WO2023233927A1 - 異常検知装置、異常検知方法およびプログラム - Google Patents
異常検知装置、異常検知方法およびプログラム Download PDFInfo
- Publication number
- WO2023233927A1 WO2023233927A1 PCT/JP2023/017281 JP2023017281W WO2023233927A1 WO 2023233927 A1 WO2023233927 A1 WO 2023233927A1 JP 2023017281 W JP2023017281 W JP 2023017281W WO 2023233927 A1 WO2023233927 A1 WO 2023233927A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- variables
- unit
- standard
- values
- detection device
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 115
- 238000001514 detection method Methods 0.000 title claims abstract description 103
- 238000004519 manufacturing process Methods 0.000 claims abstract description 154
- 238000000034 method Methods 0.000 claims description 87
- 238000012544 monitoring process Methods 0.000 claims description 46
- 238000004458 analytical method Methods 0.000 claims description 24
- 238000004088 simulation Methods 0.000 claims description 22
- 238000004364 calculation method Methods 0.000 claims description 21
- 230000004044 response Effects 0.000 claims description 18
- 238000000513 principal component analysis Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 description 61
- 238000001746 injection moulding Methods 0.000 description 46
- 238000005520 cutting process Methods 0.000 description 41
- 238000010586 diagram Methods 0.000 description 35
- 238000012545 processing Methods 0.000 description 19
- 239000013598 vector Substances 0.000 description 16
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 238000011068 loading method Methods 0.000 description 15
- 239000002184 metal Substances 0.000 description 12
- 238000003860 storage Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
Definitions
- the present disclosure relates to an abnormality detection device, an abnormality detection method, and a program.
- JP 2019-177783 A discloses that the ride comfort of a railway vehicle deteriorates due to an increase in the Mahalanobis distance between characteristic data obtained from an acceleration sensor installed in the railway vehicle and unit data acquired in advance. Discloses technology to detect.
- Kishio Tamura “5th MT system that can determine direction - TS method, T method”, Standardization and Quality Control, 2009, Vol. 62, No. 2 Genichi Taguchi, "Objective function and basic function (6) - Comprehensive prediction using T method -", Quality Engineering, 2005, Vol. 13, No. 3, p.5-10 "Considerations and utilization of quality engineering in the development and design stage - System evaluation and improvement without prototyping and testing", [online], [Retrieved March 22, 2023], Internet ⁇ https://foundry.jp/bukai /wp-content/uploads/2012/07/e4806f10b0797ec0932d9317dd92a533.pdf>
- a production line includes a wide variety of equipment and yields a large number of variables. Therefore, when applying the technology disclosed in Japanese Patent Application Publication No. 2019-177783 (Patent Document 1) to a production line, in order to confirm the presence or absence of abnormalities on the production line, it is necessary to use standards and actual measurements for each of the many variables. It becomes necessary to compare the values. As a result, the work involved in checking whether there is any abnormality on the production line increases.
- the present disclosure has been made in view of the above problems, and its purpose is to provide an anomaly detection device, an anomaly detection method, and a program that can easily confirm the presence or absence of an anomaly in a monitored object at a production site.
- the abnormality detection device includes an acquisition section, a collection section, a calculation section, and a detection section.
- the acquisition unit acquires standard values of a plurality of variables indicating the status of the monitoring target in a unit section when the monitoring target at the production site is operating normally.
- the collection unit collects actual values of a plurality of variables in a unit interval.
- the calculation unit calculates a statistic representing a degree of deviation between actual values of the plurality of variables with respect to standard values of the plurality of variables.
- the detection unit detects that an abnormality has occurred in the monitoring target in response to the statistical amount being outside the reference range.
- the user can easily check whether there is an abnormality in the monitoring target at the production site.
- the anomaly detection device further includes a selection unit that selects an effective variable that has a relatively large influence on the statistic from among the plurality of variables.
- the user can identify the effective variable as a candidate cause of the abnormality to be monitored by checking the selection result by the selection unit.
- the user can quickly take measures such as adjusting the effective variables, reviewing the maintenance of the monitored object, or reviewing the production plan.
- the selection unit selects, as the effective variables, variables that are effective in improving the estimation accuracy of the T-method estimation model that uses a plurality of variables as explanatory variables and statistics as objective variables.
- the anomaly detection device further includes an analysis unit that performs principal component analysis using actual values and statistics of effective variables for each unit section.
- the user can narrow down variables that have a high degree of influence on statistics from among a plurality of effective variables based on the principal component loading amount obtained by principal component analysis.
- the user can quickly take measures such as maintaining the production line or reviewing the production plan to adjust the narrowed-down variables.
- the analysis unit selects two principal components that maximize the variance of the statistics, and calculates the effective variables based on the principal component loadings for the two principal components in each of the effective variables and the statistics. Determine the impact on the statistics.
- the user can narrow down the effective variables that have a high degree of influence on the statistics from among the plurality of valid variables based on the specified degree of influence.
- the user can quickly take measures such as adjusting the narrowed-down effective variables and reviewing the maintenance and production plans to be monitored.
- the acquisition unit uses the virtual model of the monitored target to perform a simulation of the values of the plurality of variables when the monitored target is operated according to the production plan, and standardizes the value of the unit interval obtained by the simulation. Get it as a value.
- the acquisition unit may acquire, as standard values, the values of a plurality of variables in a unit interval when the monitoring target was operating normally in the past.
- the statistic is, for example, a standard signal-to-noise ratio. Thereby, the statistic appropriately represents the degree of similarity between the actual value and the standard value.
- the monitoring target is a production line
- the unit interval is a unit time. According to this disclosure, a user can easily check whether there is an abnormality in the production line by checking the results of the detection unit.
- the monitored target includes manufacturing equipment. According to this disclosure, a user can easily check whether there is an abnormality in the manufacturing apparatus by checking the results of the detection unit.
- the manufacturing device repeatedly performs the target operation.
- the unit interval is a period during which the target operation is executed.
- the plurality of variables indicate the status of the manufacturing apparatus during the period in which the target operation is being performed. Therefore, the user can easily check whether there is an abnormality for each target operation repeatedly executed by the manufacturing apparatus.
- the anomaly detection method includes first to fourth steps.
- the first step is to obtain standard values of a plurality of variables indicating the status of the monitoring target in a unit interval when the monitoring target is operating normally.
- the second step is a step of collecting actual values of a plurality of variables in a unit interval.
- the third step is a step of calculating a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables.
- the fourth step is a step of detecting that an abnormality has occurred in the monitoring target in response to the statistical value being outside the reference range.
- the program causes a computer to execute the above abnormality detection method.
- These disclosures also allow the user to easily check whether there is an abnormality in the monitoring target at the production site.
- a user can easily check whether there is an abnormality in a monitoring target at a production site.
- FIG. 1 is a schematic diagram showing the configuration of a system including an abnormality detection device according to an embodiment. It is a diagram showing an example of a production line.
- FIG. 1 is a schematic diagram showing an example of a hardware configuration of an abnormality detection device according to an embodiment.
- 1 is a diagram illustrating an example of a functional configuration of an abnormality detection device according to an embodiment.
- FIG. 3 is a diagram illustrating processing of a simulation execution unit. It is a figure explaining the processing of a calculation part. It is a figure which shows an example of the selection result of an effective variable. It is a figure which shows an example of the analysis result by an analysis part. It is a flowchart which shows an example of the flow of processing of an abnormality detection device.
- FIG. 7 is a diagram illustrating a functional configuration of an abnormality detection device according to Modification 1.
- FIG. FIG. 2 is a diagram illustrating an example of a manufacturing device to be monitored.
- FIG. 3 is a diagram showing changes in parameter values during a period in which an injection molding operation is performed.
- FIG. 3 is a diagram showing standard values and actual values of a plurality of variables indicating the status of the injection molding machine 3.
- FIG. 3 is a diagram showing changes in statistics calculated for each injection molding operation. It is a figure which shows the result of the principal component analysis using the actual value of the effective variable for each injection molding period, and a standard SN ratio.
- FIG. 7 is a diagram illustrating another example of a manufacturing device to be monitored.
- FIG. 7 is a diagram showing changes in statistics calculated for each joining operation.
- FIG. 1 is a schematic diagram showing the configuration of a system including an abnormality detection device according to an embodiment.
- the system 1 includes a production line 2, which is an example of a monitoring target at a production site, and an abnormality detection device 100 that detects the occurrence of an abnormality in the production line 2.
- the abnormality detection device 100 is communicably connected to the production line 2.
- the monitoring target at the production site is not limited to the production line 2.
- the abnormality detection device 100 obtains standard values for each unit time of a plurality of variables indicating the status of the production line 2 when the production line 2 is operating normally (step (1)).
- the plurality of variables include the number of devices, number of personnel, output, etc. of each process making up the production line 2.
- the standard values of the plurality of variables represent the standard situation of the production line 2.
- the unit time is, for example, 5 minutes. Further, the standard values of the plurality of variables may differ for each unit time. For example, the standard value in a unit time immediately after the production line 2 starts operating may be different from the standard value in a unit time several hours after the production line 2 starts operating. Considering such a case, the abnormality detection device 100 acquires a standard value for each unit time.
- the abnormality detection device 100 collects actual values of a plurality of variables for each unit time (step (2)). Then, the abnormality detection device 100 calculates a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables for each unit time (step (3)). The abnormality detection device 100 detects that an abnormality has occurred in the production line 2 in response to the statistical value being outside the reference range (step (4)).
- the degree of deviation of the current situation from the standard situation of the production line 2 is expressed by one statistic.
- a standard SN ratio may be employed as the statistic.
- the statistic is not limited to the standard SN ratio, and may be any parameter that represents the degree of deviation between the standard value and the actual value for a plurality of variables.
- the standard SN ratio becomes smaller as the degree of deviation between the standard value and the actual value for a plurality of variables increases. Therefore, a decrease in the standard SN ratio means that the actual values of a plurality of variables deviate from the standard values.
- the threshold value TH is predetermined to be a value when the production line 2 changes from normal to abnormal.
- the reference range is a range equal to or greater than the threshold value TH. Therefore, the fact that the standard SN ratio is outside the reference range (that is, less than the threshold TH) means that some kind of abnormality has occurred in the production line 2. Therefore, the user can easily check whether there is any abnormality in the production line 2 by checking the result of step (4) above.
- FIG. 2 is a diagram showing an example of a production line.
- the production line 2 shown in FIG. 2 includes a cutting process 21, a parts shipping process 22, an assembly process 23, and a product shipping process 24.
- a metal part having a predetermined shape is produced by, for example, cutting a metal piece.
- the cutting process 21 includes one or more cutting devices 21a, a timer 21b, and counters 21c and 21d.
- Each of the one or more cutting devices 21a sends a first signal indicating whether or not it is operating normally, a second signal indicating whether or not it is performing a cutting operation, and a signal indicating that the production of the metal part has been completed.
- a third signal indicating A third signal indicating .
- the counter 21c measures the number of cutting devices 21a that are operating normally in the cutting process 21 (hereinafter referred to as the "number of devices") based on the first signal.
- the timer 21b measures the time during which the cutting operation is performed (hereinafter referred to as "cutting time") out of the unit time based on the second signal.
- the counter 21d measures the number of metal parts produced per unit time (hereinafter referred to as "output (cutting process)") based on the third signal.
- the parts shipping process 22 transports assembly parts purchased from outside to the assembly process 23.
- the parts shipping process 22 includes a sensor 22a and an automatic guided vehicle (AGV) 22b.
- AGV automatic guided vehicle
- the automatic transport vehicle 22b transports the assembly parts.
- the sensor 22a measures the number of workers (hereinafter referred to as "number of workers (parts shipping process)”) every unit time.
- the sensor 22a is, for example, an image sensor, and measures the number of personnel (parts shipping process) using an image obtained by capturing an image of the parts shipping process 22.
- the automatic guided vehicle 22b has a timer 22c and a counter 22d.
- the timer 22c measures the time during which the assembled parts are being transported (hereinafter referred to as "AGV operating time”) per unit time.
- the counter 22d measures the number of assembled parts that have been transported (hereinafter referred to as “output (components shipping process)”) in a unit time.
- a product is manufactured by assembling the assembly parts transported from the parts shipping process 22 onto the metal parts produced in the cutting process 21.
- a worker performs assembly work, and the completed product is placed on a belt conveyor.
- the assembly process 23 includes a sensor that measures the number of metal parts before assembly (hereinafter referred to as "number of work-in-progress") among the metal parts transported from the cutting process 21 for each unit time. 23a is provided.
- the sensor 23a is, for example, an image sensor, and measures the number of products in progress using an image obtained by capturing an image of a tray on which metal parts are placed before the parts to be assembled are placed.
- the assembly process 23 includes a sensor 23b that measures the number of workers (hereinafter referred to as “number of workers (assembly process)”) per unit time, and a sensor 23b that measures the number of workers per unit time.
- a counter 23c for measuring the number of pieces (hereinafter referred to as “output (assembly process)") is provided.
- the sensor 23b is, for example, an image sensor, and measures the number of personnel (assembly process) using an image obtained by capturing an image of the assembly process 23.
- the counter 23c is, for example, a limit switch provided on a belt conveyor on which products are placed. In the product shipping step 24, the product is packed and shipped.
- FIG. 3 is a schematic diagram showing an example of the hardware configuration of the abnormality detection device according to the embodiment.
- anomaly detection device 100 typically has a structure that follows a general-purpose computer architecture. Specifically, the abnormality detection device 100 communicates with a processor 101 such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), a memory 102, a storage 103, a display controller 104, and an input interface 105. An interface 106 is included. These units are connected to each other via a bus so that they can communicate data.
- the processor 101 implements various processes according to the present embodiment by loading various programs stored in the storage 103 into the memory 102 and executing them.
- the memory 102 is typically a volatile storage device such as DRAM (Dynamic Random Access Memory), and stores programs read from the storage 103.
- DRAM Dynamic Random Access Memory
- the storage 103 is typically a nonvolatile magnetic storage device such as a hard disk drive.
- the storage 103 stores an abnormality detection program 131 and a simulation program 132 that are executed by the processor 101.
- Various programs installed in the storage 103 are distributed in a state stored in a memory card or the like.
- the display controller 104 is connected to the display device 70, and outputs signals for displaying various information to the display device 70 according to internal commands from the processor 101.
- the input interface 105 mediates data transmission between the processor 101 and an input device 75 such as a keyboard, mouse, touch panel, or dedicated console. That is, the input interface 105 receives an operation command given by the user operating the input device 75.
- the communication interface 106 mediates data transmission between the processor 101 and external equipment (for example, various equipment provided on the production line 2).
- the communication interface 106 typically includes Ethernet (registered trademark), USB (Universal Serial Bus), and the like. Note that various programs stored in the storage 103 may be downloaded from a distribution server or the like via the communication interface 106.
- an OS for providing the basic functions of the computer is required.
- the program according to the present embodiment may execute processing by calling necessary modules in a predetermined order and timing from among program modules provided as part of the OS. That is, the program itself according to the present embodiment does not include the above-mentioned modules, and may execute processing in cooperation with the OS.
- part or all of the functions provided by executing the abnormality detection program 131 and the simulation program 132 may be implemented as a dedicated hardware circuit.
- FIG. 4 is a diagram illustrating an example of the functional configuration of the abnormality detection device according to the embodiment.
- the abnormality detection device 100 includes a simulation execution section 11, a collection section 12, a calculation section 13, a detection section 14, a selection section 15, and an analysis section 16.
- the simulation execution unit 11 is realized by the processor 101 (see FIG. 3) executing the simulation program 132.
- the collection unit 12 is realized by the communication interface 106 and the processor 101 that executes the abnormality detection program 131.
- the calculation unit 13, the detection unit 14, the selection unit 15, and the analysis unit 16 are realized by the processor 101 executing the abnormality detection program 131.
- the simulation execution unit 11 operates as an acquisition unit that acquires standard values of a plurality of variables indicating the status of the production line 2 in a unit time when the production line 2 is operating normally. Specifically, the simulation execution unit 11 inputs production plan data indicating a production plan into the virtual model of the production line 2, thereby calculating the values of a plurality of variables indicating the status of the production line 2 every unit time (for example, 5 minutes). to simulate the value of .
- the simulation execution unit 11 may execute the simulation using a known technique (for example, Japanese Patent Laid-Open No. 2003-44115 (Patent Document 2)).
- FIG. 5 is a diagram illustrating the processing of the simulation execution unit.
- the virtual model 2M is created in advance according to the production line 2.
- the virtual model 2M outputs values for each unit time of a plurality of variables indicating the status of the production line 2 when the production line 2 is operated according to the production plan.
- multiple variables indicating the status of production line 2 include “cutting time”, “number of devices”, “output (cutting process)”, “AGV operating time”, and “number of personnel ( ⁇ Amount of work completed (parts shipping process),'' ⁇ Number of work in progress,'' ⁇ Number of personnel (assembly process),'' and ⁇ Amount of work (assembly process).''
- the virtual model 2M includes a first model 21M corresponding to the cutting process 21, a second model 22M corresponding to the parts shipping process 22, and a third model 23M corresponding to the assembly process 23.
- the first model 21M is created according to the specifications of the cutting device 21a.
- the first model 21M is defined by the following parameters. - Cutting speed when the cutting device 21a operates normally, ⁇ Cutting amount to make one metal part, ⁇ Preparation time from the completion of cutting a metal part to the start of cutting the next metal part, etc.
- the first model 21M receives input of production plan data indicating the number of cutting devices 21a to be operated, scheduled operating period, stop period (break time), etc., and calculates the cutting processing time of the cutting process 21 for each unit time, the equipment Output the number and volume values.
- the second model 22M is created according to the specifications of the automatic guided vehicle 22b and the specifications of the standard work of the worker in the parts shipping process 22.
- the second model 22M is defined by the following parameters. ⁇ The time required for a worker to take out one assembled part from its packaging when performing standard work; - The time required for the worker to set the assembled parts on the automated guided vehicle 22b; - The time required for the automatic guided vehicle 22b to transport one assembly part to the assembly process 23, etc.
- the second model 22M receives input of production plan data indicating the number of workers to be assigned to the parts shipping process 22, scheduled work periods, worker break times, etc., and operates the AGV in the parts shipping process 22 for each unit of time. Output values for time, number of personnel, and output.
- the third model 23M is created according to the specifications of standard work by the worker.
- the third model 23M is defined by, for example, the time required for standard work by a worker to complete one product.
- the third model 23M receives input of production plan data indicating the number of workers to be placed in the assembly process 23, scheduled work period, break time, etc., output data of the first model 21M, and output data of the second model 22M. Then, the values of the number of work in progress, number of personnel, and output of the assembly process 23 for each unit time are output.
- the virtual model 2M is a model that assumes that equipment and workers perform standard work in each process. Therefore, the simulation execution unit 11 calculates the values of the plurality of variables output from the virtual model 2M for each unit time (for example, 1 minute, 5 minutes, etc.) when the production line 2 is operating normally. Obtain as a variable value (standard value).
- the collection unit 12 shown in FIG. 4 collects actual values of a plurality of variables indicating the current status of the production line 2 for each unit of time (for example, 1 minute, 5 minutes, etc.) from the production line 2. Specifically, the collection unit 12 collects the results for each unit time of "cutting time”, “number of devices”, and “output (cutting process)" from the timer 21b, counter 21c, and counter 21d of the cutting process 21. Collect each value. The collection unit 12 collects the results for each unit time of "AGV operating time”, “number of personnel (parts shipping process)", and “output (parts shipping process)” from the timer 22c, sensor 22a, and counter 22d of the parts shipping process 22. Collect each value.
- the collection unit 12 collects the actual values for each unit time of "number of work in process”, “number of personnel (assembly process)", and “output (assemble process)" from the sensor 23a, sensor 23b, and counter 23c of the assembly process 23. Collect each.
- the calculation unit 13 calculates a standard SN ratio as a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables for each unit time.
- the standard SN ratio can be found in "The concept and utilization of quality engineering at the development and design stage - System evaluation and improvement without prototyping and testing -", [online], [searched on January 4, 2022], Internet ⁇ https:/ /foundry.jp/bukai/wp-content/uploads/2012/07/e4806f10b0797ec0932d9317dd92a533.pdf>” (Non-Patent Document 3).
- FIG. 6 is a diagram illustrating the processing of the calculation unit.
- Figure 6 shows multiple variables such as “cutting time”, “number of equipment”, “output (cutting process)”, “AGV operating time”, “number of personnel (parts shipping process)”, and “output (parts shipping process)”.
- An example is shown in which the following values are used: ⁇ shipping process),'' ⁇ number of work in progress,'' ⁇ number of personnel (assembly process),'' and ⁇ output (assembly process).
- the calculation unit 13 calculates the standard SN ratio of the actual values of the plurality of variables collected by the collection unit 12 with respect to the standard values of the plurality of variables calculated by the simulation execution unit 11 for each unit time.
- the calculation unit 13 may display a graph 30 showing changes in the calculated standard SN ratio on the display device 70. As a result, the user can grasp the change in the status of the production line 2 by checking the graph 30.
- the detection unit 14 shown in FIG. 4 uses the standard SN ratio calculated by the calculation unit 13 to detect that an abnormality has occurred in the production line 2.
- the standard SN ratio becomes smaller as the degree of deviation between the standard value and the actual value for a plurality of variables increases. Therefore, the detection unit 14 detects that an abnormality has occurred in the production line 2 in response to the standard SN ratio being outside the reference range (that is, less than the threshold TH). For example, in the case of the graph 30 shown in FIG. 6, the detection unit 14 detects that an abnormality has occurred in the production line 2 at timing T when the standard SN ratio becomes less than the threshold value TH.
- the detection unit 14 may display an error notification on the display device 70 in response to detecting that an abnormality has occurred in the production line 2. Thereby, the user can reliably understand that an abnormality has occurred in the production line 2.
- the selection unit 15 shown in FIG. 4 selects an effective variable that has a relatively large influence on the standard SN ratio from among the plurality of variables in response to the detection unit 14 detecting the occurrence of an abnormality. Specifically, the selection unit 15 selects, as effective variables, variables that are effective in improving the estimation accuracy of the T method estimation model that uses a plurality of variables as explanatory variables and the standard SN ratio as an objective variable. Thereby, the user can select an effective variable as a candidate for the cause of an abnormality on the production line 2, and can quickly eliminate the abnormality on the production line 2. Note that the selection unit 15 may select a plurality of effective variables.
- the T method is one of the multivariate analysis methods provided by statistician Genichi Taguchi, and is a method for estimating the value of one objective variable from the values of multiple explanatory variables (Kishio Tamura, "5th MT system capable of determining direction - TS method, T method", Standardization and Quality Control, 2009, Vol. 62, No. 2" (see Non-Patent Document 1).
- the selection unit 15 generates a T-method estimation model by executing T-method data processing on a data set showing the actual values of a plurality of variables and the standard SN ratio value for each unit time.
- a simple regression is performed for each explanatory variable, and a weighted average is performed for each explanatory variable to generate a T method estimation model that calculates an estimated value of the objective variable.
- the estimated model obtained by data processing using the T method is expressed by the following equation (1).
- Xij is the value of the j-th explanatory variable in the i-th unit time after normalization processing.
- the normalization process is a process of subtracting the average value of the values of variables indicated by the data set.
- ⁇ j indicates the SN ratio of the j-th explanatory variable.
- the SN ratio ⁇ j indicates linearity between the value of the j-th explanatory variable and the value of the objective variable, and represents the estimation accuracy of the value of the objective variable.
- ⁇ j represents a proportionality constant of simple regression.
- Mi is the estimated value of the objective variable at the i-th unit time after the normalization process.
- the selection unit 15 uses a two-level orthogonal array to select an effective variable that is effective for improving the estimation accuracy of the target variable from a plurality of variables.
- the selection unit 15 includes, for example, “Genichi Taguchi, “Objective function and basic function (6) - Comprehensive prediction by T method”, Quality Engineering, 2005, Vol. 13, No. 3, p. 5-10” (non-patent literature Select effective variables using the method described in 2).
- the selection of effective variables (also called "item selection”) using a two-level orthogonal array is effective in improving the estimation accuracy of the objective variable for each explanatory variable (also called "item").
- the selection unit 15 determines whether or not the item has an adverse effect on the estimation effect of the target variable and the estimation of the target variable, based on the total SN ratio when each item is used and when it is not used.
- the selection unit 15 selects an effective variable from a plurality of variables based on the determination result.
- the selection unit 15 may generate a plurality of patterns indicating combinations of two or more variables among the plurality of variables without using a two-level orthogonal array. Then, the selection unit 15 generates a T-method estimation model using the actual values of two or more variables indicated by each pattern as explanatory variables and the standard SN ratio as an objective variable, and generates a total SN ratio of the generated T-method estimation model. Effective variables may be selected based on the magnitude of . For example, the selection unit 15 selects a variable included in a pattern with a maximum total SN ratio as an effective variable.
- FIG. 7 is a diagram showing an example of the selection results of effective variables.
- "AGC operating time,” “number of devices,” “number of personnel (parts shipment),” and “processing time” are selected as valid variables.
- the vertical axis in FIG. 7 indicates the S/N ratio ⁇ j of each variable in the T method estimation model using all of the plurality of variables.
- the SN ratio ⁇ j of each variable represents the degree of influence on the standard SN ratio, which is the target variable.
- the analysis unit 16 shown in FIG. 4 performs principal component analysis (PCA) using actual values of effective variables and standard SN ratios for each unit time.
- PCA principal component analysis
- FIG. 8 is a diagram showing an example of an analysis result by the analysis section.
- FIG. 8 shows the results of principal component analysis for "AGC operating time”, “number of devices”, “number of personnel (parts shipped)”, “processing time”, and “standard SN ratio” for each unit time.
- the analysis unit 16 selects two principal components that maximize the variance of the standard SN ratio. Specifically, the analysis unit 16 selects the first principal component with the largest contribution rate and the second principal component with the second largest contribution rate.
- the analysis unit 16 displays a scatter diagram for each combination of two principal components among the plurality of principal components obtained by principal component analysis on the display device 70, and displays a scatter diagram for each combination of two principal components among the plurality of principal components obtained by the principal component analysis, and Two principal components may be selected.
- each of the two principal components obtained from the values of "AGC operating time”, “number of equipment”, “number of personnel (parts shipped)", “processing time” and "standard SN ratio” for each unit time is Points corresponding to principal component scores are plotted.
- the analysis unit 16 may change the display format of each point in the scatter diagram depending on the value of the standard SN ratio corresponding to the point.
- the analysis unit 16 displays in black points where the value of the standard SN ratio is within a first range (low range), and points where the value of the standard SN ratio is within a second range (medium range) that is larger than the first range. Points where the value of the standard SN ratio is within the third range (high range) larger than the second range are displayed in white. Thereby, the user only needs to check the scatter diagrams for each combination and select the scatter diagram in which the standard SN ratios are most separated.
- the analysis unit 16 displays a biplot 40 of the two selected principal components on the display device 70.
- the biplot 40 principal component scores and principal component loadings are displayed in an overlapping manner.
- the display format of the points corresponding to the principal component scores of each of the two principal components obtained from the data for each unit time differs depending on the value of the standard SN ratio. From this, it is understood that the standard SN ratio is separated by using the two selected principal components.
- the principal component loading indicates the correlation between the value of the variable and the principal component score. The larger the principal component loading amount, the stronger the correlation between the principal component and the variable.
- the principal component loading amount for each variable is represented by a vector.
- Vector v0 indicates the principal component loading amount of the "standard SN ratio”.
- Vector v1 indicates the principal component load amount of "AGC operating time”.
- Vector v2 indicates the principal component loading amount of "number of devices”.
- Vector v3 indicates the principal component loading amount of "number of personnel (shipped parts)”.
- Vector v4 indicates the principal component load amount of "cutting time”.
- the user can understand the variables that are affecting the decline in the standard SN ratio. That is, the user can specify, among the vectors v1 to v4, the variable corresponding to the vector with a large component parallel to the vector v0 as the variable that is affecting the reduction in the standard SN ratio. For example, in the biplot 40 shown in FIG. 8, the user selects the variables "AGV operating time” and "cutting time” corresponding to vectors v1 and v4 which are not orthogonal to the direction of vector v0 and have large magnitudes. can be identified as a variable that influences the reduction in the standard SN ratio.
- the variables that are affecting the decline in the standard SN ratio are considered to be the cause of the abnormality on the production line 2. Therefore, the user can eliminate the abnormality in the production line 2 by adjusting the variables that are affecting the reduction in the standard SN ratio.
- the analysis unit 16 identifies and specifies the degree of influence of the effective variable on the standard SN ratio based on the principal component loading amount for the two selected principal components in each of the effective variable and the standard SN ratio.
- the degree of influence may be displayed on the display device 70. Specifically, for each of the plurality of effective variables, the analysis unit 16 indicates the vector (v1 to v4 in FIG. 8) indicating the principal component loading of the effective variable and the principal component loading of the "standard SN ratio".
- the absolute value of the inner product with the vector (vector v0 in FIG. 8) is calculated as the degree of influence on the standard SN ratio.
- FIG. 9 is a flowchart showing an example of the process flow of the abnormality detection device.
- the processor 101 of the abnormality detection device 100 first calculates standard values for each unit time of a plurality of variables indicating the status of the production line 2 when the production line 2 is operating normally. Acquire (step S1).
- the processor 101 inputs production plan data into the virtual model 2M, thereby acquiring the values of a plurality of variables for each unit time output from the virtual model 2M as the above-mentioned standard values.
- the processor 101 collects actual values of a plurality of variables for each unit time from the production line 2 (step S2).
- the processor 101 calculates a standard SN ratio representing the degree of deviation between the actual values of the plurality of variables with respect to the standard values of the plurality of variables for each unit time (step S3).
- the processor 101 displays a graph 30 showing changes in the standard SN ratio on the display device 70 (step S4).
- step S5 the processor 101 determines whether the standard SN ratio is outside the reference range (that is, less than the threshold TH) (step S5). If the standard SN ratio is within the reference range (that is, greater than or equal to the threshold TH) (NO in step S5), the process returns to step S2.
- the processor 101 If the standard SN ratio is outside the reference range (YES in step S5), the processor 101 notifies that an abnormality has occurred in the production line 2 (step S6). For example, the processor 101 displays an error notification screen on the display device 70.
- the processor 101 selects effective variables from the plurality of variables that are effective for improving the estimation accuracy of the T method estimation model, in which the actual values of the plurality of variables are used as explanatory variables and the standard SN ratio is used as the objective variable. ).
- the processor 101 may display a screen showing the selection result on the display device 70.
- the effective variable is an important item for the estimation accuracy of the standard SN ratio. Therefore, by confirming the selection result, the user can identify the effective variable as a candidate for the cause of the abnormality in the production line 2. As a result, the user can perform maintenance on the production line 2 to adjust effective variables and review the production plan.
- the processor 101 performs principal component analysis using the actual values of the effective variables for each unit time and the standard SN ratio (step S8).
- the processor 101 displays the results of the principal component analysis on the display device 70 (step S9).
- the processor 101 displays the biplot 40 shown in FIG. 8 on the display device 70.
- the processor 101 specifies the degree of influence of the effective variable on the standard SN ratio based on the principal component loading amount for each of the valid variable and the standard SN ratio, and displays the specified degree of influence on the display device 70. Good too. This allows the user to narrow down the variables that have a high degree of influence on the standard SN ratio from among the plurality of effective variables. As a result, the user can perform maintenance on the production line 2 to adjust the narrowed down variables.
- the user performs maintenance on the cutting device 21a in the cutting process 21.
- the user may review the production plan.
- the user can adjust the number of workers arranged in the assembly process 23, the number of cutting devices 21a operating in the cutting process 21, and the like.
- the processor 101 determines whether the production plan has been reviewed (step S10). Specifically, the processor 101 determines that the production plan has been reviewed in response to input of new production plan data.
- step S10 If the production plan has been reviewed (YES in step S10), the process returns to step S1. As a result, the standard values for each unit time of a plurality of variables indicating the status of the production line are updated. If the production plan has not been reviewed (NO in step S10), the process returns to step S2.
- FIG. 10 is a diagram showing a functional configuration of an abnormality detection device according to modification 1.
- the abnormality detection device 100A shown in FIG. 10 has the same hardware configuration as the abnormality detection device 100 (see FIG. 3). As shown in FIG. 10, the abnormality detection device 100A is different from the abnormality detection device 100 shown in FIG.
- the data set selection unit 17 is realized by the processor 101 executing the abnormality detection program 131.
- the performance database 18 is realized by the storage 103.
- the performance database 18 includes one or more data sets indicating values of a plurality of variables per unit time when the production line 2 was operating normally in the past.
- the operating conditions of the production line 2 are variable, information indicating the operating conditions of the production line 2 may be added to each data set.
- the operating conditions include the number of cutting devices 21a operating in the cutting process 21, the number of workers in the parts shipping process 22, the number of workers in the assembly process 23, and the like.
- the data set selection unit 17 operates as an acquisition unit that acquires standard values of a plurality of variables indicating the status of the production line 2 in a unit time when the production line 2 is operating normally. Specifically, the data set selection unit 17 selects one or more data sets from the performance database 18 in response to a user's instruction. For example, the user may specify one or more data sets from the performance database 18 when the production line 2 is operating under ideal conditions. Alternatively, if information indicating operating conditions is added to each data set, the user specifies one or more data sets to which information indicating operating conditions that match the production plan is added.
- the data set selection unit 17 obtains, as standard values, the values of a plurality of variables for each unit time, which are indicated by the selected one or more data sets. When one data set is selected, the data set selection unit 17 acquires the value indicated by the data set as the standard value. When a plurality of data sets are selected, the data set selection unit 17 selects a representative value (for example, an average value, a median value, etc.) of the values for each unit time indicated by the plurality of data sets for each of the plurality of variables. Obtain as standard value.
- the data set selection unit 17 acquires, as standard values, the values of the plurality of variables per unit time when the production line 2 was operating normally in the past.
- the standard SN ratio calculated by the calculation unit 13 represents the degree of deviation between the situation of the production line 2 when it was operating normally and the current situation. Therefore, the fact that the standard SN ratio is less than the threshold value means that some kind of abnormality has occurred in the production line 2.
- the user can easily check whether there is an abnormality in the production line by checking the detection result of the detection unit 14.
- step S10 is omitted, and the process returns to step S1 after step S9.
- a production line 2 is monitored at the production site.
- the object to be monitored is not limited to the production line 2.
- the monitoring target may be a manufacturing device.
- the abnormality detection device 100 calculates a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables for each unit time.
- the abnormality detection device 100 may calculate the statistics for each unit section.
- the unit interval is, for example, a period during which the target operation is executed by the manufacturing apparatus.
- FIG. 11 is a diagram illustrating an example of a manufacturing apparatus to be monitored.
- FIG. 11 shows an injection molding machine 3 as a manufacturing device to be monitored.
- the injection molding machine 3 includes a mold 31, a cylinder 32, a screw 33, a hopper 34, a screw drive device 35, and a sensor group 36.
- the cylinder 32 is a cylindrical member and has an internal space into which resin is supplied. Hopper 34 supplies resin to the interior space of cylinder 32.
- a screw 33 is inserted into the internal space of the cylinder 32.
- a screw drive device 35 is connected to the base end of the screw 33. The screw 33 is rotated under the control of a screw drive device 35 and is movable in the longitudinal direction of the cylinder 32 .
- the sensor group 36 measures the values of various parameters indicating the status of the injection molding machine 3.
- the injection molding machine 3 repeatedly performs injection molding operations.
- the injection molding operation is an operation in which the resin contained in the internal space of the cylinder 32 is injected into the mold 31 by moving the screw 33 from the upper position to the lower position in FIG.
- FIG. 12 is a diagram showing changes in parameter values during a period in which an injection molding operation is performed.
- the period during which the injection molding operation is performed will be referred to as an "injection molding period.”
- the horizontal axis shows the elapsed time from the start of the injection molding operation
- the vertical axis shows the values of various parameters measured by the sensor group 36.
- the sensor group 36 measures screw position, injection pressure, and injection speed as parameters indicating the status of the injection molding machine 3.
- the screw position is expressed, for example, by the distance D between the tip of the cylinder 32 and the tip of the screw 33 (see FIG. 11).
- a line 37 shows the evolution of the screw position during the injection molding period.
- Line 38 shows the evolution of the injection pressure.
- Line 39 shows the evolution of the injection speed.
- the abnormality detection device uses a plurality of variables indicating the status of the injection molding machine 3 during the injection molding period when the injection molding machine 3 is operating normally. Get the standard value of.
- the simulation execution unit 11 shown in FIG. 4 uses a virtual model of the injection molding machine 3 to execute a simulation of the values of a plurality of variables when the injection molding machine 3 is operated according to the production plan, and obtains results from the simulation. Obtain the values of multiple variables in the injection molding operation as standard values.
- the data set selection unit 17 shown in FIG. 10 acquires, as standard values, the values of a plurality of variables during an injection molding period when the injection molding machine 3 was operating normally in the past.
- the plurality of variables includes, for example, the screw position, injection pressure, and injection speed at each of the elapsed times t1, t2, . . . , tn from the start of the injection molding period.
- the plurality of variables includes 3 ⁇ n variables.
- the collection unit 12 acquires actual values of a plurality of variables indicating the status of the injection molding machine 3 for each injection molding period.
- the collection unit 12 may acquire actual values of a plurality of variables from the sensor group 36 or may acquire actual values of a plurality of variables from a control device (not shown) that controls the injection molding machine 3 (for example, a PLC). good.
- FIG. 13 is a diagram showing standard values and actual values of a plurality of variables indicating the status of the injection molding machine 3.
- the line 37a represents the standard values of the screw positions (n variables) at the elapsed times t1, t2, . . . , tn from the start of the injection molding period.
- the line 38a represents the standard value of the injection pressure (n variables) for the elapsed times t1, t2, . . . , tn.
- the line 39a represents the standard value of the injection speed (n variables) for the elapsed times t1, t2, . . . , tn.
- a line 37b represents actual values of screw positions (n variables) at elapsed times t1, t2, . .
- the line 38b represents actual values of the injection pressure (n variables) over the elapsed times t1, t2, . . . , tn.
- a line 39b represents actual values of the injection speed (n variables) at elapsed times t1, t2, . . . , tn.
- the calculation unit 13, detection unit 14, selection unit 15, and analysis unit 16 perform the processing described in the above embodiment using the standard values and actual values of the 3 ⁇ n variables shown in FIG. For example, as shown in FIG. 13, the calculation unit 13 calculates a standard SN ratio as a statistic representing the degree of deviation of the actual values of 3 ⁇ n variables from the standard values of 3 ⁇ n variables.
- FIG. 14 is a diagram showing changes in statistics calculated for each injection molding operation.
- FIG. 14 shows a graph in which the horizontal axis represents the number of injection molding operations and the vertical axis represents the statistical amount (standard SN ratio) calculated by the calculation unit 13.
- the seven digit number corresponding to each point in the graph represents the number of the product produced by the injection molding operation.
- Many defective products were found in products manufactured by injection molding operations in which the standard S/N ratio was outside the standard range (that is, below the threshold TH). From this, the user can check whether a defective product has occurred based on the error notification from the detection unit 14.
- FIG. 15 is a diagram showing the results of principal component analysis using actual values of effective variables and standard SN ratios for each injection molding period.
- FIG. 15 shows a biplot of two principal components PC1 and PC2 selected by the analysis unit 16.
- points corresponding to the principal component scores of each of the two principal components obtained from the actual values of the effective variables for each injection molding operation are plotted.
- Points corresponding to injection molding operations in which the standard SN ratio is within the reference range (that is, greater than or equal to the threshold value TH) are concentrated within the frame line 50a.
- points corresponding to injection molding operations where the standard SN ratio is outside the reference range that is, less than the threshold TH
- the user can easily identify the injection molding operation in which the abnormality has occurred.
- the user can consider the mechanism of abnormality occurrence by checking the biplot shown in FIG. 15.
- the variables "Speed_time_315 (injection speed at elapsed time t315)”, “Pressure_time_315 (injection pressure at elapsed time t315)”, “Speed_time_316 (injection speed at elapsed time t316)", “Speed_time_317 (elapsed time Vectors v10, v11, v12, v13, and v14 respectively corresponding to "injection speed at t317” and "Cylinder_time_318 (screw position at elapsed time t318)" are oriented in different directions from vectors corresponding to other variables. Therefore, the user can understand that the injection speed and screw position around the elapsed time t315 to t318 greatly contribute to the abnormality of the injection molding machine 3.
- FIG. 16 is a diagram showing another example of a manufacturing device to be monitored.
- a mounting machine 4 is shown as a manufacturing apparatus to be monitored.
- the mounting machine 4 includes a chuck 44, a drive device 45, and a sensor group 46.
- the chuck 44 holds the chip 42 to which the bumps 43 are attached.
- the drive device 45 controls the generation of ultrasonic waves, moves the chuck 44 up and down, and controls the force with which the chuck 44 holds the chip 42 .
- the sensor group 46 measures the values of various parameters indicating the status of the mounting machine 4.
- the drive device 45 lowers the chuck 44 holding the chip 42.
- the mounting machine 4 performs a bonding operation to bond the bumps 43 and the substrate 41 together.
- the drive device 45 generates ultrasonic waves to promote bonding between the bumps 43 and the substrate 41, and further lowers the chuck 44 while applying a load.
- the drive device 45 stops generating ultrasonic waves and reduces the holding force of the chip 42 by the chuck 44. This completes the bonding operation. Thereafter, the drive device 45 raises the chuck 44.
- the mounting machine 4 performs the above bonding operation every time the chuck 44 holds a new chip 42.
- the sensor group 46 measures the current and voltage applied to the drive device 45 and the amount of deformation of the bump 43 as parameters indicating the status of the mounting machine 4.
- the amount of deformation of the bump 43 is expressed by the distance between the chip 42 and the substrate 41.
- the abnormality detection device detects the period during which the mounting machine 4 is operating normally and the bonding operation is performed (hereinafter referred to as the "bonding operation period"). ) to obtain the standard values of a plurality of variables indicating the status of the mounting machine 4.
- the simulation execution unit 11 shown in FIG. 4 uses a virtual model of the mounting machine 4 to simulate the values of a plurality of variables when the mounting machine 4 is operated according to the production plan, and Obtain the values of multiple variables in an operation as standard values.
- the data set selection unit 17 shown in FIG. 10 acquires, as standard values, the values of a plurality of variables during a bonding operation period when the mounting machine 4 was operating normally in the past.
- the plurality of variables include, for example, the voltage, current, and amount of deformation at each of the elapsed times t1, t2, . . . , tm from the start of the bonding operation period.
- the plurality of variables includes 3 ⁇ m variables.
- the collection unit 12 acquires the actual values of a plurality of variables indicating the status of the mounting machine 4 for each bonding operation period.
- the collection unit 12 may acquire actual values of a plurality of variables from the sensor group 46, or may acquire actual values of a plurality of variables from a control device (for example, PLC), not shown, that controls the mounting machine 4. .
- the calculation unit 13, the detection unit 14, the selection unit 15, and the analysis unit 16 perform the processing described in the above embodiment using the standard values and actual values of 3 ⁇ m variables.
- the calculation unit 13 calculates the standard SN ratio as a statistic representing the degree of deviation between the actual values of 3 ⁇ m variables and the standard values of 3 ⁇ m variables.
- FIG. 17 is a diagram showing the transition of statistics calculated for each joining operation.
- FIG. 17 shows a graph in which the horizontal axis is the joining operation number (mounting number) and the vertical axis is the statistic (standard SN ratio) calculated by the calculation unit 13.
- the horizontal axis is the joining operation number (mounting number)
- the vertical axis is the statistic (standard SN ratio) calculated by the calculation unit 13.
- Many defective products were found in products manufactured by bonding operations in which the standard SN ratio was outside the reference range (that is, below the threshold TH). From this, the user can check whether a defective product has occurred based on the error notification from the detection unit 14.
- the unit section is the period during which the operation of the manufacturing apparatus (injection molding operation or joining operation) is performed.
- the unit section is not limited to this.
- the unit section may be each of a plurality of sections included in the range that the physical quantity of the manufacturing device can take.
- the screw position is from the position of the screw 33 shown in the upper part of FIG. 11 (represented by distance D1) to the position of the screw 33 shown in the lower part of FIG. (represented by distance D2).
- each of a plurality of sections included in the range from distance D1 to distance D2 is set as a unit section.
- a section where the distance D is D1 to D3 and a section where the distance D is D3 to D2 are set as unit sections.
- a section in which the physical quantity obtained from a tensile tester or a compression tester installed at a production site falls within a specific range may be set as a unit section.
- a section in which the amount of strain seen in a stress-strain diagram falls within a predetermined range is set as a unit section.
- a section in which the cooling rate falls within a predetermined range may be set as a unit section.
- this embodiment includes the following disclosures.
- An abnormality detection device comprising: a detection unit (101, 14) that detects that an abnormality has occurred in the production line in response to the statistical amount being outside a reference range.
- (Configuration 2) An acquisition unit that acquires standard values of a plurality of variables indicating the status of the monitoring target (2, 3, 4) in a unit interval when the monitoring target (2, 3, 4) at the production site is operating normally. (101, 11, 17) and a collection unit (101, 12) that collects actual values of the plurality of variables in the unit section; a calculation unit (101, 13) that calculates a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables; An abnormality detection device (100, 100A) comprising: a detection unit (101, 14) that detects that an abnormality has occurred in the monitoring target in response to the statistical amount being outside a reference range.
- Configuration 4 wherein the selection unit (101, 15) selects, as the effective variable, a variable that is effective in improving the estimation accuracy of the T method estimation model in which the plurality of variables are used as explanatory variables and the statistic is used as the objective variable.
- the acquisition unit (101, 11) A virtual model (2M) of the monitoring target (2, 3, 4) is used to simulate the values of the plurality of variables when the monitoring target (2, 3, 4) is operated according to the production plan.
- the abnormality detection device (100) according to any one of configurations 2 to 7, wherein the value of the unit interval obtained by the simulation is acquired as the standard value.
- the acquisition unit (101, 17) is configured to acquire, as the standard value, the values of the plurality of variables in the unit interval when the monitoring target (2, 3, 4) was operating normally in the past.
- the abnormality detection device (100A) according to any one of 2 to 7.
- the monitoring target is a production line (2), The abnormality detection device (100, 100A) according to any one of configurations 1 and 3 to 12, wherein the unit interval is a unit time.
- the monitoring target is an abnormality detection device (100, 100A) according to any one of configurations 2 to 12, including a manufacturing device (3, 4).
- (Configuration 16) a step (S1) of obtaining standard values for each unit time of a plurality of variables indicating the status of the production line (2) when the production line (2) is operating normally; a step (S2) of collecting actual values of the plurality of variables for each unit time; a step (S3) of calculating, for each unit time, a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables;
- An abnormality detection method comprising the step of detecting that an abnormality has occurred in the production line in response to the statistical value being outside a reference range (S6).
- a program (131, 132) that causes a computer (101) to execute an abnormality detection method is a step (S1) of obtaining standard values for each unit time of a plurality of variables indicating the status of the production line (2) when the production line (2) is operating normally; a step (S2) of collecting actual values of the plurality of variables for each unit time; a step (S3) of calculating, for each unit time, a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables;
- a program (131, 132) comprising a step (S6) of detecting that an abnormality has occurred in the production line in response to the statistical value being outside a reference range.
- (Configuration 18) Obtaining standard values of a plurality of variables indicating the status of the monitoring target (2, 3, 4) in a unit interval when the monitoring target (2, 3, 4) at the production site is operating normally ( S1) and a step (S2) of collecting actual values of the plurality of variables in the unit interval; calculating a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables (S3);
- An abnormality detection method comprising: detecting that an abnormality has occurred in the monitoring target in response to the statistical value being outside a reference range (S6).
- a program that causes a computer to execute an anomaly detection method is Obtaining standard values of a plurality of variables indicating the status of the monitoring target (2, 3, 4) in a unit interval when the monitoring target (2, 3, 4) at the production site is operating normally ( S1) and a step (S2) of collecting actual values of the plurality of variables in the unit interval; calculating a statistic representing the degree of deviation of the actual values of the plurality of variables from the standard values of the plurality of variables (S3);
- a program (131, 132) comprising a step (S6) of detecting that an abnormality has occurred in the monitoring target in response to the statistical amount being outside a reference range.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
異常検知方法は、生産ラインが正常に動作しているときの、生産ラインの状況を示す複数の変数の単位時間ごとの標準値を取得するステップと、単位時間ごとの複数の変数の実績値を収集するステップと、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出するステップと、統計量が基準範囲外であることに応じて、生産ラインに異常が発生していることを検知するステップと、を備える。
Description
本開示は、異常検知装置、異常検知方法およびプログラムに関する。
生産効率を高めるために、生産ラインの異常を早期に検知することが望まれる。特開2019-177783号公報(特許文献1)は、鉄道車両に設けられた加速度センサから得られる特性データと予め取得された単位データとの間のマハラノビス距離の増加から鉄道車両の乗り心地の悪化を検知する技術を開示している。
田村希志臣、「第5回方向判定のできるMTシステム-TS法,T法」、標準化と品質管理、2009年、Vol.62、No.2
田口玄一、「目的機能と基本機能(6)-T法による総合予測-」、品質工学、2005年、13巻3号、p.5-10
「開発設計段階における品質工学の考え方と活用-試作レス・試験レスによるシステム評価と改善-」、[online]、[2023年3月22日検索]、インターネット<https://foundry.jp/bukai/wp-content/uploads/2012/07/e4806f10b0797ec0932d9317dd92a533.pdf>
生産ラインは多種多様の設備を含み、多数の変数が得られる。そのため、日本国特開2019-177783号公報(特許文献1)に開示の技術を生産ラインに適用した場合、生産ラインの異常の有無を確認するためには、多数の変数の各々について基準と実測値とを比較する必要が生じる。その結果、生産ラインの異常の有無の確認にかかる作業が増大する。
本開示は、上記の問題に鑑みてなされたものであり、その目的は、生産現場における監視対象の異常の有無を簡易に確認できる異常検知装置、異常検知方法およびプログラムを提供することである。
本開示の一例によれば、異常検知装置は、取得部と、収集部と、算出部と、検知部と、を備える。取得部は、生産現場における監視対象が正常に動作しているときの、単位区間における監視対象の状況を示す複数の変数の標準値を取得する。収集部は、単位区間における複数の変数の実績値を収集する。算出部は、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出する。検知部は、統計量が基準範囲外であることに応じて、監視対象に異常が発生していることを検知する。
上記の開示によれば、ユーザは、検知部の結果を確認することにより、生産現場における監視対象の異常の有無を簡易に確認できる。
上述の開示において、異常検知装置は、複数の変数の中から、前記統計量への影響度の相対的に大きい有効変数を選択する選択部をさらに備える。
上記の開示によれば、ユーザは、選択部による選択結果を確認することにより、有効変数を、監視対象の異常の原因候補として特定できる。その結果、ユーザは、有効変数を調整するように監視対象のメンテナンスや生産計画を見直しなどの対策を早期に実行できる。
上述の開示において、選択部は、複数の変数を説明変数とし、統計量を目的変数とするT法推定モデルの推定精度の向上に有効な変数を上記の有効変数として選択する。
上記の開示によれば、統計量への影響度の相対的に大きい有効変数を容易に選択できる。
上述の開示において、異常検知装置は、単位区間ごとの有効変数の実績値と統計量とを用いた主成分分析を行なう分析部をさらに備える。
上記の開示によれば、ユーザは、主成分分析によって得られる主成分負荷量に基づいて、複数の有効変数のうち、統計量への影響度の高い変数を絞り込むことができる。その結果、ユーザは、絞り込まれた変数を調整するように生産ラインのメンテナンスや生産計画を見直しなどの対策を早期に実行できる。
上述の開示において、分析部は、統計量の分散を最大化する2つの主成分を選定し、有効変数と統計量との各々における、2つの主成分に対する主成分負荷量に基づいて、有効変数の統計量への影響度を特定する。
上記の開示によれば、ユーザは、特定された影響度に基づいて、複数の有効変数のうち、統計量への影響度の高い有効変数を絞り込むことができる。その結果、ユーザは、絞り込まれた有効変数を調整するように監視対象のメンテナンスや生産計画を見直しなどの対策を早期に実行できる。
上述の開示において、取得部は、監視対象の仮想モデルを用いて、生産計画に従って監視対象を動作させたときの複数の変数の値のシミュレーションを実行し、シミュレーションにより得られる単位区間の値を標準値として取得する。
あるいは、上述の開示において、取得部は、過去に監視対象が正常に動作していたときの単位区間における複数の変数の値を標準値として取得してもよい。
上述の開示において、統計量は、例えば標準SN比である。これにより、統計量は、標準値に対する実績値の類似度を適格に表す。
上述の開示において、監視対象は生産ラインであり、単位区間は単位時間である。この開示によれば、ユーザは、検知部の結果を確認することにより、生産ラインの異常の有無を簡易に確認できる。
上述の開示において、監視対象は製造装置を含む。この開示によれば、ユーザは、検知部の結果を確認することにより、製造装置の異常の有無を簡易に確認できる。
上述の開示において、製造装置は、対象動作を繰り返し実行する。単位区間は、対象動作が実行されている期間である。この開示によれば、複数の変数は、対象動作が実行されている期間における製造装置の状況を示す。そのため、ユーザは、製造装置によって繰り返し実行される対象動作ごとに、異常の有無を簡易に確認できる。
本開示の別の例によれば、異常検知方法は、第1~第4のステップを備える。第1のステップは、監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得するステップである。第2のステップは、単位区間における複数の変数の実績値を収集するステップである。第3のステップは、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出するステップである。第4のステップは、統計量が基準範囲外であることに応じて、監視対象に異常が発生していることを検知するステップである。
本開示の別の例によれば、プログラムは、上記の異常検知方法をコンピュータに実行させる。これらの開示によっても、ユーザは、生産現場における監視対象の異常の有無を簡易に確認できる。
本開示によれば、ユーザは、生産現場における監視対象の異常の有無を簡易に確認できる。
本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
§1 適用例
図1を参照して、本発明が適用される場面の一例について説明する。図1は、実施の形態に係る異常検知装置を含むシステムの構成を示す概略図である。図1に示されるように、システム1は、生産現場における監視対象の一例である生産ライン2と、生産ライン2の異常の発生を検知する異常検知装置100と、を備える。異常検知装置100は、生産ライン2と通信可能に接続される。なお、生産現場における監視対象は、生産ライン2に限定されない。
図1を参照して、本発明が適用される場面の一例について説明する。図1は、実施の形態に係る異常検知装置を含むシステムの構成を示す概略図である。図1に示されるように、システム1は、生産現場における監視対象の一例である生産ライン2と、生産ライン2の異常の発生を検知する異常検知装置100と、を備える。異常検知装置100は、生産ライン2と通信可能に接続される。なお、生産現場における監視対象は、生産ライン2に限定されない。
異常検知装置100は、生産ライン2が正常に動作しているときの、生産ライン2の状況を示す複数の変数の単位時間ごとの標準値を取得する(ステップ(1))。複数の変数は、生産ライン2を構成する各工程の装置数、人員数、出来高などを含む。複数の変数の標準値は、生産ライン2の標準的な状況を表している。単位時間は、例えば5分である。また、複数の変数の標準値は、単位時間ごとに異なり得る。例えば、生産ライン2の稼働開始直後の単位時間における標準値は、生産ライン2の稼働開始してから数時間経過後の単位時間における標準値と異なり得る。このような場合を考慮して、異常検知装置100は、単位時間ごとに標準値を取得する。
次に、異常検知装置100は、生産ライン2の操業が開始されると、単位時間ごとの複数の変数の実績値を収集する(ステップ(2))。そして、異常検知装置100は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出する(ステップ(3))。異常検知装置100は、統計量が基準範囲外であることに応じて、生産ライン2に異常が発生していることを検知する(ステップ(4))。
ステップ(3)により、生産ライン2の状況を示す複数の変数の個数が多くても、生産ライン2の標準的な状況に対する現状況の乖離度が1つの統計量で表される。統計量として、例えば標準SN比が採用され得る。ただし、統計量は、標準SN比に限定されず、複数の変数についての標準値と実績値との乖離度を表すパラメータであればよい。標準SN比は、複数の変数についての標準値と実績値との乖離度が大きいほど小さくなる。そのため、標準SN比が低下することは、複数の変数の実績値が標準値から外れていることを意味する。閾値THは、生産ライン2が正常から異常に変化するときの値となるように予め定められる。この場合、基準範囲は、閾値TH以上の範囲である。そのため、標準SN比が基準範囲外(すなわち閾値TH未満)であることは、生産ライン2に何らかの異常が発生していることを意味する。従って、ユーザは、上記のステップ(4)の結果を確認することにより、生産ライン2の異常の有無を簡易に確認できる。
§2 具体例
<生産ラインの例>
図2は、生産ラインの一例を示す図である。図2に示される生産ライン2は、切削加工工程21と、部品出荷工程22と、組付工程23と、製品出荷工程24と、を含む。
<生産ラインの例>
図2は、生産ラインの一例を示す図である。図2に示される生産ライン2は、切削加工工程21と、部品出荷工程22と、組付工程23と、製品出荷工程24と、を含む。
切削加工工程21は、例えば金属片を切削加工することにより、所定形状の金属部品を作製する。切削加工工程21は、1以上の切削装置21aと、タイマー21bと、カウンタ21c,21dと、を備える。
1以上の切削装置21aの各々は、正常に動作しているか否かを示す第1信号と、切削加工動作を実施しているか否かを示す第2信号と、金属部品の作製を完了したことを示す第3信号と、を出力する。
カウンタ21cは、第1信号に基づいて、切削加工工程21において正常に動作している切削装置21aの個数(以下、「装置数」と称する。)を計測する。
タイマー21bは、第2信号に基づいて、単位時間のうち切削加工動作を実施している時間(以下、「切削加工時間」と称する。)を計測する。
カウンタ21dは、第3信号に基づいて、単位時間において作製された金属部品の個数(以下、「出来高(切削加工工程)」と称する。)を計測する。
部品出荷工程22は、外部から購入された組み付け部品を組付工程23に搬送する。部品出荷工程22は、センサ22aと、自動搬送車(Automatic Guided Vehicle(AGV))22bと、を含む。部品出荷工程22では、作業者が外部から購入された組み付け部品を梱包から取り出す作業が実施された後、自動搬送車22bが組み付け部品を搬送する。
センサ22aは、単位時間ごとに、作業者の人数(以下、「人員数(部品出荷工程)」と称する。)を計測する。センサ22aは、例えば画像センサであり、部品出荷工程22を撮像することにより得られた画像を用いて、人員数(部品出荷工程)を計測する。
自動搬送車22bは、タイマー22cとカウンタ22dとを有する。タイマー22cは、単位時間における、組み付け部品を搬送している時間(以下、「AGV稼働時間」と称する。)を計測する。カウンタ22dは、単位時間において、搬送完了した組み付け部品の個数(以下、「出来高(部品出荷工程)」と称する。)を計測する。
組付工程23は、切削加工工程21によって作製された金属部品に部品出荷工程22から搬送された組み付け部品を組み付けることにより、製品を製造する。組付工程23では、例えば作業者が組み付け作業を実施し、完成した製品がベルトコンベアに置かれる。
組付工程23には、単位時間ごとに、切削加工工程21から搬送された金属部品のうち、組み付け部品の組み付け前の金属部品の個数(以下、「仕掛数」と称する。)を計測するセンサ23aが設けられる。センサ23aは、例えば画像センサであり、組み付け部品が組み付けられる前の金属部品が置かれるトレーを撮像することにより得られた画像を用いて、仕掛数を計測する。
さらに、組付工程23には、単位時間ごとに、作業者の人数(以下、「人員数(組付工程)」と称する。)を計測するセンサ23bと、単位時間における、製造された製品の個数(以下、「出来高(組付工程)」と称する。)を計測するカウンタ23cと、が設けられる。センサ23bは、例えば画像センサであり、組付工程23を撮像することにより得られた画像を用いて、人員数(組付工程)を計測する。カウンタ23cは、例えば製品が置かれるベルトコンベアに設けられたリミットスイッチである。製品出荷工程24では、製品が梱包され、出荷される。
<異常検知装置のハードウェア構成>
図3は、実施の形態に係る異常検知装置のハードウェア構成の一例を示す模式図である。図3に示されるように、異常検知装置100は、典型的には、汎用的なコンピュータアーキテクチャに従う構造を有する。具体的には、異常検知装置100は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)などのプロセッサ101と、メモリ102と、ストレージ103と、表示コントローラ104と、入力インターフェイス105と、通信インターフェイス106と、を含む。これらの各部は、バスを介して、互いにデータ通信可能に接続される。
図3は、実施の形態に係る異常検知装置のハードウェア構成の一例を示す模式図である。図3に示されるように、異常検知装置100は、典型的には、汎用的なコンピュータアーキテクチャに従う構造を有する。具体的には、異常検知装置100は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)などのプロセッサ101と、メモリ102と、ストレージ103と、表示コントローラ104と、入力インターフェイス105と、通信インターフェイス106と、を含む。これらの各部は、バスを介して、互いにデータ通信可能に接続される。
プロセッサ101は、ストレージ103に記憶されている各種のプログラムをメモリ102に展開して実行することで、本実施の形態に従う各種処理を実現する。
メモリ102は、典型的には、DRAM(Dynamic Random Access Memory)などの揮発性の記憶装置であり、ストレージ103から読み出されたプログラムなどを記憶する。
ストレージ103は、典型的には、ハードディスクトライブなどの不揮発性の磁気記憶装置である。ストレージ103は、プロセッサ101で実行される、異常検知プログラム131およびシミュレーションプログラム132を記憶する。ストレージ103にインストールされる各種のプログラムは、メモリカードなどに格納された状態で流通する。
表示コントローラ104は、表示装置70と接続されており、プロセッサ101からの内部コマンドに従って、各種の情報を表示するための信号を表示装置70へ出力する。
入力インターフェイス105は、プロセッサ101とキーボード、マウス、タッチパネル、専用コンソールなどの入力装置75との間のデータ伝送を仲介する。すなわち、入力インターフェイス105は、ユーザが入力装置75を操作することで与えられる操作指令を受け付ける。
通信インターフェイス106は、プロセッサ101と外部機器(例えば生産ライン2に設けられる各種の機器)との間におけるデータ伝送を仲介する。通信インターフェイス106は、典型的には、イーサネット(登録商標)やUSB(Universal Serial Bus)などを含む。なお、ストレージ103に格納される各種のプログラムは、通信インターフェイス106を介して、配信サーバなどからダウンロードされてもよい。
上述のような汎用的なコンピュータアーキテクチャに従う構造を有するコンピュータを利用する場合には、本実施の形態に係る機能を提供するためのアプリケーションに加えて、コンピュータの基本的な機能を提供するためのOS(Operating System)がインストールされていてもよい。この場合には、本実施の形態に係るプログラムは、OSの一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の順序およびタイミングで呼出して処理を実行するものであってもよい。すなわち、本実施の形態に係るプログラム自体は、上記のようなモジュールを含んでおらず、OSと協働して処理が実行される場合もある。
なお、代替的に、異常検知プログラム131およびシミュレーションプログラム132の実行により提供される機能の一部もしくは全部を専用のハードウェア回路として実装してもよい。
<異常検知装置の機能構成>
図4は、実施の形態に係る異常検知装置の機能構成の一例を示す図である。図4に示されるように、異常検知装置100は、シミュレーション実行部11と、収集部12と、算出部13と、検知部14と、選択部15と、分析部16と、を備える。シミュレーション実行部11は、プロセッサ101(図3参照)がシミュレーションプログラム132を実行することにより実現される。収集部12は、通信インターフェイス106と異常検知プログラム131を実行するプロセッサ101とによって実現される。算出部13、検知部14、選択部15および分析部16は、プロセッサ101が異常検知プログラム131を実行することにより実現される。
図4は、実施の形態に係る異常検知装置の機能構成の一例を示す図である。図4に示されるように、異常検知装置100は、シミュレーション実行部11と、収集部12と、算出部13と、検知部14と、選択部15と、分析部16と、を備える。シミュレーション実行部11は、プロセッサ101(図3参照)がシミュレーションプログラム132を実行することにより実現される。収集部12は、通信インターフェイス106と異常検知プログラム131を実行するプロセッサ101とによって実現される。算出部13、検知部14、選択部15および分析部16は、プロセッサ101が異常検知プログラム131を実行することにより実現される。
シミュレーション実行部11は、生産ライン2が正常に動作しているときの、単位時間における生産ライン2の状況を示す複数の変数の標準値を取得する取得部として動作する。具体的には、シミュレーション実行部11は、生産ライン2の仮想モデルに生産計画を示す生産計画データを入力することにより、生産ライン2の状況を示す複数の変数の単位時間(例えば5分)ごとの値をシミュレートする。シミュレーション実行部11は、公知の技術(例えば特開2003-44115号公報(特許文献2))を用いてシミュレーションを実行すればよい。
図5は、シミュレーション実行部の処理を説明する図である。仮想モデル2Mは、生産ライン2に応じて予め作成される。仮想モデル2Mは、生産計画を示す各種データの入力に応じて、当該生産計画に従って生産ライン2を稼働させたときの生産ライン2の状況を示す複数の変数の単位時間ごとの値を出力する。図5に示されるように、生産ライン2の状況を示す複数の変数は、「切削加工時間」、「装置数」、「出来高(切削加工工程)」、「AGV稼働時間」、「人員数(部品出荷工程)」、「出来高(部品出荷工程)」、「仕掛数」、「人員数(組付工程)」、「出来高(組付工程)」を含む。
仮想モデル2Mは、切削加工工程21に対応する第1モデル21Mと、部品出荷工程22に対応する第2モデル22Mと、組付工程23に対応する第3モデル23Mと、を含む。
第1モデル21Mは、切削装置21aの仕様に応じて作成される。第1モデル21Mは、以下のようなパラメータによって定義される。
・切削装置21aが正常に動作するときの切削加工速度、
・1つの金属部品を作製するための切削量、
・金属部品の切削が完了してから次の金属部品の切削を開始するまでの準備時間、など。第1モデル21Mは、動作させる切削装置21aの数、稼働予定期間、停止期間(休憩時間)などを示す生産計画データの入力を受けて、単位時間ごとの切削加工工程21の切削加工時間、装置数および出来高の値を出力する。
・切削装置21aが正常に動作するときの切削加工速度、
・1つの金属部品を作製するための切削量、
・金属部品の切削が完了してから次の金属部品の切削を開始するまでの準備時間、など。第1モデル21Mは、動作させる切削装置21aの数、稼働予定期間、停止期間(休憩時間)などを示す生産計画データの入力を受けて、単位時間ごとの切削加工工程21の切削加工時間、装置数および出来高の値を出力する。
第2モデル22Mは、自動搬送車22bの仕様および部品出荷工程22における作業者の標準作業の仕様に応じて作成される。第2モデル22Mは、以下のようなパラメータによって定義される。
・作業者が標準作業を実施するときの、1つの組み付け部品を梱包から取り出すのに要する時間、
・作業者が組み付け部品を自動搬送車22bにセットするのに要する時間、
・自動搬送車22bが1つの組み付け部品を組付工程23に搬送するのに要する時間、など。
第2モデル22Mは、部品出荷工程22に配置させる作業者の人数、作業予定期間、作業者の休憩時間などを示す生産計画データの入力を受けて、単位時間ごとの部品出荷工程22のAGV稼働時間、人員数および出来高の値を出力する。
・作業者が標準作業を実施するときの、1つの組み付け部品を梱包から取り出すのに要する時間、
・作業者が組み付け部品を自動搬送車22bにセットするのに要する時間、
・自動搬送車22bが1つの組み付け部品を組付工程23に搬送するのに要する時間、など。
第2モデル22Mは、部品出荷工程22に配置させる作業者の人数、作業予定期間、作業者の休憩時間などを示す生産計画データの入力を受けて、単位時間ごとの部品出荷工程22のAGV稼働時間、人員数および出来高の値を出力する。
第3モデル23Mは、作業者による標準作業の仕様に応じて作成される。第3モデル23Mは、例えば作業者による1つの製品を完成させるための標準作業に要する時間などによって定義される。第3モデル23Mは、組付工程23に配置させる作業者の人数、作業予定期間、休憩時間などを示す生産計画データ、第1モデル21Mの出力データおよび第2モデル22Mの出力データの入力を受けて、単位時間ごとの組付工程23の仕掛数、人員数および出来高の値を出力する。
仮想モデル2Mは、各工程において装置および作業者が標準作業を実施することを前提としたモデルである。そのため、シミュレーション実行部11は、仮想モデル2Mから出力される複数の変数の単位時間(例えば1分、5分など)ごとの値を、生産ライン2が正常に動作しているときの当該複数の変数の値(標準値)として取得する。
図4に示す収集部12は、生産ライン2から、単位時間(例えば1分、5分など)ごとの生産ライン2の現状況を示す複数の変数の実績値を収集する。具体的には、収集部12は、切削加工工程21のタイマー21b,カウンタ21c,カウンタ21dから、「切削加工時間」,「装置数」,「出来高(切削加工工程)」の単位時間ごとの実績値をそれぞれ収集する。収集部12は、部品出荷工程22のタイマー22c,センサ22a,カウンタ22dから、「AGV稼働時間」,「人員数(部品出荷工程)」,「出来高(部品出荷工程)」の単位時間ごとの実績値をそれぞれ収集する。収集部12は、組付工程23のセンサ23a,センサ23b,カウンタ23cから、「仕掛数」,「人員数(組付工程)」,「出来高(組付工程)」の単位時間ごとの実績値をそれぞれ収集する。
算出部13は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量として標準SN比を算出する。標準SN比は、「「開発設計段階における品質工学の考え方と活用-試作レス・試験レスによるシステム評価と改善-」、[online]、[2022年1月4日検索]、インターネット<https://foundry.jp/bukai/wp-content/uploads/2012/07/e4806f10b0797ec0932d9317dd92a533.pdf>」(非特許文献3)に基づいて算出される。
図6は、算出部の処理を説明する図である。図6には、複数の変数として、「切削加工時間」,「装置数」,「出来高(切削加工工程)」,「AGV稼働時間」,「人員数(部品出荷工程)」,「出来高(部品出荷工程)」,「仕掛数」,「人員数(組付工程)」,「出来高(組付工程)」を用いる例が示される。算出部13は、シミュレーション実行部11によって算出された複数の変数の標準値に対する収集部12によって収集された複数の変数の実績値の標準SN比を単位時間ごとに算出する。算出部13は、算出された標準SN比の推移を示すグラフ30を表示装置70に表示してもよい。これにより、ユーザは、グラフ30を確認することにより、生産ライン2の状況の推移を把握できる。
図4に示す検知部14は、算出部13によって算出された標準SN比を用いて、生産ライン2に異常が発生していることを検知する。標準SN比は、複数の変数についての標準値と実績値との乖離度が大きいほど小さくなる。そのため、検知部14は、標準SN比が基準範囲外(つまり閾値TH未満)であることに応じて、生産ライン2に異常が発生していることを検知する。例えば、図6に示すグラフ30の場合、検知部14は、標準SN比が閾値TH未満となったタイミングTにおいて、生産ライン2に異常が発生していることを検知する。検知部14は、生産ライン2に異常が発生していることを検知したことに応じて、エラー通知を表示装置70に表示してもよい。これにより、ユーザは、生産ライン2に異常が発生していることを確実に把握できる。
図4に示す選択部15は、検知部14が異常の発生を検知したことに応じて、複数の変数の中から、標準SN比への影響度の相対的に大きい有効変数を選択する。具体的には、選択部15は、複数の変数を説明変数とし、標準SN比を目的変数とするT法推定モデルの推定精度の向上に有効な変数を有効変数として選択する。これにより、ユーザは、有効変数を生産ライン2の異常の原因候補として選択でき、生産ライン2の異常の解消を早期に実行できる。なお、選択部15は、複数の有効変数を選択してもよい。
T法は、統計学者の田口玄一氏によって提供された多変量解析手法の1つであり、複数の説明変数の値から1つの目的変数の値を推定する手法である(「田村希志臣、「第5回方向判定のできるMTシステム-TS法,T法」、標準化と品質管理、2009年、Vol.62、No.2」(非特許文献1)参照)。
選択部15は、単位時間ごとの複数の変数の実績値と標準SN比の値とを示すデータセットに対してT法のデータ処理を実行することにより、T法推定モデルを生成する。T法のデータ処理は、説明変数ごとに単回帰を行ない、説明変数ごとに加重平均を行なうことにより目的変数の推定値を算出するT法推定モデルを生成する。T法のデータ処理によって得られる推定モデルは、以下の式(1)によって表される。
式(1)において、Xijは、i番目の単位時間におけるj番目の説明変数の規準化処理後の値である。規準化処理は、データセットによって示される変数の値の平均値を差し引く処理である。ηjは、j番目の説明変数のSN比を示す。SN比ηjは、j番目の説明変数の値と目的変数の値との間の線形性を示し、目的変数の値の推定精度を表す。βjは、単回帰の比例定数を示す。Miは、i番目の単位時間の目的変数の規準化処理後の推定値である。
例えば、選択部15は、2水準系の直交表を用いて、目的変数の推定精度の向上に有効な有効変数を複数の変数から選択する。選択部15は、例えば「田口玄一、「目的機能と基本機能(6)-T法による総合予測-」、品質工学、2005年、13巻3号、p.5-10」(非特許文献2)に記載の方法を用いて有効変数を選択する。2水準系の直交表を用いた有効変数の選択(「項目選択」とも称される。)により、説明変数(「項目」とも称される。)ごとに、目的変数の推定精度の向上に効果のある説明変数が選択されるとともに、目的変数の推定精度に悪影響のある(推定精度を下げる)説明変数を除外することができる。さらに、2水準系の直交表を用いることにより、項目間で相互作用がある場合の影響を考慮できる。具体的には、「田口玄一、「目的機能と基本機能(6)-T法による総合予測-」、品質工学、2005年、13巻3号、p.5-10」(非特許文献2)に記載の方法によれば、複数の説明変数(項目)の各々について使用するか使用しないかの2水準のいずれかが与えられた直交表が作成され、直交表の各行について総合SN比が算出される。選択部15は、各項目を使用した場合および使用しない場合の総合SN比に基づいて、当該項目の目的変数の推定効果および目的変数の推定に対する悪影響の有無を判断する。選択部15は、判断結果に基づいて、複数の変数から有効変数を選択する。
あるいは、選択部15は、2水準系の直交表を用いることなく、複数の変数のうちの2以上の変数の組み合わせを示す複数のパターンを生成してもよい。そして、選択部15は、各パターンによって示される2以上の変数の実績値を説明変数とし、標準SN比を目的変数とするT法推定モデルを生成し、生成したT法推定モデルの総合SN比の大小に基づいて、有効変数を選択してもよい。例えば、選択部15は、総合SN比が最大となるパターンに含まれる変数を有効変数として選択する。
図7は、有効変数の選択結果の一例を示す図である。図7に示す例では、「AGC稼働時間」、「装置数」、「人員数(部品出荷)」および「加工時間」が有効変数として選択されている。なお、図7の縦軸は、複数の変数の全てを用いたT法推定モデルにおける各変数のSN比ηjを示す。上述したように、各変数のSN比ηjは、目的変数である標準SN比への影響度の大きさを表す。
図4に示す分析部16は、単位時間ごとの有効変数の実績値と標準SN比とを用いた主成分分析(Principal Component Analysis(PCA))を行なう。
図8は、分析部による分析結果の一例を示す図である。図8には、単位時間ごとの「AGC稼働時間」、「装置数」、「人員数(部品出荷)」、「加工時間」および「標準SN比」に対する主成分分析の結果が示される。
分析部16は、標準SN比の分散を最大化する2つの主成分を選定する。具体的には、分析部16は、寄与率が最大となる第1主成分と、寄与率が2番目に大きい第2主成分とを選択する。
あるいは、分析部16は、主成分分析により得られる複数の主成分のうちの2つの主成分の組み合わせごとの散布図を表示装置70に表示し、ユーザから指定された散布図に対応する組み合わせの2つの主成分を選定してもよい。散布図において、単位時間ごとの「AGC稼働時間」、「装置数」、「人員数(部品出荷)」、「加工時間」および「標準SN比」の値から得られる2つの主成分の各々の主成分得点に対応する点がプロットされる。分析部16は、散布図において、各点の表示形式を当該点に対応する標準SN比の値に応じて異ならせてもよい。例えば、分析部16は、標準SN比の値が第1範囲(低範囲)内である点を黒色で表示し、標準SN比の値が第1範囲よりも大きい第2範囲(中範囲)内である点を灰色で表示し、標準SN比の値が第2範囲よりも大きい第3範囲(高範囲)内である点を白色で表示する。これにより、ユーザは、組み合わせごとの散布図を確認し、標準SN比の大小が最も分離されている散布図を選択すればよい。
図8に示されるように、分析部16は、選定した2つの主成分のバイプロット40を表示装置70に表示する。バイプロット40では、主成分得点と主成分負荷量とが重ねて表示される。単位時間ごとのデータから得られる2つの主成分の各々の主成分得点に対応する点の表示形式は、上述したように、標準SN比の値に応じて異なる。これにより、選定された2つの主成分を用いることにより、標準SN比の大小が分離されていることが理解される。
主成分負荷量は、変数の値と主成分得点との相関関係を示す。主成分負荷量が大きいほど、主成分と変数とが強く相関していることを表す。図8に示されるように、各変数についての主成分負荷量は、ベクトルによって表される。ベクトルv0は、「標準SN比」の主成分負荷量を示す。ベクトルv1は、「AGC稼働時間」の主成分負荷量を示す。ベクトルv2は、「装置数」の主成分負荷量を示す。ベクトルv3は、「人員数(部品出荷)」の主成分負荷量を示す。ベクトルv4は、「切削加工時間」の主成分負荷量を示す。
ユーザは、バイプロット40を確認することにより、標準SN比の低下に影響を与えている変数を把握できる。すなわち、ユーザは、ベクトルv1~v4のうち、ベクトルv0と平行な成分の大きいベクトルに対応する変数を、標準SN比の低下に影響を与えている変数として特定できる。例えば、図8に示すバイプロット40において、ユーザは、ベクトルv0の向きと直交しておらず、かつ、大きさが大きいベクトルv1,v4に対応する変数「AGV稼働時間」,「切削加工時間」を、標準SN比の低下に影響を与えている変数として特定できる。
標準SN比の低下に影響を与えている変数は、生産ライン2の異常の原因と考えられる。そのため、ユーザは、標準SN比の低下に影響を与えている変数を調整することにより、生産ライン2の異常を解消できる。
なお、分析部16は、有効変数と標準SN比との各々における、選定された2つの主成分に対する主成分負荷量に基づいて、有効変数の標準SN比への影響度を特定し、特定した影響度を表示装置70に表示してもよい。具体的には、分析部16は、複数の有効変数の各々について、当該有効変数の主成分負荷量を示すベクトル(図8のv1~v4)と「標準SN比」の主成分負荷量を示すベクトル(図8のベクトルv0)との内積の絶対値を、標準SN比への影響度として算出する。これにより、ユーザは、表示装置70に表示された影響度を確認することにより、標準SN比の低下に影響を与えている変数を容易に特定できる。
<異常検知装置の処理の流れ>
図9は、異常検知装置の処理の流れの一例を示すフローチャートである。図9に示されるように、まず、異常検知装置100のプロセッサ101は、生産ライン2が正常に動作しているときの、生産ライン2の状況を示す複数の変数の単位時間ごとの標準値を取得する(ステップS1)。本実施の形態では、プロセッサ101は、生産計画データを仮想モデル2Mに入力することにより、仮想モデル2Mから出力される単位時間ごとの複数の変数の値を上記の標準値として取得する。
図9は、異常検知装置の処理の流れの一例を示すフローチャートである。図9に示されるように、まず、異常検知装置100のプロセッサ101は、生産ライン2が正常に動作しているときの、生産ライン2の状況を示す複数の変数の単位時間ごとの標準値を取得する(ステップS1)。本実施の形態では、プロセッサ101は、生産計画データを仮想モデル2Mに入力することにより、仮想モデル2Mから出力される単位時間ごとの複数の変数の値を上記の標準値として取得する。
次に、プロセッサ101は、生産ライン2から、単位時間ごとの複数の変数の実績値を収集する(ステップS2)。プロセッサ101は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す標準SN比を算出する(ステップS3)。プロセッサ101は、標準SN比の推移を示すグラフ30を表示装置70に表示する(ステップS4)。
次に、プロセッサ101は、標準SN比が基準範囲外(つまり閾値TH未満)であるか否かを判断する(ステップS5)。標準SN比が基準範囲内(つまり閾値TH以上)である場合(ステップS5でNO)、処理は、ステップS2に戻る。
標準SN比が基準範囲外である場合(ステップS5でYES)、プロセッサ101は、生産ライン2に異常が発生していることを通知する(ステップS6)。例えば、プロセッサ101は、エラー通知画面を表示装置70に表示する。
次に、プロセッサ101は、複数の変数の実績値を説明変数とし、標準SN比を目的変数とするT法推定モデルの推定精度の向上に有効な有効変数を複数の変数から選択する(ステップS7)。プロセッサ101は、選択結果を示す画面を表示装置70に表示してもよい。有効変数は、標準SN比の推定精度に重要な項目である。そのため、ユーザは、選択結果を確認することにより、有効変数を、生産ライン2の異常の原因候補として特定できる。その結果、ユーザは、有効変数を調整するように生産ライン2のメンテナンスを実行し、生産計画を見直すことができる。
次に、プロセッサ101は、単位時間ごとの有効変数の実績値と標準SN比とを用いた主成分分析を行なう(ステップS8)。プロセッサ101は、主成分分析の結果を表示装置70に表示する(ステップS9)。例えば、プロセッサ101は、図8に示すバイプロット40を表示装置70に表示する。あるいは、プロセッサ101は、有効変数と標準SN比との各々における主成分負荷量に基づいて、有効変数の標準SN比への影響度を特定し、特定した影響度を表示装置70に表示してもよい。これにより、ユーザは、複数の有効変数のうち、標準SN比への影響度の高い変数を絞り込むことができる。その結果、ユーザは、絞り込まれた変数を調整するように生産ライン2のメンテナンスを実行できる。例えば、ユーザは、切削加工工程21の切削装置21aのメンテナンスを実行する。あるいは、ユーザは、生産計画を見直してもよい。例えば、ユーザは、組付工程23に配置される作業者の数の調整、切削加工工程21において動作する切削装置21aの数の調整などを実施できる。
次に、プロセッサ101は、生産計画の見直しが行なわれたか否かを判断する(ステップS10)。具体的には、プロセッサ101は、新たな生産計画データが入力されたことに応じて、生産計画の見直しが行なわれたと判断する。
生産計画の見直しが行なわれた場合(ステップS10でYES)、処理は、ステップS1に戻る。その結果、生産ラインの状況を示す複数の変数の単位時間ごとの標準値が更新される。生産計画の見直しが行なわれていない場合(ステップS10でNO)、処理は、ステップS2に戻る。
<変形例1>
図10は、変形例1に係る異常検知装置の機能構成を示す図である。図10に示される異常検知装置100Aは、異常検知装置100と同様のハードウェア構成(図3参照)を備える。図10に示されるように、異常検知装置100Aは、図4に示す異常検知装置100と比較して、シミュレーション実行部11の代わりにデータセット選択部17および実績データベース18を備える点で相違する。データセット選択部17は、プロセッサ101が異常検知プログラム131を実行することにより実現される。実績データベース18は、ストレージ103によって実現される。
図10は、変形例1に係る異常検知装置の機能構成を示す図である。図10に示される異常検知装置100Aは、異常検知装置100と同様のハードウェア構成(図3参照)を備える。図10に示されるように、異常検知装置100Aは、図4に示す異常検知装置100と比較して、シミュレーション実行部11の代わりにデータセット選択部17および実績データベース18を備える点で相違する。データセット選択部17は、プロセッサ101が異常検知プログラム131を実行することにより実現される。実績データベース18は、ストレージ103によって実現される。
実績データベース18は、過去に生産ライン2が正常に動作していたときの複数の変数の単位時間ごとの値を示す1以上のデータセットを含む。
生産ライン2の動作条件が可変である場合、各データセットには、生産ライン2の動作条件を示す情報が付加されていてもよい。動作条件は、切削加工工程21において動作している切削装置21aの個数、部品出荷工程22に配置されている作業者の数、組付工程23に配置されている作業者の数などを含む。
データセット選択部17は、生産ライン2が正常に動作しているときの、単位時間における生産ライン2の状況を示す複数の変数の標準値を取得する取得部として動作する。具体的には、データセット選択部17は、ユーザの指示に応じて、実績データベース18の中から1以上のデータセットを選択する。例えば、ユーザは、実績データベース18の中から、生産ライン2が理想的な状態で動作しているときの1以上のデータセットを指定すればよい。あるいは、各データセットに動作条件を示す情報が付加されている場合、ユーザは、生産計画と一致する動作条件を示す情報が付加されている1以上のデータセットを指定する。
データセット選択部17は、選択した1以上のデータセットによって示される、単位時間ごとの複数の変数の値を標準値として取得する。1つのデータセットが選択された場合、データセット選択部17は、当該データセットによって示される値を標準値として取得する。複数のデータセットが選択された場合、データセット選択部17は、複数の変数の各々について、当該複数のデータセットによって示される単位時間ごとの値の代表値(例えば平均値、中央値など)を標準値として取得する。
変形例1によれば、データセット選択部17は、過去に生産ライン2が正常に動作していたときの複数の変数の単位時間ごとの値を標準値として取得する。これにより、算出部13によって算出される標準SN比は、正常に動作していたときの生産ライン2の状況と現状況との乖離度を表す。従って、標準SN比が閾値未満であることは、生産ライン2に何らかの異常が発生していることを意味する。その結果、ユーザは、検知部14の検知結果を確認することにより、生産ラインの異常の有無を簡易に確認できる。
変形例1における異常検知装置100Aの処理の流れは、図9に示すフローチャートと同様である。なお、データセットに動作条件を示す情報が付加されていない場合、ステップS10が省略され、ステップS9の後に処理がステップS1に戻される。
<変形例2>
図1に示す実施の形態において、生産現場の監視対象は、生産ライン2である。しかしながら、監視対象は、生産ライン2に限定されない。例えば、監視対象は、製造装置であってもよい。さらに、図1に示す実施の形態に係る異常検知装置100は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出するものとした。しかしながら、異常検知装置100は、単位区間ごとに統計量を算出してもよい。単位区間は、例えば、製造装置によって対象動作が実行されている期間である。
図1に示す実施の形態において、生産現場の監視対象は、生産ライン2である。しかしながら、監視対象は、生産ライン2に限定されない。例えば、監視対象は、製造装置であってもよい。さらに、図1に示す実施の形態に係る異常検知装置100は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出するものとした。しかしながら、異常検知装置100は、単位区間ごとに統計量を算出してもよい。単位区間は、例えば、製造装置によって対象動作が実行されている期間である。
(製造装置の第1例)
図11は、監視対象の製造装置の一例を示す図である。図11には、監視対象の製造装置として、射出成形機3が示される。射出成形機3は、成形型31と、シリンダー32と、スクリュー33と、ホッパー34と、スクリュー駆動装置35と、センサ群36と、を含む。
図11は、監視対象の製造装置の一例を示す図である。図11には、監視対象の製造装置として、射出成形機3が示される。射出成形機3は、成形型31と、シリンダー32と、スクリュー33と、ホッパー34と、スクリュー駆動装置35と、センサ群36と、を含む。
シリンダー32は、円筒状の部材であり、樹脂が供給される内部空間を有している。ホッパー34は、シリンダー32の内部空間に樹脂を供給する。シリンダー32の内部空間には、スクリュー33が挿入される。スクリュー33の基端部には、スクリュー駆動装置35が接続されている。スクリュー33は、スクリュー駆動装置35による制御によって回転するとともに、シリンダー32の長手方向に移動可能である。センサ群36は、射出成形機3の状況を示す各種のパラメータの値を計測する。
射出成形機3は、射出成形動作を繰り返し実行する。射出成形動作は、図11の上部の状態から下部の状態までスクリュー33を移動させることにより、シリンダー32の内部空間に収容された樹脂を成形型31に射出する動作である。
図12は、射出成形動作が実行される期間におけるパラメータの値の推移を示す図である。以下、射出成形動作が実行される期間は、「射出成形期間」と称される。図12に示すグラフにおいて、横軸は、射出成形動作の開始時からの経過時間を示し、縦軸は、センサ群36によって計測される各種のパラメータの値を示す。図12に示されるように、センサ群36は、射出成形機3の状況を示すパラメータとして、スクリュー位置、射出圧力および射出速度を計測する。スクリュー位置は、例えば、シリンダー32の先端とスクリュー33の先端との距離D(図11参照)によって表される。図12において、線37は、射出成形期間におけるスクリュー位置の推移を示す。線38は、射出圧力の推移を示す。線39は、射出速度の推移を示す。
監視対象が射出成形機3である場合、変形例2に係る異常検知装置は、射出成形機3が正常に動作しているときの、射出成形期間における射出成形機3の状況を示す複数の変数の標準値を取得する。例えば、図4に示すシミュレーション実行部11は、射出成形機3の仮想モデルを用いて、生産計画に従って射出成形機3を動作させたときの複数の変数の値のシミュレーションを実行し、シミュレーションにより得られる射出成形動作における複数の変数の値を標準値として取得する。あるいは、図10に示すデータセット選択部17は、過去に射出成形機3が正常に動作していたときの射出成形期間における複数の変数の値を標準値として取得する。複数の変数は、例えば、射出成形期間の開始からの経過時間がt1,t2,・・・,tnの各々におけるスクリュー位置、射出圧力および射出速度を含む。この場合、複数の変数は、3×n個の変数を含む。
監視対象が射出成形機3である場合、収集部12は、射出成形期間ごとに、射出成形機3の状況を示す複数の変数の実績値を取得する。収集部12は、センサ群36から複数の変数の実績値を取得してもよいし、射出成形機3を制御する図示しない制御装置(例えばPLC)から複数の変数の実績値を取得してもよい。
図13は、射出成形機3の状況を示す複数の変数の標準値および実績値を示す図である。線37aは、射出成形期間の開始からの経過時間t1,t2,・・・,tnのスクリュー位置(n個の変数)の標準値を表す。線38aは、経過時間t1,t2,・・・,tnの射出圧力(n個の変数)の標準値を表す。線39aは、経過時間t1,t2,・・・,tnの射出速度(n個の変数)の標準値を表す。線37bは、射出成形期間の開始からの経過時間t1,t2,・・・,tnのスクリュー位置(n個の変数)の実績値を表す。線38bは、経過時間t1,t2,・・・,tnの射出圧力(n個の変数)の実績値を表す。線39bは、経過時間t1,t2,・・・,tnの射出速度(n個の変数)の実績値を表す。
算出部13、検知部14、選択部15、および分析部16は、図13に示す3×n個の変数の標準値および実績値を用いて、上記の実施の形態において説明した処理を行なう。例えば、図13に示されるように、算出部13は、3×n個の変数の標準値に対する3×n個の変数の実績値の乖離度を表す統計量として標準SN比を算出する。
図14は、射出成形動作ごとに算出された統計量の推移を示す図である。図14には、射出成形動作の番号を横軸とし、算出部13によって算出された統計量(標準SN比)を縦軸とするグラフが示される。グラフ中の各点に対応する7桁の数字は、射出成形動作によって製造された製品の番号を表す。標準SN比が基準範囲外(つまり閾値TH未満)であった射出成形動作によって製造された製品には、不良品が多く確認された。このことから、ユーザは、検知部14によるエラー通知に基づいて、不良品の発生の有無を確認できる。
図15は、射出成形期間ごとの有効変数の実績値と標準SN比とを用いた主成分分析の結果を示す図である。図15には、分析部16によって選定された2つの主成分PC1,PC2のバイプロットが示される。図15に示すバイプロットにおいて、射出成形動作ごとの、有効変数の実績値から得られる2つの主成分の各々の主成分得点に対応する点がプロットされる。標準SN比が基準範囲内(つまり閾値TH以上)となる射出成形動作に対応する点は、枠線50a内に集中している。これに対し、標準SN比が基準範囲外(つまり閾値TH未満)となる射出成形動作に対応する点は、枠線50b内に集中している。このことから、ユーザは、図15に示すバイプロットを確認することにより、異常が発生していた射出成形動作を容易に特定することができる。
さらに、ユーザは、図15に示すバイプロットを確認することにより、異常の発生メカニズムを考察できる。図15に示すバイプロットにおいて、変数「Speed_time_315(経過時間t315における射出速度)」,「Pressure_time_315(経過時間t315における射出圧力)」,「Speed_time_316(経過時間t316における射出速度)」,「Speed_time_317(経過時間t317における射出速度)」,「Cylinder_time_318(経過時間t318におけるスクリュー位置)」にそれぞれ対応するベクトルv10,v11,v12,v13,v14が他の変数に対応するベクトルとは異なる方向を向いている。そのため、ユーザは、経過時間t315~t318付近の射出速度およびスクリュー位置が射出成形機3の異常に大きく寄与していることを把握できる。
(製造装置の第2例)
図16は、監視対象の製造装置の別の例を示す図である。図16には、監視対象の製造装置として、実装機4が示される。実装機4は、チャック44と、駆動装置45と、センサ群46と、を含む。
図16は、監視対象の製造装置の別の例を示す図である。図16には、監視対象の製造装置として、実装機4が示される。実装機4は、チャック44と、駆動装置45と、センサ群46と、を含む。
チャック44は、バンプ43が付着されたチップ42を保持する。駆動装置45は、超音波の発生制御、チャック44の昇降移動、および、チャック44によるチップ42の保持力の制御を行なう。センサ群46は、実装機4の状況を示す各種のパラメータの値を計測する。
図16に示されるように、駆動装置45は、チップ42を保持しているチャック44を下降させる。バンプ43が基板41に接触すると、実装機4は、バンプ43と基板41とを接合させる接合動作を実行する。具体的には、駆動装置45は、超音波を発生させてバンプ43と基板41との接合を促すとともに、荷重をかけながらチャック44をさらに下降させる。バンプ43が所定量まで変形すると、駆動装置45は、超音波の発生を停止するとともに、チャック44によるチップ42の保持力を低下させる。これにより、接合動作が終了する。その後、駆動装置45は、チャック44を上昇させる。実装機4は、チャック44が新たなチップ42を保持するたびに、上記の接合動作を実行する。
センサ群46は、実装機4の状況を示すパラメータとして、駆動装置45に印加される電流および電圧と、バンプ43の変形量とを計測する。バンプ43の変形量は、チップ42と基板41との距離によって表される。
監視対象が実装機4である場合、変形例2に係る異常検知装置は、実装機4が正常に動作しているときの、接合動作が実行される期間(以下、「接合動作期間」と称する)における実装機4の状況を示す複数の変数の標準値を取得する。例えば、図4に示すシミュレーション実行部11は、実装機4の仮想モデルを用いて、生産計画に従って実装機4を動作させたときの複数の変数の値のシミュレーションを実行し、シミュレーションにより得られる接合動作における複数の変数の値を標準値として取得する。あるいは、図10に示すデータセット選択部17は、過去に実装機4が正常に動作していたときの接合動作期間における複数の変数の値を標準値として取得する。複数の変数は、例えば、接合動作期間の開始からの経過時間がt1,t2,・・・,tmの各々における電圧、電流および変形量を含む。この場合、複数の変数は、3×m個の変数を含む。
監視対象が実装機4である場合、収集部12は、接合動作期間ごとに、実装機4の状況を示す複数の変数の実績値を取得する。収集部12は、センサ群46から複数の変数の実績値を取得してもよいし、実装機4を制御する図示しない制御装置(例えばPLC)から複数の変数の実績値を取得してもよい。
算出部13、検知部14、選択部15、および分析部16は、3×m個の変数の標準値および実績値を用いて、上記の実施の形態において説明した処理を行なう。例えば、算出部13は、3×m個の変数の標準値に対する3×m個の変数の実績値の乖離度を表す統計量として標準SN比を算出する。
図17は、接合動作ごとに算出された統計量の推移を示す図である。図17には、接合動作の番号(実装No.)を横軸とし、算出部13によって算出された統計量(標準SN比)を縦軸とするグラフが示される。標準SN比が基準範囲外(つまり閾値TH未満)であった接合動作によって製造された製品には、不良品が多く確認された。このことから、ユーザは、検知部14によるエラー通知に基づいて、不良品の発生の有無を確認できる。
(単位区間の別の例)
上記の例では、単位区間は、製造装置の動作(射出成形動作または接合動作)が実行される期間とした。しかしながら、単位区間は、これに限定されない。例えば、単位区間は、製造装置の物理量が取りうる範囲に含まれる複数の区間の各々であってもよい。
上記の例では、単位区間は、製造装置の動作(射出成形動作または接合動作)が実行される期間とした。しかしながら、単位区間は、これに限定されない。例えば、単位区間は、製造装置の物理量が取りうる範囲に含まれる複数の区間の各々であってもよい。
例えば、製造装置が図11に示す射出成形機3である場合、スクリュー位置は、図11の上部に示すスクリュー33の位置(距離D1で表される)から図11の下部に示すスクリュー33の位置(距離D2で表される)までの範囲を取りうる。この場合、距離D1~距離D2までの範囲に含まれる複数の区間の各々が単位区間として設定される。例えば、距離DがD1~D3となる区間と、距離DがD3~D2となる区間とが単位区間として設定される。
あるいは、生産現場に設置される引張試験機または圧縮試験機から得られる物理量が特定の範囲になる区間が単位区間として設定されてもよい。例えば、応力-ひずみ線図で見られるひずみ量が所定範囲となる区間が単位区間として設定される。あるいは、生産現場において加熱された金属の冷却速度と硬度との関係において、冷却速度が所定範囲となる区間が単位区間として設定されてもよい。
§3 付記
以上のように、本実施の形態は以下のような開示を含む。
以上のように、本実施の形態は以下のような開示を含む。
(構成1)
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得する取得部(101,11,17)と、
前記単位時間ごとの前記複数の変数の実績値を収集する収集部(101,12)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部(101,13)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知する検知部(101,14)と、を備える異常検知装置(100,100A)。
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得する取得部(101,11,17)と、
前記単位時間ごとの前記複数の変数の実績値を収集する収集部(101,12)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部(101,13)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知する検知部(101,14)と、を備える異常検知装置(100,100A)。
(構成2)
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2、3,4)の状況を示す複数の変数の標準値を取得する取得部(101,11,17)と、
前記単位区間における前記複数の変数の実績値を収集する収集部(101,12)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部(101,13)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知する検知部(101,14)と、を備える異常検知装置(100,100A)。
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2、3,4)の状況を示す複数の変数の標準値を取得する取得部(101,11,17)と、
前記単位区間における前記複数の変数の実績値を収集する収集部(101,12)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部(101,13)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知する検知部(101,14)と、を備える異常検知装置(100,100A)。
(構成3)
前記複数の変数の中から、前記統計量への影響度の相対的に大きい有効変数を選択する選択部(101,15)をさらに備える、構成1または2に記載の異常検知装置。
前記複数の変数の中から、前記統計量への影響度の相対的に大きい有効変数を選択する選択部(101,15)をさらに備える、構成1または2に記載の異常検知装置。
(構成4)
前記選択部(101,15)は、前記複数の変数を説明変数とし、前記統計量を目的変数とするT法推定モデルの推定精度の向上に有効な変数を前記有効変数として選択する、構成3に記載の異常検知装置(100,100A)。
前記選択部(101,15)は、前記複数の変数を説明変数とし、前記統計量を目的変数とするT法推定モデルの推定精度の向上に有効な変数を前記有効変数として選択する、構成3に記載の異常検知装置(100,100A)。
(構成5)
前記単位時間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部(101,16)をさらに備える、構成3または4に記載の異常検知装置(100,100A)。
前記単位時間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部(101,16)をさらに備える、構成3または4に記載の異常検知装置(100,100A)。
(構成6)
前記単位区間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部(101,16)をさらに備える、構成3または4に記載の異常検知装置(100,100A)。
前記単位区間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部(101,16)をさらに備える、構成3または4に記載の異常検知装置(100,100A)。
(構成7)
前記分析部(101,16)は、
前記統計量の分散を最大化する2つの主成分を選定し、
前記有効変数と前記統計量との各々における、前記2つの主成分に対する主成分負荷量に基づいて、前記有効変数の前記標準SN比への影響度を特定する、構成5または6に記載の異常検知装置(100,100A)。
前記分析部(101,16)は、
前記統計量の分散を最大化する2つの主成分を選定し、
前記有効変数と前記統計量との各々における、前記2つの主成分に対する主成分負荷量に基づいて、前記有効変数の前記標準SN比への影響度を特定する、構成5または6に記載の異常検知装置(100,100A)。
(構成8)
前記取得部(101,11)は、
前記生産ライン(2)の仮想モデル(2M)を用いて、生産計画に従って前記生産ライン(2)を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位時間ごとの値を前記標準値として取得する、構成1および3から7のいずれかに記載の異常検知装置(100)。
前記取得部(101,11)は、
前記生産ライン(2)の仮想モデル(2M)を用いて、生産計画に従って前記生産ライン(2)を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位時間ごとの値を前記標準値として取得する、構成1および3から7のいずれかに記載の異常検知装置(100)。
(構成9)
前記取得部(101,11)は、
前記監視対象(2,3,4)の仮想モデル(2M)を用いて、生産計画に従って前記監視対象(2,3,4)を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位区間の値を前記標準値として取得する、構成2から7のいずれかに記載の異常検知装置(100)。
前記取得部(101,11)は、
前記監視対象(2,3,4)の仮想モデル(2M)を用いて、生産計画に従って前記監視対象(2,3,4)を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位区間の値を前記標準値として取得する、構成2から7のいずれかに記載の異常検知装置(100)。
(構成10)
前記取得部(101,17)は、過去に前記生産ライン(2)が正常に動作していたときの前記複数の変数の前記単位時間ごとの値を前記標準値として取得する、構成1および3から7のいずれかに記載の異常検知装置(100A)。
前記取得部(101,17)は、過去に前記生産ライン(2)が正常に動作していたときの前記複数の変数の前記単位時間ごとの値を前記標準値として取得する、構成1および3から7のいずれかに記載の異常検知装置(100A)。
(構成11)
前記取得部(101,17)は、過去に前記監視対象(2,3,4)が正常に動作していたときの前記単位区間における前記複数の変数の値を前記標準値として取得する、構成2から7のいずれかに記載の異常検知装置(100A)。
前記取得部(101,17)は、過去に前記監視対象(2,3,4)が正常に動作していたときの前記単位区間における前記複数の変数の値を前記標準値として取得する、構成2から7のいずれかに記載の異常検知装置(100A)。
(構成12)
前記統計量は標準SN比である、構成1から11のいずれかに記載の異常検知装置(100,100A)。
前記統計量は標準SN比である、構成1から11のいずれかに記載の異常検知装置(100,100A)。
(構成13)
前記監視対象は生産ライン(2)であり、
前記単位区間は単位時間である、構成1および3から12のいずれかに記載の異常検知装置(100,100A)。
前記監視対象は生産ライン(2)であり、
前記単位区間は単位時間である、構成1および3から12のいずれかに記載の異常検知装置(100,100A)。
(構成14)
前記監視対象は、製造装置(3,4)を含む、構成2から12のいずれかに記載の異常検知装置(100,100A)。
前記監視対象は、製造装置(3,4)を含む、構成2から12のいずれかに記載の異常検知装置(100,100A)。
(構成15)
前記製造装置(3,4)は、対象動作を繰り返し実行し、
前記単位区間は、前記対象動作が実行されている期間である、構成14に記載の異常検知装置(100,100A)。
前記製造装置(3,4)は、対象動作を繰り返し実行し、
前記単位区間は、前記対象動作が実行されている期間である、構成14に記載の異常検知装置(100,100A)。
(構成16)
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得するステップ(S1)と、
前記単位時間ごとの前記複数の変数の実績値を収集するステップ(S2)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知するステップ(S6)と、を備える異常検知方法。
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得するステップ(S1)と、
前記単位時間ごとの前記複数の変数の実績値を収集するステップ(S2)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知するステップ(S6)と、を備える異常検知方法。
(構成17)
異常検知方法をコンピュータ(101)に実行させるプログラム(131,132)であって、
前記異常検知方法は、
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得するステップ(S1)と、
前記単位時間ごとの前記複数の変数の実績値を収集するステップ(S2)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知するステップ(S6)と、を含む、プログラム(131,132)。
異常検知方法をコンピュータ(101)に実行させるプログラム(131,132)であって、
前記異常検知方法は、
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得するステップ(S1)と、
前記単位時間ごとの前記複数の変数の実績値を収集するステップ(S2)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知するステップ(S6)と、を含む、プログラム(131,132)。
(構成18)
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2,3,4)の状況を示す複数の変数の標準値を取得するステップ(S1)と、
前記単位区間における前記複数の変数の実績値を収集するステップ(S2)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップ(S6)と、を備える異常検知方法。
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2,3,4)の状況を示す複数の変数の標準値を取得するステップ(S1)と、
前記単位区間における前記複数の変数の実績値を収集するステップ(S2)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップ(S6)と、を備える異常検知方法。
(構成19)
異常検知方法をコンピュータに実行させるプログラムであって、
前記異常検知方法は、
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2,3,4)の状況を示す複数の変数の標準値を取得するステップ(S1)と、
前記単位区間における前記複数の変数の実績値を収集するステップ(S2)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップ(S6)と、を含む、プログラム(131,132)。
異常検知方法をコンピュータに実行させるプログラムであって、
前記異常検知方法は、
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2,3,4)の状況を示す複数の変数の標準値を取得するステップ(S1)と、
前記単位区間における前記複数の変数の実績値を収集するステップ(S2)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップ(S6)と、を含む、プログラム(131,132)。
本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 システム、2 生産ライン、2M 仮想モデル、3 射出成形機、4 実装機、11 シミュレーション実行部、12 収集部、13 算出部、14 検知部、15 選択部、16 分析部、17 データセット選択部、18 実績データベース、21 切削加工工程、21M 第1モデル、21a 切削装置、21b,22c タイマー、21c,21d,22d,23c カウンタ、22 部品出荷工程、22M 第2モデル、22a,23a,23b センサ、22b 自動搬送車、23 組付工程、23M 第3モデル、24 製品出荷工程、30 グラフ、31 成形型、32 シリンダー、33 スクリュー、34 ホッパー、35 スクリュー駆動装置、36,46 センサ群、40 バイプロット、41 基板、42 チップ、43 バンプ、44 チャック、45 駆動装置、70 表示装置、75 入力装置、100,100A 異常検知装置、101 プロセッサ、102 メモリ、103 ストレージ、104 表示コントローラ、105 入力インターフェイス、106 通信インターフェイス、131 異常検知プログラム、132 シミュレーションプログラム。
Claims (13)
- 生産現場における監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得する取得部と、
前記単位区間における前記複数の変数の実績値を収集する収集部と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知する検知部と、を備える異常検知装置。 - 前記複数の変数の中から、前記統計量への影響度の相対的に大きい有効変数を選択する選択部をさらに備える、請求項1に記載の異常検知装置。
- 前記選択部は、前記複数の変数を説明変数とし、前記統計量を目的変数とするT法推定モデルの推定精度の向上に有効な変数を前記有効変数として選択する、請求項2に記載の異常検知装置。
- 前記単位区間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部をさらに備える、請求項2に記載の異常検知装置。
- 前記分析部は、
前記統計量の分散を最大化する2つの主成分を選定し、
前記有効変数と前記統計量との各々における、前記2つの主成分に対する主成分負荷量に基づいて、前記有効変数の前記統計量への影響度を特定する、請求項4に記載の異常検知装置。 - 前記取得部は、
前記監視対象の仮想モデルを用いて、生産計画に従って前記監視対象を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位区間の値を前記標準値として取得する、請求項1に記載の異常検知装置。 - 前記取得部は、過去に前記監視対象が正常に動作していたときの前記単位区間における前記複数の変数の値を前記標準値として取得する、請求項1に記載の異常検知装置。
- 前記統計量は標準SN比である、請求項1に記載の異常検知装置。
- 前記監視対象は生産ラインであり、
前記単位区間は単位時間である、請求項1から8のいずれか1項に記載の異常検知装置。 - 前記監視対象は、製造装置を含む、請求項1から8のいずれか1項に記載の異常検知装置。
- 前記製造装置は、対象動作を繰り返し実行し、
前記単位区間は、前記対象動作が実行されている期間である、請求項10に記載の異常検知装置。 - 生産現場における監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得するステップと、
前記単位区間における前記複数の変数の実績値を収集するステップと、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップと、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップと、を備える異常検知方法。 - 異常検知方法をコンピュータに実行させるプログラムであって、
前記異常検知方法は、
生産現場における監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得するステップと、
前記単位区間における前記複数の変数の実績値を収集するステップと、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップと、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップと、を含む、プログラム。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022090861 | 2022-06-03 | ||
JP2022-090861 | 2022-06-03 | ||
JP2023058310A JP2023178206A (ja) | 2022-06-03 | 2023-03-31 | 異常検知装置、異常検知方法およびプログラム |
JP2023-058310 | 2023-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023233927A1 true WO2023233927A1 (ja) | 2023-12-07 |
Family
ID=89026287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/017281 WO2023233927A1 (ja) | 2022-06-03 | 2023-05-08 | 異常検知装置、異常検知方法およびプログラム |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202349321A (ja) |
WO (1) | WO2023233927A1 (ja) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0743702B2 (ja) * | 1988-10-21 | 1995-05-15 | 新日本製鐵株式会社 | 品質診断方法 |
JP2001147713A (ja) * | 1999-11-19 | 2001-05-29 | Canon Inc | 稼働管理システムおよび稼働管理方法並びに記憶媒体 |
JP2003067033A (ja) * | 2001-08-29 | 2003-03-07 | Trinity Ind Corp | 連続処理工程表示システム |
WO2012176520A1 (ja) * | 2011-06-21 | 2012-12-27 | ヤンマー株式会社 | 予測装置、予測方法及び予測プログラム |
JP5151556B2 (ja) * | 2007-08-10 | 2013-02-27 | オムロン株式会社 | 工程解析装置、工程解析方法および工程解析プログラム |
JP5986531B2 (ja) * | 2013-03-29 | 2016-09-06 | 株式会社日立製作所 | 生産管理システム、及び管理方法 |
JP6364800B2 (ja) * | 2014-02-10 | 2018-08-01 | オムロン株式会社 | 監視装置及び監視方法 |
JP2018151913A (ja) * | 2017-03-14 | 2018-09-27 | 株式会社リコー | 情報処理システム、情報処理方法、及びプログラム |
JP6477423B2 (ja) * | 2015-11-02 | 2019-03-06 | オムロン株式会社 | 製造プロセスの予測システムおよび予測制御システム |
JP2019049940A (ja) * | 2017-09-12 | 2019-03-28 | 安川情報システム株式会社 | 異常工程推定方法、異常工程推定装置および異常工程推定プログラム |
JP2019101644A (ja) * | 2017-11-30 | 2019-06-24 | 株式会社日立製作所 | データ分析システムおよびデータ分析装置 |
WO2019240019A1 (ja) * | 2018-06-11 | 2019-12-19 | パナソニックIpマネジメント株式会社 | 異常解析装置、製造システム、異常解析方法及びプログラム |
JP2020170327A (ja) * | 2019-04-03 | 2020-10-15 | 株式会社豊田中央研究所 | 異常検知装置、異常検知方法、および、コンピュータプログラム |
WO2021241580A1 (ja) * | 2020-05-29 | 2021-12-02 | 株式会社ダイセル | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム |
JP2021189743A (ja) * | 2020-05-29 | 2021-12-13 | 株式会社日立製作所 | データ分析支援装置、及びデータ分析支援方法 |
WO2022003878A1 (ja) * | 2020-07-01 | 2022-01-06 | 三菱電機株式会社 | 制御パラメータ調整システム、制御パラメータ調整装置および制御パラメータ調整方法 |
-
2023
- 2023-05-08 WO PCT/JP2023/017281 patent/WO2023233927A1/ja unknown
- 2023-05-26 TW TW112119591A patent/TW202349321A/zh unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0743702B2 (ja) * | 1988-10-21 | 1995-05-15 | 新日本製鐵株式会社 | 品質診断方法 |
JP2001147713A (ja) * | 1999-11-19 | 2001-05-29 | Canon Inc | 稼働管理システムおよび稼働管理方法並びに記憶媒体 |
JP2003067033A (ja) * | 2001-08-29 | 2003-03-07 | Trinity Ind Corp | 連続処理工程表示システム |
JP5151556B2 (ja) * | 2007-08-10 | 2013-02-27 | オムロン株式会社 | 工程解析装置、工程解析方法および工程解析プログラム |
WO2012176520A1 (ja) * | 2011-06-21 | 2012-12-27 | ヤンマー株式会社 | 予測装置、予測方法及び予測プログラム |
JP5986531B2 (ja) * | 2013-03-29 | 2016-09-06 | 株式会社日立製作所 | 生産管理システム、及び管理方法 |
JP6364800B2 (ja) * | 2014-02-10 | 2018-08-01 | オムロン株式会社 | 監視装置及び監視方法 |
JP6477423B2 (ja) * | 2015-11-02 | 2019-03-06 | オムロン株式会社 | 製造プロセスの予測システムおよび予測制御システム |
JP2018151913A (ja) * | 2017-03-14 | 2018-09-27 | 株式会社リコー | 情報処理システム、情報処理方法、及びプログラム |
JP2019049940A (ja) * | 2017-09-12 | 2019-03-28 | 安川情報システム株式会社 | 異常工程推定方法、異常工程推定装置および異常工程推定プログラム |
JP2019101644A (ja) * | 2017-11-30 | 2019-06-24 | 株式会社日立製作所 | データ分析システムおよびデータ分析装置 |
WO2019240019A1 (ja) * | 2018-06-11 | 2019-12-19 | パナソニックIpマネジメント株式会社 | 異常解析装置、製造システム、異常解析方法及びプログラム |
JP2020170327A (ja) * | 2019-04-03 | 2020-10-15 | 株式会社豊田中央研究所 | 異常検知装置、異常検知方法、および、コンピュータプログラム |
WO2021241580A1 (ja) * | 2020-05-29 | 2021-12-02 | 株式会社ダイセル | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム |
JP2021189743A (ja) * | 2020-05-29 | 2021-12-13 | 株式会社日立製作所 | データ分析支援装置、及びデータ分析支援方法 |
WO2022003878A1 (ja) * | 2020-07-01 | 2022-01-06 | 三菱電機株式会社 | 制御パラメータ調整システム、制御パラメータ調整装置および制御パラメータ調整方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202349321A (zh) | 2023-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8437870B2 (en) | System and method for implementing a virtual metrology advanced process control platform | |
US11531327B2 (en) | Abnormality determination device and abnormality determination system | |
US7546177B2 (en) | Automated state estimation system for cluster tools and a method of operating the same | |
US7640126B2 (en) | Combine-information processing apparatus, method for processing combine-information, program, and recording medium | |
US10901398B2 (en) | Controller, control program, control system, and control method | |
US20120296605A1 (en) | Method, computer program, and system for performing interpolation on sensor data for high system availability | |
CN105702595B (zh) | 晶圆的良率判断方法以及晶圆合格测试的多变量检测方法 | |
JP4568786B2 (ja) | 要因分析装置および要因分析方法 | |
JP6801131B1 (ja) | 診断装置、診断方法、及び診断プログラム | |
JP2023178206A (ja) | 異常検知装置、異常検知方法およびプログラム | |
US8649990B2 (en) | Method for detecting variance in semiconductor processes | |
KR20180040452A (ko) | 설비 노화 지수를 이용한 이상 감지 방법 및 장치 | |
WO2020152741A1 (ja) | 異常要因推定装置、異常要因推定方法、及びプログラム | |
CN111400850A (zh) | 设备故障分析方法、装置、设备和存储介质 | |
CN110488188B (zh) | 基于动态阈值的机组三维健康量化评价方法 | |
CN103077441A (zh) | 自识别电子产品的预测健康管理方法 | |
JP6885321B2 (ja) | プロセスの状態診断方法及び状態診断装置 | |
WO2023233927A1 (ja) | 異常検知装置、異常検知方法およびプログラム | |
US20220414555A1 (en) | Prediction system, information processing apparatus, and information processing program | |
JP6312955B1 (ja) | 品質分析装置及び品質分析方法 | |
JP6765769B2 (ja) | 状態変動検出装置及び状態変動検出用プログラム | |
JP6233038B2 (ja) | 組立歩留予測装置、組立歩留予測プログラムおよび組立歩留予測方法 | |
WO2023233926A1 (ja) | 異常予兆検知装置、異常予兆の検知方法およびプログラム | |
Tang et al. | An IoT inspired semiconductor Reliability test system integrated with data-mining applications | |
US20100010763A1 (en) | Method for detecting variance in semiconductor processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23815688 Country of ref document: EP Kind code of ref document: A1 |