WO2023233732A1 - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
WO2023233732A1
WO2023233732A1 PCT/JP2023/006335 JP2023006335W WO2023233732A1 WO 2023233732 A1 WO2023233732 A1 WO 2023233732A1 JP 2023006335 W JP2023006335 W JP 2023006335W WO 2023233732 A1 WO2023233732 A1 WO 2023233732A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photodetector
welding
wavelength
region
Prior art date
Application number
PCT/JP2023/006335
Other languages
English (en)
French (fr)
Inventor
浩司 船見
和樹 藤原
出 中井
竜朗 白石
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023233732A1 publication Critical patent/WO2023233732A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring

Definitions

  • the present disclosure relates to a laser processing device, and more particularly, the present disclosure relates to a laser processing device, and more particularly, a laser processing device that can evaluate welding quality by measuring welding light emitted from a workpiece when performing laser welding by irradiating a workpiece with laser irradiation light. It is related to the device.
  • Some laser processing devices perform laser welding by irradiating a workpiece with pulsed or continuous laser irradiation light. Further, when performing laser welding, the quality of laser welding can be evaluated by measuring the welding light emitted from the welded part.
  • the laser welding quality evaluation method can evaluate the quality of laser welding in real time, for example, based on the peak intensity or the average intensity of welding light emitted during laser welding.
  • the welding light includes reflected light of the laser light from the welded part of the workpiece that is incident on the laser irradiation light during laser welding, and plasma light generated during the welding process.
  • Patent Document 1 discloses that welding light emitted from a welded part during laser welding is transmitted through an optical fiber, separated in wavelength by a dichroic mirror (wavelength separation mirror), and the resulting plasma light and laser reflected light are separated from each other.
  • a welding state detection device is disclosed that uses two independent measuring optical systems to perform measurements and evaluate welding quality.
  • the plasma light and the laser reflected light are spatially separated from the welding light using a dichroic mirror or the like, and the two are measured using separate measurement optical systems.
  • the measurement optical system has a large number of parts, making it difficult to downsize the device.
  • an object of the present disclosure is to provide a laser processing device that solves the above-mentioned conventional problems, has a small number of parts, and facilitates miniaturization of the device.
  • a laser processing device includes a welding device that performs welding by irradiating a workpiece with laser irradiation light, an imaging optical system, a first photodetector, and a second photodetector. and a welding light measuring device that receives and measures welding light emitted from the workpiece during laser welding.
  • the welding light includes first light in a first wavelength range and second light in a second wavelength range
  • the imaging optical system includes a wavelength selection mask and converts the first light beam that has passed through the wavelength selection mask into a second light beam.
  • the wavelength selection mask includes a first region and a second region that receive welding light, the first region reflecting the second light and transmitting the first light, and the second region receiving the welding light.
  • the second region transmits the light and the second light, and the second region has a smaller light-receiving area than the first region.
  • the first photodetector and the second photodetector are arranged on the optical axis of the welding light incident on the wavelength selection mask.
  • the laser processing apparatus it is possible to provide a laser processing apparatus that has a small number of parts and that facilitates miniaturization of the apparatus.
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus according to Example 1 of an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a photodetector of the welding light measurement device of the laser processing device of FIG. 1.
  • FIG. 3 is a diagram showing the relationship between sensitivity and wavelength of the photodetector of FIG. 2.
  • FIG. 3 is a schematic diagram showing a welding light measurement configuration using a conventional imaging optical system for detecting a laser welding state and the photodetector of FIG. 2.
  • FIG. FIG. 5 is an enlarged view of part A in FIG. 4 and a schematic diagram showing measurement of plasma light.
  • FIG. 5 is an enlarged view of part A in FIG. 4 and a schematic diagram showing measurement of laser reflected light.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a wavelength selective imaging optical system of the laser processing apparatus shown in FIG. 1.
  • FIG. 7 is a schematic diagram showing an example of the configuration of a wavelength selection mask of the wavelength selection type imaging optical system of FIG. 6.
  • FIG. 7 is a schematic diagram showing another example of the configuration of the wavelength selection mask of the wavelength selection type imaging optical system of FIG. 6.
  • FIG. 7 is a schematic diagram showing measurement of plasma light using the wavelength selective imaging optical system of FIG. 6.
  • FIG. 8A is an enlarged view of part B of FIG. 8A.
  • FIG. 7 is a schematic diagram showing measurement of laser reflected light using the wavelength selective imaging optical system of FIG. 6.
  • FIG. 9B is an enlarged view of part C in FIG. 9A.
  • FIG. 2 is a schematic diagram showing the configuration of a laser processing apparatus according to Example 2 of the embodiment of the present disclosure.
  • 11 is a block diagram showing an example of the configuration of a welding quality evaluation device for the laser processing device shown in FIG.
  • the welding device includes a welding device that performs welding by irradiating a workpiece with laser irradiation light, a wavelength selective imaging optical system, a first photodetector, and a second photodetector, and includes a welding light measuring device that receives and measures welding light emitted from the workpiece, the welding light includes a first light in a first wavelength region and a second light in a second wavelength region, and the welding light is a wavelength selective type.
  • the imaging optical system includes a wavelength selection mask, and separately transmits a first light beam and a second light beam that have passed through the wavelength selection mask to a first photodetector and a second photodetector for the received welding light.
  • the wavelength selective mask includes a first region that receives the welding light and a second region, the first region that reflects the second light and transmits the first light, and the wavelength selective mask that receives the welding light. transmits the first light and the second light, the second region has a smaller light-receiving area than the first region, and the first photodetector and the second photodetector transmit the first light and the second light.
  • a laser processing device is provided that is arranged to receive light coaxially.
  • the first light is plasma light emitted from the workpiece during laser welding
  • the second light is reflected light of the laser irradiation light by the workpiece during laser welding
  • the second light has a first wavelength.
  • the laser processing device according to the first aspect is provided, wherein the wavelength range is in the visible light range and the second wavelength range is in the infrared light range.
  • the first photodetector is sensitive to light in the first wavelength range and light in the second wavelength range
  • the second photodetector is sensitive to light in the second wavelength range.
  • a laser processing apparatus according to the first or second aspect, which has sensitivity.
  • the first region is coated with an infrared light reflective coat, and the infrared light reflective coat has a reflectance of 99% or more for light in the second wavelength range.
  • the infrared light reflective coat has a reflectance of 99% or more for light in the second wavelength range.
  • the infrared light reflective coat reflects light in an infrared light range on the longer wavelength side from the second wavelength range, and transmits light in a shorter wavelength side than the second wavelength range.
  • the laser processing apparatus according to the fourth aspect, in which the infrared light reflective coat transmits light other than the second wavelength region.
  • the first region and the second region are each rotationally symmetrical with respect to the optical axis of the welding light incident on the wavelength selection mask.
  • the present invention provides a laser processing apparatus according to the present invention.
  • the first photodetector and the second photodetector are arranged in order along the propagation direction of the welding light received by the wavelength selective imaging optical system, and the first photodetector and the second photodetector are arranged in order along the propagation direction of the welding light received by the wavelength selective imaging optical system, and
  • the laser processing apparatus according to any one of the first to seventh aspects is provided, wherein a part of the light is transmitted through the first photodetector and received by the second photodetector.
  • welding quality evaluation that receives light intensity signals detected by each of the first photodetector and the second photodetector, and evaluates the quality of laser welding based on the light intensity signals.
  • FIGS. 1 to 11 A laser processing apparatus according to Embodiment 1 of the present disclosure will be described with reference to FIGS. 1 to 11.
  • the accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter thereby. Furthermore, in each figure, each element is exaggerated for ease of explanation. Note that substantially the same members in the drawings are designated by the same reference numerals.
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus 100 according to Example 1 of the embodiment of the present disclosure. In FIG. 1, the laser processing apparatus 100 is shown on the XY plane.
  • a laser processing device 100 shown in FIG. 1 includes a welding device 20 and a welding light measuring device 30.
  • the welding device 20 performs laser welding by irradiating the workpiece 16 with a laser beam, and introduces the welding light emitted from the welded part of the workpiece 16 during laser welding into the welding light measuring device 30. By measuring this, the quality of laser welding can be evaluated.
  • the components and operations of the laser processing apparatus 100 will be described in detail below.
  • the welding device 20 includes a laser oscillator 1, a collimating lens 2, a condensing lens 3, a total reflection mirror 4, a condensing lens 5, and an optical fiber 6.
  • a laser beam 10 of laser irradiation light Lm emitted from a laser oscillator 1 passes through a collimating lens 2 to become a parallel light beam, is reflected by a total reflection mirror 4, is condensed by a condensing lens 3, and is transmitted along the -Y direction in the figure.
  • the workpiece 16 is irradiated.
  • a joint 17 is installed below the work 16.
  • the workpiece 16 and the object to be joined 17 are fixed on a stage 18, are moved by the stage 18, and are laser welded by being irradiated with the laser beam 10.
  • the welding light 11 emitted from the welding part of the workpiece 16 passes through the condenser lens 3 and the total reflection mirror 4 along the +Y direction shown in the figure, and the transmitted welding light 12 passes through the condenser lens.
  • the light is focused onto an optical fiber 6 by the optical fiber 5 and transmitted to the welding light measuring device 30 via the optical fiber 6.
  • each light beam is shown only as a principal ray for clarity.
  • the laser beam 10 of the laser irradiation light Lm and the welding light 11 are shown separated between the total reflection mirror 4 and the workpiece 16, in reality, the laser beam 10 of the laser irradiation light Lm and the welding light 11 are separated.
  • the light 11 passes through the condenser lens 3 along the same path.
  • the welding light 13 transmitted to the optical fiber 6 and incident on the welding light measuring device 30 along the +X direction shown in the figure is composed of plasma light Lp generated at the welding part of the workpiece 16 and reflected light Lr of the laser irradiation light from the workpiece 16. (hereinafter referred to as laser reflected light Lr).
  • Welding light measuring device 30 includes a wavelength selective imaging optical system 35 and a photodetector 33.
  • the wavelength selective imaging optical system 35 separately images the incident plasma light Lp and the laser reflected light Lr on the photodetector 33, and the photodetector 33 The respective light intensities of Lp and laser reflected light Lr are measured.
  • FIG. 2 is a diagram showing the configuration of the photodetector 33 of the welding light measuring device 30 of the laser processing apparatus 100 of FIG. 1.
  • FIG. 3 is a diagram showing the relationship between the sensitivity and wavelength of the photodetector 33 in FIG. 2.
  • the photodetector 33 can be configured with a photodiode, and can monitor the respective light intensities of the received plasma light Lp and laser reflected light Lr.
  • the photodetector 33 is selected depending on the wavelength range of the incident light.
  • the plasma light Lp is light in the visible light range with a wavelength range of 400 to 800 nm. It is possible to select a photodiode that is sensitive to the wavelength range of .
  • the laser oscillator 1 for laser welding may be a fiber laser with an oscillation wavelength of 1070 nm, a YAG laser with an oscillation wavelength of 1064 nm, a disk laser with an oscillation wavelength of around 1030 nm, or the like. Therefore, the laser irradiation light Lm is light in the infrared region around 1000 nm. In order to measure the laser reflected light Lr in a similar wavelength range, a photodiode having sensitivity in a wavelength range around 1000 nm can be selected.
  • Conventional welding state detection devices for example, as in Patent Document 1, use two independent photodetectors to measure plasma light in the visible light range and laser reflected light in the infrared light range, respectively. configured.
  • photodetectors have been developed in which two photodetectors with different sensitivity ranges are stacked on top of each other, and such integrated photodetectors can detect a wide wavelength range from visible light to infrared light. Light can be measured.
  • the photodetector 33 of the laser processing apparatus 100 according to the present disclosure is configured to coaxially receive plasma light Lp in the visible light range and laser reflected light Lr in the infrared light range, and measure the light intensity of each. ing.
  • the photodetector 33 of this embodiment includes a first photodetector 331 and a second photodetector 332. They are arranged coaxially and in series. As illustrated, the first photodetector 331 and the second photodetector 332 are arranged in order along the propagation direction of the received welding light 13, and coaxially receive the welding light 13 on their respective light receiving surfaces 331A and 332A.
  • the light receiving surface 332A of the second photodetector 332 can be configured to be smaller than the light receiving surface 331A of the first photodetector 331.
  • the first photodetector 331 and the second photodetector 332 have output terminal portions 335 and 336, respectively, and can output an electric signal according to the amount of received light through photoelectric conversion.
  • FIG. 3 shows the relationship between the light receiving sensitivity characteristics of the photodetector 33 and the wavelength.
  • the first photodetector 331 has a center wavelength of 800 nm and a sensitivity region S1 of about 400 to 1200 nm.
  • the second photodetector 332 has a center wavelength of 1400 nm and a sensitivity region S2 of about 900 to 1800 nm.
  • the photodetector 33 configured in this manner has sensitivity over a wide wavelength range of 400 to 1800 nm and can detect light from the visible light range to the infrared light range.
  • the sensitivity region S1 of the first photodetector 331 and the sensitivity region S2 of the second photodetector 332 overlap. Therefore, light in the wavelength range of around 1000 to 1100 nm is detected by both photodetectors.
  • the first photodetector 331 which is disposed on the front side of the photodetector 33 in the -X direction shown in FIG. has.
  • the light in the infrared light range that has passed through the first photodetector 331 is received by the second photodetector 332 arranged on the rear side of the photodetector 33 (+Z side shown in FIG. 2).
  • the wavelength range W1 of the plasma light Lp in the visible light range is within the sensitivity range S1 of the first photodetector 331, it is detected only by the first photodetector 331.
  • the wavelength region W2 of the laser reflected light Lr in the infrared region is located in a region where the sensitivity region S1 of the first photodetector 331 and the sensitivity region S2 of the second photodetector 332 overlap. Therefore, a portion of the laser reflected light Lr is absorbed and detected by the first photodetector 331 (hereinafter referred to as a first reflected light portion Lr1). A portion of the laser reflected light that has passed through the first photodetector 331 (hereinafter referred to as a second reflected light portion Lr2) is detected by the second photodetector 332.
  • the conventional imaging optical system and the photodetector 33 configured to receive the plasma light Lp in the visible light range and the reflected light Lr in the infrared light range coaxially and detect each of them are different from each other.
  • the accuracy of welding quality evaluation may decrease.
  • FIGS. 4 to 5B a decrease in accuracy of welding quality evaluation that occurs when the photodetector 33 and a conventional imaging optical system are used will be described.
  • FIG. 4 is a schematic diagram showing a welding light measurement configuration 301 using a conventional imaging optical system 351 and the photodetector 33 of FIG. 2 for detecting a laser welding state.
  • FIG. 5A is an enlarged view of part A in FIG. 4, and is a schematic diagram showing measurement of plasma light Lp.
  • FIG. 5B is an enlarged view of part A in FIG. 4, and is a schematic diagram showing measurement of laser reflected light Lr.
  • the welding light measurement configuration 301 shown in FIG. 4 is composed of a conventionally often used imaging optical system 351 including a collimating lens 311 and an imaging lens 321, and a photodetector 33.
  • the welding light 131 transmitted by the optical fiber 6 includes plasma light Lp and laser reflected light Lr, is propagated in the +X direction shown in the figure, becomes a parallel light beam 132 along the incident optical axis O by the collimating lens 311, and further , an image is formed on the light receiving surface of the photodetector 33 by the imaging lens 321.
  • the light beam 133 of the plasma light Lp that has reached the photodetector 33 is imaged on the first photodetector 331 of the photodetector 33 and detected, as shown in FIG. 5A.
  • An electrical signal proportional to the light intensity of the plasma light Lp can be outputted from the output terminal section 335.
  • the light beam 134 of the laser reflected light Lr that has reached the photodetector 33 is incident on the first photodetector 331 disposed on the front side of the photodetector 33 in the -X direction, as shown in FIG. 5B.
  • the first photodetector 331 and the second photodetector 332 are arranged on the optical axis O of the welding light incident on the wavelength selection mask 34, as shown in FIGS. 5A and 5B.
  • the light detected by the first photodetector 331 includes both the plasma light Lp and the first reflected light portion Lr1 of the laser reflected light Lr
  • the light detected by the second photodetector 332 includes: A second reflected light portion Lr2 of the laser reflected light Lr is included. That is, the plasma light Lp and the laser reflected light Lr cannot be measured independently. Therefore, the accuracy of welding quality evaluation performed based on the light intensity detected by each of the first photodetector 331 and the second photodetector 332 deteriorates. Therefore, in the present embodiment, by applying the wavelength selective imaging optical system 35 to the laser processing apparatus 100, it is possible to improve the occurrence of a decrease in accuracy in welding quality evaluation.
  • the configuration of the wavelength selective imaging optical system according to the present disclosure will be described below with reference to FIGS. 6 to 7B.
  • FIG. 6 is a schematic diagram showing an example of the configuration of the wavelength selective imaging optical system 35 of the laser processing apparatus 100 of FIG. 1.
  • FIG. 7A is a schematic diagram showing a configuration example of the wavelength selection mask 341 of the wavelength selection type imaging optical system 35 of FIG. 6.
  • FIG. 7B is a schematic diagram showing a configuration example of the wavelength selection mask 342 of the wavelength selection type imaging optical system of FIG. 6.
  • the wavelength selective imaging optical system 35 shown in FIG. 6 includes a collimating lens 31, a wavelength selective mask 34, and an imaging lens 32, which are arranged coaxially in order along the propagation direction (+X direction in the drawing) of the received welding light 13. It is configured by a wavelength selective imaging optical system 35 including a photodetector 33.
  • the welding light 13 transmitted through the optical fiber 6 includes plasma light Lp and laser reflected light Lr, passes through the collimator lens 31 and reaches the wavelength selection mask 34, and the plasma light Lp transmitted through the wavelength selection mask 34 and the laser
  • the reflected light Lr is imaged by the imaging lens 32 on the photodetector 33 and detected.
  • the wavelength selection mask 341 which is an example of the configuration shown in FIG. 7A, can be configured with a disk-shaped glass substrate 341a, although it is not limited thereto.
  • a first region 341a1 and a second region 341a2 that receive welding light 13 are formed on the light-receiving surface 341A of the substrate 341a.
  • An infrared light reflection coat 345 is applied to the first region 341a1, and in this embodiment, the infrared light reflection coat 345 is a metal vapor deposited film in a wavelength region around the wavelength of 1070 nm of the laser reflected light Lr. It has the property of reflecting light in the wavelength range and transmitting light in other wavelength ranges.
  • the second region 341a2 is not coated with an infrared light reflective coating and has a characteristic of transmitting light in a wide wavelength range including plasma light Lp and laser reflected light Lr.
  • the plasma light Lp in the visible light range is transmitted through both the first region 341a1 and the second region 341a2 and is optically detected.
  • the laser reflected light Lr in the infrared region is reflected at the first region 341a1, and the portion transmitted through the second region 341a2 reaches the photodetector 33 and is detected. Detected.
  • the second region 341a2 has a smaller light-receiving area than the first region 341a1.
  • the wavelength selection mask 341 can transmit almost all of the received plasma light Lp, and can transmit only a part of the laser reflected light Lr.
  • the infrared light reflective coat 345 has a reflectance of 99% or more for light in the wavelength range of reflected light Lr around a wavelength of 1070 nm, and plasma light Lp in a wavelength range of 400 to 800 nm. It is configured to have a transmittance of 95% or more for light in the wavelength range of .
  • the characteristics of the infrared light reflective coat 345 are not limited to this.
  • the infrared light reflection coat 345 reflects light in an infrared light range on the long wavelength side from the wavelength range of the laser reflected light Lr, for example, light in the range of 1000 to 1800 nm, and reflects light in a wavelength range shorter than the wavelength range of the laser reflected light Lr. It may be configured to have a characteristic of transmitting light on the wavelength side, for example, light in the range of 400 to 900 nm.
  • the first region 341a1 and the second region 341a2 are configured to be rotationally symmetrical with respect to the optical axis O of the welding light incident on the wavelength selection mask 341.
  • the second region 341a2 is formed in the center of the substrate 341a, and the first region 341a1 is formed in an annular shape surrounding the second region 341a2.
  • the present disclosure is not limited to the shapes of the first and second regions of the wavelength selective mask.
  • the first region and second region of the wavelength selective mask may have other shapes depending on the application.
  • the wavelength selection mask 342 shown in FIG. 7B is different from the wavelength selection mask 341 shown in FIG. 7A in that it has an annular substrate 342a.
  • an infrared light reflective coating 345 similar to that of the wavelength selection mask 341 is applied to a light receiving surface 342A of a substrate 342a to form a first region 342a1.
  • the central portion through which the substrate 342a passes constitutes a second region 342a2, and the second region 342a2 transmits both the plasma light Lp and the laser reflected light Lr.
  • the wavelength selection mask 342 configured in this way, the plasma light Lp in the visible light range of the welding light 13 received by the light receiving surface 342A is transmitted through both the first region 342a1 and the second region 342a2. The light reaches the photodetector 33 and is detected. On the other hand, a portion of the laser reflected light Lr in the infrared region that is transmitted through the second region 342a2 reaches the photodetector 33 and is detected.
  • FIG. 8A is a schematic diagram showing measurement of plasma light Lp using the wavelength selective imaging optical system 35 of FIG.
  • FIG. 8B is an enlarged view of portion B of FIG. 8A.
  • FIG. 9A is a schematic diagram showing measurement of laser reflected light Lr using the wavelength selective imaging optical system 35 of FIG.
  • FIG. 9B is an enlarged view of portion C of FIG. 9A.
  • the light beam 14 of the plasma light Lp in the wavelength range of 400 to 800 nm transmitted from the optical fiber 6 reaches the wavelength selection mask 34 as a parallel light beam 141 through the collimator lens 31.
  • the infrared light reflective coating 345 applied to the first region 34a1 on the outer periphery of the light-receiving surface 34A of the wavelength selection mask 34 has a property of transmitting light in the visible light range.
  • the second region 34a2 in the center of the mask 34 transmits light in the visible light range and infrared light range.
  • the plasma light Lp is transmitted through the wavelength selection mask 34, and a light beam 142 of the transmitted plasma light Lp is focused by the imaging lens 32, and a light beam 143 is focused on the first photodetector 331 of the photodetector 33. ( Figure 8B).
  • the plasma light Lp of the transmitted welding light 13 passes through the wavelength selection mask 34, is received and detected by the first photodetector 331 of the photodetector 33, and the light intensity of the plasma light Lp is changed.
  • a proportional signal can be output from the output terminal section 335 of the first photodetector 331.
  • the light beam 143 of the plasma light Lp imaged on the first photodetector 331 is similar to or smaller than the light receiving surface 331A at the light receiving surface 331A of the first photodetector 331.
  • a beam spot can be formed.
  • the energy (light intensity) of the plasma light Lp incident on the wavelength selective imaging optical system 35 can be utilized to the maximum.
  • the light beam 15 of the laser reflected light Lr with a wavelength of around 1070 nm transmitted from the optical fiber 6 reaches the wavelength selection mask 34 as a parallel light beam 151 through the collimating lens 31.
  • the infrared light reflective coat 345 applied to the first region 34a1 on the outer periphery of the light-receiving surface 34A of the wavelength selection mask 34 has a characteristic of reflecting light with a wavelength of around 1070 nm. Therefore, the light beam 151 of the laser reflected light Lr is reflected by the infrared light reflective coat 345 in the first region 34a1 of the wavelength selection mask 34.
  • the second region 34a2 at the center of the wavelength selection mask 34 is not coated with the infrared light reflective coating 345 and transmits light in the infrared region, so the light beam 151 of the laser reflected light Lr is , is transmitted through the wavelength selection mask 34 in the second region 34a2.
  • the light beam 152 of the laser reflected light Lrt that has passed through the wavelength selection mask 34 is focused by the imaging lens 32, and the light beam 153 is directed to the front side of the photodetector 33 in the ⁇ X direction.
  • the photodetector reaches the first photodetector 331 located therein.
  • a first reflected light portion Lrt1 is absorbed by the first photodetector 331 and detected.
  • the light beam 154 of the second reflected light portion Lrt2 that has passed through the first photodetector 331 is focused on and detected by the second photodetector 332 disposed on the rear side (+Z side in the figure) of the photodetector 33.
  • the second reflected light portion Lrt2 of the laser reflected light Lr passes through the second region 34a2 of the wavelength selection mask 34 and further reaches the second photodetector 332.
  • the light is received and detected by the second photodetector 332 of the photodetector 33, and a signal proportional to the light intensity of the second reflected light portion Lrt2 can be outputted from the output terminal section 336 of the second photodetector 332.
  • the first reflected light portion Lrt1 of the laser reflected light Lr that has passed through the second region 34a2 of the wavelength selection mask 34 is transmitted to the first reflected light portion Lrt1 of the photodetector 33 along with the plasma light Lp. 1 photodetector 331.
  • the second region 34a2 of the wavelength selection mask 34 is configured to have a smaller light receiving area than the first region 34a1, the first reflection detected by the first photodetector 331
  • the light portion Lrt1 is a part of the received laser reflected light Lr. Therefore, compared to the case of using the conventional imaging optical system shown in FIGS.
  • the proportion of laser reflected light included in the light detected by the first photodetector 331 is reduced.
  • the plasma light and the laser reflected light can be measured almost independently by the first photodetector 331 and the second photodetector 332, respectively. Therefore, the accuracy of welding quality evaluation performed based on the light intensity detected by each of the first photodetector 331 and the second photodetector 332 can be improved.
  • the light beam 154 of the second reflected light portion Lrt2 that is imaged on the second photodetector 332 is formed on the light receiving surface 332A of the second photodetector 332 in the same manner as the light receiving surface 332A or from the light receiving surface 332A. can also form a small beam spot. Thereby, the energy (light intensity) of the second reflected light portion Lrt2 that has reached the second photodetector 332 can be utilized to the maximum.
  • the size of the beam spot on the light receiving surface of the first photodetector 331 of the photodetector 33 is ⁇ 3 mm
  • the size of the beam spot on the light receiving surface of the second photodetector 332 is ⁇ 0.5 mm.
  • the ratio of the light intensity of the plasma light Lp and the light intensity of the laser reflected light Lr is set to 1:1.
  • the ratio of the light intensity of the plasma light Lp to the light intensity of the laser reflected light Lr is also 1:1.
  • the first reflected light portion Lrt1 detected by the first photodetector 331 is incident with a beam spot of approximately ⁇ 0.5 mm. That is, with respect to the ⁇ 3 mm beam spot of the light beam 151 of the laser reflected light Lr received by the wavelength selection mask 34, only the first reflected light portion Lrt1 that has passed through the approximately ⁇ 0.5 mm central portion is detected by the first photodetector. 331 can be reached.
  • the first reflected light portion Lrt1 received by the first photodetector 331 is only about 2.8% of the laser reflected light Lr received by the wavelength selective imaging optical system 35. It is. Therefore, the ratio of the light intensity of the plasma light Lp received and detected by the first photodetector 331 to the light intensity of the first reflected light portion Lrt1 of the laser reflected light Lr is 1:0.028.
  • the plasma light detected by the first photodetector 331 has less laser reflection.
  • the relative intensity of the light is extremely small at only 2.8%, and it can be said that the signal output by the first photodetector 331 is approximately the light intensity of the plasma light Lp included in the welding light.
  • the signal output by the second photodetector 332 is the light intensity of the first reflected light portion Lrt1, which is a part of the laser reflected light Lr included in the welding light.
  • the light intensity of the second reflected light portion Lrt2 of the laser reflected light Lr detected by the second photodetector 332 decreases.
  • the second region 34a2 of the wavelength selection mask 34 can be configured according to the light intensity of the received welding light, the ratio of the plasma light Lp to the laser reflected light Lr, the size of the beam spot, and the sensitivity of the photodetector. can.
  • the laser processing apparatus 100 of the present disclosure separates the welding light emitted from the welding part during laser welding by wavelength, and coaxially measures the obtained plasma light and laser reflected light in different wavelength regions. Welding quality can be evaluated using
  • FIG. 10 is a schematic diagram showing the configuration of a laser processing apparatus 100a according to Example 2 of the embodiment of the present disclosure.
  • FIG. 11 is a block diagram showing an example of the configuration of the welding quality evaluation device 40 of the laser processing device 100a of FIG. 10.
  • a laser processing apparatus 100a shown in FIG. 10 differs from the laser processing apparatus 100 shown in FIG. 1 in that it includes a welding quality evaluation device 40.
  • the same elements as those in the laser processing apparatus 100 of FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the laser processing device 100a includes a welding device 20, a welding light measuring device 30, and a welding quality evaluation device 40.
  • the welding device 20 performs laser welding by irradiating the workpiece 16 with a laser beam, and introduces the welding light emitted from the welding part of the workpiece 16 during laser welding into a welding light measuring device 30 to measure the welding light.
  • the light intensity measured by the optical measurement device 30 is transmitted to the welding quality evaluation device 40, and the welding quality evaluation device 40 can evaluate the quality of laser welding based on the received light intensity.
  • arrow E in FIG. 10 indicates the transmission direction of data on the light intensity measured by the welding light measuring device 30.
  • the welding device 20 and the welding light measuring device 30 of the laser processing device 100a have the same configuration as the laser processing device 100 shown in FIG. The configuration of the welding quality evaluation device 40 will be described in detail below.
  • the welding quality evaluation device 40 may be, for example, a computer.
  • a general-purpose computer device can be used as this computer device, and includes, for example, a light intensity acquisition section 41, a light intensity processing section 42, a storage section 43, and an output section 44, as shown in FIG. , are electrically connected to the welding light measuring device 30.
  • the welding quality evaluation device 40 can evaluate the quality of welding based on the light intensity measurement data from the welding light measurement device 30.
  • the light intensity acquisition unit 41 uses the welding light measurement device 30 to obtain information about the plasma light Lp emitted from the welded part of the workpiece 16 during laser welding and the laser reflected light Lr, which are measured by the photodetector 33. Obtain signal data proportional to light intensity.
  • the light intensity processing unit 42 may be, for example, a central processing operator (CPU), a microcomputer, or a processing device capable of executing computer-executable instructions. Based on the signal data of the plasma light Lp and the signal of the laser reflected light Lr acquired by the light intensity acquisition unit 41, and the correlation data stored in the storage unit 43, the light intensity processing unit 42 performs the following processing. Welding quality is evaluated by running a data processing program.
  • CPU central processing operator
  • microcomputer a microcomputer
  • the storage unit 43 may be, for example, an auxiliary storage device such as a hard disk drive, and stores a data processing program executed by the light intensity processing unit 42, various data, and the like.
  • the data stored in the storage unit 43 includes, for example, correlation data between the signal of the plasma light Lp, the signal of the laser reflected light Lr, and the quality of welding.
  • the output unit 44 may be an output interface circuit that outputs data from the welding quality evaluation device 40 to the outside.
  • the welding quality evaluation device 40 may acquire a data processing program, etc. to be executed by the light intensity processing section 42 from a portable storage medium.
  • a storage medium is a storage medium that stores information such as a recorded program by electrical, magnetic, optical, mechanical, or chemical action so that a computer or other device, machine, etc. can read the recorded program information. It is a medium for Further, when the welding quality evaluation device 40 is connected to a network, data processing programs and the like may be downloaded from the network as necessary.
  • the laser processing apparatus of the present disclosure uses a photodetector including two photodetectors with different sensitivity regions to produce welding light that includes plasma light emitted from a workpiece and laser reflected light during laser welding. can be measured by receiving the light coaxially.
  • a wavelength selective imaging optical system equipped with a wavelength selective mask the plasma light and the laser reflected light are separately imaged on two photodetectors, and the light intensities are measured independently of each other. Welding quality can be evaluated based on the obtained light intensity.
  • the laser processing device of the present disclosure can be applied to a device that measures welding light including light in different wavelength regions generated during laser welding.
  • the present disclosure can be used, for example, to evaluate welding quality based on measurement of welding light generated during laser welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本開示の一態様に係るレーザ加工装置は、レーザ照射光をワークに照射して溶接を行う溶接装置と、結像光学系と、第1フォトディテクタと、第2フォトディテクタとを含み、レーザ溶接時にワークから放出される溶接光を受光して測定する溶接光測定装置と、を備える。溶接光は、第1波長領域の第1光と第2波長領域の第2光とを含み、結像光学系は、波長選択マスクを含み、波長選択マスクを透過した第1光の光線を第1フォトディテクタに結像させ、波長選択マスクを透過した第2光の光線を第2フォトディテクタに結像させる。波長選択マスクは、溶接光を受光する第1の領域と第2の領域を含み、第1の領域は、第2光を反射するとともに第1光を透過し、第2の領域は、第1光及び第2光を透過し、第2の領域は、第1の領域よりも小さい受光面積を有する。第1フォトディテクタと第2フォトディテクタとは、波長選択マスクに入射する溶接光の光軸上に配置されている。

Description

レーザ加工装置
 本開示は、レーザ加工装置に関し、より詳細には、レーザ照射光をワークに照射してレーザ溶接を行うときに、ワークから放出される溶接光を測定して溶接品質評価することができるレーザ加工装置に関するものである。
 レーザ加工装置には、パルス又は連続のレーザ照射光をワークに照射してレーザ溶接を行うものがある。また、レーザ溶接を行うときに、溶接部から放出される溶接光を測定することによって、レーザ溶接の品質評価をすることができる。レーザ溶接の品質評価方法は、例えば、レーザ溶接時に放出される溶接光のピーク強度又はその平均強度に基づいて、リアルタイムでレーザ溶接の品質評価を行うことができる。ここで、溶接光は、レーザ溶接時に、レーザ照射光に入射されたワークの溶接部からのレーザ光の反射光と、溶接の過程で発生されるプラズマ光とを含む。
 レーザ溶接の品質評価のために、例えば、特許文献1にて提案された溶接状態検出装置がある。特許文献1には、レーザ溶接時に溶接部から放出される溶接光を光ファイバによって伝送し、ダイクロイックミラー(波長分離ミラー)により波長分離して、得られたプラズマ光とレーザ反射光とを、互いに独立した2つの測定光学系を用いてそれぞれ測定し、溶接品質評価を行う溶接状態検出装置が開示されている。
特開2000-334587号公報
 しかしながら、特許文献1の溶接状態検出装置では、溶接光をダイクロイックミラー等によってプラズマ光とレーザ反射光とを空間的に分離させて、別々の測定光学系を用いて測定している。このような構成では、測定光学系は、部品点数が多く、装置の小型化が困難である。
 そこで、本開示の目的は、上記従来の課題を解決するものであって、部品点数が少なく、装置の小型化を容易にするレーザ加工装置を提供することである。
 前記目的を達成するために、本開示の一態様に係るレーザ加工装置は、レーザ照射光をワークに照射して溶接を行う溶接装置と、結像光学系と、第1フォトディテクタと、第2フォトディテクタとを含み、レーザ溶接時にワークから放出される溶接光を受光して測定する溶接光測定装置と、を備える。溶接光は、第1波長領域の第1光と第2波長領域の第2光とを含み、結像光学系は、波長選択マスクを含み、波長選択マスクを透過した第1光の光線を第1フォトディテクタに結像させ、波長選択マスクを透過した第2光の光線を第2フォトディテクタに結像させる。波長選択マスクは、溶接光を受光する第1の領域と第2の領域を含み、第1の領域は、第2光を反射するとともに第1光を透過し、第2の領域は、第1光及び第2光を透過し、第2の領域は、第1の領域よりも小さい受光面積を有する。第1フォトディテクタと第2フォトディテクタとは、波長選択マスクに入射する溶接光の光軸上に配置されている。
 本開示の一態様に係るレーザ加工装置によれば、部品点数が少なく、装置の小型化を容易にするレーザ加工装置を提供することができる。
本開示の実施の形態の実施例1に係るレーザ加工装置の構成を示す概略図である。 図1のレーザ加工装置の溶接光測定装置の光検出器の構成を示す図である。 図2の光検出器の感度と波長との関係を示す図である。 レーザ溶接状態を検出するための従来の結像光学系と図2の光検出器とを用いた溶接光測定構成を示す概略図である。 図4の部分Aの拡大図であって、プラズマ光の測定を示す概略図である。 図4の部分Aの拡大図であって、レーザ反射光の測定を示す概略図である。 図1のレーザ加工装置の波長選択型結像光学系の構成の一例を示す概略図である。 図6の波長選択型結像光学系の波長選択マスクの構成の一例を示す概略図である。 図6の波長選択型結像光学系の波長選択マスクの構成の他の一例を示す概略図である。 図6の波長選択型結像光学系を用いたプラズマ光の測定を示す概略図である。 図8Aの部分Bの拡大図である。 図6の波長選択型結像光学系を用いたレーザ反射光の測定を示す概略図である。 図9Aの部分Cの拡大図である。 本開示の実施の形態の実施例2に係るレーザ加工装置の構成を示す概略図である。 図10のレーザ加工装置の溶接品質評価装置の一構成例を示すブロック図である。
 本開示の第1態様によれば、レーザ照射光をワークに照射して溶接を行う溶接装置と、波長選択型結像光学系と、第1フォトディテクタと、第2フォトディテクタとを含み、レーザ溶接時にワークから放出される溶接光を受光して測定する溶接光測定装置と、を備え、溶接光は、第1波長領域の第1光と第2波長領域の第2光とを含み、波長選択型結像光学系は、波長選択マスクを含み、受光した溶接光に対し、波長選択マスクを透過した第1光の光線と第2光の光線とを、第1フォトディテクタと第2フォトディテクタとに別々に結像させ、波長選択マスクは、溶接光を受光する第1の領域と第2の領域を含み、第1の領域は、第2光を反射するとともに第1光を透過し、第2の領域は、第1光及び第2光を透過し、第2の領域は第1の領域よりも小さい受光面積を有し、第1フォトディテクタと第2フォトディテクタとは、第1光と第2光とを同軸に受光するように配置されている、レーザ加工装置を提供する。
 この態様によれば、部品点数が少なく、装置の小型化を容易にするレーザ加工装置を提供することができる。
 本開示の第2態様によれば、第1光は、レーザ溶接時にワークから放出されるプラズマ光であり、第2光は、レーザ溶接時にワークによるレーザ照射光の反射光であり、第1波長領域は可視光域にあり、第2波長領域は赤外光域にある、第1態様に記載のレーザ加工装置を提供する。
 本開示の第3態様によれば、第1フォトディテクタは、第1波長領域の光及び第2波長領域の光に対して感度を有し、第2フォトディテクタは、第2波長領域の光に対して感度を有する、第1又は第2態様に記載のレーザ加工装置を提供する。
 本開示の第4態様によれば、第1の領域は、赤外光反射コートが施され、赤外光反射コートは、第2波長領域の光に対し、99%以上の反射率を有し、第1波長領域の光に対し、95%以上の透過率を有する、第1から第3態様のいずれか1つに記載のレーザ加工装置を提供する。
 本開示の第5態様によれば、赤外光反射コートは、第2波長領域から長波長側の赤外光域の光を反射し、第2波長領域よりも短波長側の光を透過する、第4態様に記載のレーザ加工装置を提供する。
 本開示の第6態様によれば、赤外光反射コートは、第2波長領域以外の光を透過する、第4態様に記載のレーザ加工装置を提供する。
 本開示の第7態様によれば、第1の領域と第2の領域とは、波長選択マスクに入射する溶接光の光軸に関してそれぞれ回転対称である、第1から第6態様のいずれか1つに記載のレーザ加工装置を提供する。
 本開示の第8態様によれば、第1フォトディテクタと第2フォトディテクタとは、波長選択型結像光学系が受光した溶接光の伝搬方向に沿って順に配置され、波長選択マスクを透過した第2光の一部は、第1フォトディテクタを透過して第2フォトディテクタで受光される、第1から第7態様のいずれか1つに記載のレーザ加工装置を提供する。
 本開示の第9態様によれば、第1フォトディテクタと第2フォトディテクタとのそれぞれにより検知された光強度の信号を受信し、光強度の信号に基づいて、レーザ溶接の品質を評価する溶接品質評価装置を更に備える、第1から第8態様のいずれか1つに記載のレーザ加工装置を提供する。
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 本開示の実施の形態1に係るレーザ加工装置について、図1乃至図11を参照しながら説明する。添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供するものであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。なお、図面において実質的に同一の部材については、同一の符号を付している。
 《実施の形態》
 (実施例1に係るレーザ加工装置の構成)
 本開示の実施の形態の実施例1に係るレーザ加工装置の全体構成について、図1を参照しながら説明する。図1は、本開示の実施の形態の実施例1に係るレーザ加工装置100の構成を示す概略図である。図1において、レーザ加工装置100は、X-Y平面上に示されている。
 図1に示すレーザ加工装置100は、溶接装置20と、溶接光測定装置30とを備えている。レーザ加工装置100において、溶接装置20は、ワーク16に対してレーザ光を照射してレーザ溶接を行い、レーザ溶接時にワーク16の溶接部から放出される溶接光を、溶接光測定装置30に導入し、測定することによってレーザ溶接の品質評価をすることができる。以下、レーザ加工装置100の構成要素及び動作について、詳細に説明する。
 <溶接装置>
 溶接装置20は、レーザ発振器1と、コリメートレンズ2と、集光レンズ3と、全反射ミラー4と、集光レンズ5と、光ファイバ6とを備えている。
 レーザ発振器1から出射したレーザ照射光Lmのレーザビーム10は、コリメートレンズ2を通して平行な光ビームとなり、全反射ミラー4により反射され、集光レンズ3によって集光され、図示-Y方向に沿ってワーク16に照射する。ワーク16の下には接合物17が設置されている。ワーク16と接合物17とは、ステージ18上に固定され、ステージ18により移動されるとともに、レーザビーム10に照射されることによってレーザ溶接される。
 レーザ溶接する際には、ワーク16の溶接部から放出される溶接光11は、図示+Y方向に沿って集光レンズ3と全反射ミラー4を透過し、透過した溶接光12は、集光レンズ5によって光ファイバ6に集光され、光ファイバ6によって溶接光測定装置30に伝送される。
 なお、図1において、明瞭化のために、各光ビームを主光線のみで示している。また、全反射ミラー4とワーク16との間に、レーザ照射光Lmのレーザビーム10と溶接光11とを分けて図示しているが、実際には、レーザ照射光Lmのレーザビーム10と溶接光11とは、同一の経路に沿って集光レンズ3を通過することになる。
 <溶接光測定装置>
 光ファイバ6に伝送され、図示+X方向に沿って溶接光測定装置30に入射される溶接光13は、ワーク16の溶接部で発生したプラズマ光Lpと、ワーク16によるレーザ照射光に対する反射光Lr(以下、レーザ反射光Lrと称す)とを含む。溶接光測定装置30は、波長選択型結像光学系35と光検出器33とを含む。本実施の形態では、波長選択型結像光学系35は、入射された、プラズマ光Lpとレーザ反射光Lrとを、光検出器33に別々に結像させ、光検出器33は、プラズマ光Lpとレーザ反射光Lrとのそれぞれの光強度を測定する。
 先ず、溶接光測定装置30の光検出器33について、図2及び図3を参照して説明する。図2は、図1のレーザ加工装置100の溶接光測定装置30の光検出器33の構成を示す図である。図3は、図2の光検出器33の感度と波長との関係を示す図である。
 光検出器33は、フォトダイオードによって構成することができ、受光したプラズマ光Lpとレーザ反射光Lrとのそれぞれの光強度をモニタすることができる。光検出器33は、入射される光の波長領域に応じて選定される。例えば、溶接光測定装置30に入射される溶接光13のうち、プラズマ光Lpは、波長領域が400~800nmの可視光域の光であるため、プラズマ光Lpを測定するには、400~800nmの波長領域に感度を持つフォトダイオードを選定することができる。
 一方、レーザ溶接用のレーザ発振器1は、発振波長が1070nmのファイバーレーザであってもよく、発振波長が1064nmのYAGレーザ、又は発振波長が1030nm付近のディスクレーザ等を用いてもよい。従って、レーザ照射光Lmは1000nm付近の赤外光域の光である。同様の波長領域のレーザ反射光Lrを測定するためには、1000nm付近の波長領域に感度を持つフォトダイオードを選定することができる。
 従来の溶接状態検出装置は、例えば、特許文献1のように、2つの独立した光検出器を用いて、可視光域のプラズマ光と赤外光域のレーザ反射光とをそれぞれ測定するように構成される。近年、互いに異なる感度領域を持つ2つのフォトディテクタが重ねて一体に構成された光検出器が開発され、このような一体型光検出器は、可視光域から赤外光域までの広い波長領域の光を測定することができる。本開示に係るレーザ加工装置100の光検出器33は、可視光域のプラズマ光Lpと赤外光域のレーザ反射光Lrとを同軸に受光し、それぞれの光強度を測定するように構成されている。
 図2に示すように、本実施の形態の光検出器33は、第1フォトディテクタ331と第2フォトディテクタ332とを含み、第1フォトディテクタ331と第2フォトディテクタ332とは、入射する溶接光13に対して、同軸に直列方向に配置されている。図示のように、受光した溶接光13の伝搬方向に沿って、第1フォトディテクタ331と第2フォトディテクタ332とは順に配置され、それぞれの受光面331A,332Aにおいて溶接光13を同軸に受光する。第2フォトディテクタ332の受光面332Aは、第1フォトディテクタ331の受光面331Aよりも小さく構成することができる。また、第1フォトディテクタ331と第2フォトディテクタ332とは、それぞれ出力端子部335,336を有し、光電変換によって受光量に応じた電気信号を出力することができる。
 図3は、光検出器33の受光感度特性と波長との関係を示している。第1フォトディテクタ331は、中心波長が800nmで、約400~1200nmの感度領域S1を有する。一方、第2フォトディテクタ332は、中心波長が1400nmで、約900~1800nmの感度領域S2を有する。このように構成された光検出器33は、広い波長領域400~1800nmにわたって感度を有し、可視光域から赤外光域までの光を検出できる。また、1000nm近辺の波長領域において、第1フォトディテクタ331の感度領域S1と、第2フォトディテクタ332の感度領域S2とが重なっている。そのため、波長領域が1000~1100nm付近の光は、両方のフォトディテクタに検知されることになる。ここで、図2に示す光検出器33の-X方向に向かう前方側に配置されている第1フォトディテクタ331は、波長が1000nm以上の赤外光域の光に対して、少なくとも部分透過する特性を有する。第1フォトディテクタ331を透過した赤外光域の光は、光検出器33の後方側(図2に示す+Z側)に配置されている第2フォトディテクタ332で受光される。
 図3に示すように、可視光域のプラズマ光Lpの波長領域W1が第1フォトディテクタ331の感度領域S1内にあるため、第1フォトディテクタ331にのみ検出される。一方、赤外光域のレーザ反射光Lrの波長領域W2が第1フォトディテクタ331の感度領域S1と第2フォトディテクタ332の感度領域S2との重なる領域にある。そのため、レーザ反射光Lrの一部が第1フォトディテクタ331に吸収されて検出される(以下、第1反射光部分Lr1と称す)。第1フォトディテクタ331を透過したレーザ反射光の部分(以下、第2反射光部分Lr2と称す)が、第2フォトディテクタ332によって検出されることとなる。
 しかしながら、このように可視光域のプラズマ光Lpと赤外光域の反射光Lrとを同軸に受光し、それぞれを検出するように構成された光検出器33と従来の結像光学系とを用いてレーザ溶接状態を検出する場合、溶接の品質評価の精度低下が生じる場合がある。以下、図4から図5Bを参照して、光検出器33と従来の結像光学系とを利用したときに生じる溶接の品質評価の精度低下について説明する。
 <溶接の品質評価の精度低下の発生>
 図4は、レーザ溶接状態を検出するための従来の結像光学系351と図2の光検出器33とを用いた溶接光測定構成301を示す概略図である。図5Aは、図4の部分Aの拡大図であって、プラズマ光Lpの測定を示す概略図である。図5Bは、図4の部分Aの拡大図であって、レーザ反射光Lrの測定を示す概略図である。
 図4に示す溶接光測定構成301は、コリメートレンズ311と結像レンズ321とを含む従来用いられることが多い結像光学系351と光検出器33とによって構成されている。光ファイバ6によって伝送されてきた溶接光131は、プラズマ光Lpとレーザ反射光Lrを含み、図示+X方向に伝搬され、コリメートレンズ311で入射光軸Oに沿った平行な光ビーム132となり、更に、結像レンズ321で、光検出器33の受光面に結像される。
 光検出器33に到達したプラズマ光Lpの光ビーム133は、図5Aに示すように、光検出器33の第1フォトディテクタ331に結像されて検出される。プラズマ光Lpの光強度に比例した電気信号が出力端子部335により出力することができる。一方、光検出器33に到達したレーザ反射光Lrの光ビーム134は、図5Bに示すように、光検出器33の-X方向に向かう前方側に配置されている第1フォトディテクタ331に入射し、レーザ反射光Lrのうち、第1反射光部分Lr1が第1フォトディテクタ331に吸収されて検出されたのち、第1フォトディテクタ331を透過した第2反射光部分Lr2の光ビーム135は、後方側(図示+Z側)に配置されている第2フォトディテクタ332に結像されて検出される。第2反射光部分Lr2の光強度に比例した電気信号が出力端子部336により出力することができる。また、第1フォトディテクタ331に吸収されて検出された第1反射光部分Lr1の光強度に比例した電気信号が第1フォトディテクタ331の出力端子部335により出力される。以上のように、第1フォトディテクタ331および第2フォトディテクタ332は、図5A,図5Bに示すように、波長選択マスク34に入射する溶接光の光軸O上に配置されている。
 このように、第1フォトディテクタ331により検出される光には、プラズマ光Lpとレーザ反射光Lrの第1反射光部分Lr1との両方が含まれ、第2フォトディテクタ332により検出される光には、レーザ反射光Lrの第2反射光部分Lr2が含まれることになる。すなわち、プラズマ光Lpとレーザ反射光Lrとは、独立して測定することができない。したがって、第1フォトディテクタ331と第2フォトディテクタ332とのそれぞれにより検出された光強度に基づいて行われる溶接の品質評価は、精度低下が生じてしまう。そこで、本実施の形態では、波長選択型結像光学系35をレーザ加工装置100に適用することによって、溶接の品質評価の精度低下の発生を改善することができる。以下、図6から図7Bを参照して、本開示に係る波長選択型結像光学系の構成について説明する。
 <波長選択型結像光学系の構成>
 図6は、図1のレーザ加工装置100の波長選択型結像光学系35の構成の一例を示す概略図である。図7Aは、図6の波長選択型結像光学系35の波長選択マスク341の構成例を示す概略図である。図7Bは、図6の波長選択型結像光学系の波長選択マスク342の構成例を示す概略図である。
 図6に示す波長選択型結像光学系35は、受光した溶接光13の伝搬方向(図示+X方向)に沿って順に同軸配置されたコリメートレンズ31と、波長選択マスク34と、結像レンズ32とを含む波長選択型結像光学系35と、光検出器33とによって構成されている。光ファイバ6によって伝送されてきた溶接光13は、プラズマ光Lpとレーザ反射光Lrを含み、コリメートレンズ31を通って波長選択マスク34に到達し、波長選択マスク34を透過したプラズマ光Lpとレーザ反射光Lrとは、結像レンズ32によって光検出器33に結像されて検出される。
 (波長選択マスクの第1の構成例)
 図7Aに示す一構成例である波長選択マスク341は、これに限定されないが、円盤状のガラス基板341aで構成することができる。本実施の形態では、図示のように、基板341aの受光面341Aには、溶接光13を受光する第1の領域341a1と第2の領域341a2とが形成されている。第1の領域341a1には、赤外光反射コート345が施され、赤外光反射コート345は、本実施の形態では、金属蒸着膜であって、レーザ反射光Lrの波長1070nm付近の波長領域の光を反射するとともに、それ以外の波長領域の光を透過する特性を有している。一方、第2の領域341a2には、赤外光反射コートが施されておらず、プラズマ光Lpとレーザ反射光Lrとを含む広い波長領域の光に対して透過する特性を有している。これによって、波長選択マスク341の受光面341Aに入射された溶接光13のうち、可視光域のプラズマ光Lpは、第1の領域341a1と第2の領域341a2との両方において透過して光検出器33に到達して検出されるに対し、赤外光域のレーザ反射光Lrは、第1の領域341a1において反射され、第2の領域341a2において透過した部分が光検出器33に到達して検出される。図示のように、第2の領域341a2は第1の領域341a1よりも小さい受光面積を有する。これによって、波長選択マスク341は、受光したプラズマ光Lpに対して、概ね全ての光量を透過させるとともに、レーザ反射光Lrに対して、一部の光量のみを透過させることができる。
 赤外光反射コート345は、本実施の形態において、波長1070nm付近の反射光Lrの波長領域の光に対して、99%以上の反射率を有し、波長領域が400~800nmのプラズマ光Lpの波長領域の光に対して、95%以上の透過率を有するように構成されている。しかし、赤外光反射コート345の特性は、これに限定されない。例えば、赤外光反射コート345は、レーザ反射光Lrの波長領域から長波長側の赤外光域の光、例えば、1000~1800nmの光を反射し、レーザ反射光Lrの波長領域よりも短波長側の光、例えば、400~900nmの光を透過する特性を有するように構成されてもよい。
 また、本実施の形態では、第1の領域341a1と第2の領域341a2とは、波長選択マスク341に入射する溶接光の光軸Oに関してそれぞれ回転対称に構成されている。第2の領域341a2は、基板341aの中央部に形成され、第1の領域341a1は、第2の領域341a2を囲む環状形に形成されている。しかし、本開示は、波長選択マスクの第1の領域と第2の領域との形状に限定されない。波長選択マスクの第1の領域と第2の領域とは、用途に応じて、他の形状を有してもよい。
 (波長選択マスクの第2の構成例)
 図7Bに示す波長選択マスク342は、環状形の基板342aを有する構成で図7Aに示す波長選択マスク341と異なる。波長選択マスク342は、基板342aの受光面342Aに、波長選択マスク341と同様の赤外光反射コート345が施されて第1の領域342a1が形成されている。本実施の形態では、基板342aの貫通する中央部が第2の領域342a2を構成し、第2の領域342a2は、プラズマ光Lpとレーザ反射光Lrとをともに透過する。このように構成された波長選択マスク342によって、受光面342Aで受光した溶接光13のうち、可視光域のプラズマ光Lpは、第1の領域342a1と第2の領域342a2との両方において透過して光検出器33に到達して検出される。一方、赤外光域のレーザ反射光Lrは、第2の領域342a2において透過した部分が光検出器33に到達して検出される。
 <波長選択型結像光学系の動作>
 図8Aから図9Bを参照して、本開示に係る波長選択型結像光学系35を用いた、プラズマ光Lpとレーザ反射光Lrの測定について説明する。また、以下の説明では、光ファイバ6から伝送されてきた溶接光13を、プラズマ光Lpの光ビーム14とレーザ反射光Lrの光ビーム15とに分けて説明する。図8Aは、図6の波長選択型結像光学系35を用いたプラズマ光Lpの測定を示す概略図である。図8Bは、図8Aの部分Bの拡大図である。図9Aは、図6の波長選択型結像光学系35を用いたレーザ反射光Lrの測定を示す概略図である。図9Bは、図9Aの部分Cの拡大図である。
 図8Aに示すように、光ファイバ6から伝送されてきた波長領域400~800nmのプラズマ光Lpの光ビーム14は、コリメートレンズ31により、平行な光ビーム141で波長選択マスク34に到達する。本実施の形態では、波長選択マスク34の受光面34Aの外周部における第1の領域34a1に施された赤外光反射コート345は、可視光域の光を透過する特性を有し、波長選択マスク34の中央部における第2の領域34a2は可視光域及び赤外光域の光を透過する。したがって、プラズマ光Lpは波長選択マスク34を透過し、透過したプラズマ光Lpの光ビーム142は、結像レンズ32により集束された光ビーム143は、光検出器33の第1フォトディテクタ331に結像される(図8B)。
 このように、伝送されてきた溶接光13のうち、プラズマ光Lpは、波長選択マスク34を透過し、光検出器33の第1フォトディテクタ331で受光されて検出され、プラズマ光Lpの光強度に比例した信号が第1フォトディテクタ331の出力端子部335より出力することができる。
 ここで、図8Bに示すように、第1フォトディテクタ331に結像されるプラズマ光Lpの光ビーム143は、第1フォトディテクタ331の受光面331Aにおいて、受光面331Aと同様又は受光面331Aよりも小さいビームスポットを形成することができる。これによって、波長選択型結像光学系35に入射したプラズマ光Lpのエネルギ(光強度)を最大限に利用することができる。
 次に、図9Aに示すように、光ファイバ6から伝送されてきた波長1070nm付近のレーザ反射光Lrの光ビーム15は、コリメートレンズ31により、平行な光ビーム151で波長選択マスク34に到達する。本実施の形態では、波長選択マスク34の受光面34Aの外周部における第1の領域34a1に施された赤外光反射コート345は、波長1070nm付近の光を反射する特性を有する。そのため、レーザ反射光Lrの光ビーム151は、波長選択マスク34の第1の領域34a1において、赤外光反射コート345によって反射される。一方、波長選択マスク34の中央部の第2の領域34a2には赤外光反射コート345が施されておらず、赤外光域の光を透過するため、レーザ反射光Lrの光ビーム151は、第2の領域34a2において波長選択マスク34を透過する。
 波長選択マスク34を透過したレーザ反射光Lrtの光ビーム152は、図9Bに示すように、結像レンズ32により集束された光ビーム153は、光検出器33の-X方向に向かう前方側に配置されている第1フォトディテクタ331に到達する。波長選択マスク34を透過したレーザ反射光Lrtのうち、第1反射光部分Lrt1が第1フォトディテクタ331に吸収されて検出される。第1フォトディテクタ331を透過した第2反射光部分Lrt2の光ビーム154は、光検出器33の後方側(図示+Z側)に配置されている第2フォトディテクタ332に結像されて検出される。
 このように、伝送されてきた溶接光13において、レーザ反射光Lrのうち、波長選択マスク34の第2の領域34a2を透過し、更に第2フォトディテクタ332に到達した第2反射光部分Lrt2が、光検出器33の第2フォトディテクタ332で受光されて検出され、第2反射光部分Lrt2の光強度に比例した信号が第2フォトディテクタ332の出力端子部336より出力することができる。
 ここで、伝送されてきた溶接光13において、レーザ反射光Lrのうち、波長選択マスク34の第2の領域34a2を透過した第1反射光部分Lrt1は、プラズマ光Lpとともに光検出器33の第1フォトディテクタ331により検出される。しかし、図示のように、波長選択マスク34の第2の領域34a2は、第1の領域34a1よりも小さい受光面積を有するように構成されているため、第1フォトディテクタ331により検出される第1反射光部分Lrt1は、受光したレーザ反射光Lrの一部である。したがって、図4から図5Bに示した従来の結像光学系を利用する場合に比べ、第1フォトディテクタ331により検出される光に含まれるレーザ反射光の割合が低減される。これによって、プラズマ光とレーザ反射光とは、概ね独立して第1フォトディテクタ331と第2フォトディテクタ332とのそれぞれによって測定することができる。したがって、第1フォトディテクタ331と第2フォトディテクタ332とのそれぞれにより検出された光強度に基づいて行われる溶接の品質評価の精度が向上することができる。
 なお、図9Bに示すように、第2フォトディテクタ332に結像される第2反射光部分Lrt2の光ビーム154は、第2フォトディテクタ332の受光面332Aにおいて、受光面332Aと同様又は受光面332Aよりも小さいビームスポットを形成することができる。これによって、第2フォトディテクタ332に到達した第2反射光部分Lrt2のエネルギ(光強度)を最大限に利用することができる。
 (具体例)
 本実施の形態の波長選択マスク34により、溶接の品質評価の精度の向上について、具体的な数値例で説明する。
 例えば、光検出器33の第1フォトディテクタ331の受光面におけるビームスポットのサイズをΦ3mmとし、第2フォトディテクタ332の受光面におけるビームスポットのサイズをΦ0.5mmとする。また、溶接光13の内、プラズマ光Lpの光強度とレーザ反射光Lrの光強度との割合を1:1とする。
 この時、図4に示す従来の結像光学系を用いた溶接光測定構成301では、第1フォトディテクタ331の受光面において、プラズマ光Lpとレーザ反射光Lrとは、ともにΦ3mmのビームスポットで入射し、プラズマ光Lpの光強度とレーザ反射光Lrの光強度との割合も、溶接光13と同様に、1:1である。
 一方、図6に示す本開示による波長選択型結像光学系35を適用した場合、第1フォトディテクタ331の受光面において、プラズマ光LpがΦ3mmのビームスポットで入射するに対して、レーザ反射光Lrのうち、第1フォトディテクタ331により検出される第1反射光部分Lrt1は、約Φ0.5mmのビームスポットで入射する。すなわち、波長選択マスク34が受光したレーザ反射光Lrの光ビーム151のΦ3mmのビームスポットに対して、その中央部の約Φ0.5mmの部分を透過した第1反射光部分Lrt1のみが第1フォトディテクタ331に到達することができる。光強度が均一分布の光ビームを仮定し、第1フォトディテクタ331で受光される第1反射光部分Lrt1は、波長選択型結像光学系35が受光したレーザ反射光Lrの僅か約2.8%である。したがって、第1フォトディテクタ331により受光されて検出されるプラズマ光Lpの光強度とレーザ反射光Lrの第1反射光部分Lrt1の光強度の割合は、1:0.028となる。
 このように、従来の結像光学系を利用する場合に比べて、本開示による波長選択型結像光学系35を適用した場合、第1フォトディテクタ331により検出されるプラズマ光に対して、レーザ反射光の相対強度が僅か2.8%と非常に小さくなり、第1フォトディテクタ331により出力される信号が、概ね溶接光に含まれるプラズマ光Lpの光強度であると言える。また、第2フォトディテクタ332により出力される信号が、溶接光に含まれるレーザ反射光Lrの一部の第1反射光部分Lrt1の光強度である。これによって、プラズマ光とレーザ反射光とを、概ね独立して測定することができるため、溶接の品質評価の精度が向上することができる。
 なお、波長選択マスク34の第2の領域34a2の受光面積が小さいほど、第1フォトディテクタ331により検出されるレーザ反射光Lrの第1反射光部分Lrt1を少なくすることができる。その反面、第2フォトディテクタ332により検出されるレーザ反射光Lrの第2反射光部分Lrt2の光強度が低下する。波長選択マスク34の第2の領域34a2は、受光する溶接光の光強度、プラズマ光Lpとレーザ反射光Lrとの割合、ビームスポットのサイズ、及び光検出器の感度に応じて構成することができる。
 このように、本開示のレーザ加工装置100は、レーザ溶接時に溶接部から放出される溶接光を波長分離して、得られた異なる波長領域のプラズマ光とレーザ反射光とを同軸にそれぞれ測定して溶接品質評価することができる。
 (実施例2に係るレーザ加工装置の構成)
 本開示の実施の形態の実施例2に係るレーザ加工装置の全体構成について、図10から図11を参照しながら説明する。図10は、本開示の実施の形態の実施例2に係るレーザ加工装置100aの構成を示す概略図である。図11は、図10のレーザ加工装置100aの溶接品質評価装置40の一構成例を示すブロック図である。図10に示すレーザ加工装置100aは、溶接品質評価装置40を備えている点で図1に示すレーザ加工装置100と異なる。図10において、図1のレーザ加工装置100と同様な要素について、同じ符号を付しており、詳細な説明を省略する。
 図10に示すように、レーザ加工装置100aは、溶接装置20と、溶接光測定装置30と、溶接品質評価装置40とを備えている。溶接装置20は、ワーク16に対してレーザ光を照射してレーザ溶接を行い、レーザ溶接時にワーク16の溶接部から放出される溶接光を、溶接光測定装置30に導入して測定し、溶接光測定装置30により測定した光強度が溶接品質評価装置40に送信され、溶接品質評価装置40は、受信した光強度に基づいて、レーザ溶接の品質評価をすることができる。なお、図10の矢印Eは、溶接光測定装置30により測定した光強度のデータの伝送方向を示している。また、レーザ加工装置100aの溶接装置20と溶接光測定装置30とは、図1に示すレーザ加工装置100と同様の構成を有する。以下、溶接品質評価装置40の構成について、詳細に説明する。
 溶接品質評価装置40は、例えば、コンピュータであってもよい。このコンピュータ装置として、汎用的なコンピュータ装置を用いることができ、例えば、図11に示すように、光強度取得部41と、光強度処理部42と、記憶部43と、出力部44とを含み、溶接光測定装置30に電気的に接続されている。溶接品質評価装置40は、溶接光測定装置30からの光強度の測定データに基づいて、溶接の品質評価を行うことができる。
 具体的には、光強度取得部41は、溶接光測定装置30から、光検出器33により測定された、レーザ溶接時にワーク16の溶接部から放出されたプラズマ光Lpとレーザ反射光Lrとの光強度に比例した信号のデータを取得する。
 光強度処理部42は、例えば、中央処理演算子(CPU)、マイクロコンピュータ、又は、コンピュータで実行可能な命令を実行できる処理装置であってもよい。光強度処理部42は、光強度取得部41により取得されたプラズマ光Lpの信号のデータとレーザ反射光Lrの信号のデータ、及び、記憶部43に保存されている相関データとに基づいて、データ処理プログラムを実行することによって、溶接の品質評価を行う。
 記憶部43は、例えば、ハードディスクドライブ等の補助記憶装置であってもよく、光強度処理部42で実行されるデータ処理プログラム、及び、各種のデータ等を記憶する。記憶部43に記憶されるデータの中には、例えば、プラズマ光Lpの信号とレーザ反射光Lrの信号と、溶接の品質との相関データなどが含まれている。
 出力部44は、溶接品質評価装置40から外部にデータを出力する出力インタフェース回路であってもよい。
 また、溶接品質評価装置40は、可搬性を有する記憶媒体から、光強度処理部42で実行されるデータ処理プログラム等を取得してもよい。記憶媒体は、コンピュータその他の装置、機械等が記録されたプログラム等の情報を読み取り可能なように、当該プログラム等の情報を、電気的、磁気的、光学的、機械的又は化学的作用によって蓄積する媒体である。また、溶接品質評価装置40がネットワークに接続されている場合には、必要に応じてデータ処理プログラム等をネットワークからダウンロードしてもよい。
 以上述べたように、本開示のレーザ加工装置は、異なる感度領域を有する2つのフォトディテクタを含む光検出器を用いて、レーザ溶接時にワークから放出されるプラズマ光とレーザ反射光を含んだ溶接光を同軸に受光して測定することができる。このとき、波長選択マスクを備える波長選択型結像光学系を利用することによって、プラズマ光とレーザ反射光とを、2つのフォトディテクタに別々に結像させて互いに独立して光強度を測定し、得られた光強度に基づいて溶接の品質評価をすることができる。
 以上のように、本開示における技術の例示としての実施の形態を説明するために、添付図面及び詳細な説明を提供した。したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。したがって、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、請求項に示した範囲で種々の変更が可能である。そのような変更、及び異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本開示の技術的範囲に含まれる。
 本開示のレーザ加工装置は、レーザ溶接時に発生する異なる波長領域の光を含む溶接光を測定する装置に適用可能である。本開示は、例えば、レーザ溶接時に発生する溶接光の測定に基づく溶接の品質評価に利用可能である。
  1     レーザ発振器
  2,311     コリメートレンズ
  3     集光レンズ
  4     全反射ミラー
  5     集光レンズ
  6     光ファイバ
  10    レーザビーム
  11,12,13 溶接光
  14,15    光ビーム
  16    ワーク
  17    接合物
  18    ステージ
  20    溶接装置
  30    溶接光測定装置
  31,32 レンズ
  33    光検出器
  34,341,342    波長選択マスク
  35    波長選択型結像光学系
  40    溶接品質評価装置
  41    光強度取得部
  42    光強度処理部
  43    記憶部
  44    出力部
  100,100a レーザ加工装置
  331,332  フォトディテクタ

Claims (9)

  1.  レーザ照射光をワークに照射して溶接を行う溶接装置と、
     結像光学系と、第1フォトディテクタと、第2フォトディテクタとを含み、レーザ溶接時に前記ワークから放出される溶接光を受光して測定する溶接光測定装置と、
     を備え、
     前記溶接光は、第1波長領域の第1光と第2波長領域の第2光とを含み、
     前記結像光学系は、波長選択マスクを含み、前記波長選択マスクを透過した前記第1光の光線を前記第1フォトディテクタに結像させ、前記波長選択マスクを透過した前記第2光の光線を前記第2フォトディテクタに結像させ、
     前記波長選択マスクは、前記溶接光を受光する第1の領域と第2の領域を含み、
     前記第1の領域は、前記第2光を反射するとともに前記第1光を透過し、
     前記第2の領域は、前記第1光及び前記第2光を透過し、
     前記第2の領域は、前記第1の領域よりも小さい受光面積を有し、
     前記第1フォトディテクタと前記第2フォトディテクタとは、前記波長選択マスクに入射する前記溶接光の光軸上に配置されている、
     レーザ加工装置。
  2.  前記第1光は、レーザ溶接時に前記ワークから放出されるプラズマ光であり、
     前記第2光は、レーザ溶接時に前記ワークによる前記レーザ照射光の反射光であり、
     前記第1波長領域は、可視光域にあり、
     前記第2波長領域は、赤外光域にある、
     請求項1に記載のレーザ加工装置。
  3.  前記第1フォトディテクタは、前記第1波長領域の光及び前記第2波長領域の光に対して感度を有し、
     前記第2フォトディテクタは、前記第2波長領域の光に対して感度を有する、
     請求項1又は2に記載のレーザ加工装置。
  4.  前記波長選択マスクは、前記第1の領域に施された赤外光反射コートをさらに含み、
     前記赤外光反射コートは、前記第2波長領域の光に対し、99%以上の反射率を有し、前記第1波長領域の光に対し、95%以上の透過率を有する、
     請求項1又は2に記載のレーザ加工装置。
  5.  前記赤外光反射コートは、前記第2波長領域よりも長い波長を有する赤外光を反射し、前記第2波長領域よりも短い波長を有する光を透過する、
     請求項4に記載のレーザ加工装置。
  6.  前記赤外光反射コートは、前記第2波長領域以外の光を透過する、
     請求項4に記載のレーザ加工装置。
  7.  前記第1の領域と前記第2の領域のそれぞれは、前記波長選択マスクに入射する前記溶接光の光軸に関して回転対称である、
     請求項1又は2に記載のレーザ加工装置。
  8.  前記第1フォトディテクタと前記第2フォトディテクタとは、前記結像光学系が受光した前記溶接光の伝搬方向に沿って順に配置され、
     前記波長選択マスクを透過した前記第2光の一部は、前記第1フォトディテクタを透過して前記第2フォトディテクタで受光される、
     請求項1又は2に記載のレーザ加工装置。
  9.  前記第1フォトディテクタと前記第2フォトディテクタとのそれぞれにより検知された光強度の信号を受信し、
     前記光強度の信号に基づいて、レーザ溶接の品質を評価する溶接品質評価装置を更に備える、
     請求項1又は2に記載のレーザ加工装置。
PCT/JP2023/006335 2022-05-31 2023-02-22 レーザ加工装置 WO2023233732A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-088961 2022-05-31
JP2022088961 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023233732A1 true WO2023233732A1 (ja) 2023-12-07

Family

ID=89026025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006335 WO2023233732A1 (ja) 2022-05-31 2023-02-22 レーザ加工装置

Country Status (1)

Country Link
WO (1) WO2023233732A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225481A (ja) * 1999-02-04 2000-08-15 Sumitomo Heavy Ind Ltd レーザ溶接状態計測装置
JP2011232129A (ja) * 2010-04-27 2011-11-17 Seiko Epson Corp 光測定装置
JP2021177567A (ja) * 2012-08-09 2021-11-11 ソニーグループ株式会社 光電変換素子、撮像装置及び光センサ
JP2021190465A (ja) * 2020-05-26 2021-12-13 富士通株式会社 二波長センサ素子、赤外線検出器、及びイメージングシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225481A (ja) * 1999-02-04 2000-08-15 Sumitomo Heavy Ind Ltd レーザ溶接状態計測装置
JP2011232129A (ja) * 2010-04-27 2011-11-17 Seiko Epson Corp 光測定装置
JP2021177567A (ja) * 2012-08-09 2021-11-11 ソニーグループ株式会社 光電変換素子、撮像装置及び光センサ
JP2021190465A (ja) * 2020-05-26 2021-12-13 富士通株式会社 二波長センサ素子、赤外線検出器、及びイメージングシステム

Similar Documents

Publication Publication Date Title
US9610729B2 (en) Device and method for performing and monitoring a plastic laser transmission welding process
CA1139441A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US20220341778A1 (en) System and method for focal position control
JPH0650903A (ja) 表面粒子検出装置及び方法
JPS61247944A (ja) 反射率測定装置
WO2023233732A1 (ja) レーザ加工装置
US5343291A (en) Method and apparatus for measuring an interval between two objects
JPS59166805A (ja) 光学投影器及びその使用方法
JPH10253892A (ja) 位相干渉顕微鏡
CN115560683A (zh) 一种光声测量系统和测量膜厚的方法
JPS5979122A (ja) レ−ザパワ−測定装置
JP2022158669A (ja) レーザ加工ヘッド及びレーザ加工システム並びにレーザ加工システムの異常判定方法
JP2993479B2 (ja) レーザパワーモニタ装置
JP2003329408A (ja) レーザー測長器
JPS61112905A (ja) 光応用計測装置
JP3295993B2 (ja) 面精度測定装置
JPH0566235B2 (ja)
US20240009761A1 (en) Device and Method for Determining a Focal Point
JP2971003B2 (ja) レーザリペア装置のレンズの汚れを検出する装置
US20240102855A1 (en) Device and Method for Determining a Focal Point
JPH074909A (ja) レーザセンサ装置
JPH10148505A (ja) 光学式変位計およびこれを用いた変位測定方法
JPH07113547B2 (ja) 試料面位置測定装置
EP0332300B1 (en) Method and apparatus for measuring an interval between two objects
JP3004076B2 (ja) 試料面位置測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815496

Country of ref document: EP

Kind code of ref document: A1