JP6003233B2 - Sample processing method for fluorescent X-ray analysis - Google Patents

Sample processing method for fluorescent X-ray analysis Download PDF

Info

Publication number
JP6003233B2
JP6003233B2 JP2012121995A JP2012121995A JP6003233B2 JP 6003233 B2 JP6003233 B2 JP 6003233B2 JP 2012121995 A JP2012121995 A JP 2012121995A JP 2012121995 A JP2012121995 A JP 2012121995A JP 6003233 B2 JP6003233 B2 JP 6003233B2
Authority
JP
Japan
Prior art keywords
sample
analysis
fluorescent
ray
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012121995A
Other languages
Japanese (ja)
Other versions
JP2013246137A (en
Inventor
山田 康治郎
康治郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2012121995A priority Critical patent/JP6003233B2/en
Publication of JP2013246137A publication Critical patent/JP2013246137A/en
Application granted granted Critical
Publication of JP6003233B2 publication Critical patent/JP6003233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微量の粉末試料を蛍光X線分析に供するための試料処理方法およびそれを用いた蛍光X線分析方法に関する。   The present invention relates to a sample processing method for subjecting a small amount of powder sample to fluorescent X-ray analysis and a fluorescent X-ray analysis method using the sample processing method.

従来、微量の粉末試料を蛍光X線分析に供するための試料処理方法としては、セルロースパウダーやホウ酸を基材として予備加圧成形しておき、その表面に粉末試料を載置するなどしてさらに加圧成形して分析試料とする方法(非特許文献1参照)や、高分子フィルムの表面に粉末試料を載置し加圧成形して分析試料とする方法(特許文献1参照)などがあり、基材だけでは成形性が不十分な場合には、例えばステアリン酸をバインダーとして混合する場合もある(特許文献2参照)。   Conventionally, as a sample processing method for subjecting a small amount of powder sample to fluorescent X-ray analysis, pre-press molding is performed using cellulose powder or boric acid as a base material, and the powder sample is placed on the surface thereof. Further, there are a method of forming an analysis sample by pressure molding (see Non-Patent Document 1), a method of placing a powder sample on the surface of a polymer film and molding the sample by pressure molding (see Patent Document 1), etc. If the moldability is insufficient with only the base material, for example, stearic acid may be mixed as a binder (see Patent Document 2).

特開2006−78386号公報JP 2006-78386 A 特開2000−74858号公報JP 2000-74858 A

中井泉編,「蛍光X線分析の実際」,初版,朝倉書店,2005年10月20日,p.75−77Izumi Nakai, “Practical X-ray fluorescence analysis”, first edition, Asakura Shoten, October 20, 2005, p. 75-77

しかし、従来用いられている基材、バインダー、高分子フィルムには、ホウ素、炭素、窒素、酸素などのいわゆる超軽元素が相当量含まれており、1次X線が照射されると蛍光X線を発生してそれが不純線となる。これに対し、粉末試料が体積で耳掻き約1杯以下、重量で約10mg以下の微量である場合には、粉末試料から発生する蛍光X線が特に微弱で不純線の影響を受けやすく、それらの超軽元素を分析対象元素として蛍光X線分析を行うことが事実上不可能であった。また、高分子フィルムの表面に粉末試料を載置し加圧成形して分析試料とする方法では、粉末試料が約10mg以下であると成形性が確保できず分析面積(成形後の粉末試料の面積)を広げることが困難な場合が多く、超軽元素に対する感度が低くなり、正確な蛍光X線分析を行えないこともあった。   However, conventionally used base materials, binders, and polymer films contain a considerable amount of so-called ultralight elements such as boron, carbon, nitrogen, and oxygen. When primary X-rays are irradiated, fluorescent X A line is generated and becomes an impure line. On the other hand, when the powder sample is a trace amount of about 1 cup or less of earpick by volume and about 10 mg or less by weight, the fluorescent X-ray generated from the powder sample is particularly weak and easily affected by impure lines. It was practically impossible to perform fluorescent X-ray analysis using ultra-light elements as analysis target elements. In addition, in the method of placing a powder sample on the surface of a polymer film and press-molding to make an analysis sample, if the powder sample is about 10 mg or less, the moldability cannot be secured and the analysis area (of the powder sample after molding) In many cases, it is difficult to widen the area), the sensitivity to ultra-light elements is lowered, and accurate X-ray fluorescence analysis may not be performed.

本発明は前記従来の問題に鑑みてなされたもので、微量の粉末試料についてホウ素、炭素、窒素または酸素を分析対象元素として蛍光X線分析を行うことを可能とする試料処理方法およびそれを用いた蛍光X線分析方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and uses a sample processing method that enables X-ray fluorescence analysis of a very small amount of powder sample using boron, carbon, nitrogen or oxygen as an analysis target element, and the method. It is an object to provide a fluorescent X-ray analysis method.

前記目的を達成するために、本発明の第1構成は、微量の粉末試料を蛍光X線分析するための試料処理方法であって、フッ化リチウム粉末からなる基材と、ホウ素、炭素、窒素および酸素のうちの少なくとも1つを含む粉末のバインダーとを、バインダーの含有率が0wt%よりも大きく50wt%以下になるように混合した混合した混合基材の表面を押し固め、その混合基材の表面に粉末試料を載置して加圧成形し、混合基材と粉末試料とを一体化して分析試料とする。   In order to achieve the above object, a first configuration of the present invention is a sample processing method for fluorescent X-ray analysis of a small amount of powder sample, and a substrate made of lithium fluoride powder, boron, carbon, nitrogen And a powdered binder containing at least one of oxygen and the mixed base material mixed so that the binder content is more than 0 wt% and not more than 50 wt%, and the mixed base material is compacted A powder sample is placed on the surface of the substrate and pressure-molded, and the mixed base material and the powder sample are integrated into an analysis sample.

第1構成の試料処理方法で使用する混合基材には、ホウ素、炭素、窒素および酸素のうち少なくとも1つが、バインダーの成分として含まれているが、混合基材に含まれるフッ素からの蛍光X線の測定強度を利用した補正により、不純線の影響を除去できる。したがって、微量の粉末試料についてホウ素、炭素、窒素または酸素を分析対象元素として蛍光X線分析を行うことが可能となる。   The mixed base material used in the sample processing method of the first configuration contains at least one of boron, carbon, nitrogen and oxygen as a component of the binder, but the fluorescence X from fluorine contained in the mixed base material The correction using the measured intensity of the line can remove the influence of the impure line. Therefore, it becomes possible to perform fluorescent X-ray analysis on a very small amount of powder sample using boron, carbon, nitrogen or oxygen as an analysis target element.

本発明の第2構成は、第1構成の試料処理方法で作製した分析試料に1次X線を照射し、発生する蛍光X線の強度を測定して、粉末試料中の各元素の含有率を求める蛍光X線分析方法であって、分析対象元素に、ホウ素、炭素、窒素および酸素のうちの少なくとも1つが含まれている。この分析方法では、分析試料の作製に用いたバインダーに含まれる、フッ素以外の元素を補正対象元素とし、あらかじめ、分析試料の作製に用いた混合基材のみを加圧成形したブランク試料について、補正対象元素とフッ素の蛍光X線の強度を測定し、フッ素の測定強度に対する補正対象元素の測定強度の強度比を求めておく。そして、粉末試料中の補正対象元素の含有率を求める際には、分析試料についてのフッ素の測定強度に前記強度比を乗じて不純線強度とし、分析試料についての補正対象元素の測定強度から前記不純線強度を差し引いて補正する。   In the second configuration of the present invention, the analysis sample produced by the sample processing method of the first configuration is irradiated with primary X-rays, the intensity of the generated fluorescent X-rays is measured, and the content of each element in the powder sample X-ray fluorescence analysis method for obtaining the above, wherein the analysis target element contains at least one of boron, carbon, nitrogen and oxygen. In this analysis method, correction is performed on a blank sample in which only the mixed base material used for the preparation of the analysis sample is pressure-molded in advance, with elements other than fluorine included in the binder used for the preparation of the analysis sample as correction target elements. The intensity of the fluorescent X-rays of the target element and fluorine is measured, and the intensity ratio of the measured intensity of the correction target element to the measured intensity of fluorine is obtained. Then, when determining the content of the correction target element in the powder sample, the measurement ratio of fluorine for the analysis sample is multiplied by the intensity ratio to obtain the impure line intensity, and the measurement intensity of the correction target element for the analysis sample is calculated from the measurement intensity of the correction target element. Correct by subtracting the impure line intensity.

第2構成の蛍光X線分析方法では、第1構成の試料処理方法で微量の粉末試料を処理するので、使用する混合基材には、ホウ素、炭素、窒素および酸素のうち少なくとも1つが、バインダーの成分として含まれているが、混合基材に含まれるフッ素からの蛍光X線の測定強度を利用した補正により、不純線の影響を除去できる。したがって、微量の粉末試料についてホウ素、炭素、窒素または酸素を分析対象元素とすることが可能となる。   In the fluorescent X-ray analysis method of the second configuration, since a small amount of powder sample is processed by the sample processing method of the first configuration, at least one of boron, carbon, nitrogen, and oxygen is included in the binder used as a binder. Although it is contained as a component, it is possible to remove the influence of impure lines by correction using the measured intensity of fluorescent X-rays from fluorine contained in the mixed base material. Therefore, boron, carbon, nitrogen or oxygen can be used as an analysis target element for a very small amount of powder sample.

本発明の第1実施形態の試料処理方法により表面を押し固めた混合基材を示す側面図である。It is a side view which shows the mixing base material which the surface was pressed and solidified by the sample processing method of 1st Embodiment of this invention. 同方法により表面に粉末試料を載置した混合基材を示す側面図である。It is a side view which shows the mixing base material which mounted the powder sample on the surface by the same method. 同方法により作製した分析試料を示す側面断面図である。It is side surface sectional drawing which shows the analysis sample produced by the same method. 本発明の第2実施形態の蛍光X線分析方法において用いるブランク試料を示す側面図である。It is a side view which shows the blank sample used in the fluorescent X ray analysis method of 2nd Embodiment of this invention. 同方法において用いる蛍光X線分析装置を示す概略図である。It is the schematic which shows the fluorescent X ray analyzer used in the same method.

以下、本発明の第1実施形態の試料処理方法について、図にしたがって説明する。この方法は、微量の粉末試料を蛍光X線分析するための試料処理方法であって、まず、図1に示すように、フッ化リチウム粉末からなる基材と、粉末のバインダーとを混合した約5gの混合基材3bを、周知の加圧成形機を用いて手動による低い圧力で予備加圧成形することにより、混合基材3bを例えば直径40mmの円板状に成形して、表面を押し固める。ここで、バインダーは、ホウ素、炭素、窒素および酸素のうちの少なくとも1つを含んでおり、例えばSpectro Blend (商品名。組成はC1938ONで表される)であって、混合基材3bにおけるバインダーの含有率は、0wt%よりも大きく50wt%以下であり、20wt%以下が好ましく、例えば10wt%である。バインダーとしては、Spectro Blendの他に、例えば組成がC1314またはHBOで表されるものであってもよく、基材と同様にフッ素を含むものであってもよい。 Hereinafter, the sample processing method of the first embodiment of the present invention will be described with reference to the drawings. This method is a sample processing method for fluorescent X-ray analysis of a very small amount of powder sample. First, as shown in FIG. 1, a base material made of lithium fluoride powder and a powder binder are mixed. 5 g of the mixed base material 3b is pre-press-molded at a low manual pressure using a known pressure molding machine, thereby forming the mixed base material 3b into a disk shape having a diameter of, for example, 40 mm, and pressing the surface. Solidify. Here, the binder contains at least one of boron, carbon, nitrogen and oxygen, for example, Spectro Blend (trade name; composition is represented by C 19 H 38 ON), The binder content in 3b is greater than 0 wt% and not more than 50 wt%, preferably not more than 20 wt%, for example, 10 wt%. As the binder, in addition to Spectro Blend, for example, the composition may be represented by C 13 H 14 O 4 or H 3 BO 3 , and may contain fluorine in the same manner as the base material.

次に、図2に示すように、混合基材3bの押し固められた表面の中央に、例えば体積で耳掻き約1杯、重量で約7mgの粉末試料3aを載置する。そして、粉末試料3aが混合基材3bの内部(深さ方向)に分散しないように、予定される蛍光X線分析での測定範囲(例えば直径10mm)内で粉末試料3aを混合基材3bの表面上で広げて、例えば50〜100MPa の高い圧力で十分に加圧成形し、図3に示すように、混合基材3bと粉末試料3aとを一体化して円板状の分析試料3とする。このとき、粉末試料3aは薄い円板状に成形されつつ混合基材3bに埋没して、露出した部分が円形になり、その直径は例えば約4mmである。   Next, as shown in FIG. 2, for example, about 1 cup of earpick by volume and about 7 mg by weight is placed on the center of the pressed surface of the mixed base material 3 b. And the powder sample 3a is mixed with the mixed sample 3b within the planned measurement range (for example, 10 mm in diameter) in the fluorescent X-ray analysis so that the powder sample 3a is not dispersed in the mixed substrate 3b (in the depth direction). Spread on the surface and sufficiently press-molded at a high pressure of, for example, 50 to 100 MPa, and as shown in FIG. 3, the mixed base material 3b and the powder sample 3a are integrated into a disc-shaped analysis sample 3. . At this time, the powder sample 3a is embedded in the mixed base material 3b while being formed into a thin disk shape, and the exposed portion becomes circular, and the diameter thereof is about 4 mm, for example.

第1実施形態の試料処理方法で使用する混合基材3bには、ホウ素、炭素、窒素および酸素のうち少なくとも1つが、バインダーの成分として含まれているが、後述するように、混合基材に含まれるフッ素からの蛍光X線の測定強度を利用した補正により、不純線の影響を除去できる。したがって、微量の粉末試料3aについてホウ素、炭素、窒素または酸素(これら4元素の任意の組合せを含む)を分析対象元素として蛍光X線分析を行うことが可能となる。   The mixed base material 3b used in the sample processing method of the first embodiment includes at least one of boron, carbon, nitrogen, and oxygen as a component of the binder. By the correction using the measurement intensity of the fluorescent X-rays from the contained fluorine, the influence of the impure line can be removed. Therefore, it is possible to perform fluorescent X-ray analysis on a very small amount of the powder sample 3a using boron, carbon, nitrogen or oxygen (including any combination of these four elements) as an analysis target element.

次に、本発明の第2実施形態の蛍光X線分析方法について説明するが、それにあたり、まず、同方法において用いる蛍光X線分析装置について説明する。図5に示すように、この装置は、分析試料3が載置される試料台8と、分析試料3に1次X線2を照射するX線管などのX線源1と、分析試料3から発生する蛍光X線4の強度を測定する検出手段9と、検出手段9での測定強度に基づいて分析試料3の一部となった粉末試料3a(図3)中の各元素の含有率を算出するコンピュータなどの算出手段10とを備えている。   Next, a fluorescent X-ray analysis method according to a second embodiment of the present invention will be described. First, a fluorescent X-ray analysis apparatus used in the method will be described. As shown in FIG. 5, this apparatus includes a sample stage 8 on which the analysis sample 3 is placed, an X-ray source 1 such as an X-ray tube that irradiates the analysis sample 3 with the primary X-ray 2, and the analysis sample 3. Content of each element in the powder sample 3a (FIG. 3) which became a part of the analysis sample 3 based on the intensity measured by the detection means 9 And calculating means 10 such as a computer for calculating.

検出手段9は、分析試料3から発生する蛍光X線4を分光する分光素子5と、分光された蛍光X線6ごとにその強度を測定する検出器7で構成される。なお、分光素子5を用いずに、エネルギー分解能の高い検出器を検出手段としてもよい。また、分析試料3に1次X線2を照射する際には、所定の寸法形状のマスク孔を有するマスクで分析試料3の表面を覆う等の周知技術により、分析試料3の一部となった粉末試料3a(図3)が露出している部分に集中的に照射するようにする。   The detection means 9 includes a spectroscopic element 5 that separates the fluorescent X-rays 4 generated from the analysis sample 3 and a detector 7 that measures the intensity of each spectroscopic fluorescent X-ray 6. In addition, it is good also as a detection means not using the spectroscopic element 5, but a detector with high energy resolution. Further, when the analysis sample 3 is irradiated with the primary X-ray 2, the analysis sample 3 becomes a part of the analysis sample 3 by a known technique such as covering the surface of the analysis sample 3 with a mask having a mask hole having a predetermined size and shape. The exposed powder sample 3a (FIG. 3) is irradiated intensively.

第2実施形態の蛍光X線分析方法は、第1実施形態の試料処理方法で作製した分析試料3に対し、上述した蛍光X線分析装置を用いて、1次X線2を照射し、発生する蛍光X線4の強度を測定して、粉末試料3a中の各元素の含有率を求める蛍光X線分析方法であって、分析対象元素に、ホウ素、炭素、窒素および酸素のうちの少なくとも1つが含まれている。   The fluorescent X-ray analysis method of the second embodiment is generated by irradiating the analysis sample 3 produced by the sample processing method of the first embodiment with the primary X-ray 2 using the fluorescent X-ray analyzer described above. Is a fluorescent X-ray analysis method for determining the content of each element in the powder sample 3a by measuring the intensity of the fluorescent X-ray 4 that includes at least one of boron, carbon, nitrogen and oxygen One is included.

この分析方法では、分析試料3の作製に用いたバインダーに含まれる、フッ素以外の元素を補正対象元素とする。この例では、Spectro Blend であるバインダーの主成分すなわち炭素を補正対象元素とする。また、あらかじめ、分析試料3の作製に用いた混合基材のみを例えば50〜100MPa の高い圧力で十分に加圧成形して、図4に示すような円板状のブランク試料13を作製し、上述した図5の蛍光X線分析装置を用いて、炭素(補正対象元素)とフッ素の蛍光X線4の強度をそれぞれ測定し、フッ素の測定強度IF0に対する炭素の測定強度IC0の強度比IC0/IF0をあらかじめ求めて算出手段10に記憶させておく。   In this analysis method, an element other than fluorine contained in the binder used for producing the analysis sample 3 is used as a correction target element. In this example, the main component of the binder which is Spectro Blend, that is, carbon is used as the correction target element. Further, in advance, only the mixed base material used for the preparation of the analytical sample 3 is sufficiently press-molded at a high pressure of, for example, 50 to 100 MPa, to produce a disc-shaped blank sample 13 as shown in FIG. Using the fluorescent X-ray analyzer of FIG. 5 described above, the intensities of carbon (correction target element) and fluorine fluorescent X-ray 4 are measured, respectively, and the intensity ratio IC0 / of the measured intensity ICO of carbon to the measured intensity IF0 of fluorine. IF0 is obtained in advance and stored in the calculation means 10.

そして、その蛍光X線分析装置を用いて、分析試料3について測定し、粉末試料3a中の炭素の含有率を求める際には、算出手段10によって、分析試料3についてのフッ素の測定強度IF に前記強度比IC0/IF0を乗じて不純線強度IC0・IF /IF0とし、分析試料3についての炭素の測定強度IC から前記不純線強度IC0・IF /IF0を差し引いて補正する。つまり、補正後の分析試料3についての炭素の測定強度ICAは、IC −IC0・IF /IF0で算出され、この補正後の測定強度ICAを分析試料3の一部となった粉末試料3aから発生した炭素の蛍光X線4の強度とし、分析試料3からの他の元素の蛍光X線4の測定強度と併せ用いて、粉末試料3a中の各元素の含有率を求める。   Then, using the X-ray fluorescence analyzer, the analytical sample 3 is measured, and when the carbon content in the powder sample 3a is determined, the calculation means 10 determines the fluorine measurement intensity IF for the analytical sample 3. By multiplying the intensity ratio IC0 / IF0 to obtain an impure line intensity IC0 · IF / IF0, correction is performed by subtracting the impure line intensity IC0 · IF / IF0 from the measured intensity IC of carbon for the analysis sample 3. In other words, the measured carbon intensity ICA for the corrected analytical sample 3 is calculated as Ic-IC0.IF / IF0, and this corrected measured intensity ICA is generated from the powder sample 3a that is part of the analytical sample 3. The content of each element in the powder sample 3a is obtained by using the intensity of the fluorescent X-ray 4 of carbon and the measured intensity of the fluorescent X-ray 4 of other elements from the analysis sample 3.

第2実施形態の蛍光X線分析方法では、第1実施形態の試料処理方法で微量の粉末試料3aを処理するので、使用する混合基材3bには、ホウ素、炭素、窒素および酸素のうち少なくとも1つが、バインダーの成分として含まれているが、上述したように、混合基材に含まれるフッ素からの蛍光X線4の測定強度IF0,IF を利用した補正により、不純線の影響を除去する。したがって、微量の粉末試料3aについてホウ素、炭素、窒素または酸素(これら4元素の任意の組合せを含む)を分析対象元素とすることが可能となる。   In the fluorescent X-ray analysis method of the second embodiment, since a small amount of the powder sample 3a is processed by the sample processing method of the first embodiment, the mixed substrate 3b to be used includes at least one of boron, carbon, nitrogen, and oxygen. One is included as a component of the binder, but as described above, the influence of the impure line is removed by correction using the measured intensities IF0 and IF of the fluorescent X-ray 4 from the fluorine contained in the mixed base material. . Therefore, boron, carbon, nitrogen, or oxygen (including any combination of these four elements) can be used as an analysis target element for a very small amount of the powder sample 3a.

2 1次X線
3 分析試料
3a 粉末試料
3b 混合基材
4 蛍光X線
2 Primary X-ray 3 Analysis sample 3a Powder sample 3b Mixed base material 4 Fluorescent X-ray

Claims (1)

微量の粉末試料を蛍光X線分析するために処理する方法であって、
フッ化リチウム粉末からなる基材と、ホウ素、炭素、窒素および酸素のうちの少なくとも1つを含む粉末のバインダーとを、バインダーの含有率が0wt%よりも大きく50wt%以下になるように混合した混合基材の表面を押し固め、
その混合基材の表面に粉末試料を載置して加圧成形し、混合基材と粉末試料とを一体化して分析試料とする試料処理方法。
A method for processing a small amount of powder sample for fluorescent X-ray analysis,
A base material made of lithium fluoride powder and a powder binder containing at least one of boron, carbon, nitrogen and oxygen were mixed so that the binder content was greater than 0 wt% and less than 50 wt%. Press and harden the surface of the mixed substrate,
A sample processing method in which a powder sample is placed on the surface of the mixed base material, press-molded, and the mixed base material and the powder sample are integrated into an analysis sample.
JP2012121995A 2012-05-29 2012-05-29 Sample processing method for fluorescent X-ray analysis Active JP6003233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012121995A JP6003233B2 (en) 2012-05-29 2012-05-29 Sample processing method for fluorescent X-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121995A JP6003233B2 (en) 2012-05-29 2012-05-29 Sample processing method for fluorescent X-ray analysis

Publications (2)

Publication Number Publication Date
JP2013246137A JP2013246137A (en) 2013-12-09
JP6003233B2 true JP6003233B2 (en) 2016-10-05

Family

ID=49846012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121995A Active JP6003233B2 (en) 2012-05-29 2012-05-29 Sample processing method for fluorescent X-ray analysis

Country Status (1)

Country Link
JP (1) JP6003233B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180348150A1 (en) * 2017-05-30 2018-12-06 Malvern Panalytical B.V. Pressed Powder Sample Measurements Using X-ray Fluorescence

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346547A (en) * 1989-07-13 1991-02-27 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Analysis of oxide superconducting material
JP2513094B2 (en) * 1991-06-19 1996-07-03 株式会社島津製作所 X-ray fluorescence intensity correction method in X-ray fluorescence analysis method
JPH06235688A (en) * 1993-02-09 1994-08-23 Rigaku Denki Kogyo Kk Preparation of sample for fluorescent x-ray analysis
JPH06249768A (en) * 1993-02-26 1994-09-09 Fuji Electric Co Ltd Preparation of sample for fluorescent x-ray analysis
JP2005164268A (en) * 2003-11-28 2005-06-23 Tdk Corp Preparation method for evaluation sample, analytical method, production method for electronic component material, electronic component, and evaluation sample preparation device
US7521249B2 (en) * 2003-12-12 2009-04-21 L'oreal Method and composition for the preparation of a sample for analysis
JP3968098B2 (en) * 2004-09-10 2007-08-29 理学電機工業株式会社 Powder sample molding and recovery method for fluorescent X-ray analysis
JP5034270B2 (en) * 2006-03-06 2012-09-26 富士通株式会社 Standard plating film sample and plating film inspection method

Also Published As

Publication number Publication date
JP2013246137A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
Lopes et al. Thickness determination of gold layer on pre‐Columbian objects and a gilding frame, combining pXRF and PLS regression
Krachler et al. Spatial distribution of uranium isotopes in solid nuclear materials using laser ablation multi-collector ICP-MS
JP2007003510A (en) Element analysis method and apparatus, and analysis sample producing method
Mazel et al. Confocal micro-X-ray fluorescence analysis as a new tool for the non-destructive study of the elemental distributions in pharmaceutical tablets
WO2021161631A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JP2010223908A (en) Fluorescent x-ray analysis method
JP6003233B2 (en) Sample processing method for fluorescent X-ray analysis
Patchineelam et al. A historical evaluation of anthropogenic impact in coastal ecosystems by geochemical signatures
Th. Verdurmen Accuracy of X‐ray fluorescence spectrometric determination of rb and sr concentrations in rock samples
CN102023172B (en) Method for performing quantitative analysis on SiGe thin film by using energy-dispersive X-ray spectroscopy
Trojek et al. X-ray fluorescence analyzers for investigating postmediaeval pottery from Southern Moravia
JP5557161B2 (en) Structural analysis method
Al Lafi et al. PIXE data analysis by two‐dimensional correlation mapping techniques: Analysis of chloride and sulfate ions attack in homemade mortar samples
KR101305425B1 (en) Method for analyzing of fluorine in soil using x-ray fluorescence technique and xrf sample used for the same
JP2008275637A (en) Method for measuring porosity of cement-based hardened article
JP2008256576A (en) Specific surface area measuring apparatus and method using the same
Amosova et al. Features of X‐ray fluorescence determination of rock‐forming elements in powder samples of peat sediments
JP5904030B2 (en) Secondary ion mass spectrometry method and standard sample
Attaelmanan Reliability of a new X-ray analytical microscope in archaeological research
Kheswa et al. Target characterization by PIXE, alpha spectrometry and X-ray absorption
JP4834613B2 (en) X-ray fluorescence analyzer and method
JPH06235688A (en) Preparation of sample for fluorescent x-ray analysis
Willingham et al. Secondary ion mass spectrometry signatures for verifying declarations of fissile‐material production
Wasim et al. Comparative performance of semi-absolute k 0-instrumental neutron activation analysis and inductively coupled plasma optical emission spectrometry (ICP-OES) for compositional decoding of aluminum base alloys
Baumann Advanced X-ray analytical methods for the characterization of buried interfaces with relevance for energy conversion devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250