WO2023232106A1 - 阵列基板及其制备方法、显示面板、显示装置 - Google Patents

阵列基板及其制备方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2023232106A1
WO2023232106A1 PCT/CN2023/097766 CN2023097766W WO2023232106A1 WO 2023232106 A1 WO2023232106 A1 WO 2023232106A1 CN 2023097766 W CN2023097766 W CN 2023097766W WO 2023232106 A1 WO2023232106 A1 WO 2023232106A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
pixel
pixel unit
area
aperture ratio
Prior art date
Application number
PCT/CN2023/097766
Other languages
English (en)
French (fr)
Inventor
于池
黄耀
杜丽丽
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023232106A1 publication Critical patent/WO2023232106A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to an array substrate and a preparation method thereof, a display panel, and a display device.
  • under-screen camera technology Fel Display with Camera, FDC
  • FDC Full Display with Camera
  • the camera is embedded in the display area of the display device.
  • the metal area of the display area is usually reduced as much as possible.
  • Embodiments of the present application provide an array substrate, a preparation method thereof, a display panel, and a display device, which can solve the problems existing in related technologies.
  • the technical solutions are as follows:
  • this application provides an array substrate, including:
  • a base substrate including a first display area, a second display area, and a transition area between the first display area and the second display area;
  • the first pixel unit is located in the first display area, and the first pixel unit has a first aperture ratio
  • the second pixel unit is located in the second display area, and the second pixel unit has a second aperture ratio
  • the third pixel unit is located in the transition area, and the third pixel unit has a third aperture ratio
  • the first aperture ratio, the third aperture ratio and the second aperture ratio gradually decrease in a direction from the first display area to the second display area.
  • the present application provides a display panel, including: a cover plate, and any array substrate provided by the present application, the portion of the array substrate except the base substrate is located between the cover plate and the between substrates.
  • the present application provides a display device, including: a power supply component, and any display panel provided by the present application, where the power supply component is used to supply power to the display panel.
  • embodiments of the present application provide a method for preparing a display panel, which is used to prepare any array substrate provided by the present application.
  • the method includes:
  • the base substrate includes a first display area, a second display area, and a transition area between the first display area and the second display area;
  • the first pixel unit is located in the first display area, and the first pixel unit has a first aperture ratio
  • the second pixel unit is located in the second display area, and the second pixel unit has a second aperture ratio
  • the third pixel unit is located in the transition area, and the third pixel unit has a third aperture ratio
  • the first aperture ratio, the third aperture ratio and the second aperture ratio gradually decrease in a direction from the first display area to the second display area.
  • Figure 1 is a schematic diagram of a pixel arrangement scheme in the related art
  • Figure 2 is a schematic diagram of another pixel arrangement scheme in the related art
  • Figure 3 is a schematic diagram of the relative positional relationship of each display area in the display panel and the opening of the pixel definition layer according to the embodiment of the present application;
  • Figure 4 is a schematic diagram of another relative positional relationship of each display area in the display panel provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a light-emitting device and a pixel defining layer in an embodiment of the present application
  • Figure 6 is a schematic diagram of the openings of the pixel definition layer in each display area of the display panel provided by the embodiment of the present application;
  • Figure 7 is a schematic distribution diagram of each display area in the embodiment of the present application.
  • Figure 8 is another schematic diagram of the distribution of each display area in the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a third pixel unit in an embodiment of the present application.
  • Figure 10 is another structural schematic diagram of the third pixel unit in the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for manufacturing a display panel according to an embodiment of the present application.
  • Full Display with Camera refers to a technical solution that eliminates the camera hole for the front camera on the original screen and builds the front camera under the display screen.
  • FDC can increase the screen-to-body ratio of the display device and achieve a true full screen without holes compared to notch screens, water drop screens, etc. currently on the market.
  • Real RGB The traditional sub-pixel arrangement divides the square pixels into three sub-pixels.
  • SPR Sub-pixel Rendering, sub-pixel rendering technology
  • the light-emitting area of the display area is usually determined by the area of the opening of the pixel defining layer corresponding to each sub-pixel in the display area.
  • Figure 1 shows a schematic diagram of each opening of the pixel definition layer in the normal display area and the under-screen imaging area in a traditional pixel arrangement scheme (Real RGB).
  • Figure 2 shows a schematic diagram of each opening of the pixel definition layer in the normal display area and the under-screen imaging area in another magic pixel arrangement scheme (Magic pixel).
  • Magic pixel is an SPR (Sub-pixel Rendering, sub-pixel rendering technology) algorithm pixel.
  • the array substrate includes: a base substrate, a first pixel unit P1, a second pixel unit P2, and a third pixel unit P3.
  • the base substrate includes a first display area, a second display area, and a transition area between the first display area and the second display area.
  • the first pixel unit P1 is located in the first display area and has a first aperture ratio;
  • the second pixel unit P2 is located in the second display area and has a second aperture ratio;
  • the third pixel unit P3 is located in In the transition area, the third pixel unit P3 has a third aperture ratio.
  • the first aperture ratio, the third aperture ratio and the second aperture ratio gradually decrease.
  • the array substrate includes: a base substrate, a plurality of first pixel units P1 , a plurality of second pixel units P2 and a plurality of third pixel units P3 .
  • a plurality of first pixel units P1 are located in the first display area, and the aperture ratios of the plurality of first pixel units P1 can be the same and all are the first aperture ratio;
  • a plurality of second pixel units P2 are located in the second display area, and the aperture ratios of the plurality of first pixel units P1 can be the same.
  • the aperture ratios of the two pixel units P2 may be the same, and both are the second aperture ratio;
  • a plurality of third pixel units P3 are located in the transition region. In the direction from the first display area to the second display area, the third aperture ratio of the plurality of third pixel units P3 gradually decreases.
  • the third aperture ratio of the plurality of third pixel units P3 may not gradually decrease.
  • the third aperture ratios of the plurality of third pixel units P3 may also remain unchanged or gradually increase.
  • the third aperture ratios of the plurality of third pixel units P3 are all smaller than the first aperture ratio and larger than the second aperture ratio.
  • the first display area is provided with a plurality of first pixel units P1
  • the second display area is provided with a plurality of second pixel units P2
  • the transition area is provided with a plurality of third pixel units P3.
  • the number of the first pixel units P1 in the first display area may also be 1
  • the number of the second pixel units P2 in the second display area may also be 1
  • the number of the third pixel units P2 in the third display area may also be 1.
  • the number of P3 can also be 1.
  • the array substrate provided by the embodiment of the present application has a transition area between the first display area and the second display area, the first pixel unit of the first display area, the third pixel unit in the transition area and the third pixel unit of the second display area.
  • the aperture ratio of the two-pixel unit can be gradually reduced to realize the first display area to
  • the transition of the aperture ratio of the second display area can cause the luminous brightness of the entire display area to change evenly, thereby weakening the boundary effect at the junction of different display areas.
  • the second display area in the embodiment of the present application may be located on one side of the base substrate, and the transition area and the first display area are sequentially located on the other side.
  • the second display area may be located in a middle area of the base substrate, the transition area surrounds the second display area, and the first display area surrounds the transition area.
  • the shapes of the first display area, the transition area and the second display area can be set according to actual needs.
  • the shapes of the first display area, the transition area and the second display area can all be rectangular as shown in Figure 3 ;
  • the shape of the second display area may be a circle as shown in FIG. 4
  • the shape of the transition area may be a ring shape as shown in FIG. 4 .
  • the pixel density of the first display area may be greater than the pixel density of the second display area, or may be equal to the pixel density of the second display area; in the case where the pixel density of the first display area is greater than the pixel density of the second display area,
  • the pixel density of the transition region may be equal to the pixel density of the first display region or the pixel density of the second display region, or may be smaller than the pixel density of the first display region and greater than the pixel density of the second display region.
  • the array substrate provided by the embodiment of the present application further includes: a pixel defining layer located in the first display area, the second display area and the transition area.
  • the pixel defining layer of the first display area has openings corresponding to the plurality of first pixel units P1
  • the pixel defining layer of the second display area has openings corresponding to the plurality of second pixel units P2
  • the pixel defining layer of the transition area has openings corresponding to the plurality of first pixel units P1.
  • the orthographic projection of the opening corresponding to any pixel unit in the pixel definition layer on the base substrate is located within the orthographic projection of the any pixel unit on the base substrate. This any pixel unit emits light in the area where the corresponding opening is located.
  • the area of the opening corresponding to the first pixel unit P1 , the area of the opening corresponding to the third pixel unit P3 , the area of the opening corresponding to the second pixel unit P2 The area is gradually reduced, so that the first opening ratio, the third opening ratio and the second opening ratio are gradually reduced.
  • the area of the opening corresponding to the plurality of third pixel units P3 gradually decreases, so as to cause the third aperture ratio of the plurality of third pixel units to gradually decrease.
  • each of the first pixel unit P1 , the second pixel unit P2 and the third pixel unit P3 in the embodiment of the present application may include at least one sub-pixel.
  • the corresponding first pixel in the pixel definition layer The opening of each sub-pixel in element P1 is the opening in the pixel definition layer corresponding to the first pixel unit P1, and the ratio of the area of the opening to the area of the first pixel unit P1 is the first aperture ratio.
  • the opening in the pixel definition layer corresponding to each sub-pixel in the second pixel unit P2 is the opening in the pixel definition layer corresponding to the second pixel unit P2.
  • the ratio of the area of the opening to the area of the second pixel unit P2 is the second opening. Rate.
  • the opening in the pixel definition layer corresponding to each sub-pixel in the third pixel unit P3 is the opening in the pixel definition layer corresponding to the third pixel unit P3.
  • the ratio of the area of the opening to the area of the third pixel unit P3 is the third opening. Rate.
  • the sub-pixel may include a light-emitting device, and the light-emitting device may include an anode, a light-emitting layer, and a cathode.
  • the relationship between the light-emitting device, the pixel defining layer, and the opening is as shown in Figure 5.
  • the anode 602 is located on the base substrate 601.
  • the pixel defining layer 603 is located on a side of the anode 602 away from the base substrate 601
  • the luminescent layer 604 is located on a side of the pixel defining layer 603 away from the base substrate 601
  • the cathode 605 is located on a side of the luminescent layer 604 far away from the base substrate 601. side.
  • the anode 602, the light-emitting layer 604 and the cathode 605 are sequentially arranged in a direction away from the base substrate 601.
  • the pixel defining layer 603 has openings corresponding to the sub-pixels. Each opening exposes a part of the anode in a sub-pixel. A part of the light-emitting layer 604 is filled in the opening and contacts the exposed anode part. Pixel defining layer 603 is located between anode 602 and light emitting layer 604.
  • the area of the opening in the embodiment of the present application can be represented by the orthogonal projected area of the opening on the substrate.
  • the above-mentioned light-emitting layer can be an organic light-emitting layer.
  • the anode, organic light-emitting layer and cathode can form an OLED (Organic Light-Emitting Diode, organic light-emitting semiconductor) light-emitting device or a light-emitting semiconductor (Light-Emitting Diode, LED) light-emitting device, as a sub-pixel.
  • Light emitting device can be an organic light-emitting layer.
  • the anode, organic light-emitting layer and cathode can form an OLED (Organic Light-Emitting Diode, organic light-emitting semiconductor) light-emitting device or a light-emitting semiconductor (Light-Emitting Diode, LED) light-emitting device, as a sub-pixel.
  • Light emitting device Light emitting device.
  • the above-mentioned light-emitting layer may also be an inorganic light-emitting layer
  • the first aperture ratio can be made larger than the second aperture ratio.
  • the third aperture ratios of the plurality of third pixel units P3 can be gradually reduced.
  • FIG. 3 shows a schematic diagram of each opening of the pixel definition layer in the first display area, transition area, and second display area in the Real RGB scheme in the embodiment of the present application.
  • Figure 6 shows the first display area in the Magic pixel arrangement scheme. Schematic diagram of each opening of the pixel defining layer in the display area, transition area, and second display area.
  • the pixel defining layer in the first display area corresponds to the opening of each sub-pixel.
  • the area is larger than the area of the opening corresponding to the same type of sub-pixels in the pixel defining layer in the second display area, where the same type of sub-pixels refer to sub-pixels of the same color.
  • the area of the opening of the pixel defining layer corresponding to the sub-pixel R (the sub-pixel that emits red light) in the first display area is larger than the area of the opening of the pixel defining layer corresponding to the sub-pixel R at the corresponding position in the second display area.
  • the area of the opening of the pixel defining layer corresponding to the sub-pixel R in the transition region gradually decreases.
  • the size relationship of the opening areas corresponding to other sub-pixels (such as sub-pixel G and sub-pixel B) except sub-pixel R is the same.
  • a certain spacing needs to be maintained between the corresponding openings of two adjacent sub-pixels to reduce the risk of color mixing between different sub-pixels.
  • the value of the spacing can be set according to actual needs.
  • the first display area and transition area belong to the normal display area, and the second display area belongs to the under-screen imaging area.
  • the transition area can be set in the normal display area, so that the third aperture ratio of the transition area gradually approaches the second aperture ratio from a value close to the first aperture ratio. For example, if the first opening ratio is 1 and the second opening ratio is 0.5, in the X direction in FIGS. 3 and 6 , the third opening ratio can gradually decrease from a value close to 1 to a value close to 0.5.
  • the first display area is a normal display area
  • the second display area and transition area are under-screen imaging areas.
  • the transition area can be disposed in the under-screen imaging area so that the third aperture ratio of the transition area gradually approaches the first aperture ratio from a value close to the second aperture ratio. For example, if the first opening ratio is 1 and the second opening ratio is 0.5, in the X direction in FIG. 7 , the third opening ratio can gradually increase from 0.5 to a value close to 1.
  • the transition area includes a first transition area and a second transition area; the first display area and the first transition area belong to the normal display area, and the second display area and the second transition area belong to the under-screen camera area.
  • the transition area can be set across areas, that is, one part is set in the normal display area, and the other part is set in the under-screen imaging area.
  • the third aperture ratio of the part of the third pixel units P3 gradually approaches the second aperture ratio from a value close to the first aperture ratio, and the aperture ratio of the other part of the third pixel unit P3 gradually approaches the second aperture ratio from a value close to the second aperture ratio. An opening rate is approaching.
  • the value of the third opening ratio in the first transition region can gradually decrease from a value close to 1.
  • the value of the third aperture ratio of the second transition region may gradually increase from a value close to 0.5. In this way, the aperture ratio on both sides of the junction between the normal display area and the under-screen camera area is a value between 0.5 and 1.
  • the under-screen camera area is a display area used in conjunction with the under-screen camera device.
  • the under-screen camera area will be set at the corresponding position of the under-screen camera area. device.
  • the normal display area is the display area other than the under-screen imaging area.
  • no under-screen imaging device is provided at the position corresponding to the normal display area.
  • a pixel defining layer having an opening is provided in the normal display area, and the shape of the opening of the pixel defining layer is a polygon.
  • the shape of the opening in the embodiment of the present application may be the shape of the orthographic projection of the opening on the substrate.
  • the shape of the opening of the pixel defining layer in the normal display area is a quadrilateral.
  • the shape of the opening of the pixel defining layer in the normal display area may be a pentagon, a hexagon, or a trapezoid. , rhombus, approximate rectangle (such as a rounded rectangle, but not limited to this) and other shapes, which are beneficial to increasing the opening ratio.
  • the shape of the opening of the pixel defining layer in the normal display area may be a rectangle with chamfers, and the chamfers of different sub-pixels may be arranged in different directions.
  • a pixel defining layer having an opening is provided in the under-screen imaging area, and the shape of the opening of the pixel defining layer is circular or elliptical.
  • the shape of the opening of the pixel definition layer in the under-screen imaging area is circular or elliptical, in which the shape of the opening corresponding to sub-pixels R and G is circular, and the shape of the opening of sub-pixel B is circular.
  • the shape of the corresponding opening is elliptical. This type of shape has fewer edges and corners, which can reduce diffraction and reduce the impact on the camera function of the under-screen camera device.
  • a pixel defining layer having openings is provided in the under-screen imaging area, and at least part of the openings in the pixel defining layer are shaped like water droplets.
  • the shape of the opening of the pixel definition layer corresponding to the sub-pixel R in the under-screen imaging area is a water drop shape. While keeping the aperture ratio unchanged, the water drop shape opening is conducive to reducing the proportion of metal and improving the The transmittance can enhance the transmission effect required for the camera function while ensuring the luminous effect.
  • the third pixel unit P3 includes at least one sub-pixel; the array substrate includes a plurality of third pixel units P3 distributed in an array on the transition area.
  • the third pixel unit P3 may include three sub-pixels. Referring to FIG. 3, FIG. 7 and FIG. 8, the three sub-pixels are R, G and B respectively.
  • the third pixel unit P3 composed of the three sub-pixels may be As a basic unit, the opening ratio change rules between each basic unit are designed. Each sub-unit inside the basic unit The aperture ratios of the pixels can be the same.
  • the aperture ratio of a sub-pixel is the ratio of the area of the opening of the pixel defining layer corresponding to the sub-pixel and the area of the sub-pixel.
  • the third pixel unit P3 may include eight sub-pixels.
  • the eight sub-pixels specifically include two sub-pixels R, two sub-pixels B and four sub-pixels G.
  • the eight sub-pixels may be composed of a third
  • the three-pixel unit P3 serves as a basic unit, and the aperture ratio variation rules between each basic unit are designed.
  • the aperture ratios of each sub-pixel within the basic unit can be the same.
  • the third pixel unit P3 may include two sub-pixels, and the types of sub-pixels included in two adjacent third pixel units P3 may be different.
  • the first third pixel unit P3 may It includes one sub-pixel B and one sub-pixel G.
  • the third pixel unit P3 adjacent to the right side can include one sub-pixel R and one sub-pixel G.
  • the third pixel unit P3 composed of two sub-pixels can be used as a basic unit. Design
  • the aperture ratio changes between each basic unit, and the aperture ratio of each sub-pixel inside the basic unit can be the same.
  • the first pixel unit P1 and the second pixel unit P2 can also be divided in the same manner.
  • the third pixel unit P3 may include one sub-pixel, and the types of sub-pixels included in two adjacent third pixel units P3 may be different.
  • the first four from left to right One of the sub-pixels in the three-pixel unit P3 is sub-pixel B, sub-pixel G, sub-pixel R, and sub-pixel G. That is, each sub-pixel can be used as a basic unit to design the changing rules of the aperture ratio between each sub-pixel.
  • the first pixel unit P1 and the second pixel unit P2 can also be divided in the same manner.
  • the array substrate provided by the embodiment of the present application can design different third pixel units P3 as the basic unit for aperture ratio changes according to actual needs to meet the needs of different aperture ratio changes.
  • the third pixel unit P3 includes a plurality of sub-pixels; in the direction from the first display area to the second display area, the aperture ratio of the sub-pixels in the third pixel unit P3 gradually decreases. .
  • Figures 3, 6, 7, 8, 9 to 10 all show the situation where the third pixel unit P3 includes multiple sub-pixels.
  • the third pixel unit P3 is used as a basic unit for opening.
  • the aperture ratio of each sub-pixel inside the third pixel unit can also be gradually reduced along the X direction, so that the outside and inside of the basic unit can be reduced simultaneously, and a finer aperture ratio can be achieved inside. Variety.
  • a plurality of third pixel units are distributed in an array in the transition area. It can be understood that the plurality of third pixel units may not be distributed in an array, which is not limited in this application.
  • the row direction of the plurality of third pixel units is parallel to the direction of the first display area and points toward the second display area
  • the column direction of the plurality of third pixel units is A direction perpendicular to the first display area and pointing to the second display area.
  • the change rate corresponding to the third pixel unit in any column is less than or equal to 0.2
  • the change rate corresponding to the third pixel unit in any column is: the aperture ratio of the pixel unit in the adjacent column and the aperture ratio of the third pixel unit in any column.
  • the difference in ratio; the pixel units in adjacent columns are adjacent to the third pixel units in any column, and the pixel units in adjacent columns and the third pixel units in any column point to the first display area They are arranged sequentially in the direction of the second display area.
  • the third aperture ratio of the third pixel unit in each column can change according to any of the following rules:
  • the change rate corresponding to the third pixel unit in any column is 0.2;
  • the change rate corresponding to the third pixel unit in any column is 0.1;
  • the corresponding change rate of the third pixel unit in any column is 0.05.
  • the size of the transition area matches the preset change range and change step of the third aperture ratio.
  • the size of the transition region is 5 The size of the third pixel unit P3; if the change (decrease) range of the second aperture ratio and the plurality of third aperture ratios is 1 to 0.5, and the corresponding change rate of the third pixel unit in any column is 0.05, then the size of the transition region is the size of 10 third pixel units P3.
  • the change rates corresponding to the third pixel units in different columns are the same as an example. It can be understood that the change rates corresponding to the third pixel units in at least two columns of the plurality of third pixel units may also be different.
  • the change rates corresponding to the third pixel units in the multiple columns may be the same.
  • the change rates corresponding to the third pixel units in the multiple columns are all 0.2.
  • the third opening ratio of the unit can be: 0.8, 0.6....
  • the change rates corresponding to the third pixel units in the multiple columns may be different.
  • the third pixel units in the multiple columns may have different change rates.
  • the third aperture ratio of the element may be: 0.9, 0.7..., that is, the change rate corresponding to the third pixel unit in the first column is 0.1, and the change rate corresponding to the third pixel unit in the second column is 0.2.
  • this application provides a method for preparing an array substrate, as shown in Figure 11.
  • the preparation method includes:
  • S1402 Form a pixel defining material layer on the side of the anode away from the base substrate.
  • S1404 Form the light-emitting layer and the cathode of the pixel unit in sequence on the side of the pixel defining layer away from the base substrate.
  • the material of the pixel defining material layer may be any one or more of the following: polyimide, silicon oxide, silicon nitride, and photoresist materials.
  • the patterning process of the pixel-defining material layer can be implemented by electron beam exposure, evaporation, or other methods.
  • photoresist When patterning by electron beam exposure, photoresist can be coated on the pixel-defining material layer, and then exposed and developed based on a pre-designed pattern.
  • the exposed area corresponds to the location of the opening to be formed, so that the pixel can be obtained Defining layer.
  • a mask When performing patterning processing by evaporation, a mask can be prepared in advance, and then evaporation is performed based on the mask to obtain a pixel defining layer.
  • the array substrate prepared by this preparation method can refer to the array substrate in the previous embodiment, and will not be described in detail here.
  • the above-mentioned first pixel unit, second pixel unit and third pixel unit need to be prepared on the base substrate.
  • a pixel defining material layer can also be formed on the base substrate, and the pixel defining material layer can be patterned to obtain a pixel defining layer.
  • the pixel defining layer is prepared after forming the anode and before forming the light-emitting layer.
  • embodiments of the present application also provide a display panel and a display device.
  • the display panel includes a cover plate and any array substrate provided by the present application.
  • the structure of the array substrate except the base substrate is located on between the cover plate and the base substrate.
  • the display device includes a power supply component and the display panel provided in any embodiment of the present application.
  • the power supply component is used to supply power to the display panel.
  • the display device provided in the embodiment of the present application may be a liquid crystal display device or an organic light-emitting diode display.
  • the display device can be any product or component with a display function such as an LCD monitor, an LCD TV, a digital photo frame, a mobile phone or a tablet computer.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example.
  • structures, materials or features are included in at least one embodiment or example of the present application.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • steps, measures, and solutions in the various operations, methods, and processes that have been discussed in this application can be alternated, changed, combined, or deleted.
  • steps, measures, and solutions in the various operations, methods, and processes that have been discussed in this application can also be alternated, changed, rearranged, decomposed, combined, or deleted.
  • steps, measures, and solutions in the prior art with various operations, methods, and processes disclosed in this application can also be replaced, changed, rearranged, decomposed, combined, or deleted.
  • the term “above” or “below” a second feature for a first feature may include the first and second features being in direct contact, or may include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “below” and “beneath” the first feature of the second feature includes the first feature being directly above and diagonally above the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其制备方法、显示装置,显示面板包括:衬底基板(601),包括第一显示区域、第二显示区域、以及位于第一显示区域和第二显示区域之间的过渡区域;多个第一像素单元,位于第一显示区域,第一像素单元具有第一开口率;多个第二像素单元,位于第二显示区域,第二像素单元具有第二开口率;多个第三像素单元,位于过渡区域,第三像素单元具有第三开口率;第一开口率大于第二开口率;在第一显示区域指向第二显示区域的方向上,多个第三像素单元的第三开口率逐渐减小。使得整个显示区域的发光亮度均匀的变化,减弱不同显示区域交界处的边界效应。

Description

阵列基板及其制备方法、显示面板、显示装置
本申请要求于2022年06月02日提交的申请号为202210624733.7、发明名称为“显示面板及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种阵列基板及其制备方法、显示面板、显示装置。
背景技术
在相关技术中,为了提高显示装置的屏占比,在显示装置中采用了屏下摄像技术(Full Display with Camera,FDC)。在屏下摄像技术中,会将摄像头嵌入显示装置的显示区域。并且,为了实现屏下摄像区域的高透过率,进而实现摄像功能,通常将显示区域的金属的面积尽可能的减少。
发明内容
本申请实施例提供一种阵列基板及其制备方法、显示面板、显示装置,可以解决相关技术存在的问题,技术方案如下:
第一方面,本申请提供了一种阵列基板,包括:
衬底基板,包括第一显示区域、第二显示区域、以及位于第一显示区域和第二显示区域之间的过渡区域;
第一像素单元,位于第一显示区域,第一像素单元具有第一开口率;
第二像素单元,位于第二显示区域,第二像素单元具有第二开口率;
第三像素单元,位于过渡区域,第三像素单元具有第三开口率;
在所述第一显示区域指向所述第二显示区域的方向上,所述第一开口率、所述第三开口率和所述第二开口率逐渐减小。
第二方面,本申请提供了一种显示面板,包括:盖板,以及本申请提供的任一种阵列基板,所述阵列基板中除衬底基板之外的部分位于所述盖板和所述衬底基板之间。
第三方面,本申请提供了一种显示装置,包括:供电组件,以及本申请提供的任一种显示面板,所述供电组件用于向所述显示面板供电。
第四方面,本申请实施例提供了一种显示面板的制备方法,用于制备本申请提供的任一种阵列基板,所述方法包括:
在衬底基板上制备第一像素单元、第二像素单元和第三像素单元;
其中,所述衬底基板包括第一显示区域、第二显示区域、以及位于所述第一显示区域和所述第二显示区域之间的过渡区域;
所述第一像素单元位于所述第一显示区域,所述第一像素单元具有第一开口率;
所述第二像素单元位于所述第二显示区域,所述第二像素单元具有第二开口率;
所述第三像素单元位于所述过渡区域,所述第三像素单元具有第三开口率;
在所述第一显示区域指向所述第二显示区域的方向上,所述第一开口率、所述第三开口率和所述第二开口率逐渐减小。
附图说明
图1为相关技术中的一种像素排列方案的示意图;
图2为相关技术中的另一种像素排列方案的示意图;
图3为本申请实施例提供的显示面板中各显示区域的一种相对位置关系以及像素界定层的开口示意图;
图4为本申请实施例提供的显示面板中各显示区域的另一种相对位置关系的示意图;
图5为本申请实施例中发光器件和像素界定层的结构示意图;
图6为本申请实施例提供的显示面板中各显示区域中像素界定层的开口的示意图;
图7为本申请实施例中各显示区域的一种分布示意图;
图8为本申请实施例中各显示区域的另一种分布示意图;
图9为本申请实施例中第三像素单元的一种结构示意图;
图10为本申请实施例中第三像素单元的另一种结构示意图;
图11为本申请实施例提供的一种显示面板的制备方法的流程示意图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本申请的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
首先对本申请实施例涉及的几个术语进行介绍:
屏下摄像技术(Full Display with Camera,FDC):指取消原屏幕上前置摄像头的摄像孔,将前置摄像头内置在显示屏幕下方的技术方案。FDC可以提高显示装置的屏占比,与现在市面上的刘海屏、水滴屏等相比,实现了无孔的真全面屏。
Real RGB:传统子像素的排列方式,将方形的像素平均分成三个子像素。
SPR(Sub-pixel Rendering,子像素渲染技术):一种新的子像素排列方式,相对于Real RGB而言。
本申请的发明人在研究中发现,在相关技术中,显示区域的发光面积通常由显示区域中像素界定层对应各子像素的开口的面积决定,像素界定层的开口的面积越大,显示区域的发光面积越大。
图1示出了一种传统像素排布方案(Real RGB)中正常显示区域和屏下摄像区域中像素界定层的各开口的示意图。图2示出了另一种魔术像素排布方案(Magic像素)中正常显示区域和屏下摄像区域中像素界定层的各开口的示意图。其中,Magic像素是一种SPR(Sub-pixel Rendering,子像素渲染技术)算法像素。
由图1和图2可以看出,正常显示区域中像素界定层的各开口的面积大于屏下摄像区域中对应的各开口的面积,进而正常显示区域的发光面积大于屏下摄像区域的发光面积,在正常显示区域和屏下摄像区域的交界处发光面积有明显差异。
下面以具体实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
本申请实施例提供了一种阵列基板,如图3所示,该阵列基板包括:衬底基板、第一像素单元P1、第二像素单元P2和第三像素单元P3。其中,衬底基板上包括第一显示区域、第二显示区域、以及位于第一显示区域和第二显示区域之间的过渡区域。第一像素单元P1位于第一显示区域,第一像素单元P1具有第一开口率;第二像素单元P2位于第二显示区域,第二像素单元P2具有第二开口率;第三像素单元P3位于过渡区域,第三像素单元P3具有第三开口率。
在第一显示区域指向第二显示区域的方向上,第一开口率、第三开口率和第二开口率逐渐减小。
示例地,如图3所示,该阵列基板包括:衬底基板、多个第一像素单元P1、多个第二像素单元P2和多个第三像素单元P3。多个第一像素单元P1位于第一显示区域,多个第一像素单元P1的开口率可以相同,且均为第一开口率;多个第二像素单元P2位于第二显示区域,多个第二像素单元P2的开口率可以相同,且均为第二开口率;多个第三像素单元P3位于过渡区域。在第一显示区域指向第二显示区域的方向上,多个第三像素单元P3的第三开口率逐渐减小。
可以理解的是,在第一显示区域指向第二显示区域的方向上,多个第三像素单元P3的第三开口率也可以不是逐渐减小,比如,在第一显示区域指向第二显示区域的方向上,多个第三像素单元P3的第三开口率也可以保持不变,或者逐渐增大。但需要注意的是,多个第三像素单元P3的第三开口率均小于第一开口率,且大于第二开口率。
图3中以第一显示区域设置有多个第一像素单元P1,第二显示区域设置有多个第二像素单元P2,以及过渡区域设置有多个第三像素单元P3为例。可以理解的是,第一显示区域的第一像素单元P1的个数也可以是1,第二显示区域的第二像素单元P2的个数也可以是1,第三显示区域的第三像素单元P3的个数也可以是1。
本申请实施例提供的阵列基板,在第一显示区域和第二显示区域中间设置了过渡区域,第一显示区域的第一像素单元、过渡区域中的第三像素单元以及第二显示区域的第二像素单元的开口率可以逐渐减小,可实现第一显示区域至 第二显示区域的开口率的过渡,进而可使整个显示区域的发光亮度趋于均匀的变化,减弱不同显示区域交界处的边界效应。
在一个示例中,如图3所示,本申请实施例中的第二显示区域可以位于衬底基板的一侧,过渡区域、第一显示区域依次设置另一侧。在另一个示例中,如图4所示,第二显示区域可以位于衬底基板的中间区域,过渡区域包围第二显示区域,第一显示区域包围过渡区域。
本申请实施例中第一显示区域、过渡区域和第二显示区域的形状可以根据实际需求设置,例如第一显示区域、过渡区域和第二显示区域的形状均可以是如图3所示的矩形;也可以是第二显示区域的形状为如图4所示的圆形,且过渡区域的形状为如图4所示的环形。
第一显示区域的像素密度,可以大于第二显示区域的像素密度,也可以和第二显示区域的像素密度相等;在第一显示区域的像素密度大于第二显示区域的像素密度的情况下,过渡区域的像素密度,可以和第一显示区域的像素密度相等,也可以和第二显示区域的像素密度相等,也可以小于第一显示区域的像素密度,大于第二显示区域的像素密度。
在一种可选的实施方式中,本申请实施例提供的阵列基板还包括:像素界定层,其位于所述第一显示区域、所述第二显示区域和过渡区域。
第一显示区域的像素界定层具有与多个第一像素单元P1对应的开口,第二显示区域的像素界定层具有与多个第二像素单元P2对应的开口,过渡区域的像素界定层具有与所述多个第三像素单元P3对应的开口。其中,像素界定层中对应任一像素单元的开口在衬底基板上的正投影位于该任一像素单元在衬底基板上的正投影内。该任一像素单元在对应的开口所在区域内发光。
参照图3的示例,在第一显示区域指向第二显示区域的方向上,第一像素单元P1对应的开口的面积、第三像素单元P3对应的开口的面积、第二像素单元P2的开口的面积逐渐减小,以促使第一开口率、第三开口率和第二开口率逐渐减小。比如,在第一显示区域指向所述第二显示区域的方向上,多个第三像素单元P3对应的开口的面积逐渐减小,以促使多个第三像素单元的第三开口率逐渐减小。
参照图3的示例,本申请实施例中的第一像素单元P1、第二像素单元P2和第三像素单元P3均可以包括至少一个子像素。像素界定层中对应第一像素单 元P1中各子像素的开口即为像素界定层中对应第一像素单元P1的开口,该开口的面积和第一像素单元P1的面积的比值即为第一开口率。像素界定层中对应第二像素单元P2中各子像素的开口即为像素界定层中对应第二像素单元P2的开口,该开口的面积和第二像素单元P2的面积的比值即为第二开口率。像素界定层中对应第三像素单元P3中各子像素的开口即为像素界定层中对应第三像素单元P3的开口,该开口的面积和第三像素单元P3的面积的比值即为第三开口率。
本申请实施例中,子像素可以包括发光器件,发光器件可以包括阳极、发光层和阴极,发光器件、像素界定层和开口之间的关系如图5所示,阳极602位于衬底基板601上,像素界定层603位于阳极602的远离衬底基板601的一侧,发光层604位于像素界定层603的远离衬底基板601的一侧,阴极605位于发光层604的远离衬底基板601的一侧。阳极602、发光层604和阴极605沿远离衬底基板601的方向依次排布。像素界定层603具有与子像素对应的开口,每个开口暴露一个子像素中阳极的一部分,发光层604的一部分填充于该开口中,与暴露的阳极部分接触。像素界定层603位于阳极602和发光层604之间。
本申请实施例中的开口的面积可由开口在衬底基板上的正投影面积来表示。
上述发光层可以是有机发光层,阳极、有机发光层和阴极可以形成OLED(Organic Light-Emitting Diode,有机发光半导体)发光器件或者发光半导体(Light-Emitting Diode,LED)发光器件,作为子像素的发光器件。上述发光层也可以是无机发光层。本申请对此不作限定。
在各像素单元的面积固定的情况下,通过使第一像素单元P1对应的开口的面积大于所述第二像素单元P2的开口的面积,即可使第一开口率大于第二开口率,通过使多个第三像素单元P3对应的开口的面积逐渐减小,即可使多个第三像素单元P3的第三开口率逐渐减小。
本申请实施例的方案可适用于多种像素排布方案,例如Real RGB和Magic像素方案。图3示出了本申请实施例中Real RGB方案中第一显示区域、过渡区域、第二显示区域中的像素界定层的各开口的示意图,图6示出了Magic像素排布方案中第一显示区域、过渡区域、第二显示区域中的像素界定层的各开口的示意图。
由图3和图6可以看出,第一显示区域中像素界定层对应各子像素的开口 的面积大于第二显示区域中像素界定层同类子像素对应的开口的面积,其中,同类子像素是指同一种颜色的子像素。例如,第一显示区域中像素界定层对应子像素R(发出红光的子像素)的开口的面积大于第二显示区域中对应位置上像素界定层对应子像素R的开口的面积。在图6中的水平方向上,过渡区域中像素界定层对应子像素R的开口的面积逐渐减小。除子像素R之外的其它子像素(如子像素G、子像素B)对应的开口的面积的大小关系同理。
本申请实施例,相邻两个子像素对应的开口之间需要保持一定的间距,以降低不同子像素之间混色的风险,间距的数值可根据实际需求设置。
在一种可选的实施方式中,如图3和图6所示,第一显示区域和过渡区域属于正常显示区域,第二显示区域属于屏下摄像区域。基于该种实施方式,过渡区域可以设置在正常显示区域,使过渡区域的第三开口率由接近第一开口率的数值逐渐向第二开口率逼近。例如若第一开口率为1,第二开口率为0.5,在图3和图6中的X方向上,第三开口率可由接近1的数值逐渐减小至接近0.5的数值。
在另一种可选的实施方式中,如图7所示,第一显示区域为正常显示区域,第二显示区域和过渡区域为屏下摄像区域。基于该种实施方式,过渡区域可以设置在屏下摄像区域,使过渡区域的第三开口率由接近第二开口率的数值逐渐向第一开口率逼近。例如若第一开口率为1,第二开口率为0.5,在图7中的X方向上,第三开口率可由0.5逐渐增大至接近1的一个数值。
在又一种可选的实施方式中,如图8所示,过渡区域包括第一过渡区域和第二过渡区域;第一显示区域和所述第一过渡区域属于正常显示区域,第二显示区域和第二过渡区域属于屏下摄像区域。基于该种实施方式,过渡区域可以跨区域设置,即一部分设置在正常显示区域,另一部分设置在屏下摄像区域。该一部分第三像素单元P3的第三开口率由接近第一开口率的数值逐渐向第二开口率逼近,该另一部分第三像素单元P3的开口率由接近第二开口率的数值逐渐向第一开口率逼近。例如若第一开口率为1,第二开口率为0.5,在图8中的X方向上,第一过渡区域的第三开口率的数值可由接近1的数值逐渐减小,在图8中的X方向的反方向上,第二过渡区域的第三开口率的数值可由接近0.5的数值逐渐增大。这样一来,正常显示区域和屏下摄像区域的交界处两侧的开口率均为0.5至1中间的一个数值。
本申请实施例中,屏下摄像区域中为与屏下摄像装置配合使用的显示区域,在将阵列基板应用于手机、手表等电子设备中时,屏下摄像区域对应的位置会设置屏下摄像装置。正常显示区域为所述屏下摄像区域以外的显示区域,在将阵列基板应用于手机、手表等电子设备中时,正常显示区域对应的位置不设置屏下摄像装置。
在一种可选的实施方式中,正常显示区域中设置有具有开口的像素界定层,像素界定层的开口的形状为多边形。
本申请实施例中的开口的形状可以是开口在衬底基板上的正投影的形状。
参照图3和图7的示例,正常显示区域中像素界定层的开口的形状为四边形,在其它示例中,正常显示区域中像素界定层的开口的形状可以是五边形、六边形、梯形、菱形、近似矩形(例如圆角矩形,但不限于此)等形状,有利于增大开口率。
参照图6的示例,正常显示区域中像素界定层的开口的形状可以是具有倒角的矩形,不同的子像素的倒角可以设置于不同的方向。
在另一种可选的实施方式中,屏下摄像区域中设置有具有开口的像素界定层,像素界定层的开口的形状为圆形或椭圆形。
参照图3、图7和图8的示例,屏下摄像区域中像素界定层的开口的形状为圆形或椭圆形,其中,子像素R和G对应的开口的形状为圆形,子像素B对应的开口的形状为椭圆形,此类形状棱角较少,可以减少衍射,降低对屏下摄像装置的摄像功能的影响。
在又一种可选的实施方式中,屏下摄像区域中设置有具有开口的像素界定层,像素界定层的至少部分开口的形状为水滴状。
参照图6的示例,屏下摄像区域中子像素R对应的像素界定层的开口的形状为水滴状,在保持开口率不变的情况下,水滴状的开口有利于减小金属占比,提高透过率,从而可在保证发光效果的情况下,增强摄像功能所需的透射效果。
在一种可选的实施方式中,第三像素单元P3包括至少一个子像素;阵列基板包括在所述过渡区域上阵列分布的多个第三像素单元P3。
在一个示例中,第三像素单元P3可以包括三个子像素,参照图3、图7和图8,三个子像素分别为R、G和B,可将该三个子像素组成的第三像素单元P3作为基础单元,设计各个基础单元之间的开口率变化规律,基础单元内部各子 像素的开口率可相同。
本申请实施例中,子像素的开口率为子像素对应的像素界定层的开口的面积与该子像素的面积的比值。
在另一个示例中,第三像素单元P3可以包括八个子像素,参照图6,八个子像素具体包括两个子像素R、两个子像素B和四个子像素G,可将该八个子像素组成的第三像素单元P3作为基础单元,设计各个基础单元之间的开口率变化规律,基础单元内部各子像素的开口率可相同。
在又一个示例中,第三像素单元P3可以包括两个子像素,相邻两个第三像素单元P3中所包括的子像素的类型可以不同,参照图9,第一个第三像素单元P3可以包括一个子像素B和一个子像素G,右侧相邻的第三像素单元P3可以包括一个子像素R和一个子像素G,可将两个子像素组成的第三像素单元P3作为基础单元,设计各个基础单元之间的开口率变化规律,基础单元内部各子像素的开口率可相同。第一像素单元P1和第二像素单元P2也可以同样的方式划分。
在再一个示例中,第三像素单元P3可以包括一个子像素,相邻两个第三像素单元P3中所包括的子像素的类型可以不同,参照图10,从左至右的前四个第三像素单元P3中的一个子像素分别为子像素B、子像素G、子像素R、子像素G,即每个子像素均可以作为一个基础单元,设计各个子像素之间的开口率变化规律。第一像素单元P1和第二像素单元P2也可以同样的方式划分。
基于上述各示例,本申请实施例提供的阵列基板,可以根据实际需求,设计不同的第三像素单元P3作为开口率变化的基础单元,满足不同的开口率变化的需要。
在一种可选的实施方式中,第三像素单元P3包括多个子像素;在第一显示区域指向所述第二显示区域的方向上,第三像素单元P3中子像素的开口率逐渐减小。
图3、图6、图7、图8、图9至图10均示出了第三像素单元P3包括多个子像素的情况,在此情况下,在将第三像素单元P3作为基础单元进行开口率的渐变外,还可以使第三个像素单元内部的各个子像素的开口率沿X方向逐渐减小,从而可以是基础单元的外部和内部同步减小,在内部可实现更精细的开口率变化。
在一种可选的实施方式中,多个第三像素单元在过渡区域阵列分布。可以理解的是,该多个第三像素单元也可以不阵列分布,本申请对此不作限定。
在多个第三像素单元在过渡区域阵列分布时,多个第三像素单元的行方向平行于所述第一显示区域指向所述第二显示区域的方向,多个第三像素单元的列方向垂直于所述第一显示区域指向所述第二显示区域的方向。
可选地,任一列第三像素单元对应的变化率小于或等于0.2,任一列第三像素单元对应的变化率为:相邻列像素单元的开口率与所述任一列第三像素单元的开口率之差;所述相邻列像素单元与所述任一列第三像素单元相邻,且所述相邻列像素单元与所述任一列第三像素单元在所述第一显示区域指向所述第二显示区域的方向上依次排布。
在一个示例中,在第一显示区域指向第二显示区域的方向上,各列第三像素单元的第三开口率可以按以下任意一种规律变化:
0.8、0.6、……,这种情况下,任一列第三像素单元对应的变化率为0.2;
0.9、0.8、……,这种情况下,任一列第三像素单元对应的变化率为0.1;
0.95、0.9、0.85、……,这种情况下,任一列第三像素单元对应的变化率为0.05。
可选的,在第一显示区域指向第二显示区域的方向上,过渡区域的尺寸与预设的第三开口率的变化范围和变化步长相匹配。
在一个示例中,若第二开口率、多个第三开口率的变化(减小)范围为1至0.5,任一列第三像素单元对应的变化率为0.1,则过渡区域的尺寸为5个第三像素单元P3的尺寸;若第二开口率、多个第三开口率的变化(减小)范围为1至0.5,任一列第三像素单元对应的变化率为0.05,则过渡区域的尺寸为10个第三像素单元P3的尺寸。
可选的,前述实施例中以不同列第三像素单元对应的变化率相同为例,可以理解的是,多个第三像素单元中至少两列第三像素单元对应的变化率也可以不同。
在一个示例中,多列第三像素单元对应的变化率可以相同,例如多列第三像素单元对应的变化率均为0.2,在第一开口率为1的情况下,该多列第三像素单元的第三开口率可以是:0.8、0.6……。在另一个示例中,多列第三像素单元对应的变化率可以不同,例如在第一开口率为1的情况下,该多列第三像素单 元的第三开口率可以是:0.9、0.7……,即第一列第三像素单元对应的变化率为0.1,第二列第三像素单元对应的变化率为0.2。
基于同一发明构思,本申请提供了一种阵列基板的制备方法,如图11所示,该制备方法包括:
S1401,在衬底基板上形成像素单元的阳极。
S1402,在阳极远离衬底基板的一侧形成像素界定材料层。
S1403,对像素界定材料层进行图案化处理,得到像素界定层。
S1404,在像素界定层远离衬底基板的一侧依次形成像素单元的发光层和阴极。
像素界定材料层的材料可以是以下任意一种或多种:聚酰亚胺、硅氧化物、硅氮化物、光刻胶材料。
本申请实施例中,对像素界定材料层的图案化处理可以通过电子束曝光、蒸镀等方式实现。
在通过电子束曝光来进行图案化处理时,可在像素界定材料层上涂覆光刻胶,然后基于预先设计的图形进行曝光和显影,曝光区域与待形成开口的位置对应,从而可得到像素界定层。
在通过蒸镀的方式进行图案化处理时,可预先制备掩膜版,然后基于该掩膜版进行蒸镀,得到像素界定层。
该制备方法所制备得到的阵列基板可以参考前述实施例中的阵列基板,本申请在此不做赘述。
在该制备方法中,需要在衬底基板上制备上述第一像素单元、第二像素单元和第三像素单元。该制备方法中,还可以在衬底基板上形成像素界定材料层,并对像素界定材料层进行图案化处理,得到像素界定层。图11所示的实施例中以在形成阳极之后,以及在形成发光层之前,制备该像素界定层为例。
基于同一发明构思,本申请实施例还提供了一种显示面板和显示装置,该显示面板包括盖板,以及本申请提供的任一种阵列基板,阵列基板中除衬底基板之外的结构位于盖板和衬底基板之间。该显示装置包括供电组件,以及本申请任一实施例提供的显示面板,该供电组件用于向该显示面板供电。
本申请实施例提供的显示装置可以是液晶显示装置或有机发光二极管显示 装置,例如该显示装置可以为液晶显示器、液晶电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包括于本申请的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指在在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、组件和/或它们的组。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,本申请中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本申请中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本申请中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在本说明书中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本说明书中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种阵列基板,包括:
    衬底基板,包括第一显示区域、第二显示区域、以及位于所述第一显示区域和所述第二显示区域之间的过渡区域;
    第一像素单元,位于所述第一显示区域,所述第一像素单元具有第一开口率;
    第二像素单元,位于所述第二显示区域,所述第二像素单元具有第二开口率;
    第三像素单元,位于所述过渡区域,所述第三像素单元具有第三开口率;
    所述第一开口率大于所述第二开口率;
    在所述第一显示区域指向所述第二显示区域的方向上,所述第一开口率、所述第三开口率和所述第二开口率逐渐减小。
  2. 根据权利要求1所述的阵列基板,所述阵列基板包括多个第三像素单元,在所述第一显示区域指向所述第二显示区域的方向上,所述多个第三像素单元的所述第三开口率逐渐减小。
  3. 根据权利要求2所述的阵列基板,所述多个第三像素单元在所述过渡区域上阵列分布。
  4. 根据权利要求3所述的阵列基板,所述多个第三像素单元的行方向平行于所述第一显示区域指向所述第二显示区域的方向;不同列第三像素单元对应的变化率相同;
    任一列第三像素单元对应的变化率为:相邻列像素单元的开口率与所述任一列第三像素单元的开口率之差;
    所述相邻列像素单元与所述任一列第三像素单元相邻,且所述相邻列像素单元与所述任一列第三像素单元在所述第一显示区域指向所述第二显示区域的方向上依次排布。
  5. 根据权利要求3所述的阵列基板,所述多个第三像素单元的行方向平行于所述第一显示区域指向所述第二显示区域的方向;至少两列第三像素单元对应的变化率不同;
    任一列第三像素单元对应的变化率为:相邻列像素单元的开口率与所述任一列第三像素单元的开口率之差;
    所述相邻列像素单元与所述任一列第三像素单元相邻,且所述相邻列像素单元与所述任一列第三像素单元在所述第一显示区域指向所述第二显示区域的方向上依次排布。
  6. 根据权利要求3-5任一项所述的阵列基板,所述多个第三像素单元的行方向平行于所述第一显示区域指向所述第二显示区域的方向;任一列第三像素单元对应的变化率小于或等于0.2;
    所述任一列第三像素单元对应的变化率为:相邻列像素单元的开口率与所述任一列第三像素单元的开口率之差;
    所述相邻列像素单元与所述任一列第三像素单元相邻,且所述相邻列像素单元与所述任一列第三像素单元在所述第一显示区域指向所述第二显示区域的方向上依次排布。
  7. 根据权利要求1-6任一所述的阵列基板,所述第三像素单元包括多个子像素;
    在所述第一显示区域指向所述第二显示区域的方向上,所述多个子像素的开口率逐渐减小。
  8. 根据权利要求1-7任一所述的阵列基板,还包括:像素界定层,所述像素界定层位于所述第一显示区域、所述第二显示区域和所述过渡区域;
    所述第一显示区域的像素界定层具有与所述第一像素单元对应的开口,所述像素界定层中对应任一像素单元的开口在所述衬底基板上的正投影位于所述任一像素单元在所述衬底基板上的正投影内;
    所述第二显示区域的像素界定层具有与所述第二像素单元对应的开口;
    所述过渡区域的像素界定层具有与所述第三像素单元对应的开口;
    在所述第一显示区域指向所述第二显示区域的方向上,所述第一像素单元对应的开口的面积、所述第三像素单元对应的开口的面积、所述第二像素单元的开口的面积逐渐减小。
  9. 根据权利要求1-8任一项所述的阵列基板,所述第一显示区域和所述过渡区域属于正常显示区域,所述第二显示区域属于屏下摄像区域;
    所述屏下摄像区域为与屏下摄像装置配合使用的显示区域,所述正常显示区域为所述屏下摄像区域以外的显示区域。
  10. 根据权利要求1-8任一项所述的阵列基板,所述第一显示区域属于正常显示区域,所述第二显示区域和所述过渡区域属于屏下摄像区域;
    所述屏下摄像区域为与屏下摄像装置配合使用的显示区域,所述正常显示区域为所述屏下摄像区域以外的显示区域。
  11. 根据权利要求1-8任一项所述的阵列基板,所述过渡区域包括第一过渡区域和第二过渡区域;
    所述第一显示区域和所述第一过渡区域属于正常显示区域,所述第二显示区域和所述第二过渡区域属于屏下摄像区域;
    所述屏下摄像区域为与屏下摄像装置配合使用的显示区域,所述正常显示区域为所述屏下摄像区域以外的显示区域。
  12. 根据权利要求9-11任一项所述的阵列基板,所述正常显示区域上设置有具有开口的像素界定层,所述像素界定层的开口的形状为多边形。
  13. 根据权利要求9-11任一项所述的阵列基板,所述屏下摄像区域上设置有具有开口的像素界定层,所述像素界定层的开口的形状为圆形或椭圆形。
  14. 根据权利要求9-11任一项所述的阵列基板,所述屏下摄像区域中设置有具有开口的像素界定层,所述像素界定层的至少部分开口的形状为水滴状。
  15. 根据权利要求1-14任一项所述的阵列基板,所述第一像素单元、所述第二像素单元和所述第三像素单元中的任一像素单元包括:沿远离所述衬底基板的方向依次排布的:阳极、发光层和阴极;
    所述阵列基板还包括像素界定层,所述像素界定层位于所述阳极和所述发光层之间。
  16. 一种显示面板,包括:盖板,以及权利要求1-15任一项所述的阵列基板,所述阵列基板中除衬底基板之外的部分位于所述盖板和所述衬底基板之间。
  17. 一种显示装置,包括:供电组件,以及如权利要求16所述的显示面板,所述供电组件用于向所述显示面板供电。
  18. 一种阵列基板的制备方法,用于制备权利要求1-15任一项所述的阵列基板,所述方法包括:
    在衬底基板上制备第一像素单元、第二像素单元和第三像素单元;
    其中,所述衬底基板包括第一显示区域、第二显示区域、以及位于所述第一显示区域和所述第二显示区域之间的过渡区域;
    所述第一像素单元位于所述第一显示区域,所述第一像素单元具有第一开口率;
    所述第二像素单元位于所述第二显示区域,所述第二像素单元具有第二开口率;
    所述第三像素单元位于所述过渡区域,所述第三像素单元具有第三开口率;
    在所述第一显示区域指向所述第二显示区域的方向上,所述第一开口率、所述第三开口率和所述第二开口率逐渐减小。
  19. 根据权利要求18所述的方法,所述方法还包括:
    在所述衬底基板上形成像素界定材料层;
    对所述像素界定材料层进行图案化处理,得到像素界定层;
    其中,所述第一显示区域的像素界定层具有与所述第一像素单元对应的开口,所述像素界定层中对应任一像素单元的开口在所述衬底基板上的正投影位 于所述任一像素单元在所述衬底基板上的正投影内;
    所述第二显示区域的像素界定层具有与所述第二像素单元对应的开口;
    所述过渡区域的像素界定层具有与所述第三像素单元对应的开口;
    在所述第一显示区域指向所述第二显示区域的方向上,所述第一像素单元对应的开口的面积、所述第三像素单元对应的开口的面积、所述第二像素单元的开口的面积逐渐减小。
  20. 根据权利要求19所述的方法,所述在衬底基板上制备第一像素单元、第二像素单元和第三像素单元,包括:
    在所述衬底基板上依次形成像素单元的阳极、发光层和阴极;
    在所述衬底基板上形成像素界定材料层,包括:在形成所述阴极之后,以及在形成所述发光层之前,在所述衬底基板上形成所述像素界定材料层。
PCT/CN2023/097766 2022-06-02 2023-06-01 阵列基板及其制备方法、显示面板、显示装置 WO2023232106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210624733.7 2022-06-02
CN202210624733.7A CN115000142A (zh) 2022-06-02 2022-06-02 显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023232106A1 true WO2023232106A1 (zh) 2023-12-07

Family

ID=83031761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097766 WO2023232106A1 (zh) 2022-06-02 2023-06-01 阵列基板及其制备方法、显示面板、显示装置

Country Status (2)

Country Link
CN (1) CN115000142A (zh)
WO (1) WO2023232106A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000142A (zh) * 2022-06-02 2022-09-02 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962092A (zh) * 2019-03-29 2019-07-02 上海天马微电子有限公司 一种显示面板和显示装置
CN110729332A (zh) * 2019-10-08 2020-01-24 武汉天马微电子有限公司 一种显示面板及显示装置
US20200104562A1 (en) * 2018-10-02 2020-04-02 Samsung Display Co., Ltd. Fingerprint sensor and display device including the same
CN112072000A (zh) * 2020-11-11 2020-12-11 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113178537A (zh) * 2021-04-27 2021-07-27 武汉天马微电子有限公司 一种显示面板及显示装置
KR20220008699A (ko) * 2020-07-14 2022-01-21 삼성전자주식회사 디스플레이 장치 및 이의 운용 방법
CN115000142A (zh) * 2022-06-02 2022-09-02 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200104562A1 (en) * 2018-10-02 2020-04-02 Samsung Display Co., Ltd. Fingerprint sensor and display device including the same
CN109962092A (zh) * 2019-03-29 2019-07-02 上海天马微电子有限公司 一种显示面板和显示装置
CN110729332A (zh) * 2019-10-08 2020-01-24 武汉天马微电子有限公司 一种显示面板及显示装置
KR20220008699A (ko) * 2020-07-14 2022-01-21 삼성전자주식회사 디스플레이 장치 및 이의 운용 방법
CN112072000A (zh) * 2020-11-11 2020-12-11 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113178537A (zh) * 2021-04-27 2021-07-27 武汉天马微电子有限公司 一种显示面板及显示装置
CN115000142A (zh) * 2022-06-02 2022-09-02 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN115000142A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
JP6759396B2 (ja) ピクセル構造およびその表示方法、表示装置
RU2721902C1 (ru) Структура пиксельной компоновки, подложка отображения, устройство отображения и группа маскирующих пластин
WO2020020337A1 (zh) 子像素排列结构、掩膜装置、显示面板及装置
TWI697886B (zh) 顯示結構和顯示裝置
US10692940B2 (en) Pixel structure and display panel having the same
JP6752156B2 (ja) 画素構造、その表示方法、及び関連表示装置
TWI585968B (zh) 顯示裝置
TWI763475B (zh) 顯示面板
US11563060B2 (en) Pixel arrangement structure, display substrate, and display device
WO2019153951A1 (zh) 像素排列结构、显示基板、显示装置和掩模板组
WO2018161809A1 (zh) Oled阵列基板及其制造方法和显示装置
CN107731870A (zh) 有机发光二极管像素结构及包含其的显示面板、显示装置
WO2021228219A1 (zh) Oled显示基板及其制备方法、oled显示装置
WO2022116730A1 (zh) 像素结构、精细金属掩膜板、显示装置和控制方法
WO2022160827A1 (zh) 像素阵列、显示装置及高精度金属掩膜板
WO2019153939A1 (zh) 像素排列结构、显示基板、显示装置和掩摸板
TWI780694B (zh) 像素排布結構、顯示面板及顯示裝置
WO2019062580A1 (zh) 显示基板及其制备方法、喷墨打印方法、显示装置
WO2016127560A1 (zh) 一种有机发光二极管阵列基板及其制作方法、显示装置
WO2023232106A1 (zh) 阵列基板及其制备方法、显示面板、显示装置
WO2019062278A1 (zh) 像素排列结构、像素结构及其制作方法、阵列基板和显示面板
TWI303499B (en) Full-color organic electroluminescence panel and method of fabricating the same
CN115548079A (zh) 一种阵列基板、显示面板及显示装置
WO2022213581A1 (zh) 显示面板、显示装置和掩模板
WO2022121401A1 (zh) 像素排布结构及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815283

Country of ref document: EP

Kind code of ref document: A1