WO2023233786A1 - Information processing system, information processing method, and program - Google Patents

Information processing system, information processing method, and program Download PDF

Info

Publication number
WO2023233786A1
WO2023233786A1 PCT/JP2023/012920 JP2023012920W WO2023233786A1 WO 2023233786 A1 WO2023233786 A1 WO 2023233786A1 JP 2023012920 W JP2023012920 W JP 2023012920W WO 2023233786 A1 WO2023233786 A1 WO 2023233786A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
input
output
cell
model
Prior art date
Application number
PCT/JP2023/012920
Other languages
French (fr)
Japanese (ja)
Inventor
久雄 伊東
Original Assignee
株式会社シーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シーズ filed Critical 株式会社シーズ
Publication of WO2023233786A1 publication Critical patent/WO2023233786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language
    • G06F40/55Rule-based translation
    • G06F40/56Natural language generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an information processing system, an information processing method, and a program.
  • AI artificial intelligence
  • the present invention can improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
  • an information processing system includes: An information processing system including a central device that executes predetermined processing using input data, and one or more type 1 peripheral devices that provide at least a part of the input data to the central device,
  • the central device includes: processing execution means that acquires one or more perceptual expression data as input data, executes a predetermined process using the input data, and outputs one or more perceptual expression data indicating the execution result of the process as output data; Equipped with
  • Each of the one or more type 1 peripheral devices is a model management means for storing and managing a model that inputs predetermined data and converts it into the perceptual expression data and outputs it in a predetermined storage medium; Data output from a sensor that measures physical quantities in the real world or a camera that images a target area is acquired and input to the model, and the perceptual expression data output from the model is input to the central device. a conversion means outputting as at least part of the data; Equipped with.
  • An information processing method and program according to one embodiment of the present invention correspond to the information processing system according to one embodiment of the present invention described above.
  • FIG. 1 is a schematic diagram illustrating an example of an outline of a service to which an "autonomous decentralized AI blockchain cell" is applied.
  • 1 is a diagram showing a configuration example of an information processing system according to an embodiment of the present invention applied when providing the service shown in FIG. 1.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of a server in the information processing system shown in FIG. 2.
  • FIG. 4 is a functional block diagram illustrating an example of a functional configuration of an information processing system including a server having the hardware configuration of FIG. 3.
  • FIG. FIG. 2 is a diagram showing an example in which the service shown in FIG. 1 is used to manage devices located within a premises.
  • FIG. 6 is a diagram showing an example of the flow of information processing for performing high-speed countermeasures in the premises of FIG. 5;
  • FIG. 5 is a diagram illustrating an example of a flow for autonomously establishing processing contents in the input cell having the functional configuration of FIG. 4;
  • FIG. 1 is a schematic diagram illustrating an example of an outline of a service to which an “autonomous decentralized AI blockchain audiovisual cell” is applied.
  • 9 is a functional block diagram showing an example of a functional configuration of an information processing system that provides the service of FIG. 8.
  • FIG. FIG. 8 is a diagram showing an example of using the service shown in FIG. 7 for managing devices located within a premises.
  • FIG. 11 is a diagram illustrating an example of the flow of information processing for performing high-speed countermeasures in the premises of FIG. 10;
  • the first process is to continuously generate a series of still images over time for each movement of an object (for example, an image of a person or object to be imaged) in a two-dimensional image (2D image).
  • This refers to the process of switching and displaying.
  • two-dimensional animation a so-called flipbook-like process, corresponds to the first process.
  • the second process is to set a motion corresponding to each movement of an object (for example, an image of a person or object to be imaged) in a stereoscopic image (image of a 3D model), and change the motion as time passes.
  • This refers to the process of displaying images.
  • three-dimensional animation corresponds to the second process.
  • the third process is a process in which images (that is, moving images) corresponding to the movements of objects (for example, images of natural people) are prepared, and the images are played over time.
  • a "video (that is, a moving image)" is composed of images such as a plurality of frames and fields (hereinafter referred to as "unit images").
  • an "autonomous decentralized AI blockchain cell” is one in which an input cell (for example, input cell 2-1 in Figure 1) is equipped with a sensor that measures a physical quantity in the real world (for example, temperature). Multiple units are installed within the facility and operate autonomously.
  • an “autonomous decentralized AI blockchain audiovisual cell” is one in which an input cell (for example, input cell 2-1 in Figure 8) is equipped with a camera and a microphone to image a predetermined area. There are multiple units installed within the building and they operate autonomously.
  • FIG. 1 is a schematic diagram illustrating an example of an overview of a service (hereinafter referred to as “this service”) to which the "autonomous decentralized AI blockchain cell” is applied.
  • This service to which "autonomous decentralized AI blockchain cell” is applied, operates the control device based on the input of data measured by multiple sensors by applying the information processing system shown in Figure 1. It provides a system for outputting the following.
  • the information processing system of this service shown in FIG. 1 includes a "BC full node”).
  • the input cells 2-1 and 2-2 and the output cell 3-1 have blockchain ultra-light nodes (hereinafter referred to as "BC ultra-light nodes" as shown in FIG. 1). It has the function of
  • the server 1 is an information processing device including a central AI 61. As will be described in detail later, the server 1 acquires as input data the measurement results of the sensors in the input cells 2-1 and 2-2 converted into perceptually expressed data, and based on the input data, outputs the output cells 3- The perceptual representation of the control instruction in step 1 is output as output data.
  • the input cells 2-1 and 2-2 are each equipped with a sensor and an autonomous distributed chip CP, and the measurement results of the sensors are converted into data perceptually expressed in the autonomous distributed chip CP and managed using the blockchain network BCN. .
  • the output cell 3-1 includes an autonomous distributed chip CP and an actuator (an example of a control device), acquires control instructions output by the server 1 in the autonomous distributed chip CP from the blockchain network BCN, and performs control based on the control instructions. Control the device (actuator).
  • the confirmation terminal 4 is an information processing device for confirming information managed using the blockchain network BCN.
  • the person in charge of managing the equipment can use the confirmation terminal 4 to confirm the history of inputs and outputs that have not been tampered with.
  • the raw data of the measurement results of the sensor is numerical data and is a physical quantity.
  • humans can interpret the measurement results of such sensors and express the results using language or the like. Specifically, for example, humans can perceive (recognize, interpret) raw data such as a temperature of 35 degrees and a humidity of 80% as hot and verbalize it. In this way, the perceived (recognized, interpreted) representation, rather than the raw data of sensor measurement results, is called a "perceptual representation.”
  • the form of "language” is an example of the form of perceptual expression. That is, for example, the data of the character string "hot” is data perceptually expressed in the form of the Japanese language.
  • the data of the identifier corresponding to “hot” is also an example of perceptually expressed data that can be used in the information processing device.
  • video data of an action of looking up at the face with a hand can also be said to be data perceptually expressed in the form of a gesture.
  • the explanation will be based on the assumption that "perceptual expression" is "language.”
  • the word blockchain can refer to distributed ledger technology or decentralized network.
  • the word blockchain is a ambiguous word that includes a series of data called blocks connected like a chain, as well as technology and networks related to the data. Therefore, hereinafter, the decentralized network that manages blockchain will be referred to as a "blockchain network” to distinguish it from a "blockchain,” which is a series of data in which blocks are linked like a chain.
  • blockchain refers to various information (data itself, metadata, It is a series of data in which "blocks” containing hash values (data related to soundness verification, etc.) are connected like a chain.
  • Blockchain network BCN is composed of multiple nodes, and at least one node exists on the cloud.
  • each of the four BC full nodes 5-1 to 5-4 functions as a full node on the cloud.
  • a "full node” is an information processing device (node) that provides all the functions of a node in a blockchain, such as calculation processing functions related to block generation and storage functions of blockchain data itself.
  • the BC full nodes 5-1 to 5-4 form a blockchain network BCN that communicates with each other.
  • the BC ultralight nodes provided in the two input cells 2-1 and 2-2 and the output cell 3-1 each function.
  • an "ultralight node” does not provide calculation processing functions related to block generation or storage functions for the blockchain data itself, but has an extremely simple function such as the function of sending and receiving data with the blockchain network BCN.
  • This is an information processing device (node) that provides the functions of the section. Since ultralight nodes require fewer computational resources to implement, they are implemented as part or all of a chip or program that provides the above-mentioned functions. However, an ultralight node may also be implemented as a separate information processing device.
  • the nodes may include light nodes.
  • a "light node” is a node that does not function as a full node, but is responsible for part of the calculation processing function related to block generation and the storage function of the blockchain data itself.
  • the BC ultra light nodes provided in the input cells 2-1 and 2-2 and the output cell 3-1 are connected to the cloud via a dedicated line to communicate with the BC full nodes 5-1 to 5-4. conduct. That is, in the example of FIG. 1, a total of 7 units, 4 BC full nodes 5-1 to 5-4 and 3 BC ultra-light nodes, function as each of the 7 nodes, so that the blockchain network BCN configured.
  • a dedicated line is a communication line dedicated to a specific user.
  • communication on a leased line is isolated from a network (eg, the Internet) that also includes untrusted information processing devices. That is, communications between information processing devices connected via a dedicated line are less likely to be wiretapped or intercepted by a malicious third party. That is, since this service is used via a dedicated line, it is provided with a low possibility of being wiretapped or intercepted by a third party.
  • the dedicated line does not need to be physically isolated from the Internet or the like. That is, for example, a virtual dedicated line using VPN (Virtual Private Network) technology may also be employed as the above-mentioned dedicated line.
  • VPN Virtual Private Network
  • step ST11 numerical data indicating that "temperature is rising” and "humidity is rising” is acquired as a measurement result of the sensor of input cell 2-1. Specifically, for example, numerical data (digital signal) indicating that the temperature has increased from 20 degrees to 40 degrees over time, or numerical data (digital signal) indicating that the humidity has increased from 50% to 80% over time. ) is obtained.
  • step ST12 the language conversion AI included in the autonomous distributed chip CP of the input cell 2-1 converts the digital signal into language. Specifically, for example, numerical data (digital signal) indicating that the temperature has increased from 20 degrees to 40 degrees over time, or numerical data (digital signal) indicating that the humidity has increased from 50% to 80% over time. ) is converted into the linguistic data ⁇ hot''.
  • the BC ultra-light node possessed by the autonomous distributed chip CP of the input cell 2-1 manages the linguistic data "hot” using the blockchain network BCN. Specifically, for example, linguistic data such as "hot” is sent to the BC full node 5-1 as part of a transaction in blockchain technology to be managed. At this time, the BC ultralight node included in the autonomous distributed chip CP of the input cell 2-1 manages the encrypted language data using the blockchain network BCN.
  • steps ST11 to ST13 described above are also executed in the input cell 2-2.
  • data indicating that there are many heat sources is acquired as a measurement result of the sensor of the input cell 2-2.
  • infrared thermography data is acquired as data indicating that there are many heat sources.
  • the language conversion AI included in the autonomous distributed chip CP of the input cell 2-2 converts data indicating that there are many heat sources into linguistic data that indicates "there are many people.”
  • the BC ultralight node possessed by the autonomous distributed chip CP of the input cell 2-2 manages the encrypted linguistic data "There are many people" using the blockchain network BCN.
  • step ST14 the server 1 decrypts and obtains the encrypted language data managed using the blockchain network BCN.
  • step ST15 the server 1 uses the blockchain network BCN to manage the result of determining the content of the control instruction based on the acquired language data.
  • the server 1 uses the trained central AI 61 as an AI that performs natural language processing using input data such as ⁇ hot'' and ⁇ there are a lot of people.'' The language data of the control instruction "lower down" is generated as output data.
  • the server 1 uses the blockchain network BCN to manage the generated control instruction to "lower the overall temperature more strongly.” At this time, the server 1 manages the encrypted control instructions using the blockchain network BCN.
  • step ST16 the BC ultralight node possessed by the autonomous decentralized chip CP of the output cell 3-1 obtains an encrypted control instruction managed using the blockchain network BCN.
  • step ST17 the firmware included in the autonomous distributed chip CP of the output cell 3-1 decodes the encrypted control instruction. Then, the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 converts it into a digital signal as the specific control content of the control device. Specifically, for example, the language conversion AI possessed by the autonomous decentralized chip CP of output cell 3-1 increases the cooling output of the air conditioner based on the control instruction to ⁇ lower the overall temperature more strongly,'' and The signal is converted into a digital signal that allows the control device to operate in all wind directions. That is, for example, the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 outputs a control signal (digital signal) of digital data to operate an actuator that operates the air conditioner cooling.
  • a control signal digital signal
  • the BC Ultra Light node possessed by the autonomous decentralized chip CP of output cell 3-1 is also capable of controlling the operation of the control device that increases the cooling output of the air conditioner and makes it possible for the wind to flow in all directions using the blockchain network. It can be managed using BCN.
  • step ST18 the actuator (an example of a control device) is driven in response to a digital data control signal (digital signal) for operating the actuator that operates the air conditioner cooling, such as "output improvement" and "output omnidirectional".
  • a digital data control signal digital signal
  • the actuator operates in accordance with the control instruction from the central AI 61 to "lower the temperature overall.”
  • the air conditioner's cooling output is set to “improve output” and "output in all directions” (not shown), thereby improving the environment. Improve.
  • the confirmation terminal 4 can present the information managed using the blockchain network BCN to the manager of the facility (factory, etc.). That is, the manager of the facility (factory, etc.) can check the sensor measurement results, such as "temperature rise”, “humidity rise”, “many heat sources”, etc., displayed on the confirmation terminal 4, "hot”, “hot”, “many heat sources”, etc. Input data (linguistic data) such as "There are many people”, output data (linguistic data) of control instructions such as “lower the temperature overall”, “improve the output” of the air conditioner and make it "wind in all directions” The operation of the control device can be confirmed. Since these are managed using the blockchain network BCN, they are presented to the manager of the facility (factory, etc.) as a history of inputs and outputs that have not been tampered with.
  • this service has the following features.
  • an existing AI trained in a language can be employed as the central AI 61. That is, in this service, an existing AI that has been trained in a language can be used as the central AI 61, so overall development costs and operating costs can be reduced.
  • AI capable of natural language processing that generates input data (linguistic data) such as "hot” and “many people” and output data (linguistic data) of control instructions such as "lower the temperature overall” is Since it is used for many purposes, various developments are underway. Therefore, the current situation is that AI capable of such natural language processing is becoming more accurate and less expensive. Therefore, this service can reduce overall development costs and operational costs.
  • this service uses the blockchain network BCN to guarantee data, so a safe AI system is realized.
  • a safe AI system For example, in a system that does not use the blockchain network BCN, by impersonating input cell 2-1 and inputting verbal data such as "temperature drop" to the central AI 61, an incorrect control instruction may be output. .
  • this service since data is guaranteed using the blockchain network BCN, such impersonation of the input cell 2-1 becomes impossible, and a safe AI system is realized.
  • FIG. 2 is a diagram showing a configuration example of an information processing system according to an embodiment of the present invention that is applied when providing the service shown in FIG. 1.
  • the configuration example of the information processing system shown in FIG. 2 is a more general system configuration of the information processing device of this service shown in FIG.
  • the server 1 is an information processing device managed by a service provider S.
  • the server 1 includes input cells 2-1 to 2-N (N is an integer value of 1 or more), output cells 3-1 to 3-M (M is an integer value of 1 or more independent of N), and a confirmation terminal 4.
  • BC full nodes 5-1 to 5-L (L is an integer value of 1 or more independent of N and M), and executes various processes to realize this service.
  • the input cells 2-1 to 2-N are information processing devices including one or more sensors and an autonomous distributed chip CP. Furthermore, when one of the N input cells 2-1 to 2-N is illustrated and explained, “input cell 2-p" (p is an integer value of 1 or more and N or less) is used.
  • the output cells 3-1 to 3-M are information processing devices including one or more control devices and an autonomous distributed chip CP. Furthermore, when one of the M output cells 3-1 to 3-M is illustrated and explained, “output cell 3-q" (q is an integer value of 1 or more and M or less) is used.
  • the confirmation terminal 4 is an information processing device operated by a person in charge of management of a facility (factory, etc.) to confirm information managed using the blockchain network BCN. Note that although one confirmation terminal 4 is illustrated in FIG. 2, the number of confirmation terminals 4 is arbitrary.
  • the BC full nodes 5-1 to 5-L are information processing devices (nodes) that provide all functions as nodes in the blockchain, such as calculation processing functions related to block generation and storage functions of the blockchain data itself.
  • the BC full nodes 5-1 to 5-L in the example of FIG. 2 exist on cloud C.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of a server in the information processing system shown in FIG. 2.
  • the server 1 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a bus 14, an input/output interface 15, an input unit 16, and an output unit. Part 17 and , a storage section 18, a communication section 19, and a drive 20.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 11 executes various processes according to programs recorded in the ROM 12 or programs loaded into the RAM 13 from the storage section 18 .
  • the RAM 13 also appropriately stores data necessary for the CPU 11 to execute various processes.
  • the CPU 11, ROM 12, and RAM 13 are interconnected via a bus 14.
  • An input/output interface 15 is also connected to this bus 14 .
  • An input section 16 , an output section 17 , a storage section 18 , a communication section 19 , and a drive 20 are connected to the input/output interface 15 .
  • the input unit 16 includes, for example, a keyboard, and inputs various information.
  • the output unit 17 includes a display such as a liquid crystal display, a speaker, and the like, and outputs various information as images and sounds.
  • the storage unit 18 is composed of a DRAM (Dynamic Random Access Memory) or the like, and stores various data.
  • the communication unit 19 communicates with other devices (for example, input cells 2-1 to 2-N, output cells 3-1 to 3-M, confirmation terminal 4, BC full nodes 5-1 to 3-M in FIG. 2) via a network including the Internet. 5-L).
  • a removable medium 31 made of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is appropriately installed in the drive 20.
  • the program read from the removable medium 31 by the drive 20 is installed in the storage unit 18 as necessary. Further, the removable medium 31 can also store various data stored in the storage section 18 in the same manner as the storage section 18 .
  • the input cells 2-1 to 2-N, output cells 3-1 to 3-M, confirmation terminal 4, and BC full nodes 5-1 to 5-L in FIG. 2 also have the hardware shown in FIG. It can have basically the same configuration as the hardware configuration. Therefore, a description of the hardware configurations of the input cells 2-1 to 2-N, the output cells 3-1 to 3-M, the confirmation terminal 4, and the BC full nodes 5-1 to 5-L will be omitted.
  • the input cells 2-1 to 2-N are equipped with a sensor as an input section. Further, the input cells 2-1 to 2-N each have a part or all of a CPU, ROM, RAM, etc. as an autonomous distributed chip CP.
  • the output cells 3-1 to 3-M are equipped with a control device (for example, an actuator) as an output section, as shown in FIG. Further, the output cells 3-1 to 3-M have a part or all of a CPU, ROM, RAM, etc. as an autonomous distributed chip CP.
  • a control device for example, an actuator
  • the output cells 3-1 to 3-M have a part or all of a CPU, ROM, RAM, etc. as an autonomous distributed chip CP.
  • FIG. 4 is a functional block diagram showing an example of the functional configuration of an information processing system including a server with the hardware configuration of FIG. 3.
  • a processing execution unit 51 functions in the CPU 11 of the server 1. Furthermore, the storage unit 18 stores a model of the central AI 61.
  • a model management unit 71 In the input cell 2-p, a model management unit 71, a language conversion AI 72, a relearning execution unit 73, and a sensor 74 function as an autonomous distributed chip CP.
  • the input cell 2-p has a sensor 74 as an input section.
  • a language conversion AI model 75 is stored in the storage section of the input cell 2-p.
  • a model management unit 81 In the output cell 3-q, a model management unit 81, an inverse language conversion AI 82, a control unit 83, and a relearning execution unit 84 function as an autonomous distributed chip CP.
  • the output cell 3-1 has an actuator 85 as an output section.
  • an inverse language conversion AI model 86 is stored in the storage section of the output cell 3-q.
  • the processing execution unit 51 acquires input language data as input data from one or more input cells 2-p, executes a predetermined process using the input data, and outputs one or more output languages indicating the execution results of the process. Output the data as output data.
  • the processing execution unit 51 obtains input data stored using the blockchain network BCN.
  • the model management unit 71 receives a signal indicating the measurement result of the sensor 74, converts it into language data, and outputs the language conversion AI model 75.
  • the model management unit 71 stores and manages a language conversion AI model 75 in a storage unit. Specifically, for example, the model management unit 71 converts and outputs linguistic data such as "temperature rise”, “humidity rise”, “many people”, etc. based on the results of snooping measurements such as temperature, humidity, and thermography. do.
  • the language conversion AI 72 acquires a signal indicating a predetermined physical quantity output from a sensor 74 that detects a predetermined physical quantity in the real world, inputs it to a language conversion AI model 75, and converts the language data output from the model into a language conversion AI model 75. , output as at least a part of the input language data of the server 1.
  • the relearning execution unit 73 executes relearning to update the model.
  • the BC ultralight node of the input cell 2-p stores at least a portion of the post-input language data output from the language conversion AI 72 using the blockchain network BCN.
  • a model management unit 81 stores and manages an inverse language conversion AI model 86 that inputs language data, converts it into a predetermined physical quantity, and outputs it in a predetermined storage medium.
  • the BC ultralight node of the output cell 3-q uses the blockchain network BCN to obtain the stored output language data and provides it to the inverse language conversion AI 82.
  • the inverse language conversion AI 82 acquires at least a part of the one or more linguistic expression data that constitutes the output data output from the server 1, inputs it to the inverse language conversion AI model 86, and causes the model to output a signal indicating a physical quantity. .
  • the control unit 83 controls the actuator 85 by inputting a signal indicating the physical quantity output from the model to the actuator 85 as an instruction signal.
  • the relearning execution unit 84 executes relearning to update the model.
  • the information processing system of this service can execute each process described using FIG. 1 and the like.
  • FIG. 5 is a diagram showing an example in which the service shown in FIG. 1 is used to manage devices located within a premises.
  • four devices A1 to A4 are arranged within the premises. That is, for example, the devices A1 to A4 are devices on a manufacturing line located within the premises of a factory.
  • An input cell 2-1 is arranged in the device A1. This shows, for example, that a certain event related to the device A1 on the production line is being measured by the sensor of the input cell 2-1. Specifically, for example, the sensor measures an arbitrary physical quantity, such as the temperature at a predetermined location in the device A1 or the weight of the material put into the device A1.
  • input cells 2-2 and 2-3 are arranged in the device A2. This shows how two physical quantities of one device A2 are measured by the sensors of two input cells 2-2 and 2-3. That is, in the device A1, the physical quantity of one device A1 was measured by the sensor of one input cell 2-1, but a plurality of input cells can be arranged for one device.
  • an input cell 2-4 is arranged inside the device A3. This shows that the input cell 2-4 is built into the device A3, and the sensor of the input cell 2-4 measures the physical quantity of the device A3.
  • input cells 2-5 and 2-6 are arranged inside the device A4. This shows that the two input cells 2-5 and 2-6 are built into one device A4, and the sensors of the two input cells 2-5 and 2-6 measure the physical quantities of the device A4. It shows.
  • each input cell 2-1 to 2-6 converts the data measured by the sensor into linguistic data and sends it to the edge server EDS. In this way, data of each of the plurality of devices A1 to A4 within the premises is collected.
  • each input cell is converted into language data, so processing is distributed and the system can handle the system at high speed as a whole.
  • FIG. 6 is a diagram illustrating an example of the flow of information processing when performing faster response in the premises of FIG. 5.
  • language data is provided from input cell 2-p to output cell 3-q. That is, the language data from the input cell 2-p may be provided to the output cell 3-q without going through the central AI 61.
  • the input cell 2-p and the output cell 3-q have the following basic logic, especially in an "autonomous decentralized AI blockchain cell".
  • the input cell 2-p and the output cell 3-q have "individuality establishing logic.” That is, the "individuality establishment logic” is a logic processing algorithm that is individually prepared and determined for each input cell 2-p and output cell 3-q, depending on the sensor measurement object, etc. That is, for example, drive devices such as motors are subject to manufacturing variations and individual deterioration over time. Specifically, for example, even if the motors are of the same type, some motors vibrate and abnormally overheat at 1000 rpm (rotations per minute), while others rotate normally at 2000 rpm. Each input cell 2-p, which quickly generates various elements (physical quantities) using each sensor attached to each motor, individually learns the characteristics of the motor it manages, and determines what is normal for itself.
  • the "individuality establishment logic” is a logic processing algorithm that is individually prepared and determined for each input cell 2-p and output cell 3-q, depending on the sensor measurement object, etc. That is, for example, drive devices such as motors are subject to manufacturing variations and individual deterioration over time. Specifically,
  • the input cell 2-p can provide verbal data such as "abnormal motor rotation speed" when the limiter set individually by the input cell 2-p is exceeded. Note that the individuality establishment logic can be similarly applied to the stable operating temperature, etc. of control boards other than motors.
  • the input cell 2-p and the output cell 3-q have “other comparison learning logic”.
  • “other-comparison learning logic” is an algorithm that grasps the uniqueness of the device it manages compared to other devices based on the results of exchanging information with other cells. be.
  • the input cell 2-p and the output cell 3-q determine the characteristics of the devices they manage (targets measured by sensors and targets controlled via control devices) relative to other devices. By sharing data with other cells, you can understand whether there is a cell. This allows output information to be corrected using shared data. That is, the language conversion AI model 75 of the input cell 2-p executes a relearning process by the relearning execution unit 73 based on language data from other input cells.
  • the "consciousness/intent communication logic” is a logic algorithm in which the language conversion AI of the input cell 2-p simultaneously outputs human words such as consciousness and intention in addition to the digital data of the normal sensor output.
  • the language conversion AI 72 of the input cell 2-p outputs language data such as "It's a little hot,””I feel a lot of vibration," and "This is a dangerous situation.”
  • the central AI 61 which is an existing language input AI, directly grasp this language data, it is possible to ask the central AI 61 to think and make decisions. That is, when an emergency is required, the edge server EDS in FIG. 6 notifies the off-premises server 1 (server 1 in FIG. 4, etc., not shown in FIG. 6), and at the same time waits for the higher-level judgment result by the server 1 in the suburbs. You can take corrective action without any problems.
  • the input cell 2-p and the output cell 3-q have "self-handling logic.” If there is no need to ask the central monitoring device for judgment, for example, if a clear abnormality is detected, this information processing system can take action without waiting for a response from the edge server EDS or the server 1 (not shown). I can do it. Specifically, for example, if the input cell 2-p outputs linguistic data saying "fire outbreak” instead of "temperature rise", that linguistic data is provided to the output cell 3-q and causes an alarm to sound. or activate local sprinklers.
  • the input cell 2-p and the output cell 3-q have "ethical logic.” That is, according to the logic of ethics, the edge server EDS and the server 1 (not shown) outside the premises can make total predictions and judgments, output language data for control instructions, and provide education to each cell. . That is, the language conversion AI model 75 of the input cell 2-p executes a relearning process by the relearning execution unit 73 based on the output language data etc. from the central AI 61. Through such learning, the input cell 2-p can output higher level linguistic data such as "fire outbreak” instead of "temperature rise". This allows the input cell 2-p to make individual decisions and take instantaneous countermeasures depending on the processing stage of the input cell 2-p, thereby making it possible to prevent major accidents. That is, this realizes information processing when taking high-speed countermeasures.
  • the input cell 2-p and output cell 3-q of this information processing system realize the concept of identity through IT, and can be called “autonomous decentralized AI blockchain cells.” It is.
  • FIG. 7 is a diagram showing an example of a flow for autonomously establishing processing contents in the input cell having the functional configuration of FIG. 4.
  • the input cell 2-1 shown in FIG. 7 has acquired temperature information from the first sensor and humidity information from the second sensor.
  • the autonomous distributed chip of the input cell 2-1 autonomously recognizes the "mission" of the input cell 2-1 based on information obtained from the sensor.
  • the mission refers to the processing content that the input cell 2-1 should perform, and the specific processing content such as what kind of language data should be output from temperature information and humidity information. It refers to That is, for example, input cell 2-1 identifies that the acquired data is temperature and humidity information based on the data format, and determines that its mission is to determine the temperature (humidity) environment. .
  • the input cell 2-2 As a result of acquiring heat sensation (thermography data, etc.) from the sensor, the input cell 2-2 has the mission of detecting the density of the heat source (especially the density of people in the example of Fig. 1). ). In this way, the input cells 2-1 and 2-2 can autonomously recognize their own missions.
  • step ST22 the input cells 2-1 and 2-2 transmit their own missions to the central AI 61.
  • the central AI 61 can make an integrated decision on the missions transmitted from each cell and determine whether the mission of each cell is appropriate.
  • the central AI 61 determines whether the mission autonomously recognized by each cell is appropriate. Then, if the mission autonomously recognized by each cell is not valid, the central AI 61 transmits (correct) mission information.
  • the central AI 61 is capable of performing various judgment processes in addition to the judgment process for outputting output language data from input language data in the above description. Specifically, for example, an overall image of the equipment, information on the arrangement schedule of the input cell 2-p, etc. are stored in advance, and processing such as integrated judgment with information from the input cell can be performed.
  • step ST24 the autonomously recognized mission is compared with the (correct) mission information transmitted from the central AI 61 to finalize the cell's own mission.
  • the input cells 2-1 and 2-2 then execute subsequent processing based on the finally determined mission.
  • the input cells 2-1 and 2-2 can recognize their own missions based on information from the sensors. As a result, the individuality of the input cells 2-1 and 2-2 is established, and they operate as cells dedicated to the sensors. In addition, when input cells 2-1 and 2-2 recognize the mission when information from sensors and conjunctions and sensors is acquired, when producing input cells 2-1 and 2-2, settings must be made individually. It is possible to ship the product in a neutral state without having to do so. This allows cost reduction during production of the input cells 2-1 and 2-2.
  • the input cell 2-p generates language data from the measured value of the sensor, but the present invention is not limited thereto.
  • a sensor has the function of replacing a "language” for humans with a "language” for machines, and a sensor detects "temperature rise” in human language, an identifier has been previously associated with the information processing device. , it may be converted into an identifier corresponding to "hot”. This makes it possible for this information processing system to employ the results of checks made by the human eye as input language data.
  • the sensor may be a microphone or a camera. That is, for example, the language conversion AI 72 may specify a person from the voice acquired by the microphone and output it as language data, or may specify the emotion of the person and output it as language data. For example, the language conversion AI 72 may convert human gestures in a video captured by a camera into language data.
  • the “autonomous decentralized AI blockchain cell” uses sensor functions to process sensors such as temperature, humidity, pressure, vibration, altitude, sound pressure, brightness, ultrasonic waves, voltage, and current, as well as blockchain-related processes.
  • a unit of executable information processing equipment Note that although the information processing device is used, the present invention is not limited to a personal computer or a server device, and can be implemented as a chip that is an electronic component. This makes it possible to easily incorporate it into various conventional devices.
  • an embodiment including an "autonomous decentralized AI blockchain audiovisual cell”, that is, an input cell equipped with a camera, will be described below with reference to FIGS. 8 to 11.
  • the input cell equipped with a camera in order to distinguish it from the above-mentioned “input cell 2-p”, it is particularly referred to as “input cell 2-r” (r is an integer value of 1 or more and N or less and other than p). It is called.
  • the person in charge (human) has to look at images from surveillance cameras and make judgments. Methods such as checking images recorded on a recorder are used.
  • the person in charge would either look at images from a surveillance camera and make a decision, or they would look at recordings after a report such as the presence of a suspicious person. In this way, when the person in charge makes a decision, there is a possibility that the response will be delayed due to checking the images of each surveillance camera, etc., and the degree of damage caused by the accident may increase.
  • automatic fire detection devices that utilize heat sensors, smoke sensors, and the like have conventionally existed.
  • conventional automatic fire detection devices detect a fire after it has occurred.
  • conventional automatic fire detection devices cannot detect abnormalities before a fire occurs, and cannot take preventive measures based on predictions of the occurrence of a fire.
  • there are automatic detection devices that use heat sensors, smoke sensors, etc. but although it is possible to detect a fire after it has started, it is not possible to detect an abnormality in advance. It was impossible to do. Therefore, there was a need for a system that could start responding more quickly and that could be used without building a large centralized system.
  • the "autonomous decentralized AI blockchain audiovisual cell” contributes to providing a system that more appropriately processes data of images captured by multiple cameras.
  • FIG. 8 is a schematic diagram illustrating an example of the outline of this service to which the "autonomous decentralized AI blockchain audiovisual cell” is applied.
  • This service to which the "autonomous decentralized AI blockchain audiovisual cell” is applied uses the information processing system shown in Figure 8 to control the control device based on the input of image data captured by multiple cameras. It provides a system for outputting operations.
  • the input cells equipped with cameras will be explained using the symbols 2-3 and 2-4 to distinguish them from the input cells in the explanation of FIG.
  • the information processing system of this service shown in FIG. 8 includes a server 1, input cells 2-3 and 2-4, output cell 3-1, confirmation terminal 4, and blockchain full nodes 5-1 to 5-4 (hereinafter As shown in FIG. 1, it includes a "BC full node”).
  • the input cells 2-3 and 2-4 and the output cell 3-1 have blockchain ultra-light nodes (hereinafter referred to as "BC ultra-light nodes” as shown in FIG. 1). It has the function of
  • the server 1 is an information processing device including a central AI 61. As will be described in detail later, the server 1 converts the image data captured by the cameras CAM-1 and CAM-2 in the input cells 2-3 and 2-4 into perceptually expressed data as input data. A perceptual representation of the control instruction in the output cell 3-1 based on the input data is output as output data.
  • the input cells 2-3 and 2-4 are equipped with cameras CAM-1 and CAM-2 and an autonomous distributed chip CP, respectively, and convert the image data captured by the cameras into the data perceptually expressed in the autonomous distributed chip CP. It will be converted into and managed using the blockchain network BCN.
  • the output cell 3-1 includes an autonomous distributed chip CP and an actuator (an example of a control device), acquires control instructions output by the server 1 in the autonomous distributed chip CP from the blockchain network BCN, and performs control based on the control instructions. Control the device (actuator).
  • the confirmation terminal 4 is an information processing device for confirming information managed using the blockchain network BCN.
  • the person in charge of managing the equipment can use the confirmation terminal 4 to confirm the history of inputs and outputs that have not been tampered with.
  • Data (raw data) of images captured by a plurality of cameras is, for example, numerical data of colors in each of pixels arranged two-dimensionally in a still image.
  • humans can express the results of interpreting such images using language or the like. Specifically, for example, in an image where the first point is captured, even though the image of a certain man has never been included up to the first time (for example, over several months), If the image is included for the first time at the first time, a person viewing (viewing) the image can perceive (recognize, interpret) that there is a man who is not usually present at the first location at the first time, and verbalize it.
  • the perceived (recognized, interpreted) representation rather than the image data (raw data), is called a "perceptual representation.”
  • the form of "language” is an example of the form of perceptual expression. That is, for example, the data of the character string "fire” is data perceptually expressed in the form of the Japanese language.
  • the data of the identifiers corresponding to “first point” and “fire” are also examples of perceptually expressed data that can be used in the information processing device.
  • data of a still image of a flame icon can also be said to be data perceptually expressed in the form of an icon corresponding to "fire”.
  • the functions of various nodes in the blockchain network BCN in this service shown in FIG. 8 are basically the same as in FIG. 1. Furthermore, in the example of FIG. 8, the functions of the BC ultralight nodes provided in the two input cells 2-3 and 2-4 and the output cell 3-1 are basically the same. Therefore, the explanation will be omitted.
  • step ST21 it is assumed that the camera CAM-1 provided in the input cell 2-3 is capturing an image of a first point at a first time. Then, as the data of the image captured by the camera CAM-1, data of "an image including an image of a certain man" is acquired.
  • step ST22 the language conversion AI included in the autonomous distributed chip CP of the input cell 2-3 converts image data (digital signal) into language. For example, assume that the image of a man included in the image has never been captured before the first time. In such a case, the image data (digital signal) is converted into verbal data that says "There is a man who is not usually present at the first location at the first time.”
  • the BC ultra-light node possessed by the autonomous decentralized chip CP of the input cell 2-3 uses the blockchain network BCN to transmit the linguistic data "There is a man who is usually absent at the first location at the first time". Let them manage it. Specifically, for example, by sending language data such as "There is a man who is usually absent at the first location at the first time" to the BC full node 5-1 as part of a transaction in blockchain technology, Let them manage it.
  • the BC ultralight node included in the autonomous distributed chip CP of the input cell 2-3 manages the encrypted language data using the blockchain network BCN.
  • the characteristics of the man may be managed as appropriate.
  • the data of the captured image itself may also be appropriately managed using the blockchain network BCN. Specifically, for example, metadata of image data is managed using the blockchain network BCN. Then, the image data itself is appropriately encrypted and divided, and managed using IPFS or the like.
  • steps ST21 to ST23 described above is executed in the input cell 2-4 as well.
  • the camera CAM-2 provided in the input cell 2-4 images the second point at a second time after the first time.
  • data of "an image including an image of a certain man” is acquired as data of the image captured by the camera CAM-2.
  • the language conversion AI included in the autonomous distributed chip CP of the input cell 2-4 converts the image data (digital signal) into language. For example, assume that the image of a man included in the image has never been captured before the first time.
  • the image data (digital signal) is converted into verbal data that says, "There is a man who is not usually present at the second location at the second time.”
  • the BC ultralight node possessed by the autonomous decentralized chip CP of input cell 2-4 sends the encrypted linguistic data "There is a man who is usually absent at the second location at the second time" to the blockchain network BCN. be used and managed.
  • step ST24 the server 1 decrypts and obtains the encrypted language data managed using the blockchain network BCN.
  • step ST25 the server 1 uses the blockchain network BCN to manage the result of determining the content of the control instruction based on the acquired language data. Specifically, for example, the server 1 inputs linguistic data such as "At the first time, there is a man who is not usually seen at the first location" and "At the second time, there is a man who is not usually seen at the second location" as input data.
  • language data of a control instruction to "warn the man at the second location” is generated as output data.
  • the server 1 manages the generated control instruction "warn the man at the second location” using the blockchain network BCN.
  • the server 1 manages the encrypted control instructions using the blockchain network BCN.
  • step ST26 the BC ultralight node possessed by the autonomous decentralized chip CP of the output cell 3-1 acquires the encrypted control instruction managed using the blockchain network BCN.
  • step ST27 the firmware included in the autonomous distributed chip CP of the output cell 3-1 decodes the encrypted control instruction. Then, the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 converts it into a digital signal as the specific control content of the control device. Specifically, for example, the language conversion AI possessed by the autonomous decentralized chip CP of the output cell 3-1 is configured to ⁇ send an alarm device around the second point'' based on the control instruction to ⁇ warn the man at the second point.'' It is converted into a digital signal that causes a control device (actuator, control unit of an alarm device, etc.) to operate so as to cause a warning.
  • a control device actuator, control unit of an alarm device, etc.
  • the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 outputs a digital data control signal (digital signal) for causing an alarm device to issue.
  • the BC ultra light node possessed by the autonomous decentralized chip CP of the output cell 3-1 also controls the operation of the control device to "set off the alarm device around the second point" using the blockchain network BCN. can be used and managed.
  • step ST28 the actuator (an example of a control device) is driven in response to a digital data control signal (digital signal) for "setting off a warning device” around the second point.
  • the actuator (an example of a control device) operates in accordance with the control instruction from the central AI 61 to "warn the man at the second date.”
  • An alarm device around a second point (not shown) is activated to issue a warning to the man.
  • the confirmation terminal 4 presents the information managed using the blockchain network BCN to the manager of the facility (factory, etc.). That is, the manager of the facility (factory, etc.) displays the data of the images at the first time and the second time, which were captured by the cameras at the first and second points, presented on the confirmation terminal 4.
  • Input data linguistic data
  • Input data such as "There is a man who is usually not at the first location at the first time", "There is a man who is usually not at the second location at the second time", “Warning the man at the second location”, etc. It is possible to confirm the output data (language data) of the control instruction "" and the operation of the control device that causes the "warning device to sound" around the second point. Since these are managed using the blockchain network BCN, they are presented to the manager of the facility (factory, etc.) as a history of inputs and outputs that have not been tampered with.
  • this service has the following features in the same way as explained in the explanation of FIG. 1 above.
  • an existing AI trained in a language can be employed as the central AI 61. Therefore, this service can reduce overall development costs and operational costs.
  • this service uses the blockchain network BCN to guarantee data, so a safe AI system is realized.
  • this service guarantees data using the blockchain network BCN, making it impossible to impersonate the input cell 2-3, thereby realizing a safe AI system.
  • the linguistic AI outputs that there was a man who is not usually present at a certain point at a certain time.
  • the linguistic AI can output various kinds of outputs. Specifically, for example, “sparks are flying at the first location (from the installed device)", “smoke is occurring at the first location”, “a fire is occurring at the first location”, A perceptual expression to that effect may be output.
  • the input cell 2-r is equipped with a camera CAM-p as an input section. Further, the input cell 2-r has a part or all of a CPU, ROM, RAM, etc. as an autonomous distributed chip CP.
  • FIG. 9 is a functional block diagram showing an example of the functional configuration of an information processing system that provides the services shown in FIG. 8.
  • a processing execution unit 51 functions in the CPU 11 of the server 1. Furthermore, the storage unit 18 stores a model of the central AI 61.
  • a model management unit 71 In the input cell 2-r, a model management unit 71, a language conversion AI 72, and a relearning execution unit 73 function as an autonomous distributed chip CP.
  • the input cell 2-r has a camera CAM-p as an input section. Furthermore, a language conversion AI model 75 is stored in the storage section of the input cell 2-r.
  • a model management unit 81 In the output cell 3-q, a model management unit 81, an inverse language conversion AI 82, a control unit 83, and a relearning execution unit 84 function as an autonomous distributed chip CP.
  • the output cell 3-q has an actuator 85 as an output section.
  • a language conversion AI model 86 is stored in the storage section of the output cell 3-q.
  • the processing execution unit 51 acquires input language data as input data from one or more input cells 2-r, executes a predetermined process using the input data, and outputs one or more output languages indicating the execution results of the process. Output the data as output data.
  • the processing execution unit 51 obtains input data stored using the blockchain network BCN.
  • the model management unit 71 stores and manages a language conversion AI model 75 that inputs image data captured by the camera CAM-p, converts it into language data, and outputs it in a storage unit. Specifically, for example, if an image of a man that has never been imaged is included, the model management unit 71 converts it into linguistic data such as "There is a man who normally does not exist at the first point at the first time”. and output it.
  • the language conversion AI 72 acquires image data of the target area output from the camera CAM-p that images the target area, inputs it to the language conversion AI model 75, and sends the language data output from the model to the server. output as at least a part of the input language data of 1.
  • the processing after being converted into language by the language conversion AI 72 is basically the same. Therefore, the explanation will be omitted.
  • FIG. 10 is a diagram showing an example in which the service shown in FIG. 1 is used to manage devices located within a premises.
  • two devices A1 and A2 are located within the premises. That is, for example, the devices A1 and A2 are devices on a manufacturing line located within the premises of a factory.
  • An input cell 2-1 is arranged in the device A1.
  • the camera CAM-1 of the input cell 2-1 is capturing an image of the device A1 on the production line and its surroundings as a target area.
  • the sensor captures an image of the device A1 as an image in which the appearance of the device A1, a predetermined meter, the surrounding situation of the device A1, and the like are grasped.
  • input cells 2-2 and 2-3 are arranged in the device A2.
  • the input cell 2-5 images the target area using an infrared camera CAM-3. As a result, the input cell 2-5 can acquire an image or the like that can identify an event such as abnormal heat generation occurring inside the device A2.
  • each input cell 2-1 to 2-3 converts the data measured by the sensor into linguistic data and sends it to the edge server EDS. In this way, data of each of the plurality of devices A1 and A2 within the premises is collected.
  • each input cell is converted into language data, so processing is distributed and the system can handle the system at high speed as a whole.
  • FIG. 11 is a diagram illustrating an example of the flow of information processing when performing faster response in the premises of FIG. 10.
  • language data is provided from input cell 2-r to output cell 3-q. That is, the language data from the input cell 2-r may be provided to the output cell 3-q without going through the central AI 61.
  • the input cell 2-r, output cell 3-q, etc. have the following basic logic, especially in the "autonomous decentralized AI blockchain audiovisual cell".
  • the input cell 2-r has “autonomous abnormality detection logic”. That is, the “autonomous abnormality detection logic” is a logic that autonomously analyzes camera images for each input cell 2-r and performs processing to prompt an alarm. As described above, the input cell 2-r can detect as an abnormal (unusual) state when the image includes an image of a man who does not normally appear. For example, input cell 2-r detects overheating of the device, fire, abnormal behavior (ramping, asking for help, being chased, etc.), intrusion into prohibited areas, intrusion of dangerous animals, etc. It's good to do that. In addition, as described above with reference to Fig. 5, in addition to a normal camera capable of capturing visible light as shown in Fig.
  • an infrared camera can be used to prevent abnormal overheating inside and outside the equipment, and to detect problems from the other side of the wall. It is also possible to detect phenomena that cannot be detected with normal cameras, such as high-temperature fires that cannot be seen. Further, it is preferable that the input cell 2-r further includes a microphone as an input section. This makes it possible to use, for example, human voices and sounds generated by accidents, etc. together with images, thereby making it possible to improve detection accuracy.
  • the input cell 2-r has "past comparison learning (self-learning) logic".
  • the "past comparison learning (self-learning) logic” refers to the function of the relearning execution unit 73 of the input cell 2-r, based on information obtained in the past in the input cell 2-r itself and other input cells. This is the logic that learns to perform detection.
  • the relearning execution unit 73 receives an image of a predetermined target person and information regarding the characteristics of the target person from a higher-level server (for example, the edge server EDS in FIG. 5), and displays the image of the target person. re-learning (self-learning) to detect that is actually included in the image. Note that even when the input cell 2-r is detected during relearning (self-learning), the output cell 3-q can be operated to sound an alarm as shown in FIG.
  • the system preferably includes "auto-tracking logic".
  • the automatic tracking logic is a logic that automatically tracks a predetermined target in each of the plurality of input cells 2-r using information indicating that the predetermined target is detected in each input cell.
  • a higher-level server for example, the edge server EDS in FIG. 5 collects information on the detection of a target person or the like by each of the plurality of input cells 2-r. Based on the information that the target person, etc. has been detected at each position in the predetermined area imaged by each input cell 2-r, the higher-level server determines the movement route of the target person, and the future direction of the target person. Automatic tracking by estimating the location.
  • the consciousness/intent transmission logic is a logic that simultaneously outputs human words such as consciousness and intention in addition to digital image data in each of the plurality of input cells 2-r. That is, as shown in FIG. 1, the input cell 2-r manages the data of captured images (including still images and moving images) using the blockchain network BCN, and also manages the data of captured images (including still images and video images) using human words. It simultaneously outputs linguistic expressions corresponding to the consciousness and intention of the user. Specifically, for example, a verbal expression such as "abnormal temperature was detected” or "a person moving violently was detected” is output from the input cell 2-r.
  • the system preferably has a "self-handling logic".
  • the self-handling logic is logic in which an operation is executed in each of the plurality of input cells 3-q without going through the central AI 61 or the edge server EDS.
  • the output cell 3-q outputs an alarm if there is a danger unless immediate action is taken without seeking the judgment of the central AI 61, as explained using FIG. Fires can be extinguished locally using sprinklers, etc. That is, this realizes information processing when taking high-speed countermeasures.
  • the input cell 2-r and output cell 3-q of this information processing system are equipped with audiovisual devices such as cameras and microphones, and realize the concept of identity with IT. It has become something that can be called a cell.
  • the input cell 2-r generates language data from data of an image captured by a camera, but the present invention is not limited thereto. That is, for example, the input cell 2-r may have a function of switching from a "language” for humans to a "language” for machines. Specifically, for example, the input cell 2-r acquires the message "There is a suspicious person” from a human in human language, and indicates "There is a suspicious person” which has been associated in advance in the information processing device. It may also be something that converts into an identifier. This makes it possible for this information processing system to employ the results of checks made by the human eye as input language data.
  • the "autonomous decentralized AI blockchain audiovisual cell” is a unit of information processing device that can execute blockchain-related processing.
  • the information processing device is used, the present invention is not limited to a personal computer or a server device, and can be implemented as a chip that is an electronic component. This makes it possible to easily incorporate it into various conventional devices. That is, the autonomous decentralized chip CP in FIG. 1 may be realized as a chip and operated as an input cell by being built into a camera.
  • autonomous decentralized AI blockchain cells and “autonomous decentralized AI blockchain audiovisual cells” perform autonomous decentralized processing by being connected to each other via a predetermined network, especially a wireless network, within the premises. This can greatly improve convenience.
  • autonomous decentralized AI blockchain cell and “autonomous decentralized AI blockchain audiovisual cell”
  • autonomous decentralized AI blockchain audiovisual cell In order to manage, integrate, and utilize them profitably, it is necessary to demonstrate the functions for collaboration.
  • the load on the central management server increases as the number of sensors increases.
  • the benefits of decentralized AI are demonstrated as the number of sensors increases, and the central management server (central AI in this embodiment) This will reduce the load.
  • This is also the greatest merit of the input cell 2 of this embodiment. That is, the most advantageous point of the input cell 2 of this embodiment is that a decentralized system can be easily constructed instead of the conventional centralized system.
  • the input cell 2 and output cell 3-q including the above-mentioned "autonomous decentralized AI blockchain cell" and "autonomous decentralized AI blockchain audiovisual cell” preferably have the following basic logic.
  • the information processing system of this embodiment preferably has "self-position recognition logic.” That is, in order for the input cell 2 to autonomously determine a solution based on abnormality detection and take action, it is important for the input cell 2 to understand ⁇ where it is'' by itself. Specifically, for example, when a fire breaks out on the third floor, the input cell 2-1 on the third floor and the input cell 2-2 on the first floor naturally have different priority processes. In other words, distributed processing is required depending on each location and position.
  • each input cell 2 is equipped with an information acquisition means for specifying a three-dimensional position, such as a GPS or an altitude sensor.
  • the location (position) of the input cell 2 itself in the three-dimensional map and the location and device of the abnormality detection destination are not only notified by the higher-level server (for example, the edge server EDS or the server 1) but also by the input cell 2 itself.
  • Maps are preferably created, updated, and managed by an upper-level server.
  • distributed processing can be performed accordingly with a unified map. Note that by performing this 3D mapping, for example, input cells 2 attached to moving objects such as flying drones can also share mutual positional information. This makes it possible to utilize the input cell 2 to realize safe navigation, proxy navigation, and the like.
  • the information processing system of this embodiment has an "input cell education logic.”
  • a higher-level server for example, edge server EDS or server 1 located inside or outside the campus that manages input cell 2 uses a 3D map of the equipment or department (for an apartment, the room and installation location) and the position and altitude from each input cell.
  • the 3D map can be updated based on information such as whether the input cell 2 is operating normally, movement of location, status, etc. by periodically polling the input cell 2. .
  • the newly installed input cell 2 can be automatically input without the need for a human to configure it. It becomes possible for Cell 2 to understand its own position and role and operate accordingly.
  • the information processing system of this embodiment preferably includes a "distributed autonomous system.”
  • the decentralized autonomous system can be referred to as a "Decentralized Autonomous System (DAS),” and specifically, is as follows. That is, as described above, the input cell 2 has logic that allows it to autonomously (independently) perform judgment and processing. Therefore, even if, for example, an on-premises server (for example, edge server EDS) temporarily stops functioning due to a failure or maintenance inspection, the input cell 2 and output cell 3 can be monitored individually, or the input cell 2 and output cell 3 can cooperate with each other. You will be able to take action.
  • DAS Decentralized Autonomous System
  • input cell 2 and output cell 3 are updated from the information distributed and held in the upper server (for example, edge server EDS). It is possible to instantly restore the mapping and status of the system and return to normal operation.
  • the greatest benefit of these input cells 2 and output cells 3 is that they allow the mission to be carried out without any trouble even without a host server (for example, an edge server EDS), and are distributed autonomously. This can be said to be the biggest advantage of the system (DAS).
  • the information processing system of this embodiment preferably has an "ethical logic.”
  • the higher-level servers inside and outside the campus for example, the edge server EDS and server 1 make total predictions and judgments while providing the optimal training for each input cell 2 and output cell 3 based on their own analysis and predictions. conduct.
  • the term "education” here refers to the fact that the matters to be recognized vary depending on the equipment and environment in which each input cell 2 and output cell 3 is installed.
  • the same sensor information of 30 degrees has different meanings depending on the installed device, such as whether the input cell 2 is installed indoors or outdoors.
  • noise, vibration, etc. have different meanings depending on the environment and machine.
  • the perceptual expression output by the input cell 2 is corrected so as to produce a verbal output as close as possible to the physical sensation as if a human were sensing it on the spot. Furthermore, since there are unique words depending on the industry and equipment, it is a good idea to educate students while correcting such unique phrases.
  • Input cell 2 and output cell 3 receive correction information from these higher-level servers (for example, edge server EDS and server 1), and adjust the output language by themselves while being aware of the location, environment, and equipment in which they are installed. It is preferable to be able to learn.
  • system configuration shown in FIG. 2 and the hardware configuration of the server 1 shown in FIG. 3 are merely examples for achieving the object of the present invention, and are not particularly limited.
  • FIGS. 4 and 9 are merely examples, and are not particularly limited. In other words, it is sufficient that the information processing system shown in FIG. 2 is equipped with a function that can execute the above-mentioned series of processes as a whole, and what kind of functional blocks and databases are used to realize this function is particularly dependent on FIG. 4. and is not limited to the example of FIG.
  • the locations of the functional blocks are not limited to those shown in FIG. 5, and may be arbitrary.
  • at least a portion of the functional blocks arranged on the server 1 side may be provided in another information processing device.
  • one functional block may be configured by a single piece of hardware, a single piece of software, or a combination thereof.
  • a program constituting the software is installed on a computer or the like from a network or a recording medium.
  • the computer may be a computer built into dedicated hardware. Further, the computer may be a computer that can execute various functions by installing various programs, such as a server, a general-purpose smartphone, or a personal computer.
  • Recording media containing such programs not only consist of removable media (not shown) that is distributed separately from the main body of the device in order to provide the program to the user, but also are provided to the user in a state that is pre-installed in the main body of the device. Consists of provided recording media, etc.
  • the step of writing a program to be recorded on a recording medium is not only a process that is performed chronologically in accordance with the order, but also a process that is not necessarily performed chronologically but in parallel or individually. It also includes the processing to be executed.
  • an information processing system to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
  • the information processing system to which the present invention is applied for example, the information processing system of FIG. 4 or FIG. 9
  • a central device that executes a predetermined process using input data for example, the server 1 in FIG. 4 or FIG. 9, or the edge server EDS in FIG. 6 or FIG. 10
  • input data for example, the server 1 in FIG. 4 or FIG. 9, or the edge server EDS in FIG. 6 or FIG. 10
  • the central device includes: One or more perceptual expressions that acquire one or more perceptual expression data (input language data in FIGS. 4 and 9) as input data, execute a predetermined process using the input data, and show the execution result of the process.
  • Process execution means (process execution unit 51) that outputs data as output data; Equipped with Each of the one or more type 1 peripheral devices is Predetermined data (for example, temperature data or image data) is input, converted into the perceptual expression data (for example, data corresponding to "temperature rise” or data corresponding to "suspicious person is present") and output.
  • model management means (model management unit 71) that stores and manages a model (for example, language conversion AI model 86) in a predetermined storage medium; Data (e.g., temperature data or image data) output from a sensor that measures a physical quantity in the real world (e.g., sensor 74 in FIG. 4) or a camera that images a target area (e.g., camera in FIG.
  • the perceptual expression data (for example, data corresponding to "temperature rise” or "suspicious person is present") output from the model is input to at least one of the input data of the central device.
  • a conversion means (language conversion AI72) that outputs the language as a part; It is sufficient to have the following. This makes it possible to improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
  • the information processing system further includes one or more second type peripheral devices (output cells 3) that control a predetermined control target,
  • Each of the one or more second type peripheral devices is a model management unit (model management unit 81) that stores and manages a model that inputs the perceptual expression data, converts it into a predetermined physical quantity, and outputs it in a predetermined storage medium; Acquire at least a part of the one or more perceptual expression data constituting the output data output from the central device and input it to the model, and send a signal indicating the predetermined physical quantity output from the model to an instruction signal.
  • a control means (inverse language conversion AI 82 and control unit 83) that controls the predetermined control object by inputting it to the predetermined control object as can be provided. This can further improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
  • the central device includes: Position information from the one or more Type 1 peripheral devices (for example, three-dimensional position information that can be obtained from a GPS or an altitude sensor) and information about the model (for example, the model itself, which affects a threshold value for determining a temperature increase) data, etc.) as first type peripheral device information; map management means (for example, processing execution unit 51) that generates or updates and manages a three-dimensional map of equipment in which the one or more first type peripheral devices are arranged, based on the first type peripheral device information; further comprising;
  • Each of the one or more first type peripheral devices is a position information acquisition unit (for example, model management unit 71) that acquires position information of the first type peripheral device; a first type peripheral device information transmitting means (for example, model management section 71) that provides the central device with information regarding the location information and the model; a first type relearning execution unit (for example, the relearning execution unit 73 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The present invention addresses the problem of improving the convenience of management of facilities that are managed on the basis of data from a plurality of sensors or cameras. In an information processing system including a server 1 that performs a prescribed process using input data, and one or more input cells 2 that provide at least a portion of the input data to the server 1, each input cell 2 acquires positional information of the input cell. The server 1 manages input cell position information and models, within a three-dimensional map of the facilities where the input cells 2 are located. Each input cell 2 performs relearning on the basis of information about the three-dimensional map managed by the server 1 and the positional information of the input cell 2. This solves the above-mentioned problem.

Description

情報処理システム、情報処理方法、及びプログラムInformation processing system, information processing method, and program
 本発明は、情報処理システム、情報処理方法、及びプログラムに関する。 The present invention relates to an information processing system, an information processing method, and a program.
 従来より、構内(例えば工場内)において、各種センサにより測定されたパラメータに基づいて、各種装置を制御することで、パラメータを変化させ、よりよい製品を製造する技術が存在する(例えば、特許文献1参照)。
 また、近年、人工知能(Artificial Intelligence、以下、「AI」と呼ぶ)の技術が発達している。例えば、チャットボット等に用いられる、自然言語処理が可能なAIも発達している。
Conventionally, there has been a technology that controls various devices based on parameters measured by various sensors in a premises (for example, a factory) to change the parameters and manufacture better products (for example, patent document (see 1).
Furthermore, in recent years, artificial intelligence (hereinafter referred to as "AI") technology has been developed. For example, AI capable of natural language processing, used in chatbots and the like, is also being developed.
特開2013-111073号公報Japanese Patent Application Publication No. 2013-111073
 構内で使われる各種装置の稼働状況から故障検出・故障予測等においては、従来、各種各様のセンサを中央管理装置内のソフトウェアによって集中検知や判断、警報出力等が行われていた。しかしながら、事故等が発生し、多くのセンサから一度にデータ(異常値)が送信された場合、中央監視装置では順次処理を行うためにユーザ(例えば監視員)への警報出力や非常設備の稼働(例えばスプリンクラーによる消火)などの対処までにかなりの時間を有し、対処が遅れ大災害に繋がることもある。
 そこで、対処をより短時間で開始したり、大きな中央集権システムを構築せずとも利用可能なシステムが望まれていた。
Conventionally, in order to detect and predict failures based on the operational status of various types of equipment used within the premises, software in a central management unit has been used to centrally detect, judge, and output alarms using various sensors. However, when an accident occurs and data (abnormal values) are sent from many sensors at once, the central monitoring device outputs an alarm to the user (for example, a supervisor) and activates emergency equipment in order to sequentially process the data. It takes a considerable amount of time to take measures such as fire extinguishing using sprinklers, which can lead to a delay in dealing with the situation and lead to a major disaster.
Therefore, there was a need for a system that could start responding more quickly and that could be used without building a large centralized system.
 本発明は、複数のセンサ又はカメラからのデータに基づいて管理される設備における、当該設備の管理の利便性を向上させることができる。 The present invention can improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
 上記目的を達成するため、本発明の一態様の情報処理システムは、
 入力データを用いる所定の処理を実行する中央装置と、前記入力データの少なくとも一部を前記中央装置に提供する1以上の第1種周辺装置とを含む情報処理システムにおいて、
 前記中央装置は、
  1以上の知覚表現データを入力データとして取得して、当該入力データを用いる所定の処理を実行して、その処理の実行結果を示す1以上の知覚表現データを出力データとして出力する処理実行手段、
 を備え、
 1以上の第1種周辺装置の夫々は、
 所定のデータを入力して、前記知覚表現データに変換して出力するモデルを所定の記憶媒体に記憶させて管理するモデル管理手段と、
 実世界の物理量を測定するセンサ、又は、対象領域を撮像するカメラから出力されたデータを取得して前記モデルに入力させ、当該モデルから出力された前記知覚表現データを、前記中央装置の前記入力データの少なくとも一部として出力する変換手段と、
 を備える。
To achieve the above object, an information processing system according to one embodiment of the present invention includes:
An information processing system including a central device that executes predetermined processing using input data, and one or more type 1 peripheral devices that provide at least a part of the input data to the central device,
The central device includes:
processing execution means that acquires one or more perceptual expression data as input data, executes a predetermined process using the input data, and outputs one or more perceptual expression data indicating the execution result of the process as output data;
Equipped with
Each of the one or more type 1 peripheral devices is
a model management means for storing and managing a model that inputs predetermined data and converts it into the perceptual expression data and outputs it in a predetermined storage medium;
Data output from a sensor that measures physical quantities in the real world or a camera that images a target area is acquired and input to the model, and the perceptual expression data output from the model is input to the central device. a conversion means outputting as at least part of the data;
Equipped with.
 本発明の一態様の情報処理方法及びプログラムは、上述の本発明の一態様の情報処理システムに対応する情報処理方法及びプログラムである。 An information processing method and program according to one embodiment of the present invention correspond to the information processing system according to one embodiment of the present invention described above.
 本発明によれば、複数のセンサ又はカメラからのデータに基づいて管理される設備における、当該設備の管理の利便性を向上させることができる。 According to the present invention, it is possible to improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
「自律分散型AIブロックチェーンセル」が適用されるサービスの概要の一例を説明する模式図である。FIG. 1 is a schematic diagram illustrating an example of an outline of a service to which an "autonomous decentralized AI blockchain cell" is applied. 図1に示すサービスを提供する際に適用される本発明の一実施形態に係る情報処理システムの構成例を示す図である。1 is a diagram showing a configuration example of an information processing system according to an embodiment of the present invention applied when providing the service shown in FIG. 1. FIG. 図2に示す情報処理システムのうちサーバのハードウェア構成の一例を示すブロック図である。3 is a block diagram showing an example of the hardware configuration of a server in the information processing system shown in FIG. 2. FIG. 図3のハードウェア構成のサーバを含む情報処理システムの機能的構成の一例を示す機能ブロック図である。4 is a functional block diagram illustrating an example of a functional configuration of an information processing system including a server having the hardware configuration of FIG. 3. FIG. 図1に示すサービスを構内に配置された装置の管理に用いる例を示す図である。FIG. 2 is a diagram showing an example in which the service shown in FIG. 1 is used to manage devices located within a premises. 図5の構内における高速な対処を行う情報処理の流れの例を示す図である。FIG. 6 is a diagram showing an example of the flow of information processing for performing high-speed countermeasures in the premises of FIG. 5; 図4の機能的構成の入力セルにおいて、自律的に処理内容を確立させる流れの例を示す図である。FIG. 5 is a diagram illustrating an example of a flow for autonomously establishing processing contents in the input cell having the functional configuration of FIG. 4; 「自律分散型AIブロックチェーン視聴覚セル」が適用されるサービスの概要の一例を説明する模式図である。FIG. 1 is a schematic diagram illustrating an example of an outline of a service to which an “autonomous decentralized AI blockchain audiovisual cell” is applied. 図8のサービスを提供する情報処理システムの機能的構成の一例を示す機能ブロック図である。9 is a functional block diagram showing an example of a functional configuration of an information processing system that provides the service of FIG. 8. FIG. 図7に示すサービスを構内に配置された装置の管理に用いる例を示す図である。FIG. 8 is a diagram showing an example of using the service shown in FIG. 7 for managing devices located within a premises. 図10の構内における高速な対処を行う情報処理の流れの例を示す図である。FIG. 11 is a diagram illustrating an example of the flow of information processing for performing high-speed countermeasures in the premises of FIG. 10;
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、以下において、単に「画像」と呼ぶ場合には、「動画像」と「静止画像」との両方を含むものとする。
 また、「動画像」には、次の第1処理乃至第3処理の夫々により表示される画像を含むものとする。
 第1処理とは、平面画像(2D画像)におけるオブジェクト(例えば撮像の対象となる人や物の像)の夫々の動作に対して、複数枚からなる一連の静止画像を時間経過と共に連続的に切り替えて表示させる処理をいう。具体的には例えば、2次元アニメーション、いわゆるパラパラ漫画的な処理が第1処理に該当する。
 第2処理とは、立体画像(3Dモデルの画像)におけるオブジェクト(例えば撮像の対象となる人や物の像)の夫々の動作に対応するモーションを設定しておき、時間経過と共に当該モーションを変化させて表示させる処理をいう。具体的には例えば、3次元アニメーションが第2処理に該当する。
 第3処理とは、オブジェクト(例えば自然人の像)の夫々の動作に対応した映像(即ち動画像)を準備しておき、時間経過と共に当該映像を流していく処理をいう。
 ここで、「映像(即ち動画像)」は、複数のフレームやフィールド等の画像(以下、「単位画像」と呼ぶ)から構成される。
Note that in the following, when an image is simply referred to as an "image", it includes both a "moving image" and a "still image".
Furthermore, the "moving image" includes images displayed by each of the following first to third processing.
The first process is to continuously generate a series of still images over time for each movement of an object (for example, an image of a person or object to be imaged) in a two-dimensional image (2D image). This refers to the process of switching and displaying. Specifically, for example, two-dimensional animation, a so-called flipbook-like process, corresponds to the first process.
The second process is to set a motion corresponding to each movement of an object (for example, an image of a person or object to be imaged) in a stereoscopic image (image of a 3D model), and change the motion as time passes. This refers to the process of displaying images. Specifically, for example, three-dimensional animation corresponds to the second process.
The third process is a process in which images (that is, moving images) corresponding to the movements of objects (for example, images of natural people) are prepared, and the images are played over time.
Here, a "video (that is, a moving image)" is composed of images such as a plurality of frames and fields (hereinafter referred to as "unit images").
 以下、本発明の前提となる、「自律分散型AIブロックチェーンセル」及び「自律分散型AIブロックチェーン視聴覚セル」について、図1乃至図11を用いて説明する。 Hereinafter, the "autonomous decentralized AI blockchain cell" and the "autonomous decentralized AI blockchain audiovisual cell" which are the premise of the present invention will be explained using FIGS. 1 to 11.
 詳しくは後述するが、ここで簡単に「自律分散型AIブロックチェーンセル」及び「自律分散型AIブロックチェーン視聴覚セル」の違いについて説明する。
 本サービスは、施設(設備や向上等)において、入力セル(例えば、図1の入力セル2-1及び2-2)からの入力に応じて、出力セル(例えば、図1の出力セル3-1)から所定の制御による出力がなされる、ブロックチェーン技術が用いられたものである。
The details will be described later, but here we will briefly explain the difference between the "autonomous decentralized AI blockchain cell" and the "autonomous decentralized AI blockchain audiovisual cell."
This service allows facilities (equipment, improvements, etc.) to respond to inputs from input cells (for example, input cells 2-1 and 2-2 in Figure 1) to output cells (for example, output cell 3-2 in Figure 1). 1) Block chain technology is used in which output is performed under predetermined control.
 具体的には、「自律分散型AIブロックチェーンセル」は、入力セル(例えば、図1の入力セル2-1)に実世界の物理量(例えば温度)を測定するセンサが設けられたものであって、設備内に複数設けられ、自律的に動作するものである。
 これに対して、「自律分散型AIブロックチェーン視聴覚セル」は、入力セル(例えば、図8の入力セル2-1)に所定領域を撮像するカメラやマイクが設けられたものであって、設備内に複数設けられ、自律的に動作するものである。
Specifically, an "autonomous decentralized AI blockchain cell" is one in which an input cell (for example, input cell 2-1 in Figure 1) is equipped with a sensor that measures a physical quantity in the real world (for example, temperature). Multiple units are installed within the facility and operate autonomously.
On the other hand, an "autonomous decentralized AI blockchain audiovisual cell" is one in which an input cell (for example, input cell 2-1 in Figure 8) is equipped with a camera and a microphone to image a predetermined area. There are multiple units installed within the building and they operate autonomously.
 以下、「自律分散型AIブロックチェーンセル」について図1乃至図7を用いて説明し、「自律分散型AIブロックチェーン視聴覚セル」について図8乃至図11を用いて説明する。
 図1は、「自律分散型AIブロックチェーンセル」が適用されるサービス(以下、「本サービス」と呼ぶ)の概要の一例を説明する模式図である。
 「自律分散型AIブロックチェーンセル」が適用される本サービスは、図1に示す情報処理システムが適用されることで、複数のセンサにより測定されたデータの入力に基づいて、制御装置を動作させるという出力を行うためのシステムを提供するものである。
Hereinafter, the "autonomous distributed AI blockchain cell" will be explained using FIGS. 1 to 7, and the "autonomous distributed AI blockchain audiovisual cell" will be explained using FIGS. 8 to 11.
FIG. 1 is a schematic diagram illustrating an example of an overview of a service (hereinafter referred to as "this service") to which the "autonomous decentralized AI blockchain cell" is applied.
This service, to which "autonomous decentralized AI blockchain cell" is applied, operates the control device based on the input of data measured by multiple sensors by applying the information processing system shown in Figure 1. It provides a system for outputting the following.
 図1に示す本サービスの情報処理システムは、サーバ1と、入力セル2-1及び2-2、出力セル3-1、確認端末4、ブロックチェーンフルノード5-1乃至5-4(以下、図1に示すように「BCフルノード」と呼ぶ)が含まれて構成されている。
 また、詳しくは後述するが、入力セル2-1及び2-2、並びに出力セル3-1には、ブロックチェーンウルトラライトノード(以下、図1に示すように「BCウルトラライトノード」と呼ぶ)としての機能が備えられている。
The information processing system of this service shown in FIG. As shown in FIG. 1, it includes a "BC full node").
In addition, although the details will be described later, the input cells 2-1 and 2-2 and the output cell 3-1 have blockchain ultra-light nodes (hereinafter referred to as "BC ultra-light nodes" as shown in FIG. 1). It has the function of
 サーバ1は、中央AI61を備える情報処理装置である。詳しくは後述するが、サーバ1は、入力セル2-1及び2-2におけるセンサの測定結果を知覚表現されたデータに変換したものを入力データとして取得し、入力データに基づいて出力セル3-1における制御指示について知覚表現されたものを出力データとして出力する。 The server 1 is an information processing device including a central AI 61. As will be described in detail later, the server 1 acquires as input data the measurement results of the sensors in the input cells 2-1 and 2-2 converted into perceptually expressed data, and based on the input data, outputs the output cells 3- The perceptual representation of the control instruction in step 1 is output as output data.
 入力セル2-1及び2-2は、センサ及び自律分散チップCPを夫々備え、センサの測定結果を、自律分散チップCPにおいて知覚表現されたデータに変換してブロックチェーンネットワークBCNを用いて管理させる。 The input cells 2-1 and 2-2 are each equipped with a sensor and an autonomous distributed chip CP, and the measurement results of the sensors are converted into data perceptually expressed in the autonomous distributed chip CP and managed using the blockchain network BCN. .
 出力セル3-1は、自律分散チップCP及びアクチュエータ(制御装置の一例)を備え、自律分散チップCPにおいてサーバ1により出力された制御指示をブロックチェーンネットワークBCNから取得し、制御指示に基づいて制御装置(アクチュエータ)を制御する。 The output cell 3-1 includes an autonomous distributed chip CP and an actuator (an example of a control device), acquires control instructions output by the server 1 in the autonomous distributed chip CP from the blockchain network BCN, and performs control based on the control instructions. Control the device (actuator).
 確認端末4は、ブロックチェーンネットワークBCNを用いて管理された情報を確認するための情報処理装置である。設備(工場等)の管理担当者は、確認端末4を用いて、改竄等のされていない入力や出力の経緯を確認することができる。 The confirmation terminal 4 is an information processing device for confirming information managed using the blockchain network BCN. The person in charge of managing the equipment (factory, etc.) can use the confirmation terminal 4 to confirm the history of inputs and outputs that have not been tampered with.
 ここで、「知覚表現されたデータ」について説明する。
 センサの測定結果の生データは、数値データであって、物理量である。これに対して、そのようなセンサの測定結果を人間は、生データそのものを解釈した結果を、言語等を用いて表現することができる。
 具体的には例えば、気温35度、湿度80%といった生データを、人間は、暑いと知覚(認識、解釈)し言語化することができる。このように、センサの測定結果の生データではなく、知覚(認識、解釈)された表現を、「知覚表現」と呼ぶ。
 なお、「言語」の形態は、知覚表現の形態の一例である。即ち例えば、「暑い」という文字列のデータは、日本語という言語の形態で知覚表現されたデータである。また例えば、情報処理装置において識別子が予め対応付けられている場合、「暑い」に対応する識別子のデータも情報処理装置内で利用可能な知覚表現されたデータの一例である。更に言えば、例えば手で顔を仰ぐ動作の動画データも、ジェスチャの形態で知覚表現されたデータであるということができる。
 以下、説明を容易とするため、「知覚表現」は「言語」であるものとして、説明をする。
Here, "perceptually expressed data" will be explained.
The raw data of the measurement results of the sensor is numerical data and is a physical quantity. On the other hand, humans can interpret the measurement results of such sensors and express the results using language or the like.
Specifically, for example, humans can perceive (recognize, interpret) raw data such as a temperature of 35 degrees and a humidity of 80% as hot and verbalize it. In this way, the perceived (recognized, interpreted) representation, rather than the raw data of sensor measurement results, is called a "perceptual representation."
Note that the form of "language" is an example of the form of perceptual expression. That is, for example, the data of the character string "hot" is data perceptually expressed in the form of the Japanese language. Further, for example, if identifiers are associated in advance in the information processing device, the data of the identifier corresponding to “hot” is also an example of perceptually expressed data that can be used in the information processing device. Furthermore, for example, video data of an action of looking up at the face with a hand can also be said to be data perceptually expressed in the form of a gesture.
Hereinafter, for ease of explanation, the explanation will be based on the assumption that "perceptual expression" is "language."
 また、上述したように、本サービスにはブロックチェーン技術が用いられている。一般に、ブロックチェーンという単語は、分散型台帳技術や分散型ネットワークを意味し得る。即ち、ブロックチェーンの単語は、ブロックと呼ばれるデータがチェーンのように連結した一連のデータそのものや、それに関する技術及びネットワークを含んだ多義的な単語である。
 そこで、以下、ブロックチェーンを管理する分散型ネットワークを「ブロックチェーンネットワーク」と呼び、ブロックがチェーンのように連結した一連のデータである「ブロックチェーン」と区別して呼ぶ。
 即ち、「ブロックチェーン」とは、本サービスを利用して管理される1以上のデータ(例えばセンサの測定に基づくデータや、装置の制御の指示のデータ)に関する各種情報(データそのものやメタデータ、ハッシュ値といった健全性の検証に係るデータ等)が含まれた「ブロック」がチェーンのように連結した一連のデータである。
Additionally, as mentioned above, this service uses blockchain technology. Generally, the word blockchain can refer to distributed ledger technology or decentralized network. In other words, the word blockchain is a ambiguous word that includes a series of data called blocks connected like a chain, as well as technology and networks related to the data.
Therefore, hereinafter, the decentralized network that manages blockchain will be referred to as a "blockchain network" to distinguish it from a "blockchain," which is a series of data in which blocks are linked like a chain.
In other words, "blockchain" refers to various information (data itself, metadata, It is a series of data in which "blocks" containing hash values (data related to soundness verification, etc.) are connected like a chain.
 まず、本サービスにおけるブロックチェーンネットワークBCNにおける各種ノードの機能について説明する。 First, the functions of various nodes in the blockchain network BCN in this service will be explained.
 ブロックチェーンネットワークBCNは、複数のノードにより構成され、少なくとも1つのノードはクラウド上に存在する。
 図1の例において、4台のBCフルノード5-1乃至5-4の夫々が、クラウド上のフルノードとして夫々機能する。ここで、「フルノード」とは、ブロックの生成に係る計算処理機能や、ブロックチェーンのデータそのものの記憶機能といったブロックチェーンにおけるノードとしての全機能を提供する情報処理装置(ノード)である。
 BCフルノード5-1乃至5-4は、相互に通信を行うブロックチェーンネットワークBCNを形成している。
Blockchain network BCN is composed of multiple nodes, and at least one node exists on the cloud.
In the example of FIG. 1, each of the four BC full nodes 5-1 to 5-4 functions as a full node on the cloud. Here, a "full node" is an information processing device (node) that provides all the functions of a node in a blockchain, such as calculation processing functions related to block generation and storage functions of blockchain data itself.
The BC full nodes 5-1 to 5-4 form a blockchain network BCN that communicates with each other.
 図1の例において、2台の入力セル2-1及び2-2並びに出力セル3-1に夫々備えられたBCウルトラライトノードが夫々機能する。ここで、「ウルトラライトノード」とは、ブロックの生成に係る計算処理機能や、ブロックチェーンのデータそのものの記憶機能を提供せず、ブロックチェーンネットワークBCNとの間でのデータの授受機能といった極めて一部の機能を提供する情報処理装置(ノード)である。ウルトラライトノードは、実現するために必要な計算資源等が少ないため、上述の機能を提供するチップやプログラムの一部又は全部として実装される。しかしながら、ウルトラライトノードは、別個の情報処理装置として実装されてもよい。 In the example of FIG. 1, the BC ultralight nodes provided in the two input cells 2-1 and 2-2 and the output cell 3-1 each function. Here, an "ultralight node" does not provide calculation processing functions related to block generation or storage functions for the blockchain data itself, but has an extremely simple function such as the function of sending and receiving data with the blockchain network BCN. This is an information processing device (node) that provides the functions of the section. Since ultralight nodes require fewer computational resources to implement, they are implemented as part or all of a chip or program that provides the above-mentioned functions. However, an ultralight node may also be implemented as a separate information processing device.
 なお、図示はしないが、ノードには、ライトノードが含まれていてもよい。ここで、「ライトノード」とは、フルノードとしては機能しないものの、ブロックの生成に係る計算処理機能や、ブロックチェーンのデータそのものの記憶機能の一部を担うノードである。 Although not shown, the nodes may include light nodes. Here, a "light node" is a node that does not function as a full node, but is responsible for part of the calculation processing function related to block generation and the storage function of the blockchain data itself.
 入力セル2-1及び2-2並びに出力セル3-1に備えられたBCウルトラライトノードは、専用線を介してクラウドに接続されることで、BCフルノード5-1乃至5-4と通信を行う。
 即ち、図1の例では、4台のBCフルノード5-1乃至5-4及び3台のBCウルトラライトノードの総計7台が、7つのノードの夫々として機能することで、ブロックチェーンネットワークBCNが構成される。
The BC ultra light nodes provided in the input cells 2-1 and 2-2 and the output cell 3-1 are connected to the cloud via a dedicated line to communicate with the BC full nodes 5-1 to 5-4. conduct.
That is, in the example of FIG. 1, a total of 7 units, 4 BC full nodes 5-1 to 5-4 and 3 BC ultra-light nodes, function as each of the 7 nodes, so that the blockchain network BCN configured.
 ここで、専用線とは、特定の利用者専用の通信回線である。
 例えば、専用線における通信は、信頼されていない情報処理装置等も含んで構成されたネットワーク(例えば、インターネット)から隔離される。即ち、専用線で接続された情報処理装置同士の間の通信は、悪意を持った第三者等により盗聴や傍受される可能性が低い。即ち、本サービスは、専用線を介して利用されるため、第三者等により盗聴や傍受される可能性が低い状態で提供される。なお、専用線は、物理的にインターネット等から隔離されているものでなくてもよい。即ち例えば、VPN(Virtual Private Network)の技術を用いた仮想的な専用線も、上述の専用線として採用され得る。
Here, a dedicated line is a communication line dedicated to a specific user.
For example, communication on a leased line is isolated from a network (eg, the Internet) that also includes untrusted information processing devices. That is, communications between information processing devices connected via a dedicated line are less likely to be wiretapped or intercepted by a malicious third party. That is, since this service is used via a dedicated line, it is provided with a low possibility of being wiretapped or intercepted by a third party. Note that the dedicated line does not need to be physically isolated from the Internet or the like. That is, for example, a virtual dedicated line using VPN (Virtual Private Network) technology may also be employed as the above-mentioned dedicated line.
 以上、図1を用いて、「自律分散型AIブロックチェーンセル」が適用される本サービスにおける情報処理システムの構成の一例を説明した。
 以下、図1を用いて、ステップST11乃至ST19に沿って本サービスにおける情報処理の流れの詳細について、説明する。
An example of the configuration of the information processing system in this service to which the "autonomous decentralized AI blockchain cell" is applied has been described above using FIG. 1.
Hereinafter, the details of the flow of information processing in this service will be explained along steps ST11 to ST19 using FIG. 1.
 ステップST11において、入力セル2-1のセンサの測定結果として、「温度上昇」している旨及び「湿度上昇」している旨を示す数値データが取得される。具体的には例えば、温度が経時的に20度から40度まで上昇しているという数値データ(デジタル信号)や湿度が経時的に50%から80%まで上昇しているという数値データ(デジタル信号)が取得される。 In step ST11, numerical data indicating that "temperature is rising" and "humidity is rising" is acquired as a measurement result of the sensor of input cell 2-1. Specifically, for example, numerical data (digital signal) indicating that the temperature has increased from 20 degrees to 40 degrees over time, or numerical data (digital signal) indicating that the humidity has increased from 50% to 80% over time. ) is obtained.
 ステップST12において、入力セル2-1の自律分散チップCPが有する言語変換AIは、デジタル信号を言語に変換する。具体的には例えば、温度が経時的に20度から40度まで上昇しているという数値データ(デジタル信号)や湿度が経時的に50%から80%まで上昇しているという数値データ(デジタル信号)が、「暑い」という言語データに変換される。 In step ST12, the language conversion AI included in the autonomous distributed chip CP of the input cell 2-1 converts the digital signal into language. Specifically, for example, numerical data (digital signal) indicating that the temperature has increased from 20 degrees to 40 degrees over time, or numerical data (digital signal) indicating that the humidity has increased from 50% to 80% over time. ) is converted into the linguistic data ``hot''.
 ステップST13において、入力セル2-1の自律分散チップCPが有するBCウルトラライトノードは、「暑い」という言語データを、ブロックチェーンネットワークBCNを用いて管理させる。具体的には例えば、BCフルノード5-1に対して、「暑い」という言語データを、ブロックチェーン技術におけるトランザクションの一部として送信することで、管理させる。このとき、入力セル2-1の自律分散チップCPが有するBCウルトラライトノードは、暗号化された言語データを、ブロックチェーンネットワークBCNを用いて管理させる。 In step ST13, the BC ultra-light node possessed by the autonomous distributed chip CP of the input cell 2-1 manages the linguistic data "hot" using the blockchain network BCN. Specifically, for example, linguistic data such as "hot" is sent to the BC full node 5-1 as part of a transaction in blockchain technology to be managed. At this time, the BC ultralight node included in the autonomous distributed chip CP of the input cell 2-1 manages the encrypted language data using the blockchain network BCN.
 なお、図示はしないが、入力セル2-2においても、上述のステップST11乃至ST13の処理が実行される。
 具体的には例えば、入力セル2-2のセンサの測定結果として、熱源が多数ある旨を示すデータが取得される。具体的には例えば、熱源が多数ある旨を示すデータとして、赤外線サーモグラフィのデータが取得される。
 また例えば、入力セル2-2の自律分散チップCPが有する言語変換AIは、熱源が多数ある旨を示すデータを、「人が多い」という言語データに変換する。
 また例えば、入力セル2-2の自律分散チップCPが有するBCウルトラライトノードは、暗号化された「人が多い」という言語データを、ブロックチェーンネットワークBCNを用いて管理させる。
Although not shown, the processes of steps ST11 to ST13 described above are also executed in the input cell 2-2.
Specifically, for example, data indicating that there are many heat sources is acquired as a measurement result of the sensor of the input cell 2-2. Specifically, for example, infrared thermography data is acquired as data indicating that there are many heat sources.
Further, for example, the language conversion AI included in the autonomous distributed chip CP of the input cell 2-2 converts data indicating that there are many heat sources into linguistic data that indicates "there are many people."
Further, for example, the BC ultralight node possessed by the autonomous distributed chip CP of the input cell 2-2 manages the encrypted linguistic data "There are many people" using the blockchain network BCN.
 ステップST14において、サーバ1は、ブロックチェーンネットワークBCNを用いて管理された暗号化された言語データを復号して取得する。
 ステップST15において、サーバ1は、取得した言語データに基づいて、制御指示の内容を判断した結果を、ブロックチェーンネットワークBCNを用いて管理させる。
 具体的には例えば、サーバ1は、「暑い」及び「人が多い」という言語データを入力データとして自然言語処理を行うAIとして教育済みの中央AI61を用いて、「全体的に、強めに温度下げる」という制御指示の言語データを出力データとして生成する。サーバ1は、生成された「全体的に、強めに温度下げる」という制御指示を、ブロックチェーンネットワークBCNを用いて管理させる。このとき、サーバ1は、暗号化された制御指示を、ブロックチェーンネットワークBCNを用いて管理させる。
In step ST14, the server 1 decrypts and obtains the encrypted language data managed using the blockchain network BCN.
In step ST15, the server 1 uses the blockchain network BCN to manage the result of determining the content of the control instruction based on the acquired language data.
Specifically, for example, the server 1 uses the trained central AI 61 as an AI that performs natural language processing using input data such as ``hot'' and ``there are a lot of people.'' The language data of the control instruction "lower down" is generated as output data. The server 1 uses the blockchain network BCN to manage the generated control instruction to "lower the overall temperature more strongly." At this time, the server 1 manages the encrypted control instructions using the blockchain network BCN.
 ステップST16において、出力セル3-1の自律分散チップCPが有するBCウルトラライトノードは、ブロックチェーンネットワークBCNを用いて管理された暗号化された制御指示を取得する。 In step ST16, the BC ultralight node possessed by the autonomous decentralized chip CP of the output cell 3-1 obtains an encrypted control instruction managed using the blockchain network BCN.
 ステップST17において、出力セル3-1の自律分散チップCPが有するファームウェアは、暗号化された制御指示を復号する。そして、出力セル3-1の自律分散チップCPが有する言語変換AIは、制御装置の具体的な制御内容としてデジタル信号に変換する。
 具体的には例えば、出力セル3-1の自律分散チップCPが有する言語変換AIは、「全体的に強めに温度下げる」という制御指示に基づいて、エアコン冷房の「出力向上」をさせ、「風向き全方向」とする制御装置の動作を行わせるデジタル信号に変換する。即ち例えば、出力セル3-1の自律分散チップCPが有する言語変換AIは、エアコン冷房を操作するアクチュエータの動作させるデジタルデータの制御信号(デジタル信号)を出力する。
 なお、図示はしないが、出力セル3-1の自律分散チップCPが有するBCウルトラライトノードは、エアコン冷房の「出力向上」をさせ「風向き全方向」とする制御装置の動作も、ブロックチェーンネットワークBCNを用いて管理させることができる。
In step ST17, the firmware included in the autonomous distributed chip CP of the output cell 3-1 decodes the encrypted control instruction. Then, the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 converts it into a digital signal as the specific control content of the control device.
Specifically, for example, the language conversion AI possessed by the autonomous decentralized chip CP of output cell 3-1 increases the cooling output of the air conditioner based on the control instruction to ``lower the overall temperature more strongly,'' and The signal is converted into a digital signal that allows the control device to operate in all wind directions. That is, for example, the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 outputs a control signal (digital signal) of digital data to operate an actuator that operates the air conditioner cooling.
Although not shown in the diagram, the BC Ultra Light node possessed by the autonomous decentralized chip CP of output cell 3-1 is also capable of controlling the operation of the control device that increases the cooling output of the air conditioner and makes it possible for the wind to flow in all directions using the blockchain network. It can be managed using BCN.
 ステップST18において、アクチュエータ(制御装置の一例)は、「出力向上」及び「出力全方位」というエアコン冷房を操作するアクチュエータの動作させるデジタルデータの制御信号(デジタル信号)に応じて駆動する。その結果、アクチュエータ(制御装置の一例)は、中央AI61の「全体的に強めに温度下げる」という制御指示に応じた、動作をする。
 これにより、「温度上昇」、「湿度上昇」及び「熱源多数」等のセンサの測定結果に基づいて、図示せぬエアコン冷房の「出力向上」及び「出力全方位」の設定がなされて環境が改善する。
In step ST18, the actuator (an example of a control device) is driven in response to a digital data control signal (digital signal) for operating the actuator that operates the air conditioner cooling, such as "output improvement" and "output omnidirectional". As a result, the actuator (an example of a control device) operates in accordance with the control instruction from the central AI 61 to "lower the temperature overall."
As a result, based on sensor measurement results such as "temperature rise,""humidityrise," and "multiple heat sources," the air conditioner's cooling output is set to "improve output" and "output in all directions" (not shown), thereby improving the environment. Improve.
 ステップST19において、確認端末4は、ブロックチェーンネットワークBCNを用いて管理された情報を、設備(工場等)の管理者に提示することができる。即ち、設備(工場等)の管理者は、確認端末4に提示された、センサにより取得された「温度上昇」、「湿度上昇」、「熱源多数」等のセンサの測定結果、「暑い」、「人が多い」等の入力データ(言語データ)、「全体的に強めに温度下げる」という制御指示の出力データ(言語データ)、エアコン冷房の「出力向上」をさせ「風向き全方向」とする制御装置の動作を確認することができる。これらは、ブロックチェーンネットワークBCNを用いて管理されているため、改竄等のされていない入力や出力の経緯として、設備(工場等)の管理者に提示される。 In step ST19, the confirmation terminal 4 can present the information managed using the blockchain network BCN to the manager of the facility (factory, etc.). That is, the manager of the facility (factory, etc.) can check the sensor measurement results, such as "temperature rise", "humidity rise", "many heat sources", etc., displayed on the confirmation terminal 4, "hot", "hot", "many heat sources", etc. Input data (linguistic data) such as "There are many people", output data (linguistic data) of control instructions such as "lower the temperature overall", "improve the output" of the air conditioner and make it "wind in all directions" The operation of the control device can be confirmed. Since these are managed using the blockchain network BCN, they are presented to the manager of the facility (factory, etc.) as a history of inputs and outputs that have not been tampered with.
 上述したような構成及び動作により、本サービスは、以下のような特徴を有する。
 第1に、言語で教育済みの既存のAIを、中央AI61として採用することができる。
 即ち、本サービスでは、中央AI61として、言語で教育済みの既存のAIを、利用可能なため、全体として開発コストや運用コストを削減することができる。
 具体的には、新たに設備にこのようなシステムを構築する場合、設備毎に、利用するセンサは異なり、前提となる環境も異なるため、センサの測定結果が取るべき値も異なるため、設備に応じてAIを学習等させる必要がある。
 しかしながら、「暑い」、「人が多い」等の入力データ(言語データ)、「全体的に強めに温度下げる」という制御指示の出力データ(言語データ)を生成する自然言語処理が可能なAIは、多くの目的で用いられるため、様々な開発が進んでいる。そのため、このような自然言語処理が可能なAIは、精度が向上するとともにコストが低くなってきているのが現状である。
 そのため、本サービスでは、全体として開発コストや運用コストを削減することができる。
With the configuration and operation described above, this service has the following features.
First, an existing AI trained in a language can be employed as the central AI 61.
That is, in this service, an existing AI that has been trained in a language can be used as the central AI 61, so overall development costs and operating costs can be reduced.
Specifically, when constructing such a system for new equipment, the sensors used and the prerequisite environments are different for each equipment, so the values that the sensor measurement results should take are also different. It is necessary to train the AI accordingly.
However, AI capable of natural language processing that generates input data (linguistic data) such as "hot" and "many people" and output data (linguistic data) of control instructions such as "lower the temperature overall" is Since it is used for many purposes, various developments are underway. Therefore, the current situation is that AI capable of such natural language processing is becoming more accurate and less expensive.
Therefore, this service can reduce overall development costs and operational costs.
 第2に、エッジ側でAI処理をするため、中央AI61を用いた処理の負担が軽減される。
 即ち、本サービスでは、入力セル2-1及び2-2(エッジ側)において、センサの測定結果を言語データ(知覚表現の一例)に変換する処理が行われ、出力セル3-1(エッジ側)において、言語データ(制御指示の出力データ)を制御装置の具体的な制御内容としてデジタル信号に変換する処理が行われる。
 換言すれば、中央AI61は、これらの処理を行う必要がないため、負担が軽減されている。即ち、AI処理の分散処理が実現されているといえる。また、この分散処理の効果は、エッジ側の入力セルや出力セルの数が増加するほど顕著なものとなる。
Second, since AI processing is performed on the edge side, the processing load using the central AI 61 is reduced.
In other words, in this service, input cells 2-1 and 2-2 (edge side) perform processing to convert sensor measurement results into linguistic data (an example of perceptual expression), and output cell 3-1 (edge side) ), processing is performed to convert linguistic data (output data of control instructions) into digital signals as specific control contents of the control device.
In other words, the central AI 61 does not need to perform these processes, so its burden is reduced. In other words, it can be said that distributed processing of AI processing has been realized. Further, the effect of this distributed processing becomes more remarkable as the number of input cells and output cells on the edge side increases.
 第3に、本サービスでは、ブロックチェーンネットワークBCNを用いてデータを保証するため、安全なAIシステムが実現される。
 即ち例えば、ブロックチェーンネットワークBCNを用いないシステムにおいては、入力セル2-1に成りすまして「温度低下」という言語データを中央AI61に入力することにより、誤った制御指示が出力される可能性がある。
 本サービスでは、ブロックチェーンネットワークBCNを用いてデータを保証するため、このような入力セル2-1への成りすましが不可能となり、安全なAIシステムが実現される。
Third, this service uses the blockchain network BCN to guarantee data, so a safe AI system is realized.
For example, in a system that does not use the blockchain network BCN, by impersonating input cell 2-1 and inputting verbal data such as "temperature drop" to the central AI 61, an incorrect control instruction may be output. .
In this service, since data is guaranteed using the blockchain network BCN, such impersonation of the input cell 2-1 becomes impossible, and a safe AI system is realized.
 以上、図1を用いて、本サービスの概要を説明した。
 以下、図2乃至図4を用いて、本サービスの図1に示すサービスを提供する際に適用される情報処理システムについて説明する。
 図2は、図1に示すサービスを提供する際に適用される本発明の一実施形態に係る情報処理システムの構成例を示す図である。
The outline of this service has been explained above using FIG. 1.
The information processing system applied when providing the service shown in FIG. 1 of this service will be described below with reference to FIGS. 2 to 4.
FIG. 2 is a diagram showing a configuration example of an information processing system according to an embodiment of the present invention that is applied when providing the service shown in FIG. 1.
 即ち、図2に示す情報処理システムの構成例は、図1の本サービスの情報処理装置のより一般的なシステム構成である。 That is, the configuration example of the information processing system shown in FIG. 2 is a more general system configuration of the information processing device of this service shown in FIG.
 サーバ1は、サービス提供者Sにより管理される情報処理装置である。サーバ1は、入力セル2-1乃至2-N(Nは1以上の整数値)、出力セル3-1乃至3-M(MはNとは独立した1以上の整数値)、確認端末4、BCフルノード5-1乃至5-L(LはN及びMとは独立した1以上の整数値)と適宜通信をしながら、本サービスを実現するための各種処理を実行する。 The server 1 is an information processing device managed by a service provider S. The server 1 includes input cells 2-1 to 2-N (N is an integer value of 1 or more), output cells 3-1 to 3-M (M is an integer value of 1 or more independent of N), and a confirmation terminal 4. , BC full nodes 5-1 to 5-L (L is an integer value of 1 or more independent of N and M), and executes various processes to realize this service.
 入力セル2-1乃至2-Nは、1以上のセンサと自律分散チップCPとを備える情報処理装置である。また、N個の入力セル2-1乃至2-Nのうち1つを図示して説明するとき、「入力セル2-p」(pは1以上N以下の整数値)を用いる。 The input cells 2-1 to 2-N are information processing devices including one or more sensors and an autonomous distributed chip CP. Furthermore, when one of the N input cells 2-1 to 2-N is illustrated and explained, "input cell 2-p" (p is an integer value of 1 or more and N or less) is used.
 出力セル3-1乃至3-Mは、1以上の制御装置と自律分散チップCPとを備える情報処理装置である。また、M個の出力セル3-1乃至3-Mのうち1つを図示して説明するとき、「出力セル3-q」(qは1以上M以下の整数値)を用いる。 The output cells 3-1 to 3-M are information processing devices including one or more control devices and an autonomous distributed chip CP. Furthermore, when one of the M output cells 3-1 to 3-M is illustrated and explained, "output cell 3-q" (q is an integer value of 1 or more and M or less) is used.
 確認端末4は、施設(工場等)の管理担当者が、ブロックチェーンネットワークBCNを用いて管理された情報を確認するために操作する情報処理装置である。なお、図2において1台の確認端末4が図示されているが、確認端末4の台数は任意である。 The confirmation terminal 4 is an information processing device operated by a person in charge of management of a facility (factory, etc.) to confirm information managed using the blockchain network BCN. Note that although one confirmation terminal 4 is illustrated in FIG. 2, the number of confirmation terminals 4 is arbitrary.
 BCフルノード5-1乃至5-Lは、ブロックの生成に係る計算処理機能や、ブロックチェーンのデータそのものの記憶機能といったブロックチェーンにおけるノードとしての全機能を提供する情報処理装置(ノード)である。
 図2の例のBCフルノード5-1乃至5-Lは、クラウドC上に存在する。
The BC full nodes 5-1 to 5-L are information processing devices (nodes) that provide all functions as nodes in the blockchain, such as calculation processing functions related to block generation and storage functions of the blockchain data itself.
The BC full nodes 5-1 to 5-L in the example of FIG. 2 exist on cloud C.
 図3は、図2に示す情報処理システムのうちサーバのハードウェア構成の一例を示すブロック図である。 FIG. 3 is a block diagram showing an example of the hardware configuration of a server in the information processing system shown in FIG. 2.
 サーバ1は、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、バス14と、入出力インターフェース15と、入力部16と、出力部17と、記憶部18と、通信部19と、ドライブ20とを備えている。 The server 1 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a bus 14, an input/output interface 15, an input unit 16, and an output unit. Part 17 and , a storage section 18, a communication section 19, and a drive 20.
 CPU11は、ROM12に記録されているプログラム、又は、記憶部18からRAM13にロードされたプログラムに従って各種の処理を実行する。
 RAM13には、CPU11が各種の処理を実行する上において必要なデータ等も適宜記憶される。
The CPU 11 executes various processes according to programs recorded in the ROM 12 or programs loaded into the RAM 13 from the storage section 18 .
The RAM 13 also appropriately stores data necessary for the CPU 11 to execute various processes.
 CPU11、ROM12、及びRAM13は、バス14を介して相互に接続されている。このバス14にはまた、入出力インターフェース15も接続されている。入出力インターフェース15には、入力部16、出力部17、記憶部18、通信部19及びドライブ20が接続されている。 The CPU 11, ROM 12, and RAM 13 are interconnected via a bus 14. An input/output interface 15 is also connected to this bus 14 . An input section 16 , an output section 17 , a storage section 18 , a communication section 19 , and a drive 20 are connected to the input/output interface 15 .
 入力部16は、例えばキーボード等により構成され、各種情報を入力する。
 出力部17は、液晶等のディスプレイやスピーカ等により構成され、各種情報を画像や音声として出力する。
 記憶部18は、DRAM(Dynamic Random Access Memory)等で構成され、各種データを記憶する。
 通信部19は、インターネットを含むネットワークを介して他の装置(例えば図2の入力セル2-1乃至2-N、出力セル3-1乃至3-M、確認端末4、BCフルノード5-1乃至5-L)との間で通信を行う。
The input unit 16 includes, for example, a keyboard, and inputs various information.
The output unit 17 includes a display such as a liquid crystal display, a speaker, and the like, and outputs various information as images and sounds.
The storage unit 18 is composed of a DRAM (Dynamic Random Access Memory) or the like, and stores various data.
The communication unit 19 communicates with other devices (for example, input cells 2-1 to 2-N, output cells 3-1 to 3-M, confirmation terminal 4, BC full nodes 5-1 to 3-M in FIG. 2) via a network including the Internet. 5-L).
 ドライブ20には、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリ等よりなる、リムーバブルメディア31が適宜装着される。ドライブ20によってリムーバブルメディア31から読み出されたプログラムは、必要に応じて記憶部18にインストールされる。
 また、リムーバブルメディア31は、記憶部18に記憶されている各種データも、記憶部18と同様に記憶することができる。
A removable medium 31 made of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is appropriately installed in the drive 20. The program read from the removable medium 31 by the drive 20 is installed in the storage unit 18 as necessary.
Further, the removable medium 31 can also store various data stored in the storage section 18 in the same manner as the storage section 18 .
 なお、図示はしないが、図2の入力セル2-1乃至2-N、出力セル3-1乃至3-M、確認端末4、BCフルノード5-1乃至5-Lも、図3に示すハードウェア構成と基本的に同様の構成を有することができる。したがって、入力セル2-1乃至2-N、出力セル3-1乃至3-M、確認端末4、BCフルノード5-1乃至5-Lのハードウェア構成についての説明は省略する。
 ただし、入力セル2-1乃至2-Nは、図1に示すように、入力部として、センサを備えている。また、入力セル2-1乃至2-Nは、CPU、ROM、RAM等の一部又は全部を、自律分散チップCPとして有している。
 同様に、出力セル3-1乃至3-Mは、図1に示すように、出力部として、制御装置(例えばアクチュエータ)を備えている。また、出力セル3-1乃至3-Mは、CPU、ROM、RAM等の一部又は全部を、自律分散チップCPとして有している。
Although not shown, the input cells 2-1 to 2-N, output cells 3-1 to 3-M, confirmation terminal 4, and BC full nodes 5-1 to 5-L in FIG. 2 also have the hardware shown in FIG. It can have basically the same configuration as the hardware configuration. Therefore, a description of the hardware configurations of the input cells 2-1 to 2-N, the output cells 3-1 to 3-M, the confirmation terminal 4, and the BC full nodes 5-1 to 5-L will be omitted.
However, as shown in FIG. 1, the input cells 2-1 to 2-N are equipped with a sensor as an input section. Further, the input cells 2-1 to 2-N each have a part or all of a CPU, ROM, RAM, etc. as an autonomous distributed chip CP.
Similarly, the output cells 3-1 to 3-M are equipped with a control device (for example, an actuator) as an output section, as shown in FIG. Further, the output cells 3-1 to 3-M have a part or all of a CPU, ROM, RAM, etc. as an autonomous distributed chip CP.
 このような図3のサーバ1の各種ハードウェアと各種ソフトウェアとの協働により、各種処理の実行が可能になる。その結果、上述の本サービスを提供することができる。
 以下、図2の情報処理システムのうち図3のサーバ1を含む情報処理システムの機能的構成について説明する。
Through cooperation between various hardware and various software of the server 1 shown in FIG. 3, various processes can be executed. As a result, the above-mentioned service can be provided.
The functional configuration of the information processing system of FIG. 2, including the server 1 of FIG. 3, will be described below.
 図4は、図3のハードウェア構成のサーバを含む情報処理システムの機能的構成の一例を示す機能ブロック図である。 FIG. 4 is a functional block diagram showing an example of the functional configuration of an information processing system including a server with the hardware configuration of FIG. 3.
 図4に示すように、サーバ1のCPU11においては、処理実行部51が機能する。また、記憶部18には、中央AI61のモデルが記憶されている。 As shown in FIG. 4, a processing execution unit 51 functions in the CPU 11 of the server 1. Furthermore, the storage unit 18 stores a model of the central AI 61.
 入力セル2-pにおいては、自律分散チップCPとして、モデル管理部71と、言語変換AI72と、再学習実行部73と、センサ74が機能する。入力セル2-pは、入力部として、センサ74を有している。また、入力セル2-pの記憶部には、言語変換AIモデル75が記憶されている。 In the input cell 2-p, a model management unit 71, a language conversion AI 72, a relearning execution unit 73, and a sensor 74 function as an autonomous distributed chip CP. The input cell 2-p has a sensor 74 as an input section. Furthermore, a language conversion AI model 75 is stored in the storage section of the input cell 2-p.
 出力セル3-qにおいては、自律分散チップCPとして、モデル管理部81と、逆言語変換AI82と、制御部83と、再学習実行部84とが機能する。出力セル3-1は、出力部として、アクチュエータ85を有している。また、出力セル3-qの記憶部には、逆言語変換AIモデル86が記憶されている。 In the output cell 3-q, a model management unit 81, an inverse language conversion AI 82, a control unit 83, and a relearning execution unit 84 function as an autonomous distributed chip CP. The output cell 3-1 has an actuator 85 as an output section. Furthermore, an inverse language conversion AI model 86 is stored in the storage section of the output cell 3-q.
 処理実行部51は、1以上の入力セル2-pから入力言語データを入力データとして取得して、入力データを用いる所定の処理を実行して、その処理の実行結果を示す1以上の出力言語データを出力データとして出力する。
 処理実行部51は、ブロックチェーンネットワークBCNを用いて記憶されている入力データを取得する。
The processing execution unit 51 acquires input language data as input data from one or more input cells 2-p, executes a predetermined process using the input data, and outputs one or more output languages indicating the execution results of the process. Output the data as output data.
The processing execution unit 51 obtains input data stored using the blockchain network BCN.
 モデル管理部71は、センサ74の測定結果を示す信号を入力して、言語データに変換して出力する言語変換AIモデル75を記憶部に記憶させて管理する。
 具体的には例えば、モデル管理部71は、温度や湿度、サーモグラフィといった詮索の測定結果に基づいて、「温度上昇」、「湿度上昇」、「人が多い」等の言語データに変換して出力する。
The model management unit 71 receives a signal indicating the measurement result of the sensor 74, converts it into language data, and outputs the language conversion AI model 75. The model management unit 71 stores and manages a language conversion AI model 75 in a storage unit.
Specifically, for example, the model management unit 71 converts and outputs linguistic data such as "temperature rise", "humidity rise", "many people", etc. based on the results of snooping measurements such as temperature, humidity, and thermography. do.
 言語変換AI72は、実世界の所定の物理量を検出するセンサ74から出力された、当該所定の物理量を示す信号を取得して言語変換AIモデル75に入力させ、当該モデルから出力された言語データを、サーバ1の入力言語データの少なくとも一部として出力する。 The language conversion AI 72 acquires a signal indicating a predetermined physical quantity output from a sensor 74 that detects a predetermined physical quantity in the real world, inputs it to a language conversion AI model 75, and converts the language data output from the model into a language conversion AI model 75. , output as at least a part of the input language data of the server 1.
 再学習実行部73は、モデルを更新するための再学習を実行する。 The relearning execution unit 73 executes relearning to update the model.
 入力セル2-pのBCウルトラライトノードは、言語変換AI72から出力された、入力言語後データの少なくとも一部を、ブロックチェーンネットワークBCNを用いて記憶させる。 The BC ultralight node of the input cell 2-p stores at least a portion of the post-input language data output from the language conversion AI 72 using the blockchain network BCN.
 モデル管理部81、言語データを入力して、所定の物理量に変換して出力する逆言語変換AIモデル86を所定の記憶媒体に記憶させて管理する。 A model management unit 81 stores and manages an inverse language conversion AI model 86 that inputs language data, converts it into a predetermined physical quantity, and outputs it in a predetermined storage medium.
 出力セル3-qのBCウルトラライトノードは、ブロックチェーンネットワークBCNを用いて記憶されている出力言語データを取得して、逆言語変換AI82に提供する。
 逆言語変換AI82は、サーバ1から出力された出力データを構成する1以上の言語表現データの少なくとも一部を取得して逆言語変換AIモデル86に入力させ、当該モデルから物理量を示す信号出力させる。
The BC ultralight node of the output cell 3-q uses the blockchain network BCN to obtain the stored output language data and provides it to the inverse language conversion AI 82.
The inverse language conversion AI 82 acquires at least a part of the one or more linguistic expression data that constitutes the output data output from the server 1, inputs it to the inverse language conversion AI model 86, and causes the model to output a signal indicating a physical quantity. .
 制御部83は、当該モデルから出力された物理量を示す信号を、指示信号としてアクチュエータ85に入力させることで、アクチュエータ85を制御する。 The control unit 83 controls the actuator 85 by inputting a signal indicating the physical quantity output from the model to the actuator 85 as an instruction signal.
 再学習実行部84は、モデルを更新するための再学習を実行する。 The relearning execution unit 84 executes relearning to update the model.
 なお、再学習実行部73及び再学習実行部84による再学習の例は、後述する。
 このような機能的構成により、本サービスの情報処理システムは、図1等を用いて説明した各処理を実行することができる。
Note that an example of relearning by the relearning execution unit 73 and the relearning execution unit 84 will be described later.
With such a functional configuration, the information processing system of this service can execute each process described using FIG. 1 and the like.
 さらに、本実施形態の情報処理システムは、以下に示すように活用することができる。
 以下、図5及び図6を用いて、本情報処理システムの適用し、構内に配置された複数の装置の監視に用い例について説明する。
 図5は、図1に示すサービスを構内に配置された装置の管理に用いる例を示す図である。
 図5の例において、構内には、4つの装置A1乃至A4が配置されている。即ち例えば、装置A1乃至A4は、工場の構内に配置された、製造ラインの各装置である。
Furthermore, the information processing system of this embodiment can be utilized as shown below.
Hereinafter, an example in which the present information processing system is applied to monitor a plurality of devices arranged in a premises will be described using FIGS. 5 and 6.
FIG. 5 is a diagram showing an example in which the service shown in FIG. 1 is used to manage devices located within a premises.
In the example of FIG. 5, four devices A1 to A4 are arranged within the premises. That is, for example, the devices A1 to A4 are devices on a manufacturing line located within the premises of a factory.
 そして、装置A1には、入力セル2-1が配置されている。これは、例えば、製造ラインの装置A1に関するある事象を入力セル2-1のセンサで測定している様子を示している。具体的には例えば、センサは、装置A1の所定箇所の温度や、装置A1に入れられる材料の重量等、任意の物理量を測定する。 An input cell 2-1 is arranged in the device A1. This shows, for example, that a certain event related to the device A1 on the production line is being measured by the sensor of the input cell 2-1. Specifically, for example, the sensor measures an arbitrary physical quantity, such as the temperature at a predetermined location in the device A1 or the weight of the material put into the device A1.
 また、装置A2には、入力セル2-2及び2-3が配置されている。これは、2つの入力セル2-2及び2-3のセンサにより、1つの装置A2の2つの物理量を測定している様子を示している。即ち、装置A1では、1つの入力セル2-1のセンサで1つの装置A1の物理量を測定していたが、1つの装置に対して複数の入力セルを配置できる。 Furthermore, input cells 2-2 and 2-3 are arranged in the device A2. This shows how two physical quantities of one device A2 are measured by the sensors of two input cells 2-2 and 2-3. That is, in the device A1, the physical quantity of one device A1 was measured by the sensor of one input cell 2-1, but a plurality of input cells can be arranged for one device.
 また、装置A3の内部には、入力セル2-4が配置されている。これは、入力セル2-4は、装置A3に内蔵されており、入力セル2-4のセンサで装置A3の物理量を測定している様子をしめしている。 Furthermore, an input cell 2-4 is arranged inside the device A3. This shows that the input cell 2-4 is built into the device A3, and the sensor of the input cell 2-4 measures the physical quantity of the device A3.
 また、装置A4の内部には、入力セル2-5及び2-6が配置されている。これは、2つの入力セル2-5及び2-6は、1つの装置A4に内蔵されており、2つの入力セル2-5及び2-6のセンサで装置A4の物理量を測定している様子を示している。 Furthermore, input cells 2-5 and 2-6 are arranged inside the device A4. This shows that the two input cells 2-5 and 2-6 are built into one device A4, and the sensors of the two input cells 2-5 and 2-6 measure the physical quantities of the device A4. It shows.
 そして、各入力セル2-1乃至2-6は、センサにより測定されたデータを言語データに変換して、エッジサーバEDSに送信する。このようにして、構内の複数の各装置A1乃至A4のデータが収集される。 Then, each input cell 2-1 to 2-6 converts the data measured by the sensor into linguistic data and sends it to the edge server EDS. In this way, data of each of the plurality of devices A1 to A4 within the premises is collected.
 これにより、構内で使われる各種装置(例えば、製造ロボット(ライン)・室温制御・照明制御など)の稼働状況から故障検出・故障予測等が可能となる。更に言えば、図5に示す構内(例えば、工場・病院・マンションなど)の無人監視が可能となる。
 上述したように、従来の監視システムでは、事故等が発生し、多くのセンサから一度にデータ(異常値)が送信された場合、中央監視装置では順次処理を行うためにユーザ(例えば監視員)への警報出力や非常設備の稼働(例えばスプリンクラーによる消火)などの対処までにかなりの時間を有することがあった。
This makes it possible to detect and predict failures based on the operating status of various devices used within the premises (for example, manufacturing robots (lines), room temperature control, lighting control, etc.). Furthermore, unmanned monitoring of the premises (for example, factories, hospitals, apartments, etc.) shown in FIG. 5 becomes possible.
As mentioned above, in conventional monitoring systems, when an accident occurs and data (abnormal values) are sent from many sensors at once, the central monitoring device processes the data sequentially, so the user (for example, a monitoring staff) It sometimes took a considerable amount of time to take measures such as issuing alarms and operating emergency equipment (for example, extinguishing fires with sprinklers).
 これに対し、本情報処理システムでは、各入力セルが言語データに変換するため、処理の分散が行われ、全体として高速に対応することができる。 On the other hand, in this information processing system, each input cell is converted into language data, so processing is distributed and the system can handle the system at high speed as a whole.
 更に言えば、中央AI61による制御指示を介さずに処理することにより、更に高速に対処をすることもできる。
 図6は、図5の構内におけるより高速な対処を行う際の情報処理の流れの例を示す図である。
 図6に示す例では、入力セル2-pから出力セル3-qに対して言語データが提供されている。即ち、入力セル2-pからの言語データは、中央AI61を介さず、出力セル3-qに提供されてもよい。
 入力セル2-pや出力セル3-qは、特に「自律分散型AIブロックチェーンセル」において、以下に示す基本ロジックを有すると好適である。
Furthermore, by processing without using control instructions from the central AI 61, it is possible to take action even faster.
FIG. 6 is a diagram illustrating an example of the flow of information processing when performing faster response in the premises of FIG. 5.
In the example shown in FIG. 6, language data is provided from input cell 2-p to output cell 3-q. That is, the language data from the input cell 2-p may be provided to the output cell 3-q without going through the central AI 61.
It is preferable that the input cell 2-p and the output cell 3-q have the following basic logic, especially in an "autonomous decentralized AI blockchain cell".
 第1に、入力セル2-pや出力セル3-qは、「個性確立ロジック」を有すると好適である。
 即ち、「個性確立ロジック」とは、入力セル2-pや出力セル3-q毎に、センサの測定対象等毎に応じて個別に備えられ、確率されたロジック処理のアルゴリズムである。
 即ち例えば、モータなど駆動装置は製造上のバラツキや経年経過での個別劣化がある。具体的には例えば、同一型式のモータであっても、1000rpm(回転毎分)で振動を起し異常過熱を起すモータもあれば、2000rpmでも正常回転しているものもある。
 それぞれのモータに付けられたそれぞれのセンサにより、様々な要素(物理量)を速成する入力セル2-pの夫々は、個別に自分が管理するモータの個性を学習していき、自分がどこまでが正常ラインなのかを自身でリミッタを設定することができる。そして、入力セル2-pは、自身で個々に設定したリミッタを超えた際に、「モータ回転数異常」といった言語データを提供することができる。
 なお、モータ以外の制御基板の安定稼働温度等についても、同様に個性確立ロジックを適用することができる。
First, it is preferable that the input cell 2-p and the output cell 3-q have "individuality establishing logic."
That is, the "individuality establishment logic" is a logic processing algorithm that is individually prepared and determined for each input cell 2-p and output cell 3-q, depending on the sensor measurement object, etc.
That is, for example, drive devices such as motors are subject to manufacturing variations and individual deterioration over time. Specifically, for example, even if the motors are of the same type, some motors vibrate and abnormally overheat at 1000 rpm (rotations per minute), while others rotate normally at 2000 rpm.
Each input cell 2-p, which quickly generates various elements (physical quantities) using each sensor attached to each motor, individually learns the characteristics of the motor it manages, and determines what is normal for itself. You can set the limiter yourself depending on the line. The input cell 2-p can provide verbal data such as "abnormal motor rotation speed" when the limiter set individually by the input cell 2-p is exceeded.
Note that the individuality establishment logic can be similarly applied to the stable operating temperature, etc. of control boards other than motors.
 第2に、入力セル2-pや出力セル3-qは、「他者比較学習ロジック」を有すると好適である。
 即ち、「他者比較学習ロジック」とは、自身が管理する装置が他の装置に対してどのような個性があるのかを、他のセルとの情報の授受した結果に基づいて把握するアルゴリズムである。具体的には、入力セル2-pや出力セル3-qは、自身が管理する装置(センサの測定対象や、制御装置を介して制御する対象)は他の装置に対してどのような個性が有るのかを、他のセルとデータを共有することで、把握できる。これにより、共有するデータによって出力情報を補正することができる。
 即ち、入力セル2-pの言語変換AIモデル75は、再学習実行部73により、他の入力セルからの言語データに基づいて、再学習処理を実行する。即ち例えば、図1の例を用いて説明すると、「人が少ない」という言語データを出力した際、他の入力セル2-2を始めとする多数の入力セルは「人が多い」という言語データを出力していたとする。このとき、センサの監視対象となる領域が同一であるにもかかわらず、入力セル2-pは「人が少ない」という言語データを出力していたとする。このようなとき、入力セル2-pの再学習実行部73は、より「人が多い」という出力をしやすくなるように、再学習処理を行うことができる。
 このように、入力セル2-pは、他の入力セル(他者)により出力される言語データに基づいて(比較して)、学習することができるのである。
Second, it is preferable that the input cell 2-p and the output cell 3-q have "other comparison learning logic".
In other words, "other-comparison learning logic" is an algorithm that grasps the uniqueness of the device it manages compared to other devices based on the results of exchanging information with other cells. be. Specifically, the input cell 2-p and the output cell 3-q determine the characteristics of the devices they manage (targets measured by sensors and targets controlled via control devices) relative to other devices. By sharing data with other cells, you can understand whether there is a cell. This allows output information to be corrected using shared data.
That is, the language conversion AI model 75 of the input cell 2-p executes a relearning process by the relearning execution unit 73 based on language data from other input cells. That is, for example, to explain using the example of FIG. 1, when the linguistic data "There are few people" is output, a large number of input cells including other input cells 2-2 output the linguistic data "There are many people". Suppose you are outputting . At this time, it is assumed that the input cell 2-p outputs linguistic data indicating that there are "few people" even though the areas monitored by the sensors are the same. In such a case, the relearning execution unit 73 of the input cell 2-p can perform a relearning process to more easily output "there are many people".
In this way, the input cell 2-p can learn based on (by comparison with) the language data output by other input cells (others).
 第3に、入力セル2-pや出力セル3-qは、「意識・意思伝達ロジック」を有すると好適である。
 「意識・意思伝達ロジック」とは、入力セル2-pの言語変換AIが、通常のセンサ出力のデジタルデータに加えて人間の言葉による意識や意思といった言葉を同時に出力するロジックアルゴリズムである。
 具体的には例えば、入力セル2-pの言語変換AI72は、「少し暑いです」、「かなりの振動を感じます」、「危険な状況です」等の言語データを出力する。この言語データにより、既存の言語入力AIである中央AI61に直接把握させることで、中央AI61による思考・判断を仰ぐことができる。
 即ち、緊急を要する場合、図6のエッジサーバEDSは、構外のサーバ1(図6に図示せぬ、図4等のサーバ1)へ通知すると同時に、郊外のサーバ1による上位の判断結果を待たずに対処処理を行うことができる。
Thirdly, it is preferable that the input cell 2-p and the output cell 3-q have "awareness/intent communication logic."
The "consciousness/intent communication logic" is a logic algorithm in which the language conversion AI of the input cell 2-p simultaneously outputs human words such as consciousness and intention in addition to the digital data of the normal sensor output.
Specifically, for example, the language conversion AI 72 of the input cell 2-p outputs language data such as "It's a little hot,""I feel a lot of vibration," and "This is a dangerous situation." By having the central AI 61, which is an existing language input AI, directly grasp this language data, it is possible to ask the central AI 61 to think and make decisions.
That is, when an emergency is required, the edge server EDS in FIG. 6 notifies the off-premises server 1 (server 1 in FIG. 4, etc., not shown in FIG. 6), and at the same time waits for the higher-level judgment result by the server 1 in the suburbs. You can take corrective action without any problems.
 第4に、入力セル2-pや出力セル3-qは、「自己対処ロジック」を有すると好適である。
 本情報処理システムは中央監視装置の判断を仰ぐまでもない場合、例えば、明確な異常が検知された場合には、エッジサーバEDSや図示せぬサーバ1の応答を待たずに、対処をすることができる。具体的には例えば、入力セル2-pが、「温度上昇」ではなく、「火災発生」と言語データを出力した場合、その言語データは、出力セル3-qに提供され、警報を鳴動させたり、局部的なスプリンクラの起動をすることができる。
 即ち、本情報処理システムは、中央AI61を人間でいう脳に見立てた場合、脳での判断を待たずに対処する反射ともいえる対応が可能となるのである。
 これにより、高速な対処を行う際の情報処理が実現される。
Fourthly, it is preferable that the input cell 2-p and the output cell 3-q have "self-handling logic."
If there is no need to ask the central monitoring device for judgment, for example, if a clear abnormality is detected, this information processing system can take action without waiting for a response from the edge server EDS or the server 1 (not shown). I can do it. Specifically, for example, if the input cell 2-p outputs linguistic data saying "fire outbreak" instead of "temperature rise", that linguistic data is provided to the output cell 3-q and causes an alarm to sound. or activate local sprinklers.
In other words, in this information processing system, if the central AI 61 is likened to the human brain, it is possible to respond without waiting for the brain to make a decision, which can be called a reflex.
This realizes information processing for high-speed countermeasures.
 第5に、入力セル2-pや出力セル3-qは、「倫理ロジック」を有すると好適である。
 即ち、倫理路ロジックにより、エッジサーバEDSや構外の図示せぬサーバ1は、トータル的な予測や判断を行い制御指示のための出力言語データを出力するとともに、各セルに教育を行うことができる。
 即ち、入力セル2-pの言語変換AIモデル75は、再学習実行部73により、中央AI61からの出力言語データ等に基づいて、再学習処理を実行する。このような学習により、入力セル2-pは、「温度上昇」ではなく、「火災発生」といった、より上位の言語データの出力が可能となる。これにより、入力セル2-pでの処理段階に応じて、入力セル2-pが個別に判断して対処を瞬間的に行えるので大事故を未然に防ぐことができようになる。
 即ち、これにより、高速な対処を行う際の情報処理が実現される。
Fifth, it is preferable that the input cell 2-p and the output cell 3-q have "ethical logic."
That is, according to the logic of ethics, the edge server EDS and the server 1 (not shown) outside the premises can make total predictions and judgments, output language data for control instructions, and provide education to each cell. .
That is, the language conversion AI model 75 of the input cell 2-p executes a relearning process by the relearning execution unit 73 based on the output language data etc. from the central AI 61. Through such learning, the input cell 2-p can output higher level linguistic data such as "fire outbreak" instead of "temperature rise". This allows the input cell 2-p to make individual decisions and take instantaneous countermeasures depending on the processing stage of the input cell 2-p, thereby making it possible to prevent major accidents.
That is, this realizes information processing when taking high-speed countermeasures.
 このように、本情報処理システムの入力セル2-pや出力セル3-qは、アイデンティティの概念をITで実現するものであり、「自律分散型AIブロックチェーンセル」とも呼べるものとなっているのである。 In this way, the input cell 2-p and output cell 3-q of this information processing system realize the concept of identity through IT, and can be called "autonomous decentralized AI blockchain cells." It is.
 さらに、本情報処理システムの入力セル2-pや出力セル3-qは、「自律分散型AIブロックチェーンセル」として、自律的に処理内容を判断したり、中央AI61から処理内容の指示の請求をすることができる。
 図7は、図4の機能的構成の入力セルにおいて、自律的に処理内容を確立させる流れの例を示す図である。
Furthermore, the input cell 2-p and output cell 3-q of this information processing system, as "autonomous decentralized AI blockchain cells", autonomously judge the processing content and request processing content instructions from the central AI 61. can do.
FIG. 7 is a diagram showing an example of a flow for autonomously establishing processing contents in the input cell having the functional configuration of FIG. 4.
 ステップST21に示すように、図7に示す入力セル2-1は、第1のセンサからの温度の情報、第2のセンサからの湿度の情報を取得している。
 このとき、入力セル2-1の自律分散型チップは、センサから取得される情報に基づいて、当該入力セル2-1の「使命」を自律的に認識する。
 ここで、使命とは、その入力セル2-1がなすべき処理内容のことをいい、温度の情報及び湿度の情報からどのような言語データを出力する処理を行うべきか、という具体的処理内容のことをいう。
 即ち例えば、入力セル2-1は、データ形式に基づいて、取得されたデータが温度及び湿度の情報である旨を識別し、その使命が温度(湿度)環境を判定することであると判断する。
 入力セル2-2においても同様に、センサから熱感(サーモグラフィのデータ等)が取得された結果、入力セル2-2は、その使命が熱源の密度(図1の例においては特に人の密度)を判定することであると判断する。
 このように、入力セル2-1及び2-2は、自身の使命を自律的に認識することができる。
As shown in step ST21, the input cell 2-1 shown in FIG. 7 has acquired temperature information from the first sensor and humidity information from the second sensor.
At this time, the autonomous distributed chip of the input cell 2-1 autonomously recognizes the "mission" of the input cell 2-1 based on information obtained from the sensor.
Here, the mission refers to the processing content that the input cell 2-1 should perform, and the specific processing content such as what kind of language data should be output from temperature information and humidity information. It refers to
That is, for example, input cell 2-1 identifies that the acquired data is temperature and humidity information based on the data format, and determines that its mission is to determine the temperature (humidity) environment. .
Similarly, in the input cell 2-2, as a result of acquiring heat sensation (thermography data, etc.) from the sensor, the input cell 2-2 has the mission of detecting the density of the heat source (especially the density of people in the example of Fig. 1). ).
In this way, the input cells 2-1 and 2-2 can autonomously recognize their own missions.
 ステップST22に示すように、入力セル2-1及び2-2は、セル自身の使命を中央AI61に送信する。 As shown in step ST22, the input cells 2-1 and 2-2 transmit their own missions to the central AI 61.
 ステップST23に示すように、中央AI61は、各セルから送信されてきた使命を統合判断して、各セルの使命が妥当かを判断することができる。
 中央AI61は、各セルが自律的に認識した使命が妥当か否かを判断する。そして、中央AI61は、各セルが自律的に認識した使命が妥当でない場合、(正しい)使命の情報を送信する。
 ここで補足すると、中央AI61は、上述の説明における入力言語データから出力言語データを出力するための判断処理以外にも各種判断処理を行うことができるものである。具体的には例えば、設備の全体像と、入力セル2-pの配置予定情報等が予め記憶されており、入力セルからの情報と統合判断するといった処理を行うことができる。
As shown in step ST23, the central AI 61 can make an integrated decision on the missions transmitted from each cell and determine whether the mission of each cell is appropriate.
The central AI 61 determines whether the mission autonomously recognized by each cell is appropriate. Then, if the mission autonomously recognized by each cell is not valid, the central AI 61 transmits (correct) mission information.
As a supplement here, the central AI 61 is capable of performing various judgment processes in addition to the judgment process for outputting output language data from input language data in the above description. Specifically, for example, an overall image of the equipment, information on the arrangement schedule of the input cell 2-p, etc. are stored in advance, and processing such as integrated judgment with information from the input cell can be performed.
 ステップST24に示すように、自律的に認識した使命と、中央AI61から送信されてきた(正しい)使命の情報と、を比較して、セル自身の使命を最終決定する。
 そして、入力セル2-1及び2-2は、最終決定された使命に基づいて、以後の処理を実行する。
As shown in step ST24, the autonomously recognized mission is compared with the (correct) mission information transmitted from the central AI 61 to finalize the cell's own mission.
The input cells 2-1 and 2-2 then execute subsequent processing based on the finally determined mission.
 上述をまとめると、入力セル2-1及び2-2は、センサからの情報に基づいて、自身使命を認識することができる。
 これにより、入力セル2-1及び2-2の個性が確立され、そのセンサ専用のセルとして動作をする。
 また、センサと接続詞、センサからの情報が取得された際に、入力セル2-1及び2-2は使命を認識するため、入力セル2-1及び2-2の生産時には、個別に設定などを行わなくてもよいニュートラルな状態で出荷することができる。これにより、入力セル2-1及び2-2の生産時のコスト削減をすることができる。
To summarize the above, the input cells 2-1 and 2-2 can recognize their own missions based on information from the sensors.
As a result, the individuality of the input cells 2-1 and 2-2 is established, and they operate as cells dedicated to the sensors.
In addition, when input cells 2-1 and 2-2 recognize the mission when information from sensors and conjunctions and sensors is acquired, when producing input cells 2-1 and 2-2, settings must be made individually. It is possible to ship the product in a neutral state without having to do so. This allows cost reduction during production of the input cells 2-1 and 2-2.
 以上、「自律分散型AIブロックチェーンセル」の実施形態について説明したが、「自律分散型AIブロックチェーンセル」は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等が適宜なされてもよい。 The embodiments of the "autonomous decentralized AI blockchain cell" have been described above, but the "autonomous decentralized AI blockchain cell" is not limited to the above embodiments, and is within the range that can achieve the purpose of the present invention. Modifications, improvements, etc. may be made as appropriate.
 上述の実施形態では、入力セル2-pは、センサの測定値から言語データを生成するものとしたが、特にこれに限定されない。
 即ち例えば、対人間用の「言語」から対機械用の「言語」に入れ替える機能を有し、センサは人間の言語による「温度上昇」を、情報処理装置において識別子が予め対応付けられている場合、「暑い」に対応する識別子への変換をするものであってもよい。
 これにより、本情報処理システムに、人間の目などによるチェックの結果も入力言語データとして採用可能となる。
In the above-described embodiment, the input cell 2-p generates language data from the measured value of the sensor, but the present invention is not limited thereto.
In other words, for example, if a sensor has the function of replacing a "language" for humans with a "language" for machines, and a sensor detects "temperature rise" in human language, an identifier has been previously associated with the information processing device. , it may be converted into an identifier corresponding to "hot".
This makes it possible for this information processing system to employ the results of checks made by the human eye as input language data.
 また例えば、センサはマイクやカメラであってもよい。即ち例えば、言語変換AI72は、マイクにより取得された音声から人物を特定して言語データとして出力したり、その人物の感情を特定して言語データとしてもよい。また例えば、言語変換AI72は、カメラにより取得された動画内の人間のジェスチャを言語データに変換してもよい。 Also, for example, the sensor may be a microphone or a camera. That is, for example, the language conversion AI 72 may specify a person from the voice acquired by the microphone and output it as language data, or may specify the emotion of the person and output it as language data. For example, the language conversion AI 72 may convert human gestures in a video captured by a camera into language data.
 上述のように、「自律分散型AIブロックチェーンセル」はセンサの機能により、温度・湿度・圧力・振動・高度・音圧・輝度・超音波・電圧・電流などのセンサ及びブロックチェーンに関する処理を実行可能な情報処理装置の単位である。なお、情報処理装置としたが、パーソナルコンピュータやサーバ装置に限定されず、電子部品であるチップとして実現することができる。これにより、従来の各種デバイスに容易に組み込むことが可能となる。 As mentioned above, the "autonomous decentralized AI blockchain cell" uses sensor functions to process sensors such as temperature, humidity, pressure, vibration, altitude, sound pressure, brightness, ultrasonic waves, voltage, and current, as well as blockchain-related processes. A unit of executable information processing equipment. Note that although the information processing device is used, the present invention is not limited to a personal computer or a server device, and can be implemented as a chip that is an electronic component. This makes it possible to easily incorporate it into various conventional devices.
 次に、以下、図8乃至図11を用いて、「自律分散型AIブロックチェーン視聴覚セル」、即ち、カメラを備える入力セルが含まれる実施形態について説明する。
 なお、カメラを備える入力セルについては、特に、上述の「入力セル2-p」と区別すべく、「入力セル2-r」(rは1以上N以下であって、p以外の整数値)と呼ぶ。
Next, an embodiment including an "autonomous decentralized AI blockchain audiovisual cell", that is, an input cell equipped with a camera, will be described below with reference to FIGS. 8 to 11.
In addition, regarding the input cell equipped with a camera, in order to distinguish it from the above-mentioned "input cell 2-p", it is particularly referred to as "input cell 2-r" (r is an integer value of 1 or more and N or less and other than p). It is called.
 即ち、従来の構内(工場、病院、マンション等)の無人監視、即ち、当該構内に人が滞在しない形での監視として、構内の防犯上の監視や構内で使われている各種装置の監視が行われている。具体的には、撮像された画像をレコーダに記録すると共に人間が監視することで、不審者の検出、故障検出、故障予測が行われていた。
 そのため、突発的な事件や事故といった瞬時の判断が求められる場合においても、人間が介在するために、対処が遅れ大災害に繋がることがあった。
In other words, as conventional unmanned monitoring of premises (factories, hospitals, apartments, etc.), that is, monitoring without people staying in the premises, security monitoring of the premises and monitoring of various devices used within the premises are possible. It is being done. Specifically, captured images are recorded on a recorder and monitored by humans to detect suspicious persons, detect failures, and predict failures.
Therefore, even in cases where instantaneous judgment is required, such as a sudden incident or accident, the human intervention may delay the response and lead to a major disaster.
 また例えば、従来、不審者がうろついている、一度危険な行為をした人が同様の行為を再度行っているといった人に関する検出には、担当者(人間)が監視カメラの画像を見て判断したり、レコーダに記録された画像を確認するといった方法が用いられている。
 また、関係者以外立ち入り禁止であるにもかかわらず怪しい人がうろついている、一度危険な行為をした人が同様の行為を再度行っているといった事象の検出は、そのときにこれまでの経緯を把握した担当者が監視カメラの画像を見て判断するか、不審者がいたといった事後の報告等の後に録画をみて確認することが行われていた。
 このように、担当者が判断するにあたり各監視カメラの画像の確認等により対処が遅れ、事故の被害の程度が増大する可能性が有った。
For example, conventionally, in order to detect suspicious persons wandering around or people who have committed a dangerous act doing the same thing again, the person in charge (human) has to look at images from surveillance cameras and make judgments. Methods such as checking images recorded on a recorder are used.
In addition, when detecting events such as suspicious people wandering around even though entry is prohibited to anyone but those involved, or a person who has committed a dangerous act doing the same thing again, The person in charge would either look at images from a surveillance camera and make a decision, or they would look at recordings after a report such as the presence of a suspicious person.
In this way, when the person in charge makes a decision, there is a possibility that the response will be delayed due to checking the images of each surveillance camera, etc., and the degree of damage caused by the accident may increase.
 また、熱センサや煙センサ等を利用した火災の自動検出装置は、従来存在する。しかしながら、このような従来の火災の自動検出装置は、火災が発生した後における検出を行うものである。即ち、従来の火災の自動検出装置は、火災が発生する前の異常検出を行うことは出来ず、火災発生の予測に基づく事前の処置を行う事はできなかった。
 即ち例えば、火災といった事故においては、熱センサや煙センサ等を利用した自動検出装置はあるが、出火した後の検出は可能でも事前の異常検出は出来ず、予測を前提とした事前の処置を行う事は不可能であった。
 そこで、対処をより短時間で開始したり、大きな中央集権システムを構築せずとも利用可能なシステムが望まれていた。
Additionally, automatic fire detection devices that utilize heat sensors, smoke sensors, and the like have conventionally existed. However, such conventional automatic fire detection devices detect a fire after it has occurred. In other words, conventional automatic fire detection devices cannot detect abnormalities before a fire occurs, and cannot take preventive measures based on predictions of the occurrence of a fire.
For example, in the event of an accident such as a fire, there are automatic detection devices that use heat sensors, smoke sensors, etc., but although it is possible to detect a fire after it has started, it is not possible to detect an abnormality in advance. It was impossible to do.
Therefore, there was a need for a system that could start responding more quickly and that could be used without building a large centralized system.
 「自律分散型AIブロックチェーン視聴覚セル」は、複数のカメラにより撮像された画像のデータをより好適に処理するシステムの提供に資するものである。 The "autonomous decentralized AI blockchain audiovisual cell" contributes to providing a system that more appropriately processes data of images captured by multiple cameras.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図8は、「自律分散型AIブロックチェーン視聴覚セル」が適用される本サービスの概要の一例を説明する模式図である。
 「自律分散型AIブロックチェーン視聴覚セル」が適用される本サービスは、図8に示す情報処理システムが適用されることで、複数のカメラにより撮像された画像のデータの入力に基づいて、制御装置を動作させるという出力を行うためのシステムを提供するものである。
 なお、図8の説明において、カメラを備えた入力セルは、図1の説明における入力セルと区別すべく、入力セル2-3及び2-4の符号を用いて説明する。
FIG. 8 is a schematic diagram illustrating an example of the outline of this service to which the "autonomous decentralized AI blockchain audiovisual cell" is applied.
This service to which the "autonomous decentralized AI blockchain audiovisual cell" is applied uses the information processing system shown in Figure 8 to control the control device based on the input of image data captured by multiple cameras. It provides a system for outputting operations.
In the explanation of FIG. 8, the input cells equipped with cameras will be explained using the symbols 2-3 and 2-4 to distinguish them from the input cells in the explanation of FIG.
 図8に示す本サービスの情報処理システムは、サーバ1と、入力セル2-3及び2-4、出力セル3-1、確認端末4、ブロックチェーンフルノード5-1乃至5-4(以下、図1に示すように「BCフルノード」と呼ぶ)が含まれて構成されている。
 また、詳しくは後述するが、入力セル2-3及び2-4、並びに出力セル3-1には、ブロックチェーンウルトラライトノード(以下、図1に示すように「BCウルトラライトノード」と呼ぶ)としての機能が備えられている。
The information processing system of this service shown in FIG. 8 includes a server 1, input cells 2-3 and 2-4, output cell 3-1, confirmation terminal 4, and blockchain full nodes 5-1 to 5-4 (hereinafter As shown in FIG. 1, it includes a "BC full node").
In addition, although the details will be described later, the input cells 2-3 and 2-4 and the output cell 3-1 have blockchain ultra-light nodes (hereinafter referred to as "BC ultra-light nodes" as shown in FIG. 1). It has the function of
 サーバ1は、中央AI61を備える情報処理装置である。詳しくは後述するが、サーバ1は、入力セル2-3及び2-4におけるカメラCAM-1及びCAM-2の夫々により撮像された画像のデータを知覚表現されたデータに変換したものを入力データとして取得し、入力データに基づいて出力セル3-1における制御指示について知覚表現されたものを出力データとして出力する。 The server 1 is an information processing device including a central AI 61. As will be described in detail later, the server 1 converts the image data captured by the cameras CAM-1 and CAM-2 in the input cells 2-3 and 2-4 into perceptually expressed data as input data. A perceptual representation of the control instruction in the output cell 3-1 based on the input data is output as output data.
 入力セル2-3及び2-4は、カメラCAM-1及びCAM-2、並びに、自律分散チップCPを夫々備え、カメラにより撮像された画像のデータを、自律分散チップCPにおいて知覚表現されたデータに変換してブロックチェーンネットワークBCNを用いて管理させる。 The input cells 2-3 and 2-4 are equipped with cameras CAM-1 and CAM-2 and an autonomous distributed chip CP, respectively, and convert the image data captured by the cameras into the data perceptually expressed in the autonomous distributed chip CP. It will be converted into and managed using the blockchain network BCN.
 出力セル3-1は、自律分散チップCP及びアクチュエータ(制御装置の一例)を備え、自律分散チップCPにおいてサーバ1により出力された制御指示をブロックチェーンネットワークBCNから取得し、制御指示に基づいて制御装置(アクチュエータ)を制御する。 The output cell 3-1 includes an autonomous distributed chip CP and an actuator (an example of a control device), acquires control instructions output by the server 1 in the autonomous distributed chip CP from the blockchain network BCN, and performs control based on the control instructions. Control the device (actuator).
 確認端末4は、ブロックチェーンネットワークBCNを用いて管理された情報を確認するための情報処理装置である。設備(工場等)の管理担当者は、確認端末4を用いて、改竄等のされていない入力や出力の経緯を確認することができる。 The confirmation terminal 4 is an information processing device for confirming information managed using the blockchain network BCN. The person in charge of managing the equipment (factory, etc.) can use the confirmation terminal 4 to confirm the history of inputs and outputs that have not been tampered with.
 ここで、カメラにより撮像された画像における「知覚表現されたデータ」の具体例について説明する。
 複数のカメラにより撮像された画像のデータ(生データ)は、例えば、静止画像においては2次元に配置された画素の夫々における色の数値データである。これに対して、人間は、そのような画像を解釈した結果を、言語等を用いて表現することができる。
 具体的には例えば、第1地点が撮像されている画像において、ある男性の像が、第1時刻まで(例えば数か月の間に渡り)に含まれたことが無いにもかかわらず、その第1時刻において初めて含まれた場合、その画像を閲覧(視聴)した人間は、第1時刻に第1地点に普段はいない男性がいると知覚(認識、解釈)し言語化することができる。このように、画像のデータ(生データ)ではなく、知覚(認識、解釈)された表現を、「知覚表現」と呼ぶ。
 なお、「言語」の形態は、知覚表現の形態の一例である。即ち例えば、「火事」という文字列のデータは、日本語という言語の形態で知覚表現されたデータである。また例えば、情報処理装置において識別子が予め対応付けられている場合、「第1地点」や「火事」に対応する識別子のデータも情報処理装置内で利用可能な知覚表現されたデータの一例である。更に言えば、例えば炎のアイコンの静止画像のデータも、「火事」に対応するアイコンの形態で知覚表現されたデータであるということができる。
Here, a specific example of "perceptually expressed data" in an image captured by a camera will be described.
Data (raw data) of images captured by a plurality of cameras is, for example, numerical data of colors in each of pixels arranged two-dimensionally in a still image. On the other hand, humans can express the results of interpreting such images using language or the like.
Specifically, for example, in an image where the first point is captured, even though the image of a certain man has never been included up to the first time (for example, over several months), If the image is included for the first time at the first time, a person viewing (viewing) the image can perceive (recognize, interpret) that there is a man who is not usually present at the first location at the first time, and verbalize it. In this way, the perceived (recognized, interpreted) representation, rather than the image data (raw data), is called a "perceptual representation."
Note that the form of "language" is an example of the form of perceptual expression. That is, for example, the data of the character string "fire" is data perceptually expressed in the form of the Japanese language. For example, if identifiers are associated in advance in the information processing device, the data of the identifiers corresponding to “first point” and “fire” are also examples of perceptually expressed data that can be used in the information processing device. . Furthermore, for example, data of a still image of a flame icon can also be said to be data perceptually expressed in the form of an icon corresponding to "fire".
 まず、図8の本サービスにおけるブロックチェーンネットワークBCNにおける各種ノードの機能については、図1と基本的に同様である。
 また、図8の例において、2台の入力セル2-3及び2-4並びに出力セル3-1に夫々備えられたBCウルトラライトノードの機能についても、基本的に同様である。したがって、説明を省略する。
First, the functions of various nodes in the blockchain network BCN in this service shown in FIG. 8 are basically the same as in FIG. 1.
Furthermore, in the example of FIG. 8, the functions of the BC ultralight nodes provided in the two input cells 2-3 and 2-4 and the output cell 3-1 are basically the same. Therefore, the explanation will be omitted.
 以上、図8を用いて、「自律分散型AIブロックチェーンセル視聴覚セル」が適用される本サービスにおける情報処理システムの構成の一例を説明した。
 以下、図8を用いて、ステップST21乃至ST29に沿って本サービスにおける情報処理の流れの詳細について、説明する。
An example of the configuration of the information processing system in this service to which the "autonomous decentralized AI blockchain cell audiovisual cell" is applied has been described above using FIG. 8.
Hereinafter, using FIG. 8, details of the flow of information processing in this service will be explained along steps ST21 to ST29.
 ステップST21において、入力セル2-3に備えられたカメラCAM-1は第1時刻に第1地点を撮像しているとする。そして、カメラCAM-1により撮像された画像のデータとして、「ある男性の像が含まれた画像」のデータが取得される。 In step ST21, it is assumed that the camera CAM-1 provided in the input cell 2-3 is capturing an image of a first point at a first time. Then, as the data of the image captured by the camera CAM-1, data of "an image including an image of a certain man" is acquired.
 ステップST22において、入力セル2-3の自律分散チップCPが有する言語変換AIは、画像のデータ(デジタル信号)を言語に変換する。ここで例えば、画像に含まれていた男性の像は、第1時刻より前においてこれまで撮像されたことが無いものであったとする。このような場合、画像のデータ(デジタル信号)が、「第1時刻に第1地点に普段はいない男性がいる」という言語データに変換される。 In step ST22, the language conversion AI included in the autonomous distributed chip CP of the input cell 2-3 converts image data (digital signal) into language. For example, assume that the image of a man included in the image has never been captured before the first time. In such a case, the image data (digital signal) is converted into verbal data that says "There is a man who is not usually present at the first location at the first time."
 ステップST23において、入力セル2-3の自律分散チップCPが有するBCウルトラライトノードは、「第1時刻に第1地点に普段はいない男性がいる」という言語データを、ブロックチェーンネットワークBCNを用いて管理させる。具体的には例えば、BCフルノード5-1に対して、「第1時刻に第1地点に普段はいない男性がいる」という言語データを、ブロックチェーン技術におけるトランザクションの一部として送信することで、管理させる。このとき、入力セル2-3の自律分散チップCPが有するBCウルトラライトノードは、暗号化された言語データを、ブロックチェーンネットワークBCNを用いて管理させる。
 なお、この時、男性の特徴(背丈、体格、衣類の特徴等)が適宜管理されてもよい。
 また、撮像された画像のデータそのものもブロックチェーンネットワークBCNを用いて適宜管理されてもよい。具体的には例えば、画像のデータのメタデータがブロックチェーンネットワークBCNを用いて管理される。そして、画像のデータそのものは適宜暗号化や分割をされ、IPFS等を用いて管理される。
In step ST23, the BC ultra-light node possessed by the autonomous decentralized chip CP of the input cell 2-3 uses the blockchain network BCN to transmit the linguistic data "There is a man who is usually absent at the first location at the first time". Let them manage it. Specifically, for example, by sending language data such as "There is a man who is usually absent at the first location at the first time" to the BC full node 5-1 as part of a transaction in blockchain technology, Let them manage it. At this time, the BC ultralight node included in the autonomous distributed chip CP of the input cell 2-3 manages the encrypted language data using the blockchain network BCN.
Note that at this time, the characteristics of the man (height, physique, characteristics of clothing, etc.) may be managed as appropriate.
Further, the data of the captured image itself may also be appropriately managed using the blockchain network BCN. Specifically, for example, metadata of image data is managed using the blockchain network BCN. Then, the image data itself is appropriately encrypted and divided, and managed using IPFS or the like.
 また、図示はしないが、入力セル2-4においても、上述のステップST21乃至ST23と同様の処理が実行される。
 具体的には例えば、入力セル2-4に備えられたカメラCAM-2は第1時刻よりも後の第2時刻に第2地点を撮像しているとする。そして、カメラCAM-2により撮像された画像のデータとして、「ある男性の像が含まれた画像」のデータが取得される。
 そして、入力セル2-4の自律分散チップCPが有する言語変換AIは、画像のデータ(デジタル信号)を言語に変換する。ここで例えば、画像に含まれていた男性の像は、第1時刻より前においてこれまで撮像されたことが無いものであったとする。このような場合、画像のデータ(デジタル信号)が、「第2時刻に第2地点に普段はいない男性がいる」という言語データに変換される。
 そして、入力セル2-4の自律分散チップCPが有するBCウルトラライトノードは、暗号化された「第2時刻に第2地点に普段はいない男性がいる」という言語データを、ブロックチェーンネットワークBCNを用いて管理させる。
Further, although not shown, the same processing as steps ST21 to ST23 described above is executed in the input cell 2-4 as well.
Specifically, for example, it is assumed that the camera CAM-2 provided in the input cell 2-4 images the second point at a second time after the first time. Then, data of "an image including an image of a certain man" is acquired as data of the image captured by the camera CAM-2.
Then, the language conversion AI included in the autonomous distributed chip CP of the input cell 2-4 converts the image data (digital signal) into language. For example, assume that the image of a man included in the image has never been captured before the first time. In such a case, the image data (digital signal) is converted into verbal data that says, "There is a man who is not usually present at the second location at the second time."
Then, the BC ultralight node possessed by the autonomous decentralized chip CP of input cell 2-4 sends the encrypted linguistic data "There is a man who is usually absent at the second location at the second time" to the blockchain network BCN. be used and managed.
 ステップST24において、サーバ1は、ブロックチェーンネットワークBCNを用いて管理された暗号化された言語データを復号して取得する。
 ステップST25において、サーバ1は、取得した言語データに基づいて、制御指示の内容を判断した結果を、ブロックチェーンネットワークBCNを用いて管理させる。
 具体的には例えば、サーバ1は、「第1時刻に第1地点に普段はいない男性がいる」及び「第2時刻に第2地点に普段はいない男性がいる」という言語データを入力データとして自然言語処理を行うAIとして教育済みの中央AI61を用いて、「第2地点の男性に警告する」という制御指示の言語データを出力データとして生成する。サーバ1は、生成された「第2地点の男性に警告する」という制御指示を、ブロックチェーンネットワークBCNを用いて管理させる。このとき、サーバ1は、暗号化された制御指示を、ブロックチェーンネットワークBCNを用いて管理させる。
In step ST24, the server 1 decrypts and obtains the encrypted language data managed using the blockchain network BCN.
In step ST25, the server 1 uses the blockchain network BCN to manage the result of determining the content of the control instruction based on the acquired language data.
Specifically, for example, the server 1 inputs linguistic data such as "At the first time, there is a man who is not usually seen at the first location" and "At the second time, there is a man who is not usually seen at the second location" as input data. Using the trained central AI 61 as an AI that performs natural language processing, language data of a control instruction to "warn the man at the second location" is generated as output data. The server 1 manages the generated control instruction "warn the man at the second location" using the blockchain network BCN. At this time, the server 1 manages the encrypted control instructions using the blockchain network BCN.
 ステップST26において、出力セル3-1の自律分散チップCPが有するBCウルトラライトノードは、ブロックチェーンネットワークBCNを用いて管理された暗号化された制御指示を取得する。 In step ST26, the BC ultralight node possessed by the autonomous decentralized chip CP of the output cell 3-1 acquires the encrypted control instruction managed using the blockchain network BCN.
 ステップST27において、出力セル3-1の自律分散チップCPが有するファームウェアは、暗号化された制御指示を復号する。そして、出力セル3-1の自律分散チップCPが有する言語変換AIは、制御装置の具体的な制御内容としてデジタル信号に変換する。
 具体的には例えば、出力セル3-1の自律分散チップCPが有する言語変換AIは、「第2地点の男性に警告する」という制御指示に基づいて、第2地点周辺の「警報装置を発報」させるように制御装置(アクチュエータや警報装置の制御部等)の動作を行わせるデジタル信号に変換する。即ち例えば、出力セル3-1の自律分散チップCPが有する言語変換AIは、警報装置を発報させるためのデジタルデータの制御信号(デジタル信号)を出力する。
 なお、図示はしないが、出力セル3-1の自律分散チップCPが有するBCウルトラライトノードは、「第2地点周辺の警報装置を発報させる」という制御装置の動作も、ブロックチェーンネットワークBCNを用いて管理させることができる。
In step ST27, the firmware included in the autonomous distributed chip CP of the output cell 3-1 decodes the encrypted control instruction. Then, the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 converts it into a digital signal as the specific control content of the control device.
Specifically, for example, the language conversion AI possessed by the autonomous decentralized chip CP of the output cell 3-1 is configured to ``send an alarm device around the second point'' based on the control instruction to ``warn the man at the second point.'' It is converted into a digital signal that causes a control device (actuator, control unit of an alarm device, etc.) to operate so as to cause a warning. That is, for example, the language conversion AI included in the autonomous distributed chip CP of the output cell 3-1 outputs a digital data control signal (digital signal) for causing an alarm device to issue.
Although not shown in the figure, the BC ultra light node possessed by the autonomous decentralized chip CP of the output cell 3-1 also controls the operation of the control device to "set off the alarm device around the second point" using the blockchain network BCN. can be used and managed.
 ステップST28において、アクチュエータ(制御装置の一例)は、第2地点周辺の「警報装置を発報」させるためのデジタルデータの制御信号(デジタル信号)に応じて駆動する。その結果、アクチュエータ(制御装置の一例)は、中央AI61の「第2日点の男性に警告する」という制御指示に応じた、動作をする。
 これにより、「第1時刻に第1地点に普段はいない男性がいる」及び「第2時刻に第2地点に普段はいない男性がいる」等のカメラにより撮像された画像のデータに基づいて、図示せぬ第2地点周辺の警報装置が発報されて男性への警告が実施される。
In step ST28, the actuator (an example of a control device) is driven in response to a digital data control signal (digital signal) for "setting off a warning device" around the second point. As a result, the actuator (an example of a control device) operates in accordance with the control instruction from the central AI 61 to "warn the man at the second date."
As a result, based on the data of the image captured by the camera, such as "There is a man who is not usually seen at the first location at the first time" and "There is a man who is not usually seen at the second location at the second time", etc. An alarm device around a second point (not shown) is activated to issue a warning to the man.
 ステップST29において、確認端末4は、ブロックチェーンネットワークBCNを用いて管理された情報を、設備(工場等)の管理者に提示する。即ち、設備(工場等)の管理者は、確認端末4に提示された、第1地点及び第2地点の夫々のカメラにおいて撮像された第1時刻及び第2時刻の夫々の画像のデータ、「第1時刻に第1地点に普段はいない男性がいる」、「第2時刻に第2地点に普段はいない男性がいる」等の入力データ(言語データ)、「第2地点の男性に警告する」という制御指示の出力データ(言語データ)、第2地点周辺の「警報装置を発報」をさせる制御装置の動作を確認することができる。これらは、ブロックチェーンネットワークBCNを用いて管理されているため、改竄等のされていない入力や出力の経緯として、設備(工場等)の管理者に提示される。 In step ST29, the confirmation terminal 4 presents the information managed using the blockchain network BCN to the manager of the facility (factory, etc.). That is, the manager of the facility (factory, etc.) displays the data of the images at the first time and the second time, which were captured by the cameras at the first and second points, presented on the confirmation terminal 4. Input data (linguistic data) such as "There is a man who is usually not at the first location at the first time", "There is a man who is usually not at the second location at the second time", "Warning the man at the second location", etc. It is possible to confirm the output data (language data) of the control instruction "" and the operation of the control device that causes the "warning device to sound" around the second point. Since these are managed using the blockchain network BCN, they are presented to the manager of the facility (factory, etc.) as a history of inputs and outputs that have not been tampered with.
 上述したような構成及び動作により、本サービスは、上述の図1の説明において説明したのと同様に、以下のような特徴を有する。
 第1に、言語で教育済みの既存のAIを、中央AI61として採用することができる。
 そのため、本サービスでは、全体として開発コストや運用コストを削減することができる。
With the configuration and operation as described above, this service has the following features in the same way as explained in the explanation of FIG. 1 above.
First, an existing AI trained in a language can be employed as the central AI 61.
Therefore, this service can reduce overall development costs and operational costs.
 第2に、エッジ側でAI処理をするため、中央AI61を用いた処理の負担が軽減される。
 即ち、中央AI61は、知覚表現(言語化)の処理を行う必要がないため、負担が軽減されている。即ち、AI処理の分散処理が実現されているといえる。また、この分散処理の効果は、エッジ側の入力セルや出力セルの数が増加するほど顕著なものとなる。
Second, since AI processing is performed on the edge side, the processing load using the central AI 61 is reduced.
That is, the central AI 61 does not need to process perceptual expression (verbalization), so its burden is reduced. In other words, it can be said that distributed processing of AI processing has been realized. Further, the effect of this distributed processing becomes more remarkable as the number of input cells and output cells on the edge side increases.
 第3に、本サービスでは、ブロックチェーンネットワークBCNを用いてデータを保証するため、安全なAIシステムが実現される。
 その結果本サービスでは、ブロックチェーンネットワークBCNを用いてデータを保証するため、このような入力セル2-3への成りすましが不可能となり、安全なAIシステムが実現される。
Third, this service uses the blockchain network BCN to guarantee data, so a safe AI system is realized.
As a result, this service guarantees data using the blockchain network BCN, making it impossible to impersonate the input cell 2-3, thereby realizing a safe AI system.
 なお、上述の例では、言語AIはある時刻にある地点に普段はいない男性がいたという出力を行う例を用いて説明したが、言語AIは、各種各様な出力を行うことができる。具体的には例えば、「第1地点に(設置された装置から)火花が散っている」「第1地点に煙が発生している」、「第1地点に火災が発生している」、といった旨の知覚表現が出力されてもよい。 In the above example, the linguistic AI outputs that there was a man who is not usually present at a certain point at a certain time. However, the linguistic AI can output various kinds of outputs. Specifically, for example, "sparks are flying at the first location (from the installed device)", "smoke is occurring at the first location", "a fire is occurring at the first location", A perceptual expression to that effect may be output.
 以上、図8を用いて、「自律分散型AIブロックチェーンセル」が適用される本サービスの概要を説明した。
 「自律分散型AIブロックチェーンセル」が適用される本サービスの図8に示すサービスを提供する際に適用される情報処理システムの構成については、図2及び図3に示したものと基本的に同様である。
The outline of this service to which the "autonomous decentralized AI blockchain cell" is applied has been explained above using FIG. 8.
The configuration of the information processing system applied when providing the service shown in Figure 8 of this service to which the "Autonomous Decentralized AI Blockchain Cell" is applied is basically the same as that shown in Figures 2 and 3. The same is true.
 ただし、入力セル2-rは、図1に示すように、入力部として、カメラCAM-pを備えている。また、入力セル2-rは、CPU、ROM、RAM等の一部又は全部を、自律分散チップCPとして有している。 However, as shown in FIG. 1, the input cell 2-r is equipped with a camera CAM-p as an input section. Further, the input cell 2-r has a part or all of a CPU, ROM, RAM, etc. as an autonomous distributed chip CP.
 このようなサーバ1の各種ハードウェアと各種ソフトウェアとの協働により、各種処理の実行が可能になる。その結果、上述の本サービスを提供することができる。
 以下、図8のサービスを提供する情報処理システムの機能的構成について説明する。
Through cooperation between various types of hardware and various types of software of the server 1, various types of processing can be executed. As a result, the above-mentioned service can be provided.
The functional configuration of the information processing system that provides the services shown in FIG. 8 will be described below.
 図9は、図8のサービスを提供する情報処理システムの機能的構成の一例を示す機能ブロック図である。 FIG. 9 is a functional block diagram showing an example of the functional configuration of an information processing system that provides the services shown in FIG. 8.
 図9に示すように、サーバ1のCPU11においては、処理実行部51が機能する。また、記憶部18には、中央AI61のモデルが記憶されている。 As shown in FIG. 9, a processing execution unit 51 functions in the CPU 11 of the server 1. Furthermore, the storage unit 18 stores a model of the central AI 61.
 入力セル2-rにおいては、自律分散チップCPとして、モデル管理部71と、言語変換AI72と、再学習実行部73とが機能する。入力セル2-rは、入力部として、カメラCAM-pを有している。また、入力セル2-rの記憶部には、言語変換AIモデル75が記憶されている。 In the input cell 2-r, a model management unit 71, a language conversion AI 72, and a relearning execution unit 73 function as an autonomous distributed chip CP. The input cell 2-r has a camera CAM-p as an input section. Furthermore, a language conversion AI model 75 is stored in the storage section of the input cell 2-r.
 出力セル3-qにおいては、自律分散チップCPとして、モデル管理部81と、逆言語変換AI82と、制御部83と、再学習実行部84とが機能する。出力セル3-qは、出力部として、アクチュエータ85を有している。また、出力セル3-qの記憶部には、言語変換AIモデル86が記憶されている。 In the output cell 3-q, a model management unit 81, an inverse language conversion AI 82, a control unit 83, and a relearning execution unit 84 function as an autonomous distributed chip CP. The output cell 3-q has an actuator 85 as an output section. Furthermore, a language conversion AI model 86 is stored in the storage section of the output cell 3-q.
 処理実行部51は、1以上の入力セル2-rから入力言語データを入力データとして取得して、入力データを用いる所定の処理を実行して、その処理の実行結果を示す1以上の出力言語データを出力データとして出力する。
 処理実行部51は、ブロックチェーンネットワークBCNを用いて記憶されている入力データを取得する。
The processing execution unit 51 acquires input language data as input data from one or more input cells 2-r, executes a predetermined process using the input data, and outputs one or more output languages indicating the execution results of the process. Output the data as output data.
The processing execution unit 51 obtains input data stored using the blockchain network BCN.
 モデル管理部71は、カメラCAM-pにより撮像された画像のデータを入力して、言語データに変換して出力する言語変換AIモデル75を記憶部に記憶させて管理する。
 具体的には例えば、モデル管理部71は、これまで撮像されたことのない男性の像が含まれる場合、「第1時刻に第1地点に普段はいない男性がいる」等の言語データに変換して出力する。
The model management unit 71 stores and manages a language conversion AI model 75 that inputs image data captured by the camera CAM-p, converts it into language data, and outputs it in a storage unit.
Specifically, for example, if an image of a man that has never been imaged is included, the model management unit 71 converts it into linguistic data such as "There is a man who normally does not exist at the first point at the first time". and output it.
 言語変換AI72は、対象領域を撮像するカメラCAM-pから出力された、当該対象領域の画像のデータを取得して言語変換AIモデル75に入力させ、当該モデルから出力された言語データを、サーバ1の入力言語データの少なくとも一部として出力する。
 言語変換AI72により言語化された後の処理については、基本的に同様である。従って、説明を省略する。
 以下、図10及び図11を用いて、本情報処理システムの適用し、構内に配置された複数の装置の監視に用いる例について説明する。
 図10は、図1に示すサービスを構内に配置された装置の管理に用いる例を示す図である。
 図10の例において、構内には、2つの装置A1及びA2が配置されている。即ち例えば、装置A1及びA2は、工場の構内に配置された、製造ラインの各装置である。
The language conversion AI 72 acquires image data of the target area output from the camera CAM-p that images the target area, inputs it to the language conversion AI model 75, and sends the language data output from the model to the server. output as at least a part of the input language data of 1.
The processing after being converted into language by the language conversion AI 72 is basically the same. Therefore, the explanation will be omitted.
Hereinafter, an example in which the present information processing system is applied to monitor a plurality of devices arranged in a premises will be described using FIGS. 10 and 11.
FIG. 10 is a diagram showing an example in which the service shown in FIG. 1 is used to manage devices located within a premises.
In the example of FIG. 10, two devices A1 and A2 are located within the premises. That is, for example, the devices A1 and A2 are devices on a manufacturing line located within the premises of a factory.
 そして、装置A1には、入力セル2-1が配置されている。これは、例えば、製造ラインの装置A1やその周囲等を対象領域として入力セル2-1のカメラCAM-1で撮像している様子を示している。具体的には例えば、センサは、装置A1の外観や所定のメータ、装置A1の周囲の状況等が把握される画像として、装置A1が撮像される。 An input cell 2-1 is arranged in the device A1. This shows, for example, that the camera CAM-1 of the input cell 2-1 is capturing an image of the device A1 on the production line and its surroundings as a target area. Specifically, for example, the sensor captures an image of the device A1 as an image in which the appearance of the device A1, a predetermined meter, the surrounding situation of the device A1, and the like are grasped.
 また、装置A2には、入力セル2-2及び2-3が配置されている。これは、2つの入力セル2-2及び2-3のカメラCAM-2及び赤外線カメラCAM-3により、1つの装置A2を2つのカメラで撮像している様子を示している。即ち、装置A1では、1つの入力セル2-1が配置されていたが、1つの装置A2に対して複数の入力セルが配置されている。
 ここで、入力セル2-5は、対象領域を赤外線カメラCAM-3により撮像している。これにより、入力セル2-5により、例えば、装置A2の内部で異常な発熱が起こっているといった事象を把握可能な画像等が取得され得る。
Furthermore, input cells 2-2 and 2-3 are arranged in the device A2. This shows how one device A2 is imaged by two cameras using the cameras CAM-2 and infrared camera CAM-3 of the two input cells 2-2 and 2-3. That is, in device A1, one input cell 2-1 is arranged, but in one device A2, a plurality of input cells are arranged.
Here, the input cell 2-5 images the target area using an infrared camera CAM-3. As a result, the input cell 2-5 can acquire an image or the like that can identify an event such as abnormal heat generation occurring inside the device A2.
 そして、各入力セル2-1乃至2-3は、センサにより測定されたデータを言語データに変換して、エッジサーバEDSに送信する。このようにして、構内の複数の各装置A1及びA2のデータが収集される。 Then, each input cell 2-1 to 2-3 converts the data measured by the sensor into linguistic data and sends it to the edge server EDS. In this way, data of each of the plurality of devices A1 and A2 within the premises is collected.
 これにより、構内で使われる各種装置(例えば、製造ロボット(ライン)・室温制御・照明制御など)の稼働状況から故障検出・故障予測等が可能となる。更に言えば、図5に示す構内(例えば、工場・病院・マンションなど)の無人監視が可能となる。
 上述したように、従来の監視システムでは、事故等が発生し、多くのセンサから一度にデータ(異常値)が送信された場合、中央監視装置では順次処理を行うためにユーザ(例えば監視員)への警報出力や非常設備の稼働(例えばスプリンクラーによる消火)などの対処までにかなりの時間を有することがあった。
This makes it possible to detect and predict failures based on the operating status of various devices used within the premises (for example, manufacturing robots (lines), room temperature control, lighting control, etc.). Furthermore, unmanned monitoring of the premises (for example, factories, hospitals, apartments, etc.) shown in FIG. 5 becomes possible.
As mentioned above, in conventional monitoring systems, when an accident occurs and data (abnormal values) are sent from many sensors at once, the central monitoring device processes the data sequentially, so the user (for example, a monitoring staff) It sometimes took a considerable amount of time to take measures such as issuing alarms and operating emergency equipment (for example, extinguishing fires with sprinklers).
 これに対し、本情報処理システムでは、各入力セルが言語データに変換するため、処理の分散が行われ、全体として高速に対応することができる。 On the other hand, in this information processing system, each input cell is converted into language data, so processing is distributed and the system can handle the system at high speed as a whole.
 更に言えば、中央AI61による制御指示を介さずに処理することにより、更に高速に対処をすることもできる。
 図11は、図10の構内におけるより高速な対処を行う際の情報処理の流れの例を示す図である。
 図11に示す例では、入力セル2-rから出力セル3-qに対して言語データが提供されている。即ち、入力セル2-rからの言語データは、中央AI61を介さず、出力セル3-qに提供されてもよい。
 入力セル2-rや出力セル3-q等は、特に「自律分散型AIブロックチェーン視聴覚セル」において、以下に示す基本ロジックを有すると好適である。
Furthermore, by processing without using control instructions from the central AI 61, it is possible to take action even faster.
FIG. 11 is a diagram illustrating an example of the flow of information processing when performing faster response in the premises of FIG. 10.
In the example shown in FIG. 11, language data is provided from input cell 2-r to output cell 3-q. That is, the language data from the input cell 2-r may be provided to the output cell 3-q without going through the central AI 61.
It is preferable that the input cell 2-r, output cell 3-q, etc. have the following basic logic, especially in the "autonomous decentralized AI blockchain audiovisual cell".
 第1に、入力セル2-rは、「自律異常検出ロジック」を有すると好適である。
 即ち、「自律異常検出ロジック」とは、入力セル2-r毎に、カメラ画像を自律的に分析し警報を促す処理を行うロジックである。
 入力セル2-rは、上述したように、画像に普段はいない男性の像が含まれた場合を異常(通常でない)状態として検知することができる。また例えば、入力セル2-rは、装置の過熱、火災、異常行動(暴れている、助けを求めている、追われている等)、出入り禁止区域への侵入、危険動物の侵入等を検出するとよい。
 また、図5を用いて上述したように、図に1に示すように可視光線を撮像可能な通常のカメラに加えて、赤外線カメラを用いることにより、装置内外の異常過熱や壁の向こう側等の見えない高温火災など、通常のカメラでは検出できない現象も検出可能となる。
 また、入力セル2-rは、入力部として更にマイクを有していると好適である。これにより、例えば、人の声や事故等により発生した音声を画像と合わせて用いることができるようになり、検出の制度の向上が可能となる。
First, it is preferable that the input cell 2-r has "autonomous abnormality detection logic".
That is, the "autonomous abnormality detection logic" is a logic that autonomously analyzes camera images for each input cell 2-r and performs processing to prompt an alarm.
As described above, the input cell 2-r can detect as an abnormal (unusual) state when the image includes an image of a man who does not normally appear. For example, input cell 2-r detects overheating of the device, fire, abnormal behavior (ramping, asking for help, being chased, etc.), intrusion into prohibited areas, intrusion of dangerous animals, etc. It's good to do that.
In addition, as described above with reference to Fig. 5, in addition to a normal camera capable of capturing visible light as shown in Fig. 1, an infrared camera can be used to prevent abnormal overheating inside and outside the equipment, and to detect problems from the other side of the wall. It is also possible to detect phenomena that cannot be detected with normal cameras, such as high-temperature fires that cannot be seen.
Further, it is preferable that the input cell 2-r further includes a microphone as an input section. This makes it possible to use, for example, human voices and sounds generated by accidents, etc. together with images, thereby making it possible to improve detection accuracy.
 第2に、入力セル2-rは、「過去比較学習(自己学習)ロジック」を有すると好適である。
 即ち、「過去比較学習(自己学習)ロジック」とは、入力セル2-rの再学習実行部73を機能させ、入力セル2-r自身や他の入力セルにおいて過去に得られた情報に基づいて、検出を行うように学習するロジックである。
 具体的には例えば、再学習実行部73は、上位のサーバ(例えば、図5におけるエッジサーバEDS)から、所定の対象人物の画像や、対象人物の特徴に関する情報を受付け、その対象人物の像が実際に画像に含まれていることを検知するように再学習(自己学習)を行う。なお、入力セル2-rは、再学習(自己学習)中において検出した場合においても、図6のように出力セル3-qを動作させて警報を鳴動させることもできる。
Second, it is preferable that the input cell 2-r has "past comparison learning (self-learning) logic".
In other words, the "past comparison learning (self-learning) logic" refers to the function of the relearning execution unit 73 of the input cell 2-r, based on information obtained in the past in the input cell 2-r itself and other input cells. This is the logic that learns to perform detection.
Specifically, for example, the relearning execution unit 73 receives an image of a predetermined target person and information regarding the characteristics of the target person from a higher-level server (for example, the edge server EDS in FIG. 5), and displays the image of the target person. re-learning (self-learning) to detect that is actually included in the image. Note that even when the input cell 2-r is detected during relearning (self-learning), the output cell 3-q can be operated to sound an alarm as shown in FIG.
 第3に、本システムは「自動追尾ロジック」を有すると好適である。
 自動追尾ロジックとは、複数の入力セル2-rの夫々において、各入力セルにおいて所定対象が検出された旨の情報を用いて、当該所定対象を自動追尾するロジックである。
 具体的には例えば、上位のサーバ(例えば、図5のエッジサーバEDS)は、複数の入力セル2-rの夫々が、対象人物等を検出した情報を収集する。そして、上位のサーバは、各入力セル2-rにより撮像される所定領域の夫々の位置において、当該対象人物等が検出された旨の情報に基づいて、当該対象人物の移動の経路や将来の位置を推定することで、自動追尾する。
Thirdly, the system preferably includes "auto-tracking logic".
The automatic tracking logic is a logic that automatically tracks a predetermined target in each of the plurality of input cells 2-r using information indicating that the predetermined target is detected in each input cell.
Specifically, for example, a higher-level server (for example, the edge server EDS in FIG. 5) collects information on the detection of a target person or the like by each of the plurality of input cells 2-r. Based on the information that the target person, etc. has been detected at each position in the predetermined area imaged by each input cell 2-r, the higher-level server determines the movement route of the target person, and the future direction of the target person. Automatic tracking by estimating the location.
 第4に、本システムは、「意識・意思伝達ロジック」を有すると好適である。
 意識・意思伝達ロジックとは、複数の入力セル2-rの夫々において、デジタル画像データに加えて、人間の言葉による意識や意思といった言葉を同時に出力するロジックである。
 即ち、図1に示したように、入力セル2-rは、撮像した画像(静止画や動画像を含む)のデータを、ブロックチェーンネットワークBCNを用いて管理させるとともに、加えて、人間の言葉による意識や意思に対応した言語表現を同時に出力する。
 具体的には例えば、「異常な温度を検出しました」や「激しく動いている人を検出しました」等の言語表現が入力セル2-rから出力される。このように言語表現で出力されることにより、上述したように、既存の言語入力が可能な中央AIに直結させ思考や判断をさせることができるようになるのである。
 ここで、図5及び図6等におけるエッジサーバEDSと、中央AI61の違いについて説明する。即ち、上述したように、中央AI61が基本的な判断を行うのが通常である。しかしながら、エッジサーバEDSは、中央AI61による判断を待つ必要が無い場合等には、エッジサーバEDSを介して出力セル3-qを動作させることができる。
Fourthly, it is preferable that this system has a "consciousness/intent communication logic."
The consciousness/intent transmission logic is a logic that simultaneously outputs human words such as consciousness and intention in addition to digital image data in each of the plurality of input cells 2-r.
That is, as shown in FIG. 1, the input cell 2-r manages the data of captured images (including still images and moving images) using the blockchain network BCN, and also manages the data of captured images (including still images and video images) using human words. It simultaneously outputs linguistic expressions corresponding to the consciousness and intention of the user.
Specifically, for example, a verbal expression such as "abnormal temperature was detected" or "a person moving violently was detected" is output from the input cell 2-r. By outputting in language expression in this way, as mentioned above, it becomes possible to directly connect to a central AI that can accept existing language input and have it think and make decisions.
Here, the difference between the edge server EDS in FIGS. 5, 6, etc. and the central AI 61 will be explained. That is, as described above, the central AI 61 normally makes basic judgments. However, the edge server EDS can operate the output cell 3-q via the edge server EDS when there is no need to wait for the judgment by the central AI 61.
 第5に、本システムは「自己対処ロジック」を有すると好適である。
 自己対処ロジックとは、複数の入力セル3-qの夫々において、中央AI61やエッジサーバEDSを介さずに動作が実行されるロジックである。
 具体的には、単なる監視カメラ等と異なり、出力セル3-qは、図6を用いて説明したように、中央AI61の判断を仰ぐまでもなく至急対処しなければ危険な場合は、警報出力や局部的なスプリンクラなどでの消火などを行うことができる。
 即ち、これにより、高速な対処を行う際の情報処理が実現される。
Fifth, the system preferably has a "self-handling logic".
The self-handling logic is logic in which an operation is executed in each of the plurality of input cells 3-q without going through the central AI 61 or the edge server EDS.
Specifically, unlike a simple surveillance camera, etc., the output cell 3-q outputs an alarm if there is a danger unless immediate action is taken without seeking the judgment of the central AI 61, as explained using FIG. Fires can be extinguished locally using sprinklers, etc.
That is, this realizes information processing when taking high-speed countermeasures.
 このように、本情報処理システムの入力セル2-rや出力セル3-qは、カメラやマイクといった視聴覚を備え、アイデンティティの概念をITで実現するものであり、「自律分散型AIブロックチェーン視聴覚セル」とも呼べるものとなっているのである。 In this way, the input cell 2-r and output cell 3-q of this information processing system are equipped with audiovisual devices such as cameras and microphones, and realize the concept of identity with IT. It has become something that can be called a cell.
 以上、本発明の一実施形態について説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものとみなす。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the range that can achieve the purpose of the present invention are included in the present invention. regarded as.
 上述の実施形態では、入力セル2-rは、カメラにより撮像された画像のデータから言語データを生成するものとしたが、特にこれに限定されない。
 即ち例えば、入力セル2-rは対人間用の「言語」から対機械用の「言語」に入れ替える機能を有していてもよい。具体的には例えば、入力セル2-rは、人間から、人間の言語による「不審者がいる」という旨取得し、情報処理装置において予め対応付けられている「不審者がいる」旨を示す識別子への変換をするものであってもよい。
 これにより、本情報処理システムに、人間の目などによるチェックの結果も入力言語データとして採用可能となる。
In the above-described embodiment, the input cell 2-r generates language data from data of an image captured by a camera, but the present invention is not limited thereto.
That is, for example, the input cell 2-r may have a function of switching from a "language" for humans to a "language" for machines. Specifically, for example, the input cell 2-r acquires the message "There is a suspicious person" from a human in human language, and indicates "There is a suspicious person" which has been associated in advance in the information processing device. It may also be something that converts into an identifier.
This makes it possible for this information processing system to employ the results of checks made by the human eye as input language data.
 上述のように、「自律分散型AIブロックチェーン視聴覚セル」は、ブロックチェーンに関する処理を実行可能な情報処理装置の単位である。なお、情報処理装置としたが、パーソナルコンピュータやサーバ装置に限定されず、電子部品であるチップとして実現することができる。これにより、従来の各種デバイスに容易に組み込むことが可能となる。
 即ち、図1の自律分散チップCPは、チップとして実現され、カメラに内蔵することで入力セルとして動作するものとしてもよい。
As described above, the "autonomous decentralized AI blockchain audiovisual cell" is a unit of information processing device that can execute blockchain-related processing. Note that although the information processing device is used, the present invention is not limited to a personal computer or a server device, and can be implemented as a chip that is an electronic component. This makes it possible to easily incorporate it into various conventional devices.
That is, the autonomous decentralized chip CP in FIG. 1 may be realized as a chip and operated as an input cell by being built into a camera.
 このような「自律分散型AIブロックチェーンセル」及び「自律分散型AIブロックチェーン視聴覚セル」は、構内において相互に所定のネットワーク、特に無線ネットワークを介して接続されることにより、自律分散処理を行うことで利便性を格段に向上させることができる。 These "autonomous decentralized AI blockchain cells" and "autonomous decentralized AI blockchain audiovisual cells" perform autonomous decentralized processing by being connected to each other via a predetermined network, especially a wireless network, within the premises. This can greatly improve convenience.
 ネットワークの接続方法として有線接続又は無線接続、或いはその組み合わせの方法が採用されるにせよ、多数の入力セル2(「自律分散型AIブロックチェーンセル」及び「自律分散型AIブロックチェーン視聴覚セル」)を管理統合し有益に活用するには、連携するための機能が発揮される必要が有る。 Regardless of whether wired connection, wireless connection, or a combination thereof is adopted as the network connection method, a large number of input cells 2 ("autonomous decentralized AI blockchain cell" and "autonomous decentralized AI blockchain audiovisual cell") In order to manage, integrate, and utilize them profitably, it is necessary to demonstrate the functions for collaboration.
 即ち、従来の中央管理(集権)サーバに多数のセンサを管理させるシステムにおいてはセンサの数が増えるごとに中央管理サーバの負荷が増していく。しかしながら、上述したように、本実施形態の入力セル2を用いることで、逆にセンサの数が増すごとに分散型AIの有益性が発揮され中央管理サーバ(本実施形態においては中央AI)の負荷が減ることになる。これが、これが本実施形態の入力セル2の最大のメリットでもある。
 即ち、本実施形態の入力セル2は、これまでの中央集権型システムではなく非中央集権型システムが容易に構築できる点が最も有益なポイントである。
 上述の「自律分散型AIブロックチェーンセル」や「自律分散型AIブロックチェーン視聴覚セル」を含む入力セル2や出力セル3-qは、以下に示す基本ロジックを有すると好適である。
That is, in a conventional system in which a large number of sensors are managed by a central management server, the load on the central management server increases as the number of sensors increases. However, as mentioned above, by using the input cell 2 of this embodiment, the benefits of decentralized AI are demonstrated as the number of sensors increases, and the central management server (central AI in this embodiment) This will reduce the load. This is also the greatest merit of the input cell 2 of this embodiment.
That is, the most advantageous point of the input cell 2 of this embodiment is that a decentralized system can be easily constructed instead of the conventional centralized system.
The input cell 2 and output cell 3-q including the above-mentioned "autonomous decentralized AI blockchain cell" and "autonomous decentralized AI blockchain audiovisual cell" preferably have the following basic logic.
 第1に、本実施形態の情報処理システムは、「自己ポジション認識ロジック」を有すると好適である。
 即ち、入力セル2において自律的に異常検出から解決方法を判断し対処させるには、入力セル2にとって「自分は何処にいるか」を自身で把握することが重要となる。
 具体的には例えば、3階で出火が起きた際に、3階の入力セル2-1と1階の入力セル2-2とでは、当然に優先する処理が異なる。即ち、それぞれの場所と立場に応じた分散処理が必要になる。
First, the information processing system of this embodiment preferably has "self-position recognition logic."
That is, in order for the input cell 2 to autonomously determine a solution based on abnormality detection and take action, it is important for the input cell 2 to understand ``where it is'' by itself.
Specifically, for example, when a fire breaks out on the third floor, the input cell 2-1 on the third floor and the input cell 2-2 on the first floor naturally have different priority processes. In other words, distributed processing is required depending on each location and position.
 そこで入力セル2にとって、入力セル2自身はマップにおけるどの装置や場所に設置されていて、他の入力セル2のうち何れの入力セル2が近くに在るか等について、全体マップを通して、即ち、全体像と自身の位置との関係を把握できると好適である。これにより、適切に複数の入力セル2の情報を活用して、自律しての制御(例えば、出力セル3からの制御処理)が可能となる。。
 この全体マップのマッピングを行うにあたり、個々の入力セル2には、GPSや高度センサといった、3次元位置を特定するための情報の取得手段が備えられると好適である。これにより、3次元マップ内における入力セル2自身の場所(位置)や異常検出先の場所や装置を、上位サーバ(例えば、エッジサーバEDSやサーバ1)の通知のみならず入力セル2自身が、特定し把握できる。
 マップは、上位サーバにより、作成やアップデート、管理するとよい。各「自律分散型AIブロックチェーンセル」に定期的に通知することで全体が統一マップでそれそれに応じた分散処理が行える。
 なお、この3Dマッピングを行うことにより、例えば、飛行するドローン等の移動体に取り付けた入力セル2においても互いの位置情報を共有できる。これにより、入力セル2を活用して安全運航や代理運航などの実現も可能となる。
Therefore, for the input cell 2, information such as which device or location on the map the input cell 2 itself is installed in, which input cell 2 among other input cells 2 is nearby, etc. can be determined through the entire map, that is, It is preferable to be able to grasp the relationship between the overall image and one's own position. This enables autonomous control (for example, control processing from the output cell 3) by appropriately utilizing the information of the plurality of input cells 2. .
When mapping this entire map, it is preferable that each input cell 2 is equipped with an information acquisition means for specifying a three-dimensional position, such as a GPS or an altitude sensor. As a result, the location (position) of the input cell 2 itself in the three-dimensional map and the location and device of the abnormality detection destination are not only notified by the higher-level server (for example, the edge server EDS or the server 1) but also by the input cell 2 itself. Can be identified and understood.
Maps are preferably created, updated, and managed by an upper-level server. By periodically notifying each "autonomous decentralized AI blockchain cell", distributed processing can be performed accordingly with a unified map.
Note that by performing this 3D mapping, for example, input cells 2 attached to moving objects such as flying drones can also share mutual positional information. This makes it possible to utilize the input cell 2 to realize safe navigation, proxy navigation, and the like.
 第2に、本実施形態の情報処理システムは、「入力セル教育ロジック」を有すると好適である。
 即ち、入力セル2を管理する構内外にある上位サーバ(例えば、エッジサーバEDSやサーバ1)は、設備や部署(マンションなら部屋及び設置場所)の3Dマップとそれぞれの入力セルからの位置や高度情報といった3次元座標の情報を基にそれぞれの設置されている場所を統合的に3Dでマッピングし全ての入力セル2と共有するために、定期的に最新のマップを通知すると好適である。
 このとき、常に最新のマップとするためには、定期的に入力セル2にポーリングをかけて正常稼働の可否や、場所の移動、ステータス等の情報に基づいて、3Dマップを更新することができる。
 これにより、例えば、故障した入力セル2の取り換えを行った場合や新規に入力セル2が追加された場合において、新たに設置された入力セル2について、人間が設定しなくても自律的に入力セル2自身のポジションと役割を理解し、動作することが可能となる。
Second, it is preferable that the information processing system of this embodiment has an "input cell education logic."
In other words, a higher-level server (for example, edge server EDS or server 1) located inside or outside the campus that manages input cell 2 uses a 3D map of the equipment or department (for an apartment, the room and installation location) and the position and altitude from each input cell. In order to comprehensively map each installed location in 3D based on three-dimensional coordinate information and share it with all input cells 2, it is preferable to periodically notify the latest map.
At this time, in order to always have the latest map, the 3D map can be updated based on information such as whether the input cell 2 is operating normally, movement of location, status, etc. by periodically polling the input cell 2. .
As a result, for example, when a faulty input cell 2 is replaced or a new input cell 2 is added, the newly installed input cell 2 can be automatically input without the need for a human to configure it. It becomes possible for Cell 2 to understand its own position and role and operate accordingly.
 第3に、本実施形態の情報処理システムは、「分散型自律システム」を有すると好適である。
 ここで、分散自律システムとは、「Decentralized Autonomous System(DAS)」と呼ぶことのできるものであり、具体的には以下の通りである。
 即ち、入力セル2は、上述したように、自律して(自立型の)判断や処理を行うことが可能なロジックを持っている。
 したがって、例えば構内サーバ(例えば、エッジサーバEDS)が故障や保守点検で一時的な機能停止しても入力セル2や出力セル3単独、もしくは入力セル2や出力セル3同士が連携して監視や対処を行うことができるようになる。
 そして、入力セル2や出力セル3は、構内サーバ(例えば、エッジサーバEDS)が復帰(正常に復活した)際には、上位サーバ(例えば、エッジサーバEDS)に分散保持された情報などから最新のマッピングや状態を瞬時に復元し正常動作に復帰することが可能となる。
 この入力セル2や出力セル3による、上位サーバ(例えば、エッジサーバEDS)無しでも障害を起こさず任務を追行できるのがこの入力セル2や出力セル3の最大の有益性であり分散型自律システム(DAS)の最大のメリットでもあるといえる。
Thirdly, the information processing system of this embodiment preferably includes a "distributed autonomous system."
Here, the decentralized autonomous system can be referred to as a "Decentralized Autonomous System (DAS)," and specifically, is as follows.
That is, as described above, the input cell 2 has logic that allows it to autonomously (independently) perform judgment and processing.
Therefore, even if, for example, an on-premises server (for example, edge server EDS) temporarily stops functioning due to a failure or maintenance inspection, the input cell 2 and output cell 3 can be monitored individually, or the input cell 2 and output cell 3 can cooperate with each other. You will be able to take action.
When the on-premises server (for example, edge server EDS) returns (recovers normally), input cell 2 and output cell 3 are updated from the information distributed and held in the upper server (for example, edge server EDS). It is possible to instantly restore the mapping and status of the system and return to normal operation.
The greatest benefit of these input cells 2 and output cells 3 is that they allow the mission to be carried out without any trouble even without a host server (for example, an edge server EDS), and are distributed autonomously. This can be said to be the biggest advantage of the system (DAS).
 第4に、本実施形態の情報処理システムは、「倫理ロジック」を有すると好適である。
 即ち、構内外の上位サーバ(例えば、エッジサーバEDSやサーバ1)は、トータル的な予測や判断を行いながら、各入力セル2や出力セル3に最適な教育を自己の分析や予測を基に行う。
 ここでいう教育とは、各入力セル2や出力セル3が設置された装置や環境によって認識すべき事項が変わってくるからである。
 具体的には例えば、同じ30度というセンサの情報であっても、入力セル2が設置された場所が、室内であるか室外であるか等、設置された装置によっても意味が異なる。
 また例えば、騒音や振動等も環境や機械によって意味が異なる。
 したがって、入力セル2が出力する知覚表現は、できるだけ人間がその場で感じ取っているかのような肌感覚に近い言語出力が出来るように補正されるとよい。
 更には、業界や設備によって特有の言葉が存在するので、そういった特有の言い回しなども補正をしながら教育していくとよい。
 入力セル2や出力セル3は、これらの上位サーバ(例えば、エッジサーバEDSやサーバ1)からの補正情報を受け取りながら、自ら自分の設置された場所や環境・装置を意識し出力する言語を自己学習することができると好適である。
Fourthly, the information processing system of this embodiment preferably has an "ethical logic."
In other words, the higher-level servers inside and outside the campus (for example, the edge server EDS and server 1) make total predictions and judgments while providing the optimal training for each input cell 2 and output cell 3 based on their own analysis and predictions. conduct.
The term "education" here refers to the fact that the matters to be recognized vary depending on the equipment and environment in which each input cell 2 and output cell 3 is installed.
Specifically, for example, the same sensor information of 30 degrees has different meanings depending on the installed device, such as whether the input cell 2 is installed indoors or outdoors.
Furthermore, for example, noise, vibration, etc. have different meanings depending on the environment and machine.
Therefore, it is preferable that the perceptual expression output by the input cell 2 is corrected so as to produce a verbal output as close as possible to the physical sensation as if a human were sensing it on the spot.
Furthermore, since there are unique words depending on the industry and equipment, it is a good idea to educate students while correcting such unique phrases.
Input cell 2 and output cell 3 receive correction information from these higher-level servers (for example, edge server EDS and server 1), and adjust the output language by themselves while being aware of the location, environment, and equipment in which they are installed. It is preferable to be able to learn.
 また例えば、図2に示すシステム構成、及び図3に示すサーバ1のハードウェア構成は、本発明の目的を達成するための例示に過ぎず、特に限定されない。 Furthermore, for example, the system configuration shown in FIG. 2 and the hardware configuration of the server 1 shown in FIG. 3 are merely examples for achieving the object of the present invention, and are not particularly limited.
 また、図4及び図9に示す機能ブロック図は、例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行できる機能が図2の情報処理システムに備えられていれば足り、この機能を実現するためにどのような機能ブロック及びデータベースを用いるのかは、特に図4及び図9の例に限定されない。 Further, the functional block diagrams shown in FIGS. 4 and 9 are merely examples, and are not particularly limited. In other words, it is sufficient that the information processing system shown in FIG. 2 is equipped with a function that can execute the above-mentioned series of processes as a whole, and what kind of functional blocks and databases are used to realize this function is particularly dependent on FIG. 4. and is not limited to the example of FIG.
 また、機能ブロックの存在場所も、図5に限定されず、任意でよい。
 例えばサーバ1側に配置された機能ブロックの少なくとも一部を、他の情報処理装置が備える構成としてもよい。
Furthermore, the locations of the functional blocks are not limited to those shown in FIG. 5, and may be arbitrary.
For example, at least a portion of the functional blocks arranged on the server 1 side may be provided in another information processing device.
 また、上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。
 また、1つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体で構成してもよいし、それらの組み合わせで構成してもよい。
Furthermore, the series of processes described above can be executed by hardware or by software.
Further, one functional block may be configured by a single piece of hardware, a single piece of software, or a combination thereof.
 一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。
 コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。
 また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えばサーバの他汎用のスマートフォンやパーソナルコンピュータであってもよい。
When a series of processes is executed by software, a program constituting the software is installed on a computer or the like from a network or a recording medium.
The computer may be a computer built into dedicated hardware.
Further, the computer may be a computer that can execute various functions by installing various programs, such as a server, a general-purpose smartphone, or a personal computer.
 このようなプログラムを含む記録媒体は、ユーザにプログラムを提供するために装置本体とは別に配布される図示せぬリムーバブルメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される記録媒体等で構成される。 Recording media containing such programs not only consist of removable media (not shown) that is distributed separately from the main body of the device in order to provide the program to the user, but also are provided to the user in a state that is pre-installed in the main body of the device. Consists of provided recording media, etc.
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。 Note that in this specification, the step of writing a program to be recorded on a recording medium is not only a process that is performed chronologically in accordance with the order, but also a process that is not necessarily performed chronologically but in parallel or individually. It also includes the processing to be executed.
 以上をまとめると、本発明が適用される情報処理システムは、次のような構成を有していれば足り、各種各様な実施の形態を取ることができる。 To summarize the above, an information processing system to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
 即ち、本発明が適用される情報処理システム(例えば図4や図9の情報処理システム)は、
 入力データを用いる所定の処理を実行する中央装置(例えば、図4や図9のサーバ1、又は、図6や図10のエッジサーバEDS)と、前記入力データの少なくとも一部を前記中央装置に提供する1以上の第1種周辺装置(例えば、図4や図9の入力セル2)とを含む情報処理システムにおいて、
 前記中央装置は、
  1以上の知覚表現データ(図4や図9の入力言語データ)を入力データとして取得して、当該入力データを用いる所定の処理を実行して、その処理の実行結果を示す1以上の知覚表現データを出力データとして出力する処理実行手段(処理実行部51)、
 を備え、
 1以上の第1種周辺装置の夫々は、
 所定のデータ(例えば、温度のデータや画像データ)を入力して、前記知覚表現データ(例えば、「温度上昇」に対応するデータや「不審者がいる」に対応するデータ)に変換して出力するモデル(例えば、言語変換AIモデル86)を所定の記憶媒体に記憶させて管理するモデル管理手段(モデル管理部71)と、
 実世界の物理量を測定するセンサ(例えば、図4のセンサ74)、又は、対象領域を撮像するカメラ(例えば、図9のカメラ)から出力されたデータ(例えば、温度のデータや画像データ)を取得して前記モデルに入力させ、当該モデルから出力された前記知覚表現データ(例えば、「温度上昇」や「不審者がいる」に対応するデータ)を、前記中央装置の前記入力データの少なくとも一部として出力する変換手段(言語変換AI72)と、
 を備えれば足りる。
 これにより、複数のセンサ又はカメラからのデータに基づいて管理される設備における、当該設備の管理の利便性を向上させることができる。
That is, the information processing system to which the present invention is applied (for example, the information processing system of FIG. 4 or FIG. 9),
A central device that executes a predetermined process using input data (for example, the server 1 in FIG. 4 or FIG. 9, or the edge server EDS in FIG. 6 or FIG. 10), and at least a part of the input data to the central device. In an information processing system including one or more type 1 peripheral devices provided (for example, input cell 2 in FIG. 4 or FIG. 9),
The central device includes:
One or more perceptual expressions that acquire one or more perceptual expression data (input language data in FIGS. 4 and 9) as input data, execute a predetermined process using the input data, and show the execution result of the process. Process execution means (process execution unit 51) that outputs data as output data;
Equipped with
Each of the one or more type 1 peripheral devices is
Predetermined data (for example, temperature data or image data) is input, converted into the perceptual expression data (for example, data corresponding to "temperature rise" or data corresponding to "suspicious person is present") and output. model management means (model management unit 71) that stores and manages a model (for example, language conversion AI model 86) in a predetermined storage medium;
Data (e.g., temperature data or image data) output from a sensor that measures a physical quantity in the real world (e.g., sensor 74 in FIG. 4) or a camera that images a target area (e.g., camera in FIG. 9) The perceptual expression data (for example, data corresponding to "temperature rise" or "suspicious person is present") output from the model is input to at least one of the input data of the central device. a conversion means (language conversion AI72) that outputs the language as a part;
It is sufficient to have the following.
This makes it possible to improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
 前記情報処理システムは、所定の制御対象を制御する1以上の第2種周辺装置(出力セル3)をさらに含み、
 前記1以上の第2種周辺装置の夫々は、
 前記知覚表現データを入力して、所定の物理量に変換して出力するモデルを所定の記憶媒体に記憶させて管理するモデル管理手段(モデル管理部81)と、
 前記中央装置から出力された出力データを構成する前記1以上の知覚表現データの少なくとも一部を取得して前記モデルに入力させ、当該モデルから出力された前記所定の物理量を示す信号を、指示信号として前記所定の制御対象に入力させることで、当該所定の制御対象を制御する制御手段(逆言語変換AI82及び制御部83)と、
 を備えることができる。
 これにより、複数のセンサ又はカメラからのデータに基づいて管理される設備における、当該設備の管理の利便性をさらに向上させることができる。
The information processing system further includes one or more second type peripheral devices (output cells 3) that control a predetermined control target,
Each of the one or more second type peripheral devices is
a model management unit (model management unit 81) that stores and manages a model that inputs the perceptual expression data, converts it into a predetermined physical quantity, and outputs it in a predetermined storage medium;
Acquire at least a part of the one or more perceptual expression data constituting the output data output from the central device and input it to the model, and send a signal indicating the predetermined physical quantity output from the model to an instruction signal. A control means (inverse language conversion AI 82 and control unit 83) that controls the predetermined control object by inputting it to the predetermined control object as
can be provided.
This can further improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
 前記中央装置は、
  前記1以上の第1種周辺装置から位置情報(例えばGPSや高度センサから取得できる3次元位置情報)及び前記モデルに関する情報(例えばモデルそのものであって、温度上昇と判断するための閾値に影響するデータ等)を第1種周辺装置情報として夫々取得する第1種周辺装置情報取得手段(例えば処理実行部51)と、
  前記1以上の第1種周辺装置が配置された設備の3次元マップを、前記第1種周辺装置情報に基づいて生成又は更新して管理するマップ管理手段(例えば処理実行部51)と、
 を更に備え、
 前記1以上の第1種周辺装置の夫々は、
  当該第1種周辺装置の位置情報を取得する位置情報取得手段(例えばモデル管理部71)と、
  前記位置情報及び前記モデルに関する情報を前記中央装置に提供する第1種周辺装置情報送信手段(例えばモデル管理部71)と、
  前記中央装置において管理された3次元マップと、前記位置情報に基づいて、前記モデルを更新するための再学習を実行する第1種再学習実行手段(例えば図4の再学習実行部73)と、
 をさらに備えることができる。
 これにより、複数のセンサ又はカメラからのデータに基づいて管理される設備における、当該設備の管理の利便性をさらに向上させることができる。
The central device includes:
Position information from the one or more Type 1 peripheral devices (for example, three-dimensional position information that can be obtained from a GPS or an altitude sensor) and information about the model (for example, the model itself, which affects a threshold value for determining a temperature increase) data, etc.) as first type peripheral device information;
map management means (for example, processing execution unit 51) that generates or updates and manages a three-dimensional map of equipment in which the one or more first type peripheral devices are arranged, based on the first type peripheral device information;
further comprising;
Each of the one or more first type peripheral devices is
a position information acquisition unit (for example, model management unit 71) that acquires position information of the first type peripheral device;
a first type peripheral device information transmitting means (for example, model management section 71) that provides the central device with information regarding the location information and the model;
a first type relearning execution unit (for example, the relearning execution unit 73 in FIG. 4) that executes relearning for updating the model based on the three-dimensional map managed in the central device and the position information; ,
It is possible to further include the following.
This can further improve the convenience of managing equipment that is managed based on data from a plurality of sensors or cameras.
 11・・・サーバ、2・・・入力セル、3・・・出力セル、4・・・確認端末、5・・・ブロックチェーンフルノード、11・・・CPU、20・・・ドライブ、31・・・リムーバブルメディア、51・・・処理実行部、61・・・中央AI、71・・・モデル管理部、72・・・言語変換AI、73・・・再学習実行部、74・・・センサ、75・・・言語変換AIモデル、CAM・・・カメラ、81・・・モデル管理部、82・・・逆言語変換AI、83・・・制御部、84・・・再学習実行部、85・・・アクチュエータ、86・・・逆言語変換AIモデル DESCRIPTION OF SYMBOLS 11... Server, 2... Input cell, 3... Output cell, 4... Confirmation terminal, 5... Blockchain full node, 11... CPU, 20... Drive, 31... ...Removable media, 51...Process execution unit, 61...Central AI, 71...Model management unit, 72...Language conversion AI, 73...Relearning execution unit, 74...Sensor , 75... Language conversion AI model, CAM... Camera, 81... Model management unit, 82... Reverse language conversion AI, 83... Control unit, 84... Relearning execution unit, 85 ...actuator, 86...reverse language conversion AI model

Claims (5)

  1.  入力データを用いる所定の処理を実行する中央装置と、前記入力データの少なくとも一部を前記中央装置に提供する1以上の第1種周辺装置とを含む情報処理システムにおいて、
     前記中央装置は、
      1以上の知覚表現データを入力データとして取得して、当該入力データを用いる所定の処理を実行して、その処理の実行結果を示す1以上の知覚表現データを出力データとして出力する処理実行手段、
     を備え、
     1以上の第1種周辺装置の夫々は、
     所定のデータを入力して、前記知覚表現データに変換して出力するモデルを所定の記憶媒体に記憶させて管理するモデル管理手段と、
     実世界の物理量を測定するセンサ、又は、対象領域を撮像するカメラから出力されたデータを取得して前記モデルに入力させ、当該モデルから出力された前記知覚表現データを、前記中央装置の前記入力データの少なくとも一部として出力する変換手段と、
     を備える、
     情報処理システム。
    An information processing system including a central device that executes predetermined processing using input data, and one or more type 1 peripheral devices that provide at least a part of the input data to the central device,
    The central device includes:
    processing execution means that acquires one or more perceptual expression data as input data, executes a predetermined process using the input data, and outputs one or more perceptual expression data indicating the execution result of the process as output data;
    Equipped with
    Each of the one or more type 1 peripheral devices is
    a model management means for storing and managing a model that inputs predetermined data and converts it into the perceptual expression data and outputs it in a predetermined storage medium;
    Data output from a sensor that measures physical quantities in the real world or a camera that images a target area is acquired and input to the model, and the perceptual expression data output from the model is input to the central device. a conversion means outputting as at least part of the data;
    Equipped with
    Information processing system.
  2.  前記情報処理システムは、所定の制御対象を制御する1以上の第2種周辺装置をさらに含み、
     前記1以上の第2種周辺装置の夫々は、
     前記知覚表現データを入力して、所定の物理量に変換して出力するモデルを所定の記憶媒体に記憶させて管理するモデル管理手段と、
     前記中央装置から出力された出力データを構成する前記1以上の知覚表現データの少なくとも一部を取得して前記モデルに入力させ、当該モデルから出力された前記所定の物理量を示す信号を、指示信号として前記所定の制御対象に入力させることで、当該所定の制御対象を制御する制御手段と、
     を備える請求項1に記載の情報処理システム。
    The information processing system further includes one or more second type peripheral devices that control a predetermined control target,
    Each of the one or more second type peripheral devices is
    a model management means for storing and managing a model that inputs the perceptual expression data, converts it into a predetermined physical quantity, and outputs it in a predetermined storage medium;
    Acquire at least a part of the one or more perceptual expression data constituting the output data output from the central device and input it to the model, and send a signal indicating the predetermined physical quantity output from the model to an instruction signal. a control means for controlling the predetermined control object by inputting it to the predetermined control object;
    The information processing system according to claim 1, comprising:
  3.  前記中央装置は、
      前記1以上の第1種周辺装置から位置情報及び前記モデルに関する情報を第1種周辺装置情報として夫々取得する第1種周辺装置情報取得手段と、
      前記1以上の第1種周辺装置が配置された設備の3次元マップを、前記第1種周辺装置情報に基づいて生成又は更新して管理するマップ管理手段と、
     を更に備え、
     前記1以上の第1種周辺装置の夫々は、
     当該第1種周辺装置の位置情報を取得する位置情報取得手段と、
     前記位置情報及び前記モデルに関する情報を前記中央装置に提供する第1種周辺装置情報送信手段と、
     前記中央装置において管理された3次元マップと、前記位置情報に基づいて、前記モデルを更新するための再学習を実行する第1種再学習実行手段と、
     をさらに備える、
     請求項2に記載の情報処理システム。
    The central device includes:
    first type peripheral device information acquisition means for respectively acquiring location information and information regarding the model from the one or more first type peripheral devices as first type peripheral device information;
    map management means for generating or updating and managing a three-dimensional map of equipment in which the one or more first type peripheral devices are arranged based on the first type peripheral device information;
    further comprising;
    Each of the one or more first type peripheral devices is
    a position information acquisition means for acquiring position information of the first type peripheral device;
    first type peripheral device information transmitting means for providing the central device with information regarding the location information and the model;
    a first type relearning execution means for executing relearning for updating the model based on a three-dimensional map managed in the central device and the position information;
    further comprising,
    The information processing system according to claim 2.
  4.  入力データを用いる所定の処理を実行する中央装置と、前記入力データの少なくとも一部を前記中央装置に提供する1以上の第1種周辺装置とを含む情報処理システムが実行する情報処理方法において、
     前記中央装置が実行するステップとして、
      1以上の知覚表現データを入力データとして取得して、当該入力データを用いる所定の処理を実行して、その処理の実行結果を示す1以上の知覚表現データを出力データとして出力する処理実行ステップ、
     を含む、
     1以上の第1種周辺装置の夫々が実行するステップとして、
     所定の画像のデータを入力して、前記知覚表現データに変換して出力するモデルを所定の記憶媒体に記憶させて管理するモデル管理ステップと、
     実世界の物理量を測定するセンサ、又は、対象領域を撮像するカメラから出力されたデータを取得して前記モデルに入力させ、当該モデルから出力された前記知覚表現データを、前記中央装置の前記入力データの少なくとも一部として出力する変換ステップと、
     を含む、
     情報処理方法。
    An information processing method executed by an information processing system including a central device that executes a predetermined process using input data, and one or more first type peripheral devices that provide at least a part of the input data to the central device,
    The steps performed by the central device include:
    a processing execution step of acquiring one or more perceptual expression data as input data, executing a predetermined process using the input data, and outputting one or more perceptual expression data indicating the execution result of the process as output data;
    including,
    The steps performed by each of the one or more first type peripheral devices include:
    a model management step of inputting data of a predetermined image and storing and managing a model to be converted into the perceptual expression data and outputted in a predetermined storage medium;
    Data output from a sensor that measures physical quantities in the real world or a camera that images a target area is acquired and input to the model, and the perceptual expression data output from the model is input to the central device. a transformation step outputting as at least a portion of the data;
    including,
    Information processing method.
  5.  入力データを用いる所定の処理を実行する中央装置と、前記入力データの少なくとも一部を前記中央装置に提供する1以上の第1種周辺装置とを含む情報処理システムを制御するコンピュータのうち、
     前記中央装置を制御するコンピュータに、
      1以上の知覚表現データを入力データとして取得して、当該入力データを用いる所定の処理を実行して、その処理の実行結果を示す1以上の知覚表現データを出力データとして出力する処理実行ステップ、
     を含む制御処理を実行させ、
     1以上の第1種周辺装置の夫々を制御するコンピュータに、
     所定の画像のデータを入力して、前記知覚表現データに変換して出力するモデルを所定の記憶媒体に記憶させて管理するモデル管理ステップと、
     実世界の物理量を測定するセンサ、又は、対象領域を撮像するカメラから出力されたデータを取得して前記モデルに入力させ、当該モデルから出力された前記知覚表現データを、前記中央装置の前記入力データの少なくとも一部として出力する変換ステップと、
     を含む制御処理を実行させる、
     プログラム。
    A computer that controls an information processing system that includes a central device that executes predetermined processing using input data, and one or more first type peripheral devices that provide at least a part of the input data to the central device,
    a computer controlling the central device;
    a processing execution step of acquiring one or more perceptual expression data as input data, executing a predetermined process using the input data, and outputting one or more perceptual expression data indicating the execution result of the process as output data;
    Execute control processing including
    a computer that controls each of the one or more type 1 peripheral devices;
    a model management step of inputting data of a predetermined image and storing and managing a model to be converted into the perceptual expression data and outputted in a predetermined storage medium;
    Data output from a sensor that measures physical quantities in the real world or a camera that images a target area is acquired and input to the model, and the perceptual expression data output from the model is input to the central device. a transformation step outputting as at least a portion of the data;
    execute control processing including
    program.
PCT/JP2023/012920 2022-06-02 2023-03-29 Information processing system, information processing method, and program WO2023233786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090429 2022-06-02
JP2022090429A JP2023177649A (en) 2022-06-02 2022-06-02 Information processing system, information processing method, and program

Publications (1)

Publication Number Publication Date
WO2023233786A1 true WO2023233786A1 (en) 2023-12-07

Family

ID=89026139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012920 WO2023233786A1 (en) 2022-06-02 2023-03-29 Information processing system, information processing method, and program

Country Status (2)

Country Link
JP (1) JP2023177649A (en)
WO (1) WO2023233786A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281241A (en) * 2007-05-09 2008-11-20 Toko Electric Corp Air-conditioning control system
JP2020095615A (en) * 2018-12-14 2020-06-18 ヤフー株式会社 Generator, method for generation, and generating program
WO2020218409A1 (en) * 2019-04-25 2020-10-29 株式会社クロスエッジラボ Thermosensitive imaging device, watching and monitoring system using thermosensitive imaging device, and watching and monitoring method using thermosensitive imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281241A (en) * 2007-05-09 2008-11-20 Toko Electric Corp Air-conditioning control system
JP2020095615A (en) * 2018-12-14 2020-06-18 ヤフー株式会社 Generator, method for generation, and generating program
WO2020218409A1 (en) * 2019-04-25 2020-10-29 株式会社クロスエッジラボ Thermosensitive imaging device, watching and monitoring system using thermosensitive imaging device, and watching and monitoring method using thermosensitive imaging device

Also Published As

Publication number Publication date
JP2023177649A (en) 2023-12-14

Similar Documents

Publication Publication Date Title
US10872510B2 (en) Home emergency guidance and advisement system
US10896599B1 (en) Immersive virtual reality detection and alerting technology
JP2017506788A (en) Smart emergency exit display
US20150287295A1 (en) Smart Emergency Exit Signs
JP2018207222A (en) Camera and parameter registration method
JP2018205900A (en) Monitoring system and monitoring method
WO2023233786A1 (en) Information processing system, information processing method, and program
WO2023228562A1 (en) Information processing system, information processing method, and program
WO2023210252A1 (en) Information processing system, information processing method, and program
Zhang et al. Falling detection of lonely elderly people based on NAO humanoid robot
JP7491535B2 (en) Information processing system, information processing method, and program
JP2020177471A (en) System, bot, and method for sharing information
KR102138006B1 (en) Method for controlling a security robot, apparatus for supporting the same
US11388238B2 (en) Localized situational intelligent awareness from multiple sensor types through a 4-dimensional state system
JP6999790B1 (en) Systems, appliances, management servers and programs that notify the occurrence of abnormalities
Grama et al. Autonomous Robot for House Supervision Based on Personal Assistance Technology
JP2024062742A (en) System, method and program
KR20210076415A (en) Electronic apparatus and control method thereof
WO2015130758A1 (en) Smart emergency exit signs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815548

Country of ref document: EP

Kind code of ref document: A1