention is
The route along which the wire rod is transported,
an electroforming tank disposed in the path and forming an electroforming layer around the wire;
an inspection section disposed on the path and inspecting the state of the electroformed layer;
a control unit that changes conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
This is an electroforming device equipped with.
線材が搬送される経路と、
前記経路に配置され、前記線材の周囲に電鋳層が形成される電鋳槽と、
前記経路に配置され、前記電鋳層の状態を検査する検査部と、
前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する制御部と、
を備える電鋳装置である。 One aspect of the present invention is
The route along which the wire rod is transported,
an electroforming tank disposed in the path and forming an electroforming layer around the wire;
an inspection section disposed on the path and inspecting the state of the electroformed layer;
a control unit that changes conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
This is an electroforming device equipped with.
本発明の上記態様によれば、電鋳部材及び電鋳管の生産性を向上させることができる。
According to the above aspect of the present invention, productivity of electroformed members and electroformed pipes can be improved.
以下、本発明の実施形態及び変形例について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
Hereinafter, embodiments and modified examples of the present invention will be described using the drawings. In all the drawings, similar components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
図1は、実施形態1に係る電鋳管の製造方法を示すフローチャートである。図2は、実施形態1に係る電鋳装置1Aの前面図である。図3~図5は、実施形態1に係る電鋳管の製造方法を説明するための図である。
FIG. 1 is a flowchart showing a method for manufacturing an electroformed pipe according to Embodiment 1. FIG. 2 is a front view of the electroforming apparatus 1A according to the first embodiment. 3 to 5 are diagrams for explaining the method for manufacturing an electroformed tube according to the first embodiment.
実施形態に係る電鋳管は、例えば、IC等の検査対象物を検査するためのプローブに利用可能である。以下、実施形態1に係る電鋳管の製造方法を、単に、実施形態1に係る方法という。
The electroformed tube according to the embodiment can be used, for example, as a probe for testing an object to be tested such as an IC. Hereinafter, the method for manufacturing an electroformed tube according to Embodiment 1 will be simply referred to as the method according to Embodiment 1.
方向を説明するために、X方向、Y方向及びZ方向を定義する。Z方向は、鉛直方向に平行な方向である。X方向は、Z方向に垂直な水平方向の一つである。Y方向は、Z方向及びX方向に垂直な水平方向の一つである。X方向の矢印が示す方向を電鋳装置1Aの右方向と定義する。Y方向の矢印が示す方向を電鋳装置1Aの後方向と定義する。Z方向の矢印が示す方向を電鋳装置1Aの上方向と定義する。X方向、Y方向又はZ方向を示すX付き白丸は、当該白丸によって示される方向の矢印が示す方向が紙面の手前から奥に向かう方向であることを示している。
In order to explain the directions, an X direction, a Y direction, and a Z direction are defined. The Z direction is a direction parallel to the vertical direction. The X direction is one of the horizontal directions perpendicular to the Z direction. The Y direction is one of the horizontal directions perpendicular to the Z direction and the X direction. The direction indicated by the arrow in the X direction is defined as the right direction of the electroforming apparatus 1A. The direction indicated by the Y-direction arrow is defined as the rear direction of the electroforming apparatus 1A. The direction indicated by the Z-direction arrow is defined as the upward direction of the electroforming apparatus 1A. A white circle with an X indicating the X direction, Y direction, or Z direction indicates that the direction indicated by the arrow in the direction indicated by the white circle is the direction from the front to the back of the page.
図1及び図2を参照し、必要に応じて図3~図5を参照して、実施形態1に係る方法について説明する。実施形態1に係る方法では、まず、脱脂工程S1A~異常部除去工程S8Aを経て、電鋳装置1Aにおいて、電鋳部材300Aが製造されている。次いで、線材除去工程S9A及び電鋳層切断工程S10Aを経て電鋳部材300Aから電鋳管が製造されている。
The method according to the first embodiment will be described with reference to FIGS. 1 and 2 and, if necessary, FIGS. 3 to 5. In the method according to the first embodiment, first, an electroformed member 300A is manufactured in an electroforming apparatus 1A through a degreasing step S1A to an abnormal part removal step S8A. Next, an electroformed pipe is manufactured from the electroformed member 300A through a wire rod removal step S9A and an electroformed layer cutting step S10A.
実施形態1に係る電鋳装置1Aは、制御部5A、送出しリール12A、引張治具14A、搬送ローラ16A、一対の補助ローラ18A、脱脂槽21A、第1洗浄槽22A、電鋳槽23A、第2洗浄槽24A、乾燥槽25A、撮像部30A、膜厚計40A、一対の芯出しローラ42A及びマーカ50Aを備えている。実施形態1に係る電鋳装置1Aは、線材100Aが搬送される経路2Aを備えている。経路2Aは、送出しリール12A及び引張治具14Aの間に位置している。搬送ローラ16A、一対の補助ローラ18A、脱脂槽21A、第1洗浄槽22A、電鋳槽23A、第2洗浄槽24A、乾燥槽25A、撮像部30A、膜厚計40A、一対の芯出しローラ42A及びマーカ50Aは、経路2Aに配置されている。
The electroforming apparatus 1A according to the first embodiment includes a control section 5A, a delivery reel 12A, a tension jig 14A, a conveyance roller 16A, a pair of auxiliary rollers 18A, a degreasing tank 21A, a first cleaning tank 22A, an electroforming tank 23A, It includes a second cleaning tank 24A, a drying tank 25A, an imaging section 30A, a film thickness meter 40A, a pair of centering rollers 42A, and a marker 50A. The electroforming apparatus 1A according to the first embodiment includes a path 2A along which the wire 100A is conveyed. Path 2A is located between delivery reel 12A and tension jig 14A. Conveyance roller 16A, pair of auxiliary rollers 18A, degreasing tank 21A, first cleaning tank 22A, electroforming tank 23A, second cleaning tank 24A, drying tank 25A, imaging section 30A, film thickness gauge 40A, pair of centering rollers 42A And the marker 50A is placed on the route 2A.
制御部5Aは、例えば、パーソナルコンピュータ、マイクロコンピュータ等のコンピュータである。制御部5Aは、電鋳装置1Aの動作を制御している。例えば、図1に示したフローチャートの少なくとも1つの工程の動作を実行するプログラムが不図示の記憶部に記憶されている。制御部5Aがコンピュータとして当該プログラムを実行することで、電鋳装置1Aの動作が制御される。
The control unit 5A is, for example, a computer such as a personal computer or a microcomputer. The control unit 5A controls the operation of the electroforming device 1A. For example, a program that executes the operation of at least one step in the flowchart shown in FIG. 1 is stored in a storage unit (not shown). The operation of the electroforming apparatus 1A is controlled by the control unit 5A executing the program as a computer.
実施形態1に係る方法において、線材100Aは、送出しリール12Aから引張治具14Aに向けて送られている。線材100Aの左端部は、送出しリール12Aに巻回されている。線材100Aの右端部は、引張治具14Aによって引っ張られている。線材100Aは、導電性を有している。線材100Aは、例えば、ステンレス製である。ただし、線材100Aは、ステンレスと異なる材料からなっていてもよい。例えば、線材100Aは、鉄、銅、金、銀、真鍮、ニッケル、アルミニウム、カーボン、プラスチック、樹脂等からなっていてもよい。経路2Aにおいて、線材100Aの軸方向は、X方向に略平行となっている。線材100AのX方向に垂直な断面は、略円形状となっている。線材100AのX方向に垂直な直径は、例えば、10μm以上500μm以下である。X方向から見て、線材100Aの外周面は、金属によって覆われていてもよい。
In the method according to Embodiment 1, the wire 100A is sent from the delivery reel 12A toward the tensioning jig 14A. The left end portion of the wire 100A is wound around a delivery reel 12A. The right end portion of the wire 100A is stretched by a tensioning jig 14A. The wire 100A has conductivity. The wire 100A is made of stainless steel, for example. However, the wire 100A may be made of a material different from stainless steel. For example, the wire 100A may be made of iron, copper, gold, silver, brass, nickel, aluminum, carbon, plastic, resin, or the like. In the route 2A, the axial direction of the wire 100A is substantially parallel to the X direction. The cross section of the wire 100A perpendicular to the X direction has a substantially circular shape. The diameter of the wire 100A perpendicular to the X direction is, for example, 10 μm or more and 500 μm or less. When viewed from the X direction, the outer peripheral surface of the wire 100A may be covered with metal.
実施形態1に係る方法において、まず、脱脂工程S1Aが実施される。脱脂工程S1Aにおいて、線材100Aは、送出しリール12Aから送り出された後、脱脂槽21Aに送られている。脱脂槽21Aには脱脂液21A1が貯められている。線材100Aは、脱脂液21A1に含浸された状態で脱脂槽21Aの内部を通過している。これによって、線材100Aの外周面に存在する油分や汚れ等の付着物を除去することができる。このため、線材100Aの外周面に付着物が存在する状態においては、電鋳槽23Aにおいて、線材100Aの外周面に、図3に示す電鋳層200Aが形成されにくいことがある。このため、当該付着物を線材100Aの外周面から除去することで、線材100Aの外周面に均質な電鋳層200Aを形成することができる。
In the method according to Embodiment 1, first, the degreasing step S1A is performed. In the degreasing step S1A, the wire rod 100A is sent out from the delivery reel 12A and then sent to the degreasing tank 21A. A degreasing liquid 21A1 is stored in the degreasing tank 21A. The wire 100A passes through the inside of the degreasing tank 21A while being impregnated with the degreasing liquid 21A1. Thereby, deposits such as oil and dirt present on the outer peripheral surface of the wire 100A can be removed. Therefore, in a state where deposits are present on the outer peripheral surface of the wire 100A, it may be difficult to form the electroformed layer 200A shown in FIG. 3 on the outer peripheral surface of the wire 100A in the electroforming bath 23A. Therefore, by removing the deposit from the outer peripheral surface of the wire 100A, a homogeneous electroformed layer 200A can be formed on the outer peripheral surface of the wire 100A.
次いで、第1洗浄工程S2Aが実施される。第1洗浄工程S2Aにおいて、線材100Aは、脱脂槽21Aを通過した後、第1洗浄槽22Aに送られている。第1洗浄槽22Aには第1洗浄液22A1が貯められている。線材100Aは、第1洗浄液22A1に含浸された状態で第1洗浄槽22Aの内部を通過している。これによって、線材100Aの外周面が第1洗浄液22A1によって洗浄されている。
Next, a first cleaning step S2A is performed. In the first cleaning step S2A, the wire 100A is sent to the first cleaning tank 22A after passing through the degreasing tank 21A. A first cleaning liquid 22A1 is stored in the first cleaning tank 22A. The wire 100A passes through the first cleaning tank 22A while being impregnated with the first cleaning liquid 22A1. As a result, the outer peripheral surface of the wire 100A is cleaned by the first cleaning liquid 22A1.
次いで、電鋳工程S3Aが実施される。電鋳工程S3Aにおいて、線材100Aは、第1洗浄槽22Aを通過した後、電鋳槽23Aに送られている。電鋳槽23Aには電鋳液23A1が貯められている。線材100Aは、電鋳液23A1に含浸された状態で電鋳槽23Aの内部を通過している。電鋳液23A1には、不図示の陽極が含浸されている。線材100A及び電鋳液23A1は、不図示の電源に電気的に接続されている。これによって、線材100Aは陰極として動作可能になっている。線材100Aが陰極として動作することで、図3に示すように、線材100Aの外周面に電鋳層200Aが形成される。電鋳層200Aは、例えば、ニッケル、金、銅、パラジウム、ロジウム、白金、銀等の金属やこれらの合金からなっている。電鋳層200AのX方向に垂直な厚さは、例えば、5μm以上100μm以下である。電鋳液23A1の種類は、電鋳層200Aの材料等の所定の条件によって決定されている。電鋳液23A1は、例えば、硫酸ニッケル液又はスルファミン酸ニッケル液を含み、光沢剤及びビット防止剤を必要に応じて含んでいる。
Next, electroforming step S3A is performed. In the electroforming step S3A, the wire rod 100A passes through the first cleaning tank 22A, and then is sent to the electroforming tank 23A. An electroforming liquid 23A1 is stored in the electroforming tank 23A. The wire 100A passes through the electroforming tank 23A while being impregnated with the electroforming liquid 23A1. The electroforming liquid 23A1 is impregnated with an anode (not shown). The wire 100A and the electroforming liquid 23A1 are electrically connected to a power source (not shown). This allows the wire 100A to operate as a cathode. By operating the wire 100A as a cathode, as shown in FIG. 3, an electroformed layer 200A is formed on the outer peripheral surface of the wire 100A. The electroformed layer 200A is made of, for example, metals such as nickel, gold, copper, palladium, rhodium, platinum, and silver, or alloys thereof. The thickness of the electroformed layer 200A perpendicular to the X direction is, for example, 5 μm or more and 100 μm or less. The type of electroforming liquid 23A1 is determined by predetermined conditions such as the material of the electroforming layer 200A. The electroforming liquid 23A1 contains, for example, a nickel sulfate solution or a nickel sulfamate solution, and also contains a brightening agent and a bit prevention agent as necessary.
次いで、第2洗浄工程S4Aが実施される。第2洗浄工程S4Aにおいて、線材100Aは、電鋳槽23Aを通過した後、第2洗浄槽24Aに送られている。第2洗浄槽24Aには第2洗浄液24A1が貯められている。線材100Aは、第2洗浄液24A1に含浸された状態で第2洗浄槽24Aの内部を通過している。これによって、線材100Aの外周面に形成された電鋳層200Aが洗浄される。
Next, a second cleaning step S4A is performed. In the second cleaning step S4A, the wire rod 100A is sent to the second cleaning tank 24A after passing through the electroforming tank 23A. A second cleaning liquid 24A1 is stored in the second cleaning tank 24A. The wire 100A passes through the second cleaning tank 24A while being impregnated with the second cleaning liquid 24A1. As a result, the electroformed layer 200A formed on the outer peripheral surface of the wire 100A is cleaned.
実施形態1では、1つの電鋳槽23A及び1つの第2洗浄槽24Aが設けられている。これによって、単一層の電鋳層200Aが形成されている。しかしながら、電鋳層200Aは複数層であってもよい。また、電鋳層200Aに含まれる層数に応じて、電鋳槽23A及び第2洗浄槽24Aの数は変動してもよい。例えば、電鋳層200Aが異なる材料の2層を含む場合、2つの電鋳槽23A及び2つの第2洗浄槽24AがX方向に交互に並んでいてもよい。この例では、複数の電鋳工程S3A及び複数の第2洗浄工程S4Aが交互に実施されている。
In the first embodiment, one electroforming tank 23A and one second cleaning tank 24A are provided. As a result, a single electroformed layer 200A is formed. However, the electroformed layer 200A may have multiple layers. Further, the number of electroforming tanks 23A and second cleaning tanks 24A may vary depending on the number of layers included in the electroforming layer 200A. For example, when the electroformed layer 200A includes two layers of different materials, the two electroforming tanks 23A and the two second cleaning tanks 24A may be arranged alternately in the X direction. In this example, a plurality of electroforming processes S3A and a plurality of second cleaning processes S4A are performed alternately.
線材100Aの外周面と電鋳層200Aの内周面との間には、所定の犠牲層が設けられていてもよい。犠牲層は、電鋳層200Aから線材100Aを除去する前に、例えば、エッチングによって除去される。これによって、線材100Aの外周面と電鋳層200Aの内周面との間に隙間を形成することができる。このため、当該隙間が存在しない場合と比較して、電鋳層200Aから線材100Aを除去しやすくすることができる。
A predetermined sacrificial layer may be provided between the outer peripheral surface of the wire 100A and the inner peripheral surface of the electroformed layer 200A. The sacrificial layer is removed, for example, by etching before removing the wire 100A from the electroformed layer 200A. Thereby, a gap can be formed between the outer peripheral surface of the wire 100A and the inner peripheral surface of the electroformed layer 200A. Therefore, the wire 100A can be more easily removed from the electroformed layer 200A than in the case where the gap does not exist.
次いで、乾燥工程S5Aが実施される。乾燥工程S5Aにおいて、線材100A及び電鋳層200Aは、第2洗浄槽24Aを通過した後、乾燥槽25Aに送られている。線材100A及び電鋳層200Aは、乾燥槽25A内において乾燥される。これによって、線材100A及び電鋳層200Aが第2洗浄槽24Aを通過した際に電鋳層200Aの外周面に付着した第2洗浄液24A1を除去することができる。
Next, a drying step S5A is performed. In the drying step S5A, the wire 100A and the electroformed layer 200A are sent to the drying tank 25A after passing through the second cleaning tank 24A. The wire 100A and the electroformed layer 200A are dried in the drying tank 25A. This makes it possible to remove the second cleaning liquid 24A1 that adheres to the outer peripheral surface of the electroformed layer 200A when the wire 100A and the electroformed layer 200A pass through the second cleaning tank 24A.
次いで、検査工程S6Aが実施される。検査工程S6Aにおいて、線材100Aは、乾燥槽25Aを通過した後、搬送ローラ16A及び一対の補助ローラ18Aを経由して、撮像部30Aの下方を通過している。次いで、線材100Aは、撮像部30Aの下方を通過した後、膜厚計40Aの下方を通過している。膜厚計40AのX方向の両側には一対の芯出しローラ42Aが配置されている。
Next, an inspection step S6A is performed. In the inspection step S6A, the wire 100A passes through the drying tank 25A, and then passes below the imaging section 30A via a conveyance roller 16A and a pair of auxiliary rollers 18A. Next, the wire 100A passes below the imaging section 30A, and then passes below the film thickness gauge 40A. A pair of centering rollers 42A are arranged on both sides of the film thickness meter 40A in the X direction.
撮像部30Aは、例えば、CCD(電荷結合素子)イメージセンサ、CMOS(相補型金属酸化膜半導体)イメージセンサ等のイメージセンサを含んでいる。撮像部30Aは、線材100Aの撮像部30Aの下方を通過する部分を撮像している。制御部5Aは、撮像部30Aによって撮像された画像から線材100Aの位置を物体認識によって認識している。これによって、制御部5Aは、線材100Aの位置の認識結果に基づいて、芯出しローラ42Aを用いて、線材100Aを膜厚計40Aに対して位置合わせしている。
The imaging unit 30A includes an image sensor such as a CCD (charge coupled device) image sensor or a CMOS (complementary metal oxide semiconductor) image sensor. The imaging unit 30A images a portion of the wire 100A passing below the imaging unit 30A. The control unit 5A recognizes the position of the wire 100A from the image captured by the imaging unit 30A through object recognition. Thereby, the control unit 5A uses the centering roller 42A to align the wire 100A with the film thickness meter 40A based on the recognition result of the position of the wire 100A.
膜厚計40Aは、X線蛍光(XRF)分析によって、電鋳層200Aの厚さを検査している。実施形態1におけるXRF分析では、X方向から見て電鋳層200Aの線材100Aの上方に位置する部分にX線が照射されている。したがって、膜厚計40Aは、X方向から見て電鋳層200Aの線材100Aの上方に位置する部分のZ方向の厚さを測定することができる。XRF分析が用いられる場合、電鋳層200Aの厚さを非破壊検査によって検査することができる。この場合、電鋳層200Aの厚さが検査された部分であっても、電鋳管として利用可能である。したがって、電鋳部材300A及び電鋳管の生産性を向上させることができる。なお、電鋳層200Aの厚さを検査するための方法は、XRF分析に限定されない。例えば、電鋳層200Aの厚さは、XRF分析以外の非破壊検査によって検査されてもよい。
The film thickness meter 40A inspects the thickness of the electroformed layer 200A by X-ray fluorescence (XRF) analysis. In the XRF analysis in the first embodiment, the portion of the electroformed layer 200A located above the wire 100A when viewed from the X direction is irradiated with X-rays. Therefore, the film thickness meter 40A can measure the thickness in the Z direction of the portion of the electroformed layer 200A located above the wire 100A when viewed from the X direction. If XRF analysis is used, the thickness of electroformed layer 200A can be inspected by non-destructive testing. In this case, even the portion where the thickness of the electroformed layer 200A has been tested can be used as an electroformed pipe. Therefore, productivity of the electroformed member 300A and the electroformed pipe can be improved. Note that the method for inspecting the thickness of the electroformed layer 200A is not limited to XRF analysis. For example, the thickness of the electroformed layer 200A may be inspected by non-destructive testing other than XRF analysis.
膜厚計40Aが配置される位置は、図2に示す例に限定されない。膜厚計40Aが配置される位置は、電鋳層200Aの厚さが検査される部分に応じて、異ならせることができる。例えば、膜厚計40Aは、線材100Aの下方に配置されていてもよい。この場合、膜厚計40Aは、X方向から見て電鋳層200Aの線材100Aの下方に位置する部分のZ方向の厚さを検査することができる。
The position where the film thickness meter 40A is placed is not limited to the example shown in FIG. 2. The position where the film thickness meter 40A is arranged can be changed depending on the part where the thickness of the electroformed layer 200A is inspected. For example, the film thickness gauge 40A may be placed below the wire 100A. In this case, the film thickness meter 40A can inspect the thickness in the Z direction of the portion of the electroformed layer 200A located below the wire 100A when viewed from the X direction.
制御部5Aは、膜厚計40Aの検査結果に応じて、電鋳槽23Aにおいて電鋳層200Aを形成するための条件を変化させている。具体的には、制御部5Aは、膜厚計40Aの検査結果の参照によって、X方向から見て電鋳層200Aの線材100Aの上方に位置する部分のZ方向の厚さが所定の基準値からずれているか否かを判断している。制御部5Aは、電鋳層200Aの当該厚さが当該所定の基準値からずれている部分を、電鋳層200Aの異常部と判断することができる。すなわち、制御部5A及び膜厚計40Aは、電鋳層200Aの異常部を検出可能になっている。制御部5Aは、電鋳層200Aの異常部が存在する場合、電鋳槽23Aにおいて電鋳層200Aを形成するための条件を変更することができる。このため、制御部5Aのフィードバック制御によって、電鋳層200Aの当該厚さをX方向に亘って略均一にすることができる。例えば、制御部5Aは、膜厚計40Aの検査結果に応じて、電鋳槽23Aにおける線材100Aの移動速度を変化させてもよい。ただし、制御部5Aのフィードバック制御によって変更される条件は、電鋳槽23Aにおける線材100Aの移動速度に限定されない。
The control unit 5A changes the conditions for forming the electroformed layer 200A in the electroforming tank 23A according to the test results of the film thickness meter 40A. Specifically, the control unit 5A determines that the thickness in the Z direction of the portion of the electroformed layer 200A located above the wire 100A when viewed from the X direction is a predetermined reference value by referring to the test results of the film thickness meter 40A. It is determined whether or not there is a deviation from the actual value. The control unit 5A can determine a portion where the thickness of the electroformed layer 200A deviates from the predetermined reference value as an abnormal portion of the electroformed layer 200A. That is, the control unit 5A and the film thickness meter 40A are capable of detecting an abnormal portion of the electroformed layer 200A. The control unit 5A can change the conditions for forming the electroformed layer 200A in the electroforming tank 23A when an abnormal part exists in the electroformed layer 200A. Therefore, the thickness of the electroformed layer 200A can be made substantially uniform in the X direction by feedback control of the control unit 5A. For example, the control unit 5A may change the moving speed of the wire 100A in the electroforming tank 23A depending on the test result of the film thickness meter 40A. However, the conditions changed by the feedback control of the control unit 5A are not limited to the moving speed of the wire 100A in the electroforming tank 23A.
膜厚計40Aは、X方向に略平行に移動可能になっている。このため、制御部5Aは、線材100Aの右方への移動速度と略同一の移動速度で膜厚計40Aを右方に向けて移動させてもよい。膜厚計40Aを用いたXRF分析では、十分なX線強度を得るために線材100Aの同一部分にX線を、一定時間以上、照射する必要がある。したがって、膜厚計40Aを線材100Aに略同期させて移動させることで、膜厚計40Aを用いたXRF分析において十分なX線強度を得ることができる。制御部5Aは、膜厚計40Aを右方に向けて移動させて線材100Aの一部分の電鋳層200Aの厚さを検査した後、膜厚計40Aを左方に向けて戻すことができる。これによって、膜厚計40Aは、線材100Aの他の部分の電鋳層200Aの厚さを引き続き検査することができる。膜厚計40Aを用いたXRF分析と異なる検査においても、制御部5Aは、膜厚計40Aを線材100Aに略同期させて移動させてもよい。この場合においても、膜厚計40Aが移動せずに固定されている場合と比較して、電鋳層200Aの厚さを正確に検査することができる。ただし、制御部5Aは、膜厚計40Aを移動させずに固定させてもよい。
The film thickness gauge 40A is movable substantially parallel to the X direction. For this reason, the control unit 5A may move the film thickness meter 40A to the right at substantially the same moving speed as the rightward moving speed of the wire 100A. In the XRF analysis using the film thickness meter 40A, it is necessary to irradiate the same portion of the wire 100A with X-rays for a certain period of time or more in order to obtain sufficient X-ray intensity. Therefore, by moving the film thickness meter 40A in approximately synchronization with the wire 100A, sufficient X-ray intensity can be obtained in the XRF analysis using the film thickness meter 40A. The control unit 5A can move the film thickness meter 40A toward the right to inspect the thickness of the electroformed layer 200A of a portion of the wire 100A, and then return the thickness meter 40A toward the left. Thereby, the film thickness meter 40A can continue to inspect the thickness of the electroformed layer 200A on other parts of the wire 100A. Even in an inspection different from the XRF analysis using the film thickness meter 40A, the control unit 5A may move the film thickness meter 40A approximately in synchronization with the wire 100A. Also in this case, the thickness of the electroformed layer 200A can be tested more accurately than when the film thickness meter 40A is fixed without moving. However, the control unit 5A may fix the film thickness meter 40A without moving it.
実施形態1に係る方法では、電鋳層200Aの厚さの状態を検査する場合に、線材100Aの一部分を切り出す必要がない。このため、電鋳層200Aの厚さの状態を検査する場合に、電鋳槽23Aにおける電鋳層200Aの形成を中断する必要がない。具体的には、膜厚計40Aによって電鋳層200Aの厚さを検査しながら、電鋳槽23Aにおいて電鋳層200Aを形成することができる。これによって、制御部5Aのフィードバック制御を行いながら、電鋳層200Aを時間的に連続的に形成することができる。このため、実施形態1に係る方法では、電鋳部材300A及び電鋳管の生産性を向上させることができる。
In the method according to the first embodiment, when inspecting the thickness state of the electroformed layer 200A, there is no need to cut out a portion of the wire 100A. Therefore, when inspecting the state of the thickness of the electroformed layer 200A, there is no need to interrupt the formation of the electroformed layer 200A in the electroforming tank 23A. Specifically, the electroformed layer 200A can be formed in the electroforming tank 23A while inspecting the thickness of the electroformed layer 200A using the film thickness gauge 40A. Thereby, the electroformed layer 200A can be formed continuously over time while performing feedback control of the control section 5A. Therefore, in the method according to the first embodiment, productivity of the electroformed member 300A and the electroformed pipe can be improved.
次いで、識別子付与工程S7Aが実施される。識別子付与工程S7Aにおいて、線材100Aは、膜厚計40Aの下方を通過した後、マーカ50Aの下方を通過している。マーカ50Aは、制御部5Aによる電鋳層200Aの異常部の判定結果を参照して、電鋳層200Aの異常部に識別子を付与している。したがって、電鋳装置1Aの使用者は、電鋳層200Aに付与された識別子から、電鋳層200Aの異常部の有無、位置、大きさ、範囲等の、電鋳層200Aの異常部に関する情報を得ることができる。このため、電鋳部材300A及び電鋳管の品質を向上させることができる。また、電鋳部材300A及び電鋳管の生産性を向上させることができる。識別子の付与方法としては、例えば、レーザ照射や塗料塗布等が例示される。この例において、識別子は、例えば、電鋳層200Aのレーザが照射された部分又は塗料が塗布された部分である。
Next, an identifier assigning step S7A is performed. In the identifier provision step S7A, the wire 100A passes below the film thickness meter 40A and then passes below the marker 50A. The marker 50A gives an identifier to the abnormal part of the electroformed layer 200A by referring to the determination result of the abnormal part of the electroformed layer 200A by the control unit 5A. Therefore, the user of the electroforming apparatus 1A obtains information about the abnormal part of the electroformed layer 200A, such as the presence or absence, position, size, and range of the abnormal part of the electroformed layer 200A, from the identifier given to the electroformed layer 200A. can be obtained. Therefore, the quality of the electroformed member 300A and the electroformed pipe can be improved. Moreover, the productivity of the electroformed member 300A and the electroformed pipe can be improved. Examples of methods for providing the identifier include laser irradiation, paint application, and the like. In this example, the identifier is, for example, a portion of the electroformed layer 200A that is irradiated with a laser or a portion that is coated with paint.
次いで、異常部除去工程S8Aが実施される。異常部除去工程S8Aにおいて、線材100A及び電鋳層200Aを備える電鋳部材300Aの識別子が付与された部分が除去されている。具体的には、電鋳部材300Aのマーカ50Aの下方を通過した部分が引張治具14Aによって引っ張られた状態で電鋳部材300Aの当該部分が除去されている。これによって、電鋳層200Aの異常部が除去される。このため、電鋳部材300A及び電鋳管の品質を向上させることができる。また、電鋳部材300A及び電鋳管の生産性を向上させることができる。電鋳層200Aの異常部の除去方法は、特に限定されない。例えば、電鋳層200Aの異常部が電鋳層200Aの異常部の周辺から分離されるように、線材100A及び電鋳層200Aを切断してもよい。
Next, an abnormal part removal step S8A is performed. In the abnormal part removal step S8A, the portion of the electroformed member 300A including the wire 100A and the electroformed layer 200A to which the identifier is attached is removed. Specifically, the portion of the electroformed member 300A that has passed below the marker 50A is pulled by the tension jig 14A, and the portion of the electroformed member 300A is removed. As a result, abnormal portions of the electroformed layer 200A are removed. Therefore, the quality of the electroformed member 300A and the electroformed pipe can be improved. Moreover, the productivity of the electroformed member 300A and the electroformed pipe can be improved. The method for removing the abnormal portion of the electroformed layer 200A is not particularly limited. For example, the wire 100A and the electroformed layer 200A may be cut so that the abnormal part of the electroformed layer 200A is separated from the periphery of the abnormal part of the electroformed layer 200A.
なお、異常部除去工程S8Aは、電鋳装置1Aと異なる場所において行われてもよい。この場合、例えば、電鋳装置1Aでは、電鋳部材300Aの右端部が引張治具14Aによって引っ張られた状態で電鋳部材300Aの右端部の所定の長さが切り出される。次いで、電鋳装置1Aと異なる場所において、電鋳部材300Aの切り出された部分の識別子が付与された部分が除去される。
Note that the abnormal part removal step S8A may be performed at a location different from the electroforming apparatus 1A. In this case, for example, in the electroforming apparatus 1A, a predetermined length of the right end of the electroformed member 300A is cut out while the right end of the electroformed member 300A is pulled by the tension jig 14A. Next, at a location different from the electroforming device 1A, the portion to which the identifier of the cut-out portion of the electroforming member 300A is attached is removed.
次いで、線材除去工程S9Aが実施される。線材除去工程S9Aでは、図4に示すように、電鋳部材300Aから線材100Aを除去する。例えば、線材100Aの両端の少なくとも一方を引っ張ることで、電鋳層200Aから線材100Aを引き抜いてもよい。ただし、線材100Aの除去方法は、この例に限定されない。
Next, a wire removal step S9A is performed. In the wire rod removal step S9A, as shown in FIG. 4, the wire rod 100A is removed from the electroformed member 300A. For example, the wire 100A may be pulled out from the electroformed layer 200A by pulling at least one of both ends of the wire 100A. However, the method for removing the wire 100A is not limited to this example.
次いで、電鋳層切断工程S10Aが実施される。電鋳層切断工程S10Aでは、図5に示すように、電鋳層200Aを複数の片Pに切断する。切り出された各P片は電鋳管となる。これによって、実施形態に係る電鋳管が製造される。
Next, an electroformed layer cutting step S10A is performed. In the electroformed layer cutting step S10A, as shown in FIG. 5, the electroformed layer 200A is cut into a plurality of pieces P. Each cut out P piece becomes an electroformed pipe. In this way, the electroformed tube according to the embodiment is manufactured.
電鋳管の製造方法は、実施形態1に係る方法に限定されない。
The method for manufacturing an electroformed pipe is not limited to the method according to Embodiment 1.
実施形態1に係る方法において、制御部5Aは、電鋳層200Aの厚さの状態に応じて、電鋳槽23Aにおいて電鋳層200Aを形成するための条件を変化させている。しかしながら、制御部5Aは、電鋳層200Aの厚さと異なる特性の状態に応じて、電鋳層200Aを形成するための条件を変化させてもよい。例えば、制御部5Aは、電鋳層200Aに含まれる材料の組成の状態を参照してもよい。電鋳層200Aに含まれる材料の組成は、例えば、XRF分析等の非破壊検査によって検査される。この例においても、電鋳層200Aの状態を検査する場合に、電鋳層200Aの形成を中断する必要がない。このため、電鋳部材300A及び電鋳管の生産性を向上させることができる。
In the method according to the first embodiment, the control unit 5A changes the conditions for forming the electroformed layer 200A in the electroforming tank 23A, depending on the state of the thickness of the electroformed layer 200A. However, the control unit 5A may change the conditions for forming the electroformed layer 200A depending on the thickness of the electroformed layer 200A and the state of different characteristics. For example, the control unit 5A may refer to the composition state of the material included in the electroformed layer 200A. The composition of the material included in the electroformed layer 200A is inspected, for example, by non-destructive testing such as XRF analysis. Also in this example, when inspecting the state of the electroformed layer 200A, there is no need to interrupt the formation of the electroformed layer 200A. Therefore, productivity of the electroformed member 300A and the electroformed pipe can be improved.
実施形態1に係る方法では、電鋳層200Aの異常部への識別子の付与と、電鋳層200Aの異常部の除去と、が電鋳層200Aの異常部への処理として行われている。しかしながら、電鋳層200Aの異常部に施される処理は、これらに限定されない。また、電鋳層200Aの異常部に施される処理は、電鋳層200Aの異常部への識別子の付与と、電鋳層200Aの異常部の除去と、の一方のみであってもよい。
In the method according to the first embodiment, adding an identifier to the abnormal portion of the electroformed layer 200A and removing the abnormal portion of the electroformed layer 200A are performed as treatments for the abnormal portion of the electroformed layer 200A. However, the treatment applied to the abnormal portion of the electroformed layer 200A is not limited to these. Moreover, the process performed on the abnormal part of the electroformed layer 200A may be only one of adding an identifier to the abnormal part of the electroformed layer 200A and removing the abnormal part of the electroformed layer 200A.
図6及び図7は、変形例に係る4つの膜厚計40A1の配置を説明するための図である。以下、変形例に係る電鋳管の製造方法を、単に、変形例に係る方法という。変形例に係る方法は、以下の点を除いて、実施形態1に係る方法と同様である。
FIGS. 6 and 7 are diagrams for explaining the arrangement of four film thickness gauges 40A1 according to a modification. Hereinafter, the method for manufacturing an electroformed pipe according to the modification will be simply referred to as the method according to the modification. The method according to the modification is the same as the method according to the first embodiment except for the following points.
変形例に係る方法では、実施形態1に係る方法と同様にして、電鋳槽23Aにおいて線材100A1の周囲に電鋳層200A1が形成されている。線材100A1は、電鋳槽23Aを通過した後、4つの膜厚計40A1が配置された位置に送られている。
In the method according to the modification, an electroformed layer 200A1 is formed around the wire 100A1 in the electroforming tank 23A in the same manner as the method according to the first embodiment. After passing through the electroforming tank 23A, the wire rod 100A1 is sent to a position where four film thickness gauges 40A1 are arranged.
図7に示すように、X方向から見て、4つの膜厚計40A1は、線材100A1の周囲に略等間隔に配置されている。具体的には、X方向から見て、4つの膜厚計40A1は、線材100A1の上方、下方、前方及び後方に配置されている。各膜厚計40A1は、XRF分析によって、電鋳層200A1の厚さを検査している。したがって、線材100A1の上方に配置された膜厚計40A1は、X方向から見て電鋳層200A1の線材100A1の上方に位置する部分のZ方向の厚さを検査することができる。線材100A1の下方に配置された膜厚計40A1は、X方向から見て電鋳層200A1の線材100A1の下方に位置する部分のZ方向の厚さを検査することができる。線材100A1の前方に配置された膜厚計40A1は、X方向から見て電鋳層200A1の線材100A1の前方に位置する部分のY方向の厚さを検査することができる。線材100A1の後方に配置された膜厚計40A1は、X方向から見て電鋳層200A1の線材100A1の後方に位置する部分のY方向の厚さを検査することができる。
As shown in FIG. 7, the four film thickness gauges 40A1 are arranged at approximately equal intervals around the wire 100A1 when viewed from the X direction. Specifically, when viewed from the X direction, the four film thickness gauges 40A1 are arranged above, below, in front of, and behind the wire 100A1. Each film thickness meter 40A1 inspects the thickness of the electroformed layer 200A1 by XRF analysis. Therefore, the film thickness meter 40A1 disposed above the wire 100A1 can inspect the thickness in the Z direction of the portion of the electroformed layer 200A1 located above the wire 100A1 when viewed from the X direction. The film thickness meter 40A1 disposed below the wire 100A1 can inspect the thickness in the Z direction of the portion of the electroformed layer 200A1 located below the wire 100A1 when viewed from the X direction. The film thickness meter 40A1 disposed in front of the wire 100A1 can inspect the thickness in the Y direction of the portion of the electroformed layer 200A1 located in front of the wire 100A1 when viewed from the X direction. The film thickness gauge 40A1 placed behind the wire 100A1 can inspect the thickness in the Y direction of the portion of the electroformed layer 200A1 located behind the wire 100A1 when viewed from the X direction.
変形例に係る方法では、実施形態1に係る方法と同様にして、制御部5Aが4つの膜厚計40A1の動作を制御している。制御部5Aは、4つの膜厚計40A1の検査結果に応じて、電鋳槽23Aにおいて電鋳層200A1を形成するための条件を変化させている。具体的には、4つの膜厚計40A1の検査結果の参照によって、X方向から見たときの電鋳層200A1の厚さの線材100A1の周方向における均一性を検査することができる。制御部5Aは、電鋳層200A1の当該厚さの当該均一性が所定の基準からずれている部分を、電鋳層200A1の異常部と判断することができる。制御部5Aは、電鋳層200A1の異常部が存在する場合、電鋳槽23Aにおいて電鋳層200A1を形成するための条件を変更することができる。このため、制御部5Aのフィードバック制御によって、電鋳層200A1の当該厚さの当該均一性をX方向に亘って維持することができる。例えば、制御部5Aは、4つの膜厚計40A1の検査結果に応じて、電鋳槽23Aにおける線材100A1の移動速度を変化させてもよい。ただし、制御部5Aのフィードバック制御によって変更される条件は、電鋳槽23Aにおける線材100A1の移動速度に限定されない。
In the method according to the modified example, the control unit 5A controls the operation of the four film thickness gauges 40A1 in the same manner as the method according to the first embodiment. The control unit 5A changes the conditions for forming the electroformed layer 200A1 in the electroforming tank 23A according to the test results of the four film thickness gauges 40A1. Specifically, by referring to the test results of the four film thickness gauges 40A1, it is possible to test the uniformity of the thickness of the electroformed layer 200A1 in the circumferential direction of the wire rod 100A1 when viewed from the X direction. The control unit 5A can determine a portion where the uniformity of the thickness of the electroformed layer 200A1 deviates from a predetermined standard as an abnormal portion of the electroformed layer 200A1. The control unit 5A can change the conditions for forming the electroformed layer 200A1 in the electroforming tank 23A when an abnormal portion of the electroformed layer 200A1 exists. Therefore, the uniformity of the thickness of the electroformed layer 200A1 can be maintained in the X direction by feedback control of the control unit 5A. For example, the control unit 5A may change the moving speed of the wire rod 100A1 in the electroforming tank 23A according to the inspection results of the four film thickness gauges 40A1. However, the conditions changed by the feedback control of the control unit 5A are not limited to the moving speed of the wire rod 100A1 in the electroforming tank 23A.
図6に示すように、4つの膜厚計40A1は、X方向に互いにずれて配置されている。このため、4つの膜厚計40A1がX方向に互いに揃っている場合と比較して、各膜厚計40A1のXRF分析において照射されるX線の相互干渉を抑制することができる。各膜厚計40A1を用いたXRF分析と異なる検査においても、4つの膜厚計40A1は、X方向に互いにずれて配置されていてもよい。この場合においても、4つの膜厚計40A1がX方向に互いに揃っている場合と比較して、各膜厚計40A1の検査の相互干渉を抑制することができる。また、4つの膜厚計40A1のうちの一部の膜厚計40A1は、X方向に互いに揃えっていてもよい。
As shown in FIG. 6, the four film thickness gauges 40A1 are arranged offset from each other in the X direction. Therefore, compared to the case where the four film thickness gauges 40A1 are aligned with each other in the X direction, mutual interference of X-rays irradiated in the XRF analysis of each film thickness gauge 40A1 can be suppressed. Even in an inspection different from the XRF analysis using each film thickness gauge 40A1, the four film thickness gauges 40A1 may be arranged offset from each other in the X direction. Also in this case, mutual interference between inspections of the film thickness gauges 40A1 can be suppressed compared to the case where the four film thickness gauges 40A1 are aligned with each other in the X direction. Further, some of the four film thickness gauges 40A1 may be aligned with each other in the X direction.
実施形態1に係る膜厚計40Aと同様にして、変形例に係る4つの膜厚計40A1は、X方向に略平行に移動可能になっている。したがって、実施形態1に係る方法と同様にして、4つの膜厚計40A1を線材100A1に略同期させて移動させることで、4つの膜厚計40A1を用いたXRF分析において十分なX線強度を得ることができる。
Similarly to the film thickness gauge 40A according to the first embodiment, the four film thickness gauges 40A1 according to the modification are movable substantially parallel to the X direction. Therefore, by moving the four film thickness gauges 40A1 approximately in synchronization with the wire rod 100A1 in the same manner as the method according to the first embodiment, sufficient X-ray intensity can be obtained in the XRF analysis using the four film thickness gauges 40A1. Obtainable.
なお、線材100A1の周囲に配置される膜厚計40A1の数は、図6及び図7に示す例に限定されない。例えば、2つのみ、3つのみ、又は5つ以上の膜厚計40A1が線材100A1の周囲に配置されていてもよい。
Note that the number of film thickness gauges 40A1 arranged around the wire 100A1 is not limited to the examples shown in FIGS. 6 and 7. For example, only two, only three, or five or more film thickness gauges 40A1 may be arranged around the wire 100A1.
変形例に係る方法においても、実施形態1に係る方法と同様にして、電鋳層200A1の異常部に所定の処理を施してもよい。この場合、実施形態1に係る方法と同様にして、電鋳部材及び電鋳管の品質を向上させることができる。また、電鋳部材及び電鋳管の生産性を向上させることができる。
In the method according to the modified example as well, the abnormal portion of the electroformed layer 200A1 may be subjected to a predetermined treatment in the same manner as the method according to the first embodiment. In this case, the quality of the electroformed member and the electroformed pipe can be improved in the same manner as the method according to the first embodiment. Moreover, productivity of electroformed members and electroformed pipes can be improved.
図8は、実施形態2に係る電鋳管の製造方法を示すフローチャートである。図9は、実施形態2に係る電鋳装置1Bの前面図である。実施形態2に係る電鋳装置1Bは、以下の点を除いて、実施形態1に係る電鋳装置1Aと同様である。以下、実施形態2に係る電鋳管の製造方法を、単に、実施形態2に係る方法という。
FIG. 8 is a flowchart showing a method for manufacturing an electroformed pipe according to the second embodiment. FIG. 9 is a front view of an electroforming apparatus 1B according to the second embodiment. The electroforming apparatus 1B according to the second embodiment is the same as the electroforming apparatus 1A according to the first embodiment except for the following points. Hereinafter, the method for manufacturing an electroformed tube according to the second embodiment will be simply referred to as the method according to the second embodiment.
実施形態2に係る電鋳装置1Bは、制御部5B、送出しリール12B、引張治具14B、搬送ローラ16B、脱脂槽21B、第1洗浄槽22B、電鋳槽23B、第2洗浄槽24B、乾燥槽25B、第1変位計42B、第2変位計44B及びマーカ50Bを備えている。脱脂槽21Bには脱脂液21B1が貯められている。第1洗浄槽22Bには第1洗浄液22B1が貯められている。電鋳槽23Bには電鋳液23B1が貯められている。第2洗浄槽24Bには第2洗浄液24B1が貯められている。実施形態2に係る電鋳装置1Bは、線材100Bが搬送される経路2Bを備えている。経路2Bは、送出しリール12B及び引張治具14Bの間に位置している。脱脂槽21B、第1洗浄槽22B、電鋳槽23B、第2洗浄槽24B、乾燥槽25B、第1変位計42B、第2変位計44B及びマーカ50Bは、経路2Bに配置されている。
The electroforming apparatus 1B according to the second embodiment includes a control section 5B, a delivery reel 12B, a tension jig 14B, a conveyance roller 16B, a degreasing tank 21B, a first cleaning tank 22B, an electroforming tank 23B, a second cleaning tank 24B, It includes a drying tank 25B, a first displacement gauge 42B, a second displacement gauge 44B, and a marker 50B. A degreasing liquid 21B1 is stored in the degreasing tank 21B. A first cleaning liquid 22B1 is stored in the first cleaning tank 22B. An electroforming liquid 23B1 is stored in the electroforming tank 23B. A second cleaning liquid 24B1 is stored in the second cleaning tank 24B. The electroforming apparatus 1B according to the second embodiment includes a path 2B along which the wire rod 100B is conveyed. Path 2B is located between delivery reel 12B and tension jig 14B. The degreasing tank 21B, the first cleaning tank 22B, the electroforming tank 23B, the second cleaning tank 24B, the drying tank 25B, the first displacement meter 42B, the second displacement meter 44B, and the marker 50B are arranged on the path 2B.
実施形態2に係る方法において、まず、第1検査工程S6B1が実施される。第1検査工程S6B1において、線材100Bは、送出しリール12Bから送り出された後、第1変位計42Bの下方を通過している。第1検査工程S6B1の詳細は後述する。
In the method according to the second embodiment, first, the first inspection step S6B1 is performed. In the first inspection step S6B1, the wire rod 100B is sent out from the delivery reel 12B and then passes below the first displacement meter 42B. Details of the first inspection step S6B1 will be described later.
次いで、線材100Bは、脱脂槽21B、第1洗浄槽22B、電鋳槽23B、第2洗浄槽24B及び乾燥槽25Bを通過している。実施形態2に係る方法では、実施形態1に係る方法と同様にして、脱脂槽21B、第1洗浄槽22B、電鋳槽23B、第2洗浄槽24B及び乾燥槽25Bにおいて、それぞれ、脱脂工程S1B、第1洗浄工程S2B、電鋳工程S3B、第2洗浄工程S4B及び乾燥工程S5Bが実施されている。また、実施形態2に係る電鋳槽23Bでは、実施形態1に係る電鋳槽23Aと同様にして、線材100Bの外周面に電鋳層200Bが形成されている。
Next, the wire 100B passes through a degreasing tank 21B, a first cleaning tank 22B, an electroforming tank 23B, a second cleaning tank 24B, and a drying tank 25B. In the method according to the second embodiment, in the same manner as the method according to the first embodiment, the degreasing step S1B is performed in the degreasing tank 21B, first cleaning tank 22B, electroforming tank 23B, second cleaning tank 24B, and drying tank 25B, respectively. , a first cleaning process S2B, an electroforming process S3B, a second cleaning process S4B, and a drying process S5B. Further, in the electroforming tank 23B according to the second embodiment, an electroforming layer 200B is formed on the outer circumferential surface of the wire 100B in the same manner as the electroforming tank 23A according to the first embodiment.
次いで、第2検査工程S6B2が実施される。第2検査工程S6B2において、線材100Bは、搬送ローラ16Bを経由して、第2変位計44Bの下方を通過している。第2検査工程S6B2の詳細は後述する。
Next, a second inspection step S6B2 is performed. In the second inspection step S6B2, the wire rod 100B passes below the second displacement meter 44B via the conveyance roller 16B. Details of the second inspection step S6B2 will be described later.
次いで、線材100Bは、マーカ50Bの下方を通過している。これによって、実施形態2に係る方法では、実施形態1に係る方法と同様にして、識別子付与工程S7Bが実施されている。次いで、実施形態2に係る方法では、実施形態1に係る方法と同様にして、異常部除去工程S8Bが実施されている。これによって、電鋳部材300Bの異常部が除去されている。次いで、実施形態2に係る方法では、実施形態1に係る方法と同様にして、線材除去工程S9B及び電鋳層切断工程S10Bが実施されている。これによって、電鋳部材300Bから電鋳管が製造されている。
Next, the wire rod 100B passes below the marker 50B. As a result, in the method according to the second embodiment, the identifier assigning step S7B is performed in the same manner as the method according to the first embodiment. Next, in the method according to the second embodiment, an abnormal part removing step S8B is performed in the same manner as the method according to the first embodiment. As a result, the abnormal portion of the electroformed member 300B is removed. Next, in the method according to the second embodiment, a wire rod removal step S9B and an electroformed layer cutting step S10B are performed in the same manner as the method according to the first embodiment. In this way, an electroformed tube is manufactured from the electroformed member 300B.
第1検査工程S6B1及び第2検査工程S6B2の詳細について説明する。
The details of the first inspection step S6B1 and the second inspection step S6B2 will be explained.
第1変位計42B及び第2変位計44Bは、レーザ変位計である。第1変位計42Bは、電鋳層200Bが形成される前の線材100Bの状態を検査している。具体的には、第1変位計42Bは、第1変位計42Bから、電鋳層200Bが形成される前の線材100Bの上面までのZ方向の距離を測定している。第2変位計44Bは、電鋳層200Bが形成された後の電鋳層200Bの状態を検査している。具体的には、第2変位計44Bは、第2変位計44Bから、電鋳層200Bが形成された後の線材100Bの周囲の電鋳層200Bの上面までのZ方向の距離を測定している。このため、第1変位計42Bの検査結果と第2変位計44Bの検査結果との参照より、X方向から見て電鋳層200Bの線材100Bの上方に位置する部分のZ方向の厚さを検査することができる。このため、制御部5Bは、第1変位計42B及び第2変位計44Bの検査結果に応じて、実施形態1に係る方法と同様にして、電鋳槽23Bにおいて電鋳層200Bを形成するための条件を変更することができる。したがって、実施形態1に係る方法と同様にして、電鋳部材300B及び電鋳管の生産性を向上させることができる。
The first displacement meter 42B and the second displacement meter 44B are laser displacement meters. The first displacement meter 42B inspects the state of the wire 100B before the electroformed layer 200B is formed. Specifically, the first displacement meter 42B measures the distance in the Z direction from the first displacement meter 42B to the upper surface of the wire 100B before the electroformed layer 200B is formed. The second displacement meter 44B inspects the state of the electroformed layer 200B after the electroformed layer 200B is formed. Specifically, the second displacement meter 44B measures the distance in the Z direction from the second displacement meter 44B to the top surface of the electroformed layer 200B around the wire 100B after the electroformed layer 200B is formed. There is. Therefore, by referring to the test results of the first displacement meter 42B and the second displacement meter 44B, the thickness in the Z direction of the portion of the electroformed layer 200B located above the wire rod 100B when viewed from the X direction can be determined. Can be inspected. Therefore, the control unit 5B forms the electroformed layer 200B in the electroforming tank 23B in the same manner as the method according to the first embodiment, according to the inspection results of the first displacement meter 42B and the second displacement meter 44B. conditions can be changed. Therefore, in the same manner as the method according to the first embodiment, productivity of the electroformed member 300B and the electroformed pipe can be improved.
実施形態2に係る方法においては、実施形態1に係る方法と比較して、電鋳層200Bの厚さの状態を検査する場合に、X線等の放射線を用いる必要がない。このため、実施形態2に係る方法においては、実施形態1に係る方法と比較して、電鋳層200Bの厚さの状態を安価に検査することができる。
In the method according to the second embodiment, compared to the method according to the first embodiment, there is no need to use radiation such as X-rays when inspecting the state of the thickness of the electroformed layer 200B. Therefore, in the method according to the second embodiment, the state of the thickness of the electroformed layer 200B can be inspected at a lower cost than the method according to the first embodiment.
第1変位計42B及び第2変位計44Bが配置される位置は、図9に示す例に限定されない。例えば、第1変位計42B及び第2変位計44Bは、線材100Bの下方に配置されていてもよい。この場合、第1変位計42B及び第2変位計44Bは、X方向から見て電鋳層200Bの線材100Bの下方に位置する部分のZ方向の厚さを検査することができる。
The positions where the first displacement gauge 42B and the second displacement gauge 44B are arranged are not limited to the example shown in FIG. 9. For example, the first displacement meter 42B and the second displacement meter 44B may be arranged below the wire rod 100B. In this case, the first displacement meter 42B and the second displacement meter 44B can inspect the thickness in the Z direction of the portion of the electroformed layer 200B located below the wire rod 100B when viewed from the X direction.
変形例に係る方法と同様にして、X方向から見て、線材100Bの周囲に、第1変位計42B及び第2変位計44Bの一対の変位計を複数、配置してもよい。この場合、変形例に係る方法と同様にして、X方向から見たときの電鋳層200Bの厚さの線材100Bの周方向における均一性を検査することができる。
Similarly to the method according to the modification, a plurality of pairs of displacement meters, the first displacement meter 42B and the second displacement meter 44B, may be arranged around the wire 100B when viewed from the X direction. In this case, the uniformity of the thickness of the electroformed layer 200B in the circumferential direction of the wire rod 100B when viewed from the X direction can be inspected in the same manner as the method according to the modification.
以上、図面を参照して本発明の実施形態及び変形例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
Although the embodiments and modifications of the present invention have been described above with reference to the drawings, these are merely illustrative of the present invention, and various configurations other than those described above may also be adopted.
例えば、各実施形態に係る電鋳装置は、マーカを備えている。しかしながら、電鋳装置は、マーカを備えていなくてもよい。この場合、電鋳装置は、電鋳層の異常部に識別子を付与することなく、電鋳層の状態に応じて、電鋳槽において電鋳層を形成するための条件を変更することができる。
For example, the electroforming device according to each embodiment includes a marker. However, the electroforming device does not need to be equipped with a marker. In this case, the electroforming device can change the conditions for forming the electroformed layer in the electroforming bath according to the state of the electroformed layer without assigning an identifier to the abnormal part of the electroformed layer. .
本明細書によれば、以下の態様の電鋳部材の製造方法、電鋳管の製造方法及び電鋳装置が提供される。
(態様1)
態様1では、電鋳部材の製造方法が、線材が搬送される経路に配置された電鋳槽において前記線材の周囲に電鋳層を形成する工程と、前記経路に配置された検査部によって前記電鋳層の状態を検査する工程と、前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する工程と、を備えている。 According to the present specification, a method for manufacturing an electroformed member, a method for manufacturing an electroformed pipe, and an electroforming apparatus according to the following aspects are provided.
(Aspect 1)
In aspect 1, the method for manufacturing an electroformed member includes the steps of: forming an electroforming layer around the wire in an electroforming tank disposed on a route through which the wire is conveyed; The method includes a step of inspecting the state of the electroformed layer, and a step of changing conditions for forming the electroformed layer in the electroforming tank depending on the state of the electroformed layer.
(態様1)
態様1では、電鋳部材の製造方法が、線材が搬送される経路に配置された電鋳槽において前記線材の周囲に電鋳層を形成する工程と、前記経路に配置された検査部によって前記電鋳層の状態を検査する工程と、前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する工程と、を備えている。 According to the present specification, a method for manufacturing an electroformed member, a method for manufacturing an electroformed pipe, and an electroforming apparatus according to the following aspects are provided.
(Aspect 1)
In aspect 1, the method for manufacturing an electroformed member includes the steps of: forming an electroforming layer around the wire in an electroforming tank disposed on a route through which the wire is conveyed; The method includes a step of inspecting the state of the electroformed layer, and a step of changing conditions for forming the electroformed layer in the electroforming tank depending on the state of the electroformed layer.
「検査部」は、上述の実施形態又は変形例の「膜厚計」、「第1変位計」、「第2変位計」に相当する。
The "inspection section" corresponds to the "film thickness meter", "first displacement meter", and "second displacement meter" in the above-described embodiment or modification.
上述の態様によれば、検査部において電鋳層の状態を検査する場合に、電鋳層の形成を中断する必要がない。このため、上述の態様では、電鋳部材及び電鋳管の生産性を向上させることができる。
According to the above aspect, when inspecting the state of the electroformed layer in the inspection section, there is no need to interrupt the formation of the electroformed layer. Therefore, in the above-described aspect, productivity of electroformed members and electroformed pipes can be improved.
(態様2)
態様2では、前記電鋳層の前記状態を検査する工程は、前記線材の前記経路での移動速度と略同一の移動速度で移動可能な前記検査部によって行われている。 (Aspect 2)
In aspect 2, the step of inspecting the state of the electroformed layer is performed by the inspection section that is movable at substantially the same moving speed as the moving speed of the wire along the route.
態様2では、前記電鋳層の前記状態を検査する工程は、前記線材の前記経路での移動速度と略同一の移動速度で移動可能な前記検査部によって行われている。 (Aspect 2)
In aspect 2, the step of inspecting the state of the electroformed layer is performed by the inspection section that is movable at substantially the same moving speed as the moving speed of the wire along the route.
上述の態様によれば、線材が移動せずに固定されている場合と比較して、電鋳層の厚さを正確に検査することができる。
According to the above aspect, the thickness of the electroformed layer can be accurately inspected compared to the case where the wire is fixed without moving.
(態様3)
態様3では、前記電鋳層の前記状態を検査する工程は、前記線材の軸方向から見て前記線材の周囲に略等間隔に配置された複数の前記検査部によって行われている。 (Aspect 3)
In aspect 3, the step of inspecting the state of the electroformed layer is performed by the plurality of inspection sections arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire.
態様3では、前記電鋳層の前記状態を検査する工程は、前記線材の軸方向から見て前記線材の周囲に略等間隔に配置された複数の前記検査部によって行われている。 (Aspect 3)
In aspect 3, the step of inspecting the state of the electroformed layer is performed by the plurality of inspection sections arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire.
上述の態様によれば、複数の検査部の検査結果の参照によって、電鋳層の厚さ等の状態の線材の周方向における均一性を検査することができる。
According to the above aspect, by referring to the test results of the plurality of test sections, it is possible to test the uniformity of the state of the electroformed layer, such as the thickness, in the circumferential direction of the wire.
(態様4)
態様4では、前記電鋳層の前記状態を検査する工程は、前記複数の検査部のうち前記線材の前記軸方向に略平行に互いにずれて配置された少なくとも一部の検査部によって行われている。 (Aspect 4)
In aspect 4, the step of inspecting the state of the electroformed layer is performed by at least some of the plurality of inspection units that are arranged substantially parallel to and offset from each other in the axial direction of the wire rod. There is.
態様4では、前記電鋳層の前記状態を検査する工程は、前記複数の検査部のうち前記線材の前記軸方向に略平行に互いにずれて配置された少なくとも一部の検査部によって行われている。 (Aspect 4)
In aspect 4, the step of inspecting the state of the electroformed layer is performed by at least some of the plurality of inspection units that are arranged substantially parallel to and offset from each other in the axial direction of the wire rod. There is.
上述の態様によれば、当該少なくとも一部の検査部が線材の軸方向に略平行互いに揃えっている場合と比較して、各検査部の検査の相互干渉を抑制することができる。
According to the above aspect, mutual interference between the inspections of the respective inspection sections can be suppressed compared to the case where at least some of the inspection sections are aligned substantially parallel to each other in the axial direction of the wire rod.
(態様5)
態様5では、前記電鋳層の前記状態を検査する工程は、前記線材の周囲に前記電鋳層が形成される前の前記線材の検査結果と、前記線材の周囲に前記電鋳層が形成された後の前記電鋳層の検査結果と、を前記検査部によって参照して行われている。 (Aspect 5)
In aspect 5, the step of inspecting the state of the electroformed layer includes the inspection results of the wire before the electroformed layer is formed around the wire and the electroformed layer formed around the wire. The inspection is performed by the inspection section with reference to the inspection results of the electroformed layer after the electroforming.
態様5では、前記電鋳層の前記状態を検査する工程は、前記線材の周囲に前記電鋳層が形成される前の前記線材の検査結果と、前記線材の周囲に前記電鋳層が形成された後の前記電鋳層の検査結果と、を前記検査部によって参照して行われている。 (Aspect 5)
In aspect 5, the step of inspecting the state of the electroformed layer includes the inspection results of the wire before the electroformed layer is formed around the wire and the electroformed layer formed around the wire. The inspection is performed by the inspection section with reference to the inspection results of the electroformed layer after the electroforming.
上述の態様によれば、電鋳層の状態を検査する場合に、X線等の放射線を用いる必要がない。このため、上述の態様によれば、放射線を用いる場合と比較して、電鋳層の状態を安価に検査することができる。
According to the above aspect, there is no need to use radiation such as X-rays when inspecting the state of the electroformed layer. Therefore, according to the above aspect, the state of the electroformed layer can be inspected at a lower cost than when radiation is used.
(態様6)
態様6では、電鋳部材の製造方法が、前記電鋳層の前記状態の検査によって検出された前記電鋳層の異常部に所定の処理を施す工程をさらに備えている。 (Aspect 6)
In a sixth aspect, the method for manufacturing an electroformed member further includes a step of performing a predetermined treatment on an abnormal portion of the electroformed layer detected by inspecting the state of the electroformed layer.
態様6では、電鋳部材の製造方法が、前記電鋳層の前記状態の検査によって検出された前記電鋳層の異常部に所定の処理を施す工程をさらに備えている。 (Aspect 6)
In a sixth aspect, the method for manufacturing an electroformed member further includes a step of performing a predetermined treatment on an abnormal portion of the electroformed layer detected by inspecting the state of the electroformed layer.
上述の態様によれば、異常部への識別子の付与、異常部の除去等の適切な処理を異常部に施すことで、電鋳部材及び電鋳管の品質を向上させることができる。また、当該適切な処理を異常部に施すことで、電鋳部材及び電鋳管の生産性を向上させることができる。
According to the above aspect, the quality of the electroformed member and the electroformed pipe can be improved by subjecting the abnormal part to appropriate processing such as adding an identifier to the abnormal part and removing the abnormal part. Further, by applying the appropriate treatment to the abnormal portion, it is possible to improve the productivity of electroformed members and electroformed pipes.
(態様7)
態様7では、前記電鋳層の前記異常部に前記所定の処理を施す工程は、前記異常部への識別子の付与と、前記異常部の除去と、の少なくとも一方を含む処理を行っている。 (Aspect 7)
In aspect 7, the step of subjecting the abnormal portion of the electroformed layer to the predetermined treatment includes at least one of adding an identifier to the abnormal portion and removing the abnormal portion.
態様7では、前記電鋳層の前記異常部に前記所定の処理を施す工程は、前記異常部への識別子の付与と、前記異常部の除去と、の少なくとも一方を含む処理を行っている。 (Aspect 7)
In aspect 7, the step of subjecting the abnormal portion of the electroformed layer to the predetermined treatment includes at least one of adding an identifier to the abnormal portion and removing the abnormal portion.
上述の態様によれば、電鋳部材及び電鋳管の品質を向上させることができる。また、電鋳部材及び電鋳管の生産性を向上させることができる。
According to the above-described aspect, the quality of the electroformed member and the electroformed pipe can be improved. Moreover, productivity of electroformed members and electroformed pipes can be improved.
(態様8)
態様8では、電鋳管の製造方法が、上述の電鋳部材の製造方法と、前記電鋳層から前記線材を除去する工程と、を備えている。 (Aspect 8)
In aspect 8, a method for manufacturing an electroformed pipe includes the above-described method for manufacturing an electroformed member, and a step of removing the wire from the electroformed layer.
態様8では、電鋳管の製造方法が、上述の電鋳部材の製造方法と、前記電鋳層から前記線材を除去する工程と、を備えている。 (Aspect 8)
In aspect 8, a method for manufacturing an electroformed pipe includes the above-described method for manufacturing an electroformed member, and a step of removing the wire from the electroformed layer.
上述の態様によれば、態様1と同様にして、電鋳部材及び電鋳管の生産性を向上させることができる。
According to the above aspect, similarly to aspect 1, the productivity of electroformed members and electroformed pipes can be improved.
(態様9)
態様9では、電鋳装置が、線材が搬送される経路と、前記経路に配置され、前記線材の周囲に電鋳層が形成される電鋳槽と、前記経路に配置され、前記電鋳層の状態を検査する検査部と、前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する制御部と、を備えている。 (Aspect 9)
In aspect 9, the electroforming device includes a path along which the wire is conveyed, an electroforming tank disposed on the path and forming an electroformed layer around the wire, and an electroforming tank disposed on the path and configured to form an electroformed layer around the wire. and a control section that changes conditions for forming the electroformed layer in the electroforming tank depending on the state of the electroformed layer.
態様9では、電鋳装置が、線材が搬送される経路と、前記経路に配置され、前記線材の周囲に電鋳層が形成される電鋳槽と、前記経路に配置され、前記電鋳層の状態を検査する検査部と、前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する制御部と、を備えている。 (Aspect 9)
In aspect 9, the electroforming device includes a path along which the wire is conveyed, an electroforming tank disposed on the path and forming an electroformed layer around the wire, and an electroforming tank disposed on the path and configured to form an electroformed layer around the wire. and a control section that changes conditions for forming the electroformed layer in the electroforming tank depending on the state of the electroformed layer.
「検査部」は、上述の実施形態又は変形例の「膜厚計」、「第1変位計」、「第2変位計」に相当する。
The "inspection section" corresponds to the "film thickness meter", "first displacement meter", and "second displacement meter" in the above-described embodiment or modification.
(態様10)
態様10では、前記検査部が、前記線材の前記経路での移動速度と略同一の移動速度で移動可能になっている。 (Aspect 10)
In aspect 10, the inspection section is movable at substantially the same moving speed as the moving speed of the wire along the route.
態様10では、前記検査部が、前記線材の前記経路での移動速度と略同一の移動速度で移動可能になっている。 (Aspect 10)
In aspect 10, the inspection section is movable at substantially the same moving speed as the moving speed of the wire along the route.
上述の態様によれば、態様2と同様にして、線材が移動せずに固定されている場合と比較して、電鋳層の厚さを正確に検査することができる。
According to the above-mentioned aspect, the thickness of the electroformed layer can be accurately inspected as compared to the case where the wire is fixed without moving, similar to the second aspect.
(態様11)
態様11では、前記電鋳層の前記状態を検査する複数の前記検査部が、前記線材の軸方向から見て前記線材の周囲に略等間隔に配置されている。 (Aspect 11)
In aspect 11, the plurality of inspection parts that inspect the state of the electroformed layer are arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire.
態様11では、前記電鋳層の前記状態を検査する複数の前記検査部が、前記線材の軸方向から見て前記線材の周囲に略等間隔に配置されている。 (Aspect 11)
In aspect 11, the plurality of inspection parts that inspect the state of the electroformed layer are arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire.
上述の態様によれば、態様3と同様にして、電鋳層の厚さ等の状態の線材の周方向における均一性を検査することができる。
According to the above-mentioned aspect, in the same manner as in aspect 3, it is possible to inspect the uniformity of the electroformed layer thickness, etc. in the circumferential direction of the wire rod.
(態様12)
態様12では、前記複数の検査部のうちの少なくとも一部の検査部が前記線材の前記軸方向に略平行に互いにずれて配置されている。 (Aspect 12)
In aspect 12, at least some of the plurality of inspection sections are arranged substantially parallel to the axial direction of the wire and shifted from each other.
態様12では、前記複数の検査部のうちの少なくとも一部の検査部が前記線材の前記軸方向に略平行に互いにずれて配置されている。 (Aspect 12)
In aspect 12, at least some of the plurality of inspection sections are arranged substantially parallel to the axial direction of the wire and shifted from each other.
上述の態様によれば、態様4と同様にして、当該少なくとも一部の検査部が線材の軸方向に略平行互いに揃えっている場合と比較して、各検査部の検査の相互干渉を抑制することができる。
According to the above aspect, similar to aspect 4, mutual interference between inspections of each inspection section is suppressed compared to the case where at least some of the inspection sections are aligned substantially parallel to each other in the axial direction of the wire rod. can do.
(態様13)
態様13では、前記検査部が、前記線材の周囲に前記電鋳層が形成される前の前記線材の検査結果と、前記線材の周囲に前記電鋳層が形成された後の前記電鋳層の検査結果と、を参照して、前記電鋳層の前記状態を検査している。 (Aspect 13)
In aspect 13, the inspection unit includes an inspection result of the wire before the electroformed layer is formed around the wire, and an inspection result of the electroformed layer after the electroformed layer is formed around the wire. The state of the electroformed layer is inspected with reference to the inspection results.
態様13では、前記検査部が、前記線材の周囲に前記電鋳層が形成される前の前記線材の検査結果と、前記線材の周囲に前記電鋳層が形成された後の前記電鋳層の検査結果と、を参照して、前記電鋳層の前記状態を検査している。 (Aspect 13)
In aspect 13, the inspection unit includes an inspection result of the wire before the electroformed layer is formed around the wire, and an inspection result of the electroformed layer after the electroformed layer is formed around the wire. The state of the electroformed layer is inspected with reference to the inspection results.
上述の態様によれば、態様5と同様にして、放射線を用いる場合と比較して、電鋳層の状態を安価に検査することができる。
According to the above aspect, similarly to aspect 5, the state of the electroformed layer can be inspected at a lower cost than when radiation is used.
(態様14)
態様14では、電鋳装置が、前記電鋳層の前記状態の検査によって検出された前記電鋳層の異常部に所定の処理を施す処理部をさらに備えている。 (Aspect 14)
In aspect 14, the electroforming apparatus further includes a processing section that performs predetermined processing on an abnormal portion of the electroformed layer detected by inspecting the state of the electroformed layer.
態様14では、電鋳装置が、前記電鋳層の前記状態の検査によって検出された前記電鋳層の異常部に所定の処理を施す処理部をさらに備えている。 (Aspect 14)
In aspect 14, the electroforming apparatus further includes a processing section that performs predetermined processing on an abnormal portion of the electroformed layer detected by inspecting the state of the electroformed layer.
「処理部」は、上述の実施形態又は変形例の「マーカ」に相当する。
The "processing unit" corresponds to the "marker" in the above-described embodiment or modification.
上述の態様によれば、態様6と同様にして、電鋳部材及び電鋳管の品質を向上させることができる。また、電鋳部材及び電鋳管の生産性を向上させることができる。
According to the above aspect, the quality of the electroformed member and the electroformed pipe can be improved in the same manner as in aspect 6. Moreover, productivity of electroformed members and electroformed pipes can be improved.
(態様15)
態様15では、前記所定の処理が、前記異常部への識別子の付与と、前記異常部の除去と、の少なくとも一方を含んでいる。 (Aspect 15)
In aspect 15, the predetermined process includes at least one of assigning an identifier to the abnormal portion and removing the abnormal portion.
態様15では、前記所定の処理が、前記異常部への識別子の付与と、前記異常部の除去と、の少なくとも一方を含んでいる。 (Aspect 15)
In aspect 15, the predetermined process includes at least one of assigning an identifier to the abnormal portion and removing the abnormal portion.
上述の態様によれば、態様7と同様にして、電鋳部材及び電鋳管の品質を向上させることができる。また、電鋳部材及び電鋳管の生産性を向上させることができる。
According to the above aspect, similarly to aspect 7, the quality of the electroformed member and the electroformed pipe can be improved. Moreover, productivity of electroformed members and electroformed pipes can be improved.
この出願は、2022年5月30日に出願された日本出願特願2022-087511号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2022-087511 filed on May 30, 2022, and the entire disclosure thereof is incorporated herein.
1A,1B 電鋳装置、2A,2B 経路、5A,5B 制御部、12A,12B 送出しリール、14A,14B 引張治具、16A,16B 搬送ローラ、18A 補助ローラ、21A,21B 脱脂槽、21A1,21B1 脱脂液、22A,22B 第1洗浄槽、22A1,22B1 第1洗浄液、23A,23B 電鋳槽、23A1,23B1 電鋳液、24A,24B 第2洗浄槽、24A1,24B1 第2洗浄液、25A,25B 乾燥槽、30A 撮像部、40A,40A1 膜厚計、42A 芯出しローラ、42B 第1変位計、44B 第2変位計、50A,50B マーカ、100A,100A1,100B 線材、200A,200A1,200B 電鋳層、300A,300B 電鋳部材、S1A,S1B 脱脂工程、S2A,S2B 第1洗浄工程、S3A,S3B 電鋳工程、S4A,S4B 第2洗浄工程、S5A,S5B 乾燥工程、S6A 検査工程、S6B1 第1検査工程、S6B2 第2検査工程、S7A,S7B 識別子付与工程、S8A,S8B 異常部除去工程、S9A,S9B 線材除去工程、S10A,S10B 電鋳層切断工程、P 片
1A, 1B electroforming device, 2A, 2B route, 5A, 5B control unit, 12A, 12B delivery reel, 14A, 14B tension jig, 16A, 16B conveyance roller, 18A auxiliary roller, 21A, 21B degreasing tank, 21A1, 21B1 Degreasing liquid, 22A, 22B First cleaning tank, 22A1, 22B1 First cleaning liquid, 23A, 23B Electroforming tank, 23A1, 23B1 Electroforming liquid, 24A, 24B Second cleaning tank, 24A1, 24B1 Second cleaning liquid, 25A, 25B drying tank, 30A imaging club, 40A, 40A1 membrane, 42a core roller, 42B's first displacement meter, 44B's second displacement, 50A, 50B marker, 100A1,100B line material, 200A, 200A1,200B Denki Casting layer, 300A, 300B electroformed member, S1A, S1B degreasing process, S2A, S2B first cleaning process, S3A, S3B electroforming process, S4A, S4B second cleaning process, S5A, S5B drying process, S6A inspection process, S6B1 1st inspection process, S6B2 2nd inspection process, S7A, S7B identifier provision process, S8A, S8B abnormal part removal process, S9A, S9B wire rod removal process, S10A, S10B electroformed layer cutting process, P piece
Claims (15)
- 線材が搬送される経路に配置された電鋳槽において前記線材の周囲に電鋳層を形成する工程と、
前記経路に配置された検査部によって前記電鋳層の状態を検査する工程と、
前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する工程と、
を備える、電鋳部材の製造方法。 forming an electroforming layer around the wire in an electroforming tank disposed on a route through which the wire is conveyed;
Inspecting the state of the electroformed layer by an inspection unit disposed in the path;
changing conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
A method for manufacturing an electroformed member, comprising: - 前記電鋳層の前記状態を検査する工程は、前記線材の前記経路での移動速度と略同一の移動速度で移動可能な前記検査部によって行われる、請求項1に記載の電鋳部材の製造方法。 The manufacturing of an electroformed member according to claim 1, wherein the step of inspecting the state of the electroformed layer is performed by the inspection section movable at substantially the same speed as the speed of movement of the wire along the path. Method.
- 前記電鋳層の前記状態を検査する工程は、前記線材の軸方向から見て前記線材の周囲に略等間隔に配置された複数の前記検査部によって行われる、請求項1に記載の電鋳部材の製造方法。 The electroforming according to claim 1, wherein the step of inspecting the state of the electroformed layer is performed by a plurality of the inspection sections arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire. Method of manufacturing parts.
- 前記電鋳層の前記状態を検査する工程は、前記複数の検査部のうち前記線材の前記軸方向に略平行に互いにずれて配置された少なくとも一部の検査部によって行われる、請求項3に記載の電鋳部材の製造方法。 According to claim 3, the step of inspecting the state of the electroformed layer is performed by at least some of the plurality of inspection units that are arranged substantially parallel to and offset from each other in the axial direction of the wire rod. The method for manufacturing the electroformed member described above.
- 前記電鋳層の前記状態を検査する工程は、前記線材の周囲に前記電鋳層が形成される前の前記線材の検査結果と、前記線材の周囲に前記電鋳層が形成された後の前記電鋳層の検査結果と、を前記検査部によって参照して行われる、請求項1に記載の電鋳部材の製造方法。 The step of inspecting the state of the electroformed layer includes an inspection result of the wire before the electroformed layer is formed around the wire, and an inspection result of the wire after the electroformed layer is formed around the wire. The method for manufacturing an electroformed member according to claim 1, wherein the test is performed by referring to the test result of the electroformed layer by the test section.
- 前記電鋳層の前記状態の検査によって検出された前記電鋳層の異常部に所定の処理を施す工程をさらに備える、請求項1に記載の電鋳部材の製造方法。 The method for manufacturing an electroformed member according to claim 1, further comprising the step of subjecting an abnormal portion of the electroformed layer detected by the inspection of the state of the electroformed layer to a predetermined treatment.
- 前記電鋳層の前記異常部に前記所定の処理を施す工程は、前記異常部への識別子の付与と、前記異常部の除去と、の少なくとも一方を含む処理を行う、請求項6に記載の電鋳部材の製造方法。 7. The method according to claim 6, wherein the step of subjecting the abnormal portion of the electroformed layer to the predetermined treatment includes at least one of adding an identifier to the abnormal portion and removing the abnormal portion. Method for manufacturing electroformed parts.
- 請求項1~7のいずれか一項に記載の電鋳部材の製造方法と、
前記電鋳層から前記線材を除去する工程と、
を備える、電鋳管の製造方法。 A method for manufacturing an electroformed member according to any one of claims 1 to 7,
removing the wire from the electroformed layer;
A method for manufacturing an electroformed pipe, comprising: - 線材が搬送される経路と、
前記経路に配置され、前記線材の周囲に電鋳層が形成される電鋳槽と、
前記経路に配置され、前記電鋳層の状態を検査する検査部と、
前記電鋳層の前記状態に応じて、前記電鋳槽において前記電鋳層を形成するための条件を変更する制御部と、
を備える電鋳装置。 The route along which the wire rod is transported,
an electroforming tank disposed in the path and forming an electroforming layer around the wire;
an inspection section disposed on the path and inspecting the state of the electroformed layer;
a control unit that changes conditions for forming the electroformed layer in the electroforming tank according to the state of the electroformed layer;
An electroforming device equipped with. - 前記検査部が、前記線材の前記経路での移動速度と略同一の移動速度で移動可能になっている、請求項9に記載の電鋳装置。 The electroforming apparatus according to claim 9, wherein the inspection section is movable at substantially the same moving speed as the moving speed of the wire along the path.
- 前記電鋳層の前記状態を検査する複数の前記検査部が、前記線材の軸方向から見て前記線材の周囲に略等間隔に配置されている、請求項9に記載の電鋳装置。 The electroforming apparatus according to claim 9, wherein a plurality of the inspection parts that inspect the state of the electroformed layer are arranged at approximately equal intervals around the wire when viewed from the axial direction of the wire.
- 前記複数の検査部のうちの少なくとも一部の検査部が前記線材の前記軸方向に略平行に互いにずれて配置されている、請求項11に記載の電鋳装置。 The electroforming apparatus according to claim 11, wherein at least some of the plurality of inspection sections are arranged offset from each other in substantially parallel to the axial direction of the wire.
- 前記検査部が、前記線材の周囲に前記電鋳層が形成される前の前記線材の検査結果と、前記線材の周囲に前記電鋳層が形成された後の前記電鋳層の検査結果と、を参照して、前記電鋳層の前記状態を検査する、請求項9に記載の電鋳装置。 The inspection unit includes an inspection result of the wire before the electroformed layer is formed around the wire, and an inspection result of the electroformed layer after the electroformed layer is formed around the wire. The electroforming apparatus according to claim 9, wherein the state of the electroformed layer is inspected with reference to .
- 前記電鋳層の前記状態の検査によって検出された前記電鋳層の異常部に所定の処理を施す処理部をさらに備える、請求項9に記載の電鋳装置。 The electroforming apparatus according to claim 9, further comprising a processing section that performs a predetermined process on an abnormal portion of the electroformed layer detected by inspecting the state of the electroformed layer.
- 前記所定の処理が、前記異常部への識別子の付与と、前記異常部の除去と、の少なくとも一方を含む、請求項14に記載の電鋳装置。 The electroforming apparatus according to claim 14, wherein the predetermined process includes at least one of adding an identifier to the abnormal portion and removing the abnormal portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022087511A JP2023175188A (en) | 2022-05-30 | 2022-05-30 | Method of producing electrocast member, method of producing electrocast pipe, and electrocasting device |
JP2022-087511 | 2022-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023234026A1 true WO2023234026A1 (en) | 2023-12-07 |
Family
ID=89026567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/018401 WO2023234026A1 (en) | 2022-05-30 | 2023-05-17 | Method for manufacturing electroformed component, method for manufacturing electroformed pipe, and electroforming device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2023175188A (en) |
TW (1) | TW202403109A (en) |
WO (1) | WO2023234026A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001228363A (en) * | 2000-02-17 | 2001-08-24 | Shinichi Okamoto | Method for manufacturing parts for optical fiber connector |
WO2003004731A1 (en) * | 2001-07-02 | 2003-01-16 | Takahiko Mukouda | Production method and device for optical fiber-use metal coupler |
JP2003215394A (en) * | 2002-01-22 | 2003-07-30 | Smk Corp | Method and device for manufacturing ferrule |
JP2012041600A (en) * | 2010-08-18 | 2012-03-01 | Morioka Seiko Instruments Inc | Method for manufacturing electroformed component |
-
2022
- 2022-05-30 JP JP2022087511A patent/JP2023175188A/en active Pending
-
2023
- 2023-05-17 WO PCT/JP2023/018401 patent/WO2023234026A1/en unknown
- 2023-05-17 TW TW112118355A patent/TW202403109A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001228363A (en) * | 2000-02-17 | 2001-08-24 | Shinichi Okamoto | Method for manufacturing parts for optical fiber connector |
WO2003004731A1 (en) * | 2001-07-02 | 2003-01-16 | Takahiko Mukouda | Production method and device for optical fiber-use metal coupler |
JP2003215394A (en) * | 2002-01-22 | 2003-07-30 | Smk Corp | Method and device for manufacturing ferrule |
JP2012041600A (en) * | 2010-08-18 | 2012-03-01 | Morioka Seiko Instruments Inc | Method for manufacturing electroformed component |
Also Published As
Publication number | Publication date |
---|---|
JP2023175188A (en) | 2023-12-12 |
TW202403109A (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6814420B2 (en) | Metal plate for manufacturing vapor deposition mask, inspection method of metal plate, manufacturing method of metal plate, vapor deposition mask, vapor deposition mask device and manufacturing method of vapor deposition mask | |
US20130057309A1 (en) | Manufacturing method for contact for current inspection jig, contact for current inspection jig manufactured using said method, and current inspection jig provided with said contact | |
JP2005533928A (en) | Method and apparatus for immediate monitoring of electroplating bath performance and early detection of defects | |
WO2023234026A1 (en) | Method for manufacturing electroformed component, method for manufacturing electroformed pipe, and electroforming device | |
JPH0783884A (en) | Flaw examination method, flow examination device and flaw examination sensor | |
WO2006025603A1 (en) | Method for measuring circular shape, and method and device for measuring cylindrical shape | |
WO2023234027A1 (en) | Method for producing electroformed member, method for producing electroformed tube and electroforming apparatus | |
WO2012148854A1 (en) | Database-driven cell-to-cell reticle inspection | |
Guo et al. | Measurement of small defect testing accuracy in additive manufacturing alloy using industrial CT method | |
US20240144504A1 (en) | Crankshaft shape inspection method, arithmetic unit, program, and shape inspection apparatus | |
JP2016057275A (en) | Method for prediction of corrosion rate of heat transfer tube by use of eddy current test method | |
JP5034270B2 (en) | Standard plating film sample and plating film inspection method | |
JPH0455756A (en) | Ultrasonic flaw detecting apparatus for wire rod | |
JP2014206415A (en) | Product quality inspection method | |
JP3632898B2 (en) | Method for determining the usefulness of existing metal pipes using a radiographic inspection method, and a specimen used for carrying out this method | |
Bal’kova et al. | Basic techniques for determining the porosity of electrodeposited coatings | |
US10260865B1 (en) | High resolution, non-contact removal rate module for serial sectioning | |
KR20140086841A (en) | X-ray inspection device and method of determining quality | |
JP7410606B1 (en) | Non-destructive testing method and non-destructive testing equipment | |
JP2014108472A (en) | Wire tool inspection method | |
JP7269472B2 (en) | Method for inspecting electrodeposition drum material for manufacturing metal foil or electrodeposition drum for manufacturing metal foil | |
RU2716267C1 (en) | Method of diagnosing conveying and measuring rollers during production of high-temperature superconducting tape | |
JP2010122120A (en) | Ultrasonic flaw detection facility for square steel | |
CN106680433A (en) | Device and method for detecting residual oil removing agent for product | |
Swain et al. | Quantitative non-destructive evaluation (Q-NDE) of a composite over-wrapped pressure vessel (COPV) liner using Digital Image Correlation (DIC) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23815785 Country of ref document: EP Kind code of ref document: A1 |