JP5034270B2 - Standard plating film sample and plating film inspection method - Google Patents

Standard plating film sample and plating film inspection method Download PDF

Info

Publication number
JP5034270B2
JP5034270B2 JP2006059754A JP2006059754A JP5034270B2 JP 5034270 B2 JP5034270 B2 JP 5034270B2 JP 2006059754 A JP2006059754 A JP 2006059754A JP 2006059754 A JP2006059754 A JP 2006059754A JP 5034270 B2 JP5034270 B2 JP 5034270B2
Authority
JP
Japan
Prior art keywords
plating film
inspected
relationship
characteristic
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006059754A
Other languages
Japanese (ja)
Other versions
JP2007240196A (en
Inventor
道子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006059754A priority Critical patent/JP5034270B2/en
Publication of JP2007240196A publication Critical patent/JP2007240196A/en
Application granted granted Critical
Publication of JP5034270B2 publication Critical patent/JP5034270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、ある基材上のメッキ膜中の元素を蛍光X線分析法により検査するための技術に関する。   The present invention relates to a technique for inspecting an element in a plating film on a certain substrate by a fluorescent X-ray analysis method.

近年、欧州のRoHS規制(Restriction of Hazardous Substances)、ELV(End of Life Vehicle)等、一般消費者向け電気・電子機器製品中の有害物質の許容量に関する規制が強化されつつあり、電気メーカー等の部品仕様化部門や受け入れ部門においては、購入する材料または部品中に規制物質が含まれているか否かをチェックするための検査装置を大量に導入するというニーズが増加している。   In recent years, regulations regarding the allowable amount of harmful substances in electrical and electronic equipment products for general consumers, such as European RoHS regulations (Restriction of Hazardous Substances) and ELV (End of Life Vehicles), are being strengthened. In parts specification departments and receiving departments, there is an increasing need to introduce a large number of inspection apparatuses for checking whether or not regulated substances are contained in purchased materials or parts.

有害元素の有無判定においては、含有濃度が実際上問題にならない程度に微量である場合に非含有と判定するため、定量下限が十分低いことが必要である。また、製品を構成する膨大な数の部品が調査対象となるため、できる限り非破壊でかつ短時間にチェックを行なう必要がある。   In the determination of the presence or absence of harmful elements, it is necessary that the lower limit of quantification be sufficiently low in order to determine non-contained when the concentration is so small that it does not actually cause a problem. In addition, since an enormous number of parts constituting a product are to be investigated, it is necessary to check in a non-destructive manner and in a short time as much as possible.

蛍光X線分析法は、材料の構成元素の特定および定量手段として、素材生産における品質管理や材料研究に広く利用されてきたが、この中でも、エネルギー分散型蛍光X線分析法は、このようなニーズに適していることから、分析機器メーカー各社から、RoHS、ELV規制向けのバルク材料対応のエネルギー分散型蛍光X線分析装置が市販されており、Cd、Pb等の規制対象元素の蛍光X線を検出しやすくするための一次X線フィルタや定量プログラムの開発が進み、広く実用化されている。   X-ray fluorescence analysis has been widely used for quality control and material research in material production as a means for identifying and quantifying constituent elements of materials. Among these, energy dispersive X-ray fluorescence analysis is Because it is suitable for the needs, energy-dispersion X-ray fluorescence analyzers for bulk materials for RoHS and ELV regulations are commercially available from analysis equipment manufacturers. Fluorescence X-rays of regulated elements such as Cd and Pb Development of a primary X-ray filter and a quantitative program for facilitating detection of advancing is progressing and widely used.

また、特許文献1,2には、蛍光X線分析法を用いて、メッキ膜主成分の強度の合計を基準にした微量有害元素の強度を用いて定量することにより、メッキ膜中に微量有害元素が含まれるか否かを判定するスクリーニング分析法が含まれている。
特願2004−277573号(請求の範囲) 特願2004−321007号(請求の範囲) 倉橋正保(産業技術総合研究所),「蛍光X線シンポジウム」,講演要旨集,2004年,p.24−33
Patent Documents 1 and 2 disclose that trace amounts of harmful elements in the plating film are determined by using the X-ray fluorescence analysis method and quantifying the intensity of the trace amount harmful elements based on the total strength of the plating film main components. A screening analysis method for determining whether or not an element is included is included.
Japanese Patent Application No. 2004-277573 (claims) Japanese Patent Application No. 2004-321007 (Claims) Masahisa Kurahashi (National Institute of Advanced Industrial Science and Technology), “Fluorescent X-ray Symposium”, Abstracts of Lectures, 2004, p. 24-33

蛍光X線分析法を用いたメッキ膜中の有害元素の有無を検査する技術には、次のような問題が残されている。   The following problems remain in the technique for inspecting the presence or absence of harmful elements in the plating film using the fluorescent X-ray analysis method.

(1)高エネルギーのX線で励起した特性X線(蛍光X線)を用いて、材料または部品に施されているメッキ膜中に法規制濃度の検査対象元素が含まれるか否かを判定する分析技術では、高精度な定量分析を行う場合、検査試料(メッキ膜)と近い組成および厚さを有し、検査試料中の検査対象元素と同じ元素を種々の既知濃度で含有する標準メッキ膜試料であって、この種々の濃度が検査試料中の検査対象元素の濃度範囲を含むように選ばれたものである標準メッキ膜試料を用いて、検量線または検量式を作製する必要がある。   (1) Using characteristic X-rays (fluorescent X-rays) excited by high-energy X-rays, it is determined whether or not an element to be inspected at a legally regulated concentration is contained in the plating film applied to the material or component. With this analysis technology, when performing high-accuracy quantitative analysis, standard plating that has the same composition and thickness as the inspection sample (plating film) and contains the same element as the inspection target element in the inspection sample at various known concentrations It is necessary to prepare a calibration curve or a calibration formula using a standard plating film sample which is a film sample and the various concentrations are selected so as to include the concentration range of the element to be inspected in the inspection sample. .

この際、検量線または検量式の作製に用いる標準メッキ膜試料中の検査対象元素の濃度を、化学分析等で正しく求めることが必要になる。しかしながら、メッキ膜部分のみの正確な検査対象元素濃度を得るために、基材も同時に溶解する全溶解後化学分析で定量する方法を適用する場合には、基材中に極微量に含まれている同種の検査対象元素が影響し、メッキ膜中の正確な検査対象元素濃度を得ることが不可能であった。   At this time, it is necessary to correctly obtain the concentration of the element to be inspected in the standard plating film sample used for preparing the calibration curve or the calibration formula by chemical analysis or the like. However, in order to obtain the exact concentration of the element to be inspected only in the plating film part, when applying the method of quantification by chemical analysis after total dissolution that also dissolves the substrate at the same time, it is contained in a trace amount in the substrate. It was impossible to obtain an accurate concentration of the element to be inspected in the plating film due to the influence of the same type of element to be inspected.

例えば、不純物レベルの鉛(RoHS規制対象有害物質の一つ)を含むメッキ基材の例として、SPC(鉄)、A6061(アルミニウム)、C2086(黄銅)等の材料があるが、それぞれ、鉛を0.1、5、10重量ppm程度含んでいる。したがって、例えば、0.5mm程度の厚さのSPC基材中の鉛絶対量は、10μm前後の膜厚のメッキ膜中に含まれる濃度1000重量ppmの鉛絶対量と比べて、定量結果に大きな影響を与える程の量となるため、基材ごと溶解した場合、正確な濃度を測定することができなかった。具体的な数値の一例を示すと、SPC基材に施された鉛を300重量ppm程度含むメッキ膜の分析例では、基材込みで溶解して化学分析を行った場合の鉛濃度として1000重量ppmが得られていた。   For example, as an example of a plating base material containing lead at an impurity level (a hazardous substance subject to RoHS regulation), there are materials such as SPC (iron), A6061 (aluminum), and C2086 (brass). Contains about 0.1, 5, 10 ppm by weight. Therefore, for example, the absolute amount of lead in an SPC substrate having a thickness of about 0.5 mm is larger in the quantitative result than the absolute amount of lead having a concentration of 1000 ppm by weight contained in a plating film having a thickness of about 10 μm. Since the amount is so large as to have an influence, when the whole substrate is dissolved, the exact concentration cannot be measured. As an example of specific numerical values, in the analysis example of the plating film containing about 300 ppm by weight of lead applied to the SPC base material, the lead concentration when the chemical analysis is performed by dissolving the base material is 1000 weight. ppm was obtained.

こういった問題を解決するため、メッキの下地となる基材として、化学的に溶解しにくいステンレス基材を用い、製品のメッキと同時にこれをメッキし、ほぼメッキ部分のみ溶解して化学分析等でこのテストピース中の検査対象元素の濃度を正確に決める方法がとられる場合がある。   In order to solve these problems, a stainless steel substrate that is difficult to dissolve chemically is used as the base material for plating, and this is plated at the same time as the product is plated. In some cases, a method for accurately determining the concentration of the element to be inspected in the test piece may be used.

しかしながら、この方法では、検査対象元素の濃度は比較的正確に決められるものの、蛍光X線分析法で検査対象元素の特性X線強度を求めるときに、検査対象元素の特性X線強度とメッキ主成分の特性X線強度との比で規格化した値を使用する場合には、ステンレススチール中のNi等の存在によりメッキ主成分の特性X線強度が影響を受けてしまうことが問題になる。また、形状や材質の異なる材料では、メッキ膜中に入る検査対象元素の濃度が異なることが知られており、テストピースと実際の物品の検査対象元素の濃度が必ずしも同一ではないことが問題となる。   However, in this method, although the concentration of the element to be inspected can be determined relatively accurately, when the characteristic X-ray intensity of the element to be inspected is determined by the fluorescent X-ray analysis method, When using a value normalized by the ratio with the characteristic X-ray intensity of the component, there is a problem that the characteristic X-ray intensity of the plating main component is affected by the presence of Ni or the like in the stainless steel. In addition, it is known that materials with different shapes and materials have different concentrations of the elements to be inspected into the plating film, and there is a problem that the concentrations of the elements to be inspected in the test piece and the actual article are not necessarily the same. Become.

上記のように、これまでは、メッキ膜部分のみの正確な検査対象元素の濃度が得られなかった。   As described above, until now, an accurate concentration of the element to be inspected only in the plated film portion has not been obtained.

(2)実際の物品において膜厚が薄いメッキ膜の下の基材に検査対象元素が含まれている場合、基材からの影響を受け、蛍光X線分析法では、メッキ膜中のみの検査対象元素の検出ができない。これは、メッキの施される実際の物品に関わる問題であり、たとえ上記(1)の問題が解決したとしても、依然重要な課題である。   (2) In the actual article, when the base material under the thin plating film contains an element to be inspected, it is affected by the base material. In the fluorescent X-ray analysis method, the inspection is only in the plating film. The target element cannot be detected. This is a problem related to an actual article to be plated, and is still an important issue even if the problem (1) is solved.

本発明は、ある基材の上にあるメッキ膜中の検査対象元素の有無の判定や定量を可能にする高精度検査に必要な標準メッキ膜試料の作製技術およびこの標準メッキ膜試料を用いたメッキ膜の検査方法を提供することを目的とする。本発明の更に他の目的および利点は、以下の説明から明らかになるであろう。   The present invention uses a standard plating film sample production technique necessary for high-precision inspection that enables determination and quantification of the presence or absence of an element to be inspected in a plating film on a certain substrate, and the standard plating film sample. It aims at providing the inspection method of a plating film. Still other objects and advantages of the present invention will become apparent from the following description.

本発明の一態様によれば、基材上のメッキ膜中の検査対象元素を蛍光X線分析法により検査するための標準メッキ膜試料であって、プラスチック基材上にメッキ膜を形成した後、当該メッキ膜に対し化学的および物理的損傷を実質的に与えない方法で当該プラスチック基材を除去して得た標準メッキ膜試料が提供される。   According to one aspect of the present invention, a standard plating film sample for inspecting an element to be inspected in a plating film on a substrate by a fluorescent X-ray analysis method, after the plating film is formed on a plastic substrate A standard plating film sample obtained by removing the plastic substrate by a method that does not substantially cause chemical and physical damage to the plating film is provided.

本発明態様により、基材上のメッキ膜中の検査対象元素の有無の判定や定量を可能にする標準メッキ膜試料が得られる。   According to the aspect of the present invention, a standard plating film sample that enables determination and quantification of the presence or absence of the inspection target element in the plating film on the substrate can be obtained.

前記検査対象元素が、鉛、カドミウム、水銀からなる群から選ばれた少なくとも一つの元素であること、および、前記プラスチック基材上のメッキ膜が、ニッケル、亜鉛、錫からなる群から選ばれた少なくとも一つの金属元素を(たとえば主成分として)含んでなるメッキ膜であることが好ましい。   The element to be inspected is at least one element selected from the group consisting of lead, cadmium and mercury, and the plating film on the plastic substrate is selected from the group consisting of nickel, zinc and tin A plating film containing at least one metal element (for example, as a main component) is preferable.

本発明の他の一態様によれば、基材上のメッキ膜中の検査対象元素を蛍光X線分析法により検査するメッキ膜検査方法であって、上記の標準メッキ膜試料から求めた当該検査対象元素の濃度と、当該標準メッキ膜試料から蛍光X線分析法により求めた当該検査対象元素の特性X線強度とから、標準メッキ膜試料中の当該検査対象元素の濃度と特性X線強度との関係を求め、当該基体上メッキ膜中の当該検査対象元素についての特性X線強度から、当該関係を用いて、当該基体上メッキ膜中の当該検査対象元素の濃度を求めることを含むメッキ膜検査方法が提供される。   According to another aspect of the present invention, there is provided a plating film inspection method for inspecting an element to be inspected in a plating film on a substrate by a fluorescent X-ray analysis method, wherein the inspection is obtained from the standard plating film sample. From the concentration of the target element and the characteristic X-ray intensity of the inspection target element obtained from the standard plating film sample by fluorescent X-ray analysis, the concentration of the inspection target element in the standard plating film sample and the characteristic X-ray intensity And determining the concentration of the element to be inspected in the plating film on the substrate using the relationship from the characteristic X-ray intensity of the element to be inspected in the plating film on the substrate. An inspection method is provided.

本発明態様により、基材上のメッキ膜中の検査対象元素の有無の判定や定量を可能にする新規なメッキ膜の検査技術が得られる。   According to the aspect of the present invention, a novel plating film inspection technique that enables determination and quantification of the presence or absence of an inspection target element in a plating film on a substrate can be obtained.

前記の標準メッキ膜試料中の当該検査対象元素の濃度と特性X線強度との関係を第一の関係とした場合に、上記の標準メッキ膜試料から求めた当該検査対象元素の濃度と、当該標準メッキ膜試料と1以上の材料とを組み合わせたものから蛍光X線分析法により求めた当該検査対象元素の特性X線強度との第二の関係を求め、当該基体上メッキ膜中の当該検査対象元素についての特性X線強度から、第一の関係を用いて当該基体上メッキ膜中の当該検査対象元素の濃度を求めるに際し、第一の関係と、当該基材の材質と同一または類似の材質よりなる材料を使用した場合の第二の関係との間の関係で補正を行えば、下地である基材の影響を回避することができ、好ましい。   When the relationship between the concentration of the inspection target element in the standard plating film sample and the characteristic X-ray intensity is the first relationship, the concentration of the inspection target element obtained from the standard plating film sample, A second relationship with the characteristic X-ray intensity of the element to be inspected determined by fluorescent X-ray analysis from a combination of a standard plating film sample and one or more materials is obtained, and the inspection in the plating film on the substrate is performed. When determining the concentration of the element to be inspected in the plating film on the substrate from the characteristic X-ray intensity of the target element using the first relation, the first relation is the same as or similar to the material of the base material. It is preferable to perform correction based on the relationship with the second relationship when a material made of a material is used, because it is possible to avoid the influence of the base material that is the base.

本態様は、前記蛍光X線分析法が、前記メッキ膜の下の基材中に存在し得る検査対象元素を励起する程度の高エネルギーのX線を使用するものであっても利用することができる。   This aspect can be used even if the X-ray fluorescence analysis method uses high-energy X-rays that excite the element to be inspected that may exist in the substrate under the plating film. it can.

前記基材が検査対象元素を含む場合には、前記基材上にあるメッキ膜から検査対象元素の特性X線強度を求めるに際し、メッキ膜厚による減衰を考慮した上で前記基材中に含まれる検査対象元素に由来する特性X線強度を差し引いた強度を前記特性X線強度として用いると測定精度を向上させることができ、好ましい。その場合にメッキ膜厚が異なる2種類以上のメッキ膜を用いて、メッキ膜厚と主成分元素の特性X線強度との関係を求め、前記基体上メッキ膜中の主成分の特性X線強度から、当該関係を用いて得たメッキ膜厚を前記メッキ膜厚として使用することが実用上好ましい。   When the base material contains an element to be inspected, the characteristic X-ray intensity of the element to be inspected is determined from the plating film on the base material, and is included in the base material in consideration of attenuation due to the plating film thickness. If the intensity obtained by subtracting the characteristic X-ray intensity derived from the element to be inspected is used as the characteristic X-ray intensity, the measurement accuracy can be improved, which is preferable. In this case, the relationship between the plating film thickness and the characteristic X-ray intensity of the main component element is obtained by using two or more types of plating films having different plating film thicknesses, and the characteristic X-ray intensity of the main component in the plating film on the substrate is determined. Therefore, it is practically preferable to use the plating film thickness obtained using this relationship as the plating film thickness.

また、検査対象元素のピーク位置に特性X線が重なる妨害元素がメッキ膜中に存在する場合には、複数濃度の当該妨害元素を含み検査対象元素を含まないメッキ膜を用いて、予め、妨害元素の濃度と、検査対象元素のピーク位置における妨害元素の特性X線強度との関係を求め、前記基材上にあるメッキ膜について検査対象元素の特性X線強度を求める際に、当該メッキ膜中における妨害元素の濃度から、検査対象元素のピーク位置における妨害元素の特性X線強度への寄与分を定め、この寄与分を差し引いた値を検査対象元素の特性X線強度とすることが好ましい。   In addition, when there is an interfering element with characteristic X-rays overlapping in the peak position of the inspection target element in the plating film, a plating film containing a plurality of concentrations of the interfering element and not including the inspection target element is used in advance. When determining the relationship between the concentration of the element and the characteristic X-ray intensity of the interfering element at the peak position of the inspection target element, and determining the characteristic X-ray intensity of the inspection target element for the plating film on the substrate, the plating film It is preferable that a contribution to the characteristic X-ray intensity of the interfering element at the peak position of the inspection target element is determined from the concentration of the interfering element in the inside, and a value obtained by subtracting this contribution is used as the characteristic X-ray intensity of the inspection target element. .

本発明によれば、ある基材上のメッキ膜中の検査対象元素の有無の判定や定量を可能にする標準メッキ膜試料およびこの試料を用いた新規なメッキ膜の検査技術が提供される。本発明により、例えば、材料または部品等の物品に施されているメッキ膜中に、RoHS指令で規制されている濃度の鉛またはカドミウムを含有するか否かを、非破壊で迅速に検査・判定することができるようになる。   ADVANTAGE OF THE INVENTION According to this invention, the test | inspection of the new plating film using the standard plating film sample which enables the determination and determination of the presence or absence of the element to be inspected in the plating film on a certain base material, and this sample is provided. According to the present invention, for example, whether or not a plating film applied to an article such as a material or a component contains lead or cadmium at a concentration regulated by the RoHS directive can be quickly inspected and determined. Will be able to.

以下に、本発明の実施の形態を図、表、式、実施例等を使用して説明する。なお、これらの図、表、式、実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, tables, formulas, examples and the like. In addition, these figures, tables, formulas, examples, etc., and explanations exemplify the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention.

本発明に係る標準メッキ膜試料は、プラスチック基材上にメッキ膜を形成した後、当該メッキ膜に対し化学的および物理的損傷を与えない方法で当該プラスチック基材を除去して得られる。   The standard plated film sample according to the present invention is obtained by forming a plated film on a plastic substrate and then removing the plastic substrate by a method that does not cause chemical and physical damage to the plated film.

この標準メッキ膜試料は、化学分析等の任意の方法で容易に検査対象元素の濃度を正確に求めることができ、基材上のメッキ膜中の検査対象元素を蛍光X線分析法により検査する際に、検査対象元素の濃度の正確にわかった標準試料として好適に使用できることが判明した。通常は、検査対象元素の濃度を種々変えた標準メッキ膜試料を準備し、後述する第一の関係や第二の関係の作成に供する。   This standard plating film sample can easily determine the concentration of the element to be inspected easily by any method such as chemical analysis, and inspects the element to be inspected in the plating film on the substrate by fluorescent X-ray analysis. At that time, it was found that the sample can be suitably used as a standard sample in which the concentration of the element to be inspected is accurately known. Usually, standard plating film samples with various concentrations of the element to be inspected are prepared and used for creating the first relationship and the second relationship described later.

本発明において、基材とは、メッキが施される物品またはその一部を意味し、特に制限はない。通常は金属または合金であるがそれ以外のもの、例えばプラスチックでもよい。本発明に係るメッキ膜についても特に制限はなく、公知のメッキ膜を対象にできる。例えば、ニッケル、亜鉛、錫からなる群から選ばれた少なくとも一つの金属を含んでなるメッキ膜を例示することができる。   In the present invention, the substrate means an article to be plated or a part thereof and is not particularly limited. Usually, it is a metal or an alloy, but other materials such as plastic may be used. The plating film according to the present invention is not particularly limited, and can be a known plating film. For example, a plating film containing at least one metal selected from the group consisting of nickel, zinc, and tin can be exemplified.

本発明に係る前記検査対象元素についても特に制限はない。通常は、安全衛生上の法規制がある元素が対象となる。鉛、カドミウム、水銀からなる群から選ばれた少なくとも一つの元素を例示することができる。本発明は、特に鉛に対して好適に使用できる。なお、一つの標準メッキ膜試料に含まれる検査対象元素は複数種類であってもよい場合もある。   There is no particular limitation on the element to be inspected according to the present invention. Usually, elements that have health and safety laws and regulations are targeted. Examples include at least one element selected from the group consisting of lead, cadmium, and mercury. The present invention can be preferably used particularly for lead. Note that there may be a plurality of types of inspection target elements included in one standard plating film sample.

メッキ膜から基材を除去する方法については、メッキ膜に対し化学的および物理的損傷を実質的に与えない方法であれば特に制限はない。プラスチック基材を溶解除去する方法を例示できる。メッキ膜に対し化学的損傷を与えなかったかどうかは、得られたメッキ膜の外観検査や、除外された基材側(例えば、プラスチック基材が溶解した溶液)にメッキ成分が混ざっていないかどうかの検査で判断できる。また、メッキ膜に対し物理的損傷を与えなかったかどうかは、得られたメッキ膜の外観検査で判断できる。「実質的に与えない」とは、実際に、この標準メッキ膜試料を使用する場合に、検査対象元素の濃度が、実用上差し支えないほどに正確に測定できることを意味する。具体的には光学顕微鏡を使用した目視検査で外観上損傷が見出されなければ、「実質的に与えない」と判断してよい。   The method for removing the substrate from the plating film is not particularly limited as long as it does not substantially give chemical and physical damage to the plating film. A method for dissolving and removing the plastic substrate can be exemplified. Whether or not the plating film was chemically damaged depends on the appearance inspection of the obtained plating film and whether or not plating components are mixed on the excluded substrate side (for example, a solution in which a plastic substrate is dissolved). Can be judged by inspection. Further, whether or not physical damage has been given to the plating film can be determined by an appearance inspection of the obtained plating film. “Substantially not give” means that, when this standard plating film sample is actually used, the concentration of the element to be inspected can be measured with such accuracy as to be practically acceptable. Specifically, if no visual damage is found by visual inspection using an optical microscope, it may be determined that “substantially no damage”.

本発明に係る標準メッキ膜試料は、基材上のメッキ膜中の検査対象元素を蛍光X線分析法により検査する場合に好適に使用できる。   The standard plating film sample according to the present invention can be suitably used when the element to be inspected in the plating film on the substrate is inspected by fluorescent X-ray analysis.

具体的には、まず、上記標準メッキ膜試料から求めた検査対象元素の濃度と、この標準メッキ膜試料から蛍光X線分析法により求めた検査対象元素の特性X線強度との関係から、標準メッキ膜試料中の当該検査対象元素の濃度と特性X線強度との関係(第一の関係)を求める。最低一組の関係でもよいが、複数組のデータを使用すれば、この関係を、例えば直線関係や、一定の関係式で表せるようになるので好ましい。   Specifically, first, from the relationship between the concentration of the inspection target element obtained from the standard plating film sample and the characteristic X-ray intensity of the inspection target element obtained from the standard plating film sample by the fluorescent X-ray analysis method, A relationship (first relationship) between the concentration of the element to be inspected in the plated film sample and the characteristic X-ray intensity is obtained. Although at least one set of relationships may be used, it is preferable to use a plurality of sets of data because this relationship can be expressed by, for example, a linear relationship or a fixed relational expression.

次いで、上記基体上メッキ膜中の同じ検査対象元素についての特性X線強度から、上記第一の関係を用いて、基体上メッキ膜中の検査対象元素の濃度を求めるのである。なお、ここで「検査」には、検査対象元素の濃度の測定の他検査対象元素の有無の確認も含まれる。「第一の関係を用いて」とは、具体的には、第一の関係を示すグラフを用いたり、上記関係式を使用したりすることを意味する。   Next, the concentration of the inspection target element in the plating film on the substrate is obtained from the characteristic X-ray intensity of the same inspection target element in the plating film on the substrate using the first relationship. Here, “inspection” includes not only measurement of the concentration of the element to be inspected but also confirmation of the presence or absence of the element to be inspected. “Using the first relationship” specifically means using a graph indicating the first relationship or using the above relational expression.

この方法では、標準メッキ膜試料から求めた検査対象元素の濃度を基に基体上のメッキ膜中の検査対象元素の濃度を求めるものであるから、標準メッキ膜試料から求めた検査対象元素の濃度は、実際に必要とされる程度に正確なものでなければならない。検査対象元素の濃度をどの程度正確に求めるかは実情に応じて定めることができるが、一般的には重量ppmオーダまで正確に測定できることが好ましい。   In this method, since the concentration of the element to be inspected in the plating film on the substrate is obtained based on the concentration of the element to be inspected obtained from the standard plating film sample, the concentration of the element to be inspected obtained from the standard plating film sample is determined. Must be as accurate as actually required. How accurately the concentration of the element to be inspected can be determined according to the actual situation, but it is generally preferable that it can be accurately measured to the order of ppm by weight.

この濃度を求める技術には特に制限はなく、化学分析等任意の方法を使用できる。なお、精度の高い蛍光X線分析技術が利用できる場合には、蛍光X線分析法でも構わない。第一の関係を得る場合や基体上のメッキ膜についてそれより精度の低い蛍光X線分析技術を使用する場合には、そのようなやり方も有用であり得る。   There is no restriction | limiting in particular in the technique which calculates | requires this density | concentration, Arbitrary methods, such as a chemical analysis, can be used. If a highly accurate X-ray fluorescence analysis technique can be used, X-ray fluorescence analysis may be used. Such an approach may also be useful when obtaining the first relationship or using a less accurate X-ray fluorescence analysis technique for the plating film on the substrate.

本発明に係る蛍光X線分析法については特に制限はなく公知の方法を適宜使用できる。第一の関係を得る場合や基体上のメッキ膜について使用する蛍光X線分析法についても特に制限はなく、公知の技術を提供できる。ただし、この両者が同一の技術ではない場合や、同一の技術であっても同一の装置ではなく、測定上の数値にずれが生じ得る場合には、両者の関係を結びつける関係を予め求め、それで補正する必要性が生じる場合もあり得る。本発明はそのような場合も包含する。   The fluorescent X-ray analysis method according to the present invention is not particularly limited, and a known method can be appropriately used. The X-ray fluorescence analysis method used for obtaining the first relationship or the plating film on the substrate is not particularly limited, and a known technique can be provided. However, if the two are not the same technology, or even the same technology is not the same device, and there may be a deviation in the numerical values in the measurement, a relationship that links the relationship between the two is obtained in advance. There may be a need for correction. The present invention includes such a case.

なお、上記において、特性X線強度は、検査対象元素から得られる特性X線の強度そのものを用いてもよいが、同様にして得たメッキ主成分の特性X線強度との比を用い、主成分量に対し規格化した値を使用してもよい。そのようにすると精度が更に向上することが期待される。この場合の「強度」はピーク値を用いても、積分値(特性X線スペクトルの面積)を用いてもよく、その他の方法を採用してもよい。一般的には、積分値を用いることが好ましい。   In the above, the characteristic X-ray intensity may be the characteristic X-ray intensity itself obtained from the element to be inspected, but the ratio with the characteristic X-ray intensity of the plating main component obtained in the same manner is used as the main characteristic X-ray intensity. You may use the value normalized with respect to the amount of components. By doing so, it is expected that the accuracy will be further improved. In this case, the “intensity” may be a peak value, an integral value (area of the characteristic X-ray spectrum), or other methods. In general, it is preferable to use an integral value.

精度を更に上げたい場合には、上記方法に加え、標準メッキ膜試料から求めた検査対象元素の濃度と、標準メッキ膜試料と1以上の材料とを組み合わせたものから蛍光X線分析法により求めた当該検査対象元素の特性X線強度との第二の関係を求め、基体上メッキ膜中の検査対象元素についての特性X線強度から、第一の関係を用いて基体上メッキ膜中の検査対象元素の濃度を求めるに際し、第一の関係と第二の関係との間の関係で補正する方法が有用である。   In order to further improve the accuracy, in addition to the above method, the concentration of the element to be inspected obtained from the standard plating film sample and the combination of the standard plating film sample and one or more materials are obtained by fluorescent X-ray analysis. The second relationship with the characteristic X-ray intensity of the element to be inspected is obtained, and the inspection in the plating film on the substrate is performed using the first relationship from the characteristic X-ray intensity of the element to be inspected in the plating film on the substrate. In obtaining the concentration of the target element, a method of correcting by the relationship between the first relationship and the second relationship is useful.

もちろん、基体上メッキ膜中の検査対象元素についての特性X線強度から、第一の関係の代わりに直接第二の関係を用いて、基体上メッキ膜中の検査対象元素の濃度を求めてもよいが、上記のようにすると、種々の基材材料に対し、例えば一つの関係とそれぞれの材料に対する補正係数とを準備するだけでよいので、より簡便である。   Of course, from the characteristic X-ray intensity of the element to be inspected in the plating film on the substrate, the concentration of the element to be inspected in the plating film on the substrate can be obtained directly using the second relationship instead of the first relationship. Although it is good as mentioned above, since it is only necessary to prepare, for example, one relationship and a correction coefficient for each material for various substrate materials, it is more convenient.

上記補正方法としてはどのような方法を採用してもよいが、第一の関係も第二の関係も一次式で表される場合が多いので、そのような場合には、第二の関係と第一の関係の勾配の比を係数として、第一の関係から得られた検査対象元素の濃度にこの係数を掛けた値を実際の検査対象元素の濃度とすればよい。   Any method may be adopted as the correction method, but since the first relationship and the second relationship are often expressed by a linear expression, in such a case, the second relationship and The ratio of the gradient of the first relationship is used as a coefficient, and the value obtained by multiplying the concentration of the element to be inspected obtained from the first relationship by this coefficient may be used as the actual concentration of the element to be inspected.

このようにすると、例えば、基材が検査対象元素を含んでいる場合や、検査対象元素を含んでいなくても、実際上の検査に影響が出るものである場合に、その影響を除外できる効果が得られる。後者としては、例えばアルミニウムを基材とした、ニッケルリンメッキ中の鉛を検査する場合を例示できる。   In this way, for example, when the base material contains an element to be inspected, or when the base material does not contain the element to be inspected, the influence on the actual inspection can be excluded. An effect is obtained. As the latter, for example, a case of inspecting lead in nickel phosphorus plating using aluminum as a base material can be exemplified.

上記の場合、「1以上の材料」は基材に対応するものを意味する。したがって、予め、基材として使用されるであろうと思われる材料を用いて上記第二の関係を求めておき、基体上メッキ膜中の検査対象元素について検査する場合には、その基体と同一または類似する材料に関する第二の関係を選択し、補正に供することになる。ここで「類似」とは、検査に影響を与えるであろう因子を含まない以外は同一であることを意味する。例えば、実際の基材には検査に影響を与えない元素が含まれている場合に、その元素を含まない以外の点ではその組成が実際の基材と一致する材料を上記材料として使用する場合である。メッキの主成分の濃度や構成比が若干異なる場合であっても検査に影響を与えない場合が多いので、そのような場合も上記「類似」の範疇に属する。上記材料の形状や寸法は実際の基材の形状や寸法と完全に一致する必要はない。   In the above case, “one or more materials” means those corresponding to the substrate. Therefore, when the second relationship is obtained in advance using a material that is supposed to be used as a base material, and the inspection target element in the plating film on the base is inspected, it is the same as the base or A second relationship for similar materials will be selected for correction. Here, “similar” means identical except that it does not include factors that will affect the examination. For example, when an actual base material contains an element that does not affect inspection, a material whose composition matches that of the actual base material is used as the above material except that the element is not included. It is. Even when the concentration and composition ratio of the main component of plating are slightly different, there are many cases where the inspection is not affected, and such a case also belongs to the category of “similarity”. The shape and dimensions of the material need not completely match the shape and dimensions of the actual substrate.

なお、第一の関係や第二の関係を得る場合や基体上のメッキ膜について使用する蛍光X線分析法については、採用する蛍光X線分析法が、メッキ膜の下の基材中に存在し得る検査対象元素を励起する程度の高エネルギーのX線を使用するものであっても、実用上問題ないほどの精度が得られることが判明した。これは簡易型の蛍光X線分析装置を使用できることを意味するので、有用性が大きい。   In addition, when obtaining the first relationship or the second relationship, or for the fluorescent X-ray analysis method used for the plating film on the substrate, the fluorescent X-ray analysis method used is present in the base material under the plating film. It has been found that even with the use of high-energy X-rays that excite the possible elements to be inspected, the accuracy can be obtained with no practical problem. This means that a simple fluorescent X-ray analyzer can be used, and thus is very useful.

基材が検査対象元素を含む場合には、上記補正方法に代えてあるいは上記補正方法と共に、基材上にあるメッキ膜から検査対象元素の特性X線強度を求めるに際し、メッキ膜厚による減衰を考慮した上で前記基材中に含まれる検査対象元素に由来する特性X線強度を差し引いた強度を特性X線強度として用いることも好ましい方法である。このようにすると、基材が検査対象元素を含む場合にもその影響を十分にうち消すことができる。   When the base material contains an element to be inspected, instead of the above correction method or together with the above correction method, when determining the characteristic X-ray intensity of the element to be inspected from the plating film on the base material, attenuation due to the plating film thickness is reduced. It is also a preferable method to use the intensity obtained by subtracting the characteristic X-ray intensity derived from the inspection target element contained in the base material as the characteristic X-ray intensity in consideration. In this way, even when the base material contains an element to be inspected, the influence can be sufficiently eliminated.

ただし、この場合には、メッキ膜厚の測定と、蛍光X線分析法による、基材のみを対象とする検査対象元素の特性X線強度の測定が必要である。メッキ厚の測定については任意の公知の方法を使用することができるが、メッキ膜厚が異なる2種類以上のメッキ膜を用いて、メッキ膜厚と主成分元素の特性X線強度との関係を予め求め、この関係を用いて、基体上メッキ膜中の主成分の特性X線強度からメッキ膜厚を求める方法が、同じ蛍光X線分析法を利用できるので簡便であり、好ましい。このようにして、メッキ膜厚と、蛍光X線分析法による、基材のみを対象とする検査対象元素の特性X線強度が得られれば、例えば、X線の減衰式:I=I−μt・・・式(2)(ここで、Iは透過X線の強度(cps/mA)、Iは入射X線の強度(cps/mA)、μは線吸収係数(cm−1)、tはメッキ膜厚(cm)である。)を用いて、メッキ膜により減衰した、基材中に含まれる検査対象元素に由来する特性X線強度を求めることができる。なお、この場合の「メッキ膜厚が異なる2種類以上のメッキ膜」として、本発明に係る標準メッキ膜試料を使用することができる。 However, in this case, it is necessary to measure the plating film thickness and the characteristic X-ray intensity of the element to be inspected only for the substrate by the fluorescent X-ray analysis method. Although any known method can be used for measuring the plating thickness, the relationship between the plating film thickness and the characteristic X-ray intensity of the main component element is determined using two or more types of plating films having different plating film thicknesses. A method of obtaining the plating film thickness from the characteristic X-ray intensity of the main component in the plating film on the substrate using this relationship in advance is preferable because the same fluorescent X-ray analysis method can be used. Thus, if the plating film thickness and the characteristic X-ray intensity of the element to be inspected only for the base material are obtained by the fluorescent X-ray analysis method, for example, the X-ray attenuation formula: I = I 0 e −μt (2) (where I is the intensity of transmitted X-ray (cps / mA), I 0 is the intensity of incident X-ray (cps / mA), and μ is the linear absorption coefficient (cm −1 ). , T is the plating film thickness (cm)), and the characteristic X-ray intensity derived from the element to be inspected contained in the base material attenuated by the plating film can be obtained. In this case, the standard plating film sample according to the present invention can be used as “two or more types of plating films having different plating film thicknesses”.

さらに、特性X線をそのピーク値で決める場合、検査対象元素のピーク位置に特性X線が重なる妨害元素がメッキ膜中に存在するときには、複数濃度の当該妨害元素を含み検査対象元素を含まないメッキ膜を用いて、予め、妨害元素の濃度と、検査対象元素のピーク位置における妨害元素の特性X線強度との関係を求め、これを用いて補正することが好ましい。   Further, when the characteristic X-ray is determined by the peak value, when there is an interfering element in the plating film where the characteristic X-ray overlaps the peak position of the inspection target element, the interference target element including a plurality of concentrations of the interfering element is not included. It is preferable to obtain a relationship between the concentration of the interfering element and the characteristic X-ray intensity of the interfering element at the peak position of the element to be inspected in advance using the plating film, and correct it using this.

具体的には、メッキ膜中における妨害元素の濃度を別途求めておき、基材上にあるメッキ膜について検査対象元素の特性X線強度を求める際に、メッキ膜中における妨害元素の濃度から、検査対象元素のピーク位置における妨害元素の特性X線強度への寄与分を定め、この寄与分を差し引いた値を検査対象元素の特性X線強度とするのである。たとえば、メッキ膜中における妨害元素の濃度がある値である場合に、上記関係からその濃度における検査対象元素のピーク位置における妨害元素の特性X線強度がXcps/mAであり、基材上にあるメッキ膜について検査対象元素の特性X線強度がYcps/mAであれば、(Y−X)cps/mA)をその基材上にあるメッキ膜について検査対象元素の真の特性X線強度であるとするのである。なお、特性X線強度を積分値で求める場合には、上記に代えて、妨害元素の特性X線スペクトルにおける、検査対象元素のピーク位置からスペクトルの裾野までの積分値を妨害元素の寄与分とする方法が考えられる。   Specifically, the concentration of the interfering element in the plating film is separately obtained, and when determining the characteristic X-ray intensity of the element to be inspected for the plating film on the substrate, from the concentration of the interfering element in the plating film, The contribution to the characteristic X-ray intensity of the interfering element at the peak position of the inspection target element is determined, and the value obtained by subtracting this contribution is used as the characteristic X-ray intensity of the inspection target element. For example, when the concentration of the interfering element in the plating film is a certain value, the characteristic X-ray intensity of the interfering element at the peak position of the element to be inspected at that concentration is Xcps / mA from the above relationship and is on the substrate. If the characteristic X-ray intensity of the element to be inspected for the plated film is Ycps / mA, (YX) cps / mA) is the true characteristic X-ray intensity of the element to be inspected for the plated film on the substrate. It is. When the characteristic X-ray intensity is obtained as an integral value, instead of the above, in the characteristic X-ray spectrum of the interfering element, the integrated value from the peak position of the inspection target element to the base of the spectrum is taken as the contribution of the interfering element. A way to do this is possible

このようにして、本発明に係る標準メッキ膜試料を使用し、本発明に係るメッキ膜検査方法を採用すれば、メッキ膜中の検査対象元素を正確に検査することが可能となる。非破壊で迅速に検査できる。メッキ膜の下の基材に検査対象元素が含まれている場合等基材の影響が出る場合にも検査可能である場合が多い。メッキ膜の厚さが薄く、下地である基材の影響が出やすい場合にも検査可能である場合が多い。更にメッキ膜自体に蛍光X線分析を妨害する元素が含まれている場合にも検査可能である場合が多い。   In this way, when the standard plating film sample according to the present invention is used and the plating film inspection method according to the present invention is employed, the element to be inspected in the plating film can be accurately inspected. Non-destructive and quick inspection. In many cases, inspection is possible even when the influence of the base material occurs, such as when the base material under the plating film contains an element to be inspected. In many cases, the plating film can be inspected even when the thickness of the plating film is thin and the influence of the base material as a base is likely to occur. Furthermore, inspection is often possible even when the plating film itself contains an element that interferes with fluorescent X-ray analysis.

以下に、本発明に係る標準メッキ膜試料を用いて作成した検量線を用いて、実際に基材上のメッキ膜中の有害物質量を求める場合について具体的に説明する。なお、蛍光X線分析法にはエネルギー分散型蛍光X線分析装置(日本電子社製JSX−3202EVを用いた。   Below, the case where the amount of harmful substances in the plating film on the substrate is actually determined using a calibration curve created using the standard plating film sample according to the present invention will be specifically described. For the X-ray fluorescence analysis, an energy dispersive X-ray fluorescence analyzer (JSX-3202EV manufactured by JEOL Ltd.) was used.

(本発明に係る標準メッキ膜試料を用いて作製した検量線および補正係数)
図1は、本発明に係る標準メッキ膜試料を用いて作製した検量線の一例である。標準メッキ膜試料は、プラスチック基材の上に種々の鉛濃度のNiPメッキを10μmの厚さで施し、有機溶媒中に浸漬してプラスチック基材を溶解除去した後、得られた膜を純水で洗浄して得た。外観に異常がないことを1000倍の倍率の光学顕微鏡で目視確認した。
(Calibration curve and correction coefficient prepared using the standard plating film sample according to the present invention)
FIG. 1 is an example of a calibration curve produced using a standard plating film sample according to the present invention. The standard plating film sample was prepared by applying NiP plating with various lead concentrations to a thickness of 10 μm on a plastic substrate and immersing it in an organic solvent to dissolve and remove the plastic substrate. Obtained by washing with It was visually confirmed with an optical microscope having a magnification of 1000 times that there was no abnormality in appearance.

図1では、鉛(検査対象元素)の特性X線強度を得る際、メッキ膜の主成分(Ni)の特性X線強度で規格化したため、メッキ面積やメッキ厚さの影響を受けない検量線を作製することができた。   In FIG. 1, when obtaining the characteristic X-ray intensity of lead (element to be inspected), the standard curve is normalized by the characteristic X-ray intensity of the main component (Ni) of the plating film, so that the calibration curve is not affected by the plating area or plating thickness. Was able to be produced.

この標準メッキ膜試料から化学分析によって得られた鉛濃度と蛍光X線分析法によって得られた鉛強度との関係式(3)を得た。これが本発明に係る第一の関係に該当する。   A relational expression (3) between the lead concentration obtained by chemical analysis from the standard plated film sample and the lead strength obtained by fluorescent X-ray analysis was obtained. This corresponds to the first relationship according to the present invention.

Pb/Ni=1.79・10・IPb/Ni+13.0・・・式(3)
(ここで、CPb/NiはNi膜中の鉛濃度、IPb/NiはNi膜中の鉛強度を表す。)
なお、別途、鉄、アルミニウムおよび黄銅について、標準メッキ膜試料から求めた当該検査対象元素の濃度と、標準メッキ膜試料とこれらの材料のそれぞれとを組み合わせたものから蛍光X線分析法により求めた当該検査対象元素の特性X線強度との第二の関係を求め、これらの材料機材として使用した場合に補正係数を求めた。第二の関係の例を図2に、補正係数を表9に示す。
C Pb / Ni = 1.79 · 10 6 · I Pb / Ni +13.0 Formula (3)
(Here, C Pb / Ni represents the lead concentration in the Ni film, and I Pb / Ni represents the lead strength in the Ni film.)
Separately, for iron, aluminum, and brass, the concentration of the element to be inspected obtained from the standard plating film sample and the combination of the standard plating film sample and each of these materials were obtained by fluorescent X-ray analysis. A second relationship with the characteristic X-ray intensity of the element to be inspected was obtained, and a correction coefficient was obtained when used as these material equipment. FIG. 2 shows an example of the second relationship, and Table 9 shows correction coefficients.

Figure 0005034270
Figure 0005034270

(基材上のメッキ中の検査対象元素の上記検量線を用いた検査)
鉛を含む鉄基材上の膜厚6μmのニッケルリンメッキ膜中の鉛を実際に定量分析した例を示す。評価試料には、鉛濃度既知のニッケルリンメッキ膜単体と基材を組み合わせたものを用いた。ニッケルリンメッキ膜単体および基材中の鉛濃度は、それぞれ147重量ppm、1000重量ppmであった。
(Inspection using the above calibration curve of the element to be inspected during plating on the substrate)
An example of actual quantitative analysis of lead in a nickel phosphorus plating film having a film thickness of 6 μm on an iron substrate containing lead is shown. As an evaluation sample, a combination of a nickel phosphorus plating film having a known lead concentration and a base material was used. The lead concentrations in the nickel phosphor plating film alone and the substrate were 147 ppm by weight and 1000 ppm by weight, respectively.

基材が付いた状態のニッケルリンメッキ膜を、一次X線フィルターを使用せずに測定し、構成成分および構成比を調べた結果を表1に示す。濃度測定にはFP法(非特許文献1参照)を採用した。NiとPの検出から、試料にはニッケルリン膜が付いていることが、また、残成分から基材がFe系であることが推定される。   Table 1 shows the results obtained by measuring the nickel phosphorus plating film with the substrate attached without using a primary X-ray filter and examining the constituent components and the constituent ratio. For the concentration measurement, the FP method (see Non-Patent Document 1) was adopted. From the detection of Ni and P, it is estimated that the sample has a nickel phosphorous film, and that the base material is Fe-based from the remaining components.

Figure 0005034270
Figure 0005034270

次いで、基材が付いた状態のニッケルリンメッキ膜を、Pb用一次X線フィルターを使用して測定して得た、主成分のニッケルおよび被検査対象元素である鉛の特性X線強度を表2に示す。   Next, characteristic X-ray intensities of nickel as a main component and lead as an element to be inspected obtained by measuring a nickel phosphorus plating film with a base material using a primary X-ray filter for Pb are shown. It is shown in 2.

Figure 0005034270
Figure 0005034270

また、あらかじめ、本発明に係る標準メッキ膜試料を用いて調べた、Ni膜厚とNi強度との関係(式(1)および図3)から、Ni膜tNiを求めた。結果を表3に示す。 In addition, the Ni film tNi was obtained from the relationship between the Ni film thickness and the Ni strength (formula (1) and FIG. 3), which was previously investigated using the standard plating film sample according to the present invention. The results are shown in Table 3.

Ni=5.0・10−8・INi +1.8・10−4・INi+0.3・・・式(1)
(ここで、tNiはNi膜の膜厚(μm)、INiはNiの特性X線強度である。
t Ni = 5.0 · 10 −8 · I Ni 2 + 1.8 · 10 −4 · I Ni +0.3 (1)
(Where t Ni is the film thickness (μm) of the Ni film, and I Ni is the characteristic X-ray intensity of Ni.

Figure 0005034270
Figure 0005034270

次いで、ニッケルリンメッキ膜を除去して得た基材を、一次X線フィルターを使用せずに測定し、構成成分および構成比を調べた。濃度測定には上記と同様FP法を採用した。結果を表4に示す。表4の結果から、メッキ基材はFe系であることが確認された。   Subsequently, the base material obtained by removing the nickel phosphorus plating film was measured without using a primary X-ray filter, and the constituent components and the constituent ratio were examined. For the concentration measurement, the FP method was adopted as described above. The results are shown in Table 4. From the results in Table 4, it was confirmed that the plating base material was Fe-based.

Figure 0005034270
Figure 0005034270

ついで、ニッケルリンメッキ膜を除去して得た基材を、Pb用一次X線フィルターを使用して測定した。得られた鉛の特性X線強度を表5に示す。   Subsequently, the base material obtained by removing the nickel phosphorus plating film was measured using a primary X-ray filter for Pb. Table 5 shows the characteristic X-ray intensity of the obtained lead.

Figure 0005034270
Figure 0005034270

この値と上記メッキ厚を使用して、上記式(2)を用いて求めた、ニッケルリンメッキ膜表面から出てくる基材由来の鉛の特性X線強度を求めた。結果を表6に示す。   Using this value and the plating thickness, the characteristic X-ray intensity of the lead derived from the substrate coming out from the surface of the nickel phosphorus plating film, which was obtained using the above formula (2), was obtained. The results are shown in Table 6.

Figure 0005034270
Figure 0005034270

次いで、基材付きニッケルリンメッキ膜から得たPb強度から、メッキ膜表面から出てくる基材由来の鉛の特性X線強度を差し引き、メッキ膜中のみの鉛強度を求めた。結果を表7に示す。   Next, the characteristic X-ray intensity of the lead derived from the base material coming out of the surface of the plating film was subtracted from the Pb intensity obtained from the nickel phosphorus plating film with the base material to obtain the lead strength only in the plating film. The results are shown in Table 7.

Figure 0005034270
Figure 0005034270

次いで、得られたメッキ膜中のみの鉛強度(表7)を、メッキ膜主成分のニッケル強度で規格化した値を、上記式(3)に代入して得た鉛濃度を表8に示す。基材の種類による補正係数は鉄の場合は1.00であるので、上記式(3)に代入して得た鉛濃度がそのまま本発明により得られた鉛濃度である。この結果は、上記の147重量ppmとよく一致した。   Next, Table 8 shows the lead concentration obtained by substituting the value obtained by normalizing the lead strength (Table 7) only in the obtained plating film with the nickel strength of the plating film main component into the above formula (3). . Since the correction coefficient according to the type of base material is 1.00 in the case of iron, the lead concentration obtained by substituting into the above formula (3) is the lead concentration obtained by the present invention as it is. This result agreed well with the above-mentioned 147 ppm by weight.

Figure 0005034270
Figure 0005034270

以上のように、本発明を用いることにより、基材中に同一検査対象元素が含まれる場合でも、また、メッキ膜が薄く、基材の影響が出る場合にも、検査対象元素の濃度を正確に把握することができる。   As described above, by using the present invention, even when the same element to be inspected is contained in the substrate, or when the plating film is thin and the influence of the substrate is exerted, the concentration of the element to be inspected can be accurately determined. Can grasp.

なお、上記に開示した内容から、下記の付記に示した発明が導き出せる。   In addition, the invention shown to the following additional remarks can be derived from the content disclosed above.

(付記1)
基材上のメッキ膜中の検査対象元素を蛍光X線分析法により検査するための標準メッキ膜試料であって、プラスチック基材上にメッキ膜を形成した後、当該メッキ膜に対し化学的および物理的損傷を実質的に与えない方法で当該プラスチック基材を除去して得た標準メッキ膜試料。
(Appendix 1)
A standard plating film sample for inspecting an element to be inspected in a plating film on a substrate by fluorescent X-ray analysis, and after forming a plating film on a plastic substrate, A standard plated film sample obtained by removing the plastic substrate by a method that does not substantially cause physical damage.

(付記2)
前記検査対象元素が、鉛、カドミウム、水銀からなる群から選ばれた少なくとも一つの元素である、付記1に記載の標準メッキ膜試料。
(Appendix 2)
The standard plated film sample according to appendix 1, wherein the element to be inspected is at least one element selected from the group consisting of lead, cadmium, and mercury.

(付記3)
前記プラスチック基材上のメッキ膜が、ニッケル、亜鉛、錫からなる群から選ばれた少なくとも一つの金属を含んでなるメッキ膜である、付記1または2に記載の標準メッキ膜試料。
(Appendix 3)
The standard plating film sample according to appendix 1 or 2, wherein the plating film on the plastic substrate is a plating film containing at least one metal selected from the group consisting of nickel, zinc, and tin.

(付記4)
基材上のメッキ膜中の検査対象元素を蛍光X線分析法により検査するメッキ膜検査方法であって、
付記1〜3のいずれかに記載の標準メッキ膜試料から求めた当該検査対象元素の濃度と、当該標準メッキ膜試料から蛍光X線分析法により求めた当該検査対象元素の特性X線強度とから、標準メッキ膜試料中の当該検査対象元素の濃度と特性X線強度との関係を求め、
当該基体上メッキ膜中の当該検査対象元素についての特性X線強度から、当該関係を用いて、当該基体上メッキ膜中の当該検査対象元素の濃度を求める
ことを含むメッキ膜検査方法。
(Appendix 4)
A plating film inspection method for inspecting an element to be inspected in a plating film on a substrate by fluorescent X-ray analysis,
From the density | concentration of the said test object element calculated | required from the standard plating film sample in any one of appendix 1-3, and the characteristic X-ray intensity of the said test object element calculated | required by the fluorescent X ray analysis method from the said standard plating film sample The relationship between the concentration of the element to be inspected in the standard plating film sample and the characteristic X-ray intensity is obtained,
A plating film inspection method including determining the concentration of the inspection target element in the plating film on the substrate from the characteristic X-ray intensity of the inspection target element in the plating film on the substrate using the relationship.

(付記5)
前記の標準メッキ膜試料中の当該検査対象元素の濃度と特性X線強度との関係を第一の関係とし、
付記1〜3のいずれかに記載の標準メッキ膜試料から求めた当該検査対象元素の濃度と、当該標準メッキ膜試料と1以上の材料とを組み合わせたものから蛍光X線分析法により求めた当該検査対象元素の特性X線強度との第二の関係を求め、
当該基体上メッキ膜中の当該検査対象元素についての特性X線強度から、第一の関係を用いて当該基体上メッキ膜中の当該検査対象元素の濃度を求めるに際し、第一の関係と、当該基材の材質と同一または類似の材質よりなる材料を使用した場合の第二の関係との間の関係で補正を行うことを含む、付記4に記載のメッキ膜検査方法。
(Appendix 5)
The first relationship is the relationship between the concentration of the element to be inspected in the standard plating film sample and the characteristic X-ray intensity,
The concentration determined by fluorescent X-ray analysis from the combination of the concentration of the element to be inspected obtained from the standard plated film sample according to any one of appendices 1 to 3 and the standard plated film sample and one or more materials Obtain the second relationship with the characteristic X-ray intensity of the element to be inspected,
When determining the concentration of the element to be inspected in the plating film on the substrate from the characteristic X-ray intensity of the element to be inspected in the plating film on the substrate, using the first relationship, The plating film inspection method according to supplementary note 4, including performing correction based on a relationship with a second relationship when a material made of the same or similar material as the material of the substrate is used.

(付記6)
前記蛍光X線分析法が、前記メッキ膜の下の基材中に存在し得る検査対象元素を励起する程度の高エネルギーのX線を使用する、付記4または5に記載のメッキ膜検査方法。
(Appendix 6)
The plating film inspection method according to appendix 4 or 5, wherein the fluorescent X-ray analysis method uses high-energy X-rays that excite an element to be inspected that may be present in a substrate under the plating film.

(付記7)
前記基材が検査対象元素を含む場合には、前記基材上にあるメッキ膜から検査対象元素の特性X線強度を求めるに際し、メッキ膜厚による減衰を考慮した上で前記基材中に含まれる検査対象元素に由来する特性X線強度を差し引いた強度を前記特性X線強度として用いる、付記4〜6のいずれかに記載のメッキ膜検査方法。
(Appendix 7)
When the base material contains an element to be inspected, the characteristic X-ray intensity of the element to be inspected is determined from the plating film on the base material, and is included in the base material in consideration of attenuation due to the plating film thickness. The plating film inspection method according to any one of appendices 4 to 6, wherein the intensity obtained by subtracting the characteristic X-ray intensity derived from the inspection target element is used as the characteristic X-ray intensity.

(付記8)
メッキ膜厚が異なる2種類以上のメッキ膜を用いて、メッキ膜厚と主成分元素の特性X線強度との関係を求め、前記基体上メッキ膜中の主成分の特性X線強度から、当該関係を用いて得たメッキ膜厚を前記メッキ膜厚として使用する、付記7に記載のメッキ膜検査方法。
(Appendix 8)
Using two or more types of plating films having different plating film thicknesses, the relationship between the plating film thickness and the characteristic X-ray intensity of the main component element is obtained. From the characteristic X-ray intensity of the main component in the plating film on the substrate, The plating film inspection method according to appendix 7, wherein a plating film thickness obtained using the relationship is used as the plating film thickness.

(付記9)
検査対象元素のピーク位置に特性X線が重なる妨害元素がメッキ膜中に存在する場合には、複数濃度の当該妨害元素を含み検査対象元素を含まないメッキ膜を用いて、予め、妨害元素の濃度と、検査対象元素のピーク位置における妨害元素の特性X線強度との関係を求め、前記基材上にあるメッキ膜について検査対象元素の特性X線強度を求める際に、当該メッキ膜中における妨害元素の濃度から、検査対象元素のピーク位置における妨害元素の特性X線強度への寄与分を定め、この寄与分を差し引いた値を検査対象元素の特性X線強度とする、付記4〜8のいずれかに記載のメッキ膜検査方法。
(Appendix 9)
When there is an interfering element with characteristic X-rays overlapping in the peak position of the inspection target element in the plating film, using a plating film that includes a plurality of concentrations of the interfering element and does not include the inspection target element, When obtaining the relationship between the concentration and the characteristic X-ray intensity of the interfering element at the peak position of the inspection target element, and determining the characteristic X-ray intensity of the inspection target element for the plating film on the substrate, Supplementary items 4 to 8 in which a contribution to the characteristic X-ray intensity of the interfering element at the peak position of the inspection target element is determined from the concentration of the interfering element, and a value obtained by subtracting this contribution is the characteristic X-ray intensity of the inspection target element The plating film inspection method according to any one of the above.

本発明に係る標準メッキ膜試料を用いて作製した検量線(第一の関係)の一例を示すグラフである。It is a graph which shows an example of the calibration curve (first relation) produced using the standard plating film sample concerning the present invention. 本発明に係る第二の関係を第一の関係と共に示すグラフの一例である。It is an example of the graph which shows the 2nd relationship which concerns on this invention with a 1st relationship. Ni膜厚とNi強度との関係を示すグラフである。It is a graph which shows the relationship between Ni film thickness and Ni intensity | strength.

Claims (5)

基材上のメッキ膜中の検査対象元素を蛍光X線分析法により検査するメッキ膜検査方法であって、
標準メッキ膜試料から求めた当該検査対象元素の濃度と、当該標準メッキ膜試料から蛍光X線分析法により求めた当該検査対象元素の特性X線強度とから、標準メッキ膜試料中の当該検査対象元素の濃度と特性X線強度との関係を求め、
当該基体上メッキ膜中の当該検査対象元素についての特性X線強度から、当該関係を用いて、当該基体上メッキ膜中の当該検査対象元素の濃度を求める
ことと、
前記の標準メッキ膜試料中の当該検査対象元素の濃度と特性X線強度との関係を第一の関係とし、
標準メッキ膜試料から求めた当該検査対象元素の濃度と、当該標準メッキ膜試料と1以上の材料とを組み合わせたものから蛍光X線分析法により求めた当該検査対象元素の特性X線強度との第二の関係を求め、
当該基体上メッキ膜中の当該検査対象元素についての特性X線強度から、第一の関係を用いて当該基体上メッキ膜中の当該検査対象元素の濃度を求めるに際し、第一の関係と、当該基材の材質と同一または類似の材質よりなる材料を使用した場合の第二の関係との間の関係で補正を行うこととを含み、
当該補正が、第一の関係と第二の関係とを共に一次式で表し、第二の関係と第一の関係の勾配の比を係数として、第一の関係から得られた検査対象元素の濃度にこの係数を掛けた値を実際の検査対象元素の濃度とするものである、
メッキ膜検査方法。
A plating film inspection method for inspecting an element to be inspected in a plating film on a substrate by fluorescent X-ray analysis,
The inspection object in the standard plating film sample is obtained from the concentration of the inspection object element obtained from the standard plating film sample and the characteristic X-ray intensity of the inspection object element obtained from the standard plating film sample by the fluorescent X-ray analysis method. Find the relationship between element concentration and characteristic X-ray intensity,
From the characteristic X-ray intensity of the element to be inspected in the plating film on the substrate, using the relationship, obtain the concentration of the element to be inspected in the plating film on the substrate;
The first relationship is the relationship between the concentration of the element to be inspected in the standard plating film sample and the characteristic X-ray intensity,
The concentration of the element to be inspected obtained from the standard plating film sample and the characteristic X-ray intensity of the element to be inspected obtained by a fluorescent X-ray analysis method from a combination of the standard plating film sample and one or more materials Seeking a second relationship,
When determining the concentration of the element to be inspected in the plating film on the substrate from the characteristic X-ray intensity of the element to be inspected in the plating film on the substrate, using the first relationship, Performing correction in relation to the second relationship when using a material made of the same or similar material as the material of the base material,
The correction expresses both the first relationship and the second relationship by a linear expression, and uses the ratio of the gradient of the second relationship and the first relationship as a coefficient to determine the element to be inspected obtained from the first relationship. The value obtained by multiplying the concentration by this coefficient is the actual concentration of the element to be inspected.
Plated film inspection method.
前記蛍光X線分析法が、前記メッキ膜の下の基材中に存在し得る検査対象元素を励起する程度の高エネルギーのX線を使用する、請求項1に記載のメッキ膜検査方法。   The plating film inspection method according to claim 1, wherein the fluorescent X-ray analysis method uses X-rays having a high energy to excite an element to be inspected that may be present in a base material under the plating film. 前記基材が検査対象元素を含む場合には、前記基材上にあるメッキ膜から検査対象元素の特性X線強度を求めるに際し、メッキ膜厚による減衰を考慮した上で前記基材中に含まれる検査対象元素に由来する特性X線強度を差し引いた強度を前記特性X線強度として用いる、請求項1または2に記載のメッキ膜検査方法。   When the base material contains an element to be inspected, the characteristic X-ray intensity of the element to be inspected is determined from the plating film on the base material, and is included in the base material in consideration of attenuation due to the plating film thickness. The plating film inspection method according to claim 1, wherein an intensity obtained by subtracting a characteristic X-ray intensity derived from an element to be inspected is used as the characteristic X-ray intensity. ラスチック基材上にメッキ膜を形成し、
当該メッキ膜に対し化学的および物理的損傷を実質的に与えないように当該プラスチック基材を除去することによって作製されたメッキ膜試料を前記標準メッキ膜試料を使用する、請求項1に記載のメッキ膜検査方法
A plating film is formed on the plastic substrate,
2. The standard plating film sample according to claim 1, wherein the standard plating film sample is used as a plating film sample produced by removing the plastic substrate so as not to substantially cause chemical and physical damage to the plating film. Plated film inspection method .
前記プラスチック基材は、有機溶媒中への浸漬によって除去されることを特徴とする、請求項4に記載のメッキ膜検査方法 The plating film inspection method according to claim 4, wherein the plastic substrate is removed by immersion in an organic solvent.
JP2006059754A 2006-03-06 2006-03-06 Standard plating film sample and plating film inspection method Expired - Fee Related JP5034270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059754A JP5034270B2 (en) 2006-03-06 2006-03-06 Standard plating film sample and plating film inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059754A JP5034270B2 (en) 2006-03-06 2006-03-06 Standard plating film sample and plating film inspection method

Publications (2)

Publication Number Publication Date
JP2007240196A JP2007240196A (en) 2007-09-20
JP5034270B2 true JP5034270B2 (en) 2012-09-26

Family

ID=38585887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059754A Expired - Fee Related JP5034270B2 (en) 2006-03-06 2006-03-06 Standard plating film sample and plating film inspection method

Country Status (1)

Country Link
JP (1) JP5034270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100383A (en) * 2018-08-31 2018-12-28 深圳市必发达科技有限公司 Standard sample is used in a kind of RoHS detection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003233B2 (en) * 2012-05-29 2016-10-05 株式会社リガク Sample processing method for fluorescent X-ray analysis
CN111948159A (en) * 2020-08-17 2020-11-17 沈阳飞机工业(集团)有限公司 Method for testing nickel content of zinc-nickel alloy coating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138741A (en) * 1985-12-13 1987-06-22 Mitsubishi Heavy Ind Ltd Fluorescent x-ray analysis
JP2873125B2 (en) * 1992-01-28 1999-03-24 日新製鋼株式会社 Method and apparatus for measuring coating weight
JPH05264481A (en) * 1992-03-19 1993-10-12 Nkk Corp On-line measuring method for amount of adhered cr to chromate-treated film on plated steel plate
JPH09155441A (en) * 1995-11-29 1997-06-17 Mitsubishi Materials Corp Manufacture of gold foil
JPH10221047A (en) * 1997-02-03 1998-08-21 Jeol Ltd Fluorescent x-ray film thickness analyzer and method
JP2000146874A (en) * 1998-11-17 2000-05-26 Nkk Corp Analytical method for plated steel sheet, and analyzer therefor
JP2001337056A (en) * 2000-05-29 2001-12-07 Nisshin Steel Co Ltd METHOD FOR MEASURING Ti COATING MASS OF TITANIUM-BASED CHEMICAL CONVERSION COATING FORMED ON SURFACE TREATED STEEL PLATE
JP2005003471A (en) * 2003-06-11 2005-01-06 Murata Mfg Co Ltd X-ray fluorescence analysis method for plating film
JP2005149600A (en) * 2003-11-13 2005-06-09 Tdk Corp Manufacturing method of optical recording medium sample, analyzing method of optical recording medium sample, and manufacturing apparatus of optical recording medium sample
JP2005166104A (en) * 2003-11-28 2005-06-23 Tdk Corp Manufacturing method, analysis method and manufacturing device of optical recording medium sample, and manufacturing method of optical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100383A (en) * 2018-08-31 2018-12-28 深圳市必发达科技有限公司 Standard sample is used in a kind of RoHS detection

Also Published As

Publication number Publication date
JP2007240196A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
EP2333529B1 (en) X-ray fluorescence analyzing method
US11275002B2 (en) Method for detecting mechanoresponse of mechanical component by organic mechanoresponsive luminogen
CN108680523B (en) Method for measuring object to be measured by using multiple fitting modes to link standard curve
JP5034270B2 (en) Standard plating film sample and plating film inspection method
US9494536B1 (en) Methods for predicting corrosion rate of crude oil derived samples using X-ray absorption spectroscopy
KR101908807B1 (en) Apparatus and method for measuring element of metal sample
JPH0541940B2 (en)
Castle et al. Report on the 34th IUVSTA workshop ‘XPS: from spectra to results—towards an expert system’
JP6917668B1 (en) Energy dispersive X-ray fluorescence analyzer, evaluation method and evaluation program
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
JP5526615B2 (en) Sample weight measurement method and apparatus, and hexavalent chromium analysis method and apparatus using the same
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
RU2545321C1 (en) Method of non-destructive estimation of critical changes of metal technical state
JP4978033B2 (en) Hazardous material determination method and apparatus
Guimarães et al. Radioisotope-based XRF instrumentation for determination of lead in paint: an assessment of the current accuracy and reliability of portable analyzers used in New York State
KR101411595B1 (en) Method of measuring coating weight of iridium
JP4834613B2 (en) X-ray fluorescence analyzer and method
JP2010190584A (en) Method and device for measuring hazardous element concentration
Molloy et al. Classification of microheterogeneity in solid samples using µXRF
CN110530906B (en) Method for measuring plutonium concentration in spent fuel solution
Mahuteau Study of algorithms for analysis of XRF spectra to automate inspection of carpets
CN116362209A (en) Method, device, equipment and storage medium for generating material detection report
Siddique et al. Analytical data: reliability and presentation
KR101510592B1 (en) Method for measuring thickness of coating layer
KR20230149943A (en) Measuring method of gold content in gold alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees