WO2020218409A1 - Thermosensitive imaging device, watching and monitoring system using thermosensitive imaging device, and watching and monitoring method using thermosensitive imaging device - Google Patents
Thermosensitive imaging device, watching and monitoring system using thermosensitive imaging device, and watching and monitoring method using thermosensitive imaging device Download PDFInfo
- Publication number
- WO2020218409A1 WO2020218409A1 PCT/JP2020/017468 JP2020017468W WO2020218409A1 WO 2020218409 A1 WO2020218409 A1 WO 2020218409A1 JP 2020017468 W JP2020017468 W JP 2020017468W WO 2020218409 A1 WO2020218409 A1 WO 2020218409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- image
- imaging device
- sensitive
- image pickup
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 146
- 238000003384 imaging method Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 33
- 230000003287 optical effect Effects 0.000 claims description 45
- 230000007958 sleep Effects 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 24
- 230000036760 body temperature Effects 0.000 claims description 18
- 238000004458 analytical method Methods 0.000 claims description 16
- 238000013500 data storage Methods 0.000 claims description 10
- 230000036387 respiratory rate Effects 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 230000009471 action Effects 0.000 abstract description 3
- 210000003128 head Anatomy 0.000 description 77
- 238000001931 thermography Methods 0.000 description 54
- 230000033001 locomotion Effects 0.000 description 42
- 230000036544 posture Effects 0.000 description 39
- 230000005856 abnormality Effects 0.000 description 38
- 230000006399 behavior Effects 0.000 description 24
- 238000001514 detection method Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 19
- 230000036541 health Effects 0.000 description 17
- 230000029058 respiratory gaseous exchange Effects 0.000 description 16
- 230000008859 change Effects 0.000 description 15
- 238000004891 communication Methods 0.000 description 15
- 238000009434 installation Methods 0.000 description 14
- 230000007774 longterm Effects 0.000 description 13
- 230000000474 nursing effect Effects 0.000 description 10
- 230000035882 stress Effects 0.000 description 10
- 238000013135 deep learning Methods 0.000 description 8
- 241000282412 Homo Species 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000012806 monitoring device Methods 0.000 description 6
- 206010012289 Dementia Diseases 0.000 description 5
- 230000001815 facial effect Effects 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008376 long-term health Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 208000010877 cognitive disease Diseases 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 210000001061 forehead Anatomy 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 240000004050 Pentaglottis sempervirens Species 0.000 description 2
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 2
- 206010062519 Poor quality sleep Diseases 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 206010041349 Somnolence Diseases 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 208000027061 mild cognitive impairment Diseases 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 235000021152 breakfast Nutrition 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006999 cognitive decline Effects 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 235000021268 hot food Nutrition 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 230000009474 immediate action Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 230000000422 nocturnal effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000036385 rapid eye movement (rem) sleep Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000009531 respiratory rate measurement Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000008667 sleep stage Effects 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/17—Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/04—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
Definitions
- the present invention relates to a thermal imaging device, a monitoring monitoring system using a thermal imaging device, and a monitoring monitoring method using a thermal imaging device.
- the elderly watching system includes a method of detecting the state of the person being watched over by using a sensor and a method of observing the state of the person being watched by an image such as a video camera.
- Patent Document 1 a technique for recognizing the state of a subject using an image of the subject, a technique of relaying the image of the subject to a caregiver has also been proposed (see Patent Document 2).
- biometric information and behavior of the elderly person to be watched can be grasped by such an elderly person watching and monitoring system, it is expected to be useful not only for ensuring the safety of the elderly but also for health promotion and health care.
- single-function sensors such as pressure-sensitive sensors and optical sensors are used to detect specific movements such as getting up and getting out of bed, and when such movements are performed, Generate an alarm.
- a simple sensor it is not possible to determine the detailed situation of the person to be watched over, so it is difficult to accurately determine whether the situation really requires assistance. For this reason, there is a problem that many unnecessary alarms are generated and the burden on the caregiver is increased.
- a high-resolution image is required to recognize the target person and their behavior in the presence of various objects in the room.
- the use of high resolution images causes privacy issues.
- a computer with a large computing power is required for image recognition for analyzing a high-resolution image with a computer and recognizing the position and behavior of the person being watched over. For this reason, in a watching monitoring system using a video camera indoors, an image is often sent to a host computer outside the private room where image monitoring and image recognition are performed.
- a high-priced image transmission device and a host computer are required for relaying such images, and at the same time, there is a risk of image leakage.
- the watching monitoring system is small and arranged so as not to interfere with the daily activities and assisting movements of the monitoring target person and not to interfere with the daily life of the target person and the caregiver. Furthermore, it is desirable that the system has a simple configuration and is inexpensive so that the cost of nursing care and watching can be suppressed.
- the problem with in-vehicle surveillance systems using existing far-infrared cameras is that the viewing angle is narrow.
- the viewing angle of an in-vehicle far-infrared camera currently on the market is 40 degrees or less, and it is a system for detecting pedestrians and animals in the distance. This is because the field of view of the conventional far-infrared camera is narrow and it is not possible to realize a wide field of view.
- An object of the present invention is to provide a thermal imaging device, a watching monitoring system, and a watching monitoring method that can detect a target person in a wide field of view with a simple configuration.
- monitoring is performed using a far-infrared camera (thermography) capable of photographing in a wide viewing angle.
- a far-infrared camera is a device that captures a temperature distribution calculated from the energy of far-infrared rays emitted from an object as an image. Since humans have a body temperature, which is higher than the normal environmental temperature, humans can be selectively detected from the body temperature. Therefore, unlike a normal video camera, it is not necessary to acquire a high-resolution image to recognize a human from the image, and a human can be selectively detected from a low-resolution temperature image, so that there are few recognition errors.
- the computing load on the computer can be reduced. Therefore, processing can be performed by a computer having a small computing power, and the system can be reduced in price and size.
- a monitoring device using a far-infrared camera Since a person can be detected directly from the body temperature, a monitoring device using a far-infrared camera has been conventionally proposed.
- the problem of the monitoring monitoring system using such a far-infrared camera is that the imaging range of the far-infrared camera is narrow. Since the viewing angle of a commercially available far-infrared camera is about 40 to 60 °, it is difficult to monitor and monitor a wide range. For example, as an example of an elderly person watching system, there is "Non-patent document: Takagi et al.” Watching elderly people using a temperature sensor ", DEIM2016, P6-1, 2016”.
- a far-infrared camera was installed on the ceiling on the bed or on the wall surface facing the bed to monitor the behavior on the bed (such as detection of falling from the bed).
- the watching range is limited to the bed.
- An example of forward monitoring of an automobile is a night vision system using a far-infrared camera manufactured by Autoliv installed in the BMW 7 series.
- the viewing angle is set to 36 degrees during normal driving and 24 degrees during high-speed driving. Therefore, although it was possible to detect pedestrians and animals in the distance, it was not possible to detect pedestrians in the short distance. This is also because the field of view of the conventional far-infrared camera is narrow and a wide field of view cannot be realized.
- thermo image pickup device that has an optical system that is off-axis and reflects and refracts, a wide imaging range can be realized without blind spots. Since the thermal image pickup device can selectively detect a human from a low-resolution image, there is an advantage that image recognition becomes easy and recognition accuracy can be improved.
- Thermal imaging device Conventional far-infrared camera with wide field of view Explanatory drawing showing the imaging range of the catadioptric system Explanatory drawing showing a cross-sectional shape of a convex mirror Figure comparing spherical mirror and parabolic mirror
- Overall configuration diagram of the elderly watching system installed in the living room of the elderly facility Top view of the indoor installation layout of the thermal imaging device Indoor installation bird's-eye view of thermal imaging device
- Two-dimensional temperature image of the room showing the required viewing angle of the thermal image pickup device
- Indoor imaging temperature image of thermal imaging device Indoor captured image of visible light camera
- Body movement and sleep depth measurement results on the bed Actual measurement data of chest position by head temperature and respiration Results of frequency analysis of chest position by head temperature and respiration
- the heat-sensitive imaging device 10 having an imaging range of the entire room will be described with reference to FIG.
- the heat-sensitive image pickup device 10 is a single board computer 5 connected to a far-infrared camera 3 including an image pickup lens 3-1 and a far-infrared array sensor 3-2, a convex mirror 2, a far-infrared camera 3, and a wiring 4. Is integrated by the frame 1.
- the characteristic is that the optical system of far-infrared light is an off-axis reflection-refraction type optical device that combines an image pickup lens 3-1 that utilizes refraction and a convex mirror 2 that utilizes reflection. is there.
- the optical axis off-axis optical system means that the optical axis 3-4 of the convex mirror 2 is inclined with respect to the optical axis 3-3 of the far-infrared camera 3.
- the convex mirror 2 has an axisymmetric three-dimensional shape. It can be seen that by using the reflection of the convex mirror 2, the viewing angle of the far-infrared camera 3 is expanded so that a wider range can be imaged.
- the thermal imaging device 10 is installed on a wall surface near the ceiling, it can be seen that a wide field of view including the ceiling region and almost the entire wall surface region can be obtained as shown by the typical light beam 6.
- the convex mirror 2 Since the convex mirror 2 has a rotationally symmetric shape, it has a wide field of view even in the depth direction of the paper surface of FIG. As a heat-sensitive imaging device that realizes a wide imaging range by utilizing the reflection of the convex mirror 2, the convex mirror 2 as shown in FIG. 2 is arranged on the far infrared camera 3 with the optical axis aligned, and is far away. An attempt to make the infrared camera 3 omnidirectional (360-degree field of view) has been reported (Non-patent document: Eiichi Narimatsu, "Development of omnidirectional thermograph for finding and tracking people indoors", Proceedings of the 21st Annual Meeting of the Robotics Society of Japan, 2003). In the example of FIG.
- a hyperboloid mirror is used as the convex mirror 2.
- the convex mirror 2 and the far-infrared camera 3 are aligned with each other, there is a problem that a blind spot occurs because the far-infrared camera 3 is reflected in the center of the field of view. There was a problem that it could not be used for watching purposes.
- the far-infrared camera 3 is arranged at an angle with respect to the convex mirror 2, and as shown in FIG. 1, a blind spot is provided by using a reflection-refraction type optical system off the optical axis. A wide range of images can be acquired without it. It can be seen that by using the convex mirror 2, the viewing angle is wider than the viewing angle of the far infrared camera 3. Further, the catadioptric system using the convex mirror 2 will be described in detail with reference to FIG. The optical axis 3-3 of the far-infrared camera 3 is tilted with respect to the optical axis 3-4 of the convex mirror 2.
- the effective imaging range of the convex mirror 2 is the light beam 6-1 in the normal direction of the convex mirror 2 passing through the exit pupil center point 3-3 of the imaging lens 3-1 and the exit pupil of the imaging lens 3-1. It is within the range of the light beam 6-2 in the tangential direction of the convex mirror 2 passing through the center point 3-3.
- the direction of the normal direction of the convex mirror 2 is In order for the ray 6-1 to be included in the field of view, ⁇ / 2 ⁇ It is necessary to satisfy the condition.
- the angle ⁇ formed by the optical axis 3-4 of the convex mirror 2 and the optical axis 3-3 of the far-infrared camera 3 is ⁇ / 2 ⁇ ⁇ ( ⁇ - ⁇ ) /. It is necessary to satisfy the relationship of 2.
- the viewing angle of the far-infrared camera 3 may differ between the horizontal direction and the vertical direction, in which case ⁇ corresponds to the smaller viewing angle.
- the shape of the convex mirror 2 will be described.
- a wide viewing angle can be obtained by using the convex mirror 2, but the distortion of the image becomes large.
- the mirror shape it is possible to control the distortion characteristics of this image. For example, it is possible to magnify the area of interest in the image and shoot.
- a flat ellipse, a circle, an ellipse, a parabola, a hyperbola, or the like can be considered as shown in FIG.
- the reflected rays of the spherical mirror and the parabolic mirror are shown in FIG.
- the straight line shows the spherical mirror
- the broken line shows the reflected light beam of the parabolic mirror.
- the light rays show the reflection of the light rays from the far-infrared camera at every 2.5 ° viewing angle on the mirror.
- Optical systems using mirrors have been studied a lot with ordinary cameras for visible light.
- optical material technology and lens processing technology for refracting lenses for visible light and near-infrared light have been rapidly advanced. For this reason, the performance, miniaturization, and low price of lenses with various characteristics have made rapid progress.
- high-performance lenses are available at low prices, and reflective optics are rarely used except for special applications.
- a thermal imager having a wide field of view by combining a standard far-infrared camera (viewing angle of about 50 °) that can be obtained at a low price and a small size with a metal convex mirror that is easy to process and can be obtained at a low price. 10 is realized.
- Example 1 As the first embodiment of the monitoring monitoring system using the heat-sensitive image pickup device 10 having the optical axis off-axis reflection / refraction type, elderly people such as nursing homes, elderly housing with services, special elderly nursing homes, and group homes.
- the elderly watching system installed in the living room of the facility will be explained.
- the overall configuration of the elderly watching system is shown in FIG.
- the elderly watching system has two functions: a watching function that monitors the safety of daily life of the elderly, and a healthcare function that uses the living data of the elderly acquired by the system to improve the health of the elderly. ing.
- the heat-sensitive imaging device 10 of the present invention is installed in a private room which is a living space for the elderly.
- an accident such as a fall or a fall, or an abnormality such as a sudden change in physical condition
- the occurrence of the abnormality is sent to the mobile terminal 21 of the caregiver or guardian 23, and the caregiver or guardian 23 rushes in. And protect the safety of the elderly.
- By accumulating daily life data obtained by watching over and analyzing it as big data accumulated on the cloud we analyze short-term changes in physical condition, long-term health condition, physical strength, and cognitive function of the elderly. However, by giving appropriate advice, long-term health promotion (health care) for the elderly will be realized.
- the monitoring monitoring device using the heat-sensitive image pickup device 10 off the optical axis and the reflection / refraction type shown in FIG. 1 will be described in detail below.
- the far-infrared camera 3 forms an image of far-infrared rays emitted from an object on a two-dimensionally arranged far-infrared array sensor 3-2 by a refracting lens 3-1 for far-infrared light. It is a device that converts the output signal for each pixel into temperature and displays the temperature distribution as an image.
- the heat-sensitive image pickup device 10 used here includes a far-infrared camera 3 composed of a microbolometer-type 80x60 pixel far-infrared array sensor 3-2, a silicon refraction lens 3-1 and a convex mirror 2. Will be done.
- a convex mirror 2 an aluminum-polished mirror having a rotating paraboloid shape was used.
- the imaging range of the far-infrared camera 3 used is 51x38 ° in terms of viewing angle, and this viewing angle is magnified by the convex mirror 2 for imaging.
- the far infrared camera 3 is connected to the single board computer 5 by wiring 4.
- the single board computer 5 used here is equipped with a 1 GHz single core CPU chip and a Wifi communication chip, and processes the temperature image acquired by the heat-sensitive camera to recognize the behavior of the target elderly person, and it is necessary. In response, information can be transmitted to an external computer or mobile terminal (tablet, smartphone, etc.) by Wifi communication.
- the single board computer 5 Since the single board computer 5 is small and inexpensive, it can be integrated with the far infrared camera 3 and installed in the room of the person to be watched over.
- the single board computer 5 can directly receive the temperature image output signal of the far infrared camera 3 via the wiring 4 and perform image recognition.
- Edge computing is the process of performing image processing inside the device using an IoT device that consists of a sensor device and a computer with a built-in communication function as in this example. Edge computing has the advantages of reducing communication load, real-time data processing, and reducing security risks, and is a technology that has been attracting attention in recent years. In the monitoring monitoring system of the present invention, by using the low pixel image of the far infrared camera, the load of image processing is reduced, and edge computing on the single board computer 5 having low computing power is enabled.
- the monitoring monitoring system of the present invention is not limited to edge computing, and the arithmetic unit may be an ordinary computer and may be installed in a place (for example, a caregiver's station) away from the place where the thermal imaging device is installed. It is possible.
- the image processing unit, the discrimination unit, the data storage unit, and the output unit are placed on the computer side, and data communication is performed with the far-infrared camera 3 by wireless or wired communication.
- a parabolic aluminum polishing mirror was used as the convex mirror 2.
- the aluminum polishing mirror was created by pressing an aluminum plate into a parabolic shape and polishing the surface.
- a metal mirror is used, but the present invention is not limited to this, and a mirror in which a metal film such as silver or aluminum is vapor-deposited on a polymer material (polycarbonate, cycloolefin, etc.) that has been injection-molded into a parabolic shape can also be used. it can. By using a mirror in which metal is vapor-deposited on plastic, the manufacturing cost of the mirror can be reduced.
- a parabolic mirror is used here as the convex mirror 2, a spherical mirror, a conical mirror, or a hyperboloid mirror can also be used.
- FIG. 7 shows an installation diagram of the above thermal image pickup device 10 in a room.
- a person to be watched 11 in the room and a bed 12, a door 13, a shelf 14, a window 15, a desk 17, and a chair 18 are arranged on the floor 16.
- the thermal image pickup device 10 is arranged near the ceiling of the wall surface closest to the longitudinal direction of the bed 12.
- FIG. 8 shows a bird's-eye view of the arrangement in the room.
- the three-dimensional coordinates of the head are written as (X0, X0, Z0), and the head temperature is written as T0.
- FIG. 9 shows a temperature image taken in the room shown in FIG. 7. Since it is an image reflected by a curved mirror, it is an image with a large distortion, but the floor 16 and the four walls surrounding the bed 12 are imaged. The four walls are photographed almost up to the ceiling, so you can understand the wide viewing angle. Since the person to be watched 11 has a higher temperature than the surroundings, it can be clearly identified. Despite the low resolution (80x60 pixels) image, the head, body, and legs are clearly separated, from which the posture of the subject 11 can be determined. The head is indicated by a cross mark in the image. Here, the coordinates on the temperature image of the central part of the head are (x0, y0), and the measured temperature of the head is t0.
- the existence and posture of the subject 11 can be recognized, but the individual identification and detailed movement of the subject 11 cannot be identified, and the risk of privacy invasion is low.
- a normal camera When a normal camera is used, a high-resolution image is required to recognize a human with high accuracy, and the face, facial expression, and action of the subject 11 are imaged, so that the psychological resistance of the watching subject is increased. growing.
- identification of objects placed in the room and clutter in the room are also observed, which also increases psychological resistance.
- the greatest merit of using the heat-sensitive image pickup device 10 for watching over is that the heat-sensitive image pickup device 10 can image the heat generated by the human body, so that the human body can be detected with high accuracy with a low-resolution image in consideration of privacy.
- FIG. 9 shows the upper part of the door 13, the upper part of the window 15, and the main body of the thermal imaging device 10 installed near the ceiling, and it can be seen that the images are taken from the floor 16 to the vicinity of the ceiling without blind spots. Since the entire wall surface including the door 13 and the window 15 is photographed, the position of the person to be watched in the room 11 can be grasped without a blind spot, and it is possible to detect going out from the door 13 to the outside without overlooking.
- the reason why the thermal image pickup device 10 is arranged near the ceiling of the wall that is in close contact with the long side side of the bed 12 is to watch the watch target person 11 on the bed 12 with higher accuracy.
- Priority was given to watching over bed 12 when the subject 11 was watching over nursing care facilities, hospitals, etc., (1) staying on bed 12 for a long time, and (2) falling from bed 12 or getting out of bed. This is because it takes into consideration that there are many accidents such as falls, and (3) grasping the sleep state is effective for grasping the life and health state of the subject 11.
- the arrangement position of the heat-sensitive image pickup device 10 is not limited to the bed 12, but fixing the arrangement is also advantageous for improving the accuracy of image recognition.
- the approximate position of the bed 12 is known in advance on the screen, it is easier to recognize the behavior of the subject 11 such as being in bed, getting out of bed, getting up, etc., as compared with the case of performing image recognition without such information. And it becomes possible to perform with high accuracy
- the imaging magnification on the bed 12 can be increased as compared with the spherical mirror as shown in FIG.
- a parabolic mirror is used.
- the convex mirror 2 is not limited to a parabolic mirror, and an ellipsoidal mirror and a hyperboloidal mirror can also be used.
- the spherical mirror has an advantage that it is easily available and low in cost, it is possible to use a spherical mirror depending on the application.
- the object here, the bed 12 located diagonally below the camera installation position.
- This is a great advantage over the case of using a refracting wide-angle camera.
- the imaging range extends to the upper part of the wall surface with an optical system using a refraction type wide-angle lens
- the bed 12 placed diagonally below the camera appears small in the entire screen, so the situation of the subject 11 on the bed 12 can be seen. It becomes difficult to observe in detail.
- the watching imager is required to have the ability to watch the subject 11 in the entire area of the room without blind spots. Going out of the room of the watching subject 11 may lead to a serious accident (for example, wandering of a dementia patient) depending on the medical condition and condition of the subject 11, and reliable detection without overlooking is required.
- FIG. 10 shows the positional relationship between the subject 11 and the thermal imaging device 10 when going out of the room.
- the height of the subject 11 is 170 cm
- the ceiling height is 240 cm
- the room size is 8 tatami mats (13 square meters)
- the installation height of the thermal image pickup device 10 is 230 cm.
- the buttocks of the subject 11 are caught in the vicinity of the door 13 at the edge of the room, and the behavior of the subject 11 disappearing from the door 13. Can be captured. It can be seen that the risk of overlooking is almost eliminated if an image can be taken up to 150 cm from the floor surface.
- the viewing angle of the wall surface of the thermal imaging device 10 needs to be at least 100 cm or more from under the floor, and it is possible to image an area of preferably 150 cm or more from the floor surface, and particularly preferably 190 cm or more from the floor surface. It is required to be. Under the above conditions, the total viewing angle (2 ⁇ ) required for the thermal imaging device 10 is 140 ° when the imaging range is 100 cm or more from the floor surface, 161 ° at 150 cm, and 167 ° at 190 cm.
- FIG. 11 shows a comparison of the imaging temperature image of the thermal imaging device 10
- FIG. 12 shows a comparison of images captured by a normal video camera.
- the watching subject 11 photographed the scene exiting from the door 13.
- the optical system of the video camera is not a wide-angle refraction lens normally used, but an optical device corresponding to visible light of the same off-axis reflection / refraction type as the heat-sensitive image pickup device 10 is prototyped and photographed.
- 11 and 12 are images of the same scene captured so as to have substantially the same field of view.
- the human body can be easily detected because the heat generation of the human body can be captured.
- the superiority of watching over can be understood from the comparison of these two images. It is difficult for a normal visible camera to recognize the target person 11 by image processing and grasp its behavior.
- the subject 11 can be easily monitored from the body temperature from the temperature image of FIG. 11 by the thermal image pickup device 10.
- image recognition it is known that it is effective to limit the objects to be imaged in order to improve the recognition accuracy.
- the image recognition accuracy can be improved by limiting the objects appearing in the image to be recognized and by limiting the imaging range, lighting conditions, and imaging conditions.
- the dedicated heat-sensitive image pickup device 10 whose imaging range is a wide area without blind spots is installed in a limited location near the ceiling of the wall near the bed 12, and image processing is performed on the output image. High recognition accuracy was achieved by optimizing.
- a wide viewing angle can be obtained by using a convex mirror, but there is a problem that the image has a large distortion.
- the influence of the image distortion can be reduced and the recognition accuracy can be improved.
- a heat-sensitive image pickup device with a special optical system called a dedicated far-infrared optical axis off-axis reflection / refraction optical system with a wide field of view is placed in a limited installation location to perform image processing according to the characteristics of the image to be captured. By doing so, a high-performance monitoring and monitoring system was realized.
- the image recognition method will be described below.
- information on the layout of the room and information on the person to be watched are acquired in advance, and image recognition is performed using that information to accurately monitor the behavior of the person to be watched. It made it possible to grasp.
- the setting is performed by an external computer using the communication function of the single board computer 5 of the thermal image pickup device 10.
- the size of the room may be an approximate area.
- the room shape based on the bed. If the room is rectangular, enter a horizontal rectangle if the longitudinal direction of the bed matches the longitudinal direction of the room, and enter a vertical rectangle if the directions are orthogonal.
- the bed position is input. Enter the position of the bed on the wall surface close to the bed using A to C. Then, the door position is selected from 1 to 9 and input. Further, the installation height of the thermal image pickup device 10 and the height of the bed are input. Finally, input information about the person to be watched over. Here, the gender, age, height, and weight of the subject are input.
- the positional relationship between the thermal imaging device 10 in the room of FIG. 7, the bed 12 and the door 13 was monitored and input to the monitoring system.
- the size and shape of the room it is possible to recognize the position and posture of the watching target person 11 with high accuracy. Further, by grasping the position of the door 13, the recognition accuracy of the entrance / exit room can be improved.
- the thermal image pickup device 10 is set to output 5 temperature images per second (5 FPS).
- the image file is set to output 16-bit 80x60 pixel data in PGM format.
- the image recognition algorithm will be described with reference to FIG.
- the output temperature image 19 is shown in the upper left of FIG.
- the head is detected from the temperature image 19.
- the head has the highest temperature in the temperature image 19, and there is little problem even if the highest temperature portion in the temperature image 19 is recognized as the head position.
- these hot objects may be mistakenly recognized as the head.
- the head is recognized from the size and temperature of the detected high temperature region. The temperature of the head is measured in the range of 28-36 ° C. depending on the distance between the head and the thermal imaging device 10 and the position of the head in the field of view to be imaged.
- the size of the head to be imaged increases and the temperature also rises.
- the size and temperature of the head also change depending on the position in the field of view of the temperature image 19.
- the surface temperature of the head is usually measured at 28-36 ° C., and the larger the size of the head (that is, the closer the head is to the thermal imaging device 10), the higher the temperature.
- the human head is detected from the temperature image 19, and the coordinate position (X0, Y0, Z0) of the head in real space is estimated using the coordinate position (x0, y0) on the image and the measured temperature t0. (Fig. 14).
- the spatial coordinate position of the head is estimated using the size of the head and the temperature of the head.
- a threshold value is set from the temperature image 19 to determine the region of the head, and the semi-major axis radius (a) and the semi-minor axis radius (b) are obtained by elliptical approximation.
- FIG. 14 A method of obtaining the three-dimensional spatial position of the head from the dimensions of the head on the screen will be described with reference to FIG. In FIG. 14, the position is shown on the xz plane for simplicity, but the same calculation can be performed on the xyz space.
- the center position x0 of the head and the area S0 can be obtained.
- the measured temperature is affected by the distance. This is mainly because the area occupied by the target object in the pixels becomes smaller as the distance increases, and it becomes affected by the ambient temperature of the measurement object. This temperature change also changes depending on the position of the temperature image 19.
- the measured temperature of a spherical plastic container having a radius of 10 cm containing hot water (35 ° C.) at the positions of the center of view (A) and the edge of the field of view (B) is set to the distance between the heat-sensitive image pickup device 10 and the plastic container. It was plotted against it.
- the distance between the thermal imaging device 10 and the head can be estimated from the pixel position and the measured temperature of the head. If the distance is known, the head position (X0, Y0, Z0) in the space can be obtained from the relationship shown in FIG. As described above, the position of the head in the space can be obtained from both the head size data and the head temperature data. By combining these two measured values, the head position can be measured with high accuracy.
- the position of the head of the subject 11 is known, it becomes possible to estimate the posture and behavior of the subject 11. For example, assuming that the height of the bed 12 is 40 cm, it can be estimated that the subject 11 is in the recumbent position if the head is on the bed 12 and the height of the head is within the range of 40 to 70 cm. If the head is on the bed 12 and the height is within the range of 80-140 cm, it can be estimated that the subject 11 is in the long sitting position. If the head is near the edge of the bed and the height is within the range of 80-140 cm, it can be estimated that the subject is in the sitting position.
- the sitting position is regarded as a preparatory action for standing, if there is a risk in the subject 11 standing up (in the case of a patient who is likely to fall and the fall leads to a serious accident), before standing up. It is possible to recognize the sitting position, which is a preparatory action, and issue a warning.
- the sitting position which is a preparatory action, and issue a warning.
- the height is 140 cm or more in a place other than the bed 12, it is estimated to be standing.
- the head position is moving in the standing position, it can be recognized as a walking state.
- the walking speed and walking distance can be calculated from the relationship between time and movement amount.
- the exercise data acquired in this way can be utilized for the health care of the subject 11.
- the head height is 50 cm or less outside the bed 12, there is a possibility of falling.
- the height of the head suddenly drops from the standing position outside the bed 12, it is determined that the person has fallen and an alarm can be issued.
- the head height is 50 cm or less outside the bed 12 from the lying position, the long sitting position, and the end sitting position on the bed 12, it is determined that the person has fallen from the bed 12 and an alarm can be issued.
- the human body can be clearly identified as a high temperature portion.
- the bed 12 is shown in the center of the visual field, and the posture of the subject 11 such as lying down, sitting on the edge, standing, walking, and going out can be identified from the positional relationship between the bed 12 and the human body.
- the posture can be recognized with some accuracy only by the position of the head displayed on the image, it is possible to determine the posture with higher accuracy by knowing the coordinates of the head in the space.
- the awakening / sleeping state and the light / deep sleep during sleep from the amount of body movement on the bed 12. It is known that the frequency of appearance of body movements during sleep decreases as the sleep stage becomes deeper. If the number of body movements exceeding the threshold value that occurs in 15 minutes during sleep is defined as the body movement density, the body movements occur continuously during REM sleep or light sleep, and the body movement density increases. However, there are individual differences in this body movement density, and it is difficult to estimate the sleep depth using a uniform threshold value. Therefore, the average value of the body movement density during one week of sleep of the subject 11 is calculated, and light sleep occurs when the body movement density exceeds the average value of the body movement density, and deep when the body movement density is lower than the average value. Determined to be sleep.
- FIG. 16 shows the amount of body movement on the bed 12 measured using the heat-sensitive image pickup device 10 of the present invention and the sleep depth calculated based on the amount of body movement. It can be seen that the sleep depth can be measured based on the body movement data. Since it is considered that the change in the sleep state of the subject 11 is linked to the health state, it is possible to grasp the change in the health state by using such data and acquiring and analyzing it over a long period of time, and appropriate sleep. It is expected that providing guidance and lifestyle guidance will lead to long-term health maintenance. Long-term sleep irregularities, increased nocturnal arousal, and increased total sleep time are considered signs of cognitive decline. If mild cognitive impairment (MCI) can be detected at an early stage from changes in sleep habits, it is considered to be effective in preventing dementia.
- MCI mild cognitive impairment
- FIG. 17 shows data obtained by measuring the temperature of the face measured by the heat-sensitive image pickup device 10 and the amount of movement of the chest by respiration measured by the laser positioning meter in a resting state on the bed 12 side by side with the time axis aligned. It was. Both devices were set to acquire data at 0.1 second intervals to acquire data. From the vertical movement of the chest due to breathing, breathing with a cycle of about 4 seconds can be clearly confirmed. On the other hand, the facial temperature is noisy, and biological signals such as respiration and heartbeat cannot be confirmed.
- the frequency analysis result of the data (512 data) for 51.2 seconds is shown in FIG.
- the heartbeat signal Compared to the respiratory signal included in the facial temperature data, the heartbeat signal has a high noise ratio and the measurement becomes unstable.
- the data shown in the figure was acquired in a stationary state without body movement, so analysis was performed using the data, but it was difficult to measure respiration and heart rate when there was body movement.
- Respiratory rate or heart rate data in a stable state can be compared with the average respiratory rate / heart rate during sleep, and an alarm can be issued if there is an abnormal change in respiratory rate / heart rate. ..
- the position, posture, behavior, and emergency situation such as a fall, sleep state, and heart rate of the person to be watched 11 in the room. , Respiratory rate, etc. can now be detected.
- the output related to the current state of the detected target person 11 will be described.
- the temperature image shown in the upper part of FIG. 19 is not recorded and output, and the system is set so that the pictogram shown in the lower part of FIG. 19 displays the current state of the subject 11 in real time. Has been done. This is to give priority to the protection of the privacy of the subject 11.
- Fig. 20 summarizes the displayed posture and situation detection and the types of alarms.
- the timing of alarm generation varies depending on the medical condition and situation of the subject. The timing of issuing this alarm is also set when the system is started.
- an alarm is generated in the sitting position, which is a preparatory movement for standing up.
- walking is risky
- an alarm is issued while standing
- an alarm is issued when they approach the door or when they go out. It also issues an alarm when a fall or fall is suspected due to changes in posture over time.
- An alarm can be issued even if there is no or very little movement for a long time. Even if the current body temperature, heart rate, and respiratory rate are significantly different from the body temperature, heart rate, and respiratory rate in normal life, an alarm is issued along with information on body temperature, heart rate, and respiratory rate. In this way, by analyzing the temperature image, it is possible to grasp various postures, exercises, and health conditions of the subject and to detect abnormalities.
- Example 2 As a second embodiment of a monitoring monitoring system using a heat-sensitive image pickup device 10 having an optical axis off-axis reflection / refraction type, an example in which deep learning (deep learning or machine learning) is used to detect a posture and a situation. explain.
- the target application is an elderly watching system installed in the living room of an elderly facility.
- FIG. 21 shows a thermal imaging device 10 having a design different from that of FIG. A parabolic mirror 2-1 was used as the convex mirror. By making the distance between the parabolic mirror 2-1 and the far-infrared camera 3 close to each other, the device is downsized while maintaining the viewing angle.
- the same single board computer 5 as the device shown in FIG. 1 was used, but the curved mirror was downsized and designed to be vertical to reduce the size. Since the processing capacity of the single board computer 5 alone was insufficient, image recognition was performed by connecting Intel's Movidius to a single board computer as an accelerator 5-1 for deep learning.
- the size of the entire device can be reduced to about 3x3x3 cm.
- a far infrared window 7 is used.
- the material of the far-infrared window 7 is high-density polyethylene having a high transmittance of far-infrared rays. Since the high-density polyethylene is white, it is designed so that the far-infrared camera 3 inside cannot be seen. Making the monitoring monitoring device smaller and less noticeable is also effective in reducing the psychological resistance of being monitored by the installed thermal imaging device 10.
- the learning model was MobileNet. Learning was performed on the cloud, the created learning model was installed on the single board computer 5 of the heat-sensitive imaging device 10, and image recognition was performed on the single board computer 5 (edge computing). Since the CPU of the single board computer 5 was insufficient in processing power and could not recognize the image of 5 FPS, the AI accelerator 5-1 was connected to the single board computer 5 to make a judgment.
- 7 postures (lying position, long sitting position, end sitting position, standing position, sitting position, falling, going out) were determined among the postures shown in FIG.
- the temperature image acquisition was performed in the room shown in FIG. 200 images in each posture were continuously acquired at 1 per second in order from the recumbent position. Images were acquired while changing the position on the bed 12, the orientation of the body, and the position of the futon little by little while lying in the lying position for 200 seconds. Images of 7 postures were acquired in the same manner by changing the postures in sequence, and 10 sets of images were acquired with this as one set.
- the model accuracy was confirmed using the remaining 7,000 images that were not used for learning, and 97% accuracy was confirmed.
- Edge computing has made it possible to determine the posture of the subject in real time from the output temperature image of the thermal image pickup device 10 using machine learning.
- the posture change is determined by the same method as in the first embodiment.
- the posture determination is standing, it is determined whether it is standing (resting) or walking by comparing it with the previous image.
- a comparison is made with the previous posture, and an alarm is issued when a change occurs from a standing position to a fall, a sitting position to a fall, or a recumbent position to a fall.
- an alarm is set according to the preset alarm setting of the target person.
- a watching monitoring system including a video camera having sensitivity to visible light and near-infrared light.
- a watching monitoring system including a video camera having sensitivity to visible light and near-infrared light.
- Even systems that include video cameras do not shoot video under normal conditions to ensure privacy.
- the video camera is activated and shooting is started.
- the room is dark, such as at night when an alarm is generated, the near-infrared light source installed in the video camera unit is automatically turned on, and a clear image can be captured.
- the image of the video camera is transmitted to the information terminal when there is a request from the external information terminal.
- the caregiver or family member
- the system includes a video camera is selected according to the wishes of the person being watched over and their parents, caregivers, family members, and facility managers.
- FIG. 22 shows a flowchart of control of the monitoring monitoring system.
- the example of FIG. 22 shows a system that includes visible and near infrared video cameras 32. While the monitoring monitoring system is in operation, temperature images are sent from the thermal image pickup device 10 to the single board computer 5 at regular time intervals.
- the single board computer 5 has functions as an image processing unit 33, a determination unit 34, a data storage unit 35, and an output unit 36.
- the image processing unit 33 analyzes the two-dimensional infrared radiant energy image captured by the heat-sensitive image pickup device 10, and detects the position of the subject on the two-dimensional image and the infrared radiant energy contained in the image.
- the determination unit 34 determines the condition of the subject based on the position on the two-dimensional image of the subject and the infrared radiant energy detected by the image processing unit 33.
- the data storage unit 35 records the status of the target person determined by the determination unit 34.
- the output unit 36 outputs information indicating the status of the target person obtained by the determination unit 34. More specifically, the temperature image (input image) from the heat-sensitive imaging device 10 is sent to the image processing unit 33, and the image processing unit 33 calculates the position of the head in the three-dimensional space. The amount of movement is calculated from the comparison between the head position data of the previous frame and the current head position data.
- the previous frame referred to here may be a plurality of frames including the immediately preceding frame.
- the current posture / behavior of the subject is estimated from the position of the head.
- the determination unit 34 compares the current position and posture with the position and posture of the front frame, and if there is a sudden change, determines whether or not an abnormality such as a fall or a fall has occurred based on the content of the change.
- the determination unit 34 refers to the data regarding the average relationship between the position and the body temperature for each hour stored in the data storage unit 35, compares this data with the data of the current position and the body temperature, and causes abnormal hyperthermia or It is judged to be abnormal when the body temperature is low.
- the acquired data is stored in the data storage unit 35.
- the determination unit 34 determines whether or not there is an abnormality in the heartbeat or the respiration frequency. Data of temperature image, head position information, movement amount, posture / behavior estimation value, sleep state, respiration, and heart rate are stored in the data storage unit 35.
- an alarm is transmitted from the output unit 36 to an information terminal such as a tablet or smartphone owned by the caregiver or a computer in the office by wireless communication.
- an information terminal such as a tablet or smartphone owned by the caregiver or a computer in the office by wireless communication.
- the operation of the video camera 32 is started, and the video image is stored in the data storage unit 35.
- the information to be transmitted is the time of the abnormality occurrence, the content of the occurrence abnormality, the current visible and near infrared images, the current temperature image, and the temperature image for several seconds before and after the abnormality occurrence.
- the caregiver who confirmed the alarm confirms the visible and near infrared images and temperature images displayed on the screen, and the temperature images before and after the occurrence of the abnormality, and confirms and assists as necessary.
- the mobile terminal may make a call through a speaker to check the status of the target person. Since the caregiver can check the situation of the target person on the spot, it is possible to provide prompt and lean assistance, improve the quality of care, and reduce the burden on the caregiver.
- video recording is started when an abnormality occurs.
- the user may request a clear image when an abnormality occurs.
- video shooting is always performed, and video images are stored in the data storage unit 35 for a certain period of time (for example, 30 minutes).
- the image data that has passed it is deleted, and when an abnormality occurs, the accumulated image data is not deleted and remains.
- the video camera is always operated, and when an abnormality is detected, the image before and after the abnormality can be saved by saving the data, and the video image at the time of the abnormality can be confirmed from the mobile terminal. .. In this case as well, the video image is not saved in a normal state in consideration of privacy.
- Example 4 As a fourth embodiment of the monitoring monitoring system using the thermal imaging device of the present invention, a monitoring monitoring system for the elderly living alone will be described with reference to FIG. 23.
- a thermal imaging device 10 is installed in the bedroom of the elderly person 11 who lives alone, who is the person to be watched over.
- a mobile terminal or computer terminal When the watching monitoring system detects an abnormality, a mobile terminal or computer terminal is wirelessly communicated to a guardian 23 such as a family member, a close relative, a watching service provider, or a person in charge of a local government registered as a guardian 23 in advance. An alarm is sent to the terminal 21 (not shown).
- a guardian 23 such as a family member, a close relative, a watching service provider, or a person in charge of a local government registered as a guardian 23 in advance.
- An alarm is sent to the terminal 21 (not shown).
- the guardian 23 confirms the terminal display content 22 (warning and temperature image data before and after the abnormality detection) displayed on the terminal 21, and if necessary, rushes, requests an ambulance, and confirms with the residents in the vicinity of the target person. Necessary measures such as request and confirmation by telephone can be taken.
- the current temperature image can be watched and sent from the monitoring system at the request from the terminal 21 side and confirmed on the terminal 21.
- the image transmission is currently limited to the time when an abnormality occurs, and the image request from the terminal 21 is not possible in daily life.
- the monitoring monitoring system is a system including a video camera, it is possible to confirm the image of the current video camera by selecting the transmission of the video camera image from the terminal 21. ..
- the monitoring monitoring system can also include devices with remote communication functions such as microphones and speakers.
- the guardian 23 can confirm the image on a terminal 21 such as a mobile terminal or a computer terminal, and call the watching target person 11 using the remote call function as necessary. If the call is properly answered, measures such as rushing to the living room will not be necessary. In this way, if the safety status of the subject 11 can be confirmed using the terminal 21, the burden on the caregiver and the family can be reduced.
- a terminal 21 such as a mobile terminal or a computer terminal
- Example 5 As a fifth embodiment, a monitoring monitoring system in a nursing care facility, a hospital, or the like will be described.
- the watching monitoring system has not only a watching function but also a healthcare function.
- the thermal image pickup device 10 installed in each room is wirelessly connected to the host computer 20 arranged in the facility, and the data in each room is collected by the host computer 20.
- the analysis of the temperature image of the thermal image pickup device 10 is performed not by the host computer 20 but by the single board computer 5 built in the thermal image pickup device 10.
- the image is not transferred to the host computer 20, and the image data analyzed by the single board computer 5 is discarded as it is if no abnormality is detected, and is stored in the single board computer 5 and in the host computer 20. Not done.
- the single board computer 5 sends the position data, the posture data, and the data related to the amount of exercise of the monitoring target person 11 to the host computer 20, and the host computer 20 analyzes the life data (life log) of each target person 11. It is put together.
- the single board computer 5 sends an alarm and images before and after the abnormality occurs. These alarm data are sent to the terminal 21 owned by the guardian 23, and after confirming the alarm content, request an image of the current state as necessary and confirm it on the terminal 21.
- the guardian 23 confirms the call from the terminal 21 by an intercom or the like or by visiting the room.
- the terminal 21 of the person in charge of assistance displays a pictogram showing the state of the target person as shown in FIG. 24 in a form that can list each room.
- the caregiver can confirm the condition of the care recipient on the terminal 21 and decide the procedure of the care work. For example, morning assistance work (breakfast, brushing teeth, changing clothes, etc.) can be carried out in order from the person who is awake, and the person being assisted during sleep can be put off so that the assistance work can be carried out efficiently. Furthermore, it becomes possible to wake up (alarm) at a timing when sleep is light. In this way, by providing assistance in accordance with the life rhythm of the person being assisted, it is possible to improve the efficiency of the assistance work and reduce the burden on the person being assisted. By performing various assistance tasks (for example, medication and changing clothes) in accordance with the life rhythm of the care recipient in addition to getting up, it is possible to reduce the burden on both the caregiver and the care recipient.
- various assistance tasks for example, medication and changing clothes
- the temperature image taken in a normal condition is set to be deleted after the judgment without being saved.
- long-term care facilities there is a desire to save images without erasing them in order to grasp the care status and the situation at the time of an accident or the like.
- the host computer 20 is installed in the facility, but the role of the host computer 20 can be replaced by cloud computing.
- the monitoring monitoring system of the present invention can be useful not only for the monitoring function for the safety of the care recipient but also for the health care of the care recipient through accurate analysis of the daily life of the care recipient.
- facilities such as long-term care facilities and hospitals, care recipients spend most of their lives in private rooms or hospital rooms, so the monitoring and monitoring system of the present invention makes it possible to obtain accurate records of daily life.
- a wristwatch-type or clothing-type wearable sensor may be used for the purpose of monitoring such living conditions, but it is continued because there is resistance to wearing it all the time and the care recipient removes the sensor. There was a problem that it was difficult to monitor.
- wearable sensors need to be charged, replaced with batteries, and collected data at high frequency, which increases the burden on caregivers and has not been widely used in long-term care facilities.
- FIG. 25 shows an example of life analysis.
- FIG. 25 shows the life pattern during the day.
- FIG. 26 shows the daily life record of the month in which the data of FIG. 25 is summarized for one month.
- FIG. 27 shows a monthly life record.
- FIG. 28 shows the indoor walking distance per day. It can be seen that the amount of exercise decreases from the first half to the second half of the month. From FIG. 26, there is a tendency that the activity decreased in the latter half of the month and the time spent in bed increased.
- the monitoring monitoring system of the present invention By using the monitoring monitoring system of the present invention in this way, it is possible to analyze not only the monitoring for the safety of the care recipient but also the data for the long-term health care of the care recipient and use it for health promotion. become. Furthermore, by acquiring such daily life data (life log) and analyzing the data together with other health data (big data analysis), it is possible to acquire data related to lifestyles for maintaining and promoting health. And analysis becomes possible.
- Example 6 As a sixth embodiment of the present invention, an example of a watching service will be described.
- the issue of the monitoring system for safety is the accuracy of abnormality detection. If there are many false positives, the caregiver needs to confirm the safety each time an alarm is issued, which increases the load.
- the system of the present invention makes it possible to check the situation on a mobile terminal without going to the room and reduce the load, but when there are many false positives, the business is interrupted each time and the alarm is always paid attention. The psychological burden is great. In particular, in a system in which an alarm reaches the family, the alarm may be issued 24 hours a day, regardless of the time, which increases the burden on the family.
- the frequency of alarm generation is reduced in order to reduce false positives, the abnormality may be overlooked and the worst result may be obtained. It is extremely important to improve the accuracy of abnormality detection by improving the accuracy of the monitoring monitoring system. Therefore, in the present invention, a thermal imaging device capable of directly detecting the human body is adopted. As a result, the recognition accuracy has been improved, but it is still an important issue to suppress false detections and oversights.
- the watching service staff 23-1 can watch over multiple facilities and houses 24 hours a day. In this case as well, the watching service staff 23-1 does not always watch the image, but when an abnormality occurs, the image before and after the abnormality occurs and the current image are checked, the urgency is judged, and necessary measures are taken.
- the family member and the guardian 23 do not have to respond to all the alarms generated by the monitoring monitoring system, and only need to be contacted and responded when the monitoring service person 23-1 deems it necessary. As a result, the burden on the family and the guardian 23 can be reduced. For the guardian 23, dealing with midnight and holidays has a large psychological and physical burden, and it is considered that reducing the burden by such a service is particularly effective.
- the monitoring service only needs to check the image when an abnormality is detected by the monitoring monitoring system, it is possible to take charge of many facilities at the same time, and it is possible to respond efficiently and promptly.
- IoT Internet of Things
- the watching and monitoring system installed on the bed in the living room, but the installation location is not limited to this.
- it is effective to install a watching monitoring system on the bed because the person to be watched spends most of the time in a private room or a large room in one room with a bed.
- elderly people living alone spend more time outside the bedroom. In such a case, it is necessary to watch over the place other than the bedroom.
- a watching monitoring system using a heat-sensitive imager 10 and in a toilet, corridor, entrance, etc., by combining with a watching monitoring system using a simple pyroelectric sensor, etc., it is possible to watch over the entire house.
- the basic configuration grasping the three-dimensional position of the subject in the room, recognizing the standing, walking, sitting, and lying positions, and monitoring the occurrence of accidents such as falls and the amount of exercise. ..
- the applications are not limited to this. It can also be applied to watching over infants, watching over detainees, and watching over pets. In addition to being used for watching, it can also be used as a surveillance camera to detect humans in streets, stores, and corridors of apartment buildings where ordinary surveillance cameras are used.
- the heat-sensitive image pickup device 10 of the present invention If the heat-sensitive image pickup device 10 of the present invention is used, the existence can be detected even when a person is stationary, so that such a problem does not occur. Further, the number of people in the toilet can be measured, and the usage status of all the private rooms in the toilet can be grasped by one heat-sensitive imaging device 10. By sending this information by wireless communication, it becomes possible to grasp the usage status of the toilet outside the toilet. This makes it possible to display the vacancy status of the toilet outside the toilet, and to check the vacancy status on the mobile terminal and select the toilet.
- the thermal image pickup device 10 of the present invention can be used as a smart remote controller for home appliances.
- home appliances There are many recent home appliances that can be connected to Wifi or Bluetooth, and the behavior of the target person is grasped using the monitoring monitoring system of the present invention, and the home appliances are appropriate for the user's life by wireless communication. Can be controlled to.
- various uses can be considered, such as controlling the air conditioner according to the state of sleep to adjust the room temperature, and turning off the power of lighting, TV, air conditioner, etc. when the subject goes out of the room.
- the installation method of the heat-sensitive image pickup device 10 is not limited to this. It is also possible to invert the positional relationship upside down and install it on the floor or a wall surface near the floor to watch over the room including the ceiling. In monitoring monitoring in an open space without a wall, it is effective to arrange the thermal imaging device 10 on the floor and use it.
- the required visual field area differs between the in-vehicle monitoring system and the indoor monitoring system.
- An in-vehicle system for detecting a pedestrian requires a wide field of view in the horizontal direction. On the other hand, a wide field of view is not required in the vertical direction. In order to prevent entanglement when turning left or right, a field of view of 90 degrees (viewing angle 180 degrees) or more is required on each side with respect to the traveling direction of the vehicle. On the other hand, in the vertical direction, a viewing angle of about 30-40 is sufficient. Therefore, it is required to have different viewing angles in the horizontal direction and the vertical direction.
- the conventional far-infrared camera has a narrow viewing angle of 40-50 °, and its performance is insufficient as a pedestrian detection system. Since the catadioptric system using the convex mirror 2 of the indoor watching monitoring system described so far is designed to widen the viewing angle in both the horizontal direction and the vertical direction, the pixels in the vertical direction cannot be effectively used.
- the field of view can be expanded by using a convex mirror.
- the mirror shape in the horizontal direction and the vertical direction it is possible to control the viewing angle in the vertical direction and the horizontal direction.
- a cylindrical mirror 2-2 is arranged as a convex mirror at an angle of 30 ° with respect to the vertical direction.
- the optical axis 3-4 of the cylindrical mirror 2-2 is defined in the outer peripheral direction of the circle, the angle ⁇ formed by the optical axis 3-4 of the cylindrical mirror 2-2 and the optical axis 3-3 of the far infrared camera 3 is defined.
- the viewing angle in the vertical direction is the vertical viewing angle of the far-infrared camera 3 as shown by the typical ray 6. It will be reflected as it is.
- a stainless steel cylindrical mirror was used as the cylindrical mirror 2-2.
- the far-infrared camera 3 a bolometer-type camera with a viewing angle of 56x42 ° and 160x120 pixels was adopted.
- FIG. 31 shows a view of the cylindrical mirror 2-2 as viewed from the upper part of the cylinder.
- FIG. 31 shows light rays for each viewing angle of 5 ° of the far-infrared camera 3 and light rays reflected by the circular mirror. As can be seen from the light rays reflected by the circular mirror of FIG. 31, it can be seen that the viewing angle is expanded and a wide viewing angle of 180 ° or more is obtained.
- the thermal imaging device 10 is such that the far-infrared camera 3 is arranged off-axis with respect to the cylindrical mirror 2-2 so that the far-infrared camera 3 is not reflected in the center of the image.
- the imaging range of the heat-sensitive image pickup device of the present invention when the heat-sensitive image pickup device 10 for vehicle is attached to the front portion of the roof of the automobile 27 is compared with the case where a normal far-infrared camera is used.
- the area shown by the broken line represents the field of view of a normal far-infrared camera, and the area shown by a solid line represents the field of view when the far-infrared imaging apparatus 10 of FIG. 30 is used.
- a far wider viewing angle of 220 ° is obtained as compared with the viewing angle of 55 ° of a normal far-infrared camera.
- FIG. 33 shows the field of view shown in FIG. 32 with respect to the road.
- the broken line represents the field of view of a normal far-infrared camera, and the solid line represents the field of view when the thermal imaging apparatus 10 of the present invention is used.
- a viewing angle of 55 ° of a normal far-infrared camera it is difficult to detect pedestrians 28 and bicycles 29 near the automobile 27, and it is not possible to detect pedestrians getting caught when turning left or right or jumping out of an intersection with poor visibility. You can see that. Since these accidents account for most of the accidents resulting in injury or death in urban areas, it is particularly important to detect pedestrians 28 and bicycles 29 in the vicinity of the automobile 27.
- the in-vehicle thermal image pickup device 10 of the present invention has a wide viewing angle of 180 ° or more (220 ° in the example of FIG. 33) and can detect pedestrians, motorcycles, and bicycles in the vicinity of the automobile.
- FIG. 34 A far-infrared image of a person on an actual road is shown in FIG. 34.
- the vehicle is in the left lane of the two lanes, and the figure shows the center line, the ends of the left and right lanes, and the distance from the vehicle to the pedestrian. Since the car is in the left lane, the left lane is shot in the center of the screen.
- the distance between the pedestrians on the left and right sidewalks and the car is 50, 20, 10, 5, 2, 0 m. 0 m indicates that there is a pedestrian right next to the thermal image pickup device 10 installed in the vehicle.
- the cylindrical mirror 2-2 Since the cylindrical mirror 2-2 is used, the distortion of the image is large, but it can be seen that the image is taken from a pedestrian at a distance of 20 m from the vehicle to a pedestrian at 0 m (right next to the vehicle). Detection of a pedestrian at a distance of 50 m is difficult from the image of FIG. 34. This is because the resolution of the far-infrared camera used is as low as 160x120 pixels.
- a high-resolution far-infrared camera it is possible to detect pedestrians at a distance of 100 m or more.
- a high-resolution far-infrared camera is expensive, it is necessary to select a camera according to the purpose.
- a low-priced low-pixel far-infrared camera was selected.
- a pedestrian is detected by image recognition, and the driver is alerted as necessary.
- the far-infrared camera can detect a person directly from the body temperature, so that the person can be easily detected. Similar to image recognition with an elderly person watching and monitoring device, it is possible to identify a person with higher accuracy by the temperature, shape, and size on the image.
- an alarm / warning is given to the driver according to the degree of danger.
- Warnings to the driver are given by warning sounds, warning lights, and displays installed in the vehicle.
- the volume and pitch of the alarm sound can be changed according to the degree of danger, or the blinking speed of the alarm light can be changed to give a warning.
- a temperature image can be displayed and a person mark can be displayed on the display to notify the warning.
- a cylindrical mirror 2-2 having a circular cross-sectional shape in the horizontal direction and a straight cross-sectional shape in the vertical direction is used as the reflection mirror, but the present invention is not limited to this.
- the cross-sectional shape in the horizontal direction may be an ellipse, a parabola, or a hyperbola.
- the cross-sectional shape in the vertical direction can be reduced in the viewing angle in the vertical direction and the magnification can be increased by using a concave mirror.
- the detection sensitivity of a distant pedestrian can be increased by increasing the magnification at the center of the screen.
- the concave shape of the lens at this time can also be selected from a circular shape, an ellipse, a parabola, a hyperbolic shape, and the like.
- FIG. 35 shows an example in which the saddle-shaped mirror 2-3 is adopted.
- a quadric curved surface called a hyperbolic paraboloid was adopted.
- the cross section in the horizontal direction is a convex mirror, and the viewing angle is enlarged as shown in FIG.
- the vertical direction is a concave mirror, and the viewing angle is reduced.
- the narrow viewing angle means that the image can be captured at high magnification, which means that the detection performance of pedestrians in the distance is improved.
- the magnification can be controlled by the position on the screen. For example, by increasing the curvature of the concave mirror in the vertical direction at the center of the screen and decreasing it toward the outer circumference, the magnification at the center of the screen can be increased.
- the thermal imaging device 10 Since the thermal imaging device 10 is installed in the direction of travel of the automobile, the road in the direction of travel is photographed in the center of the screen. As shown in FIG. 34, a distant pedestrian is always shown in the center of the screen. By increasing the curvature of the concave mirror in the vertical direction at the center of the screen, it is possible to image a distant pedestrian with high sensitivity.
- the cross-sectional shape of the convex mirror in the horizontal direction can be increased in magnification toward the periphery of the screen with respect to the center of the screen by decreasing the curvature from a circle to a parabola, a hyperbola, and the outer periphery. ..
- the pedestrian in the vicinity of the screen is close to the vehicle, so that the pedestrian is photographed sufficiently large as shown in FIG. 34.
- a cylindrical mirror 2-2 having a circular cross-sectional shape in the horizontal direction of the convex mirror was adopted.
- a desired viewing angle can be designed by controlling the surface shape of the mirror. Although it is costly to manufacture a mirror having a complicated surface shape, it is possible to manufacture a mirror having an arbitrary shape at a relatively low cost by depositing a metal film on a plastic material which has been injection-molded. Further, since the far-infrared light wavelength is 10 times or more the visible light wavelength, the requirement for mirror processing accuracy can be relaxed by an order of magnitude or more. Another advantage of using a far-infrared catadioptric system is that the manufacturing cost of the mirror can be reduced.
- Adopting a high-pixel far-infrared camera to improve the detection performance of pedestrians in the distance will lead to a significant cost increase.
- changing the mirror shape can be realized at a relatively low cost.
- the shape of the reflection mirror can be designed according to the performance required for the in-vehicle monitoring device.
- the heat-sensitive image pickup device 10 is installed toward the front in the traveling direction here, it is also possible to install the heat-sensitive imaging device 10 toward the opposite side in the traveling direction to detect a pedestrian behind. ..
- an embodiment attached to the front outside of the vehicle to detect a pedestrian on the road was shown.
- an embodiment of a thermal imaging device that can be attached to the inside of a vehicle to monitor a driver or a passenger will be described.
- the problem of driver / passenger monitoring using a conventional camera is the change in the brightness inside the vehicle.
- the lighting environment inside the vehicle changes drastically from a dark condition at night to a bright condition in direct sunlight.
- a large difference in brightness occurs in the image, which makes it difficult for the camera to recognize it.
- FIG. 36 shows an installation example of the thermal image pickup device 10.
- the thermal image pickup device 10 is installed in the vicinity of the windshield 25 on the rearview mirror 26 of the automobile toward the room.
- the cylindrical mirror 2-2 is used to widen the viewing angle in the horizontal direction.
- the heat-sensitive image pickup device 10 is attached to the roof 24 portion of the automobile, and the cylindrical mirror 2-2 is vertically attached so that the field of view looks down.
- FIG. 37 shows a temperature image of the inside of the vehicle taken by the thermal image pickup device 10 of FIG. 36.
- the image is reduced in half in the vertical direction for easier viewing. It can be seen that the driver 30 and the three passengers 31 (the passenger in the passenger seat and the two passengers in the back seat) are photographed. Since the person is detected from the body temperature, only the passenger is photographed, and only the person is photographed.
- the driver 30 is wearing glasses. Since the temperature of the glasses is lower than the body temperature, they appear black. It can also be recognized from the image that the driver 30 is raising the index finger of his left hand. From the direction of the driver 30's face, it is possible to prevent the driver from looking away and to operate the audio device by recognizing the shape and movement of the passenger's hand. Even from low-resolution temperature images, personal authentication was possible by utilizing face recognition technology based on machine learning.
- the heat-sensitive image pickup device 10 of the present invention for in-vehicle monitoring, it has become possible to monitor not only the driver 30 but also the passenger 31. As a result, it is possible to reduce accidents by monitoring the degree of attention and drowsiness of the driver 30. Furthermore, the position and movement of not only the driver 30 but also the passenger are monitored, music suitable for the passenger is selected using the passenger's face recognition function, and the movement and shape of the passenger's hand are recognized by hand gesture recognition. It becomes possible to operate the in-vehicle device. Further, in the thermal imaging device 10, it is possible to control the optimum temperature and air volume of the air conditioner for each passenger from the body surface temperature of the passenger. By enabling fine-tuned control for each passenger, comfort during boarding can be improved. In addition, when a child is placed in the back seat, the behavior and state of the child can be grasped from the driver's seat.
- driver monitoring using the thermal imaging device 10 of the present invention there is another usage for driver monitoring using the thermal imaging device 10 of the present invention. It is an evaluation of driving stress. It is known that driving stress can be evaluated by measuring the temperature change of the nose, and research is underway (for example, Yamakoshi et al., "A trial of driving stress evaluation using differential facial skin radiation temperature”. -Basic study based on monotonous driving stress load ", Biomedical Engineering, 48 (2), pp.163, 2010). It is known that driving performance deteriorates when driving stress is too high or too low, and it is important to understand the stress state during driving in order to realize safe driving.
- the driver's stress was measured using the thermal image pickup device 10 shown in FIG. 36. Stress causes contraction of peripheral blood vessels, which lowers the skin temperature in the peripheral area.
- the temperature difference between the forehead surface temperature, which has a strong correlation with the trunk temperature, and the nose temperature, which represents the skin temperature of the peripheral part was measured to evaluate the driving stress.
- the driver's forehead and nose areas were recognized by image recognition of the temperature image, and the temperature difference was calculated from the temperature of each part.
- the facial temperature was evaluated by the thermal image pickup device 10 while running for 60 minutes in the drive simulator. It was confirmed that the nasal temperature gradually decreased by performing monotonous driving. Using the temperature difference between the forehead temperature and the nose temperature as an index, it has become possible to evaluate stress and warn the driver.
- the heat-sensitive image pickup device 10 of the present invention can be used for such an application. Since people and pets can be selectively detected from body temperature even in an environment where various objects exist, it is possible to drive safely at a distance from people and pets. Unlike obstacles that do not move, people and pets can move suddenly and have a large impact in the event of an accident, so you should drive at a greater distance from people and pets than normal obstacles, or speed up. It is especially important to drop the vehicle to ensure safety. By using the heat-sensitive image pickup device 10 of the present invention, people and pets can be reliably recognized in a wide range in the traveling direction, so that safe autonomous driving can be realized.
- FIG. 38 shows an application example to an autonomous driving vehicle for delivery.
- the thermal imaging device 10 is mounted on the roof in front of the vehicle.
- Other sensors such as a normal camera and a proximity sensor can be arranged in the vicinity of the thermal image pickup device 10.
- the thermal imaging device 10 recognizes people and pets in the direction of travel in real time, and the arithmetic unit connected to the device makes it possible to drive safely while changing the driving route.
- the monitoring monitoring system using the thermal imaging device, the thermal imaging device, and the monitoring monitoring method using the thermal imaging device of the present invention are used for monitoring and healthcare of elderly people, pedestrian detection of vehicles, and passengers. Useful for monitoring applications.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Closed-Circuit Television Systems (AREA)
- Alarm Systems (AREA)
- Structure And Mechanism Of Cameras (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Emergency Alarm Devices (AREA)
- Studio Devices (AREA)
Abstract
[Problem] To provide an object person watching and monitoring system with high reliability at a wide viewing angle. [Solution] High-reliability watching and monitoring is achieved by determining the position, posture, action, situation, and the like of an object person by analyzing a temperature image outputted from a thermosensitive imaging device having a catadioptric system including a convex mirror disposed outside the axis.
Description
本発明は、感熱式撮像装置、感熱式撮像装置を用いた見守り監視システムおよび感熱式撮像装置を用いた見守り監視方法に関する。
The present invention relates to a thermal imaging device, a monitoring monitoring system using a thermal imaging device, and a monitoring monitoring method using a thermal imaging device.
高齢化社会の進行に伴い介護を必要とする高齢者、一人暮らしの高齢者が増加している。このような高齢者の日常の安全と健康を守るための適切な支援が求められている。認知症患者や介護施設などの入所者、入院中の患者、一人暮らしの高齢者などに個室内で体調不良あるいは転倒・転落などの事故が発生した際に、家族や介護者が気付かず対処が遅れた場合には、症状が重篤化し、最悪の場合死に至るような事象が発生する。
With the progress of the aging society, the number of elderly people who need long-term care and elderly people living alone is increasing. Appropriate support is required to protect the daily safety and health of such elderly people. When an accident such as a dementia patient, a resident of a long-term care facility, a hospitalized patient, an elderly person living alone, or an accident such as a fall or a fall occurs in a private room, the family or the caregiver does not notice and the response is delayed. In such cases, the symptoms become severe and, in the worst case, fatal events occur.
このような個室内での、発病や事故を早期に見出すため、さまざまな個室内見守りシステムが提案されている。高齢者見守りシステムには、センサを用いて見守り対象者の状態を検知する方式と、ビデオカメラなどの映像により対象者の状態を観察する方式がある。
Various private room monitoring systems have been proposed in order to detect illnesses and accidents in such private rooms at an early stage. The elderly watching system includes a method of detecting the state of the person being watched over by using a sensor and a method of observing the state of the person being watched by an image such as a video camera.
センサを用いる方式では、例えば焦電式赤外線センサ、感圧センサ、光学センサ、超音波センサなどの複数のセンサによって、対象者の状態を検出し、検出した状態を通知する技術が提案されている(特許文献1)。一方、対象者を撮影した映像を用いて対象者の状態を認識する技術としては、対象者を撮影した映像を介助者に中継する技術も提案されている(特許文献2参照)。
In the method using sensors, a technique has been proposed in which the state of the target person is detected by a plurality of sensors such as a pyroelectric infrared sensor, a pressure sensitive sensor, an optical sensor, and an ultrasonic sensor, and the detected state is notified. (Patent Document 1). On the other hand, as a technique for recognizing the state of a subject using an image of the subject, a technique of relaying the image of the subject to a caregiver has also been proposed (see Patent Document 2).
このような高齢者見守り監視システムにより、見守り対象者に関する生体情報や行動が把握できれば、高齢者の安全確保だけでなく、健康増進やヘルスケアに役立てることが期待される。
If the biometric information and behavior of the elderly person to be watched can be grasped by such an elderly person watching and monitoring system, it is expected to be useful not only for ensuring the safety of the elderly but also for health promotion and health care.
また、交通事故死者数は減少傾向にあるとはいえ、依然として年間3000人を超えている。日本の交通事故死者の特徴は、歩行中・自転車運転中の事故の割合が高いことである。特に、夜間は歩行者・自転車の事故が増加する。これは、夜間には昼に比べて、歩行者や自転車を見つけづらくなるためである。このような、課題を解決するために、夜間でも体温から歩行者を検知できる遠赤外カメラ(サーモグラフィカメラ)を搭載した車両が開発され、すでに販売されている(特許文献3参照)。
Although the number of fatalities in traffic accidents is declining, it still exceeds 3,000 a year. A characteristic of traffic fatalities in Japan is the high rate of accidents while walking or riding a bicycle. In particular, pedestrian and bicycle accidents increase at night. This is because it is harder to find pedestrians and bicycles at night than at noon. In order to solve such a problem, a vehicle equipped with a far-infrared camera (thermography camera) capable of detecting a pedestrian from body temperature even at night has been developed and is already on the market (see Patent Document 3).
従来の高齢者見守りシステムのうち、感圧センサや光学センサなどの単機能のセンサが起床や離床などの特定の動作を検出するために用いられており、そのような動作が行われた際に警報を発生する。このような単純なセンサでは、見守り対象者の詳細な状況が判定できないため、本当に介助が必要な状況かについて正確な判定が困難である。このため、必要のない警報の発生が多く発生し、介助者の負担が大きくなるという問題があった。
Among conventional elderly watching systems, single-function sensors such as pressure-sensitive sensors and optical sensors are used to detect specific movements such as getting up and getting out of bed, and when such movements are performed, Generate an alarm. With such a simple sensor, it is not possible to determine the detailed situation of the person to be watched over, so it is difficult to accurately determine whether the situation really requires assistance. For this reason, there is a problem that many unnecessary alarms are generated and the burden on the caregiver is increased.
また、センサの設定によっては検出されるべき行動が見逃されることも少なくなかった。より詳細に対象者の行動を見守るための方法としては、ビデオカメラを用いた行動監視システムが実用化されている。しかし、ビデオカメラを用いた監視はプライバシーの問題が大きく、高齢者の生活空間で広く用いられるようになっていない。これは見守り対象者の心理的な抵抗が大きいこと、介助者側の画像確認の肉体的・心理的な負担が大きいこと、画像等の流出のリスクなどの問題があるためである。また、単純に画像を中継するだけでは、常時画像を監視している必要があり、介護者の負荷が大きく見逃しのリスクを伴うという問題があった。
Also, depending on the sensor settings, the behavior that should be detected was often overlooked. As a method for monitoring the behavior of the subject in more detail, a behavior monitoring system using a video camera has been put into practical use. However, surveillance using a video camera has a large privacy problem and has not been widely used in the living space of the elderly. This is because there are problems such as a large psychological resistance of the person being watched over, a large physical and psychological burden on the caregiver to confirm the image, and a risk of leakage of images and the like. Further, if the image is simply relayed, it is necessary to constantly monitor the image, which causes a problem that the burden on the caregiver is heavy and there is a risk of overlooking.
このような課題を解決するために、画像認識プログラムを用いて対象者の通常とは異なる行動や、危険な状態を判定して警告するようなシステムも提案されている。しかし、このようなシステムについても、複雑な画像から適切に対象者の事故や異常を検出することは困難で、見逃しや誤報が発生するという課題があった。また、異常な状態を検出した後は、介助者が実際の画像を見て介助の必要性を判断する必要があり、ここでもプライバシーの問題が発生するという問題があった。
In order to solve such problems, a system has been proposed that uses an image recognition program to determine and warn the subject's unusual behavior or dangerous state. However, even with such a system, it is difficult to appropriately detect an accident or abnormality of the subject from a complicated image, and there is a problem that an oversight or a false alarm occurs. In addition, after detecting an abnormal state, it is necessary for the caregiver to judge the necessity of assistance by looking at the actual image, and there is also a problem that a privacy problem occurs here.
さらに、ビデオカメラを用いて見守りを行う際には、室内にさまざまな物が存在している中で対象となる人とその行動を認識するために、高解像度の画像が必要となる。高解像度の画像の使用がプライバシーの問題を生じる原因となる。また高解像度画像をコンピュータにより解析し、見守り対象者の位置や行動を認識するための画像認識には計算能力の大きいコンピュータが必要となる。このため室内にビデオカメラを用いた見守り監視システムでは、画像を個室外のホストコンピュータに送りそこで画像監視や画像認識が行われることが多い。このような画像の中継のためには高価格の画像送信装置とホストコンピュータが必要であり、同時に画像流出のリスクを伴う。
Furthermore, when watching over using a video camera, a high-resolution image is required to recognize the target person and their behavior in the presence of various objects in the room. The use of high resolution images causes privacy issues. In addition, a computer with a large computing power is required for image recognition for analyzing a high-resolution image with a computer and recognizing the position and behavior of the person being watched over. For this reason, in a watching monitoring system using a video camera indoors, an image is often sent to a host computer outside the private room where image monitoring and image recognition are performed. A high-priced image transmission device and a host computer are required for relaying such images, and at the same time, there is a risk of image leakage.
プライバシーに配慮しながら、高精度に対象者の現在の状況を把握し、介助の必要な状況を的確に検出して警報を発することのできる見守り監視システムが求められている。また、見守り監視システムは、見守り対象者の日常行動や介助動作の妨げにならないように、小型で対象者及び介助者の日常生活の動線を妨げないように配置されていることが望ましい。さらに、介護・見守り費用を抑制できるようにシステムは簡単な構成で安価であることが望ましい。
There is a need for a monitoring monitoring system that can accurately grasp the current situation of the target person while giving consideration to privacy, accurately detect the situation requiring assistance, and issue an alarm. In addition, it is desirable that the watching monitoring system is small and arranged so as not to interfere with the daily activities and assisting movements of the monitoring target person and not to interfere with the daily life of the target person and the caregiver. Furthermore, it is desirable that the system has a simple configuration and is inexpensive so that the cost of nursing care and watching can be suppressed.
次に、既存の車載監視モニタシステムの課題について述べる。既存の遠赤外カメラを用いた車載監視システムの課題は視野角が狭いことである。現在市販されている、車載用遠赤外カメラの視野角は40度以下であり、遠方の歩行者や動物を検知するためのシステムとなっている。これは従来の遠赤外カメラの視野が狭く、広い視野を実現することができなかったためである。
Next, the issues of the existing in-vehicle monitoring monitor system will be described. The problem with in-vehicle surveillance systems using existing far-infrared cameras is that the viewing angle is narrow. The viewing angle of an in-vehicle far-infrared camera currently on the market is 40 degrees or less, and it is a system for detecting pedestrians and animals in the distance. This is because the field of view of the conventional far-infrared camera is narrow and it is not possible to realize a wide field of view.
自動車と歩行者・自転車の事故は街中で起こることが多く、特に右左折時の巻き込みや横断歩行者の見落としが原因となることが多い。これらの事故を防止するためには車両の近傍の歩行者・自転車を検知できることが重要である。そのためには、広い視野で車両の近傍をモニタ出来ることが重要である。
Accidents between automobiles and pedestrians / bicycles often occur in the city, especially when turning left or right, and often caused by oversight of crossing pedestrians. In order to prevent these accidents, it is important to be able to detect pedestrians and bicycles in the vicinity of the vehicle. For that purpose, it is important to be able to monitor the vicinity of the vehicle with a wide field of view.
本発明は、簡易な構成により広い視野で、対象者を検知可能な感熱式撮像装置、見守り監視システムおよび見守り監視方法を提供することを目的とする。
An object of the present invention is to provide a thermal imaging device, a watching monitoring system, and a watching monitoring method that can detect a target person in a wide field of view with a simple configuration.
上述の課題を解決するために、本発明では広い視野角で撮影が可能な、遠赤外カメラ(サーモグラフィ)を用いて見守り監視を行う。遠赤外カメラは物体から放出される遠赤外線のエネルギーから計算される温度分布を画像として撮像する装置である。人間には体温があり、通常の環境温度よりも高温であるため、体温から人間を選択的に検出できる。このため通常のビデオカメラのように、画像の中から人間を認識するために高解像度の画像を取得する必要がなく、低解像度の温度画像から人間を選択的に検出できるため、認識エラーが少なくコンピュータの演算負荷を低減できる。このため、演算能力の小さなコンピュータで処理ができ、システムの低価格化、小型化が実現できる。
In order to solve the above-mentioned problems, in the present invention, monitoring is performed using a far-infrared camera (thermography) capable of photographing in a wide viewing angle. A far-infrared camera is a device that captures a temperature distribution calculated from the energy of far-infrared rays emitted from an object as an image. Since humans have a body temperature, which is higher than the normal environmental temperature, humans can be selectively detected from the body temperature. Therefore, unlike a normal video camera, it is not necessary to acquire a high-resolution image to recognize a human from the image, and a human can be selectively detected from a low-resolution temperature image, so that there are few recognition errors. The computing load on the computer can be reduced. Therefore, processing can be performed by a computer having a small computing power, and the system can be reduced in price and size.
体温から直接人を検知できるため、遠赤外カメラを用いた見守り監視装置は、従来から提案されている。このような遠赤外カメラを用いた見守り監視システムの課題は、遠赤外カメラの撮像範囲が狭いことにあった。市販されている遠赤外カメラの視野角は40~60°程度であるため、広範囲の見守り監視は困難であった。例えば、高齢者見守りシステムの例として、「非特許文献:高木他「温度センサを用いた高齢者の見守り」、DEIM2016, P6-1, 2016」がある。このシステムではベッド上の天井やベッドに対向する壁面に遠赤外カメラを設置し、ベッド上での行動(ベッドからの転落検知など)を見守るシステムが提案されていた。このようなシステムでは、見守り範囲がベッド上に限定されるという課題があった。
Since a person can be detected directly from the body temperature, a monitoring device using a far-infrared camera has been conventionally proposed. The problem of the monitoring monitoring system using such a far-infrared camera is that the imaging range of the far-infrared camera is narrow. Since the viewing angle of a commercially available far-infrared camera is about 40 to 60 °, it is difficult to monitor and monitor a wide range. For example, as an example of an elderly person watching system, there is "Non-patent document: Takagi et al." Watching elderly people using a temperature sensor ", DEIM2016, P6-1, 2016". In this system, a far-infrared camera was installed on the ceiling on the bed or on the wall surface facing the bed to monitor the behavior on the bed (such as detection of falling from the bed). In such a system, there is a problem that the watching range is limited to the bed.
自動車の前方監視の例としては、BMW 7シリーズに搭載されたAutoliv社製の遠赤外カメラを用いたナイトビジョンシステムがある。このシステムでは、通常走行時の視野角は36度、高速運転時は視野角24度に設定されている。このため、遠方の歩行者や動物を検知することはできるが、近距離の歩行者を検知することはできなかった。この理由も従来の遠赤外カメラの視野が狭く、広い視野を実現することができなかったためである。
An example of forward monitoring of an automobile is a night vision system using a far-infrared camera manufactured by Autoliv installed in the BMW 7 series. In this system, the viewing angle is set to 36 degrees during normal driving and 24 degrees during high-speed driving. Therefore, although it was possible to detect pedestrians and animals in the distance, it was not possible to detect pedestrians in the short distance. This is also because the field of view of the conventional far-infrared camera is narrow and a wide field of view cannot be realized.
遠赤外カメラの視野が狭く、限定された領域しか見守り監視ができないという課題を解決するために、遠赤外カメラをモーターで走査し広範囲を撮影するという研究も行われている(非特許文献:島村、「空間センサを用いた人の位置及び状態把握」、法政大学大学院紀要,5, 2016-03-24)。このような方式では、可動部分を含むため装置が複雑で故障の発生が懸念されること、画像を繋ぎ合わせる処理が必要で、全領域の画像を取得するのに時間を要するために緊急事態を見逃すリスクがあるというがあった。
In order to solve the problem that the field of view of a far-infrared camera is narrow and it is possible to monitor and monitor only a limited area, research is being conducted on scanning a far-infrared camera with a motor to capture a wide range (non-patent documents). : Shimamura, "Understanding the Position and State of People Using Spatial Sensors", Bulletin of Hosei University Graduate School, 5, 2016-03-24). In such a method, since the device includes moving parts, the device is complicated and there is a concern that a failure may occur. In addition, it is necessary to perform a process of stitching images together, and it takes time to acquire an image of the entire area. There was a risk of overlooking.
遠赤外カメラと光軸上に配置した曲面ミラーを組み合わせて、視野角の広い監視装置を実現した例も報告されている(非特許文献:Wong Wai Kit他, ”Omnidirectional Thermal
Imaging Surveillance System Featuring Trespasser and Faint Detection”,
International Journal of Image Processing, Vol 4(6), pp.518 (2011).)。この例では、双曲面ミラーを遠赤外カメラの光軸上に配置して広い視野を実現している。この方式には、視野中心に死角が発生するという課題がある。 An example of realizing a monitoring device with a wide viewing angle by combining a far-infrared camera and a curved mirror arranged on the optical axis has also been reported (Non-patent document: Wong Wai Kit et al., "Omnidirectional Thermal".
Imaging Surveillance System Featuring Trespasser and Faint Detection ”,
International Journal of Image Processing, Vol 4 (6), pp.518 (2011).). In this example, a hyperboloid mirror is arranged on the optical axis of the far-infrared camera to realize a wide field of view. This method has a problem that a blind spot is generated in the center of the visual field.
Imaging Surveillance System Featuring Trespasser and Faint Detection”,
International Journal of Image Processing, Vol 4(6), pp.518 (2011).)。この例では、双曲面ミラーを遠赤外カメラの光軸上に配置して広い視野を実現している。この方式には、視野中心に死角が発生するという課題がある。 An example of realizing a monitoring device with a wide viewing angle by combining a far-infrared camera and a curved mirror arranged on the optical axis has also been reported (Non-patent document: Wong Wai Kit et al., "Omnidirectional Thermal".
Imaging Surveillance System Featuring Trespasser and Faint Detection ”,
International Journal of Image Processing, Vol 4 (6), pp.518 (2011).). In this example, a hyperboloid mirror is arranged on the optical axis of the far-infrared camera to realize a wide field of view. This method has a problem that a blind spot is generated in the center of the visual field.
室内全領域を死角なしに同時に撮像できる遠赤外カメラが実現できれば、これらの課題を解決して、実用的な遠赤外カメラを実現することができる。本発明では、光軸外し反射屈折型の光学系を有する感熱式撮像装置を用いることで、死角のない広い領域を撮像範囲とした感熱式撮像装置を実現し、この装置を用いた見守り監視システムを実現した。
If a far-infrared camera that can simultaneously image the entire indoor area without blind spots can be realized, these problems can be solved and a practical far-infrared camera can be realized. In the present invention, by using a heat-sensitive image pickup device having a reflection-refraction type optical system off the optical axis, a heat-sensitive image pickup device having an imaging range in a wide area without a blind spot is realized, and a monitoring monitoring system using this device is realized. Was realized.
光軸外し反射屈折型の光学系を有する感熱式撮像装置を用いることで、死角なしに広い撮像範囲を実現することができる。感熱式撮像装置は低解像度の画像から、人間を選択的に検出できるため、画像認識が容易になり認識精度を高められるという利点がある。
By using a heat-sensitive image pickup device that has an optical system that is off-axis and reflects and refracts, a wide imaging range can be realized without blind spots. Since the thermal image pickup device can selectively detect a human from a low-resolution image, there is an advantage that image recognition becomes easy and recognition accuracy can be improved.
見守りのための感熱式撮像装置について
About the thermal imaging device for watching
図1を用いて室内全域を撮像範囲とした感熱式撮像装置10について説明する。感熱式撮像装置10は、撮像レンズ3-1と遠赤外アレーセンサ3-2からなる遠赤外カメラ3と、凸面ミラー2、遠赤外カメラ3と配線4で接続されたシングルボードコンピュータ5がフレーム1により一体化されている。ここで、特徴的なのは遠赤外光の光学系が、屈折を利用する撮像レンズ3-1と反射を利用する凸面ミラー2を組み合わせた光軸外し反射屈折型の光学装置となっている点である。ここで光軸外し光学系とは、遠赤外カメラ3の光軸3-3に対し、凸面ミラー2の光軸3-4が傾斜して配置されていることを意味している。凸面ミラー2は軸対称な3次元形状を有している。凸面ミラー2の反射を用いることにより、遠赤外カメラ3の視野角が拡大され、より広範囲が撮像されるようになっていることがわかる。この感熱式撮像装置10を天井付近の壁面に設置した場合、代表的な光線6で示されるように天井領域と壁面のほぼ全領域を含む広い視野が得られることがわかる。
The heat-sensitive imaging device 10 having an imaging range of the entire room will be described with reference to FIG. The heat-sensitive image pickup device 10 is a single board computer 5 connected to a far-infrared camera 3 including an image pickup lens 3-1 and a far-infrared array sensor 3-2, a convex mirror 2, a far-infrared camera 3, and a wiring 4. Is integrated by the frame 1. Here, the characteristic is that the optical system of far-infrared light is an off-axis reflection-refraction type optical device that combines an image pickup lens 3-1 that utilizes refraction and a convex mirror 2 that utilizes reflection. is there. Here, the optical axis off-axis optical system means that the optical axis 3-4 of the convex mirror 2 is inclined with respect to the optical axis 3-3 of the far-infrared camera 3. The convex mirror 2 has an axisymmetric three-dimensional shape. It can be seen that by using the reflection of the convex mirror 2, the viewing angle of the far-infrared camera 3 is expanded so that a wider range can be imaged. When the thermal imaging device 10 is installed on a wall surface near the ceiling, it can be seen that a wide field of view including the ceiling region and almost the entire wall surface region can be obtained as shown by the typical light beam 6.
凸面ミラー2は回転対称形状を有しているため、図1の紙面の奥行方向に対しても広い視野を有している。凸面ミラー2の反射を利用して広い撮像範囲を実現した感熱式撮像装置としては、図2に示すような凸面ミラー2を遠赤外カメラ3の上に光軸を合わせて配置して、遠赤外カメラ3を全方位化(360度視野化)するという試みが報告されている(非特許文献:成松英一、「室内における人物の発見、追跡のための全方位サーモグラフの開発」、日本ロボット学会第21回学術講演会予稿集, 2003)。図2の例では凸面ミラー2として双曲面ミラーを用いている。このような凸面ミラー2と遠赤外カメラ3の光軸を一致させて配置した構成の光学系では、視野中心に遠赤外カメラ3が写りこんでしまうために死角が生じるという問題があり、見守り用途では使用できないという課題があった。
Since the convex mirror 2 has a rotationally symmetric shape, it has a wide field of view even in the depth direction of the paper surface of FIG. As a heat-sensitive imaging device that realizes a wide imaging range by utilizing the reflection of the convex mirror 2, the convex mirror 2 as shown in FIG. 2 is arranged on the far infrared camera 3 with the optical axis aligned, and is far away. An attempt to make the infrared camera 3 omnidirectional (360-degree field of view) has been reported (Non-patent document: Eiichi Narimatsu, "Development of omnidirectional thermograph for finding and tracking people indoors", Proceedings of the 21st Annual Meeting of the Robotics Society of Japan, 2003). In the example of FIG. 2, a hyperboloid mirror is used as the convex mirror 2. In an optical system having such a configuration in which the optical axes of the convex mirror 2 and the far-infrared camera 3 are aligned with each other, there is a problem that a blind spot occurs because the far-infrared camera 3 is reflected in the center of the field of view. There was a problem that it could not be used for watching purposes.
この課題を解決するために、本発明では遠赤外カメラ3を凸面ミラー2に対して傾斜して配置した、図1に示すように、光軸外し反射屈折型の光学系とすることで死角なしで広範囲の画像が取得できるようになっている。凸面ミラー2を用いることで、遠赤外カメラ3の視野角に比べて視野角が広がっていることがわかる。さらに、図3を用いて凸面ミラー2を用いた反射屈折光学系について詳細に説明する。凸面ミラー2の光軸3-4に対し、遠赤外カメラ3の光軸3-3は傾いて配置されている。
In order to solve this problem, in the present invention, the far-infrared camera 3 is arranged at an angle with respect to the convex mirror 2, and as shown in FIG. 1, a blind spot is provided by using a reflection-refraction type optical system off the optical axis. A wide range of images can be acquired without it. It can be seen that by using the convex mirror 2, the viewing angle is wider than the viewing angle of the far infrared camera 3. Further, the catadioptric system using the convex mirror 2 will be described in detail with reference to FIG. The optical axis 3-3 of the far-infrared camera 3 is tilted with respect to the optical axis 3-4 of the convex mirror 2.
この時、凸面ミラー2による有効な撮像範囲は、撮像レンズ3-1の射出瞳中心点3-3を通る凸面ミラー2の法線方向の光線6-1と、撮像レンズ3-1の射出瞳中心点3-3を通る凸面ミラー2の接線方向の光線6-2の範囲内となる。
At this time, the effective imaging range of the convex mirror 2 is the light beam 6-1 in the normal direction of the convex mirror 2 passing through the exit pupil center point 3-3 of the imaging lens 3-1 and the exit pupil of the imaging lens 3-1. It is within the range of the light beam 6-2 in the tangential direction of the convex mirror 2 passing through the center point 3-3.
遠赤外カメラ3の光軸3-3と凸面ミラー2の光軸3-4の成す角をαとし、遠赤外カメラ3の全視野角をθとすると、凸面ミラー2の法線方向の光線6-1が視野内に含まれるためには、θ/2 <α
という条件を満たす必要がある。 Assuming that the angle formed by the optical axis 3-3 of the far-infrared camera 3 and the optical axis 3-4 of the convex mirror 2 is α and the total viewing angle of the far-infrared camera 3 is θ, the direction of the normal direction of the convex mirror 2 is In order for the ray 6-1 to be included in the field of view, θ / 2 <α
It is necessary to satisfy the condition.
という条件を満たす必要がある。 Assuming that the angle formed by the optical axis 3-3 of the far-
It is necessary to satisfy the condition.
一方、凸面ミラー2の接線方向の光線6-2が水平方向よりも上方を向くためには、θ/2 <
π/2 -α という条件を満たす必要がある。これは、接線の光線6-2が水平方向よりも下向きとなると、感熱式撮像装置10が設置された壁面に対向する壁面に死角が生じてしまうことを避けるためである。 On the other hand, in order for the tangential ray 6-2 of theconvex mirror 2 to point upward from the horizontal direction, θ / 2 <.
It is necessary to satisfy the condition of π / 2 -α. This is to prevent a blind spot from being generated on the wall surface facing the wall surface on which the thermalimage pickup device 10 is installed when the tangential ray 6-2 is directed downward from the horizontal direction.
π/2 -α という条件を満たす必要がある。これは、接線の光線6-2が水平方向よりも下向きとなると、感熱式撮像装置10が設置された壁面に対向する壁面に死角が生じてしまうことを避けるためである。 On the other hand, in order for the tangential ray 6-2 of the
It is necessary to satisfy the condition of π / 2 -α. This is to prevent a blind spot from being generated on the wall surface facing the wall surface on which the thermal
前記二つの条件をともに満たすためには、凸面ミラー2の光軸3-4と遠赤外カメラ3の光軸3-3のなす角αは、θ/2 <α<(π-θ)/2 の関係を満たす必要がある。遠赤外カメラ3の視野角が水平方向と垂直方向で異なる場合があるが、その場合θは、小さいほうの視野角に相当する。
In order to satisfy both of the above two conditions, the angle α formed by the optical axis 3-4 of the convex mirror 2 and the optical axis 3-3 of the far-infrared camera 3 is θ / 2 <α <(π-θ) /. It is necessary to satisfy the relationship of 2. The viewing angle of the far-infrared camera 3 may differ between the horizontal direction and the vertical direction, in which case θ corresponds to the smaller viewing angle.
次に、凸面ミラー2の形状について述べる。凸面ミラー2を用いることで広い視野角が得られるが、画像の歪が大きくなる。ミラー形状を変えることで、この画像の歪の特性を制御することが可能になる。 例えば画像内の注目領域を拡大して撮影することが可能になる。
Next, the shape of the convex mirror 2 will be described. A wide viewing angle can be obtained by using the convex mirror 2, but the distortion of the image becomes large. By changing the mirror shape, it is possible to control the distortion characteristics of this image. For example, it is possible to magnify the area of interest in the image and shoot.
高齢者の見守り用途では、ベッド上の解像度を高めることが重要となる。高齢者はベッド上で過ごす時間が長く、健康状態の把握のために睡眠データの取得が重要であるためである。感熱式撮像装置10の撮像画面内でベッドが撮影される部分の倍率を上げることで、高精度に睡眠をデータ化できる。
It is important to increase the resolution on the bed for watching over the elderly. This is because elderly people spend a lot of time on the bed, and it is important to acquire sleep data in order to understand their health condition. By increasing the magnification of the part where the bed is photographed in the image pickup screen of the thermal image pickup device 10, sleep can be converted into data with high accuracy.
凸面ミラー2の断面形状としては、図4に示すように扁平楕円、円、楕円、放物線、双曲線などが考えられる。図に示した曲線はX=0での曲率を一定とした図形で比較している。ミラーの効果を比較するために、球面ミラーと放物面ミラーの反射光線を図5に示した。直線が球面ミラー、破線が放物面ミラーの反射光線を示している。光線は、遠赤外カメラから視野角2.5°毎の光線のミラーでの反射を示している。
As the cross-sectional shape of the convex mirror 2, a flat ellipse, a circle, an ellipse, a parabola, a hyperbola, or the like can be considered as shown in FIG. The curves shown in the figure are compared with figures in which the curvature at X = 0 is constant. In order to compare the effects of the mirrors, the reflected rays of the spherical mirror and the parabolic mirror are shown in FIG. The straight line shows the spherical mirror, and the broken line shows the reflected light beam of the parabolic mirror. The light rays show the reflection of the light rays from the far-infrared camera at every 2.5 ° viewing angle on the mirror.
球面ミラーと放物面ミラーの反射光線を比較すると、凸面ミラー下部(X=0の周辺)で反射される光線はほとんど変わらないが、ミラーの外周部にいくにつれて放物面ミラーの反射光線間の角度が小さくなっている(倍率が上がっている)ことがわかる。凸面ミラーの形状を変えることで、画面内の相対的な倍率を制御できることがわかる。
Comparing the reflected rays of the spherical mirror and the parabolic mirror, the rays reflected at the lower part of the convex mirror (around X = 0) are almost the same, but between the reflected rays of the parabolic mirror toward the outer periphery of the mirror. It can be seen that the angle of is smaller (the magnification is higher). It can be seen that the relative magnification in the screen can be controlled by changing the shape of the convex mirror.
ミラーを用いた光学系は、通常の可視光用のカメラで多く研究されてきた。近年、可視光や近赤外光用の屈折レンズは、光学材料技術とレンズ加工技術が急速に進歩している。このため、さまざまな特性のレンズの高性能化、小型化、低価格が急激に進歩した。広い視野を実現する魚眼レンズや超広角レンズについても、高性能なレンズが低価格で入手可能になっており、特殊な用途を除いて反射光学系が用いられることは少なくなっている。
Optical systems using mirrors have been studied a lot with ordinary cameras for visible light. In recent years, optical material technology and lens processing technology for refracting lenses for visible light and near-infrared light have been rapidly advanced. For this reason, the performance, miniaturization, and low price of lenses with various characteristics have made rapid progress. As for fisheye lenses and ultra-wide-angle lenses that realize a wide field of view, high-performance lenses are available at low prices, and reflective optics are rarely used except for special applications.
これに対し、遠赤外線ではレンズ材料がゲルマニュウム、シリコン、カルコゲナイドなどの特殊な材料が必要で、レンズは高価であり、市場も小さいため、広角などの特殊なレンズについては入手が困難である。本発明では低価格・小型で入手できる標準的な遠赤外カメラ(視野角50°程度)と、加工が容易で低価格で入手できる金属凸面ミラーを組み合わせることで広い視野を持つ感熱式撮像装置10を実現している。
On the other hand, far infrared rays require special materials such as germanium, silicon, and chalcogenide, and the lenses are expensive and the market is small, so it is difficult to obtain special lenses such as wide-angle lenses. In the present invention, a thermal imager having a wide field of view by combining a standard far-infrared camera (viewing angle of about 50 °) that can be obtained at a low price and a small size with a metal convex mirror that is easy to process and can be obtained at a low price. 10 is realized.
(実施例1)
光軸外し反射屈折型の光学系を有する感熱式撮像装置10を用いた見守り監視システムの第一の実施例として、介護施設、サービス付き高齢者住宅、特別養護老人ホーム、グループホームなどの高齢者施設の居室に設置する高齢者見守りシステムについて説明する。高齢者見守りシステムの全体構成を図6に示した。高齢者見守りシステムは、高齢者の日々の生活の安全を見守る見守り機能と、システムによって取得される高齢者の生活データを用いて高齢者の健康増進を実現するヘルスケア機能の二つの機能を持っている。 (Example 1)
As the first embodiment of the monitoring monitoring system using the heat-sensitiveimage pickup device 10 having the optical axis off-axis reflection / refraction type, elderly people such as nursing homes, elderly housing with services, special elderly nursing homes, and group homes. The elderly watching system installed in the living room of the facility will be explained. The overall configuration of the elderly watching system is shown in FIG. The elderly watching system has two functions: a watching function that monitors the safety of daily life of the elderly, and a healthcare function that uses the living data of the elderly acquired by the system to improve the health of the elderly. ing.
光軸外し反射屈折型の光学系を有する感熱式撮像装置10を用いた見守り監視システムの第一の実施例として、介護施設、サービス付き高齢者住宅、特別養護老人ホーム、グループホームなどの高齢者施設の居室に設置する高齢者見守りシステムについて説明する。高齢者見守りシステムの全体構成を図6に示した。高齢者見守りシステムは、高齢者の日々の生活の安全を見守る見守り機能と、システムによって取得される高齢者の生活データを用いて高齢者の健康増進を実現するヘルスケア機能の二つの機能を持っている。 (Example 1)
As the first embodiment of the monitoring monitoring system using the heat-sensitive
本発明の感熱式撮像装置10を高齢者の生活空間である個室に設置する。転倒や転落などの事故、体調の急変などの異常が発生したことを見守りシステムが検知すると、異常発生が介護者や保護者23の携帯端末21に送付され、介護者や保護者23が駆け付けることで、高齢者の安全を守る。見守りで得られる日々の生活データを蓄積し、クラウド上に集積されたビックデータとして解析することで、高齢者の短期的な体調の変化、長期的な健康状態や体力、認知機能の変化を解析し、適切な助言を行うことにより、高齢者の長期的な健康増進(ヘルスケア)を実現する。
The heat-sensitive imaging device 10 of the present invention is installed in a private room which is a living space for the elderly. When the system watches over the occurrence of an accident such as a fall or a fall, or an abnormality such as a sudden change in physical condition, the occurrence of the abnormality is sent to the mobile terminal 21 of the caregiver or guardian 23, and the caregiver or guardian 23 rushes in. And protect the safety of the elderly. By accumulating daily life data obtained by watching over and analyzing it as big data accumulated on the cloud, we analyze short-term changes in physical condition, long-term health condition, physical strength, and cognitive function of the elderly. However, by giving appropriate advice, long-term health promotion (health care) for the elderly will be realized.
図1に示した光軸外し反射屈折型の感熱式撮像装置10を用いた見守り監視装置について、以下詳細に説明する。遠赤外カメラ3は、対象物から出ている遠赤外線を遠赤外光用の屈折レンズ3-1により、2次元状に配列された遠赤外アレーセンサ3-2上に結像し、画素毎の出力信号を温度に変換して温度分布を画像表示する装置である。ここで用いた、感熱式撮像装置10は、マイクロボロメータ方式の80x60画素の遠赤外アレーセンサ3-2とシリコン製の屈折レンズ3-1からなる遠赤外カメラ3と、凸面ミラー2で構成される。凸面ミラー2として、回転放物面形状のアルミ研磨ミラーを用いた。使用した遠赤外カメラ3の撮像範囲は視野角にして51x38°であり、この視野角を凸面ミラー2により拡大して撮像する。
The monitoring monitoring device using the heat-sensitive image pickup device 10 off the optical axis and the reflection / refraction type shown in FIG. 1 will be described in detail below. The far-infrared camera 3 forms an image of far-infrared rays emitted from an object on a two-dimensionally arranged far-infrared array sensor 3-2 by a refracting lens 3-1 for far-infrared light. It is a device that converts the output signal for each pixel into temperature and displays the temperature distribution as an image. The heat-sensitive image pickup device 10 used here includes a far-infrared camera 3 composed of a microbolometer-type 80x60 pixel far-infrared array sensor 3-2, a silicon refraction lens 3-1 and a convex mirror 2. Will be done. As the convex mirror 2, an aluminum-polished mirror having a rotating paraboloid shape was used. The imaging range of the far-infrared camera 3 used is 51x38 ° in terms of viewing angle, and this viewing angle is magnified by the convex mirror 2 for imaging.
遠赤外カメラ3は配線4でシングルボードコンピュータ5に接続されている。ここで用いたシングルボードコンピュータ5は 1GHzのシングルコアCPUチップとWifi通信チップを搭載しており、感熱式カメラで取得された温度画像を画像処理して対象高齢者の行動を認識し、必要に応じてWifi通信により、外部のコンピュータや携帯端末(タブレット、スマートフォン等)に情報を送信することができる。
The far infrared camera 3 is connected to the single board computer 5 by wiring 4. The single board computer 5 used here is equipped with a 1 GHz single core CPU chip and a Wifi communication chip, and processes the temperature image acquired by the heat-sensitive camera to recognize the behavior of the target elderly person, and it is necessary. In response, information can be transmitted to an external computer or mobile terminal (tablet, smartphone, etc.) by Wifi communication.
シングルボードコンピュータ5は小型で安価であるため、遠赤外カメラ3と一体化して見守り対象者の居室に設置することができる。シングルボードコンピュータ5は、遠赤外カメラ3の温度画像出力信号を配線4経由で直接受け取り、画像認識を行うことができる。この例のようにセンサデバイスと通信機能を内蔵したコンピュータをからなるIoTデバイスを用いて、装置内部で画像処理を行うことをエッジコンピューティングという。エッジコンピューティングには、通信負荷の低減、リアルタイムでのデータ処理、セキュリティリスクの低減というメリットがあり、近年注目されている技術である。本発明の見守り監視システムでは、遠赤外カメラの低画素画像を用いることにより、画像処理の負荷を低くし、演算能力の低いシングルボードコンピュータ5でのエッジコンピューティングを可能にした。
Since the single board computer 5 is small and inexpensive, it can be integrated with the far infrared camera 3 and installed in the room of the person to be watched over. The single board computer 5 can directly receive the temperature image output signal of the far infrared camera 3 via the wiring 4 and perform image recognition. Edge computing is the process of performing image processing inside the device using an IoT device that consists of a sensor device and a computer with a built-in communication function as in this example. Edge computing has the advantages of reducing communication load, real-time data processing, and reducing security risks, and is a technology that has been attracting attention in recent years. In the monitoring monitoring system of the present invention, by using the low pixel image of the far infrared camera, the load of image processing is reduced, and edge computing on the single board computer 5 having low computing power is enabled.
本発明の見守り監視システムはエッジコンピューティングに限定するものではなく、演算装置を通常のコンピュータとし、感熱式撮像装置の設置場所とは離れた場所(例えば、介護者の詰め所)に設置することも可能である。
The monitoring monitoring system of the present invention is not limited to edge computing, and the arithmetic unit may be an ordinary computer and may be installed in a place (for example, a caregiver's station) away from the place where the thermal imaging device is installed. It is possible.
この場合、画像処理部、判別部、データ保存部、出力部はコンピュータ側に置かれ、遠赤外カメラ3とは無線あるいは有線通信により当該コンピュータとデータ通信を行う。システムの低価格化・小型化という観点からは通信機能を有するシングルボードコンピュータ5の使用が効率的であるが、見守り以外の目的で高性能なコンピュータが必要とされる場合には、エッジコンピューティングを行わず、通常のコンピュータを用いることができる。例えば、見守り結果に基づいて介護日誌への入力を自動化するなど、複雑な操作を行う場合には画像処理コンピュータをエッジデバイスと切り離すことも有効である。
In this case, the image processing unit, the discrimination unit, the data storage unit, and the output unit are placed on the computer side, and data communication is performed with the far-infrared camera 3 by wireless or wired communication. From the viewpoint of system price reduction and miniaturization, it is efficient to use a single board computer 5 having a communication function, but if a high-performance computer is required for purposes other than watching, edge computing You can use a normal computer without doing this. For example, it is effective to separate the image processing computer from the edge device when performing complicated operations such as automating the input to the long-term care diary based on the monitoring result.
ここでは、凸面ミラー2として放物面形状のアルミ研磨ミラーを用いた。アルミ研磨ミラーは、アルミ板を放物面形状にプレス加工して、表面を研磨することによって作成した。ここでは金属ミラーを用いたが、これに限るものでなく、放物面形状に射出成型加工したポリマー材(ポリカーボネイト、シクロオレフィンなど)に銀やアルミ等の金属膜を蒸着したミラーを用いることもできる。プラスチックに金属蒸着したミラーを用いることでミラーの製造コストを低減することができる。またここでは、凸面ミラー2は放物面形状のミラーを用いたが、球面ミラーや円錐形状ミラー、双曲面形状ミラーを用いることも可能である。
Here, a parabolic aluminum polishing mirror was used as the convex mirror 2. The aluminum polishing mirror was created by pressing an aluminum plate into a parabolic shape and polishing the surface. Here, a metal mirror is used, but the present invention is not limited to this, and a mirror in which a metal film such as silver or aluminum is vapor-deposited on a polymer material (polycarbonate, cycloolefin, etc.) that has been injection-molded into a parabolic shape can also be used. it can. By using a mirror in which metal is vapor-deposited on plastic, the manufacturing cost of the mirror can be reduced. Although a parabolic mirror is used here as the convex mirror 2, a spherical mirror, a conical mirror, or a hyperboloid mirror can also be used.
図7に、上記の感熱式撮像装置10の室内における設置図を示す。室内には、見守り対象者11がおり、床16上に、ベッド12、ドア13、棚14、窓15、机17、椅子18、が配置されている。感熱式撮像装置10は、ベッド12の長手方向と最も近接する壁面の天井付近に配置されている。図8は室内の配置の俯瞰図を示している。頭部の三次元座標を(X0,X0,Z0)、頭部温度はT0と表記する。
FIG. 7 shows an installation diagram of the above thermal image pickup device 10 in a room. There is a person to be watched 11 in the room, and a bed 12, a door 13, a shelf 14, a window 15, a desk 17, and a chair 18 are arranged on the floor 16. The thermal image pickup device 10 is arranged near the ceiling of the wall surface closest to the longitudinal direction of the bed 12. FIG. 8 shows a bird's-eye view of the arrangement in the room. The three-dimensional coordinates of the head are written as (X0, X0, Z0), and the head temperature is written as T0.
図9に、図7に示す室内で撮像された温度画像を示した。曲面ミラーで反射された像であるため、歪の大きな画像であるが、ベッド12を中心に、床16および周囲を取り囲む4面の壁が撮像されている。4面の壁はほぼ天井面に至るまで撮影されており、視野角の広さが理解できる。見守り対象者11は周囲に比べ高温であるため、はっきりと識別できる。低解像度(80x60画素)の画像であるにも関わらず、頭部、胴体部、脚部がはっきりと分離されており、ここから対象者11の姿勢が判定できる。画像中で頭部を十字マークで示している。ここでは、頭部中央部の温度画像上での座標を(x0,y0)、頭部の測定された温度はt0とした。
FIG. 9 shows a temperature image taken in the room shown in FIG. 7. Since it is an image reflected by a curved mirror, it is an image with a large distortion, but the floor 16 and the four walls surrounding the bed 12 are imaged. The four walls are photographed almost up to the ceiling, so you can understand the wide viewing angle. Since the person to be watched 11 has a higher temperature than the surroundings, it can be clearly identified. Despite the low resolution (80x60 pixels) image, the head, body, and legs are clearly separated, from which the posture of the subject 11 can be determined. The head is indicated by a cross mark in the image. Here, the coordinates on the temperature image of the central part of the head are (x0, y0), and the measured temperature of the head is t0.
図9の温度画像で注目すべきは、対象者11の存在と姿勢は認識できるが、対象者11の個人識別や細かい動作は識別できず、プライバシー侵害のリスクが低いことである。通常のカメラを用いた場合、人間を高精度に認識するためには、高解像度な画像が必要となり、対象者11の顔、表情、行為が撮像されるため見守り対象者の心理的な抵抗が大きくなる。また高解像度の画像では、室内に置かれた物の識別や室内の乱雑さなども観察されるため、この面でも心理的な抵抗が大きくなる。感熱式撮像装置10を見守りに用いる最大のメリットは、感熱式撮像装置10が人体の発熱を画像化できるために、プライバシーに配慮した低解像度の画像で、高精度に人体を検知できることである。
It should be noted in the temperature image of FIG. 9 that the existence and posture of the subject 11 can be recognized, but the individual identification and detailed movement of the subject 11 cannot be identified, and the risk of privacy invasion is low. When a normal camera is used, a high-resolution image is required to recognize a human with high accuracy, and the face, facial expression, and action of the subject 11 are imaged, so that the psychological resistance of the watching subject is increased. growing. In addition, in high-resolution images, identification of objects placed in the room and clutter in the room are also observed, which also increases psychological resistance. The greatest merit of using the heat-sensitive image pickup device 10 for watching over is that the heat-sensitive image pickup device 10 can image the heat generated by the human body, so that the human body can be detected with high accuracy with a low-resolution image in consideration of privacy.
図9にはドア13の上部、窓15の上部さらに、天井付近に設置された感熱式撮像装置10の本体が写っており、死角なしに床16から天井付近まで撮像されていることがわかる。ドア13や窓15を含めて壁面全体が撮影されているため、室内の見守り対象者11の位置が死角なしに把握でき、ドア13から室外への外出を見逃しなく検知することが可能である。
FIG. 9 shows the upper part of the door 13, the upper part of the window 15, and the main body of the thermal imaging device 10 installed near the ceiling, and it can be seen that the images are taken from the floor 16 to the vicinity of the ceiling without blind spots. Since the entire wall surface including the door 13 and the window 15 is photographed, the position of the person to be watched in the room 11 can be grasped without a blind spot, and it is possible to detect going out from the door 13 to the outside without overlooking.
ここで、感熱式撮像装置10をベッド12の長辺側に最近接する壁の天井付近に配置したのは、ベッド12上の見守り対象者11をより高精度に見守るためである。ベッド12上での見守りを優先したのは、介護施設、病院等の見守りでは対象者11の、(1)ベッド12上での滞在時間が長いこと、(2) ベッド12からの転落・離床時の転倒等の事故が多いこと、(3)睡眠の状態の把握が対象者11の生活や健康状態を把握するために有効であること、等を考慮したためである。感熱式撮像装置10の配置位置はベッド12上に限るものではないが、配置を固定することは画像認識の精度を向上させるためにも有利である。例えば、画面上でベッド12の概略の位置があらかじめわかっていれば、そのような情報なしで画像認識を行う場合に比べて、在床・離床・起き上がりなどの対象者11の行動の認識を容易かつ高精度に行うことが可能になる
Here, the reason why the thermal image pickup device 10 is arranged near the ceiling of the wall that is in close contact with the long side side of the bed 12 is to watch the watch target person 11 on the bed 12 with higher accuracy. Priority was given to watching over bed 12 when the subject 11 was watching over nursing care facilities, hospitals, etc., (1) staying on bed 12 for a long time, and (2) falling from bed 12 or getting out of bed. This is because it takes into consideration that there are many accidents such as falls, and (3) grasping the sleep state is effective for grasping the life and health state of the subject 11. The arrangement position of the heat-sensitive image pickup device 10 is not limited to the bed 12, but fixing the arrangement is also advantageous for improving the accuracy of image recognition. For example, if the approximate position of the bed 12 is known in advance on the screen, it is easier to recognize the behavior of the subject 11 such as being in bed, getting out of bed, getting up, etc., as compared with the case of performing image recognition without such information. And it becomes possible to perform with high accuracy
さらに本実施例では、睡眠時の生体情報(睡眠深度、呼吸、心拍等)の測定のために、図5で示したように球面ミラーに較べてベッド12上の撮影倍率を上げることのできる、放物面ミラーを採用した。凸面ミラー2としては放物面ミラーに限るものでなく、楕円面ミラー、双曲面ミラーを用いることもできる。また、球面ミラーには入手が容易で低コストであるというメリットがあるため、用途によっては球面ミラーを用いることも可能である。
Further, in this embodiment, in order to measure biological information (sleep depth, respiration, heartbeat, etc.) during sleep, the imaging magnification on the bed 12 can be increased as compared with the spherical mirror as shown in FIG. A parabolic mirror is used. The convex mirror 2 is not limited to a parabolic mirror, and an ellipsoidal mirror and a hyperboloidal mirror can also be used. Further, since the spherical mirror has an advantage that it is easily available and low in cost, it is possible to use a spherical mirror depending on the application.
本発明の放物面ミラーを用いた光軸外し反射屈折型光学系を用いることで、カメラの設置位置の斜め下側の位置の対象物(ここではベッド12)を詳細に観察できる。これは屈折型の広角カメラを用いた場合に対して大きな利点となる。屈折型の広角レンズを用いた光学系で壁面上部まで撮像範囲とした場合、カメラの斜め下に置かれたベッド12は画面全体のなかで小さく写るため、ベッド12上の対象者11の状況を詳細に観察することが困難になる。
By using the off-axis reflection / refraction type optical system using the parabolic mirror of the present invention, it is possible to observe in detail the object (here, the bed 12) located diagonally below the camera installation position. This is a great advantage over the case of using a refracting wide-angle camera. When the imaging range extends to the upper part of the wall surface with an optical system using a refraction type wide-angle lens, the bed 12 placed diagonally below the camera appears small in the entire screen, so the situation of the subject 11 on the bed 12 can be seen. It becomes difficult to observe in detail.
ここで見守り用感熱式撮像装置10に必要とされる視野角について述べる。見守り用撮像装置には、室内の全領域で死角なしに対象者11を見守ることのできる性能が求められる。見守り対象者11の室外への外出は、対象者11の病状や状態によっては重大な事故(例えば認知症患者の徘徊など)につながる可能性があり、見逃しのない確実な検出が求められる。
Here, the viewing angle required for the thermal imaging device 10 for watching will be described. The watching imager is required to have the ability to watch the subject 11 in the entire area of the room without blind spots. Going out of the room of the watching subject 11 may lead to a serious accident (for example, wandering of a dementia patient) depending on the medical condition and condition of the subject 11, and reliable detection without overlooking is required.
図10に室外への外出時の対象者11と感熱式撮像装置10の位置関係を示している。ここでは、対象者11の身長170cm、天井高さ240cm、部屋の広さ8畳間(13平方メートル)、感熱式撮像装置10の設置高さ230cmを想定している。このとき、ドア13の位置で、床面から100cmの高さまで撮像範囲があれば、部屋の端のドア13近傍で対象者11の臀部が捉えられ、ドア13から消えていく対象者11の行動が捕捉できる。床面から、150cmまで撮像できれば見逃しのリスクはほぼなくなることがわかる。長身長の対象者11を考慮しても、床面から190cmまでの高さが撮像されていれば頭部まで捉えられ見逃しの可能性はなくなる。このため、感熱式撮像装置10の壁面の視野角は床下から少なくとも100cm以上であることが必要であり、望ましくは床面から150cm以上、特に望ましくは床面から190cm以上の領域の撮像が可能であることが求められる。上記条件で、感熱式撮像装置10に必要とされる全視野角(2β)は、撮像範囲が床面から100cm以上の場合は140°、150cmで161°、190cmで167°となる
FIG. 10 shows the positional relationship between the subject 11 and the thermal imaging device 10 when going out of the room. Here, it is assumed that the height of the subject 11 is 170 cm, the ceiling height is 240 cm, the room size is 8 tatami mats (13 square meters), and the installation height of the thermal image pickup device 10 is 230 cm. At this time, if there is an imaging range up to a height of 100 cm from the floor surface at the position of the door 13, the buttocks of the subject 11 are caught in the vicinity of the door 13 at the edge of the room, and the behavior of the subject 11 disappearing from the door 13. Can be captured. It can be seen that the risk of overlooking is almost eliminated if an image can be taken up to 150 cm from the floor surface. Even if the tall subject 11 is taken into consideration, if the height from the floor surface to 190 cm is imaged, the head is captured and there is no possibility of overlooking. Therefore, the viewing angle of the wall surface of the thermal imaging device 10 needs to be at least 100 cm or more from under the floor, and it is possible to image an area of preferably 150 cm or more from the floor surface, and particularly preferably 190 cm or more from the floor surface. It is required to be. Under the above conditions, the total viewing angle (2β) required for the thermal imaging device 10 is 140 ° when the imaging range is 100 cm or more from the floor surface, 161 ° at 150 cm, and 167 ° at 190 cm.
このような広い視野角を持つ、安価な遠赤外カメラは存在していない。これが本発明で遠赤外線用の新たな反射屈折光学系を採用した理由である。
There is no inexpensive far-infrared camera with such a wide viewing angle. This is the reason why a new catadioptric system for far infrared rays is adopted in the present invention.
図11に感熱式撮像装置10の撮像温度画像、図12に通常ビデオカメラの撮像画像を比較して示した。どちらも見守り対象者11が、ドア13から出ていくシーンを撮影した。ここではビデオカメラの光学系は、通常用いられる広角の屈折レンズでなく、感熱式撮像装置10と同じ光軸外し反射屈折型の可視光に対応した光学装置を試作して撮影した。図11と図12は、同一のシーンを、ほぼ同一の視野となるように撮像した画像となっている。
FIG. 11 shows a comparison of the imaging temperature image of the thermal imaging device 10, and FIG. 12 shows a comparison of images captured by a normal video camera. In both cases, the watching subject 11 photographed the scene exiting from the door 13. Here, the optical system of the video camera is not a wide-angle refraction lens normally used, but an optical device corresponding to visible light of the same off-axis reflection / refraction type as the heat-sensitive image pickup device 10 is prototyped and photographed. 11 and 12 are images of the same scene captured so as to have substantially the same field of view.
どちらの画像もベッド12を中心に室内の全領域が死角なしに撮影されていることがわかる。解像度は温度画像が80x60画素、ビデオカメラの解像度は1920x1080(HD)である。図12に示すビデオカメラ画像の方が高い解像度で撮影しているが、明るさの異なる様々な物が写っており、画像中で人を認識するのは目視でも容易ではない。
In both images, it can be seen that the entire area of the room centered on the bed 12 was taken without blind spots. The resolution is 80x60 pixels for the temperature image and 1920x1080 (HD) for the video camera. Although the video camera image shown in FIG. 12 is taken at a higher resolution, it is not easy to visually recognize a person in the image because various objects having different brightness are shown.
これに対し、図11に示す感熱式撮像装置10による温度画像では、人体の発熱を捉えることができるため人体を容易に検出できることがわかる。この2枚の画像の比較からで見守りを行うことの優位性が理解できる。画像処理により対象者11を認識し、その行動を把握することは通常の可視カメラでは困難である。一方、感熱式撮像装置10による図11の温度画像からは体温から容易に見守り対象者11を検知できる。
On the other hand, in the temperature image by the thermal image pickup device 10 shown in FIG. 11, it can be seen that the human body can be easily detected because the heat generation of the human body can be captured. The superiority of watching over can be understood from the comparison of these two images. It is difficult for a normal visible camera to recognize the target person 11 by image processing and grasp its behavior. On the other hand, the subject 11 can be easily monitored from the body temperature from the temperature image of FIG. 11 by the thermal image pickup device 10.
温度画像からの行動認識技術について
About behavior recognition technology from temperature images
以下、温度画像から見守り対象者11を検出し、その行動を認識するための画像認識技術について説明する。画像認識では、認識精度を高めるために撮像される対象を限定することが有効であることが知られている。認識すべき画像に写っている対象を限定すること、撮像範囲・照明条件・撮像条件を限定することにより、画像の認識精度を高めることができる。
Hereinafter, an image recognition technique for detecting the monitoring target person 11 from the temperature image and recognizing the behavior will be described. In image recognition, it is known that it is effective to limit the objects to be imaged in order to improve the recognition accuracy. The image recognition accuracy can be improved by limiting the objects appearing in the image to be recognized and by limiting the imaging range, lighting conditions, and imaging conditions.
撮像装置を固定して、撮像条件に制約を加えることで、高い精度で画像認識が可能になる。本発明では、死角の無い広領域を撮影範囲とする専用の感熱式撮像装置10を、設置場所をベッド12直近の壁の天井付近に限定して配置し、その出力画像に対して画像処理を最適化することで高い認識精度を実現した。
By fixing the image pickup device and imposing restrictions on the image pickup conditions, image recognition becomes possible with high accuracy. In the present invention, the dedicated heat-sensitive image pickup device 10 whose imaging range is a wide area without blind spots is installed in a limited location near the ceiling of the wall near the bed 12, and image processing is performed on the output image. High recognition accuracy was achieved by optimizing.
凸面ミラーを用いることにより広い視野角が得られるが、歪の大きい画像となるという課題がある。画像処理をこの画像歪の特性に合わせ行うことで画像歪の影響を小さくして認識精度を高めることができる。広い視野を持つ専用の遠赤外光軸外し反射屈折光学系という特殊な光学系を有する感熱式撮像装置を、設置場所を限定して配置し、撮像される画像の特徴に合わせた画像処理を行うことで高性能な見守り監視システムを実現した。
A wide viewing angle can be obtained by using a convex mirror, but there is a problem that the image has a large distortion. By performing image processing according to the characteristics of this image distortion, the influence of the image distortion can be reduced and the recognition accuracy can be improved. A heat-sensitive image pickup device with a special optical system called a dedicated far-infrared optical axis off-axis reflection / refraction optical system with a wide field of view is placed in a limited installation location to perform image processing according to the characteristics of the image to be captured. By doing so, a high-performance monitoring and monitoring system was realized.
以下、画像認識方法について説明する。上述のように撮像装置とその配置方法を制約する(入力画像制約)ことで、対象者の行動を正確に把握することが容易になる。さらに、撮像対象に関する情報を事前に把握する(事前情報)の活用により、行動の把握はさらに容易になる。感熱式撮像装置の設置後の立ち上げ時に部屋のレイアウトに関する情報と見守り対象者に関する情報を事前に取得し、それらの情報を利用して画像認識を行うことにより高精度に見守り対象者の行動を把握することを可能にした。
The image recognition method will be described below. By restricting the image pickup device and its arrangement method as described above (input image constraint), it becomes easy to accurately grasp the behavior of the target person. Furthermore, by utilizing the information about the imaging target to be grasped in advance (prior information), it becomes easier to grasp the behavior. At the time of startup after the installation of the thermal imaging device, information on the layout of the room and information on the person to be watched are acquired in advance, and image recognition is performed using that information to accurately monitor the behavior of the person to be watched. It made it possible to grasp.
感熱式撮像装置の設置後の初期設定における事前情報入力例について、図13を用いて説明する。設定は、感熱式撮像装置10のシングルボードコンピュータ5の通信機能を用いて、外部のコンピュータにより行う。最初に、部屋面積の入力を行う。選択画面で、4.5畳(7.3平方メートル), 6畳(9.7平方メートル),8畳(13平方メートル)から部屋広さを入力する。選択画面に相当する広さがない場合には、広さを平方メートル単位でキーボード入力を行う。部屋広さは概略の面積で構わない。
An example of inputting prior information in the initial setting after installation of the thermal image pickup device will be described with reference to FIG. The setting is performed by an external computer using the communication function of the single board computer 5 of the thermal image pickup device 10. First, enter the room area. On the selection screen, enter the room size from 4.5 tatami mats (7.3 square meters), 6 tatami mats (9.7 square meters), and 8 tatami mats (13 square meters). If there is not enough space for the selection screen, keyboard input is performed in square meters. The size of the room may be an approximate area.
次に、ベッドを基準とした、部屋形状を入力する。部屋が長方形の場合はベッドの長手方向と部屋の長手方向が一致する場合は横長方形、方向が直交する場合は縦長方形と入力する。次にベッド位置の入力を行う。ベッドに近接する壁面のどの位置にベッドが配置されているかを、A~Cで入力する。続いて、ドア位置を1~9から選択し入力する。さらに、感熱式撮像装置10の設置高さとベッドの高さを入力する。最後に、見守り対象者に関する情報の入力を行う。ここでは、対象者の性別、年齢、身長、体重を入力する。
Next, enter the room shape based on the bed. If the room is rectangular, enter a horizontal rectangle if the longitudinal direction of the bed matches the longitudinal direction of the room, and enter a vertical rectangle if the directions are orthogonal. Next, the bed position is input. Enter the position of the bed on the wall surface close to the bed using A to C. Then, the door position is selected from 1 to 9 and input. Further, the installation height of the thermal image pickup device 10 and the height of the bed are input. Finally, input information about the person to be watched over. Here, the gender, age, height, and weight of the subject are input.
以上の初期設定により、図7の室内の感熱式撮像装置10とベッド12、ドア13の位置関係を見守り監視システムに入力した。部屋の大きさと形状を把握することで、精度高く見守り対象者11の位置・姿勢を認識することができる。また、ドア13の位置を把握していることで、入外室の認識精度を高めることができる。
With the above initial settings, the positional relationship between the thermal imaging device 10 in the room of FIG. 7, the bed 12 and the door 13 was monitored and input to the monitoring system. By grasping the size and shape of the room, it is possible to recognize the position and posture of the watching target person 11 with high accuracy. Further, by grasping the position of the door 13, the recognition accuracy of the entrance / exit room can be improved.
初期設定完了後に対象者11の位置検出アルゴリズムをスタートする。感熱式撮像装置10は毎秒5枚の温度画像を出力する設定(5FPS)とした。画像ファイルはPGMフォーマットで16ビットの80x60画素のデータを出力するよう設定した。図14を用いて画像認識アルゴリズムについて説明する。出力温度画像19を図14左上に示した。
After the initial setting is completed, the position detection algorithm of the target person 11 is started. The thermal image pickup device 10 is set to output 5 temperature images per second (5 FPS). The image file is set to output 16-bit 80x60 pixel data in PGM format. The image recognition algorithm will be described with reference to FIG. The output temperature image 19 is shown in the upper left of FIG.
最初に、温度画像19から頭部を検出する。通常、頭部が温度画像19中で最高温度になる場合が多く、温度画像19内の最高温度部を頭部位置と認識しても問題は少ない。しかし、例えば室内にポットや高温の食品や飲料が置かれた場合には、これらの高温物体を頭部と誤認識する可能性がある。これを避けるために、検出された高温領域の大きさと温度から頭部を認識する。頭部の温度は、頭部と感熱式撮像装置10の距離と撮影される頭部の視野内の位置に応じて、28-36℃の範囲内で測定される。
First, the head is detected from the temperature image 19. Usually, the head has the highest temperature in the temperature image 19, and there is little problem even if the highest temperature portion in the temperature image 19 is recognized as the head position. However, for example, when a pot or hot food or beverage is placed indoors, these hot objects may be mistakenly recognized as the head. To avoid this, the head is recognized from the size and temperature of the detected high temperature region. The temperature of the head is measured in the range of 28-36 ° C. depending on the distance between the head and the thermal imaging device 10 and the position of the head in the field of view to be imaged.
対象者11と感熱式撮像装置10の距離が近づくと、撮像される頭部のサイズは大きくなり、温度も上昇する。この頭部のサイズと温度は温度画像19の視野内の位置によっても変化する。視野内の位置と頭部のサイズ、温度には後述するような関係があり、この関係を利用して頭部を認識することで高精度に頭部を検出することが可能になる。頭部の表面温度は通常28-36℃に測定され、頭部の大きさが大きいほど(すなわち頭部が感熱式撮像装置10に近いほど)、温度は高温となる。この関係を利用して頭部を認識することにより、他の高温物体が画面内に含まれた場合でも頭部を認識することが可能になった。
As the distance between the subject 11 and the thermal imaging device 10 gets closer, the size of the head to be imaged increases and the temperature also rises. The size and temperature of the head also change depending on the position in the field of view of the temperature image 19. There is a relationship between the position in the field of view, the size of the head, and the temperature as described later, and by recognizing the head using this relationship, it is possible to detect the head with high accuracy. The surface temperature of the head is usually measured at 28-36 ° C., and the larger the size of the head (that is, the closer the head is to the thermal imaging device 10), the higher the temperature. By recognizing the head using this relationship, it has become possible to recognize the head even when other high-temperature objects are included in the screen.
温度画像19から人体頭部を検出し、その画像上の座標位置(x0,y0)と計測された温度t0を用いて、実空間上の頭部の座標位置(X0,Y0,Z0)を推定する(図14)。頭部の空間座標位置の推定は、頭部のサイズと頭部の温度を用いて行う。最初に、頭部の大きさから頭部座標を求める方式について述べる。温度画像19から閾値を設けて頭部の領域を決定し、楕円近似により長軸半径(a)と短軸半径(b)を求める。頭部面積S(=πab)から、頭部の平均半径r = sqrt(S/π)を用いる。成人男性の頭部の長軸寸法は24cm、短軸寸法は16cm、平均身長は170cmである。本発明で用いている感熱式撮像装置10は画像の歪が大きいため、データ取得には模擬的な頭部として、温水(35℃)を入れた半径10cm球形プラスチック容器を床面に置き、画面上の位置と撮影される画像のサイズについてのデータを取得した。
The human head is detected from the temperature image 19, and the coordinate position (X0, Y0, Z0) of the head in real space is estimated using the coordinate position (x0, y0) on the image and the measured temperature t0. (Fig. 14). The spatial coordinate position of the head is estimated using the size of the head and the temperature of the head. First, the method of obtaining the head coordinates from the size of the head will be described. A threshold value is set from the temperature image 19 to determine the region of the head, and the semi-major axis radius (a) and the semi-minor axis radius (b) are obtained by elliptical approximation. From the head area S (= πab), use the average radius r = sqrt (S / π) of the head. The semimajor axis of the head of an adult male is 24 cm, the minor axis dimension is 16 cm, and the average height is 170 cm. Since the heat-sensitive image pickup device 10 used in the present invention has a large image distortion, a spherical plastic container having a radius of 10 cm containing hot water (35 ° C.) is placed on the floor as a simulated head for data acquisition, and a screen is displayed. Data on the top position and the size of the captured image were acquired.
図14を用いて画面上の頭部の寸法から、頭部の3次元上の空間位置を求める方法について説明する。図14では、簡単のためにxz平面上で位置を示しているが、同様の計算をxyz空間上で行うことができる。撮像された温度画像19から頭部の中心位置x0と面積S0が求められる。床面上で測定された半径10cmの球体の位置x1、面積S1と実際に撮像された面積S0から、実際の頭部の位置x0は、x0=sqrt(S1/S0)として求められる。また、頭部の高さz0は感熱式撮像装置10の設置高さをHとしたとき、z0= (1-sqrt(S1/S0) )*H として求められる。
A method of obtaining the three-dimensional spatial position of the head from the dimensions of the head on the screen will be described with reference to FIG. In FIG. 14, the position is shown on the xz plane for simplicity, but the same calculation can be performed on the xyz space. From the captured temperature image 19, the center position x0 of the head and the area S0 can be obtained. From the position x1 and area S1 of the sphere with a radius of 10 cm measured on the floor surface and the area S0 actually imaged, the actual head position x0 can be obtained as x0 = sqrt (S1 / S0). Further, the height z0 of the head is obtained as z0 = (1-sqrt (S1 / S0)) * H, where H is the installation height of the thermal imaging device 10.
次に、頭部温度から座標位置を計算する方法について述べる。感熱式撮像装置10では、測定される温度は距離の影響を受ける。これは主として距離が離れるにつれて対象物体が画素に占める面積が小さくなり、測定物体の周辺温度の影響を受けるようになるためである。この温度変化も温度画像19の位置により変化する。
Next, the method of calculating the coordinate position from the head temperature will be described. In the thermal imaging device 10, the measured temperature is affected by the distance. This is mainly because the area occupied by the target object in the pixels becomes smaller as the distance increases, and it becomes affected by the ambient temperature of the measurement object. This temperature change also changes depending on the position of the temperature image 19.
図15に視野中心(A)と視野端(B)の位置での、温水(35℃)を入れた半径10cm球形プラスチック容器の測定された温度を、感熱式撮像装置10とプラスチック容器の距離に対してプロットした。画素位置と頭部の測定された温度から、感熱式撮像装置10と頭部の距離が推定できる。距離がわかれば、図15に示した関係から、空間内の頭部位置(X0,Y0,Z0)を求めることができる。上述のように、空間内の頭部位置は、頭部の大きさのデータと頭部の温度データの両方から求めることができる。この二つの測定値を組み合わせることで高精度に頭部位置を測定できる。
In FIG. 15, the measured temperature of a spherical plastic container having a radius of 10 cm containing hot water (35 ° C.) at the positions of the center of view (A) and the edge of the field of view (B) is set to the distance between the heat-sensitive image pickup device 10 and the plastic container. It was plotted against it. The distance between the thermal imaging device 10 and the head can be estimated from the pixel position and the measured temperature of the head. If the distance is known, the head position (X0, Y0, Z0) in the space can be obtained from the relationship shown in FIG. As described above, the position of the head in the space can be obtained from both the head size data and the head temperature data. By combining these two measured values, the head position can be measured with high accuracy.
対象者11の頭部の位置がわかれば、対象者11の姿勢や行動を推定することが可能になる。例えば、ベッド12高さが40cmとすると、頭部がベッド12上にあり頭部の高さが40-70cmの範囲内であれば対象者11は臥位であると推定できる。頭部がベッド12上にあり、高さが80-140cmの範囲内であれば対象者11は長座位であると推定できる。頭部がベッド端近傍にあり、高さが80-140cmの範囲内であれば対象者は端座位であると推定できる。端座位は、立位への準備行動とみなされるため、対象者11が立ち上がること自体にリスクがあるような場合(転倒しやすく転倒が重篤な事故につながるような患者の場合)、立ち上がる前に準備行動である端座位を認識して警告を発することが可能になる。一方、ベッド12以外の場所で、高さが140cm以上であれば、立位であると推定する。立位状態で頭部位置が移動している場合、歩行状態であると認識できる。
If the position of the head of the subject 11 is known, it becomes possible to estimate the posture and behavior of the subject 11. For example, assuming that the height of the bed 12 is 40 cm, it can be estimated that the subject 11 is in the recumbent position if the head is on the bed 12 and the height of the head is within the range of 40 to 70 cm. If the head is on the bed 12 and the height is within the range of 80-140 cm, it can be estimated that the subject 11 is in the long sitting position. If the head is near the edge of the bed and the height is within the range of 80-140 cm, it can be estimated that the subject is in the sitting position. Since the sitting position is regarded as a preparatory action for standing, if there is a risk in the subject 11 standing up (in the case of a patient who is likely to fall and the fall leads to a serious accident), before standing up. It is possible to recognize the sitting position, which is a preparatory action, and issue a warning. On the other hand, if the height is 140 cm or more in a place other than the bed 12, it is estimated to be standing. When the head position is moving in the standing position, it can be recognized as a walking state.
さらに、時間と移動量の関係から歩行速度及び歩行距離が計算できる。このようにして取得された運動データは対象者11のヘルスケアに活用できる。また、ベッド12外で頭部高さが50cm以下になった場合、転倒の可能性がある。急激にベッド12外で立位から頭部高さが低下した場合、転倒と判断し警報を発することができる。またベッド12上の臥位、長座位、端座位の状態から、ベッド12外で頭部高さが50cm以下になった場合は、ベッド12からの転落と判断し、警報を発することができる。
Furthermore, the walking speed and walking distance can be calculated from the relationship between time and movement amount. The exercise data acquired in this way can be utilized for the health care of the subject 11. In addition, if the head height is 50 cm or less outside the bed 12, there is a possibility of falling. When the height of the head suddenly drops from the standing position outside the bed 12, it is determined that the person has fallen and an alarm can be issued. Further, when the head height is 50 cm or less outside the bed 12 from the lying position, the long sitting position, and the end sitting position on the bed 12, it is determined that the person has fallen from the bed 12 and an alarm can be issued.
このように、室内レイアウトと頭部の空間的な位置を把握することで、対象者11の状態(姿勢や運動)を高精度に認識することが可能になる。対象者11の日常生活における姿勢や運動が認識できれば、対象者11の事故等の危険な状態の検知や、健康状態の長期的な変化の把握が可能になる。本発明の感熱式撮像装置10を用いることで、人体が高温部として明確に識別できる。視野中心にベッド12が写っており、ベッド12と人体の位置関係から、臥位、端座位、立位、歩行、外出など対象者11の姿勢が識別できる。画像上に表示される頭部の位置のみである程度正確に姿勢は認識可能であるが、頭部の空間内での座標がわかることでより高精度な姿勢判定が可能となった。
By grasping the indoor layout and the spatial position of the head in this way, it becomes possible to recognize the state (posture and movement) of the subject 11 with high accuracy. If the posture and exercise of the subject 11 in daily life can be recognized, it becomes possible to detect a dangerous state such as an accident of the subject 11 and grasp a long-term change in the health condition. By using the heat-sensitive image pickup device 10 of the present invention, the human body can be clearly identified as a high temperature portion. The bed 12 is shown in the center of the visual field, and the posture of the subject 11 such as lying down, sitting on the edge, standing, walking, and going out can be identified from the positional relationship between the bed 12 and the human body. Although the posture can be recognized with some accuracy only by the position of the head displayed on the image, it is possible to determine the posture with higher accuracy by knowing the coordinates of the head in the space.
さらにベッド12上での体動量から、覚醒・睡眠状態の判定、睡眠時の浅睡眠/深睡眠の判定を行うことが可能となる。睡眠時の体動の出現頻度は睡眠段階が深くなるほど少なくなることが知られている。睡眠中の15分間に発生した閾値を超える大きさの体動の回数を体動密度と定義すると、REM睡眠や浅睡眠時には体動が連続して起こり体動密度が上昇する。ただしこの体動密度には個人差があり、一律の閾値を用いて睡眠深度の推定を行うことは困難である。このため、対象者11の1週間の睡眠時の体動密度の平均値を計算し、この体動密度平均値を上回る体動密度発生時は浅睡眠、平均値より体動密度が低い時には深睡眠と判定する。
Furthermore, it is possible to determine the awakening / sleeping state and the light / deep sleep during sleep from the amount of body movement on the bed 12. It is known that the frequency of appearance of body movements during sleep decreases as the sleep stage becomes deeper. If the number of body movements exceeding the threshold value that occurs in 15 minutes during sleep is defined as the body movement density, the body movements occur continuously during REM sleep or light sleep, and the body movement density increases. However, there are individual differences in this body movement density, and it is difficult to estimate the sleep depth using a uniform threshold value. Therefore, the average value of the body movement density during one week of sleep of the subject 11 is calculated, and light sleep occurs when the body movement density exceeds the average value of the body movement density, and deep when the body movement density is lower than the average value. Determined to be sleep.
図16に、本発発明の感熱式撮像装置10を用いて計測したベッド12上での体動量と、体動量に基づいて算出した睡眠深度を示した。体動データに基づいて、睡眠深度が計測できていることがわかる。対象者11の睡眠状態の変化は健康状態と結びついていると考えられるため、このようなデータを用いること長期間に渡り取得し解析することで健康状態の変化を捉えることができ、適切な睡眠指導、生活指導を行うことで、長期的な健康維持につながると期待される。長期的な睡眠の不規則化、夜間覚醒の増加、総睡眠時間の増加は認知機能低下の兆候と考えられている。睡眠習慣の変化から、軽度認知障害(MCI)を初期段階で検出できれば、認知症予防に有効であると考えられる。
FIG. 16 shows the amount of body movement on the bed 12 measured using the heat-sensitive image pickup device 10 of the present invention and the sleep depth calculated based on the amount of body movement. It can be seen that the sleep depth can be measured based on the body movement data. Since it is considered that the change in the sleep state of the subject 11 is linked to the health state, it is possible to grasp the change in the health state by using such data and acquiring and analyzing it over a long period of time, and appropriate sleep. It is expected that providing guidance and lifestyle guidance will lead to long-term health maintenance. Long-term sleep irregularities, increased nocturnal arousal, and increased total sleep time are considered signs of cognitive decline. If mild cognitive impairment (MCI) can be detected at an early stage from changes in sleep habits, it is considered to be effective in preventing dementia.
さらに頭部温度変化から、心拍・呼吸のモニタリングが可能になる。図17にベッド12上で安静状態における、感熱式撮像装置10で測定した顔面の温度とレーザー測位計で測定した胸部の呼吸による移動量を測定したデータを、時間軸を揃えて上下に並べて示した。両方の装置は、0.1秒間隔でデータ取得するように設定してデータ取得を行った。呼吸による胸部の上下移動から明確に約4秒周期の呼吸が確認できる。一方、顔面温度はノイズが大きく、呼吸や心拍などの生体信号は確認できない。51.2秒間のデータ(512個のデータ)の周波数解析結果を図18に示した。この結果からは、呼吸に起因する2.7Hz(周期3.7秒周期)のピークと心拍に起因する1.2Hz(72BPM)のピークがはっきりと観測できる。このように、長時間のデータの周波数解析により生体情報の取得が可能となる。解析結果から呼吸については30秒以上、心拍については50秒以上の時間のデータを解析する必要があることが分かった。さらに、呼吸については微小な頭部の体動データの周波数解析からも、計測可能であった。このため、睡眠中の頭部温度変化と頭部体動量を組み合わせて解析することで、より高精度に呼吸計測を行うことが可能となった。
Furthermore, it becomes possible to monitor heartbeat and respiration from changes in head temperature. FIG. 17 shows data obtained by measuring the temperature of the face measured by the heat-sensitive image pickup device 10 and the amount of movement of the chest by respiration measured by the laser positioning meter in a resting state on the bed 12 side by side with the time axis aligned. It was. Both devices were set to acquire data at 0.1 second intervals to acquire data. From the vertical movement of the chest due to breathing, breathing with a cycle of about 4 seconds can be clearly confirmed. On the other hand, the facial temperature is noisy, and biological signals such as respiration and heartbeat cannot be confirmed. The frequency analysis result of the data (512 data) for 51.2 seconds is shown in FIG. From this result, a peak of 2.7 Hz (cycle 3.7 seconds) caused by respiration and a peak of 1.2 Hz (72 BPM) caused by heartbeat can be clearly observed. In this way, it is possible to acquire biological information by frequency analysis of data for a long time. From the analysis results, it was found that it is necessary to analyze the data for a time of 30 seconds or more for respiration and 50 seconds or more for heartbeat. Furthermore, respiration could be measured from the frequency analysis of minute head body movement data. Therefore, by analyzing the change in head temperature during sleep and the amount of head body movement in combination, it has become possible to perform respiratory measurement with higher accuracy.
顔面温度データに含まれる呼吸信号に比べて心拍信号はノイズの割合が高く測定が不安定になる。また図に示したデータは体動のない静止状態で取得されたでデータで解析を行ったが、体動がある場合には呼吸や心拍の測定は困難であった。原理的には体動補正により体動を伴うデータから生体信号の抽出は可能と考えられるが、現時点では体動の大きなノイズの含まれるデータから、精度よく生体信号を抽出することは困難であった。このため、本システムでは体動の小さい睡眠時のデータから呼吸と心拍のデータを取得することとした。
Compared to the respiratory signal included in the facial temperature data, the heartbeat signal has a high noise ratio and the measurement becomes unstable. In addition, the data shown in the figure was acquired in a stationary state without body movement, so analysis was performed using the data, but it was difficult to measure respiration and heart rate when there was body movement. In principle, it is considered possible to extract biological signals from data accompanied by body movement by body movement correction, but at present, it is difficult to accurately extract biological signals from data containing large noise of body movement. It was. For this reason, in this system, we decided to acquire respiration and heart rate data from sleep data with small body movements.
睡眠中でも大きな体動が発生した場合には、その時のデータは除外して使わないようにした。またうつ伏せの状態や頭部に布団をかぶっているような状態の場合のデータも除外している。安定に測定されている状態の呼吸数あるいは心拍数データを、睡眠時の平均的な呼吸・心拍数と比較し、呼吸数・心拍数に異常な変化があった場合、警報を発することができる。
If a large amount of body movement occurred even during sleep, the data at that time was excluded and not used. It also excludes data for people lying down or wearing a futon on their head. Respiratory rate or heart rate data in a stable state can be compared with the average respiratory rate / heart rate during sleep, and an alarm can be issued if there is an abnormal change in respiratory rate / heart rate. ..
ここまで述べてきたように、感熱式撮像装置10から出力される温度画像の認識と解析により、見守り対象者11の室内での位置、姿勢、行動、転倒等の非常事態、睡眠状態、心拍数、呼吸数などが検知可能になった。
As described above, by recognizing and analyzing the temperature image output from the heat-sensitive image pickup device 10, the position, posture, behavior, and emergency situation such as a fall, sleep state, and heart rate of the person to be watched 11 in the room. , Respiratory rate, etc. can now be detected.
次に、検知された対象者11の現在の状態に関する出力について説明する。通常の見守り状態では、図19の上段に示される温度画像は記録および出力はされず、図19の下段に示されるピクトグラムで対象者11の現在の状態がリアルタイムで表示されるようにシステムは設定されている。これは対象者11のプライバシーの保護を優先するためである。ただし、対象者11の状態や、介護施設の場合はその介護体制、一人暮らしの高齢者の場合には、周囲のサポート体制によってはシステムの設定変更により温度画像の記録及び出力を行うことは可能なシステム設計となっている。
Next, the output related to the current state of the detected target person 11 will be described. Under normal watching conditions, the temperature image shown in the upper part of FIG. 19 is not recorded and output, and the system is set so that the pictogram shown in the lower part of FIG. 19 displays the current state of the subject 11 in real time. Has been done. This is to give priority to the protection of the privacy of the subject 11. However, it is possible to record and output temperature images by changing the system settings depending on the condition of the target person 11, the nursing care system in the case of a nursing care facility, and the surrounding support system in the case of elderly people living alone. It is a system design.
表示される姿勢と状況の検知と警報の種類について図20にまとめた。姿勢としては、臥位、長座位、端座位、立位、歩行、外出が判定される。対象者の病状や状況によって警報の発生のタイミングは変わる。この警報発令のタイミングについても、システム立ち上げ時に設定を行う。立ち上がること自体に転倒のリスクが高い患者の場合、立ち上がる準備動作である端座位で警報を発生する。歩行がリスクを伴う場合は、立位で警報、外出が制限されている患者の場合には、ドアに近づいたタイミングあるいは外出したタイミングで警報を発生する。また、時間的な姿勢の変化から転倒や転落が疑われる場合にも警報を発令する。長時間にわたり体動がない、あるいは極めて少ない場合にも警報が発令できる。通常の生活での体温や心拍数・呼吸数と現在の体温や心拍数・呼吸数が大きく異なる場合にも、体温、心拍数、呼吸数の情報とともに警報を発生する。このように、温度画像の解析により、対象者の多様な姿勢・運動・健康状態の把握と異常の発見が可能になる。
Fig. 20 summarizes the displayed posture and situation detection and the types of alarms. As the posture, lying position, long sitting position, end sitting position, standing position, walking, and going out are determined. The timing of alarm generation varies depending on the medical condition and situation of the subject. The timing of issuing this alarm is also set when the system is started. In the case of a patient who has a high risk of falling by standing up, an alarm is generated in the sitting position, which is a preparatory movement for standing up. When walking is risky, an alarm is issued while standing, and in the case of patients who are restricted from going out, an alarm is issued when they approach the door or when they go out. It also issues an alarm when a fall or fall is suspected due to changes in posture over time. An alarm can be issued even if there is no or very little movement for a long time. Even if the current body temperature, heart rate, and respiratory rate are significantly different from the body temperature, heart rate, and respiratory rate in normal life, an alarm is issued along with information on body temperature, heart rate, and respiratory rate. In this way, by analyzing the temperature image, it is possible to grasp various postures, exercises, and health conditions of the subject and to detect abnormalities.
(実施例2)
光軸外し反射屈折型の光学系を有する感熱式撮像装置10を用いた見守り監視システムの第2の実施例として、姿勢と状況の検知にディープラーニング(深層学習あるいは機械学習)を用いた例について説明する。本実施例についても、対象用途は高齢者施設の居室に設置する高齢者見守りシステムである。 (Example 2)
As a second embodiment of a monitoring monitoring system using a heat-sensitiveimage pickup device 10 having an optical axis off-axis reflection / refraction type, an example in which deep learning (deep learning or machine learning) is used to detect a posture and a situation. explain. In this example as well, the target application is an elderly watching system installed in the living room of an elderly facility.
光軸外し反射屈折型の光学系を有する感熱式撮像装置10を用いた見守り監視システムの第2の実施例として、姿勢と状況の検知にディープラーニング(深層学習あるいは機械学習)を用いた例について説明する。本実施例についても、対象用途は高齢者施設の居室に設置する高齢者見守りシステムである。 (Example 2)
As a second embodiment of a monitoring monitoring system using a heat-sensitive
第一の実施例では対象者の姿勢と状況の検知には、ルールベースのアルゴリズムを利用する方法について説明した。姿勢と状況の検知にはディープラーニングを利用することも可能である。以下、ディープラーニングにより感熱式撮像装置10から出力される温度画像を用いて学習を行い、姿勢を判定する方法について述べる。
In the first embodiment, a method of using a rule-based algorithm to detect the posture and situation of the subject was explained. It is also possible to use deep learning to detect posture and situation. Hereinafter, a method of performing learning using a temperature image output from the thermal image pickup device 10 by deep learning and determining the posture will be described.
図21に、図1とは異なる設計の感熱式撮像装置10を示した。凸面ミラーとして放物面ミラー2-1を用いた。放物面ミラー2-1と遠赤外カメラ3の距離を近接させることで、視野角を保ったまま装置を小型化している。図21の例では、図1に示した装置と同じシングルボードコンピュータ5を用いたが、曲面ミラーを小型化し縦型の設計とすることで小型化を図っている。シングルボードコンピュータ5のみでは処理能力が不足したため、ディープラーニング用のアクセラレータ5-1として、Intel社製 Movidiusをシングルボーコンピュータに接続して画像認識を行った。
FIG. 21 shows a thermal imaging device 10 having a design different from that of FIG. A parabolic mirror 2-1 was used as the convex mirror. By making the distance between the parabolic mirror 2-1 and the far-infrared camera 3 close to each other, the device is downsized while maintaining the viewing angle. In the example of FIG. 21, the same single board computer 5 as the device shown in FIG. 1 was used, but the curved mirror was downsized and designed to be vertical to reduce the size. Since the processing capacity of the single board computer 5 alone was insufficient, image recognition was performed by connecting Intel's Movidius to a single board computer as an accelerator 5-1 for deep learning.
ディープラーニング用のアクセレレータ5-1とシングルボードコンピュータ5が一体化された小型のコンピュータを採用すれば、装置全体のサイズを3x3x3cm程度まで小型化することができる。また、図21の設計では、遠赤外窓7を用いている。遠赤外窓7の材質は、遠赤外線の透過率の高い高密度ポリエチレンを採用した。高密度ポリエチレンは白色であるため、内部の遠赤外カメラ3が見えない設計となっている。見守り監視装置を小型化し目立たなくすることは、設置された感熱式撮像装置10で監視されているという心理的な抵抗感を低減するためにも有効である。
If a small computer in which an accelerator 5-1 for deep learning and a single board computer 5 are integrated is adopted, the size of the entire device can be reduced to about 3x3x3 cm. Further, in the design of FIG. 21, a far infrared window 7 is used. The material of the far-infrared window 7 is high-density polyethylene having a high transmittance of far-infrared rays. Since the high-density polyethylene is white, it is designed so that the far-infrared camera 3 inside cannot be seen. Making the monitoring monitoring device smaller and less noticeable is also effective in reducing the psychological resistance of being monitored by the installed thermal imaging device 10.
ディープラーニングには、Google社のフレームワークであるテンソルフロー、学習モデルはMobileNetを用いた。学習はクラウド上で行い、作成した学習モデルを感熱式撮像装置10のシングルボードコンピュータ5にインストールし、画像認識はシングルボードコンピュータ5で行うことにした(エッジコンピューティング)。シングルボードコンピュータ5のCPUでは処理能力が不足し5FPSの画像認識ができなかったため、AIアクセラレータ5-1をシングルボードコンピュータ5に接続して判定を行った。
For deep learning, Google's framework Tensor Flow was used, and the learning model was MobileNet. Learning was performed on the cloud, the created learning model was installed on the single board computer 5 of the heat-sensitive imaging device 10, and image recognition was performed on the single board computer 5 (edge computing). Since the CPU of the single board computer 5 was insufficient in processing power and could not recognize the image of 5 FPS, the AI accelerator 5-1 was connected to the single board computer 5 to make a judgment.
ディープラーニングを用いて、図20に示す姿勢のうち、7姿勢(臥位、長座位、端座位、立位、座位、転倒、外出)の判定をおこなった。まず、上記7姿勢の温度画像取得を行う。温度画像取得は図8に示した室内で行った。各姿勢での画像を、臥位から順番に毎秒1枚で200枚ずつ連続取得した。200秒間臥位のまま少しずつ、ベッド12上の位置や体の向きと布団の位置を変えながら画像を取得した。順次、姿勢を変えて同様に7姿勢の画像取得を行い、これを1セットとし10セットの画像取得を行った。
Using deep learning, 7 postures (lying position, long sitting position, end sitting position, standing position, sitting position, falling, going out) were determined among the postures shown in FIG. First, the temperature images of the above 7 postures are acquired. The temperature image acquisition was performed in the room shown in FIG. 200 images in each posture were continuously acquired at 1 per second in order from the recumbent position. Images were acquired while changing the position on the bed 12, the orientation of the body, and the position of the futon little by little while lying in the lying position for 200 seconds. Images of 7 postures were acquired in the same manner by changing the postures in sequence, and 10 sets of images were acquired with this as one set.
同一の姿勢で連続して画像取得を行わなかったのは、経時的な変化により意図しない画像変化の影響を受けることを避けるためである。これにより、各姿勢で2000枚、全部で14000枚の温度取得を行った。全画像に姿勢を表すラベル情報を付けたうえで、このうち各姿勢の1000枚の画像(計7000枚)を教師データ画像として、機械学習ソフトウェアライブラリTensorFlowを用いて、ノートPC上でモデル作成を行った。
The reason why the images were not acquired continuously in the same posture is to avoid being affected by unintended image changes due to changes over time. As a result, the temperature of 2000 sheets in each posture, 14000 sheets in total, was acquired. After attaching label information indicating the posture to all the images, 1000 images of each posture (7000 in total) are used as teacher data images, and a model is created on a notebook PC using the machine learning software library TensorFlow. went.
学習に用いなかった残りの7000枚の画像を用いてモデル精度の確認を行い、97%の精度を確認した。エッジコンピューティングにより、感熱式撮像装置10の出力温度画像からリアルタイムでの対象者の姿勢の判定が機械学習を用いて可能になった。
The model accuracy was confirmed using the remaining 7,000 images that were not used for learning, and 97% accuracy was confirmed. Edge computing has made it possible to determine the posture of the subject in real time from the output temperature image of the thermal image pickup device 10 using machine learning.
機械学習を用いた場合も、姿勢変化は第一の実施例と同様の方法で判定する。姿勢判定が立位であった場合、以前の画像と比較することで立位(静止)か歩行かを判断する。また以前の姿勢との比較を行い、立位から転倒、端座位から転倒、臥位から転倒への変化が発生した場合には警報を発生する。端座位から立位への変化あるいは外出の発生時についても、あらかじめ設定された対象者の警報設定に応じて警報を設定する。
Even when machine learning is used, the posture change is determined by the same method as in the first embodiment. When the posture determination is standing, it is determined whether it is standing (resting) or walking by comparing it with the previous image. In addition, a comparison is made with the previous posture, and an alarm is issued when a change occurs from a standing position to a fall, a sitting position to a fall, or a recumbent position to a fall. Even when the person changes from the sitting position to the standing position or goes out, an alarm is set according to the preset alarm setting of the target person.
機械学習については、学習用データの量と質が認識精度に強く影響することが知られていえる。認識精度を上げるためには二つのアプローチが考えられる。対象者を増やしながら、データ量を蓄積して精度を高めてゆく方法と、対象者それぞれについて学習モデルを作成する方法である。個人別のモデル作成を行った場合、設置場所・対象者が固定されるため比較的少ないデータでも認識精度を高めることができる。この方法を用いた場合でも、使用を続けながらデータ取得を行いモデルの再作成を行うことで継続的に精度を向上することが可能である。この場合、システム設置時にモデル作成のためのデータ取得が必要となるが、個人別のモデル作成が可能であるため高精度な認識が可能になる。
Regarding machine learning, it is known that the quantity and quality of learning data have a strong influence on recognition accuracy. Two approaches can be considered to improve the recognition accuracy. There are two methods, one is to accumulate the amount of data and improve the accuracy while increasing the number of subjects, and the other is to create a learning model for each subject. When a model is created for each individual, the installation location and target person are fixed, so recognition accuracy can be improved even with a relatively small amount of data. Even when this method is used, it is possible to continuously improve the accuracy by acquiring data and recreating the model while continuing to use it. In this case, it is necessary to acquire data for model creation when the system is installed, but since it is possible to create a model for each individual, highly accurate recognition becomes possible.
(実施例3)
ビデオカメラを含む見守り監視システムについて (Example 3)
About watching surveillance system including video camera
ビデオカメラを含む見守り監視システムについて (Example 3)
About watching surveillance system including video camera
次に、光軸外し反射屈折型の光学系を有する感熱式撮像装置を用いた見守り監視システムの第3の実施例として、可視光及び近赤外光に感度を有するビデオカメラを含む見守り監視システムについて説明する。ビデオカメラを含むシステムでも、プライバシーを確保するために通常の状態ではビデオ撮影は行わない。感熱式撮像装置の温度画像から何らかの異常を検知し警報が発生された時点で、ビデオカメラが起動し撮影を開始する。警報発生時に夜間など部屋が暗い場合には、ビデオカメラ部に設置された近赤外光源が自動的に点灯され、鮮明な画像が撮像できる。ビデオカメラの画像は外部情報端末からのリクエストがあった場合、情報端末に送信される。介助者(あるいは家族)はこの画像を用いて事態をより明確に把握することが可能になる。システムにビデオカメラを含むかどうかは、見守り対象者と保護者、介助者、家族、施設管理者の意向に応じて選択される。
Next, as a third embodiment of a watching monitoring system using a heat-sensitive image pickup device having an optical axis off-axis reflection / refraction type, a watching monitoring system including a video camera having sensitivity to visible light and near-infrared light. Will be described. Even systems that include video cameras do not shoot video under normal conditions to ensure privacy. When an abnormality is detected from the temperature image of the thermal image pickup device and an alarm is generated, the video camera is activated and shooting is started. When the room is dark, such as at night when an alarm is generated, the near-infrared light source installed in the video camera unit is automatically turned on, and a clear image can be captured. The image of the video camera is transmitted to the information terminal when there is a request from the external information terminal. The caregiver (or family member) can use this image to get a clearer picture of the situation. Whether or not the system includes a video camera is selected according to the wishes of the person being watched over and their parents, caregivers, family members, and facility managers.
見守り監視システムの制御のフローチャートを図22に示す。図22の例は、可視および近赤外のビデオカメラ32を含んだシステムについて示している。見守り監視システム稼働中は、一定時間間隔で温度画像が感熱式撮像装置10からシングルボードコンピュータ5に送られる。シングルボードコンピュータ5は、画像処理部33、判定部34、データ保存部35、及び出力部36としての機能を有する。画像処理部33は、感熱式撮像装置10により撮像された2次元赤外線放射エネルギー画像を解析し、画像内に含まれる対象者の2次元画像上の位置及び赤外線放射エネルギーを検出する。判定部34は、画像処理部33によって検出された対象者の2次元画像上の位置及び赤外線放射エネルギーに基づいて対象者の状況を判定する。データ保存部35は、判定部34によって判定された対象者の状況を記録する。出力部36は、判別部34によって得られた対象者の状況を示す情報を出力する。
より具体的に、感熱式撮像式装置10からの温度画像(入力画像)は画像処理部33に送られ、画像処理部33によって3次元空間内の頭部の位置が演算される。前フレームの頭部位置データと現在の頭部位置データの比較から、移動量を算出する。ここでいう前フレームは、直前のフレームを含む複数のフレームであることもある。 FIG. 22 shows a flowchart of control of the monitoring monitoring system. The example of FIG. 22 shows a system that includes visible and nearinfrared video cameras 32. While the monitoring monitoring system is in operation, temperature images are sent from the thermal image pickup device 10 to the single board computer 5 at regular time intervals. The single board computer 5 has functions as an image processing unit 33, a determination unit 34, a data storage unit 35, and an output unit 36. The image processing unit 33 analyzes the two-dimensional infrared radiant energy image captured by the heat-sensitive image pickup device 10, and detects the position of the subject on the two-dimensional image and the infrared radiant energy contained in the image. The determination unit 34 determines the condition of the subject based on the position on the two-dimensional image of the subject and the infrared radiant energy detected by the image processing unit 33. The data storage unit 35 records the status of the target person determined by the determination unit 34. The output unit 36 outputs information indicating the status of the target person obtained by the determination unit 34.
More specifically, the temperature image (input image) from the heat-sensitive imaging device 10 is sent to the image processing unit 33, and the image processing unit 33 calculates the position of the head in the three-dimensional space. The amount of movement is calculated from the comparison between the head position data of the previous frame and the current head position data. The previous frame referred to here may be a plurality of frames including the immediately preceding frame.
より具体的に、感熱式撮像式装置10からの温度画像(入力画像)は画像処理部33に送られ、画像処理部33によって3次元空間内の頭部の位置が演算される。前フレームの頭部位置データと現在の頭部位置データの比較から、移動量を算出する。ここでいう前フレームは、直前のフレームを含む複数のフレームであることもある。 FIG. 22 shows a flowchart of control of the monitoring monitoring system. The example of FIG. 22 shows a system that includes visible and near
More specifically, the temperature image (input image) from the heat-
さらに、頭部の位置から現在の対象者の姿勢・行動を推定する。判定部34で、現在の位置と姿勢と前フレームの位置と姿勢を比較し、急激な変化があった場合その変化の内容から転倒及び転落の有無などの異常発生の有無を判定する。また、判定部34ではデータ保存部35に保存された時間ごとの位置と体温の平均的な関係に関するデータを参照し、このデータと現在の位置と体温のデータを比較し、異常な高体温あるいは低体温時には異常と判定する。取得データをデータ保存部35に保存する。さらに、判定部34では心拍や呼吸頻度に異常がないか判定を行う。温度画像と頭部位置情報、移動量、姿勢・行動の推定値、睡眠状態、呼吸、心拍数のデータはデータ保存部35に保存される。
Furthermore, the current posture / behavior of the subject is estimated from the position of the head. The determination unit 34 compares the current position and posture with the position and posture of the front frame, and if there is a sudden change, determines whether or not an abnormality such as a fall or a fall has occurred based on the content of the change. In addition, the determination unit 34 refers to the data regarding the average relationship between the position and the body temperature for each hour stored in the data storage unit 35, compares this data with the data of the current position and the body temperature, and causes abnormal hyperthermia or It is judged to be abnormal when the body temperature is low. The acquired data is stored in the data storage unit 35. Further, the determination unit 34 determines whether or not there is an abnormality in the heartbeat or the respiration frequency. Data of temperature image, head position information, movement amount, posture / behavior estimation value, sleep state, respiration, and heart rate are stored in the data storage unit 35.
判定部34で異常が検知された場合、出力部36から警報が無線通信により介護者の持つタブレット、スマートフォン等の情報端末あるいは事務所のコンピュータなどに送信される。警報と同時に、ビデオカメラ32の動作が開始され、ビデオ画像はデータ保存部35に保存される。送信される情報は、異常発生の時間、発生異常内容および、現在の可視及び近赤外画像、現在の温度画像と異常発生前後数秒間の温度画像である。
When an abnormality is detected by the determination unit 34, an alarm is transmitted from the output unit 36 to an information terminal such as a tablet or smartphone owned by the caregiver or a computer in the office by wireless communication. At the same time as the alarm, the operation of the video camera 32 is started, and the video image is stored in the data storage unit 35. The information to be transmitted is the time of the abnormality occurrence, the content of the occurrence abnormality, the current visible and near infrared images, the current temperature image, and the temperature image for several seconds before and after the abnormality occurrence.
警報を確認した介護者は画面上に表示される可視及び近赤外画像と温度画像、異常発生前後の温度画像を確認し、必要に応じて確認や介助を行う。この際、システムが通話機能を含んでいる場合、携帯端末からスピーカーを通じて呼びかけを行い、対象者の状況を確認しても良い。介護者がその場で対象者の状況を確認できるため、迅速で無駄のない介助が可能になり、介護の質の向上と介護者の負荷の低減を実現することが可能になる。
The caregiver who confirmed the alarm confirms the visible and near infrared images and temperature images displayed on the screen, and the temperature images before and after the occurrence of the abnormality, and confirms and assists as necessary. At this time, if the system includes a call function, the mobile terminal may make a call through a speaker to check the status of the target person. Since the caregiver can check the situation of the target person on the spot, it is possible to provide prompt and lean assistance, improve the quality of care, and reduce the burden on the caregiver.
上記のシステム運用では、異常発生時にビデオ撮影が開始される。しかし、ユーザーからは異常発生時の鮮明な画像が要望されることがある。このような要望に応えるためには、異常を検知してからビデオ撮影をスタートするのではなく、ビデオ撮影は常時行い、一定時間分(例えば30分間)だけビデオ画像をデータ保存部35に保存し、それを過ぎた画像データは消去するようにし、異常が発生した時には蓄積された画像データを消去せず残すようにする。ビデオカメラは常時動作させて、異常が検知された場合に、データ保存を行うことで異常発生前後の画像を残すことができ、携帯端末から異常発生時のビデオ画像を確認することが可能になる。この場合も、プライバシーに配慮して異常のない状態でのビデオ画像は保存されない。
In the above system operation, video recording is started when an abnormality occurs. However, the user may request a clear image when an abnormality occurs. In order to meet such demands, instead of starting video shooting after detecting an abnormality, video shooting is always performed, and video images are stored in the data storage unit 35 for a certain period of time (for example, 30 minutes). , The image data that has passed it is deleted, and when an abnormality occurs, the accumulated image data is not deleted and remains. The video camera is always operated, and when an abnormality is detected, the image before and after the abnormality can be saved by saving the data, and the video image at the time of the abnormality can be confirmed from the mobile terminal. .. In this case as well, the video image is not saved in a normal state in consideration of privacy.
(実施例4)
本発明の感熱式撮像装置を用いた見守り監視システムの第4の実施例として独り暮らしの高齢者の見守り監視システムについて、図23を用いて説明する。見守り対象者11である一人暮らしの高齢者11の寝室に感熱式撮像装置10が設置されている。見守り監視システムが異常を検知した場合には、あらかじめ保護者23として登録されている家族、近親者、見守りサービス提供業者、自治体の担当者などの保護者23に、無線通信によって携帯端末やコンピュータ端末(図示せず)などの端末21に警報が送付される。保護者23は端末21に表示される端末表示内容22(警報と異常検知前後の温度画像データ)を確認し、必要に応じて、駆け付け、救急車の要請、対象者の付近の住人への確認の依頼、電話等による確認などの必要な措置を講じることができる。 (Example 4)
As a fourth embodiment of the monitoring monitoring system using the thermal imaging device of the present invention, a monitoring monitoring system for the elderly living alone will be described with reference to FIG. 23. Athermal imaging device 10 is installed in the bedroom of the elderly person 11 who lives alone, who is the person to be watched over. When the watching monitoring system detects an abnormality, a mobile terminal or computer terminal is wirelessly communicated to a guardian 23 such as a family member, a close relative, a watching service provider, or a person in charge of a local government registered as a guardian 23 in advance. An alarm is sent to the terminal 21 (not shown). The guardian 23 confirms the terminal display content 22 (warning and temperature image data before and after the abnormality detection) displayed on the terminal 21, and if necessary, rushes, requests an ambulance, and confirms with the residents in the vicinity of the target person. Necessary measures such as request and confirmation by telephone can be taken.
本発明の感熱式撮像装置を用いた見守り監視システムの第4の実施例として独り暮らしの高齢者の見守り監視システムについて、図23を用いて説明する。見守り対象者11である一人暮らしの高齢者11の寝室に感熱式撮像装置10が設置されている。見守り監視システムが異常を検知した場合には、あらかじめ保護者23として登録されている家族、近親者、見守りサービス提供業者、自治体の担当者などの保護者23に、無線通信によって携帯端末やコンピュータ端末(図示せず)などの端末21に警報が送付される。保護者23は端末21に表示される端末表示内容22(警報と異常検知前後の温度画像データ)を確認し、必要に応じて、駆け付け、救急車の要請、対象者の付近の住人への確認の依頼、電話等による確認などの必要な措置を講じることができる。 (Example 4)
As a fourth embodiment of the monitoring monitoring system using the thermal imaging device of the present invention, a monitoring monitoring system for the elderly living alone will be described with reference to FIG. 23. A
端末21側から異常発生前後の画像だけでなく、端末21側からのリクエストにより現在の温度画像を見守り監視システムから送付し、端末21で確認することも可能となっている。プライバシー保護の観点から、現在画像の送付は異常発生時に限定され、日常生活では端末21からの画像リクエストはできない仕組みになっている。この異常確認の際に、見守り監視システムがビデオカメラを含むシステムの場合には、端末21上からビデオカメラ画像の送付を選択することで、現在のビデオカメラの画像を確認することが可能となる。また、見守り監視システムはマイクとスピーカーなどの遠隔通話機能を持つ装置を含むことも可能である。異常発生時に、保護者23は携帯端末やコンピュータ端末等の端末21で画像を確認し、必要に応じて見守り対象者11に遠隔通話機能を用いて呼びかけることができる。呼びかけに適切に回答があった場合、居室への駆け付けなどの措置は必要なくなる。このように、端末21を用いて対象者11の安否状況が確認できれば、介護者や家族の負担を低減することができる。
Not only the images before and after the occurrence of the abnormality from the terminal 21 side, but also the current temperature image can be watched and sent from the monitoring system at the request from the terminal 21 side and confirmed on the terminal 21. From the viewpoint of privacy protection, the image transmission is currently limited to the time when an abnormality occurs, and the image request from the terminal 21 is not possible in daily life. At the time of this abnormality confirmation, if the monitoring monitoring system is a system including a video camera, it is possible to confirm the image of the current video camera by selecting the transmission of the video camera image from the terminal 21. .. The monitoring monitoring system can also include devices with remote communication functions such as microphones and speakers. When an abnormality occurs, the guardian 23 can confirm the image on a terminal 21 such as a mobile terminal or a computer terminal, and call the watching target person 11 using the remote call function as necessary. If the call is properly answered, measures such as rushing to the living room will not be necessary. In this way, if the safety status of the subject 11 can be confirmed using the terminal 21, the burden on the caregiver and the family can be reduced.
(実施例5)
第5の実施例として、介護施設や病院などにおける見守り監視システムについて説明する。見守り監視システムは見守り機能だけでなく、ヘルスケア機能も有している。図24に示すように、各部屋に設置された感熱式撮像装置10は施設内に配置されたホストコンピュータ20に無線接続されており、各部屋のデータはホストコンピュータ20でまとめられる。この場合も、感熱式撮像装置10の温度画像の解析はホストコンピュータ20でなく、感熱式撮像装置10に内蔵されたシングルボードコンピュータ5で行われる。通常の状態では、画像はホストコンピュータ20には転送されず、シングルボードコンピュータ5で解析された画像データは異常が検知されない場合はそのまま廃棄され、シングルボードコンピュータ5内にもホストコンピュータ20にも保存されない。通常の状態ではシングルボードコンピュータ5からホストコンピュータ20には、見守り対象者11の位置データと姿勢データ、運動量に関するデータが送られ、ホストコンピュータ20で対象者11ごとの生活データ(ライフログ)が解析されてまとめられる。 (Example 5)
As a fifth embodiment, a monitoring monitoring system in a nursing care facility, a hospital, or the like will be described. The watching monitoring system has not only a watching function but also a healthcare function. As shown in FIG. 24, the thermalimage pickup device 10 installed in each room is wirelessly connected to the host computer 20 arranged in the facility, and the data in each room is collected by the host computer 20. In this case as well, the analysis of the temperature image of the thermal image pickup device 10 is performed not by the host computer 20 but by the single board computer 5 built in the thermal image pickup device 10. Under normal conditions, the image is not transferred to the host computer 20, and the image data analyzed by the single board computer 5 is discarded as it is if no abnormality is detected, and is stored in the single board computer 5 and in the host computer 20. Not done. In the normal state, the single board computer 5 sends the position data, the posture data, and the data related to the amount of exercise of the monitoring target person 11 to the host computer 20, and the host computer 20 analyzes the life data (life log) of each target person 11. It is put together.
第5の実施例として、介護施設や病院などにおける見守り監視システムについて説明する。見守り監視システムは見守り機能だけでなく、ヘルスケア機能も有している。図24に示すように、各部屋に設置された感熱式撮像装置10は施設内に配置されたホストコンピュータ20に無線接続されており、各部屋のデータはホストコンピュータ20でまとめられる。この場合も、感熱式撮像装置10の温度画像の解析はホストコンピュータ20でなく、感熱式撮像装置10に内蔵されたシングルボードコンピュータ5で行われる。通常の状態では、画像はホストコンピュータ20には転送されず、シングルボードコンピュータ5で解析された画像データは異常が検知されない場合はそのまま廃棄され、シングルボードコンピュータ5内にもホストコンピュータ20にも保存されない。通常の状態ではシングルボードコンピュータ5からホストコンピュータ20には、見守り対象者11の位置データと姿勢データ、運動量に関するデータが送られ、ホストコンピュータ20で対象者11ごとの生活データ(ライフログ)が解析されてまとめられる。 (Example 5)
As a fifth embodiment, a monitoring monitoring system in a nursing care facility, a hospital, or the like will be described. The watching monitoring system has not only a watching function but also a healthcare function. As shown in FIG. 24, the thermal
異常発生時には、シングルボードコンピュータ5から警報と異常発生前後の画像が送られる。これらの警報データは保護者23の持つ端末21に送られ、警報内容を確認の上、必要に応じて現在状態の画像をリクエストし端末21で確認する。保護者23は、端末21からインターフォン等による呼びかけ確認や部屋への訪問による確認を行う。
When an abnormality occurs, the single board computer 5 sends an alarm and images before and after the abnormality occurs. These alarm data are sent to the terminal 21 owned by the guardian 23, and after confirming the alarm content, request an image of the current state as necessary and confirm it on the terminal 21. The guardian 23 confirms the call from the terminal 21 by an intercom or the like or by visiting the room.
日常状態では介助担当者の端末21には、図24に示すような対象者の状態を表すピクトグラムが各部屋を一覧できるような形で表示される。介助担当者は、被介護者の状態を端末21上で確認して介助作業の手順を決めることができる。例えば、朝の介助作業(朝食、歯磨き、着替え等)は起床している対象者から順番に進め、睡眠中の被介助者を後回しにすることで効率的に介助作業を進めることができる。さらに、起床(目覚まし)を睡眠が浅いタイミングで行うことも可能になる。このように、被介助者の生活リズムに合わせて介助を行うことで、介助作業の効率化と、被介助者の負担低減を実現することができる。起床だけでなく様々な介助作業(例えば、投薬や着替えなど)を被介護者の生活リズムに合わせて行うことで、介護者、被介護者の双方の負担を低減することが可能になる。
In the daily state, the terminal 21 of the person in charge of assistance displays a pictogram showing the state of the target person as shown in FIG. 24 in a form that can list each room. The caregiver can confirm the condition of the care recipient on the terminal 21 and decide the procedure of the care work. For example, morning assistance work (breakfast, brushing teeth, changing clothes, etc.) can be carried out in order from the person who is awake, and the person being assisted during sleep can be put off so that the assistance work can be carried out efficiently. Furthermore, it becomes possible to wake up (alarm) at a timing when sleep is light. In this way, by providing assistance in accordance with the life rhythm of the person being assisted, it is possible to improve the efficiency of the assistance work and reduce the burden on the person being assisted. By performing various assistance tasks (for example, medication and changing clothes) in accordance with the life rhythm of the care recipient in addition to getting up, it is possible to reduce the burden on both the caregiver and the care recipient.
上述のシステムでは、異常のない状況で撮影された温度画像は保存されることなく、判定後に消去されるように設定されている。介護施設では、介護状態の把握や事故等の発生時の状況を知るために画像を消去せず保存したいという要望がある。このような場合、システムの設定変更でホストコンピュータ20に定常的に温度画像を保存することも可能である。温度画像は通常用いられる可視光画像に比べて解像度が低く、データ容量も小さいため、無線通信の容量の制約を受けることが少なく複数の部屋の画像を同時に送受信してホストコンピュータ20に蓄積することが可能である。ここでは施設内にホストコンピュータ20を設置したが、このホストコンピュータ20の役割をクラウドコンピューティングで代替することも可能である。画像認識は各部屋に配置された見守り監視システムに内蔵されたシングルボードコンピュータ5で行われているため、クラウドにはリアルタイムで画像データを送付する必要はないため、通信容量及び通信遅延の課題は発生しない。クラウドコンピューティングにより、ホストコンピュータ20をなくすことで、システムの低コスト化を実現できる。
In the above system, the temperature image taken in a normal condition is set to be deleted after the judgment without being saved. In long-term care facilities, there is a desire to save images without erasing them in order to grasp the care status and the situation at the time of an accident or the like. In such a case, it is possible to constantly save the temperature image in the host computer 20 by changing the system setting. Since the temperature image has a lower resolution and a smaller data capacity than the commonly used visible light image, it is less restricted by the capacity of wireless communication, and images of a plurality of rooms can be transmitted and received at the same time and stored in the host computer 20. Is possible. Here, the host computer 20 is installed in the facility, but the role of the host computer 20 can be replaced by cloud computing. Since image recognition is performed by the single board computer 5 built into the monitoring monitoring system placed in each room, it is not necessary to send image data to the cloud in real time, so there are issues with communication capacity and communication delay. Does not occur. By eliminating the host computer 20 by cloud computing, the cost of the system can be reduced.
本発明の見守り監視システムは、被介護者の安全のための見守りの機能だけでなく、被介護者の正確な日常生活の分析を通じて被介護者のヘルスケアに役立てることができる。介護施設、病院等の施設では被介護者は生活の大半を個室あるいは病室で過ごすため、本発明の見守り監視システムにより正確な日常生活の記録を取得することが可能になる。このような生活状態のモニタリングの目的では、腕時計型あるいは着衣型のウェアラブルセンサが用いられることがあるが、常時装着することへの抵抗があり、被介護者がセンサを外してしまうために、継続的なモニタリングが難しいという課題があった。また、ウェアラブルセンサは充電、電池交換やデータの集積を高頻度で行う必要があり、介護者の負担が大きくなるため介護施設などで広く使われるようにはなっていない。
The monitoring monitoring system of the present invention can be useful not only for the monitoring function for the safety of the care recipient but also for the health care of the care recipient through accurate analysis of the daily life of the care recipient. In facilities such as long-term care facilities and hospitals, care recipients spend most of their lives in private rooms or hospital rooms, so the monitoring and monitoring system of the present invention makes it possible to obtain accurate records of daily life. A wristwatch-type or clothing-type wearable sensor may be used for the purpose of monitoring such living conditions, but it is continued because there is resistance to wearing it all the time and the care recipient removes the sensor. There was a problem that it was difficult to monitor. In addition, wearable sensors need to be charged, replaced with batteries, and collected data at high frequency, which increases the burden on caregivers and has not been widely used in long-term care facilities.
本発明の見守り監視システムでは、日常生活で拘束を受けることなく生活を定常的にモニタリングすることができ、データも自動的にホストコンピュータ20へ送付されるため、介護者・被介護者双方の負担なしに、生活データの取得と解析が可能になる。図25に生活分析の一例を示した。図25は
一日の間の生活パターンを示している。図26は、図25のデータを 1ケ月分まとめた月間の生活記録を日別に表している。図27は月毎の生活記録を示している。図28は、一日当たりの室内歩行距離を表している。月の前半から後半にかけて、運動量が低下していることがわかる。図26からも月後半に活動が減り、在床時間が増えている傾向がみられる。 In the monitoring monitoring system of the present invention, life can be constantly monitored without being restrained in daily life, and data is automatically sent to thehost computer 20, so that both the caregiver and the care recipient bear the burden. It is possible to acquire and analyze living data without any. FIG. 25 shows an example of life analysis. FIG. 25 shows the life pattern during the day. FIG. 26 shows the daily life record of the month in which the data of FIG. 25 is summarized for one month. FIG. 27 shows a monthly life record. FIG. 28 shows the indoor walking distance per day. It can be seen that the amount of exercise decreases from the first half to the second half of the month. From FIG. 26, there is a tendency that the activity decreased in the latter half of the month and the time spent in bed increased.
一日の間の生活パターンを示している。図26は、図25のデータを 1ケ月分まとめた月間の生活記録を日別に表している。図27は月毎の生活記録を示している。図28は、一日当たりの室内歩行距離を表している。月の前半から後半にかけて、運動量が低下していることがわかる。図26からも月後半に活動が減り、在床時間が増えている傾向がみられる。 In the monitoring monitoring system of the present invention, life can be constantly monitored without being restrained in daily life, and data is automatically sent to the
長期的な年間データの解析から、長期的な生活の変化を把握することができる。睡眠状態と認知症の進行の関係や日常的な活動量と認知症の関係が認められており、定常的な睡眠状態や運動状態の把握は病状の認識や生活指導のために重要である。同様のデータ解析は睡眠中の心拍データ、呼吸データについても可能である。バイタルデータは短期的な体調や病状の変化の把握に役立つだけでなく、長期的なトレンドを取得し解析することで被介護者の健康管理に役立てることができる。
From the analysis of long-term annual data, it is possible to grasp long-term changes in life. The relationship between sleep state and the progression of dementia and the relationship between daily activity and dementia have been recognized, and it is important to grasp the constant sleep state and motor state for recognition of medical conditions and lifestyle guidance. Similar data analysis is possible for heart rate data and respiration data during sleep. Vital data is useful not only for grasping short-term changes in physical condition and medical condition, but also for health management of long-term care recipients by acquiring and analyzing long-term trends.
このように本発明の見守り監視システムを用いることで、被介護者の安全のための見守りだけでなく、被介護者の長期的なヘルスケアのためのデータを解析し健康増進に役立てることが可能になる。さらに、このような日常の生活データ(ライフログ)を取得し、他の健康データと合わせてデータを解析すること(ビッグデータ解析)で、健康維持や健康増進のための生活習慣に関するデータの取得と解析が可能になる。
By using the monitoring monitoring system of the present invention in this way, it is possible to analyze not only the monitoring for the safety of the care recipient but also the data for the long-term health care of the care recipient and use it for health promotion. become. Furthermore, by acquiring such daily life data (life log) and analyzing the data together with other health data (big data analysis), it is possible to acquire data related to lifestyles for maintaining and promoting health. And analysis becomes possible.
(実施例6)
本発明の第6の実施例として、見守りサービスの事例について説明する。安全のための見守り監視システムの課題は異常検知の精度である。異常の誤検出が多いと、警報の都度、介護者は安全の確認が必要となり負荷が増大する。本発明のシステムにより、部屋までいかなくても携帯端末で状況の確認が可能になり負荷は軽減するが、誤検出が多い場合にはその都度業務が中断され、常に警報に注意を払っているという心理的な負荷は大きなものとなる。特に家族に警報が届くようなシステムでは24時間、時間を問わず警報が発せられる可能性があり、家族の負担は大きくなる。逆に、誤検出を減らすために警報発生の頻度を減らすと、異常の見逃しにつながり最悪の結果を招きかねない。見守り監視システムの高精度化により、異常検出の精度を上げることが極めて重要である。そのために、本発明では人体を直接検出できる感熱式撮像装置を採用した。これにより、認識精度は高められたが、依然として、誤検出と見逃しを抑えることは重要な課題となっている。 (Example 6)
As a sixth embodiment of the present invention, an example of a watching service will be described. The issue of the monitoring system for safety is the accuracy of abnormality detection. If there are many false positives, the caregiver needs to confirm the safety each time an alarm is issued, which increases the load. The system of the present invention makes it possible to check the situation on a mobile terminal without going to the room and reduce the load, but when there are many false positives, the business is interrupted each time and the alarm is always paid attention. The psychological burden is great. In particular, in a system in which an alarm reaches the family, the alarm may be issued 24 hours a day, regardless of the time, which increases the burden on the family. On the contrary, if the frequency of alarm generation is reduced in order to reduce false positives, the abnormality may be overlooked and the worst result may be obtained. It is extremely important to improve the accuracy of abnormality detection by improving the accuracy of the monitoring monitoring system. Therefore, in the present invention, a thermal imaging device capable of directly detecting the human body is adopted. As a result, the recognition accuracy has been improved, but it is still an important issue to suppress false detections and oversights.
本発明の第6の実施例として、見守りサービスの事例について説明する。安全のための見守り監視システムの課題は異常検知の精度である。異常の誤検出が多いと、警報の都度、介護者は安全の確認が必要となり負荷が増大する。本発明のシステムにより、部屋までいかなくても携帯端末で状況の確認が可能になり負荷は軽減するが、誤検出が多い場合にはその都度業務が中断され、常に警報に注意を払っているという心理的な負荷は大きなものとなる。特に家族に警報が届くようなシステムでは24時間、時間を問わず警報が発せられる可能性があり、家族の負担は大きくなる。逆に、誤検出を減らすために警報発生の頻度を減らすと、異常の見逃しにつながり最悪の結果を招きかねない。見守り監視システムの高精度化により、異常検出の精度を上げることが極めて重要である。そのために、本発明では人体を直接検出できる感熱式撮像装置を採用した。これにより、認識精度は高められたが、依然として、誤検出と見逃しを抑えることは重要な課題となっている。 (Example 6)
As a sixth embodiment of the present invention, an example of a watching service will be described. The issue of the monitoring system for safety is the accuracy of abnormality detection. If there are many false positives, the caregiver needs to confirm the safety each time an alarm is issued, which increases the load. The system of the present invention makes it possible to check the situation on a mobile terminal without going to the room and reduce the load, but when there are many false positives, the business is interrupted each time and the alarm is always paid attention. The psychological burden is great. In particular, in a system in which an alarm reaches the family, the alarm may be issued 24 hours a day, regardless of the time, which increases the burden on the family. On the contrary, if the frequency of alarm generation is reduced in order to reduce false positives, the abnormality may be overlooked and the worst result may be obtained. It is extremely important to improve the accuracy of abnormality detection by improving the accuracy of the monitoring monitoring system. Therefore, in the present invention, a thermal imaging device capable of directly detecting the human body is adopted. As a result, the recognition accuracy has been improved, but it is still an important issue to suppress false detections and oversights.
将来的には、AI(人工知能)技術により高精度化が実現されていく可能性もあるが、現状では、人間が画像を確認する方が精度は高く、見逃しは抑えられる。このため、システムが異常を検出した際に、対応の必要性を判断するサービスに需要がある。このサービスでは介護施設等の部屋や一人暮らしの高齢者宅に設置された見守り監視システムで異常が検知された際に、直接、介護担当者や家族に警報を送付するのでなく、いったん見守りサービス担当者にデータが送付される。見守りサービス担当者が画像を判定したうえで、見守りサービス担当者が必要と判断した場合、介護担当者や家族に連絡を行うようなサービスである。
In the future, there is a possibility that AI (artificial intelligence) technology will realize higher accuracy, but at present, it is more accurate for humans to check images, and oversight can be suppressed. Therefore, there is a demand for a service that determines the necessity of dealing with an abnormality when the system detects an abnormality. In this service, when an abnormality is detected in a monitoring system installed in a room such as a nursing facility or in an elderly person living alone, the monitoring service staff does not directly send an alarm to the nursing staff or family members. The data will be sent to. It is a service in which the person in charge of the watching service judges the image and then if the person in charge of the watching service determines that it is necessary, the person in charge of the care service or the family is contacted.
図29に概念図を示した。見守りサービス担当者23-1は、複数の施設、住宅を24時間体制で見守ることができる。この場合も、見守りサービス担当者23-1は常時画像を見守るわけではなく、異常発生時に異常発生前後の画像と現在の画像を確認し、緊急性を判断し必要な措置をとる。家族や保護者23は、見守り監視システムが発生する警報のすべてに対応する必要はなく、見守りサービス担当者23-1が必要と認めた場合のみ連絡を受けて対応すればよい。これにより家族や保護者23の負担が軽減できる。保護者23にとって、深夜や休日の対応は心理的、肉体的な負担が大きく、このようなサービスによる負担軽減は特に有効であると考えられる。
A conceptual diagram is shown in FIG. The watching service staff 23-1 can watch over multiple facilities and houses 24 hours a day. In this case as well, the watching service staff 23-1 does not always watch the image, but when an abnormality occurs, the image before and after the abnormality occurs and the current image are checked, the urgency is judged, and necessary measures are taken. The family member and the guardian 23 do not have to respond to all the alarms generated by the monitoring monitoring system, and only need to be contacted and responded when the monitoring service person 23-1 deems it necessary. As a result, the burden on the family and the guardian 23 can be reduced. For the guardian 23, dealing with midnight and holidays has a large psychological and physical burden, and it is considered that reducing the burden by such a service is particularly effective.
高齢者の一人暮らしの場合、家族が遠隔地に住んでいる場合、緊急連絡を受けても直ちに対応が取れないことが多い。このような場合に備えて、駆け付けサービスが、既に行われている。何らかの異常が危惧される際に、家族に代わって駆け付けサービス担当者23-2が一人暮らしの住宅に急行し、状況を確認するというサービスである。この駆け付けサービスと見守りサービスを連携することができる。見守り監視システムで異常が検知され、見守りサービスで対象者の救護あるいは確認が必要と判断された場合、見守りサービス担当者23-1から駆けつけ担当者23-2へ連絡し、駆け付けサービス担当者23-2が対象者の住居に急行するというサービスである。
In the case of an elderly person living alone, if the family lives in a remote area, it is often not possible to take immediate action even if an emergency call is received. A rush service has already been provided in case of such a situation. When there is a concern that something is wrong, the rush service person 23-2 rushes to the house where he lives alone and checks the situation on behalf of his family. This rush service and the watching service can be linked. If an abnormality is detected by the monitoring monitoring system and it is determined that the monitoring service requires rescue or confirmation of the target person, the monitoring service staff 23-1 contacts the rushing staff 23-2 and the rush service staff 23- 2 is a service that rushes to the target person's residence.
見守りサービスは、見守り監視システムで異常が検知された時だけ画像を確認すれば良いため、多くの施設を同時に担当することができ、効率的で迅速な対応が可能となる。高齢化社会を迎え、IoT(インターネットオブシングス)機器を活用した高信頼性で効率的で低コストの見守り監視システムが重要になっている。IoTを活用して、効率的に高齢者の安全安心な生活をサポートできるシステムは今後ますます重要になってゆくと考えられる。
Since the monitoring service only needs to check the image when an abnormality is detected by the monitoring monitoring system, it is possible to take charge of many facilities at the same time, and it is possible to respond efficiently and promptly. With the aging of society, highly reliable, efficient, and low-cost monitoring and monitoring systems that utilize IoT (Internet of Things) devices are becoming important. Systems that can efficiently support the safe and secure lives of the elderly by utilizing IoT are expected to become more and more important in the future.
ここまで、居室のベッド上に設置された見守り監視システムを中心に述べてきたが、設置場所はこれに限られるものではない。介護施設や病院では、見守り対象者は個室あるいは大部屋でほとんどの時間をベッドのあるひとつの部屋で過ごすため、見守り監視システムをベッド上に設置することが有効である。一方、一人暮らし高齢者の場合、寝室以外で過ごす時間が多くなる。このような場合、寝室以外の場所での見守りが必要になる。場所によって、リビングルームでは感熱式撮像装置10を用いた見守り監視システム、トイレや廊下、玄関などで、簡易的な焦電センサを用いた見守り監視システムなどと組み合わせて住居全体を見守ることで、より確実な見守りが可能となる。リビングルーム等で用いられる感熱式撮像装置10を用いた見守り監視システムでは画像認識のソフトウェアを変更する必要がある。ここでも対象者の室内の3次元的な位置を把握し、立位、歩行、座位、臥位を認識し、転倒等の事故の発生や運動量のモニタを行うという基本的な構成は同じである。
Up to this point, we have mainly described the watching and monitoring system installed on the bed in the living room, but the installation location is not limited to this. In long-term care facilities and hospitals, it is effective to install a watching monitoring system on the bed because the person to be watched spends most of the time in a private room or a large room in one room with a bed. On the other hand, elderly people living alone spend more time outside the bedroom. In such a case, it is necessary to watch over the place other than the bedroom. Depending on the location, in the living room, a watching monitoring system using a heat-sensitive imager 10, and in a toilet, corridor, entrance, etc., by combining with a watching monitoring system using a simple pyroelectric sensor, etc., it is possible to watch over the entire house. Reliable monitoring is possible. In the monitoring monitoring system using the thermal image pickup device 10 used in the living room or the like, it is necessary to change the image recognition software. Here, too, the basic configuration is the same: grasping the three-dimensional position of the subject in the room, recognizing the standing, walking, sitting, and lying positions, and monitoring the occurrence of accidents such as falls and the amount of exercise. ..
高齢者や入院患者の見守りへの応用例について示してきたが、応用はこれに限られるものではない。乳幼児の見守りや、拘留者の見守り、ペットの見守りなどにも応用できる。また、見守り用途だけでなく視野の広さを活かして、通常の監視カメラが用いられている街頭や店舗内、集合住宅の廊下などで人間を検知する監視カメラとしても活用できる。
Although we have shown examples of applications for watching over elderly people and inpatients, the applications are not limited to this. It can also be applied to watching over infants, watching over detainees, and watching over pets. In addition to being used for watching, it can also be used as a surveillance camera to detect humans in streets, stores, and corridors of apartment buildings where ordinary surveillance cameras are used.
ここで見守り以外の応用例について説明する。従来、安価な焦電センサが用いられてきた入室時の自動点灯スイッチや自動ドアスイッチ、侵入警報器などの用途に本発明の感熱式撮像装置10を用いることでより、高機能な制御が可能になる。例えば、トイレへの入室を感知して電灯を点灯するスイッチの場合、焦電センサでは人の動きを検知しているため、人が静止状態を続けた場合、在室中でも電灯が消灯してしまうという問題が生じていた。
Here, application examples other than watching will be explained. Higher-performance control is possible by using the heat-sensitive image pickup device 10 of the present invention for applications such as an automatic lighting switch, an automatic door switch, and an intrusion alarm when an inexpensive pyroelectric sensor has been used in the past. become. For example, in the case of a switch that turns on the lamp when it detects entering the toilet, the pyroelectric sensor detects the movement of the person, so if the person continues to be stationary, the lamp will turn off even while in the room. There was a problem.
本発明の感熱式撮像装置10を用いれば、人が静止していても存在を検知できるためこのような問題が発生しない。さらに、トイレ内の人数を計測でき、ひとつの感熱式撮像装置10でトイレ内の全個室の使用状況を把握できる。この情報を無線通信で送ることで、トイレの外でトイレの使用状態を把握することが可能になる。これにより、トイレの空き状態をトイレの外で表示することや、携帯端末で空き具合を確認してトイレを選択することが可能になる。
If the heat-sensitive image pickup device 10 of the present invention is used, the existence can be detected even when a person is stationary, so that such a problem does not occur. Further, the number of people in the toilet can be measured, and the usage status of all the private rooms in the toilet can be grasped by one heat-sensitive imaging device 10. By sending this information by wireless communication, it becomes possible to grasp the usage status of the toilet outside the toilet. This makes it possible to display the vacancy status of the toilet outside the toilet, and to check the vacancy status on the mobile terminal and select the toilet.
近年、飲食店などの店舗の空席をカメラなどで認識して、混雑状況や空席情報を店舗外に表示したり、インターネット上で表示したりするサービスが広がっている。このような店舗内の空席情報を取得する際に、本発明の感熱式撮像装置10を用いることで、体温から人を検知できるためより正確に空席を把握することが可能になる。さらに来店者数の把握や、顧客の滞在時間や店舗内での移動経路を解析したりすることも可能になる。ショッピングモール等に設置し、顧客数の変化や顧客の動線を解析することも可能になる。
In recent years, services such as recognizing vacant seats in stores such as restaurants with cameras and displaying congestion status and vacant seat information outside the store or on the Internet have become widespread. By using the heat-sensitive imaging device 10 of the present invention when acquiring such vacant seat information in a store, a person can be detected from the body temperature, so that the vacant seat can be grasped more accurately. Furthermore, it is possible to grasp the number of visitors and analyze the customer's staying time and the movement route in the store. It can also be installed in shopping malls and the like to analyze changes in the number of customers and customer flow lines.
店舗での利用では、あらかじめ事前情報として席の配置情報を入力しておくことで、認識精度を高めることが可能である。本発明の感熱式撮像装置10を用いることでビデオカメラを用いた方式に比べて画像流出等のプライバシーに対する課題がなくなるという利点もある。
For use in stores, it is possible to improve recognition accuracy by inputting seat arrangement information as advance information in advance. By using the heat-sensitive image pickup device 10 of the present invention, there is an advantage that there is no problem with privacy such as image leakage as compared with the method using a video camera.
また、本発明の感熱式撮像装置10を用いた画像認識により人の行動を認識できるという機能を活かして、家電製品のスマートリモコンとして用いることが可能になる。最近の家電製品は、Wifiやブルートゥース接続が可能な製品が多数あり、本発明の見守り監視システムを用いて対象者の行動を把握して、無線通信により家電製品を使用者の生活に合わせて適切に制御することができる。
Further, by utilizing the function of being able to recognize human behavior by image recognition using the thermal image pickup device 10 of the present invention, it can be used as a smart remote controller for home appliances. There are many recent home appliances that can be connected to Wifi or Bluetooth, and the behavior of the target person is grasped using the monitoring monitoring system of the present invention, and the home appliances are appropriate for the user's life by wireless communication. Can be controlled to.
例えば、対象者がベッド上でテレビを視聴しながら眠ってしまったとき、入眠を検知して、テレビの電源オフ、照明の消灯などを行うことができる。
For example, when the subject falls asleep while watching TV on the bed, it is possible to detect falling asleep, turn off the TV, turn off the lights, and so on.
また、睡眠の状態に応じてエアコンを制御して室内温度の調整を行うこと、対象者が室外に出た時に照明やテレビ、エアコンなどの電源を切断するなど、様々な用途が考えられる。
In addition, various uses can be considered, such as controlling the air conditioner according to the state of sleep to adjust the room temperature, and turning off the power of lighting, TV, air conditioner, etc. when the subject goes out of the room.
感熱式撮像装置10を天井に配置し、室内を見守り監視する用途に用いた例について示してきたが、感熱式撮像装置10の設置方法はこれに限られるものではない。位置関係を上下に反転して、床または床付近の壁面に設置し、天井を含む室内の見守りに用いることも可能である。壁のないオープンスペースでの見守り監視では、感熱式撮像装置10を床に配置して使用することが有効となる。
Although an example has been shown in which the heat-sensitive image pickup device 10 is placed on the ceiling and used for watching and monitoring the room, the installation method of the heat-sensitive image pickup device 10 is not limited to this. It is also possible to invert the positional relationship upside down and install it on the floor or a wall surface near the floor to watch over the room including the ceiling. In monitoring monitoring in an open space without a wall, it is effective to arrange the thermal imaging device 10 on the floor and use it.
(実施例7)
車載用の見守り監視のための感熱式撮像装置 (Example 7)
Thermal imaging device for in-vehicle monitoring
車載用の見守り監視のための感熱式撮像装置 (Example 7)
Thermal imaging device for in-vehicle monitoring
ここまで高齢者や幼児などを対象とした室内の見守り監視システムへの実施例について説明してきたが、本発明の見守り監視システムの用途はこれに限られるものでなく、他の様々な用途に応用が可能である。ここでは、第7の実施例として、自動車に搭載して歩行者を検知する見守り監視システムへの応用ついて述べる。
Up to this point, examples of an indoor monitoring monitoring system for the elderly and infants have been described, but the application of the monitoring monitoring system of the present invention is not limited to this, and is applied to various other applications. Is possible. Here, as a seventh embodiment, application to a watching monitoring system that is mounted on an automobile to detect a pedestrian will be described.
車載用の見守り監視システムと室内用の見守り監視システムでは、要求される視野領域が異なる。歩行者を検知するための車載システムでは、水平方向に広い視野が要求される。一方、垂直方向には広い視野は必要ではない。右左折時の巻き込みを防止するためには、車両の進行方向に対して左右それぞれ90度(視野角180度)あるいはそれ以上の視野が必要とされる。一方、垂直方向に関しては、30-40程度の視野角があれば充分である。このため、水平方向と垂直方向で異なる視野角を持つが求められる。
The required visual field area differs between the in-vehicle monitoring system and the indoor monitoring system. An in-vehicle system for detecting a pedestrian requires a wide field of view in the horizontal direction. On the other hand, a wide field of view is not required in the vertical direction. In order to prevent entanglement when turning left or right, a field of view of 90 degrees (viewing angle 180 degrees) or more is required on each side with respect to the traveling direction of the vehicle. On the other hand, in the vertical direction, a viewing angle of about 30-40 is sufficient. Therefore, it is required to have different viewing angles in the horizontal direction and the vertical direction.
すでに述べたように、従来の遠赤外カメラは視野角が40-50°と狭く、歩行者検知システムとしては性能が不十分である。ここまで述べた室内見守り監視システムの凸面ミラー2を用いた反射屈折光学系は水平方向、垂直方向ともに視野角を広げる設計であるため、垂直方向の画素が有効利用できない。
As already mentioned, the conventional far-infrared camera has a narrow viewing angle of 40-50 °, and its performance is insufficient as a pedestrian detection system. Since the catadioptric system using the convex mirror 2 of the indoor watching monitoring system described so far is designed to widen the viewing angle in both the horizontal direction and the vertical direction, the pixels in the vertical direction cannot be effectively used.
そこで、車載用に水平方向のみ視野角を広げることのできる光学系を開発した。すでに述べたように、凸面ミラーを用いることで視野を拡大することができる。水平方向と垂直方向でミラー形状を変えることで垂直方向と水平方向の視野角を制御することが可能になる。
Therefore, we have developed an optical system that can widen the viewing angle only in the horizontal direction for in-vehicle use. As already mentioned, the field of view can be expanded by using a convex mirror. By changing the mirror shape in the horizontal direction and the vertical direction, it is possible to control the viewing angle in the vertical direction and the horizontal direction.
ここでは円筒形ミラーを用いて水平方向の視野角を広げた感熱式撮像装置10の光学系について図30を用いて説明する。図30に示す光学系では、凸面ミラーとして円筒形ミラー2-2を垂直方向に対して30°傾けて配置している。円筒形ミラー2-2の光軸3-4を円の外周方向に定義すると、円筒形ミラー2-2の光軸3-4と遠赤外カメラ3の光軸3-3のなす角αをα=30°となるように遠赤外カメラ3を軸外配置した。円筒形ミラー2-2の筒方向(垂直方向)の曲率がゼロであるため、垂直方向の視野角は、代表的な光線6で示されるように遠赤外カメラ3の垂直方向の視野角がそのまま反映される。ここでは円筒形ミラー2-2としてステンレス製の円筒ミラーを用いた。遠赤外カメラ3としてはボロメーター方式の視野角56x42°、160x120画素のカメラを採用した。
Here, the optical system of the thermal image pickup device 10 in which the viewing angle in the horizontal direction is widened by using a cylindrical mirror will be described with reference to FIG. In the optical system shown in FIG. 30, a cylindrical mirror 2-2 is arranged as a convex mirror at an angle of 30 ° with respect to the vertical direction. When the optical axis 3-4 of the cylindrical mirror 2-2 is defined in the outer peripheral direction of the circle, the angle α formed by the optical axis 3-4 of the cylindrical mirror 2-2 and the optical axis 3-3 of the far infrared camera 3 is defined. The far-infrared camera 3 was arranged off-axis so that α = 30 °. Since the curvature of the cylindrical mirror 2-2 in the tubular direction (vertical direction) is zero, the viewing angle in the vertical direction is the vertical viewing angle of the far-infrared camera 3 as shown by the typical ray 6. It will be reflected as it is. Here, a stainless steel cylindrical mirror was used as the cylindrical mirror 2-2. As the far-infrared camera 3, a bolometer-type camera with a viewing angle of 56x42 ° and 160x120 pixels was adopted.
図31は円筒形ミラー2-2を円筒の上部から見た図を示している。図31には、遠赤外カメラ3の視野角5°毎の光線と、円形ミラーによる反射光線を示している。図31の円形ミラーにより反射される光線からわかるように、視野角が拡大されており180°以上の広い視野角が得られていることがわかる。
FIG. 31 shows a view of the cylindrical mirror 2-2 as viewed from the upper part of the cylinder. FIG. 31 shows light rays for each viewing angle of 5 ° of the far-infrared camera 3 and light rays reflected by the circular mirror. As can be seen from the light rays reflected by the circular mirror of FIG. 31, it can be seen that the viewing angle is expanded and a wide viewing angle of 180 ° or more is obtained.
円筒形ミラー2-2を用いることで、垂直方向の視野を保ったまま、水平方向の視野を拡大できていることがわかる。遠赤外カメラ3が画像中心に映り込まないように、円筒形ミラー2-2に対し遠赤外カメラ3が軸外配置された感熱式撮像装置10となっている。
It can be seen that by using the cylindrical mirror 2-2, the horizontal field of view can be expanded while maintaining the vertical field of view. The thermal imaging device 10 is such that the far-infrared camera 3 is arranged off-axis with respect to the cylindrical mirror 2-2 so that the far-infrared camera 3 is not reflected in the center of the image.
図32に自動車27のルーフ前方部に、車載用の感熱式撮像装置10を取り付けた時の本発明の感熱式撮像装置の撮像範囲を、通常の遠赤外カメラを用いた場合と比較して示した。破線で示した領域が通常の遠赤外カメラの視野、実線で示した領域が図30の遠赤外撮像装置10を用いた場合の視野を表している。通常の遠赤外カメラの視野角55°に較べてはるかに広い視野角220°が得られている。
In FIG. 32, the imaging range of the heat-sensitive image pickup device of the present invention when the heat-sensitive image pickup device 10 for vehicle is attached to the front portion of the roof of the automobile 27 is compared with the case where a normal far-infrared camera is used. Indicated. The area shown by the broken line represents the field of view of a normal far-infrared camera, and the area shown by a solid line represents the field of view when the far-infrared imaging apparatus 10 of FIG. 30 is used. A far wider viewing angle of 220 ° is obtained as compared with the viewing angle of 55 ° of a normal far-infrared camera.
図33は図32に示した視野を道路上に対して示した。破線が通常の遠赤外カメラの視野、実線が本発明の感熱式撮像装置10を用いた場合の視野を表している。通常の遠赤外カメラの視野角55°では、自動車27付近の歩行者28や自転車29の検出が困難であり、右左折時の巻き込みや見通しの悪い交差点からの歩行者の飛び出しなどを検知できないことがわかる。市街地での人身事故は、これらの事故が大半を占めるため自動車27近傍の歩行者28や自転車29の検出は特に重要である。
FIG. 33 shows the field of view shown in FIG. 32 with respect to the road. The broken line represents the field of view of a normal far-infrared camera, and the solid line represents the field of view when the thermal imaging apparatus 10 of the present invention is used. With a viewing angle of 55 ° of a normal far-infrared camera, it is difficult to detect pedestrians 28 and bicycles 29 near the automobile 27, and it is not possible to detect pedestrians getting caught when turning left or right or jumping out of an intersection with poor visibility. You can see that. Since these accidents account for most of the accidents resulting in injury or death in urban areas, it is particularly important to detect pedestrians 28 and bicycles 29 in the vicinity of the automobile 27.
本発明の車載用感熱式撮像装置10では視野角が180°以上(図33の例では220°)と広く、自動車の近傍の歩行者、バイク、自転車の検出が可能であることがわかる。
It can be seen that the in-vehicle thermal image pickup device 10 of the present invention has a wide viewing angle of 180 ° or more (220 ° in the example of FIG. 33) and can detect pedestrians, motorcycles, and bicycles in the vicinity of the automobile.
実際の道路上での人物の遠赤外画像を図34に示した。車両は2車線の左車線にあり、図にはセンターラインと左右車線の端と、車両から歩行者までの距離を追記している。自動車が左車線にあるため、左車線が画面の中央に撮影されている。左右の歩道にいる歩行者と車との距離は、50,20,10,5,2,0mである。0mは車両に設置された感熱式撮像装置10の真横に歩行者がいることを示している。
A far-infrared image of a person on an actual road is shown in FIG. 34. The vehicle is in the left lane of the two lanes, and the figure shows the center line, the ends of the left and right lanes, and the distance from the vehicle to the pedestrian. Since the car is in the left lane, the left lane is shot in the center of the screen. The distance between the pedestrians on the left and right sidewalks and the car is 50, 20, 10, 5, 2, 0 m. 0 m indicates that there is a pedestrian right next to the thermal image pickup device 10 installed in the vehicle.
円筒形ミラー2-2を用いているため、画像の歪は大きいが車両から20m離れた距離の歩行者から、0m(車両の真横)にいる歩行者まで撮影されていることがわかる。50m離れた歩行者の検知は図34の画像からは困難である。これは用いた遠赤外カメラの解像度が160x120画素と低いためである。
Since the cylindrical mirror 2-2 is used, the distortion of the image is large, but it can be seen that the image is taken from a pedestrian at a distance of 20 m from the vehicle to a pedestrian at 0 m (right next to the vehicle). Detection of a pedestrian at a distance of 50 m is difficult from the image of FIG. 34. This is because the resolution of the far-infrared camera used is as low as 160x120 pixels.
高解像度の遠赤外カメラを用いれば、100m以上離れた歩行者の検知も可能である。ただし、高解像度の遠赤外カメラは高価であるため、目的に合わせてカメラを選択する必要がある。ここでは、遠方の歩行者の検知よりも、自動車の近傍の歩行者の検知を優先しているため、あえて低価格である低画素遠赤外カメラを選択した。
If a high-resolution far-infrared camera is used, it is possible to detect pedestrians at a distance of 100 m or more. However, since a high-resolution far-infrared camera is expensive, it is necessary to select a camera according to the purpose. Here, since the detection of pedestrians in the vicinity of the automobile is prioritized over the detection of pedestrians in the distance, a low-priced low-pixel far-infrared camera was selected.
図34の画像から、画像認識により歩行者を検知し、必要に応じて運転者に注意をうながす。すでに述べたように遠赤外カメラは体温から直接人を検知できるため、人検知は容易である。高齢者見守り監視装置での画像認識と同様に、画像上の温度と形状およびサイズで人をより高精度に識別することが可能である。
From the image of FIG. 34, a pedestrian is detected by image recognition, and the driver is alerted as necessary. As already mentioned, the far-infrared camera can detect a person directly from the body temperature, so that the person can be easily detected. Similar to image recognition with an elderly person watching and monitoring device, it is possible to identify a person with higher accuracy by the temperature, shape, and size on the image.
車両の周囲に人を検知した場合、その危険度に応じて警報・警告を運転者に対して行う。運転者への警告は警報音や警報灯、車両に設置されたディスプレーにより行う。例えば、危険度に応じて警報音の音量・音程を変化させることや、警報灯の点滅速度を変化させて警告することができる。ディスプレーを用いる場合は、温度画像を表示し、その上に人マークを表示するなどの方法で警告を知らせることができる。
When a person is detected around the vehicle, an alarm / warning is given to the driver according to the degree of danger. Warnings to the driver are given by warning sounds, warning lights, and displays installed in the vehicle. For example, the volume and pitch of the alarm sound can be changed according to the degree of danger, or the blinking speed of the alarm light can be changed to give a warning. When using a display, a temperature image can be displayed and a person mark can be displayed on the display to notify the warning.
ここまでは、歩行者の検知について述べたが、路上のペットや野生動物も体温を持っているため、温度画像から検出することができる。画像認識により人と動物を区別し、異なる警報を発することも可能である。
Up to this point, we have described the detection of pedestrians, but since pets and wild animals on the street also have body temperature, they can be detected from temperature images. It is also possible to distinguish between humans and animals by image recognition and issue different alarms.
上記実施例では、反射ミラーとして水平方向の断面形状は円形、垂直方向の断面形状は直線となる円筒形ミラー2-2を用いたがこれに限定するものではない。例えば水平方向の断面形状は、楕円、放物線、双曲線形状であっても良い。また、垂直方向の断面形状は、凹面ミラーとすることで垂直方向の視野角を縮め、倍率をあげることもできる。凹面ミラーを用いることにより、画面中心の倍率をあげることで遠方の歩行者の検出感度を高めることができる。この時のレンズの凹面形状についても、円形、楕円、放物線、双曲線形状などから選ぶことができる。
In the above embodiment, a cylindrical mirror 2-2 having a circular cross-sectional shape in the horizontal direction and a straight cross-sectional shape in the vertical direction is used as the reflection mirror, but the present invention is not limited to this. For example, the cross-sectional shape in the horizontal direction may be an ellipse, a parabola, or a hyperbola. Further, the cross-sectional shape in the vertical direction can be reduced in the viewing angle in the vertical direction and the magnification can be increased by using a concave mirror. By using the concave mirror, the detection sensitivity of a distant pedestrian can be increased by increasing the magnification at the center of the screen. The concave shape of the lens at this time can also be selected from a circular shape, an ellipse, a parabola, a hyperbolic shape, and the like.
図35に鞍型ミラー2-3を採用した例について示した。ここで鞍型ミラー2-3として、双曲放物面とよばれる2次曲面を採用した。双曲放物面とは、z = (x/a)2-(y/b)2 の関係を満たす曲線である。水平方向の断面は凸面ミラーとなっており、図31で示したように視野角が拡大される。一方、垂直方向は凹面ミラーとなっており、視野角は縮小される。
FIG. 35 shows an example in which the saddle-shaped mirror 2-3 is adopted. Here, as the saddle-shaped mirror 2-3, a quadric curved surface called a hyperbolic paraboloid was adopted. A hyperbolic paraboloid is a curve that satisfies the relationship z = (x / a) 2- (y / b) 2 . The cross section in the horizontal direction is a convex mirror, and the viewing angle is enlarged as shown in FIG. On the other hand, the vertical direction is a concave mirror, and the viewing angle is reduced.
視野角が狭いことは高倍率で画像を撮像できるということであり、遠方の歩行者の検出性能が高められていることを意味する。さらに複雑な3次元形状を設計することで、画面上の位置により倍率を制御することができる。例えば垂直方向の凹面ミラーの曲率を画面中央で大きくし、外周に行くにつれて小さくすることで、画面中央の倍率を上げることができる。
The narrow viewing angle means that the image can be captured at high magnification, which means that the detection performance of pedestrians in the distance is improved. By designing a more complicated three-dimensional shape, the magnification can be controlled by the position on the screen. For example, by increasing the curvature of the concave mirror in the vertical direction at the center of the screen and decreasing it toward the outer circumference, the magnification at the center of the screen can be increased.
自動車の進行方向に向けて感熱式撮像装置10が設置されているため、画面中央に進行方向の道路が撮影される。遠方の歩行者は図34に示すように、常に画面中央に写ることになる。垂直方向の凹面ミラーの曲率を画面中央で大きくすることにより、遠方の歩行者を高い感度で撮像することが可能になる。
Since the thermal imaging device 10 is installed in the direction of travel of the automobile, the road in the direction of travel is photographed in the center of the screen. As shown in FIG. 34, a distant pedestrian is always shown in the center of the screen. By increasing the curvature of the concave mirror in the vertical direction at the center of the screen, it is possible to image a distant pedestrian with high sensitivity.
水平方向の凸面ミラーの断面形状は、すでに述べたように円形から放物線、双曲線と外周部に向かって曲率を下げていくことで、画面中央に対して画面周辺に向かって倍率を上げることができる。車載用の場合、画面周辺に写る歩行者は、車両の近くにいるため、図34に示すように十分に大きく撮影される。車載用の場合には、水平方向の凸面ミラーの断面形状は、外周部に向かって曲率が上がっていく形状を用いた方が、遠方の歩行者の検知は容易になる。
As already mentioned, the cross-sectional shape of the convex mirror in the horizontal direction can be increased in magnification toward the periphery of the screen with respect to the center of the screen by decreasing the curvature from a circle to a parabola, a hyperbola, and the outer periphery. .. In the case of in-vehicle use, the pedestrian in the vicinity of the screen is close to the vehicle, so that the pedestrian is photographed sufficiently large as shown in FIG. 34. In the case of in-vehicle use, it is easier to detect a pedestrian in the distance if the cross-sectional shape of the convex mirror in the horizontal direction is a shape in which the curvature increases toward the outer peripheral portion.
本実施例では、車両近傍の歩行者の検知を優先したために、凸面ミラーの水平方向の断面形状が円形である円筒形ミラー2-2を採用した。
In this embodiment, in order to prioritize the detection of pedestrians in the vicinity of the vehicle, a cylindrical mirror 2-2 having a circular cross-sectional shape in the horizontal direction of the convex mirror was adopted.
ミラーの面形状を制御することにより、所望の視野角を設計することができる。複雑な面形状のミラーの製造にはコストがかかるが、射出成型加工したプラスチック材に金属膜を蒸着することで比較的安価に任意形状のミラーを製造することができる。さらに、可視光波長に比べて遠赤外光波長は10倍以上であるため、ミラーの加工精度の要求も1桁以上緩和できる。ミラーの製造コストを低減できることも、遠赤外反射光学系を用いることの利点である。
A desired viewing angle can be designed by controlling the surface shape of the mirror. Although it is costly to manufacture a mirror having a complicated surface shape, it is possible to manufacture a mirror having an arbitrary shape at a relatively low cost by depositing a metal film on a plastic material which has been injection-molded. Further, since the far-infrared light wavelength is 10 times or more the visible light wavelength, the requirement for mirror processing accuracy can be relaxed by an order of magnitude or more. Another advantage of using a far-infrared catadioptric system is that the manufacturing cost of the mirror can be reduced.
遠方の歩行者の検知性能を上げるため、高画素の遠赤外カメラを採用すると大幅なコスト上昇につながる。これに対し、ミラー形状を変更することは比較的安価に実現できる。車載用見守り監視装置に要求される性能に合わせて、反射ミラーの形状を設計することができる。また、ここでは進行方向前方に向けて感熱式撮像装置10を設置したが、進行方向の逆側に向けて感熱式撮像装置10を設置して、後方の歩行者を検知することも可能である。
Adopting a high-pixel far-infrared camera to improve the detection performance of pedestrians in the distance will lead to a significant cost increase. On the other hand, changing the mirror shape can be realized at a relatively low cost. The shape of the reflection mirror can be designed according to the performance required for the in-vehicle monitoring device. Further, although the heat-sensitive image pickup device 10 is installed toward the front in the traveling direction here, it is also possible to install the heat-sensitive imaging device 10 toward the opposite side in the traveling direction to detect a pedestrian behind. ..
(実施例8)
運転者・搭乗者モニタリングのための感熱式撮像装置 (Example 8)
Thermal imaging device for driver / passenger monitoring
運転者・搭乗者モニタリングのための感熱式撮像装置 (Example 8)
Thermal imaging device for driver / passenger monitoring
第7の実施例では、車両の外側前方に取り付けて路上の歩行者を検知する実施例について示した。第8の実施例として、車両の内部に向けて取り付けて運転者や搭乗者のモニタリングを行うことのできる感熱式撮像装置の実施例について説明する。
In the seventh embodiment, an embodiment attached to the front outside of the vehicle to detect a pedestrian on the road was shown. As an eighth embodiment, an embodiment of a thermal imaging device that can be attached to the inside of a vehicle to monitor a driver or a passenger will be described.
近年、運転者モニタリング機能を搭載した自動車が発売されている。カメラを用いて運転者を撮影し、画像から運転者の個人認証、わき見運転時の警報、眠気、居眠り時の警報などを行う機能である。カメラによる個人認証により、シートポジションやドアミラーの位置調整、エアコンの設定などを自動で切り替えることができる。わき見運転の検知は顔の向きを識別することで行い、居眠りは目の開き具合(開眼度)を計測して行うことが一般的である。
In recent years, automobiles equipped with a driver monitoring function have been put on the market. It is a function that takes a picture of the driver using a camera and performs personal authentication of the driver from the image, an alarm when driving aside, an alarm when drowsiness, and an alarm when falling asleep. By personal authentication with a camera, it is possible to automatically switch the seat position, door mirror position adjustment, air conditioner setting, etc. It is common to detect aside driving by identifying the direction of the face, and to take a nap by measuring the degree of eye opening (eye opening degree).
また、運転者だけでなく、搭乗者も同時にモニタリングできる機能を持つシステムの開発も進められている。広角カメラを用いて1台のカメラで運転者だけでなく搭乗者もモニタリングすることが可能なシステムである。搭乗者の顔認証機能により、搭乗者を同定し好みの音楽の選曲や、搭乗者の手の動きや形などのハンドジェスチャーを認識した車載機器の操作を可能にする。
In addition, the development of a system with a function that can monitor not only the driver but also the passengers at the same time is underway. It is a system that can monitor not only the driver but also the passengers with one camera using a wide-angle camera. The passenger's face recognition function makes it possible to identify the passenger, select a favorite music, and operate an in-vehicle device that recognizes hand gestures such as the movement and shape of the passenger's hand.
このような、従来のカメラを用いた運転者・搭乗者モニタリングの課題は、車内の明るさの変化である。車内の照明環境は、夜間の暗い状況から、直射日光を受けた明るい状態まで大きく変化する。特に、車内の一部分が直射日光を受けた場合、画像内で大きな明暗差が生じるためカメラでの認識が困難になる。
The problem of driver / passenger monitoring using a conventional camera is the change in the brightness inside the vehicle. The lighting environment inside the vehicle changes drastically from a dark condition at night to a bright condition in direct sunlight. In particular, when a part of the inside of the vehicle is exposed to direct sunlight, a large difference in brightness occurs in the image, which makes it difficult for the camera to recognize it.
この課題を避けるため、車内モニタリングシステムでは近赤外照明と近赤外カメラを用いることが一般的である。しかし、太陽光の中にも近赤外光が含まれるため、直射日光を浴びるような条件では、明暗の差が大きくなりすぎて認識が困難になるという課題があった。
In order to avoid this problem, it is common to use near-infrared lighting and near-infrared camera in the in-vehicle monitoring system. However, since the sunlight also contains near-infrared light, there is a problem that the difference between light and dark becomes too large and recognition becomes difficult under the condition of being exposed to direct sunlight.
遠赤外カメラを用いることでこの課題を解決することができる。ただし、繰り返し述べているように、従来の遠赤外カメラは視野角が狭く、運転者と搭乗者全員を一台のカメラで撮影することはできなかった。本発明の感熱式撮像装置を用いることで、広い視野を実現し、搭乗者全員のモニタリングが可能になった。
This problem can be solved by using a far infrared camera. However, as I have repeatedly stated, conventional far-infrared cameras have a narrow viewing angle, and it was not possible to capture the driver and all passengers with a single camera. By using the heat-sensitive image pickup device of the present invention, a wide field of view has been realized and all passengers can be monitored.
図36に感熱式撮像装置10の設置例を示した。感熱式撮像装置10は自動車のルームミラー26上のフロントガラス25近傍に、室内に向けて設置されている。ここでも円筒形ミラー2-2を用いて、視野角を水平方向に広げている。感熱式撮像装置10は自動車のルーフ24部分に取り付けられており、視野が下方向を見下ろすように円筒形ミラー2-2は垂直に取り付けられている。
FIG. 36 shows an installation example of the thermal image pickup device 10. The thermal image pickup device 10 is installed in the vicinity of the windshield 25 on the rearview mirror 26 of the automobile toward the room. Here, too, the cylindrical mirror 2-2 is used to widen the viewing angle in the horizontal direction. The heat-sensitive image pickup device 10 is attached to the roof 24 portion of the automobile, and the cylindrical mirror 2-2 is vertically attached so that the field of view looks down.
図37に図36の感熱式撮像装置10で撮影した車内の温度画像を示した。画像は見やすくするため、縦方向を1/2に縮小している。運転者30と3人の同乗者31(助手席搭乗者と後部座席の2名の同乗者)が撮影されていることがわかる。体温から人を検知しているため、人以外は写らず、搭乗者だけが撮影されている。
FIG. 37 shows a temperature image of the inside of the vehicle taken by the thermal image pickup device 10 of FIG. 36. The image is reduced in half in the vertical direction for easier viewing. It can be seen that the driver 30 and the three passengers 31 (the passenger in the passenger seat and the two passengers in the back seat) are photographed. Since the person is detected from the body temperature, only the passenger is photographed, and only the person is photographed.
画像から、運転者30が眼鏡をかけていることがわかる。眼鏡は体温より低温度であるため黒く映し出される。また画像から運転者30が左手の人差し指を立てていることも認識することができる。運転者30の顔の向きから、よそ見運転の防止を、搭乗者の手の形や動きを認識してオーディオ機器などを操作することができる。解像度の低い温度画像からでも、機械学習による顔認証技術を活用することで個人認証が可能であった。
From the image, it can be seen that the driver 30 is wearing glasses. Since the temperature of the glasses is lower than the body temperature, they appear black. It can also be recognized from the image that the driver 30 is raising the index finger of his left hand. From the direction of the driver 30's face, it is possible to prevent the driver from looking away and to operate the audio device by recognizing the shape and movement of the passenger's hand. Even from low-resolution temperature images, personal authentication was possible by utilizing face recognition technology based on machine learning.
本発明の感熱式撮像装置10を車内モニタリングに使うことで、運転者30だけでなく同乗者31の様子もモニタすることが可能になった。これにより、運転者30の注意度合いや眠気をモニタリングすることで、事故の低減を実現することができる。さらに、運転手30だけでなく搭乗者の位置と動きをモニタし、搭乗者の顔認証機能を利用して搭乗者に合わせた音楽を選曲し、ハンドジェスチャー認識により搭乗者の手の動きや形よる車載機器の操作することが可能になる。さらに、感熱式撮像装置10では搭乗者の体表面温度から搭乗者ごとに最適なエアコンの温度と風量の制御が可能になった。搭乗者ごとにきめ細かく制御が可能となることで、乗車中の快適さを向上できる。また、後部座席に小児を乗せた場合、運転席から小児の行動や様子を把握することができる。
By using the heat-sensitive image pickup device 10 of the present invention for in-vehicle monitoring, it has become possible to monitor not only the driver 30 but also the passenger 31. As a result, it is possible to reduce accidents by monitoring the degree of attention and drowsiness of the driver 30. Furthermore, the position and movement of not only the driver 30 but also the passenger are monitored, music suitable for the passenger is selected using the passenger's face recognition function, and the movement and shape of the passenger's hand are recognized by hand gesture recognition. It becomes possible to operate the in-vehicle device. Further, in the thermal imaging device 10, it is possible to control the optimum temperature and air volume of the air conditioner for each passenger from the body surface temperature of the passenger. By enabling fine-tuned control for each passenger, comfort during boarding can be improved. In addition, when a child is placed in the back seat, the behavior and state of the child can be grasped from the driver's seat.
さらに本発明の感熱式撮像装置10を用いた運転者モニタリングには別の利用法がある。運転ストレスの評価である。鼻部の温度変化を測定することにより運転ストレスの評価が可能であることが知られており研究が進められている(例えば、山越他、「差分顔面皮膚放射温度を用いた運転ストレス評価の試み―単調運転ストレス負荷による基礎的検討」、 生体医工学 ,48(2), pp.163, 2010)。運転ストレスが高すぎても低すぎても運転パフォーマンスが低下することが知られており、運転中のストレス状態を把握することは安全運転を実現するために重要である。
Further, there is another usage for driver monitoring using the thermal imaging device 10 of the present invention. It is an evaluation of driving stress. It is known that driving stress can be evaluated by measuring the temperature change of the nose, and research is underway (for example, Yamakoshi et al., "A trial of driving stress evaluation using differential facial skin radiation temperature". -Basic study based on monotonous driving stress load ", Biomedical Engineering, 48 (2), pp.163, 2010). It is known that driving performance deteriorates when driving stress is too high or too low, and it is important to understand the stress state during driving in order to realize safe driving.
図36に示した感熱式撮像装置10を用いて、運転者のストレスの測定を行った。ストレスによって末梢血管の収縮が起こり、末梢部の皮膚温度が低下する。ここでは、体幹温度と相関の強い額部表面温度と、末梢部の皮膚温度を表す鼻部温度の温度差を測定し、運転ストレスを評価した。温度画像の画像認識により、運転者の額部と鼻部領域を認識し、それぞれの部分の温度から温度差を算出した。ドライブシミュレータで60分間走行を行いながら、顔面温度を感熱式撮像装置10で評価した。単調な運転を行うことで、鼻部温度が徐々に低下することが確認された。額部温度と鼻部温度の温度差を指標として、ストレスの評価を行い運転者に警告を行うことが可能になった。
The driver's stress was measured using the thermal image pickup device 10 shown in FIG. 36. Stress causes contraction of peripheral blood vessels, which lowers the skin temperature in the peripheral area. Here, the temperature difference between the forehead surface temperature, which has a strong correlation with the trunk temperature, and the nose temperature, which represents the skin temperature of the peripheral part, was measured to evaluate the driving stress. The driver's forehead and nose areas were recognized by image recognition of the temperature image, and the temperature difference was calculated from the temperature of each part. The facial temperature was evaluated by the thermal image pickup device 10 while running for 60 minutes in the drive simulator. It was confirmed that the nasal temperature gradually decreased by performing monotonous driving. Using the temperature difference between the forehead temperature and the nose temperature as an index, it has become possible to evaluate stress and warn the driver.
(実施例9)
自律走行車のための感熱式撮像装置 (Example 9)
Thermal imaging device for autonomous vehicles
自律走行車のための感熱式撮像装置 (Example 9)
Thermal imaging device for autonomous vehicles
近年、自動運転車の開発が進められている。自動車だけでなく、人間が運転操作を行わない様々な自律走行車両の開発が進められており、一部実用化されている。例えば、自律走行型の建設用重機、搬送用ロボット、配送用ロボット、配膳ロボットなどが実用化されている。また、業務用の大型の掃除ロボットも市販されている。工場などと違って、人やペットが共存する環境で稼働する自律走行車両、自律走行ロボットなどでは安全性、特に人との接触事故の防止が重要視される。走行中に人やペットを自動でリアルタイムに認識し、安全な走行を行うことが求められている。
In recent years, the development of self-driving cars has been promoted. Not only automobiles, but also various autonomous vehicles that are not operated by humans are being developed and partially put into practical use. For example, autonomous driving heavy construction machines, transport robots, delivery robots, catering robots, and the like have been put into practical use. In addition, large commercial cleaning robots are also commercially available. Unlike factories, autonomous driving vehicles and autonomous driving robots that operate in an environment where people and pets coexist place importance on safety, especially prevention of contact accidents with people. It is required to automatically recognize people and pets in real time while driving and to perform safe driving.
本発明の感熱式撮像装置10はこのような用途に利用できる。様々な物が存在する環境においても人やペットを体温から選択的に検出できるため、人やペットとの距離をとって安全に走行することが可能となる。動かない障害物と異なり、人やペットは急に動くことがあり、事故の際の影響も大きいため、通常の障害物よりも人やペットとの距離を十分に取って走行するか、速度を落として走行することは、安全確保のために特に重要である。本発明の感熱式撮像装置10を用いることで、進行方向の広い範囲で確実に人やペットを認識することができるため、安全な自律走行を実現できる。
The heat-sensitive image pickup device 10 of the present invention can be used for such an application. Since people and pets can be selectively detected from body temperature even in an environment where various objects exist, it is possible to drive safely at a distance from people and pets. Unlike obstacles that do not move, people and pets can move suddenly and have a large impact in the event of an accident, so you should drive at a greater distance from people and pets than normal obstacles, or speed up. It is especially important to drop the vehicle to ensure safety. By using the heat-sensitive image pickup device 10 of the present invention, people and pets can be reliably recognized in a wide range in the traveling direction, so that safe autonomous driving can be realized.
図38に、配送用の自律走行車両への応用例を示した。車両の前方の屋根上に感熱式撮像装置10が搭載されている。感熱式撮像装置10の近傍には通常のカメラや近接センサなど他のセンサ類を配置することもできる。
FIG. 38 shows an application example to an autonomous driving vehicle for delivery. The thermal imaging device 10 is mounted on the roof in front of the vehicle. Other sensors such as a normal camera and a proximity sensor can be arranged in the vicinity of the thermal image pickup device 10.
感熱式撮像装置10により進行方向に存在する人やペットをリアルタイムで認識し、装置に接続された演算装置で走行ルートを変えながら、安全に走行することが可能になった。
The thermal imaging device 10 recognizes people and pets in the direction of travel in real time, and the arithmetic unit connected to the device makes it possible to drive safely while changing the driving route.
本発明の感熱式撮像装置、感熱式撮像装置を用いた見守り監視システムおよび感熱式撮像装置を用いた見守り監視方法は、高齢者の見守りおよびヘルスケアの用途や、車両の歩行者検知、搭乗者モニタリングの用途に有用である。
The monitoring monitoring system using the thermal imaging device, the thermal imaging device, and the monitoring monitoring method using the thermal imaging device of the present invention are used for monitoring and healthcare of elderly people, pedestrian detection of vehicles, and passengers. Useful for monitoring applications.
1 フレーム
2 凸面ミラー
2-1 球面ミラー
2-2 円筒ミラー
2-3 鞍型ミラー
3 遠赤外カメラ
3-1 レンズ,
3-2 遠赤外アレーセンサ
3-3 射出瞳中心点
4 配線
5 シングルボードコンピュータ
5-1 アクセレレーター
6 代表的な光線
6-1 凸面ミラーの法線方向の光線
6-2 凸面ミラーの接線方向の光線
7 遠赤外窓
10 感熱式撮像装置
11 見守り対象者
12 ベッド
13 ドア
14 棚
15 窓
16 床
17 机
18 椅子
19 温度画像
20 ホストコンピュータ
21 携帯端末
22 携帯端末表示内容
23 保護者
23-1 見守りサービス担当者
23-2 駆け付けサービス担当者
24 ルーフ
25 フロントガラス
26 ルームミラー
27 自動車
28 歩行者
29 バイク
30 運転者
31 同乗者
32 ビデオカメラ
33 画像処理部
34 判定部
35 データ保存部
36 出力部 1 frame
2 Convex mirror
2-1 Spherical mirror
2-2 Cylindrical mirror
2-3 Saddle-shaped mirror
3 Far infrared camera
3-1 lens,
3-2 Far infrared array sensor
3-3 Exit pupil center point
4 Wiring
5 single board computer
5-1 Accelerator
6 Typical rays
6-1 Rays in the normal direction of the convex mirror
6-2 Rays in the tangential direction of the convex mirror
7 Far infrared window
10 Thermal imaging device
11 Persons to be watched over
12 beds
13 door
14 shelves
15 windows
16 floors
17 desk
18 chairs
19 temperature image
20 host computer
21 Mobile terminal
22 Mobile terminal display contents
23 Parents
23-1 Watching service staff
23-2 Rush service personnel
24 roof
25 windshield
26 Room mirror
27 car
28 Pedestrian
29 bike
30 driver
31 Passenger
32 camcorder
33 Image processing unit
34 Judgment unit
35 Data storage
36 Output section
2 凸面ミラー
2-1 球面ミラー
2-2 円筒ミラー
2-3 鞍型ミラー
3 遠赤外カメラ
3-1 レンズ,
3-2 遠赤外アレーセンサ
3-3 射出瞳中心点
4 配線
5 シングルボードコンピュータ
5-1 アクセレレーター
6 代表的な光線
6-1 凸面ミラーの法線方向の光線
6-2 凸面ミラーの接線方向の光線
7 遠赤外窓
10 感熱式撮像装置
11 見守り対象者
12 ベッド
13 ドア
14 棚
15 窓
16 床
17 机
18 椅子
19 温度画像
20 ホストコンピュータ
21 携帯端末
22 携帯端末表示内容
23 保護者
23-1 見守りサービス担当者
23-2 駆け付けサービス担当者
24 ルーフ
25 フロントガラス
26 ルームミラー
27 自動車
28 歩行者
29 バイク
30 運転者
31 同乗者
32 ビデオカメラ
33 画像処理部
34 判定部
35 データ保存部
36 出力部 1 frame
2 Convex mirror
2-1 Spherical mirror
2-2 Cylindrical mirror
2-3 Saddle-shaped mirror
3 Far infrared camera
3-1 lens,
3-2 Far infrared array sensor
3-3 Exit pupil center point
4 Wiring
5 single board computer
5-1 Accelerator
6 Typical rays
6-1 Rays in the normal direction of the convex mirror
6-2 Rays in the tangential direction of the convex mirror
7 Far infrared window
10 Thermal imaging device
11 Persons to be watched over
12 beds
13 door
14 shelves
15 windows
16 floors
17 desk
18 chairs
19 temperature image
20 host computer
21 Mobile terminal
22 Mobile terminal display contents
23 Parents
23-1 Watching service staff
23-2 Rush service personnel
24 roof
25 windshield
26 Room mirror
27 car
28 Pedestrian
29 bike
30 driver
31 Passenger
32 camcorder
33 Image processing unit
34 Judgment unit
35 Data storage
36 Output section
Claims (11)
- 体温から人を感知する感熱式撮像装置であって、
前記撮像装置が軸外配置された凸面ミラーを含む反射屈折光学系を有していることを特徴とする感熱式撮像装置。 It is a heat-sensitive imaging device that senses people from body temperature.
A heat-sensitive image pickup device, characterized in that the image pickup device has a catadioptric system including a convex mirror arranged off-axis. - 請求項1に記載の感熱式撮像装置であって、
前記凸面ミラーが放物面ミラーあるいは双曲面ミラーを含む、回転対称軸から外周に向かって曲率が低下する形状を有する凸面ミラーであることを特徴とする感熱式撮像装置。 The heat-sensitive imaging device according to claim 1.
A heat-sensitive image pickup apparatus, characterized in that the convex mirror is a convex mirror having a shape in which the curvature decreases from the axis of rotational symmetry toward the outer circumference, including a parabolic mirror or a hyperboloid mirror. - 請求項1に記載の感熱式撮像装置であって、
前記凸面ミラーが水平方向と垂直方向で異なる形状を有しており、水平方向と垂直方向のどちらか少なくとも一方が凸面ミラー形状を有していることを特徴とする感熱式撮像装置。 The heat-sensitive imaging device according to claim 1.
A heat-sensitive image pickup device, wherein the convex mirror has different shapes in the horizontal direction and the vertical direction, and at least one of the horizontal direction and the vertical direction has a convex mirror shape. - 請求項1に記載の感熱式撮像装置であって、
前記凸面ミラーが円筒形状を有していることを特徴とする感熱式撮像装置。 The heat-sensitive imaging device according to claim 1.
A heat-sensitive imaging device characterized in that the convex mirror has a cylindrical shape. - 請求項1~請求項4のいずれかに記載の感熱式撮像装置であって、
前記感熱式撮像装置に含まれる遠赤外カメラの視野角をθとすると、前記遠赤外カメラの光軸と凸面ミラーの光軸の成す角αが、
θ/2 <α<(π-θ)/2、の範囲内であることを特徴とする感熱式撮像装置。 The heat-sensitive imaging device according to any one of claims 1 to 4.
Assuming that the viewing angle of the far-infrared camera included in the heat-sensitive image pickup device is θ, the angle α formed by the optical axis of the far-infrared camera and the optical axis of the convex mirror is determined.
A heat-sensitive imaging device characterized in that it is within the range of θ / 2 <α <(π-θ) / 2. - 請求項1~請求項5のいずれかに記載の感熱式撮像装置であって、
前記感熱式撮像装置が、室内のベッド、布団などの寝具の長手方向が最も近接する壁面の天井付近に設置されていることを特徴とする感熱式撮像装置。 The heat-sensitive imaging device according to any one of claims 1 to 5.
The heat-sensitive image pickup device is characterized in that the heat-sensitive image pickup device is installed near the ceiling of a wall surface closest to the longitudinal direction of bedding such as a bed or a futon in a room. - 請求項1~請求項5のいずれかに記載の感熱式撮像装置であって、
前記感熱式撮像装置が、自動車または自律走行車両の進行方向の前方または後方に向けて設置されていることを特徴とする感熱式撮像装置。 The heat-sensitive imaging device according to any one of claims 1 to 5.
A heat-sensitive image pickup device, characterized in that the heat-sensitive image pickup device is installed toward the front or the rear in the traveling direction of an automobile or an autonomous traveling vehicle. - 請求項1~請求項5のいずれかに記載の感熱式撮像装置であって、
前記感熱式撮像装置が、自動車の車内に向けて設置されていることを特徴とする感熱式撮像装置。 The heat-sensitive imaging device according to any one of claims 1 to 5.
A heat-sensitive image pickup device, characterized in that the heat-sensitive image pickup device is installed toward the inside of an automobile. - 請求項1~請求項8のいずれかに記載の感熱式撮像装置と、
前記感熱式撮像装置により撮像された2次元赤外線放射エネルギー画像を解析し画像内に含まれる対象者の画像上の位置及び赤外線放射エネルギーを検出する画像処理部と、
前記画像処理部によって検出された2次元画像上の位置及び赤外線放射エネルギーに基づいて前記対象者の状況を判定する判定部と、
前記対象者の状況を記録するデータ保存部と、
前記判別部によって得られた前記対象者の状況を示す情報を出力する出力部と、を備えたことを特徴とする見守り監視システム。 The heat-sensitive imaging device according to any one of claims 1 to 8.
An image processing unit that analyzes a two-dimensional infrared radiant energy image captured by the heat-sensitive image pickup device and detects the position of the subject on the image and the infrared radiant energy contained in the image.
A determination unit that determines the situation of the subject based on the position on the two-dimensional image and the infrared radiant energy detected by the image processing unit.
A data storage unit that records the status of the target person,
A monitoring monitoring system including an output unit that outputs information indicating the situation of the target person obtained by the discriminating unit. - 請求項9に記載の見守りシステムであって、
前記判定部は、あらかじめ入力された室内の配置情報または前記対象者の身体情報の少なくともいずれか一つを参照して、前記対象者の現在の状況を判定することを特徴とするとする見守り監視システム。 The monitoring system according to claim 9.
The monitoring unit is characterized in that it determines the current situation of the target person by referring to at least one of the indoor arrangement information or the physical information of the target person input in advance. .. - 請求項9~請求項10のいずれかに記載の見守り監視システムを用いた見守り監視方法であって、
前記画像処理部は、全方位感熱式撮像装置の温度分布画像に含まれる対象者の画像から対象者の頭部の温度あるいは位置を求め、頭部温度あるいは頭部位置の少なくとも一つの時間変動を解析することにより、前記対象者の呼吸数、心拍数、睡眠深度の少なくともひとつを推定することを特徴とする見守り監視方法。 A monitoring monitoring method using the monitoring monitoring system according to any one of claims 9 to 10.
The image processing unit obtains the temperature or position of the subject's head from the image of the subject included in the temperature distribution image of the omnidirectional heat-sensitive image pickup device, and obtains at least one time variation of the head temperature or the head position. A monitoring monitoring method characterized in that at least one of the subject's respiratory rate, heart rate, and sleep depth is estimated by analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020549074A JP6944222B2 (en) | 2019-04-25 | 2020-04-23 | Watching monitoring system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-083715 | 2019-04-25 | ||
JP2019083715 | 2019-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218409A1 true WO2020218409A1 (en) | 2020-10-29 |
Family
ID=72942114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017468 WO2020218409A1 (en) | 2019-04-25 | 2020-04-23 | Thermosensitive imaging device, watching and monitoring system using thermosensitive imaging device, and watching and monitoring method using thermosensitive imaging device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6944222B2 (en) |
WO (1) | WO2020218409A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115381440A (en) * | 2022-09-30 | 2022-11-25 | 广东工业大学 | Bedside falling detection method |
WO2023286248A1 (en) * | 2021-07-15 | 2023-01-19 | 三菱電機株式会社 | Thermal anomaly notification device, thermal anomaly notification system, thermal anomaly notification method, and program |
CN115988181A (en) * | 2023-03-08 | 2023-04-18 | 四川三思德科技有限公司 | Personnel monitoring system and method based on infrared image algorithm |
WO2023171349A1 (en) * | 2022-03-09 | 2023-09-14 | パナソニックIpマネジメント株式会社 | Detection system, detection method, and detection program |
WO2023233786A1 (en) * | 2022-06-02 | 2023-12-07 | 株式会社シーズ | Information processing system, information processing method, and program |
WO2024190638A1 (en) * | 2023-03-10 | 2024-09-19 | テルモ株式会社 | Computer program, information processing method, and information processing device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115294737B (en) * | 2022-07-25 | 2023-09-19 | 深圳市同创机电一体化技术有限公司 | Energy-saving safety grating |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259943A (en) * | 1997-03-19 | 1998-09-29 | Sanyo Electric Co Ltd | Control device of air conditioner |
JP2001341580A (en) * | 2000-06-02 | 2001-12-11 | Matsushita Electric Ind Co Ltd | Camera system |
JP2003054316A (en) * | 2001-08-21 | 2003-02-26 | Tokai Rika Co Ltd | Vehicle image pick-up device, vehicle monitoring device, and door mirror |
JP2006160024A (en) * | 2004-12-06 | 2006-06-22 | Nissan Motor Co Ltd | Air conditioner for vehicle and air-conditioning control method for vehicle |
JP2010133692A (en) * | 2008-10-31 | 2010-06-17 | Mitsubishi Electric Corp | Air conditioner |
WO2017156302A1 (en) * | 2016-03-10 | 2017-09-14 | Visbit Inc. | Time multiplexing programmable field of view imaging |
JP2019008038A (en) * | 2017-06-22 | 2019-01-17 | 富士ゼロックス株式会社 | Rotating member and image forming apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3968271B2 (en) * | 2002-06-25 | 2007-08-29 | 株式会社オートネットワーク技術研究所 | Vehicle periphery visual recognition device |
JP2005184106A (en) * | 2003-12-16 | 2005-07-07 | Fujinon Corp | Material presenting apparatus |
JP2016151519A (en) * | 2015-02-18 | 2016-08-22 | シャープ株式会社 | Detection device and mobile body |
JP6327388B2 (en) * | 2017-06-15 | 2018-05-23 | 株式会社Jvcケンウッド | Captured image display device, captured image display method, and captured image display program |
JP6822328B2 (en) * | 2017-06-27 | 2021-01-27 | オムロン株式会社 | Watching support system and its control method |
-
2020
- 2020-04-23 WO PCT/JP2020/017468 patent/WO2020218409A1/en active Application Filing
- 2020-04-23 JP JP2020549074A patent/JP6944222B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259943A (en) * | 1997-03-19 | 1998-09-29 | Sanyo Electric Co Ltd | Control device of air conditioner |
JP2001341580A (en) * | 2000-06-02 | 2001-12-11 | Matsushita Electric Ind Co Ltd | Camera system |
JP2003054316A (en) * | 2001-08-21 | 2003-02-26 | Tokai Rika Co Ltd | Vehicle image pick-up device, vehicle monitoring device, and door mirror |
JP2006160024A (en) * | 2004-12-06 | 2006-06-22 | Nissan Motor Co Ltd | Air conditioner for vehicle and air-conditioning control method for vehicle |
JP2010133692A (en) * | 2008-10-31 | 2010-06-17 | Mitsubishi Electric Corp | Air conditioner |
WO2017156302A1 (en) * | 2016-03-10 | 2017-09-14 | Visbit Inc. | Time multiplexing programmable field of view imaging |
JP2019008038A (en) * | 2017-06-22 | 2019-01-17 | 富士ゼロックス株式会社 | Rotating member and image forming apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023286248A1 (en) * | 2021-07-15 | 2023-01-19 | 三菱電機株式会社 | Thermal anomaly notification device, thermal anomaly notification system, thermal anomaly notification method, and program |
WO2023171349A1 (en) * | 2022-03-09 | 2023-09-14 | パナソニックIpマネジメント株式会社 | Detection system, detection method, and detection program |
WO2023233786A1 (en) * | 2022-06-02 | 2023-12-07 | 株式会社シーズ | Information processing system, information processing method, and program |
CN115381440A (en) * | 2022-09-30 | 2022-11-25 | 广东工业大学 | Bedside falling detection method |
CN115381440B (en) * | 2022-09-30 | 2023-05-23 | 广东工业大学 | Bedside falling detection method |
CN115988181A (en) * | 2023-03-08 | 2023-04-18 | 四川三思德科技有限公司 | Personnel monitoring system and method based on infrared image algorithm |
WO2024190638A1 (en) * | 2023-03-10 | 2024-09-19 | テルモ株式会社 | Computer program, information processing method, and information processing device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020218409A1 (en) | 2021-05-06 |
JP6944222B2 (en) | 2021-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6944222B2 (en) | Watching monitoring system | |
US10217342B2 (en) | Method and process for determining whether an individual suffers a fall requiring assistance | |
US10629046B2 (en) | Systems and methods for determining whether an individual enters a prescribed virtual zone using skeletal tracking and 3D blob detection | |
US10546481B2 (en) | Method for determining whether an individual leaves a prescribed virtual perimeter | |
US9905113B2 (en) | Method for determining whether an individual leaves a prescribed virtual perimeter | |
JP6839205B2 (en) | Automated procedure determination and judgment generation | |
US6796799B1 (en) | Behavior determining apparatus, care system, care residence and behavior information specifying apparatus and system | |
US9524443B1 (en) | System for determining whether an individual enters a prescribed virtual zone using 3D blob detection | |
US7106885B2 (en) | Method and apparatus for subject physical position and security determination | |
US20180114053A1 (en) | Detecting unauthorized visitors | |
US9159215B1 (en) | Method for determining whether an individual leaves a prescribed virtual perimeter | |
US20130082842A1 (en) | Method and device for fall detection and a system comprising such device | |
JP2005237861A (en) | Automatic thermometric device and automatic thermometric method | |
CN104799825A (en) | Cloud health service platform and drug assessment method for middle-aged and aged people | |
US10943092B2 (en) | Monitoring system | |
US11219415B1 (en) | Thermal imaging system for disease outbreak detection | |
JP2015056103A (en) | Toilet monitor method and toilet monitor device therefor | |
JP6582305B1 (en) | Watch system, watch method and program. | |
WO2020145130A1 (en) | Monitoring system, monitoring method, and program | |
Elagovan et al. | Fall detection systems at night | |
TWI725392B (en) | Monitoring system and monitoring method thereof | |
JP2023084685A (en) | Method and system for monitoring subject | |
AU2021106898A4 (en) | Network-based smart alert system for hospitals and aged care facilities | |
US20230260134A1 (en) | Systems and methods for monitoring subjects | |
Chaari et al. | A Prototype of a Robot Capable of Tracking Anyone with a High Body Temperature in Crowded Areas. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020549074 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20795982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20795982 Country of ref document: EP Kind code of ref document: A1 |