WO2023232009A1 - 全地形车 - Google Patents

全地形车 Download PDF

Info

Publication number
WO2023232009A1
WO2023232009A1 PCT/CN2023/097036 CN2023097036W WO2023232009A1 WO 2023232009 A1 WO2023232009 A1 WO 2023232009A1 CN 2023097036 W CN2023097036 W CN 2023097036W WO 2023232009 A1 WO2023232009 A1 WO 2023232009A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
terrain vehicle
rocker arm
point
equal
Prior art date
Application number
PCT/CN2023/097036
Other languages
English (en)
French (fr)
Inventor
罗龙平
王建勇
张俊峰
钟梅
周良琛
Original Assignee
浙江春风动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江春风动力股份有限公司 filed Critical 浙江春风动力股份有限公司
Publication of WO2023232009A1 publication Critical patent/WO2023232009A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/01Motorcycles with four or more wheels

Definitions

  • the present application relates to the field of vehicle technology, and in particular to an all-terrain vehicle.
  • An all-terrain vehicle is an all-weather, all-terrain four-wheel off-road vehicle.
  • the all-terrain vehicle frame is a key component and the main load-bearing component of the entire vehicle. It plays a very important role in the research on the reliability and service life of the entire vehicle. The vehicle's handling stability, driving safety, and ride comfort are also important. Inseparable from the structure and performance of the frame. Since all-terrain vehicles must adapt to various complex working environments, higher requirements are placed on the suspension of all-terrain vehicles.
  • the embodiments of the present application provide an all-terrain vehicle to solve at least one problem existing in the background technology.
  • this embodiment provides an all-terrain vehicle, including: a frame; a walking component including a first running wheel and a second running wheel; and a suspension component including a front suspension. and a rear suspension, the first running wheel is connected to the frame through the front suspension, and the second running wheel is connected to the frame through the rear suspension; the body cover is at least partially disposed on the frame; the power component is at least The transmission assembly is partially arranged on the frame; the transmission assembly is transmission connected to the traveling assembly and the power assembly, and the transmission assembly includes a drive axle and a drive shaft; assuming that a projection plane perpendicular to the left and right direction of the all-terrain vehicle is the first projection plane, a vertical The projection surface in the up and down direction of the all-terrain vehicle is the second projection surface and a projection surface perpendicular to the front and rear direction of the all-terrain vehicle is the third projection surface; the output center of the drive axle is projected on the first projection surface in the left and right direction.
  • the axis of the drive shaft is on the third projection point along the front-to-back direction.
  • the projection of the projection surface is the first projection line
  • the projection of the second projection surface on the third projection surface along the front and back direction is the second projection line
  • the angle formed by the first projection line and the second projection line is greater than or equal to 0° and less than Equal to 60°
  • the front suspension includes: an upper rocker arm, one end of the upper rocker arm is provided with a first installation point, and the other end of the upper rocker arm is provided with a second installation point
  • a lower rocker arm one end of the lower rocker arm is provided with a third installation point
  • Three installation points, the other end of the lower rocker arm is provided with a fourth installation point
  • the distance between the first installation point and the second installation point is L1
  • the distance between the third installation point and the fourth installation point is L2, L1
  • the ratio to L2 is greater than or equal to 0.5 and less than or equal to 1.15.
  • this embodiment provides an all-terrain vehicle, including: a frame; a walking component including a first running wheel and a second running wheel; and a suspension component including a front suspension. and a rear suspension, the first running wheel is connected to the frame through the front suspension, and the second running wheel is connected to the frame through the rear suspension; a power component, the power component is at least partially disposed on the frame; a transmission component, the transmission component is connected to the traveling wheel Components and power components.
  • the transmission component includes a drive axle and a drive shaft.
  • a projection surface perpendicular to the left and right direction of the all-terrain vehicle is the first projection surface
  • a projection surface perpendicular to the up and down direction of the all-terrain vehicle is the second projection surface.
  • a projection surface perpendicular to the front and rear direction of the all-terrain vehicle is the third projection surface; the projection of the output center of the drive axle on the first projection surface along the left and right direction is the first projection point, and the center of the circle of the walking assembly is on the third projection surface along the left and right direction.
  • the projection on one projection surface is the second projection point, and the first projection point is located on the upper side of the second projection point; the projection of the axis of the drive shaft on the third projection surface along the front and rear direction is the first projection line, and the projection along the second projection surface is The projection of the front-to-back direction on the third projection plane is the second projection line, and the angle formed by the first projection line and the second projection line is greater than or equal to 0° and less than or equal to 60°.
  • this embodiment provides an all-terrain vehicle, including: a frame; a walking component including a first running wheel and a second running wheel; and a suspension component including a front suspension. and a rear suspension, the first running wheel is connected to the frame through the front suspension, and the second running wheel is connected to the frame through the rear suspension; a power component, the power component is at least partially disposed on the frame; a transmission component, the transmission component is connected to the traveling wheel Components and power components, the transmission component includes the drive axle and the drive shaft; assuming a projection plane perpendicular to the left and right direction of the all-terrain vehicle is The first projection surface, a projection surface perpendicular to the up and down direction of the all-terrain vehicle is the second projection surface, and a projection surface perpendicular to the front and rear direction of the all-terrain vehicle is the third projection surface; the output center of the drive axle is at The projection on the first projection surface is the first projection point, and the projection of the center of the walking assembly on the first
  • the first projection point is located above the second projection point; assuming that the drive shaft
  • the projection of the axis on the third projection plane along the front-to-back direction is the first projection line
  • the projection of the second projection plane on the third projection plane along the front-to-back direction is the second projection line.
  • the first projection line and the second projection line form The angle is greater than or equal to 0° and less than or equal to 60°; the walking component includes the first position when it is at the highest point of the upward jump, the second position when it is at the lowest point of the downward jump, and the initial position when it is at rest.
  • the first position and the initial position The maximum distance between positions is L1, the maximum distance between the second position and the initial position is L2, and the ratio of L1 and L2 is greater than or equal to 1 and less than or equal to 10.
  • the all-terrain vehicle provided in this embodiment improves the up and down jump range of the suspension by setting the relative positions of the rocker arm and the bridge, increases the transmission angle, and improves the comfort and comfort of the all-terrain vehicle. service life.
  • Figure 1 is a schematic structural diagram of the all-terrain vehicle of the present invention.
  • Figure 2 is a partial structural diagram of the all-terrain vehicle of the present invention.
  • Figure 3 is a schematic structural diagram of the first lampshade and suspension assembly of the all-terrain vehicle of the present invention.
  • Figure 4 is a schematic structural diagram of the steering knuckle of the all-terrain vehicle of the present invention.
  • Figure 5 is a schematic structural diagram of the suspension assembly and walking assembly of the all-terrain vehicle of the present invention.
  • Figure 6 is another structural schematic diagram of the suspension assembly and walking assembly of the all-terrain vehicle of the present invention.
  • Figure 7 is a schematic structural diagram of the walking assembly of the all-terrain vehicle of the present invention.
  • Figure 8 is a schematic structural diagram of the rear suspension of the present invention.
  • Figure 9 is another structural schematic diagram of the rear suspension of the present invention.
  • Figure 10 is a schematic structural diagram of the suspension assembly, transmission assembly and frame of the all-terrain vehicle of the present invention.
  • Figure 11 is a schematic structural diagram of the suspension assembly of the all-terrain vehicle of the present invention.
  • Figure 12 is a schematic structural diagram of the suspension assembly of the all-terrain vehicle of the present invention from another angle.
  • Figure 13 is a schematic structural diagram of the suspension assembly and walking assembly of the all-terrain vehicle of the present invention.
  • the all-terrain vehicle 100 includes a frame 11 , a walking component 12 , a suspension component 13 , a power component 14 , a body cover 15 and a transmission component 16 .
  • the suspension assembly 13 includes a front suspension 131 and a rear suspension 132, which are used to connect the vehicle frame 11 and the traveling assembly 12.
  • the traveling assembly 12 is at least partially disposed on the frame 11.
  • the traveling assembly 12 includes a first traveling wheel 121 and a second traveling wheel 122.
  • the first traveling wheel 121 is connected to the frame 11 through the front suspension 131, and the second traveling wheel 122 passes through the rear suspension 131.
  • the suspension 132 is connected to the vehicle frame 11 .
  • the power assembly 14 is at least partially disposed on the vehicle frame 11 and is used to provide power to drive the walking assembly 12 .
  • the body panel 15 is at least partially disposed on the vehicle frame 11 .
  • the transmission assembly 16 is at least partially disposed on the frame 11.
  • the transmission assembly 16 is connected to the walking assembly 12.
  • the transmission assembly 16 is also connected to the power assembly 14 for transmitting the power of the power assembly 14 to the walking assembly 12, thereby driving the walking assembly 12 and thereby driving the ATV 100.
  • front, back, left, right, up and down as shown in Figure 1 are also defined.
  • the suspension assembly 13 further includes a steering knuckle 135 .
  • the steering knuckle 135 is at least partially connected to the first running wheel 121 and at least partially connected to the front suspension 131 .
  • the steering knuckle 135 is used to transmit and bear the front load of the all-terrain vehicle 100 , and drive the deflection of the first running wheel 121 , thereby achieving full safety.
  • Terrain Vehicle 100 Steering Specifically, one end of the steering knuckle 135 is provided with a first connecting end 1351, and the other end of the steering knuckle 135 is provided with a second connecting end 1352.
  • the front suspension 131 includes a front rocker arm 1311.
  • the front rocker arm 1311 includes an upper rocker arm 1311a and a lower rocker arm 1311b.
  • the first connecting end 1351 of the steering knuckle 135 is connected to one end of the upper rocker arm 1311a, and the other end of the upper rocker arm 1311a is connected to the vehicle frame 11.
  • the second connecting end 1352 of the steering knuckle 135 is connected to one end of the lower rocker arm 1311b, and the other end of the lower rocker arm 1311b is connected to the vehicle frame 11.
  • the steering knuckle 135 includes a first body 1353 and a connecting piece 1354.
  • One end of the first body 1353 is provided with a first connection end 1351, and the other end of the first body 1353 is provided with a second connection end 1352.
  • the connecting piece 1354 is used to connect the upper rocker arm 1311a and the first connecting end 1351, thereby achieving a stable connection between the steering knuckle 135 and the upper rocker arm 1311a.
  • an adjustment washer 1355 is provided between the first connection end 1351 and the connector 1354.
  • the adjustment washer 1355 is used to change the camber angle of the first running wheel 121, thereby compensating for manufacturing errors and improving the all-terrain vehicle 100 control characteristics.
  • the adjusting pad 1355 can change the camber angle of the first running wheel 121 so that the all-terrain vehicle 100 has good grip under extreme working conditions and improve the safety of the all-terrain vehicle 100 .
  • the thickness of the adjusting gasket 1355 is a preset thickness, and the preset thickness can be adjusted according to actual needs, thereby adjusting the camber angle of the first running wheel 121.
  • the end surface of the first connecting end 1351 at least includes a first end surface and a second end surface, and the first end surface and the second end surface are arranged substantially symmetrically with respect to the end surface of the first connecting end 1351 .
  • the adjustment washer 1355 is in contact with the first end surface or the second end surface.
  • the projection of the adjustment gasket 1355 on the end surface of the first connection end 1351 is the projection surface
  • the area of the end surface of the first connection end 1351 is the end surface area
  • the area of the projection surface is less than or equal to half of the end area.
  • the projection surface may substantially coincide with the first end surface, or may substantially coincide with the second end surface.
  • a plurality of first connection holes 1351a are provided on the end surface of the first connection end 1351.
  • the centers of the plurality of first connection holes 1351a are basically on the same straight line.
  • the line connecting the centers of the plurality of first connection holes 1351a is a fifth straight line 1351b.
  • the fifth straight line 1351b divides the end surface of the first connecting end 1351 into a first end surface and a second end surface.
  • the first end surface is at least partially disposed on an upper side of the second end surface.
  • the cross-sectional profile of the adjusting gasket 1355 may be substantially consistent with the profile of the first end face, or may be substantially consistent with the profile of the second end face, thereby facilitating the improvement of the installation stability of the adjusting gasket 1355.
  • the adjusting pad 1355 is provided with a plurality of first half holes 1355a
  • the connecting piece 1354 is provided with a plurality of second connection holes 1354a.
  • the center of the first connection hole 1351a, the center of the first half hole 1355a, and the center of the second connection hole 1354a are basically on the same straight line, so that the first connection hole 1351a, the first half hole 1355a, and the second connection hole 1354a can pass through
  • the same fixing parts are connected in sequence to facilitate the installation of the first connecting end 1351, the adjusting gasket 1355, and the connecting piece 1354.
  • the fixing member passes through the second connecting hole 1354a, the first half hole 1355a, and the first connecting hole 1351a in sequence, thereby achieving a stable connection between the connecting member 1354, the adjusting washer 1355, and the first connecting end 1351.
  • the connecting member 1354 may be a lifting eye
  • the fixing member may be a bolt.
  • the adjusting pad 1355 is provided with a slot 1355b.
  • the slot 1355b is used to reduce the weight of the adjustment gasket 1355, which is beneficial to the lightweight of the all-terrain vehicle 100.
  • Several first half holes 1355a may be disposed on both sides of the length direction of the slot 1355b.
  • the slot 1355b is arranged so that the adjusting gasket 1355 is basically in a "C" shape, and along the up and down direction of the all-terrain vehicle 100, the notch of the slot 1355b is arranged basically downward.
  • the outer contour of the adjusting gasket 1355 can be basically consistent with the contour of the first end surface, which facilitates the installation of the adjusting gasket 1355 and will not affect the installation of other components.
  • the number of first connection holes 1351a, the number of first half holes 1355a, and the number of second connection holes 1354a are two.
  • the two first half holes 1355a are disposed on both sides of the slot 1355b, that is, the slot 1355b is at least partially disposed between the two first half holes 1355a, so as to improve the space utilization of the adjustment gasket 1355, thereby making it easier to adjust the gasket 1355.
  • the structure of the adjusting spacer 1355 is more compact.
  • first connection end 1351 also includes a line of symmetry, and the two first connection holes 1351a are arranged substantially symmetrically with respect to the line of symmetry.
  • the first end face and the second end face may also be arranged substantially symmetrically about the symmetry line.
  • the steering knuckle 135 can also be provided on the rear side of the vehicle frame 11 .
  • the steering knuckle 135 is at least partially connected to the second running wheel 122 and at least partially connected to the rear suspension 132 .
  • Rear suspension 132 includes a swing arm 1321 .
  • One end of the rear swing arm 1321 is connected to the frame 11 , and both the first connection end 1351 and the second connection end 1352 are connected to the other end of the rear swing arm 1321 .
  • the steering knuckle 135 can also be integrally formed with the rear rocker arm 1321, and the end of the steering knuckle 135 and the rear rocker arm 1321 away from the frame 11 is integrally formed, thereby making the structure of the steering knuckle 135 and the rear rocker arm 1321 more compact and convenient. Processing and assembly.
  • the front suspension 131 includes a first shock absorber 1312 .
  • One end of the first shock absorber 1312 is connected to the vehicle frame 11 , and the other end of the first shock absorber 1312 is connected to the front rocker arm 1311 .
  • one end of the first shock absorber 1312 is provided with a first installation point 1312a.
  • the other end of a shock absorber 1312 is provided with a second mounting point 1312b.
  • the first mounting point 1312a is connected to the vehicle frame 11, and the second mounting point 1312b is connected to the front rocker arm 1311.
  • the vehicle body cover 15 includes a first lampshade 151 , which is at least partially disposed on the vehicle frame 11 and located on the front side of the vehicle frame 11 .
  • the first lampshade 151 is used to set the headlight on the front side of the all-terrain vehicle 100 .
  • a projection plane 103 perpendicular to the front-rear direction of the all-terrain vehicle 100 see FIG. 1
  • the projection of the uppermost end of the first lampshade 151 on the projection plane 103 along the front-rear direction is a first projection line.
  • the upper rocker arm 1311a is provided on the lower side of the first lamp cover 151.
  • the projection of the axis of the upper rocker arm 1311a on the projection plane 103 along the front-to-back direction is the second projection line.
  • a third installation point 1311s is provided at one end of the upper rocker arm 1311a, and a fourth installation point 1311t is provided at the other end of the upper rocker arm 1311a.
  • the third mounting point 1311s is used to connect the steering knuckle 135, and the fourth mounting point 1311t is used to connect the vehicle frame 11.
  • the upper rocker arm 1311a includes a sixth straight line 1311u extending in the up and down direction and passing through the third mounting point 1311s.
  • the upper rocking arm 1311a also includes a seventh straight line 1311v extending in the up and down direction and passing through the fourth mounting point 1311t.
  • the projection of the sixth straight line 1311u along the front-to-back direction on the projection plane 103 is the third projection line
  • the projection of the seventh straight line 1311v along the front-to-back direction on the projection plane 103 is the fourth projection line.
  • the first projection line, the second projection line, the third projection line and the fourth projection line surround a third projection plane M1.
  • the projection of the first mounting point 1312a on the projection plane 103 along the front-to-back direction is the fourth projection plane.
  • the fourth projection surface is located in the third projection surface M1, that is, the third projection surface M1 covers the fourth projection surface.
  • the installation of the first shock absorber 1312 can have a smaller impact on the installation of the pipe fittings of the frame 11 , that is, the installation of the first shock absorber 1312 can have a smaller impact on the installation of other components of the all-terrain vehicle 100 .
  • the first mounting point 1312a can be set on the lower side of the uppermost end of the first lampshade 151, which can reduce the intrusion of sediment caused by the exposure of the first shock absorber 1312, thereby improving the use of the first shock absorber 1312
  • the service life can also reduce the height of the center of mass of the all-terrain vehicle 100, thereby improving the operational stability of the all-terrain vehicle 100.
  • the first mounting point 1312a can be connected to the vehicle frame 11 through connecting parts such as sheet metal parts, so that the fourth projection plane can be located in the third projection plane M1.
  • the lower rocker arm 1311b is provided on the lower side of the upper rocker arm 1311a.
  • the projection of the axis of the lower rocker arm 1311b on the projection plane 103 along the front-to-back direction is the fifth projection line.
  • One end of the lower rocker arm 1311b is provided with a fifth installation point 1311g, and the other end of the lower rocker arm 1311b is provided with a sixth installation point 1311h.
  • the axis of the lower rocker arm 1311b points to the axis of the straight pipe; when the lower rocker arm 1311b is a curved pipe fitting, the axis of the lower rocker arm 1311b points to the fifth installation point 1311g and the sixth installation point 1311h. connection.
  • the fifth mounting point 1311g is used to connect the steering knuckle 135, and the sixth mounting point 1311h is used to connect the vehicle frame 11.
  • the lower rocker arm 1311b includes an eighth straight line 1311j extending in the up-down direction and passing through the fifth mounting point 1311g.
  • the lower rocking arm 1311b also includes a ninth straight line 1311k extending in the up-down direction and passing through the sixth mounting point 1311h.
  • the projection of the eighth straight line 1311j along the front-to-back direction on the projection plane 103 is the sixth projection line
  • the projection of the ninth straight line 1311k along the front-to-back direction on the projection plane 103 is the seventh projection line.
  • the upper rocker arm 1311a also includes a tenth straight line 1311m parallel to the axis of the upper rocker arm 1311a, and the tenth straight line 1311m is located on the upper side of the axis of the upper rocker arm 1311a.
  • the projection of the tenth straight line 1311m on the projection plane 103 along the front-to-back direction is the eighth projection line.
  • the distance between the eighth projection line and the second projection line is L, that is, the distance between the projection of the tenth straight line 1311m on the projection plane 103 and the projection of the axis of the upper rocker arm 1311a on the projection plane 103 along the front-to-back direction. for L.
  • L can be greater than or equal to 0 mm and less than or equal to 50 mm.
  • the fifth projection line, the sixth projection line, the seventh projection line and the eighth projection line surround a fifth projection plane M2.
  • the projection of the second mounting point 1312b on the projection plane 103 along the front-to-back direction is the sixth projection plane.
  • the sixth projection plane is located in the fifth projection plane M2, that is, the fifth projection plane M2 covers the sixth projection plane.
  • the stroke of the first shock absorber 1312 can be increased, which facilitates the structural design of the first shock absorber 1312, improves the wheel jump stroke of the all-terrain vehicle 100, improves the comfort of the all-terrain vehicle 100, and effectively improves the all-terrain vehicle. Car 100 space utilization.
  • the wheel jump stroke refers to the sum of the upward and downward displacements of the walking assembly 12 during the traveling process of the all-terrain vehicle 100 .
  • the second mounting point 1312b can be connected to the front rocker arm 1311 through connecting parts such as sheet metal parts, so that the sixth projection plane can be located in the fifth projection plane M2.
  • the installation point of the first shock absorber 1312 can have less impact on other components of the all-terrain vehicle 100, making the structure of the all-terrain vehicle 100 more compact, thereby conducive to improving the performance of the all-terrain vehicle 100. Operational stability.
  • the shortest distance between the third installation point 1311c and the fourth installation point 1311d is L1, that is, the distance between the two installation points of the upper rocker arm 1311a is L1.
  • the shortest distance between the fifth installation point 1311g and the sixth installation point 1311h is L2, that is, the distance between the two installation points of the lower rocker arm 1311b is L2.
  • the ratio of L1 and L2 is greater than or equal to 0.5 and less than or equal to 1.15. Specifically, the ratio of L1 and L2 is greater than or equal to 0.6 and less than or equal to 1.1. In this embodiment, the ratio of L1 and L2 is greater than or equal to 0.7 and less than or equal to 1.
  • the structural relationship and the setting of the installation points of the upper rocker arm 1311a and the lower rocker arm 1311b cause the camber angle of the first running wheel 121 to change in the negative direction. , which helps to improve the tire grip of the all-terrain vehicle 100 when cornering. force, and at the same time, the kingpin inclination angle changes in the positive direction, which is beneficial to increasing the backing moment of the first running wheel 121, thereby helping to improve the control performance of the all-terrain vehicle 100.
  • the kingpin inclination angle refers to the angle at which the kingpin axis inclines toward the inside of the vehicle body when the first running wheel 121 is viewed from the front-rear direction of the all-terrain vehicle 100 .
  • the walking assembly 12 when the all-terrain vehicle 100 is traveling, the walking assembly 12 at least includes a first position, a second position and an initial position.
  • the walking assembly 12 When the walking assembly 12 is in the first position, the walking assembly 12 is at the highest point of the walking assembly 12's upward jump; when the walking assembly 12 is in the second position, the walking assembly 12 is at the lowest point of the walking assembly 12's downward jump; when the walking assembly 12 When in the initial position, the walking assembly 12 is in the position of the walking assembly 12 when the all-terrain vehicle 100 is stationary.
  • the maximum distance between the first position and the initial position is the upward jump stroke L3 of the walking assembly 12
  • the maximum distance between the second position and the initial position is the downward jump stroke L4 of the walking assembly 12 .
  • the ratio of L3 and L4 is greater than or equal to 1 and less than or equal to 10. Specifically, the ratio of L3 and L4 is greater than or equal to 2 and less than or equal to 9. In this embodiment, the ratio of L3 and L4 is greater than or equal to 3 and less than or equal to 8.
  • connection line between the left and right wheel centers when the walking assembly 12 is in the second position is the third wheel line.
  • L3 may be the distance between the first wheel line and the second wheel line
  • L4 may be the distance between the second wheel line and the third wheel line.
  • the left and right wheel centers refer to the wheel centers of the left and right wheels of the first running wheel 121 , or the wheel centers of the left and right wheels of the second running wheel 122 .
  • the sum of the up and down jump strokes of the walking assembly 12 is L5, and L5 is equal to the sum of L3 and L4, that is, the wheel jump stroke is L5.
  • the wheel jump stroke L5 refers to the maximum distance between the first position and the second position.
  • the stroke of the first shock absorber 1312 is L6, and the stroke of the first shock absorber 1312 refers to the distance between when the first shock absorber 1312 is compressed to the shortest position and when extended to the longest position.
  • the ratio of L5 and L6 is greater than or equal to 1.1 and less than or equal to 2. Specifically, the ratio of L5 and L6 is greater than or equal to 1.2 and less than or equal to 1.9.
  • the ratio of L5 to L6 is equal to or greater than 1.3 and equal to or less than 1.8.
  • the stroke of the second shock absorber is basically the same as the stroke of the first shock absorber 1312, that is, the ratio of the strokes of L5 and the second shock absorber is the first ratio, the ratio of L5 and L6 is the second ratio, and the first ratio and The second ratios are consistent, so that when the walking assembly 12 jumps up and/or down, the second shock absorber can have a better stroke to evenly absorb the impact of the road surface, thereby effectively buffering the impact of the road surface and benefiting the second shock absorber. 2. Design and manufacturing of shock absorbers.
  • the frame 11 also includes the lowest point S1 along the up and down direction.
  • the horizontal plane is substantially perpendicular to the up and down direction of the all-terrain vehicle 100 .
  • the distance between the lowest point S1 and the horizontal plane is H, that is, the distance between the lowest point S1 of the frame 11 and the ground is H.
  • the radius of the traveling assembly 12 is R, that is, the radius of the wheels of the all-terrain vehicle 100 is R.
  • the ratio of R and H is greater than or equal to 0.9 and less than or equal to 1.4. Specifically, the ratio of R and H is greater than or equal to 1 and less than or equal to 1.3.
  • R may be the radius of the first traveling wheel 121, and R may also be the radius of the second traveling wheel 122. Since the distance between the lowest point of the all-terrain vehicle 100 and the ground has a great influence on the height of the center of mass of the all-terrain vehicle 100, through the above settings, the stability performance of the all-terrain vehicle 100 can be improved, and the all-terrain vehicle 100 can have good The passability increases the wheel jump stroke, which is beneficial to the structural design and processing of the first shock absorber 1312 and the second shock absorber.
  • the first running wheel 121 includes a first front wheel 1211 and a second front wheel 1212 .
  • the first front wheel 1211 includes a first symmetry plane 1211a perpendicular to the left-right direction, and the first front wheel 1211 is substantially symmetrically arranged with respect to the first symmetry plane 1211a.
  • the second front wheel 1212 includes a second symmetry plane 1212a perpendicular to the left-right direction, and the second front wheel 1212 is substantially symmetrically arranged with respect to the second symmetry plane 1212a.
  • the second running wheel 122 includes a first rear wheel 1221 and a second rear wheel 1222 .
  • the first rear wheel 1221 includes a third symmetry plane 1221a perpendicular to the left-right direction, and the first rear wheel 1221 is substantially symmetrically arranged with respect to the third symmetry plane 1221a.
  • the second rear wheel 1222 includes a fourth symmetry plane 1222a perpendicular to the left-right direction, and the second rear wheel 1222 is substantially symmetrically arranged with respect to the fourth symmetry plane 1222a.
  • the distance between the first symmetry plane 1211a and the second symmetry plane 1212a is the first wheelbase D1
  • the distance between the third symmetry plane 1221a and the fourth symmetry plane 1222a is the second wheelbase D2.
  • the ratio of the first wheel base D1 to the second wheel base D2 is greater than or equal to 0.8 and less than or equal to 1.3. Specifically, the ratio of the first wheel base D1 to the second wheel base D2 is greater than or equal to 0.9 and less than or equal to 1.2. In this embodiment, the ratio of the first wheel base D1 and the second wheel base D2 is greater than or equal to 1 and less than or equal to 1.1.
  • the load transfer of the front axle causes the all-terrain vehicle 100 to tend to understeer, which is beneficial to the arrangement of the steering mechanism of the all-terrain vehicle 100 .
  • the steering mechanism refers to the components used for steering in the all-terrain vehicle 100
  • the front axle of the all-terrain vehicle 100 refers to the connecting shaft between the first front wheel 1211 and the second front wheel 1212 .
  • the first front wheel 1211 , the second front wheel 1212 , the first rear wheel 1221 and the second rear wheel 1222 all extend substantially along the front-rear direction of the all-terrain vehicle 100 .
  • the first front wheel 1211 and the first rear wheel 1221 are both disposed on the left side of the all-terrain vehicle 100
  • the second front wheel 1212 and the second rear wheel 1222 are both disposed on the right side of the all-terrain vehicle 100 .
  • the left end surface of the first front wheel 1211 is the first end surface
  • the right end surface of the second front wheel 1212 is the second end surface.
  • the left end surface of the first rear wheel 1221 is the third end surface
  • the right end surface of the second rear wheel 1222 is the fourth end surface.
  • the first end face, the second end face, the third end face and the fourth end face are all arranged substantially perpendicular to the left and right directions.
  • the distance between the first end surface and the second end surface is the first end distance D3, that is, the first end distance D3 is the distance between the outer surface of the first front wheel 1211 and the outer surface of the second front wheel 1212.
  • the distance between the third end surface and the fourth end surface is the second end distance D4, that is, the second end distance D4 is the distance between the outer surface of the first rear wheel 1221 and the outer surface of the second rear wheel 1222.
  • the ratio of the first end distance D3 to the second end distance D4 is greater than or equal to 0.8 and less than or equal to 1.5.
  • the ratio of the first end distance D3 to the second end distance D4 is greater than or equal to 0.9 and less than or equal to 1.4. In this embodiment, the ratio of the first end distance D3 to the second end distance D4 is greater than or equal to 1 and less than or equal to 1.3.
  • the rear suspension 132 is provided on the rear side of the vehicle frame 11 and connected to the vehicle frame 11 .
  • the rear suspension 132 includes a rear swing arm 1321, a rear shock absorber 1322, a steering knuckle 1323 and a link assembly 1324.
  • One end of the rear rocker arm 1321 is connected to the frame 11 , and the other end of the rear rocker arm 1321 is connected to the steering knuckle 1323 .
  • One end of the rear shock absorber 1322 is connected to the frame 11 , and the other end of the rear shock absorber 1322 is connected to the rear swing arm 1321 .
  • the connecting rod assembly 1324 is connected to the vehicle frame 11 , and the other end of the connecting rod assembly 1324 is connected to the steering knuckle 1323 .
  • the steering knuckle 1323 is also at least partially connected to the walking assembly 12, and is used to transmit and bear the front load of the all-terrain vehicle 100, and drive the deflection of the walking assembly 12, thereby realizing the steering of the all-terrain vehicle 100.
  • the connecting rod assembly 1324 is used to reduce the impact of large wheelbase changes on the stability of the all-terrain vehicle 100 during the driving process of the all-terrain vehicle 100 .
  • one end of the rear rocker arm 1321 is rotatably connected to the vehicle frame 11 , and the other end of the rear rocker arm 1321 is rotatably connected to the steering knuckle 1323 .
  • One end of the rear shock absorber 1322 is rotatably connected to the vehicle frame 11 , and the other end of the rear shock absorber 1322 is rotatably connected to the rear rocker arm 1321 .
  • One end of the connecting rod assembly 1324 is rotationally connected to the vehicle frame 11 , and the other end of the connecting rod assembly 1324 is rotationally connected to the steering knuckle 1323 .
  • a first connecting piece 1321a is provided between two ends of the rear swing arm 1321, and the first connecting piece 1321a is used to connect one end of the rear swing arm 1321 and the rear shock absorber 1322.
  • the connecting rod assembly 1324 can rotate around the connection point between the connecting rod assembly 1324 and the frame 11, so that the connecting rod assembly 1324 can rotate around the connecting point between the connecting rod assembly 1324 and the steering knuckle 1323 , so that the connecting rod assembly 1324 reduces the impact of large wheelbase changes on the all-terrain vehicle 100, that is, reduces the changes in the positioning parameters of the walking assembly 12, thereby improving the control stability of the all-terrain vehicle 100.
  • the positioning parameters of the walking assembly 12 refer to the positional relationship of the walking assembly 12 relative to the vehicle frame 11 .
  • the link assembly 1324 includes a first link 1324a, a second link 1324b, and a third link 1324c.
  • the first link 1324a is at least partially disposed on the front side of the second link 1324b and at least partially disposed on the front side of the third link 1324c
  • the second link 1324b is at least partially disposed On the upper side of the third link 1324c.
  • One end of the first link 1324a is rotatably connected to the steering knuckle 1323, the other end of the first link 1324a is rotatably connected to the vehicle frame 11, one end of the second link 1324b is rotatably connected to the steering knuckle 1323, and the other end of the second link 1324b is rotatably connected to the vehicle frame 11.
  • One end of the third link 1324c is rotatably connected to the vehicle frame 11, one end of the third link 1324c is rotatably connected to the steering knuckle 1323, and the other end of the third link 1324c is rotatably connected to the vehicle frame 11.
  • the steering knuckle 1323 includes a first installation point 1323a, a second installation point 1323b and a third installation point 1323c.
  • the first mounting point 1323a is disposed on the front side of the second mounting point 1323b.
  • the first mounting point 1323a is also disposed on the front side of the third mounting point 1323c.
  • the second mounting point 1323b is disposed On the upper side of the third mounting point 1323c.
  • the first mounting point 1323a is used to connect the first link 1324a
  • the second mounting point 1323b is used to connect the second link 1324b
  • the third mounting point 1323c is used to connect the third link 1324c.
  • the second link 1324b and the third link 1324c may be substantially parallel.
  • the wheelbase of the walking assembly 12 changes greatly, which adversely affects the stability of the all-terrain vehicle 100.
  • the first link 1324a, the second link 1324b and the third link 1324c can be used to The fixed points of the walking assembly 12 and the frame 11 are increased to control the wheelbase change of the walking assembly 12 , that is, to control the positioning parameters of the walking assembly 12 , thereby improving the operational stability and driving safety of the all-terrain vehicle 100 .
  • first link 1324a, the second link 1324b and the third link 1324c can form a fixed frame of the traveling assembly 12, thereby achieving precise control of the suspension assembly 13 and improving the safety of the all-terrain vehicle 100.
  • both ends of the first link 1324a are rotatably connected, both ends of the second link 1324b are rotatably connected, and both ends of the third link 1324c are rotatably connected, therefore, it can be Without affecting the shock-absorbing effect of the traveling assembly 12, that is, without affecting the shock-absorbing effect of the rear swing arm 1321 and the rear shock absorber 1322 on the all-terrain vehicle 100, the wheelbase of the traveling assembly 12 is controlled, thereby improving the overall performance of the vehicle.
  • Terrain Bike 100 Stability since both ends of the first link 1324a are rotatably connected, both ends of the second link 1324b are rotatably connected, and both ends of the third link 1324c are rotatably connected, therefore, it can be Without affecting the shock-absorbing effect of the traveling
  • the connecting rod assembly 1324 includes a first connecting rod 1324a and a second connecting rod 1324b, that is, the connecting rod assembly 1324 can eliminate the third connecting rod 1324c.
  • the first link 1324a is at least partially disposed on the front side of the second link 1324b.
  • One end of the first link 1324a is rotatably connected to the steering knuckle 1323
  • the other end of the first link 1324a is rotatably connected to the vehicle frame 11
  • one end of the second link 1324b is rotatably connected to the steering knuckle 1323
  • the other end of the second link 1324b is rotatably connected to the vehicle frame 11.
  • the steering knuckle 1323 includes a first installation point 1323a and a second installation point 1323b.
  • the first mounting point 1323a is provided on the front side of the second mounting point 1323b.
  • the first mounting point 1323a is used to connect the first connecting rod 1324a and the steering knuckle 1323
  • the second mounting point 1323b is used to connect the second connecting rod 1324b and the steering knuckle 1323.
  • the first link 1324a and the second link 1324b can be used to increase the fixed points of the walking assembly 12 and the frame 11, thereby controlling the change of the wheelbase of the walking assembly 12, thereby improving the operational stability of the all-terrain vehicle 100 sex and driving safety.
  • the first link 1324a and the second link 1324b can form a fixed frame of the traveling assembly 12, thereby achieving precise control of the suspension assembly 13 and improving the safety of the all-terrain vehicle 100.
  • the connecting rod assembly 1324 includes a first connecting rod 1324a and a third connecting rod 1324c, that is, the connecting rod assembly 1324 can eliminate the second connecting rod 1324b.
  • the first link 1324a is at least partially disposed on the front side of the third link 1324c.
  • first link 1324a is rotatably connected to the steering knuckle 1323
  • the other end of the first link 1324a is rotatably connected to the vehicle frame 11
  • one end of the third link 1324c is rotatably connected to the steering knuckle 1323
  • the other end of the third link 1324c is rotatably connected to the steering knuckle 1323.
  • One end is rotatably connected to the vehicle frame 11.
  • the steering knuckle 1323 includes a first installation point 1323a and a third installation point 1323c.
  • the first mounting point 1323a is provided on the front side of the third mounting point 1323c.
  • the first mounting point 1323a is used to connect the first connecting rod 1324a and the steering knuckle 1323
  • the third mounting point 1323c is used to connect the third connecting rod 1324c and the steering knuckle 1323.
  • the first link 1324a and the third link 1324c can be used to increase the fixed points of the walking assembly 12 and the frame 11, thereby controlling the change of the wheelbase of the walking assembly 12, thereby improving the operational stability of the all-terrain vehicle 100 sex and driving safety.
  • the first link 1324a and the third link 1324c can form a fixed frame of the traveling assembly 12, thereby achieving precise control of the suspension assembly 13 and improving the safety of the all-terrain vehicle 100.
  • the connecting rod assembly 1324 includes a second connecting rod 1324b and a third connecting rod 1324c, that is, the connecting rod assembly 1324 can eliminate the first connecting rod 1324a.
  • the second link 1324b is at least partially disposed on the upper side of the third link 1324c.
  • the steering knuckle 1323 includes a second installation point 1323b and a third installation point 1323c.
  • the second mounting point 1323b is provided on the upper side of the third mounting point 1323c.
  • the second mounting point 1323b is used to connect the second link 1324b and the steering knuckle 1323
  • the third mounting point 1323c is used to connect the third link 1324c and the steering knuckle 1323.
  • the second link 1324b and the third link 1324c can be used to increase the fixed points of the walking assembly 12 and the frame 11, thereby controlling the change of the wheelbase of the walking assembly 12, thereby improving the operational stability of the all-terrain vehicle 100 sex and driving safety.
  • the second link 1324b and the third link 1324c can form a fixed frame of the traveling assembly 12, thereby achieving precise control of the suspension assembly 13 and improving the safety of the all-terrain vehicle 100.
  • the upper rocker arm 1311a includes a first rocker arm 1311c and a second rocker arm 1311d
  • the lower rocker arm 1311b includes a third rocker arm 1311e and a fourth rocker arm 1311f.
  • the all-terrain vehicle 100 also includes a first state and a second state.
  • the first state is a state when the all-terrain vehicle 100 is stationary
  • the second state is a state when the all-terrain vehicle 100 is traveling.
  • the front side of the vehicle frame 11 is provided with a first connection point 111 , a second connection point 112 , a third connection point 113 and a fourth connection point 114 .
  • a first connection hole 1311p is provided at one end of the first rocker arm 1311c connected to the frame 11, and the first connection point 111 is used to connect with the first connection hole 1311p, thereby realizing the first rocker arm 1311c.
  • the third connection point 113 is used to connect with the third rocker arm 1311e, thereby achieving a stable connection between the third rocker arm 1311e and the frame 11;
  • the fourth connection point 114 is used to connect with the fourth rocker arm 1311f connection, thereby achieving a stable connection between the fourth rocker arm 1311f and the vehicle frame 11.
  • the all-terrain vehicle 100 includes a first projection surface 101 perpendicular to the left and right direction (refer to FIG. 1 ).
  • the line connecting the center of the first connection point 111 and the center of the third connection point 113 is the third straight line 103.
  • the line connecting the center of the second connection point 112 and the center of the fourth connection point 114 is the fourth straight line 104.
  • the line connecting the center of the connection point 111 and the center of the second connection point 112 is the fifth straight line 107
  • the line connecting the center of the third connection point 113 and the center of the fourth connection point 114 is the sixth straight line 108 .
  • the axis of the first connecting hole 1311p extends substantially along the direction of the first straight line 1311r, and the first straight line 1311r substantially coincides with the fifth straight line 107.
  • the third straight line 103 , the fifth straight line 107 , the fourth straight line 104 and the sixth straight line 108 surround a first space 105 .
  • the projection of the first space 105 on the first projection plane 101 along the left-right direction is the first projection plane.
  • the front suspension 131 includes a first support 1313.
  • the first support 1313 is provided with a first axis hole 1313a connected to the first running wheel 121.
  • the center of the first axis hole 1313a and the center of the first running wheel 121 are basically at the same position. in a straight line.
  • the projection of the center of the first axis hole 1313a on the first projection surface 101 along the left-right direction is the first projection point, that is, the projection of the center of the first traveling wheel 121 on the first projection surface 101 along the left-right direction is the first projection point.
  • the first projection point is located in the first projection plane, that is, the first projection plane covers the first projection point.
  • the first projection point may be outside the first projection plane.
  • connection method of the rear rocker arm 1321 is basically the same as the connection method of the front rocker arm 1311.
  • the rear rocker arm 1321 includes a fifth rocker arm, a sixth rocker arm, a seventh rocker arm and an eighth rocker arm.
  • the rear side of the vehicle frame 11 is provided with a fifth connection point, a sixth connection point, a seventh connection point and an eighth connection point.
  • the fifth connection point is used to connect the fifth rocker arm;
  • the sixth connection point is used to connect the sixth rocker arm;
  • the seventh connection point is used to connect the seventh rocker arm; and the eighth connection point is used to connect the eighth rocker arm.
  • the line between the center of the fifth connection point and the center of the seventh connection point, the line between the center of the sixth connection point and the center of the eighth connection point, the line between the center of the fifth connection point and the center of the sixth connection point defines a second space.
  • the projection of the second space on the first projection plane 101 along the left-right direction is a second projection plane.
  • the rear suspension 132 includes a second support.
  • the second support is provided with a second shaft hole connected to the second running wheel 122 .
  • the center of the second shaft hole and the center of the second running wheel 122 are substantially on the same straight line.
  • the projection of the center of the second axis hole on the first projection surface 101 along the left-right direction is the second projection point, that is, the projection of the center of the second wheel 122 on the first projection surface 101 along the left-right direction is the second projection point.
  • the second projection point is located in the second projection plane, that is, the second projection plane covers the second projection point.
  • the second projection point may be outside the second projection plane.
  • the suspension assembly 13 also includes a shock absorber 133.
  • One end of the shock absorber 133 is connected to the frame 11, and the other end of the shock absorber 133 is connected to the front rocker arm 1311 or Swingarm for shock absorption on the ATV 100.
  • the shock absorber 133 includes a first shock absorber 1312 and a second shock absorber.
  • the first shock absorber 1312 is disposed on the front side of the vehicle frame 11 .
  • One end of the first shock absorber 1312 is connected to the vehicle frame 11
  • the other end of the first shock absorber 1312 is connected to the front rocker arm 1311 .
  • the second shock absorber is arranged on the rear side of the vehicle frame 11.
  • the all-terrain vehicle 100 includes a first projection surface 101 perpendicular to the left and right direction, a second projection surface 102 perpendicular to the up and down direction, and a third projection surface 106 perpendicular to the front and rear direction.
  • the projection of the second projection surface 102 on the first projection surface 101 along the left-right direction is the second projection line
  • the projection of the eighth straight line 1312d on the first projection surface 101 along the left-right direction is the fifth projection line.
  • the angle ⁇ between the second projection line and the fifth projection line is greater than or equal to 60° and less than or equal to 110°.
  • the included angle ⁇ is greater than or equal to 65° and less than or equal to 105°.
  • the included angle ⁇ is greater than or equal to 70° and less than or equal to 100°.
  • the projection of the eighth straight line 1312d on the third projection surface 106 along the front-to-back direction is the sixth projection line
  • the projection of the second projection surface 102 on the third projection surface 106 along the front-to-back direction is the seventh projection line.
  • the sixth projection line and the The angle ⁇ between the seven projection lines is greater than or equal to 40° and less than or equal to 90°. Specifically, the included angle ⁇ is greater than or equal to 45° and less than or equal to 85°.
  • the included angle ⁇ is greater than or equal to 50° and less than or equal to 80°.
  • first shock absorber 1312 located on the right side of the all-terrain vehicle 100 is arranged in a manner basically consistent with that of the third shock absorber 1312c
  • second shock absorber is arranged in a manner basically consistent with that of the third shock absorber 1312c.
  • the settings are the same.
  • the transmission assembly 16 includes a drive axle 161 and a drive shaft 162 .
  • Transaxle 161 is used to provide power to drive shaft 162 .
  • One end of the drive shaft 162 is connected to the traveling assembly 12 , and the other end of the drive shaft 162 is connected to the drive axle 161 , so that the driving shaft 162 drives the traveling assembly 12 .
  • the drive axle 161 is disposed on the front side of the vehicle frame 11 , one end of the drive shaft 162 is connected to the drive axle 161 , and the other end of the drive shaft 162 is connected to the first running wheel 121 .
  • the drive axle 161 is disposed on the rear side of the vehicle frame 11 , one end of the drive shaft 162 is connected to the drive axle 161 , and the other end of the drive shaft 162 is connected to the second running wheel 122 .
  • the drive shaft 162 includes a first shaft and a second shaft, and the drive axle 161 includes a first axle and a second axle.
  • the first bridge is arranged on the front side of the vehicle frame 11 , one end of the first shaft is connected to the first bridge, and the other end of the first shaft is connected to the first running wheel 121 .
  • the second bridge is arranged on the rear side of the vehicle frame 11 , one end of the second shaft is connected to the second bridge, and the other end of the second shaft is connected to the second running wheel 122 .
  • the all-terrain vehicle 100 includes a second projection surface 102 perpendicular to the up-down direction and a third projection surface 106 perpendicular to the front-rear direction.
  • the projection of the axis of the driving shaft 162 on the third projection surface 106 along the front-rear direction is the eighth projection line
  • the projection of the second projection surface 102 on the third projection surface 106 along the front-rear direction is the ninth projection line.
  • the acute angle formed by the eighth projection line and the ninth projection line is the included angle ⁇ .
  • the included angle ⁇ is greater than or equal to 0° and less than or equal to 60°.
  • the included angle ⁇ is greater than or equal to 0° and less than or equal to 45°.
  • the included angle ⁇ is greater than or equal to 0° and less than or equal to 30°.
  • a fifth connection hole 1311n (refer to FIG. 10 ) is provided at one end of the third rocker arm 1311e connected to the vehicle frame 11 .
  • the axis of the fifth connection hole 1311n extends substantially along the front-rear direction of the all-terrain vehicle 100 .
  • the axis of the fifth connecting hole 1311n basically coincides with the sixth straight line 108.
  • the axis of the first connection hole 1311p extends substantially along the direction of the first straight line 1311r.
  • the first connection hole 1311p has a centerline 1311w extending in the left-right direction (refer to FIG.
  • the first connection hole 1311p is arranged substantially symmetrically with respect to the centerline 1311w.
  • the projection of the first straight line 1311r on the first projection surface 101 is the first projection line
  • the projection of the center of the first axis hole 1313a on the first projection surface 101 is the first projection point.
  • the projection of the center of the first traveling wheel 121 on the first projection surface 101 is the first projection point
  • the projection of the output center of the drive axle 161 on the first projection surface 101 is the third projection point
  • the axis of the fifth connecting hole 1311n is at
  • the projection on the first projection surface 101 is the fourth projection line
  • the projection of the center line 1311w of the first connection hole 1311p on the first projection surface 101 is the fourth projection point.
  • the output center of the drive axle 161 refers to the center of the connection between the drive axle 161 and the drive shaft 162 .
  • the distance between the fourth projection point and the fourth projection line is d1
  • the distance between the third projection point and the first projection line is d2
  • the distance between the first projection point and the first projection line is d3.
  • the ratio of d2 and d1 is greater than or equal to 0.1 and less than or equal to 0.8.
  • the ratio of d3 and d1 is greater than or equal to 0.5 and less than or equal to 1.
  • the ratio of d2 and d1 is greater than or equal to 0.2 and less than or equal to 0.7.
  • the ratio of d3 and d1 is greater than or equal to 0.6 and less than or equal to 0.9.
  • the third projection point is located between the first projection line and the fourth projection line, that is, along the up and down direction of the all-terrain vehicle 100, and the output center of the drive axle 161 is at the first connection point 111 and the second connection point.
  • the output center of the drive axle 161 is on the upper side of the line connecting the third connection point 113 and the fourth connection point 114, thereby limiting the position of the output center of the drive axle 161 relative to the front rocker arm 1311, and thus
  • the transmission efficiency of the transmission assembly 16 can be improved, and the shock absorption performance of the suspension assembly 13 can be improved.
  • the third projection point when the all-terrain vehicle 100 is in the first state, the third projection point is located in the first projection plane, that is, the first projection plane covers the third projection point.
  • the third projection point may be outside the first projection plane.
  • the third projection point is located on the upper side of the first projection point. That is, along the up-down direction of the all-terrain vehicle 100, the output center of the drive axle 161 is located above the center of the first shaft hole 1313a.
  • the drive axle 161 is located on the rear side of the frame 11 , and the positional relationship of the drive axle 161 on the rear side of the frame 11 is basically the same as the positional relationship of the drive axle 161 on the front side of the frame 11 .
  • a sixth connection hole is provided at one end of the seventh rocker arm connected to the vehicle frame 11 , and the axis of the sixth connection hole extends substantially along the front-rear direction of the all-terrain vehicle 100 .
  • the axis of the third connecting hole is substantially along the second straight line direction extension.
  • the output center of the drive axle 161 is at least partially disposed between the axis of the sixth connecting hole and the second straight line, and is located above the center of the second axis hole in the up-down direction of the all-terrain vehicle 100 .
  • the projection of the output center of the drive axle 161 on the first projection plane 101 in the left-right direction is located in the second projection plane.
  • the projection of the output center of the drive axle 161 along the left-right direction on the first projection plane 101 may be located outside the second projection plane.
  • the positional relationship of the first axle and the position of the drive axle 161 on the front side of the frame 11 are basically the same, and the positional relationship of the second axle and the position of the drive axle 161 on the rear side of the frame 11 are basically the same.
  • the relationship is basically the same.

Abstract

一种全地形车,包括:车架、行走组件、悬架组件、动力组件和传动组件,其中行走组件包括第一行走轮和第二行走轮;动力组件至少部分设置在车架上;传动组件传动连接行走组件及动力组件,传动组件包括驱动桥和驱动轴;假定一个全地形车垂直于全地形车的左右方向的投影面为第一投影面、一个垂直于全地形车的上下方向的投影面为第二投影面和一个垂直于全地形车的前后方向的投影面为第三投影面;驱动轴的轴线沿前后方向在第三投影面的投影为第一投影线,第二投影面沿前后方向在第三投影面的投影为第二投影线,第一投影线和第二投影线所成的锐角的角度大于等于0°且小于等于60°,通过上述设置,提高了全地形车的舒适性和使用寿命。

Description

全地形车
相关申请
本申请要求2022年05月30日申请的,申请号为2022106058655,发明名称为“全地形车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,特别是涉及一种全地形车。
背景技术
全地形车是一种全天候、全地形行驶的四轮越野车辆。全地形车车架是整车的关键部件和主要的承载部件,在整车的可靠性和使用寿命研究方面有十分重要的作用,整车的操纵稳定性、行驶安全性、乘坐舒适性也都与车架的结构和性能密不可分。由于全地形车必须适应各种复杂的工作环境,因此对全地形车的悬架提出了较高的要求。
目前,虽然有些全地形车会设置一些性能较佳的悬架,但是全地形车依旧无法适应一些特殊的路况,使得其舒适性、运动性能、甚至使用寿命受到较大的影响。
针对如何通过优化悬架结构以提高全地形车的舒适性和运动性能,增加整车的适用寿命目前现有技术还没有提出有效的解决方案。
发明内容
本申请实施例中提供了一种全地形车,以解决背景技术中存在的至少一个问题。
第一个方面,在本实施例中提供了一种全地形车,包括:车架;行走组件,行走组件包括第一行走轮和第二行走轮;悬架组件,悬架组件包括前悬架和后悬架,第一行走轮通过前悬架连接车架,第二行走轮通过后悬架连接车架;车身覆盖件,车身覆盖件至少部分设置在车架上;动力组件,动力组件至少部分设置在车架上;传动组件,传动组件传动连接行走组件及动力组件,传动组件包括驱动桥和驱动轴;假定一个垂直于全地形车的左右方向的投影面为第一投影面、一个垂直于全地形车的上下方向的投影面为第二投影面和一个垂直于全地形车的前后方向的投影面为第三投影面;驱动桥的输出中心沿左右方向在第一投影面上的投影为第一投影点,行走组件的圆心沿左右方向在第一投影面上的投影为第二投影点,第一投影点位于第二投影点的上侧;驱动轴的轴线沿前后方向在第三投影面的投影为第一投影线,第二投影面沿前后方向在第三投影面的投影为第二投影线,第一投影线和第二投影线所成的夹角大于等于0°且小于等于60°;前悬架包括:上摇臂,上摇臂的一端设置有第一安装点,上摇臂的另一端设置有第二安装点;下摇臂,下摇臂的一端设置有第三安装点,下摇臂的另一端设置有第四安装点;第一安装点和第二安装点之间的距离为L1,第三安装点和第四安装点之间的距离为L2,L1和L2的比值大于等于0.5且小于等于1.15。
第二个方面,在本实施例中提供了一种全地形车,包括:车架;行走组件,行走组件包括第一行走轮和第二行走轮;悬架组件,悬架组件包括前悬架和后悬架,第一行走轮通过前悬架连接车架,第二行走轮通过后悬架连接车架;动力组件,动力组件至少部分设置在车架上;传动组件,传动组件传动连接行走组件及动力组件,传动组件包括驱动桥和驱动轴,假定一个垂直于全地形车的左右方向的投影面为第一投影面、一个垂直于全地形车的上下方向的投影面为第二投影面、一个垂直于全地形车的前后方向的投影面为第三投影面;驱动桥的输出中心沿左右方向在第一投影面上的投影为第一投影点,行走组件的圆心沿左右方向在第一投影面上的投影为第二投影点,第一投影点位于第二投影点的上侧;驱动轴的轴线沿前后方向在第三投影面的投影为第一投影线,第二投影面沿前后方向在第三投影面的投影为第二投影线,第一投影线和第二投影线所成的角度大于等于0°且小于等于60°。
第三个方面,在本实施例中提供了一种全地形车,包括:车架;行走组件,行走组件包括第一行走轮和第二行走轮;悬架组件,悬架组件包括前悬架和后悬架,第一行走轮通过前悬架连接车架,第二行走轮通过后悬架连接车架;动力组件,动力组件至少部分设置在车架上;传动组件,传动组件传动连接行走组件及动力组件,传动组件包括驱动桥和驱动轴;假定一个垂直于全地形车的左右方向的投影面为 第一投影面、一个垂直于全地形车的上下方向的投影面为第二投影面、一个垂直于全地形车的前后方向的投影面为第三投影面;驱动桥的输出中心沿左右方向在第一投影面上的投影为第一投影点,行走组件的圆心沿左右方向在第一投影面上的投影为第二投影点,第一投影点位于第二投影点的上侧;假定驱动轴的轴线沿前后方向在第三投影面的投影为第一投影线,第二投影面沿前后方向在第三投影面的投影为第二投影线,第一投影线和第二投影线所成的角度大于等于0°且小于等于60°;行走组件包括处于上跳的最高点时的第一位置、处于下跳的最低点时的第二位置和处于静止时的初始位置,第一位置和初始位置之间的最大距离为L1,第二位置和初始位置之间的最大距离为L2,L1和L2的比值大于等于1且小于等于10。
与相关技术相比,在本实施例中提供的全地形车,通过设置摇臂和桥的相对位置,提升了悬架上下的跳动区间,增加了传动角,提高了全地形车的舒适性和使用寿命。
本申请的一个或多个实施例的细节在以下附图和描述中提出,以使本申请的其他特征、目的和优点更加简明易懂。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明全地形车的结构示意图。
图2为本发明全地形车的部分结构示意图。
图3为本发明全地形车的第一灯罩和悬架组件的结构示意图。
图4为本发明全地形车的转向节的结构示意图。
图5为本发明全地形车的悬架组件和行走组件的结构示意图。
图6为本发明全地形车的悬架组件和行走组件的另一种结构示意图。
图7为本发明全地形车的行走组件的结构示意图。
图8为本发明后悬架的结构示意图。
图9为本发明后悬架的另一种结构示意图。
图10为本发明全地形车的悬架组件、传动组件和车架的结构示意图。
图11为本发明全地形车的悬架组件的结构示意图。
图12为本发明全地形车的悬架组件的另一角度的结构示意图。
图13为本发明全地形车的悬架组件和行走组件的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。
如图1和图2所示,全地形车100包括车架11、行走组件12、悬架组件13、动力组件14、车身覆盖件15和传动组件16。悬架组件13包括前悬架131和后悬架132,用于连接车架11和行走组件12。行走组件12至少部分设置在车架11上,行走组件12包括第一行走轮121和第二行走轮122,第一行走轮121通过前悬架131连接车架11,第二行走轮122通过后悬架132连接车架11。动力组件14至少部分设置在车架11上,用于提供动力以驱动行走组件12。车身覆盖件15至少部分设置在车架11上。传动组件16至少部分设置在车架11上,传动组件16连接行走组件12,传动组件16还连接动力组件14,用于传递动力组件14的动力至行走组件12,从而驱动行走组件12,进而驱动全地形车100。为了清楚地说明本发明的技术方案,还定义了如图1所示的前、后、左、右、上、下。
如图2至图4所示,作为一种实现方式,悬架组件13还包括转向节135。转向节135至少部分连接第一行走轮121且至少部分连接前悬架131,转向节135用于传递并承受全地形车100的前部载荷,并带动第一行走轮121的偏转,从而实现全地形车100的转向。具体的,转向节135一端设置有第一连接端1351,转向节135的另一端设置有第二连接端1352。前悬架131包括前摇臂1311,前摇臂1311的一端连接车架11,转向节135的第一连接端1351和第二连接端1352均连接前摇臂1311的另一端。 前摇臂1311包括上摇臂1311a和下摇臂1311b,转向节135的第一连接端1351连接上摇臂1311a的一端,上摇臂1311a的另一端连接车架11。转向节135的第二连接端1352连接下摇臂1311b的一端,下摇臂1311b的另一端连接车架11。通过上述设置,可以实现转向节135和前悬架131的稳定连接。在本实施方式中,转向节135包括第一主体1353和连接件1354。第一主体1353的一端设置有第一连接端1351,第一主体1353的另一端设置有第二连接端1352。连接件1354用于连接上摇臂1311a和第一连接端1351,从而实现转向节135和上摇臂1311a的稳定连接。
作为一种实现方式,第一连接端1351和连接件1354之间设置有调节垫片1355,调节垫片1355用于改变第一行走轮121的外倾角,从而弥补制造误差,改善全地形车100的操控特性。此外,调节垫片1355可以通过改变第一行走轮121的外倾角,从而使全地形车100在极限工况下具有良好的抓地力,提高全地形车100的安全性。其中,调节垫片1355的厚度为预设厚度,预设厚度可以根据实际需求进行调整,从而实现对第一行走轮121的外倾角的调整。第一连接端1351的端面至少包括第一端面和第二端面,第一端面和第二端面关于第一连接端1351的端面基本对称设置。调节垫片1355抵接在第一端面或第二端面上。沿垂直于第一连接端1351的端面的方向,调节垫片1355在第一连接端1351的端面的投影为投影面,第一连接端1351的端面的面积为端面面积,投影面的面积小于等于端面面积的一半。其中,投影面可以基本和第一端面重合,也可以基本和第二端面重合。具体的,第一连接端1351的端面设置有若干个第一连接孔1351a。若干个第一连接孔1351a的圆心基本处于同一直线上。若干个第一连接孔1351a的圆心的连线为第五直线1351b。第五直线1351b将第一连接端1351的端面分隔为第一端面和第二端面。沿全地形车100的上下方向,第一端面至少部分设置在第二端面的上侧。调节垫片1355的横截面的轮廓可以基本和第一端面的轮廓一致,也可以基本和第二端面的轮廓一致,从而便于提高调节垫片1355的安装稳定性。
调节垫片1355上设置有若干个第一半孔1355a,连接件1354上设置有若干个第二连接孔1354a。第一连接孔1351a的圆心、第一半孔1355a的圆心、第二连接孔1354a的圆心基本处于同一直线上,从而使第一连接孔1351a、第一半孔1355a、第二连接孔1354a可以通过同一固定件依次连接,便于第一连接端1351、调节垫片1355、连接件1354三者的安装。具体的,调节垫片1355的其中一个侧面抵接在第一端面或第二端面上,调节垫片1355的另一侧面抵接在连接件1354上。此时,固定件依次穿过第二连接孔1354a、第一半孔1355a、第一连接孔1351a,从而实现连接件1354、调节垫片1355和第一连接端1351的稳定连接。在本实施方式中,连接件1354可以是吊耳,固定件可以是螺栓。
作为一种实现方式,调节垫片1355上设置有开槽1355b。开槽1355b用于减轻调节垫片1355的重量,有利于实现全地形车100的轻量化。若干个第一半孔1355a可以设置在开槽1355b的长度方向的两侧。具体的,开槽1355b的设置使调节垫片1355基本呈“C”型,且沿全地形车100的上下方向,开槽1355b的槽口基本向下设置。通过上述设置,可以使调节垫片1355的外轮廓基本和第一端面的轮廓基本一致,便于调节垫片1355的安装,且不会对其他零部件的安装产生影响。
作为一种实现方式,第一连接孔1351a的数量、第一半孔1355a的数量、第二连接孔1354a的数量均为两个。具体的,两个第一半孔1355a设置在开槽1355b的两侧,即开槽1355b至少部分设置在两个第一半孔1355a之间,便于提高调节垫片1355的空间利用率,从而使调节垫片1355的结构更加紧凑。
可以理解的,第一连接端1351的端面还包括对称线,两个第一连接孔1351a关于对称线基本对称设置。第一端面和第二端面还可以关于对称线基本对称设置。
作为一种实现方式,转向节135还可以设置在车架11的后侧。具体的,转向节135至少部分连接第二行走轮122且至少部分连接后悬架132。后悬架132包括后摇臂1321。后摇臂1321的一端连接车架11,第一连接端1351和第二连接端1352均连接后摇臂1321的另一端。具体的,转向节135还可以和后摇臂1321一体成型,且转向节135和后摇臂1321远离车架11的一端一体成型,从而使转向节135和后摇臂1321的结构更加紧凑,便于加工和装配。
作为一种实现方式,前悬架131包括第一减震器1312。第一减震器1312的一端连接车架11,第一减震器1312的另一端连接前摇臂1311。具体的,第一减震器1312的一端设置有第一安装点1312a,第 一减震器1312的另一端设置有第二安装点1312b。第一安装点1312a和车架11连接,第二安装点1312b和前摇臂1311连接。在本实施方式中,车身覆盖件15包括第一灯罩151,第一灯罩151至少部分设置在车架11上且位于车架11的前侧。第一灯罩151用于设置全地形车100前侧的大灯。在一个垂直于全地形车100的前后方向的投影平面103内(参照图1),第一灯罩151的最上端沿前后方向在投影平面103上的投影为第一投影线。上摇臂1311a设置在第一灯罩151的下侧。上摇臂1311a的轴线沿前后方向在投影平面103上的投影为第二投影线。上摇臂1311a的一端设置有第三安装点1311s,上摇臂1311a的另一端设置有第四安装点1311t。第三安装点1311s用于连接转向节135,第四安装点1311t用于连接和车架11。上摇臂1311a包括沿上下方向延伸且经过第三安装点1311s的第六直线1311u,上摇臂1311a还包括沿上下方向延伸且经过第四安装点1311t的第七直线1311v。第六直线1311u沿前后方向在投影平面103上的投影为第三投影线,第七直线1311v沿前后方向在投影平面103上的投影为第四投影线。第一投影线、第二投影线、第三投影线和第四投影线围成有第三投影面M1。第一安装点1312a沿前后方向在投影平面103上的投影为第四投影面。第四投影面位于第三投影面M1中,即第三投影面M1覆盖于第四投影面。通过上述设置,可以使第一减震器1312的安装对车架11的管件安装的影响较小,即可以使第一减震器1312的安装对全地形车100的其他零部件安装的影响较小。此外,通过上述设置,可以将第一安装点1312a设置在第一灯罩151的最上端的下侧,可以减少第一减震器1312外露导致的泥沙侵入,从而提高第一减震器1312的使用寿命,还可以降低全地形车100的质心高度,进而提高全地形车100的操作稳定性。其中,第一安装点1312a可以通过钣金件等连接件和车架11连接,从而可以使第四投影面位于第三投影面M1中。
在本实施方式中,下摇臂1311b设置在上摇臂1311a的下侧。下摇臂1311b的轴线沿前后方向在投影平面103上的投影为第五投影线。下摇臂1311b的一端设置有第五安装点1311g,下摇臂1311b的另一端设置有第六安装点1311h。其中,当下摇臂1311b为直管件时,下摇臂1311b的轴线指直管件的轴线;当下摇臂1311b为弯曲管件时,下摇臂1311b的轴线指第五安装点1311g和第六安装点1311h的连线。第五安装点1311g用于连接转向节135,第六安装点1311h用于连接车架11。下摇臂1311b包括沿上下方向延伸且经过第五安装点1311g的第八直线1311j,下摇臂1311b还包括沿上下方向延伸且经过第六安装点1311h的第九直线1311k。第八直线1311j沿前后方向在投影平面103上的投影为第六投影线,第九直线1311k沿前后方向在投影平面103上的投影为第七投影线。此外,上摇臂1311a还包括平行于上摇臂1311a的轴线的第十直线1311m,且第十直线1311m位于上摇臂1311a的轴线的上侧。第十直线1311m沿前后方向在投影平面103上的投影为第八投影线。第八投影线和第二投影线之间的距离为L,即沿前后方向,第十直线1311m在投影平面103上的投影和上摇臂1311a的轴线在投影平面103上的投影之间的距离为L。其中,L可以大于等于0mm且小于等于50mm。第五投影线、第六投影线、第七投影线和第八投影线围成有第五投影面M2。第二安装点1312b沿前后方向在投影平面103上的投影为第六投影面。第六投影面位于第五投影面M2中,即第五投影面M2覆盖于第六投影面。通过上述设置,可以使第一减震器1312的行程增加,便于第一减震器1312的结构设计,提升全地形车100的轮跳行程,提升全地形车100的舒适性,有效提高全地形车100的空间利用率。其中,轮跳行程指在全地形车100行驶过程中,行走组件12向上和向下的位移量的总和。此外,第二安装点1312b可以通过钣金件等连接件和前摇臂1311连接,从而可以使第六投影面位于第五投影面M2中。
此外,通过上述设置,可以使第一减震器1312的安装点对全地形车100的其他零部件的影响较小,使全地形车100的结构更加紧凑,从而有利于提高全地形车100的操作稳定性。
作为一种实现方式,第三安装点1311c和第四安装点1311d之间的最短距离为L1,即上摇臂1311a的两个安装点之间的距离为L1。第五安装点1311g和第六安装点1311h之间的最短距离为L2,即下摇臂1311b的两个安装点之间的距离为L2。L1和L2的比值大于等于0.5且小于等于1.15。具体的,L1和L2的比值大于等于0.6且小于等于1.1。在本实施方式中,L1和L2的比值大于等于0.7且小于等于1。通过上述设置,在第一行走轮121的上跳过程中,对上摇臂1311a和下摇臂1311b的结构关系、安装点的设定,使第一行走轮121的外倾角向负的方向变化,有利于提高全地形车100过弯时的轮胎抓地 力,同时使主销内倾角向正的方向变化,有利于加大第一行走轮121的回正力矩,从而有助于提升全地形车100的操控性能。其中,主销内倾角指从全地形车100的前后方向观察第一行走轮121时,主销轴向车身内侧倾斜的角度。
如图5所示,作为一种实现方式,在全地形车100行驶过程中,行走组件12至少包括第一位置、第二位置和初始位置。当行走组件12处于第一位置时,行走组件12处于行走组件12上跳的最高点;当行走组件12处于第二位置时,行走组件12处于行走组件12下跳的最低点;当行走组件12处于初始位置时,行走组件12处于全地形车100静止时行走组件12的位置。第一位置和初始位置的最大距离为行走组件12的上跳行程L3,第二位置和初始位置的最大距离为行走组件12的下跳行程L4。L3和L4的比值大于等于1且小于等于10。具体的,L3和L4的比值大于等于2且小于等于9。在本实施方式中,L3和L4的比值大于等于3且小于等于8。通过上述设置,可以将轮跳行程控制在一定范围内,从而保证全地形车100良好的通过性能且可以提高全地形车100的舒适性。其中,行走组件12处于第一位置时的左右两个轮心之间的连线为第一轮线,行走组件12处于初始位置时的左右两个轮心之间的连线为第二轮线,行走组件12处于第二位置时的左右两个轮心之间的连线为第三轮线。L3可以为第一轮线和第二轮线之间的距离,L4可以为第二轮线和第三轮线之间的距离。其中,左右两个轮心指第一行走轮121的左右两个车轮的轮心,或第二行走轮122的左右两个车轮的轮心。
作为一种实现方式,行走组件12的上跳行程和下跳行程的总和为L5,L5等于L3和L4的总和,即轮跳行程为L5。其中,轮跳行程L5指第一位置和第二位置之间的最大距离。第一减震器1312的行程为L6,第一减震器1312的行程指第一减震器1312压缩至最短与伸长至最长之间的距离。L5和L6的比值大于等于1.1且小于等于2。具体的,L5和L6的比值大于等于1.2且小于等于1.9。在本实施方式中,L5和L6的比值大于等于1.3且小于等于1.8。通过上述设置,在行走组件12上跳和/或下跳的过程中,可以使第一减震器1312具有更好的行程去均匀吸收路面的冲击,从而可以有效缓冲路面冲击并有利于第一减震器1312的设计和制造加工。在本实施方式中,后悬架132包括第二减震器。第二减震器的行程和第一减震器1312的行程基本一致,即L5和第二减震器的行程的比值为第一比值,L5和L6的比值为第二比值,第一比值和第二比值一致,从而在行走组件12上跳和/或下跳的过程中,可以使第二减震器具有更好的行程去均匀吸收路面的冲击,进而可以有效缓冲路面冲击并有利于第二减震器的设计和制造加工。
如图6所示,作为一种实现方式,车架11沿上下方向还包括最低点S1。可以理解的,行走组件12与地面接触的面为水平面。水平面基本垂直于全地形车100的上下方向。最低点S1和水平面之间的距离为H,即车架11的最低点S1和地面之间的距离为H。行走组件12的半径为R,即全地形车100的车轮的半径为R。R和H的比值大于等于0.9且小于等于1.4。具体的,R和H的比值大于等于1且小于等于1.3。其中,R可以是第一行走轮121的半径,R也可以是第二行走轮122的半径。由于全地形车100的最低点和地面之间的距离对全地形车100的质心高度影响较大,通过上述设置,可以提升全地形车100的操稳性能,且能够使全地形车100具备良好的通过性,增大轮跳行程,从而有利于第一减震器1312和第二减震器的结构设计和加工。
如图7所示,作为一种实现方式,第一行走轮121包括第一前轮1211和第二前轮1212。第一前轮1211包括垂直于左右方向的第一对称面1211a,第一前轮1211关于第一对称面1211a基本对称设置。第二前轮1212包括垂直于左右方向的第二对称面1212a,第二前轮1212关于第二对称面1212a基本对称设置。第二行走轮122包括第一后轮1221和第二后轮1222。第一后轮1221包括垂直于左右方向的第三对称面1221a,第一后轮1221关于第三对称面1221a基本对称设置。第二后轮1222包括垂直于左右方向的第四对称面1222a,第二后轮1222关于第四对称面1222a基本对称设置。第一对称面1211a和第二对称面1212a之间的距离为第一轮距D1,第三对称面1221a和第四对称面1222a之间的距离为第二轮距D2。第一轮距D1和第二轮距D2的比值大于等于0.8且小于等于1.3。具体的,第一轮距D1和第二轮距D2的比值大于等于0.9且小于等于1.2。在本实施方式中,第一轮距D1和第二轮距D2的比值大于等于1且小于等于1.1。通过上述设置,可以提高全地形车100的通过性能,减小全地形车100 的前轴的载荷转移,使全地形车100趋于转向不足的趋势,有利于全地形车100的转向机构的布置。其中,转向机构指全地形车100中用于转向的零部件,全地形车100的前轴指第一前轮1211和第二前轮1212之间的连接轴。
作为一种实现方式,第一前轮1211、第二前轮1212、第一后轮1221和第二后轮1222均基本沿全地形车100的前后方向延伸。第一前轮1211和第一后轮1221均设置在全地形车100的左侧,第二前轮1212和第二后轮1222均设置在全地形车100的右侧。第一前轮1211的左端面为第一端面,第二前轮1212的右端面为第二端面。第一后轮1221的左端面为第三端面,第二后轮1222的右端面为第四端面。第一端面、第二端面、第三端面、第四端面均基本垂直于左右方向设置。第一端面和第二端面之间的距离为第一端距D3,即第一端距D3为第一前轮1211的外侧面和第二前轮1212的外侧面之间的距离。第三端面和第四端面之间的距离为第二端距D4,即第二端距D4为第一后轮1221的外侧面和第二后轮1222的外侧面之间的距离。第一端距D3和第二端距D4的比值大于等于0.8且小于等于1.5。具体的,第一端距D3和第二端距D4的比值大于等于0.9且小于等于1.4。在本实施方式中,第一端距D3和第二端距D4的比值大于等于1且小于等于1.3。通过上述设置,可以提高全地形车100的通过性能,减小全地形车100的前轴的载荷转移,使全地形车100趋于转向不足的趋势,有利于全地形车100的转向机构的布置。
如图8所示,作为一种实现方式,后悬架132设置在车架11的后侧且连接车架11。后悬架132包括后摇臂1321、后减震器1322、转向节1323和连杆组件1324。后摇臂1321的一端连接车架11,后摇臂1321的另一端连接转向节1323。后减震器1322的一端连接车架11,后减震器1322的另一端连接后摇臂1321。连杆组件1324的一端连接车架11,连杆组件1324的另一端连接转向节1323。转向节1323还至少部分连接行走组件12,用于传递并承受全地形车100的前部载荷,并带动行走组件12的偏转,从而实现全地形车100的转向。连杆组件1324用于在全地形车100的行驶过程中,减小较大的轮距变化对全地形车100稳定性的影响。具体的,后摇臂1321的一端和车架11转动连接,后摇臂1321的另一端和转向节1323转动连接。后减震器1322的一端和车架11转动连接,后减震器1322的另一端和后摇臂1321转动连接。连杆组件1324的一端和车架11转动连接,连杆组件1324的另一端和转向节1323转动连接。在本实施方式中,后摇臂1321的两端之间设置有第一连接件1321a,第一连接件1321a用于连接后摇臂1321和后减震器1322的一端。通过上述设置,在全地形车100行驶过程中,后摇臂1321可以绕后摇臂1321和车架11的连接点转动,从而可以调整行走组件12和车架11的相对位置;后减震器1322可以绕后减震器1322和车架11的连接点转动,使后减震可以绕后减震器1322和后摇臂1321的连接点转动,从而可以使后减震器1322压缩或伸长,进而提高全地形车100的减震效果;连杆组件1324可以绕连杆组件1324和车架11的连接点转动,使连杆组件1324可以绕连杆组件1324和转向节1323的连接点转动,从而使连杆组件1324减小较大的轮距变化对全地形车100的影响,即减小行走组件12的定位参数的变化,进而提高全地形车100的操控稳定性。其中,行走组件12的定位参数指行走组件12相对车架11的位置关系。
作为一种实现方式,连杆组件1324包括第一连杆1324a、第二连杆1324b和第三连杆1324c。沿全地形车100的前后和上下方向,第一连杆1324a至少部分设置在第二连杆1324b的前侧且至少部分设置在第三连杆1324c的前侧,第二连杆1324b至少部分设置在第三连杆1324c的上侧。第一连杆1324a的一端和转向节1323转动连接,第一连杆1324a的另一端和车架11转动连接,第二连杆1324b的一端和转向节1323转动连接,第二连杆1324b的另一端和车架11转动连接,第三连杆1324c的一端和转向节1323转动连接,第三连杆1324c的另一端和车架11转动连接。具体的,转向节1323包括第一安装点1323a、第二安装点1323b和第三安装点1323c。沿全地形车100的前后和上下方向,第一安装点1323a设置在第二安装点1323b的前侧,第一安装点1323a还设置在第三安装点1323c的前侧,第二安装点1323b设置在第三安装点1323c的上侧。第一安装点1323a用于连接第一连杆1324a,第二安装点1323b用于连接第二连杆1324b,第三安装点1323c用于连接第三连杆1324c。在本实施方式中,第二连杆1324b和第三连杆1324c可以基本平行设置。在全地形车100的行驶过程中,由于后摇臂1321的转动幅度过 大导致行走组件12的轮距变化较大,从而对全地形车100的稳定性造成不良影响,通过上述设置,可以通过第一连杆1324a、第二连杆1324b和第三连杆1324c,以增加行走组件12和车架11的固定点,从而控制行走组件12的轮距变化,即控制行走组件12的定位参数,进而提高全地形车100的操作稳定性和驾驶安全性。此外,可以通过第一连杆1324a、第二连杆1324b和第三连杆1324c构成行走组件12的固定框架,从而实现悬架组件13的精准控制,提高全地形车100的安全性。在本实施方式中,由于第一连杆1324a的两端均为转动连接,第二连杆1324b的两端均为转动连接,第三连杆1324c的两端均为转动连接,因此,可以在不影响行走组件12的减震效果的情况下,即不影响后摇臂1321和后减震器1322对全地形车100的减震效果的情况下,控制行走组件12的轮距,从而提高全地形车100的稳定性。
作为一种实现方式,连杆组件1324包括第一连杆1324a和第二连杆1324b,即连杆组件1324可以去掉第三连杆1324c。此时,沿全地形车100的前后方向,第一连杆1324a至少部分设置在第二连杆1324b的前侧。第一连杆1324a的一端和转向节1323转动连接,第一连杆1324a的另一端和车架11转动连接,第二连杆1324b的一端和转向节1323转动连接,第二连杆1324b的另一端和车架11转动连接。具体的,转向节1323包括第一安装点1323a和第二安装点1323b。沿全地形车100的前后方向,第一安装点1323a设置在第二安装点1323b的前侧。第一安装点1323a用于连接第一连杆1324a和转向节1323,第二安装点1323b用于连接第二连杆1324b和转向节1323。通过上述设置,可以通过第一连杆1324a和第二连杆1324b,以增加行走组件12和车架11的固定点,从而控制行走组件12的轮距变化,进而提高全地形车100的操作稳定性和驾驶安全性。此外,可以通过第一连杆1324a和第二连杆1324b构成行走组件12的固定框架,从而实现悬架组件13的精准控制,提高全地形车100的安全性。
作为一种实现方式,连杆组件1324包括第一连杆1324a和第三连杆1324c,即连杆组件1324可以去掉第二连杆1324b。此时,沿全地形车100的前后方向,第一连杆1324a至少部分设置在第三连杆1324c的前侧。第一连杆1324a的一端和转向节1323转动连接,第一连杆1324a的另一端和车架11转动连接,第三连杆1324c的一端和转向节1323转动连接,第三连杆1324c的另一端和车架11转动连接。具体的,转向节1323包括第一安装点1323a和第三安装点1323c。沿全地形车100的前后方向,第一安装点1323a设置在第三安装点1323c的前侧。第一安装点1323a用于连接第一连杆1324a和转向节1323,第三安装点1323c用于连接第三连杆1324c和转向节1323。通过上述设置,可以通过第一连杆1324a和第三连杆1324c,以增加行走组件12和车架11的固定点,从而控制行走组件12的轮距变化,进而提高全地形车100的操作稳定性和驾驶安全性。此外,可以通过第一连杆1324a和第三连杆1324c构成行走组件12的固定框架,从而实现悬架组件13的精准控制,提高全地形车100的安全性。
如图9所示,作为一种实现方式,连杆组件1324包括第二连杆1324b和第三连杆1324c,即连杆组件1324可以去掉第一连杆1324a。此时,沿全地形车100的上下方向,第二连杆1324b至少部分设置在第三连杆1324c的上侧。第二连杆1324b的一端和转向节1323转动连接,第二连杆1324b的另一端和车架11转动连接,第三连杆1324c的一端和转向节1323转动连接,第三连杆1324c的另一端和车架11转动连接。具体的,转向节1323包括第二安装点1323b和第三安装点1323c。沿全地形车100的上下方向,第二安装点1323b设置在第三安装点1323c的上侧。第二安装点1323b用于连接第二连杆1324b和转向节1323,第三安装点1323c用于连接第三连杆1324c和转向节1323。通过上述设置,可以通过第二连杆1324b和第三连杆1324c,以增加行走组件12和车架11的固定点,从而控制行走组件12的轮距变化,进而提高全地形车100的操作稳定性和驾驶安全性。此外,可以通过第二连杆1324b和第三连杆1324c构成行走组件12的固定框架,从而实现悬架组件13的精准控制,提高全地形车100的安全性。
如图10和图11所示,作为一种实现方式,上摇臂1311a包括第一摇臂1311c和第二摇臂1311d,下摇臂1311b包括第三摇臂1311e和第四摇臂1311f。且全地形车100还包括第一状态和第二状态。第一状态为全地形车100静止时的状态,第二状态为全地形车100行驶时的状态。车架11的前侧设置有第一连接点111、第二连接点112、第三连接点113和第四连接点114。第一摇臂1311c连接车架11的一端设置有第一连接孔1311p,第一连接点111用于和第一连接孔1311p连接,从而实现第一摇臂1311c 和车架11的稳定连接;第二摇臂1311d连接车架11的一端设置有第二连接孔1311q,第二连接点112用于和第二连接孔1311q连接,从而实现第二摇臂1311d和车架11的稳定连接;第三连接点113用于和第三摇臂1311e连接,从而实现第三摇臂1311e和车架11的稳定连接;第四连接点114用于和第四摇臂1311f连接,从而实现第四摇臂1311f和车架11的稳定连接。
作为一种实现方式,全地形车100包括垂直于左右方向上的第一投影面101(参照图1)。第一连接点111的中心和第三连接点113的中心的连线为第三直线103,第二连接点112的中心和第四连接点114的中心的连线为第四直线104,第一连接点111的中心和第二连接点112的中心的连线为第五直线107,第三连接点113的中心和第四连接点114的中心的连线为第六直线108。其中,第一连接孔1311p的轴线基本沿第一直线1311r方向延伸,第一直线1311r基本和第五直线107重合。第三直线103、第五直线107、第四直线104和第六直线108围成有第一空间105。第一空间105沿左右方向在第一投影面101的投影为第一投影平面。前悬架131包括第一支座1313,第一支座1313设置有和第一行走轮121连接的第一轴孔1313a,第一轴孔1313a的圆心和第一行走轮121的圆心基本处于同一直线上。第一轴孔1313a的圆心沿左右方向在第一投影面101的投影为第一投影点,即第一行走轮121的圆心沿左右方向在第一投影面101的投影为第一投影点。在全地形车100处于第一状态时,第一投影点位于第一投影平面中,即第一投影平面覆盖第一投影点设置。在全地形车100处于第二状态时,第一投影点可能会处于第一投影平面外。通过上述设置,可以提高全地形车100的通过性和抗仰俯性能,改善悬架组件13的受力,从而提高全地形车100的稳定性和使用寿命。
作为一种实现方式,后摇臂1321的连接方式和前摇臂1311的连接方式基本一致。其中,后摇臂1321包括第五摇臂、第六摇臂、第七摇臂和第八摇臂。车架11的后侧设置有第五连接点、第六连接点、第七连接点和第八连接点。第五连接点用于连接第五摇臂;第六连接点用于连接第六摇臂;第七连接点用于连接第七摇臂;第八连接点用于连接第八摇臂。具体的,第五连接点的中心和第七连接点的中心之间的连线、第六连接点的中心和第八连接点的中心之间的连线、第五连接点的中心和第六连接点的中心之间的连线、第七连接点的中心和第八连接点的中心之间的连线围成有第二空间。第二空间沿左右方向在第一投影面101的投影为第二投影平面。后悬架132包括第二支座,第二支座设置有和第二行走轮122连接的第二轴孔,第二轴孔的圆心和第二行走轮122的圆心基本处于同一直线上。第二轴孔的圆心沿左右方向在第一投影面101的投影为第二投影点,即第二行走轮122的圆心沿左右方向在第一投影面101的投影为第二投影点。在全地形车100处于第一状态时,第二投影点位于第二投影平面中,即第二投影平面覆盖第二投影点设置。在全地形车100处于第二状态时,第二投影点可能会处于第二投影平面外。通过上述设置,可以提高全地形车100的通过性和抗仰俯性能,改善悬架组件13的受力,从而提高全地形车100的稳定性和使用寿命。
如图11和图12所示,作为一种实现方式,悬架组件13还包括减震器133,减震器133的一端连接车架11,减震器133的另一端连接前摇臂1311或后摇臂,用于全地形车100的减震。具体的,减震器133包括第一减震器1312和第二减震器。第一减震器1312设置在车架11的前侧,第一减震器1312的一端连接车架11,第一减震器1312的另一端连接前摇臂1311。第二减震器设置在车架11的后侧,第二减震器的一端连接车架11,第二减震器的另一端连接后摇臂。在本实施方式中,以位于全地形车100左侧的第一减震器1312为例,且位于全地形车100左侧的第一减震器1312为第三减震器1312c。第三减震器1312c基本沿第八直线1312d方向延伸。全地形车100包括垂直于左右方向的第一投影面101、垂直于上下方向的第二投影面102和垂直于前后方向的第三投影面106。第二投影面102沿左右方向在第一投影面101上的投影为第二投影线,第八直线1312d沿左右方向在第一投影面101上的投影为第五投影线。第二投影线和第五投影线之间的夹角θ大于等于60°且小于等于110°。具体的,夹角θ大于等于65°且小于等于105°。在本实施方式中,夹角θ大于等于70°且小于等于100°。通过上述设置,可以提高全地形车100的操作稳定性,提高全地形车100的空间利用率,从而使全地形车100的结构更加稳定,并提高全地形车100的安全性。第八直线1312d沿前后方向在第三投影面106上的投影为第六投影线,第二投影面102沿前后方向在第三投影面106上的投为第七投影线。第六投影线和第 七投影线之间的夹角γ大于等于40°且小于等于90°。具体的,夹角γ大于等于45°且小于等于85°。在本实施方式中,夹角γ大于等于50°且小于等于80°。通过上述设置,可以使第三减震器1312c的压缩行程较为合理,有利于第三减震器1312c的设计和加工,从而提高全地形车100的加工效率。
可以理解的,位于全地形车100右侧的第一减震器1312的设置方式基本和第三减震器1312c的设置方式一致,第二减震器的设置方式基本和第三减震器1312c的设置方式一致。
图13所示,作为一种实现方式,传动组件16包括驱动桥161和驱动轴162。驱动桥161用于提供动力至驱动轴162。驱动轴162的一端连接行走组件12,驱动轴162的另一端连接驱动桥161,从而使驱动轴162带动行走组件12。当全地形车100为前驱车时,驱动桥161设置在车架11的前侧,驱动轴162的一端连接驱动桥161,驱动轴162的另一端连接第一行走轮121。当全地形车100为后驱车时,驱动桥161设置在车架11的后侧,驱动轴162的一端连接驱动桥161,驱动轴162的另一端连接第二行走轮122。当全地形车100为四驱车时,驱动轴162包括第一轴和第二轴,驱动桥161包括第一桥和第二桥。第一桥设置在车架11的前侧,第一轴的一端连接第一桥,第一轴的另一端连接第一行走轮121。第二桥设置在车架11的后侧,第二轴的一端连接第二桥,第二轴的另一端连接第二行走轮122。
作为一种实现方式,全地形车100包括垂直于上下方向的第二投影面102和垂直于前后方向的第三投影面106。驱动轴162的轴线沿前后方向在第三投影面106的投影为第八投影线,第二投影面102沿前后方向在第三投影面106的投影为第九投影线。第八投影线和第九投影线所成的锐角为夹角δ。夹角δ大于等于0°且小于等于60°。具体的,夹角δ大于等于0°且小于等于45°。在本实施方式中,夹角δ大于等于0°且小于等于30°。通过上述设置,可以提高传动组件16的传动效率,提高悬架组件13的减震性能等。
作为一种实现方式,当全地形车100为前驱车时,驱动桥161位于车架11的前侧。第三摇臂1311e连接车架11的一端设置有第五连接孔1311n(参照图10),第五连接孔1311n的轴线基本沿全地形车100的前后方向延伸。其中,第五连接孔1311n的轴线基本和第六直线108重合。第一连接孔1311p的轴线基本沿第一直线1311r方向延伸。第一连接孔1311p具有沿左右方向延伸的中心线1311w(参照图12),第一连接孔1311p关于中心线1311w基本对称设置。沿全地形车100的左右方向,第一直线1311r在第一投影面101上的投影为第一投影线,第一轴孔1313a的圆心在第一投影面101的投影为第一投影点,即第一行走轮121的圆心在第一投影面101的投影为第一投影点,驱动桥161的输出中心在第一投影面101的投影为第三投影点,第五连接孔1311n的轴线在第一投影面101上的投影为第四投影线,第一连接孔1311p的中心线1311w在第一投影面101上的投影为第四投影点。其中,驱动桥161的输出中心指驱动桥161和驱动轴162连接处的中心。第四投影点和第四投影线之间的距离为d1,第三投影点和第一投影线之间的距离为d2,第一投影点和第一投影线之间的距离为d3。d2和d1的比值大于等于0.1且小于等于0.8。d3和d1的比值大于等于0.5且小于等于1。具体的,d2和d1的比值大于等于0.2且小于等于0.7。d3和d1的比值大于等于0.6且小于等于0.9。通过上述设置,可以提高传动组件16的传动效率,提高悬架组件13的减震性能等。在本实施方式中,第三投影点位于第一投影线和第四投影线之间,即沿全地形车100的上下方向,驱动桥161的输出中心处于第一连接点111和第二连接点112的连线的下侧,驱动桥161的输出中心处于第三连接点113和第四连接点114的连线的上侧,从而限定驱动桥161的输出中心相对前摇臂1311的位置,进而可以提高传动组件16的传动效率,提高悬架组件13的减震性能等。
作为一种实现方式,当全地形车100处于第一状态时,第三投影点位于第一投影平面中,即第一投影平面覆盖第三投影点设置。在全地形车100处于第二状态时,第三投影点可能会处于第一投影平面外。具体的,沿全地形车100的上下方向,第三投影点位于第一投影点的上侧。即沿全地形车100的上下方向,驱动桥161的输出中心位于第一轴孔1313a的圆心的上侧。
当全地形车100为后驱车时,驱动桥161位于车架11的后侧,且驱动桥161在车架11后侧的位置关系和驱动桥161在车架11前侧的位置关系基本一致。具体的,第七摇臂连接车架11的一端设置有第六连接孔,第六连接孔的轴线基本沿全地形车100的前后方向延伸。第三连接孔的轴线基本沿第二直线 方向延伸。驱动桥161的输出中心至少部分设置在第六连接孔的轴线和第二直线之间,且沿全地形车100的上下方向,驱动桥161的输出中心位于第二轴孔的圆心的上侧。当全地形车100处于第一状态时,驱动桥161的输出中心沿左右方向在第一投影面101的投影位于第二投影平面中。在全地形车100处于第二状态时,驱动桥161的输出中心沿左右方向在第一投影面101的投影可能会位于第二投影平面外。
当全地形车100为四驱车时,第一桥的位置关系和驱动桥161在车架11前侧的位置关系基本一致,第二桥的位置关系和驱动桥161在车架11后侧的位置关系基本一致。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (83)

  1. 一种全地形车,包括:
    车架;
    行走组件,所述行走组件包括第一行走轮和第二行走轮;
    悬架组件,悬架组件包括前悬架和后悬架,所述第一行走轮通过所述前悬架连接所述车架,所述第二行走轮通过所述后悬架连接所述车架;
    车身覆盖件,所述车身覆盖件至少部分设置在所述车架上;
    动力组件,所述动力组件至少部分设置在所述车架上;
    传动组件,所述传动组件传动连接所述行走组件及所述动力组件,所述传动组件包括驱动桥和驱动轴;
    假定一个垂直于所述全地形车的左右方向的投影面为第一投影面、一个垂直于所述全地形车的上下方向的投影面为第二投影面、一个垂直于所述全地形车的前后方向的投影面为第三投影面;
    所述驱动桥的输出中心沿所述左右方向在所述第一投影面上的投影为第一投影点,所述行走组件的圆心沿所述左右方向在所述第一投影面上的投影为第二投影点,所述第一投影点位于所述第二投影点的上侧;
    所述驱动轴的轴线沿所述前后方向在所述第三投影面的投影为第一投影线,所述第二投影面沿所述前后方向在所述第三投影面的投影为第二投影线,所述第一投影线和所述第二投影线所成的夹角大于等于0°且小于等于60°;
    所述前悬架包括:
    上摇臂,所述上摇臂的一端设置有第一安装点,所述上摇臂的另一端设置有第二安装点;
    下摇臂,所述下摇臂的一端设置有第三安装点,所述下摇臂的另一端设置有第四安装点;
    所述第一安装点和所述第二安装点之间的距离为L1,所述第三安装点和所述第四安装点之间的距离为L2,所述L1和所述L2的比值大于等于0.5且小于等于1.15。
  2. 根据权利要求1所述的全地形车,其中,所述第一投影线和所述第二投影线所成的夹角大于等于0°且小于等于30°。
  3. 根据权利要求1所述的全地形车,其中,所述后悬架均也包括所述上摇臂和所述下摇臂,所述上摇臂设置有和所述车架连接第一连接孔,所述第一连接孔的轴线沿第一直线方向延伸;
    所述下摇臂设置有和所述车架连接的第二连接孔,所述第二连接孔的轴线沿所述全地形车的前后方向延伸;所述第一直线沿所述左右方向在所述第一投影面上的投影为第三投影线,所述第二连接孔的轴线沿所述左右方向在所述第一投影面上的投影为第四投影线,所述第一投影点设置在所述第三投影线和所述第四投影线之间。
  4. 根据权利要求3所述的全地形车,其中,所述第一连接孔包括沿左右方向延伸的中心线,所述第一连接孔关于所述中心线基本对称设置;所述中心线沿所述左右方向在所述第一投影面上的投影为第三投影点,所述第三投影点和所述第二投影线的距离为d1,所述第一投影点和所述第一投影线的距离为d2,所述d2和所述d1的比值大于等于0.1且小于等于0.8。
  5. 根据权利要求4所述的全地形车,其中,所述d2和所述d1的比值大于等于0.2且小于等于0.7。
  6. 根据权利要求4所述的全地形车,其中,所述第二投影点和所述第一投影线的距离为d3,所述d3和所述d1的比值大于等于0.5且小于等于1。
  7. 根据权利要求6所述的全地形车,其中,所述d3和所述d1的比值大于等于0.6且小于等于0.9。
  8. 根据权利要求3所述的全地形车,其中,所述上摇臂包括第一摇臂和第二摇臂,所述下摇臂包括第三摇臂和第四摇臂,所述车架设置有第一连接点、第二连接点、第三连接点和第四连接点,所述车架和所述第一摇臂通过所述第一连接点连接,所述车架和所述第二摇臂通过所述第二连接点连接,所述车架和所述第三摇臂通过所述第三连接点连接,所述车架和所述第四摇臂通过所述第四连接点连接。
  9. 根据权利要求8所述的全地形车,其中,所述第一连接点的中心和所述第三连接点的中心的连线 为第二直线,所述第二连接点的中心和所述第三连接点的中心的连线为第三直线;所述第一连接点的中心和所述第二连接点的中心的连线为第四直线,所述第三连接点的中心和所述第四连接点的中心的连线为第五直线;所述第二直线、所述第三直线、所述第四直线和所述第五直线围成有第一空间,所述第一空间沿所述左右方向在所述第一投影面的投影为第一投影平面,当所述全地形车处于静止状态时,所述第一投影点位于所述第一投影平面中。
  10. 根据权利要求9所述的全地形车,其中,所述第二投影点位于所述第一投影平面中。
  11. 根据权利要求1所述的全地形车,其中,所述L1和所述L2的比值大于等于0.6且小于等于1.1。
  12. 根据权利要求11所述的全地形车,其中,所述L1和所述L2的比值大于等于0.7且小于等于1。
  13. 根据权利要求1所述的全地形车,其中,所述悬架组件还包括转向节,所述转向节用于连接所述前悬架和所述第一行走轮;所述上摇臂的一端通过所述第一安装点连接所述车架,所述上摇臂的另一端通过所述第二安装点连接所述转向节;所述下摇臂的一端通过所述第三安装点连接所述车架,所述下摇臂的另一端通过所述第四安装点连接所述转向节。
  14. 根据权利要求13所述的全地形车,其中,所述转向节包括第一连接端和第二连接端,所述第一连接端连接所述上摇臂,所述第二连接端连接所述下摇臂。
  15. 根据权利要求14所述的全地形车,其中,所述转向节还包括连接件,所述连接件设置在所述第一连接端和所述上摇臂之间,所述第一连接端和所述上摇臂通过所述连接件连接。
  16. 根据权利要求15所述的全地形车,其中,所述转向节还包括调节垫片,所述调节垫片设置在所述第一连接端和所述连接件之间。
  17. 根据权利要求16所述的全地形车,其中,所述调节垫片的一侧抵接所述第一连接端,所述调节垫片的另一侧抵接所述连接件。
  18. 根据权利要求1所述的全地形车,其中,
    所述车身覆盖件包括灯罩,所述灯罩设置在所述车架的前侧;
    所述前悬架包括第一减震器和前摇臂,所述第一减震器的一端设置有第一安装点,所述第一减震器和所述车架通过所述第一连接点连接,所述第一减震器的另一端连接所述前摇臂;
    所述前摇臂包括上摇臂,所述上摇臂的一端设置有第二安装点,所述上摇臂的另一端设置有第三安装点;所述上摇臂包括沿上下方向延伸的第一直线和沿所述上下方向延伸的第二直线,所述第一直线经过所述第二安装点,所述第二直线经过所述第三安装点;
    在一个垂直于前后方向的投影平面上,所述灯罩的最上端沿所述前后方向在所述投影平面上的投影为第一投影线,所述上摇臂的轴线沿所述前后方向在所述投影平面上的投影为第二投影线,所述第一直线沿所述前后方向在所述投影平面上的投影为第三投影线,所述第二直线沿所述前后方向在所述投影平面上的投影为第四投影线,所述第一投影线、所述第二投影线、所述第三投影线、所述第四投影线围成有第一投影面,所述第一安装点沿所述前后方向在所述投影平面上的投影为第二投影面,所述第二投影面位于所述第一投影面中。
  19. 根据权利要求18所述的全地形车,其中,所述悬架组件包括转向节,所述上摇臂的一端通过所述第二连接点连接所述转向节,所述上摇臂的另一端通过所述第三连接点连接所述车架。
  20. 根据权利要求18所述的全地形车,其中,所述上摇臂设置在所述灯罩的下侧。
  21. 根据权利要求18所述的全地形车,其中,所述第一减震器连接所述前摇臂的一端设置有第四安装点,所述前摇臂还包括下摇臂,所述下摇臂的一端设置有第五安装点,所述下摇臂的另一端设置有第六安装点,所述下摇臂包括沿上下方向延伸的第三直线和沿所述上下方向延伸的第四直线,所述第三直线经过所述第五安装点,所述第四直线经过所述第六安装点;所述上摇臂还包括平行于所述上摇臂的轴线的第五直线,所述第五直线设置在所述上摇臂的轴线的上侧;所述下摇臂的轴线沿所述前后方向在所述投影平面上的投影为第五投影线,所述第三直线沿所述前后方向在所述投影平面上的投影为第六投影线,所述第四直线沿所述前后方向在所述投影平面上的投影为第七投影线,所述第五直线沿所述前后方向在所述投影平面上的投影为第八投影线,所述第五投影线、所述第六投影线、所述第七投影线、所述 第八投影线围成有第三投影面,所述第四安装点沿所述前后方向在所述投影平面上的投影为第四投影面,所述第四投影面位于所述第三投影面中。
  22. 根据权利要求21所述的全地形车,其中,所述第二投影线和所述第八投影线之间的距离为L,所述L大于等于0mm且小于等于50mm。
  23. 根据权利要求21所述的全地形车,其中,所述悬架组件包括转向节,所述下摇臂的一端通过所述第五安装点连接所述转向节,所述下摇臂的另一端通过所述第六安装点连接所述车架。
  24. 根据权利要求21所述的全地形车,其中,当所述下摇臂为直管件时,所述下摇臂的轴线为所述直管件的轴线。
  25. 根据权利要求21所述的全地形车,其中,当所述下摇臂为弯曲管件时,所述下摇臂的轴线为所述第五安装点和所述第六安装点的连线。
  26. 根据权利要求21所述的全地形车,其中,所述第一安装点通过连接件和所述车架连接,所述第四安装点通过所述连接件和所述前摇臂连接。
  27. 一种全地形车,包括:
    车架;
    行走组件,所述行走组件包括第一行走轮和第二行走轮;
    悬架组件,悬架组件包括前悬架和后悬架,所述第一行走轮通过所述前悬架连接所述车架,所述第二行走轮通过所述后悬架连接所述车架;
    动力组件,所述动力组件至少部分设置在所述车架上;
    传动组件,所述传动组件传动连接所述行走组件及所述动力组件,所述传动组件包括驱动桥和驱动轴;
    假定一个垂直于所述全地形车的左右方向的投影面为第一投影面、一个垂直于所述全地形车的上下方向的投影面为第二投影面、一个垂直于所述全地形车的前后方向的投影面为第三投影面;
    所述驱动桥的输出中心沿所述左右方向在所述第一投影面上的投影为第一投影点,所述行走组件的圆心沿所述左右方向在所述第一投影面上的投影为第二投影点,所述第一投影点位于所述第二投影点的上侧;
    所述驱动轴的轴线沿所述前后方向在所述第三投影面的投影为第一投影线,所述第二投影面沿所述前后方向在所述第三投影面的投影为第二投影线,所述第一投影线和所述第二投影线所成的角度大于等于0°且小于等于60°。
  28. 根据权利要求27所述的全地形车,其中,所述第一投影线和所述第二投影线所成的角度大于等于0°且小于等于30°。
  29. 根据权利要求27所述的全地形车,其中,所述后悬架均也包括所述上摇臂和所述下摇臂,所述上摇臂设置有和所述车架连接第一连接孔,所述第一连接孔的轴线沿第一直线方向延伸;
    所述下摇臂设置有和所述车架连接的第二连接孔,所述第二连接孔的轴线沿所述全地形车的前后方向延伸;所述第一直线沿所述左右方向在所述第一投影面上的投影为第三投影线,所述第二连接孔的轴线沿所述左右方向在所述第一投影面上的投影为第四投影线,所述第一投影点设置在所述第三投影线和所述第四投影线之间。
  30. 根据权利要求29所述的全地形车,其中,所述第一连接孔包括沿左右方向延伸的中心线,所述第一连接孔关于所述中心线基本对称设置;所述中心线沿所述左右方向在所述第一投影面上的投影为第三投影点,所述第三投影点和所述第二投影线的距离为d1,所述第一投影点和所述第一投影线的距离为d2,所述d2和所述d1的比值大于等于0.1且小于等于0.8。
  31. 根据权利要求30所述的全地形车,其中,所述d2和所述d1的比值大于等于0.2且小于等于0.7。
  32. 根据权利要求30所述的全地形车,其中,所述第二投影点和所述第一投影线的距离为d3,所述d3和所述d1的比值大于等于0.5且小于等于1。
  33. 根据权利要求32所述的全地形车,其中,所述d3和所述d1的比值大于等于0.6且小于等于0.9。
  34. 根据权利要求29所述的全地形车,其中,所述上摇臂包括第一摇臂和第二摇臂,所述下摇臂包括第三摇臂和第四摇臂,所述车架设置有第一连接点、第二连接点、第三连接点和第四连接点,所述车架和所述第一摇臂通过所述第一连接点连接,所述车架和所述第二摇臂通过所述第二连接点连接,所述车架和所述第三摇臂通过所述第三连接点连接,所述车架和所述第四摇臂通过所述第四连接点连接。
  35. 根据权利要求34所述的全地形车,其中,所述第一连接点的中心和所述第三连接点的中心的连线为第二直线,所述第二连接点的中心和所述第三连接点的中心的连线为第三直线;所述第一连接点的中心和所述第二连接点的中心的连线为第四直线,所述第三连接点的中心和所述第四连接点的中心的连线为第五直线;所述第二直线、所述第三直线、所述第四直线和所述第五直线围成有第一空间,所述第一空间沿所述左右方向在所述第一投影面的投影为第一投影平面,当所述全地形车处于静止状态时,所述第一投影点位于所述第一投影平面中。
  36. 根据权利要求35所述的全地形车,其中,所述第二投影点位于所述第一投影平面中。
  37. 根据权利要求27所述的全地形车,其中,所述第一行走轮包括第一前轮和第二前轮,所述第二行走轮包括第一后轮和第二后轮;所述第一前轮和所述第一后轮均设置在所述全地形车的左侧,所述第二前轮和所述第二后轮均设置在所述全地形车的右侧;所述第一前轮的左端面和所述第二前轮的右端面之间的距离为D1,所述第一后轮的左端面和所述第二后轮的右端面之间的距离为D2,所述D1和所述D2的比值大于等于0.8且小于等于1.5。
  38. 根据权利要求37所述的全地形车,其中,所述D1和所述D2的比值大于等于0.9且小于等于1.4。
  39. 根据权利要求38所述的全地形车,其中,所述D1和所述D2的比值大于等于1且小于等于1.3。
  40. 根据权利要求37所述的全地形车,其中,所述第一前轮的左端面、所述第二前轮的右端面、所述第一后轮的左端面和所述第二后轮的右端面均基本垂直于左右方向设置。
  41. 根据权利要求37所述的全地形车,其中,所述第一前轮包括垂直于左右方向的第一对称面,所述第二前轮包括垂直于所述左右方向的第二对称面,所述第一后轮包括垂直于所述左右方向的第三对称面,所述第二后轮包括垂直于所述左右方向的第四对称面;所述第一对称面和所述第二对称面之间的距离为D3,所述第三对称面和所述第四对称面之间的距离为D4,所述D3和所述D4的比值大于等于0.8且小于等于1.3。
  42. 根据权利要求41所述的全地形车,其中,所述D3和所述D4的比值大于等于0.9且小于等于1.2。
  43. 根据权利要求41所述的全地形车,其中,所述第一前轮关于所述第一对称面基本对称设置,所述第二前轮关于所述第二对称面基本对称设置,所述第一后轮关于所述第三对称面基本对称设置,所述第二后轮关于所述第四对称面基本对称设置。
  44. 根据权利要求37所述的全地形车,其中,所述第一前轮、所述第二前轮、所述第一后轮和所述第二后轮均基本沿所述全地形车的前后方向延伸。
  45. 根据权利要求37所述的全地形车,其中,所述车架沿上下方向包括最低点S1,所述行走组件和地面接触的面为水平面,所述S1和所述水平面之间的距离为H,所述行走组件的半径为R,所述R和所述H的比值大于等于0.9且小于等于1.4。
  46. 根据权利要求27所述的全地形车,其中,
    所述车架沿上下方向包括最低点S1,所述行走组件和地面接触的面为水平面,所述S1和所述水平面之间的距离为H,所述行走组件的半径为R,所述R和所述H的比值大于等于0.9且小于等于1.4。
  47. 根据权利要求46所述的全地形车,其中,所述R和所述H的比值大于等于1且小于等于1.3。
  48. 根据权利要求46所述的全地形车,其中,所述R为所述第一行走轮的半径或所述第二行走轮的半径。
  49. 根据权利要求46所述的全地形车,其中,所述S1为所述车架的最下端的端面上的点。
  50. 根据权利要求46所述的全地形车,其中,所述第一行走轮包括第一前轮和第二前轮,所述第二 行走轮包括第一后轮和第二后轮;所述第一前轮和所述第一后轮均设置在所述全地形车的左侧,所述第二前轮和所述第二后轮均设置在所述全地形车的右侧;所述第一前轮的左端面和所述第二前轮的右端面之间的距离为D1,所述第一后轮的左端面和所述第二后轮的右端面之间的距离为D2,所述D1和所述D2的比值大于等于0.8且小于等于1.5。
  51. 根据权利要求50所述的全地形车,其中,所述D1和所述D2的比值大于等于0.9且小于等于1.4。
  52. 根据权利要求50所述的全地形车,其中,所述第一前轮的左端面、所述第二前轮的右端面、所述第一后轮的左端面和所述第二后轮的右端面均基本垂直于左右方向设置。
  53. 根据权利要求50所述的全地形车,其中,所述第一前轮包括垂直于左右方向的第一对称面,所述第二前轮包括垂直于所述左右方向的第二对称面,所述第一后轮包括垂直于所述左右方向的第三对称面,所述第二后轮包括垂直于所述左右方向的第四对称面;所述第一对称面和所述第二对称面之间的距离为D3,所述第三对称面和所述第四对称面之间的距离为D4,所述D3和所述D4的比值大于等于0.8且小于等于1.3。
  54. 根据权利要求27所述的全地形车,其中,所述后悬架包括:
    转向节,所述转向节至少部分连接所述行走组件;
    后摇臂,所述后摇臂的一端转动连接所述车架,所述后摇臂的另一端转动连接所述转向节;
    连杆组件,所述连杆组件的一端转动连接所述转向节,所述连杆组件的另一端转动连接所述车架;
    所述连杆组件构成用于所述悬架组件控制所述行走组件的轮距变化的固定框架。
  55. 根据权利要求54所述的全地形车,其中,所述连杆组件包括第一连杆、第二连杆和第三连杆,所述第一连杆至少部分设置在所述第二连杆的前侧,所述第一连杆还至少部分设置在所述第三连杆的前侧,所述第二连杆至少部分设置在所述第三连杆的上侧;所述第一连杆的一端转动连接所述车架,所述第一连杆的另一端转动连接所述转向节;所述第二连杆的一端转动连接所述车架,所述第二连杆的另一端转动连接所述转向节;所述第三连杆的一端转动连接所述车架,所述第三连杆的另一端转动连接所述转向节。
  56. 根据权利要求54所述的全地形车,其中,所述连杆组件包括第一连杆和第二连杆,所述第一连杆至少部分设置在所述第二连杆的前侧;所述第一连杆的一端转动连接所述车架,所述第一连杆的另一端转动连接所述转向节;所述第二连杆的一端转动连接所述车架,所述第二连杆的另一端转动连接所述转向节。
  57. 根据权利要求54所述的全地形车,其中,所述连杆组件包括第二连杆和第三连杆,所述第二连杆至少部分设置在所述第三连杆的上侧;所述第二连杆的一端转动连接所述车架,所述第二连杆的另一端转动连接所述转向节;所述第三连杆的一端转动连接所述车架,所述第三连杆的另一端转动连接所述转向节。
  58. 根据权利要求54所述的全地形车,其中,所述后悬架还包括后减震器,所述后减震器的一端转动连接所述后摇臂,所述后减震器的另一端转动连接所述车架;所述后摇臂的两端之间设置有连接件,所述后减震器和所述后摇臂通过所述连接件转动连接。
  59. 根据权利要求54所述的全地形车,其中,所述转向节包括安装点,所述转向节和所述连杆组件通过所述安装点连接。
  60. 一种全地形车,包括:
    车架;
    行走组件,所述行走组件包括第一行走轮和第二行走轮;
    悬架组件,悬架组件包括前悬架和后悬架,所述第一行走轮通过所述前悬架连接所述车架,所述第二行走轮通过所述后悬架连接所述车架;
    动力组件,所述动力组件至少部分设置在所述车架上;
    传动组件,所述传动组件传动连接所述行走组件及所述动力组件,所述传动组件包括驱动桥和驱动 轴;
    假定一个垂直于所述全地形车的左右方向的投影面为第一投影面、一个垂直于所述全地形车的上下方向的投影面为第二投影面、一个垂直于所述全地形车的前后方向的投影面为第三投影面;
    所述驱动桥的输出中心沿所述左右方向在所述第一投影面上的投影为第一投影点,所述行走组件的圆心沿所述左右方向在所述第一投影面上的投影为第二投影点,所述第一投影点位于所述第二投影点的上侧;
    假定所述驱动轴的轴线沿所述前后方向在所述第三投影面的投影为第一投影线,所述第二投影面沿所述前后方向在所述第三投影面的投影为第二投影线,所述第一投影线和所述第二投影线所成的角度大于等于0°且小于等于60°;
    所述行走组件包括处于上跳的最高点时的第一位置、处于下跳的最低点时的第二位置和处于静止时的初始位置,所述第一位置和所述初始位置之间的最大距离为L1,所述第二位置和所述初始位置之间的最大距离为L2,所述L1和所述L2的比值大于等于1且小于等于10。
  61. 根据权利要求60所述的全地形车,其中,所述第一投影线和所述第二投影线所成的角度大于等于0°且小于等于30°。
  62. 根据权利要求60所述的全地形车,其中,所述前悬架和所述后悬架均包括上摇臂和下摇臂,所述上摇臂设置有和所述车架连接第一连接孔,所述第一连接孔的轴线沿第一直线方向延伸;
    所述下摇臂设置有和所述车架连接的第二连接孔,所述第二连接孔的轴线沿所述全地形车的前后方向延伸;所述第一直线沿所述左右方向在所述第一投影面上的投影为第三投影线,所述第二连接孔的轴线沿所述左右方向在所述第一投影面上的投影为第四投影线,所述第一投影点设置在所述第三投影线和所述第四投影线之间。
  63. 根据权利要求62所述的全地形车,其中,所述第一连接孔包括沿左右方向延伸的中心线,所述第一连接孔关于所述中心线基本对称设置;所述中心线沿所述左右方向在所述第一投影面上的投影为第三投影点,所述第三投影点和所述第二投影线的距离为d1,所述第一投影点和所述第一投影线的距离为d2,所述d2和所述d1的比值大于等于0.1且小于等于0.8。
  64. 根据权利要求63所述的全地形车,其中,所述d2和所述d1的比值大于等于0.2且小于等于0.7。
  65. 根据权利要求63所述的全地形车,其中,所述第二投影点和所述第一投影线的距离为d3,所述d3和所述d1的比值大于等于0.5且小于等于1。
  66. 根据权利要求65所述的全地形车,其中,所述d3和所述d1的比值大于等于0.6且小于等于0.9。
  67. 根据权利要求62所述的全地形车,其中,所述上摇臂包括第一摇臂和第二摇臂,所述下摇臂包括第三摇臂和第四摇臂,所述车架设置有第一连接点、第二连接点、第三连接点和第四连接点,所述车架和所述第一摇臂通过所述第一连接点连接,所述车架和所述第二摇臂通过所述第二连接点连接,所述车架和所述第三摇臂通过所述第三连接点连接,所述车架和所述第四摇臂通过所述第四连接点连接。
  68. 根据权利要求67所述的全地形车,其中,所述第一连接点的中心和所述第三连接点的中心的连线为第二直线,所述第二连接点的中心和所述第三连接点的中心的连线为第三直线;所述第一连接点的中心和所述第二连接点的中心的连线为第四直线,所述第三连接点的中心和所述第四连接点的中心的连线为第五直线;所述第二直线、所述第三直线、所述第四直线和所述第五直线围成有第一空间,所述第一空间沿所述左右方向在所述第一投影面的投影为第一投影平面,当所述全地形车处于静止状态时,所述第一投影点位于所述第一投影平面中。
  69. 根据权利要求68所述的全地形车,其中,所述第二投影点位于所述第一投影平面中。
  70. 根据权利要求60所述的全地形车,其中,所述L1和所述L2的比值大于等于2且小于等于9。
  71. 根据权利要求60所述的全地形车,其中,所述L1和所述L2的比值大于等于3且小于等于8。
  72. 根据权利要求60所述的全地形车,其中,所述第一位置和所述第二位置之间的最大距离为L3,所述前悬架包括第一减震器,所述第一减震器的行程为L4,所述L3和所述L4的比值大于等于1.1且小于等于2。
  73. 根据权利要求72所述的全地形车,其中,所述L3和所述L4的比值大于等于1.2且小于等于1.9。
  74. 根据权利要求73所述的全地形车,其中,所述L3和所述L4的比值大于等于1.3且小于等于1.8。
  75. 根据权利要求72所述的全地形车,其中,所述后悬架包括第二减震器,所述L3和所述第二减震器的行程的比值为第一比值,所述L3和所述L4的比值为第二比值,所述第一比值和所述第二比值基本一致。
  76. 根据权利要求60所述的全地形车,其中,所述行走组件处于所述第一位置时左右两个轮心的连线为第一轮线,所述行走组件处于所述初始位置时左右两个所述轮心的连线为第二轮线,所述第一轮线和所述第二轮线的距离为所述L1。
  77. 根据权利要求76所述的全地形车,其中,所述行走组件处于所述第二位置时左右两个所述轮心的连线为第三轮线,所述第二轮线和所述第三轮线的距离为所述L2。
  78. 根据权利要求77所述的全地形车,其中,左右两个所述轮心为所述第一行走轮的左右两个车轮的轮心或所述第二行走轮的左右两个车轮的轮心。
  79. 根据权利要求60所述的全地形车,其中,
    所述悬架组件还包括转向节,所述转向节包括:
    主体部,所述主体部的一端为第一连接端;
    连接件,所述连接件和所述第一连接端连接;
    调节垫片,所述调节垫片设置在所述第一连接端和所述连接件之间;
    所述第一连接端的端面至少包括第一端面和第二端面,所述第一端面和所述第二端面关于所述第一连接端的端面基本对称设置;所述调节垫片抵接在所述第一端面或所述第二端面上;
    沿垂直于所述端面方向,所述调节垫片在所述端面的投影为投影面,所述投影面的面积小于等于所述端面的面积的一半。
  80. 根据权利要求79所述的全地形车,其中,所述第一连接端设置有若干个第一连接孔,若干个所述第一连接孔的圆心基本处于同一直线上。
  81. 根据权利要求80所述的全地形车,其中,若干个所述第一连接孔的圆心的连线为第一直线,所述第一直线将所述端面分隔为所述第一端面和所述第二端面,所述第一端面至少部分设置在所述第二端面的上侧;所述投影面基本和所述第一端面重合;所述投影面基本和所述第二端面重合。
  82. 根据权利要求80所述的全地形车,其中,所述调节垫片设置有若干个第一半孔,所述连接件设置有若干个第二连接孔,所述第二连接孔的圆心、所述第一半孔的圆心、所述第一连接孔的圆心基本处于同一直线上;所述第二连接孔、所述第一半孔、所述第一连接孔通过同一固定件连接;所述调节垫片上设置有开槽,所述若干个第一半孔设置在所述开槽的两侧;沿所述全地形车的上下方向,所述开槽的开口基本向下设置。
  83. 根据权利要求79所述的全地形车,其中,所述转向节设置在所述车架的前侧和/或后侧;当所述转向节设置在所述车架的后侧时,所述转向节和至少部分所述后悬架一体成型。
PCT/CN2023/097036 2022-05-30 2023-05-30 全地形车 WO2023232009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210605865.5 2022-05-30
CN202210605865 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023232009A1 true WO2023232009A1 (zh) 2023-12-07

Family

ID=89026927

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/097031 WO2023232008A1 (zh) 2022-05-30 2023-05-30 全地形车
PCT/CN2023/097036 WO2023232009A1 (zh) 2022-05-30 2023-05-30 全地形车

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097031 WO2023232008A1 (zh) 2022-05-30 2023-05-30 全地形车

Country Status (1)

Country Link
WO (2) WO2023232008A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274134A (ja) * 2001-03-16 2002-09-25 Katsumi Nakagawa 車のホイールアライメント調整用スペーサ
CN101428643A (zh) * 2008-12-17 2009-05-13 奇瑞汽车股份有限公司 一种车轮外倾角调整垫片
CN205292786U (zh) * 2016-01-28 2016-06-08 江苏金坛汽车工业有限公司 适于车辆悬架系统的调整垫片
US20180147902A1 (en) * 2016-11-29 2018-05-31 Zhejiang CFMOTO Power Co., Ltd. Rear Swing Arm Suspension
US20210031713A1 (en) * 2019-08-01 2021-02-04 Yamaha Hatsudoki Kabushiki Kaisha Recreational off-highway vehicle front structure
CN217435925U (zh) * 2022-05-30 2022-09-16 浙江春风动力股份有限公司 全地形车
CN217515301U (zh) * 2022-05-30 2022-09-30 浙江春风动力股份有限公司 全地形车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206327495U (zh) * 2016-12-30 2017-07-14 浙江华洋赛车股份有限公司 电动atv车架
CN110435795B (zh) * 2019-05-31 2021-04-20 九号智能(常州)科技有限公司 全地形车及其车架
CN215322867U (zh) * 2021-04-27 2021-12-28 赛格威科技有限公司 车架和全地形车
CN217496379U (zh) * 2022-05-30 2022-09-27 浙江春风动力股份有限公司 全地形车
CN217435924U (zh) * 2022-05-30 2022-09-16 浙江春风动力股份有限公司 全地形车
CN217515298U (zh) * 2022-05-30 2022-09-30 浙江春风动力股份有限公司 全地形车
CN217435934U (zh) * 2022-05-30 2022-09-16 浙江春风动力股份有限公司 全地形车
CN217435920U (zh) * 2022-05-30 2022-09-16 浙江春风动力股份有限公司 全地形车
CN217515296U (zh) * 2022-05-30 2022-09-30 浙江春风动力股份有限公司 全地形车
CN217435939U (zh) * 2022-05-30 2022-09-16 浙江春风动力股份有限公司 全地形车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274134A (ja) * 2001-03-16 2002-09-25 Katsumi Nakagawa 車のホイールアライメント調整用スペーサ
CN101428643A (zh) * 2008-12-17 2009-05-13 奇瑞汽车股份有限公司 一种车轮外倾角调整垫片
CN205292786U (zh) * 2016-01-28 2016-06-08 江苏金坛汽车工业有限公司 适于车辆悬架系统的调整垫片
US20180147902A1 (en) * 2016-11-29 2018-05-31 Zhejiang CFMOTO Power Co., Ltd. Rear Swing Arm Suspension
US20210031713A1 (en) * 2019-08-01 2021-02-04 Yamaha Hatsudoki Kabushiki Kaisha Recreational off-highway vehicle front structure
CN217435925U (zh) * 2022-05-30 2022-09-16 浙江春风动力股份有限公司 全地形车
CN217515301U (zh) * 2022-05-30 2022-09-30 浙江春风动力股份有限公司 全地形车

Also Published As

Publication number Publication date
WO2023232008A1 (zh) 2023-12-07

Similar Documents

Publication Publication Date Title
CA2150718C (en) Suspension system for vehicle
US8746717B2 (en) Saddle riding type vehicle
CN102363408B (zh) 自补偿浮动摆臂独立悬挂系统
JP4395066B2 (ja) 車両のための懸架装置
US7878290B2 (en) Saddle riding type vehicle
EP1403171B1 (en) Three-wheeled vehicle provided with swinging mechanism
JP3550908B2 (ja) フロントサスペンション装置
WO2016029605A1 (zh) 一种集成转向和驱动功能的直线平移式前悬架系统
JP2017514752A (ja) 車両サスペンション
JP2008534370A (ja) モータサイクル
US7204333B2 (en) Suspension arrangement structure for vehicle
CN100482484C (zh) 竖向平移式空间多连杆独立悬架
WO2023232009A1 (zh) 全地形车
CN113460156A (zh) 一种与线控四轮90度转向系统匹配使用的汽车悬架结构
WO2014132875A1 (ja) 自動三輪車とそのロール減衰装置
KR20040055736A (ko) 차량용 서스펜션과, 차량의 휠 조립체용 서스펜션 및차량을 서스펜딩하는 방법
CN208232730U (zh) 一种可伸缩导向杆
CN117246085B (zh) 一种车辆摆臂装置
CN217435921U (zh) 全地形车
CN217435931U (zh) 全地形车
CN217435922U (zh) 全地形车
CN217435935U (zh) 全地形车
US11912098B2 (en) Rear suspension system of an all-terrain vehicle and all-terrain vehicle
CN217435938U (zh) 全地形车
CN217515306U (zh) 全地形车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815188

Country of ref document: EP

Kind code of ref document: A1