WO2023231955A1 - 碳纤维表壳及其制备方法、智能手表 - Google Patents

碳纤维表壳及其制备方法、智能手表 Download PDF

Info

Publication number
WO2023231955A1
WO2023231955A1 PCT/CN2023/096804 CN2023096804W WO2023231955A1 WO 2023231955 A1 WO2023231955 A1 WO 2023231955A1 CN 2023096804 W CN2023096804 W CN 2023096804W WO 2023231955 A1 WO2023231955 A1 WO 2023231955A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
conductive
conductive structure
watch case
main structure
Prior art date
Application number
PCT/CN2023/096804
Other languages
English (en)
French (fr)
Inventor
张斌
樊茂
杨俊杰
付康
张攀
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231955A1 publication Critical patent/WO2023231955A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/22Materials or processes of manufacturing pocket watch or wrist watch cases
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • G04G17/02Component assemblies
    • G04G17/04Mounting of electronic components
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • G04G17/08Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the technical field of wearable devices, and in particular to a carbon fiber watch case and its preparation method, and a smart watch.
  • This application provides a carbon fiber watch case, a preparation method thereof, and a smart watch, which can meet consumers' consumption needs for smart watches.
  • this application provides a carbon fiber watch case, which can be applied to electronic devices such as smart watches that can transmit electromagnetic signals.
  • the carbon fiber watch case includes a main structure and a conductive structure, and the conductive structure and the main structure can be closely integrated into one.
  • the main structure specifically includes braided body and polymer body.
  • the braided body is woven from raw fibers including carbon fiber through a three-dimensional braiding process, so that the braided body has a network structure.
  • the polymer body is at least filled in the gaps of the network structure of the braid body so that the braid body and the conductive structure form an integrated structure.
  • the gaps of the network structure of the braid body are connected with each other.
  • the polymer body has a continuous structure, thereby achieving high Molecules and braids can form continuous interlocking structures.
  • the main structure has an inner surface and an outer surface.
  • the conductive structure has a first contact located on the inner surface of the main structure and a second contact located on the outer surface of the main structure.
  • the conductive structure itself has conductivity, and electromagnetic conduction between the inner surface and the outer surface of the main structure can be achieved through the first contact point and the second contact point. That is to say, the electrical device located on the inner surface side of the main structure can realize electromagnetic signal connection with the electrical device located on the outer surface side of the main structure through the conductive structure.
  • the braid and the polymer body are continuously interlocked, so that the main structure has an integrated structure, which improves the mechanical strength and sealing performance of the carbon fiber watch case and ensures high reliability.
  • the conductive structure can make the inner and outer surfaces of the main structure conduct electricity.
  • the conductive structure is columnar and embedded in the main structure.
  • the conductive structure runs through the main structure, One end of the conductive structure is exposed on the inner surface of the main structure to form the first contact point, and the other end of the conductive structure is exposed on the outer surface of the main structure to form the second contact point.
  • the conductive structure may be any one of conductive metal, conductive glue, and conductive ceramics, or a combination of at least two of them.
  • the conductive structure is in the form of a film and is formed on the surface of the main structure.
  • the conductive structure extends to the inner surface of the main structure to form a first contact and extends to the outer surface of the main structure to form a second contact.
  • the conductive structure may be any one of a metal plating layer, a conductive ink layer, a conductive deposition layer, or a combination of at least two of them.
  • the braided body in this application may be a three-dimensional braided body.
  • the three-dimensional braided body has a more three-dimensional structure, which is conducive to the formation of a continuous interlocking structure between the braided body and the polymer body.
  • the raw fibers forming the woven body also include colored fibers with rich colors.
  • Colored fibers can provide colorful colors for the carbon fiber watch case.
  • Colored fibers and carbon fibers are woven using a braiding process to form a braided body.
  • the colored fiber here can be any one of quartz fiber, glass fiber, basalt fiber, aramid fiber, metal fiber, ceramic fiber or a combination of at least two.
  • the volume proportion of carbon fiber in the braid should not be less than 40%.
  • the volume proportion of the braided body in the main structure is 30%-60%.
  • the braid angle of the braid is limited to 20°-40°.
  • the polymer may specifically be any one or a combination of thermosetting polymer and thermoplastic polymer.
  • this application also provides a method for preparing a carbon fiber watch case, which can be used to prepare the above-mentioned carbon fiber watch case.
  • the preparation method includes:
  • the raw fibers are woven into a braid using a weaving process;
  • the braid has a network structure, and the braid includes carbon fiber;
  • the polymer is at least filled in the space of the network structure of the braid so that the braid and the conductive structure form an integrated structure;
  • the main structure has an inner surface and an outer surface, and the conductive structure has a first contact point located on the inner surface and The second contact point is located on the outer surface.
  • the order of steps of setting the conductive structure and injecting the polymer into the braid so that the polymer and the braid form the main structure can be exchanged.
  • the conductive structure Before the step of infusing the polymer into the braid so that the polymer and the braid form the main structure, the conductive structure can be columnar and embedded in the main structure.
  • the above-mentioned conductive structure is specifically implemented as follows:
  • the specific implementation of the above-mentioned setting of the conductive structure is as follows: pouring conductive material into the through hole to form the conductive structure;
  • the conductive structure When the conductive structure is set and the step of infusing the polymer into the braid is carried out so that the polymer and the braid form the main structure, the conductive structure can be in the form of a film and formed on the surface of the main structure.
  • the above-mentioned conductive structure is specifically implemented as: A conductive structure is formed on the surface of the main structure.
  • the preparation process for forming the conductive structure on the surface of the main structure includes any one or a combination of at least two of water plating, spraying, and physical vapor deposition.
  • this application also provides a smart watch.
  • the smartwatch includes a main body and the aforementioned carbon fiber case.
  • the carbon fiber watch case forms an installation space, and the main body can be arranged in the installation space;
  • the main body includes a circuit board and an antenna unit provided on the circuit board, and the antenna unit is connected to the first contact of the conductive structure through a spring piece.
  • the conductive structure is equivalent to the sky A feed point of the line unit, the antenna unit can transmit electromagnetic signals with external equipment through the conductive structure.
  • Figure 1 is a schematic structural diagram of a carbon fiber watch case in the prior art
  • Figure 2a is a schematic structural diagram of a watch case of a smart watch provided by an embodiment of the present application.
  • Figure 2b is a schematic structural diagram of a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 2c is a schematic cross-sectional structural diagram of a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 3a is a schematic structural diagram of a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 3b is a schematic cross-sectional structural diagram of a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 4a is a schematic cross-sectional view of the main structure of a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 4b is a schematic structural diagram of a braided body in a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 5a is a schematic cross-sectional view of the main structure of a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 5b is a schematic structural diagram of a braided body in a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 6a is a schematic cross-sectional view of the main structure of a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 6b is a schematic structural diagram of a braided body in a carbon fiber watch case provided by an embodiment of the present application.
  • Figures 7a and 7b are schematic flow diagrams of a method for preparing a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of a method for preparing a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart of a method for preparing a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of embedding a conductive structure into a braid in a method for preparing a carbon fiber watch case provided by an embodiment of the present application;
  • Figure 11 is a schematic structural diagram of a carbon fiber watch case obtained in a method for preparing a carbon fiber watch case provided by an embodiment of the present application;
  • Figure 12 is a schematic structural diagram of a through hole reserved on the braid in a method for preparing a carbon fiber watch case provided by an embodiment of the present application;
  • Figure 13 is a schematic flow chart of a method for preparing a carbon fiber watch case provided by an embodiment of the present application.
  • Figure 14 is a schematic cross-sectional view of a conductive structure poured into a through hole in a method for preparing a carbon fiber watch case provided by an embodiment of the present application;
  • Figure 15 is a schematic structural diagram of a carbon fiber watch case obtained in a method for preparing a carbon fiber watch case provided by an embodiment of the present application;
  • Figures 16a to 16c are schematic diagrams of the preparation process for forming the shape of a carbon fiber watchcase in a method for preparing a carbon fiber watchcase provided by an embodiment of the present application;
  • Figure 17a is a schematic structural diagram of a smart watch provided by an embodiment of the present application.
  • Figure 17b is an exploded view of a smart watch provided by an embodiment of the present application.
  • Figure 18 is a top view of a smart watch provided by an embodiment of the present application.
  • Figure 19 is a schematic cross-sectional structural diagram of M-M in Figure 18;
  • Figure 20 is an enlarged view of part N in Figure 19;
  • Figure 21 is a schematic structural diagram of a smart watch provided by an embodiment of the present application.
  • the structure prepared by carbon fiber is generally a two-layer or multi-layer plate structure. As shown in Figure 1, along the thickness direction, the carbon fiber structure is formed by alternating multiple carbon fiber layers 1' and multiple resin layers 2'.
  • the innermost layer of the carbon fiber structure is the carbon fiber layer 1'
  • the outermost layer of the carbon fiber structure is the resin layer 2'.
  • the carbon fiber layer 1’ and the resin layer 2’ are pressed together. Due to the poor toughness and low interlayer strength of carbon fiber composite materials, it is difficult for the carbon fiber structure to form a complex structure (it needs to be used with an inner bladder or bracket), and it is prone to problems such as floating fibers, delamination, cracking, and poor sealing. Naturally, it cannot meet the needs of consumers. Requirements for smart watch cases.
  • the electromagnetic shielding properties of carbon fiber itself are not conducive to the communication function of smart watches. Therefore, the current carbon fiber structure limits the application development of carbon fiber in the preparation of smart watch casings.
  • embodiments of the present application provide a carbon fiber watch case, which has high strength and reliability, does not affect the communication function of the smart watch, and can meet consumers' requirements for smart watch cases.
  • the carbon fiber watch case can be specifically a middle frame 101 or a bottom case 102, and the middle frame 101 and the bottom case 102 are made of the same material. Moreover, the middle frame 101 and the bottom case 102 can be detachable as shown in Figure 2a, or can be integrated.
  • the carbon fiber watch case includes a main structure 1 and a conductive structure 2, and the main structure 1 includes carbon fiber. Carbon fiber can make the main structure 1 lighter and improve wearing comfort.
  • the main structure 1 has an inner surface a1 and an outer surface a2, and the conductive structure 2 can connect the inner surface a1 and the outer surface a2 of the main structure 1 to prevent the electromagnetic shielding function of carbon fiber from affecting the communication function of the smart watch.
  • the conductive structure 2 can be used as a feed point of the antenna to realize the reception and transmission of electromagnetic signals of the smart watch.
  • the conductive structure 2 is in the form of a film layer. As shown in FIG. 2 c , the conductive structure 2 is equivalent to being formed on the surface of the main structure 1 .
  • the conductive structure 2 includes a first extension part c1, a second extension part c2, and a connection part c3 connected between the first extension part c1 and the second extension part c2.
  • the connection part c3 is equivalent to being attached to the inner part of the main structure 1 The side surface between surface a1 and outer surface a2.
  • the main structure 1 is in a continuous ring shape
  • the inner wall of the ring is the inner surface a1 of the main structure 1
  • the outer wall of the ring is the outer surface a2 of the main structure 1.
  • the conductive structure 2 extends from the inner surface a1 of the main structure 1 across the main structure 1 to the outer surface a2 of the main structure 1 .
  • the first extension part c1 extends to the inner surface a1 of the main structure 1
  • the second extension part c2 extends to the outer surface a2 of the main structure 1 .
  • the first extension c1 of the conductive structure 2 can act as a first contact
  • the second extension c2 of the conductive structure 2 can Serves as a second point of contact.
  • the circuit board and antenna part of the smart watch will be disposed on the inner surface a1 side of the main structure 1.
  • the antenna can be connected to the first extension c1 of the conductive structure 2, and the signal of the antenna can pass through the first extension.
  • the part c1 and the connection part c3 are transmitted to the second extension part c2 for electromagnetic signal transmission for external device reception, and the external signal can be transmitted to the first extension part c1 through the second extension part c2 and the connection part c3 to the antenna for electromagnetic signal reception. of reception. That is to say, the existence of the conductive structure 2 enables the electromagnetic signals on the inner surface a1 side of the main structure 1 and the electromagnetic signals on the outer surface a2 side to be transmitted through the conductive structure 2 .
  • the conductive structure 2 can be any one of a metal plating layer, a conductive ink layer, a conductive deposition layer, or a combination of at least two of them.
  • the metal plating layer can be a single metal structure (such as a copper layer, a gold layer) or a multi-layer metal structure (inner layer chromium + outer layer nickel, inner layer copper + outer layer nickel, Inner layer of chromium + middle layer of nickel + outer layer of gold).
  • the conductive structure 2 is a conductive ink layer
  • the dispersion medium in the conductive ink may include conductive particles such as metal powder, carbon tubes, and graphene.
  • the conductive structure 2 can be embedded in the main structure 1 .
  • the conductive structure 2 is in the shape of a column.
  • the conductive structure 2 is combined with the main structure 1 in a manner that penetrates the inner surface a1 and the outer surface a2 of the main structure 1 .
  • one end b1 of the conductive structure 2 exposes the inner surface a1 of the main structure 1
  • the other end b2 of the conductive structure 2 exposes the outer surface a2 of the main structure 1.
  • the end b1 of the conductive structure 2 can act as the first contact, and the end b2 of the conductive structure 2 can act as the second contact.
  • the contacts enable the electromagnetic signals on the inner surface a1 side of the main structure 1 and the electromagnetic signals on the outer surface a2 side to be transmitted through the conductive structure 2 .
  • the conductive structure 2 may be any one of conductive metal, conductive glue, and conductive ceramics, or a combination of at least two of them.
  • the main structure 1 specifically includes a braided body 11 and a polymer body 12.
  • the braided body 11 is woven from raw fibers through a weaving process and has a network-like three-dimensional structure. It can be considered that in the space occupied by the braid 11, different raw fibers extend, interweave, and are entangled together according to the routing pattern of the braiding process, forming a three-dimensional structure with multiple gaps.
  • Carbon fiber itself has the advantages of high strength and light weight.
  • the fibers used to form the braid 11 include carbon fiber. The carbon fiber can provide the braid 11 with higher structural strength and lighter weight.
  • the polymer body 12 can be specifically a thermosetting polymer material (such as epoxy resin, acrylic resin, etc., these resins can be used alone or in combination), or a thermoplastic polymer material (such as polycarbonate, polyamide, etc., These resins can be used alone or in combination), or they can be a combination of thermosetting polymer materials and thermoplastic polymer materials (for example, the combination of epoxy resin and polycarbonate, the combination of acrylic resin and polycarbonate, polyamide, The quantity and type of materials in the combination are not limited).
  • the network-like three-dimensional structure of the braid 11 will form interconnected gaps.
  • the polymer 12 can form a network structure that matches the braid 11.
  • the polymer body 12 is filled into these gaps.
  • the polymer body 12 can wrap the braid body 11.
  • the network structure of the braid body 11 can achieve continuous structural interlocking with the network structure of the polymer body 12, so that the main structure 1 It has higher strength and increases the reliability of the structure.
  • the conductive structure 2 can be combined into the main structure 1 so that the conductive structure 2 has an integrated structure with the braid 11 and the polymer 12 .
  • the conductive structure 2 can overcome the electromagnetic shielding property of carbon fiber, making the carbon fiber watch case conductive. That is to say, the carbon fiber watch case provided by the embodiment of the present application is being prepared.
  • the main structure 1 can be prepared with the conductive structure 2 through an integrated molding process, so that the conductive structure 2 is combined with the main structure 1 so that there is an integrated structure between the two, ensuring the structural stability of the conductive structure 2.
  • Weaving fibers including carbon fibers into the braided body 11 may specifically adopt a weaving or braiding process, including but not limited to 2.5D weaving, 3D weaving, and 3D braiding processes. Using different braiding processes, we can obtain but are not limited to angle interlocking braid, three-way orthogonal braid, and in-plane quasi-isotropic braid.
  • the braided body 11 has a braided texture.
  • the braiding angle can be adjusted to change the appearance texture of the braided body 11, thereby changing the appearance of the main structure 1, and thus the appearance of the carbon fiber watch case can be adjusted. Changes enable the appearance of the carbon fiber watch case to meet consumer preferences. Among them, the braiding angle can be selected from the range of 20°-40°.
  • the braid angle here refers to the angle between any two intersecting and contacting fibers in the braid 11 . It should be understood that by selecting different weaving processes and weaving parameters, the braided body 11 will exhibit different appearance textures. Next, the main structure 1 in the embodiment of the present application will be introduced in detail through the specific braid structure.
  • Figure 4a shows a main structure 1, the braid 11 of which is a 2.5D woven fabric, specifically an angle interlocking braid.
  • the braided body 11 includes a first fiber body 111 and a second fiber body 112 .
  • at least one of the first fiber body 111 and the second fiber body 112 is carbon fiber, and other fibers may include colored fibers that can present colors.
  • Such colored fibers can provide the main structure 1 with a colorful appearance.
  • the first fiber body 111 extends in a serpentine shape in a plane, and the second fiber body 112 extends in a straight line direction, and the straight line direction is perpendicular to the plane where the first fiber body 111 is located.
  • the two adjacent first fiber bodies 111 can be shown as the first fiber body 111a (shown by the solid line) and the first fiber body 111b (shown by the dotted line) in the figure.
  • the second fiber body 112 is inserted into the gap formed by the interweaving of the first fiber body 111a and the first fiber body 111b.
  • a coordinate system having the first direction X, the second direction Y and the third direction Z is established as a reference.
  • the second fiber body 112 extends along the third direction Z, and the first fiber body 111 is parallel to the first direction X and the second direction Y.
  • the adjacent first fiber body 111a and the first fiber body 111b extend in a serpentine shape and are woven in a staggered manner along the first direction
  • a 2.5D woven fabric with angle interlocking braid is obtained by weaving.
  • 3D braid is also a three-dimensional braid.
  • the fibers may be three-dimensional and four-dimensional, three-dimensional and five-dimensional, three-dimensional and six-dimensional, and three-dimensional and seven-dimensional.
  • the braid 11 in the main structure 1 shown in Figure 5a is a 3D woven fabric, specifically a three-phase orthogonal braid.
  • the braided body 11 includes a first fiber body 111 , a second fiber body 112 and a third fiber body 113 .
  • at least one fiber among the first fiber body 111, the second fiber body 112 and the third fiber body 113 is carbon fiber.
  • the first fibrous body 111 extends along one straight line direction
  • the second fibrous body 112 extends along another straight line direction
  • the extending directions of the first fibrous body 111 and the second fibrous body 112 are perpendicular to each other
  • the two are in the form of orthogonal weaving.
  • the third fiber body 113 extends in a serpentine shape in a plane that is perpendicular to the first fiber body 111 and parallel to the second fiber body 112.
  • the planes where the plurality of third fiber bodies 113 are located are parallel to each other.
  • the two adjacent third fiber bodies 113 can be shown as the third fiber body 113a (shown by the solid line) and the third fiber body 113b (shown by the dotted line) in the figure.
  • the third fiber bodies 113a and the third fiber bodies 113b are interleaved and interspersed in the gaps of the first fiber body 111 and the second fiber body 112 that are orthogonally woven.
  • a coordinate system having a first direction X, a second direction Y and a third direction Z is established as a reference.
  • the first fiber body 111 extends along the first direction 111 and the second fiber body 112 are woven orthogonally.
  • the third fiber body 113 is parallel to the plane formed by the first direction Between the woven gaps, a 3D woven fabric with a three-phase orthogonal structure is finally obtained.
  • Figure 6a shows yet another main structure 1, the braided body 11 of which is a three-dimensional four-way braided body 11.
  • the braided body 11 includes a first fiber body 111 , a second fiber body 112 , a third fiber body 113 and a fourth fiber body 114 .
  • at least one fiber among the first fiber body 111, the second fiber body 112, the third fiber body 113 and the fourth fiber body 114 is carbon fiber.
  • the first fiber body 111 extends along the second direction Y, and the second fiber body 112, the third fiber body 113, and the fourth fiber body 114 are shuttled and interwoven around the first fiber body 111, and finally a three-dimensional four-way braid is obtained.
  • the structure of the braided body 11 is only an example.
  • the polymer body 12 can be filled into the gaps of these network structures.
  • the gaps in the braid 11 are interconnected, so the structure of the polymer 12 filled in the gaps is continuous.
  • a continuous interlocking structure can be formed between the continuous polymer body 12 and the braided body 11, thereby realizing an integrated structure of the polymer body 12 and the braided body 11.
  • the braided body 11 and the polymer body 12 have different appearances.
  • the braided body 11 has a braided textured surface, while the polymer body 12 has a plastic feel.
  • the volume ratio of the braid 11 and the polymer body 12 has a certain influence on the overall appearance of the carbon fiber watch case.
  • the embodiment of the present application does not limit the volume proportion of the braid 11 in the main structure 1, and the main structure 1 can be adjusted as needed. For example, in order to reflect that the carbon fiber watch case has a certain texture and high-end feel, the volume ratio of the braided body 11 in the main structure 1 can be adjusted to 30%-60%.
  • the volume ratio of the braided body 11 in the main structure 1 can be adjusted to 30%-60%.
  • the ratio can be 30%, 35%, 40%, 50%, 60%. It should be understood that the higher the proportion of the braid 11 in the main structure 1, the stronger the texture of the main structure 1.
  • the volume ratio of the braided body 11 in the main structure 1 is 40% or more, the plastic feel of the carbon fiber watch case basically disappears, showing a more obvious texture.
  • the braided body 11 can be woven using different fibers.
  • the raw fibers used to constitute the braided body 11 can also include colored fibers with a colorful appearance.
  • the colored fibers can Together with carbon fiber, the braided body 11 is woven using a braiding process.
  • the material of the colored fiber can specifically be glass fiber, metal fiber, ceramic fiber, aramid fiber, basalt fiber, etc.
  • the addition of colored fibers can change the color of the carbon fiber watch case.
  • the braided body 11 with different structures has different texture structures, which can make the carbon fiber watch case present rich textures and colors.
  • the carbon fiber watch case provided by the embodiment of the present application has the carbon fiber braid 11 and the polymer body 12 forming a continuous interlocking structure, which can ensure that the carbon fiber watch case has high strength, sealing, and high reliability.
  • the carbon fiber watch case has no other inner bladder or bracket for support, which can achieve the purpose of lightweighting.
  • the addition of conductive structure 2 allows the carbon fiber watch case to overcome the electromagnetic shielding properties of carbon fiber and meet the communication needs of smart watches.
  • the embodiment of the present application also provides a method for preparing a carbon fiber watch case, which can be used to prepare the above carbon fiber watch case. Based on the structure of the above carbon fiber watch case, as shown in Figure 7a and Figure 7b, the preparation method may include the following steps:
  • S1 Use a weaving process to weave raw fibers into a braided body; the braided body has a network structure, and the braided body includes carbon fibers.
  • S3 Inject the polymer into the braid so that the polymer and the braid form the main structure.
  • step S2 and step S3 are not limited.
  • the polymer 12 is at least filled in the space of the network structure of the braid 11 so that the braid 11 and the conductive structure 2 form an integrated structure.
  • the main structure 1 has an inner surface a1 and an outer surface a2, and the conductive structure 2 has a first contact point located on the inner surface a1 and a second contact point located on the outer surface a2.
  • the conductive structure 2 can be disposed on the main structure 1 in a manner formed on the surface of the main structure 1 (refer to Figures 2b and 2c).
  • the conductive structure 2 2 can also be provided on the main structure 1 in a manner that penetrates the inner surface a1 and the outer surface a2 of the main structure 1 (refer to Figures 3a and 3b), as long as the integrated structure of the conductive structure 2 and the braid 11 can be achieved .
  • the braided body 11, the conductive structure 2 and the polymer body 12 have an integral structure. The braided body 11, the conductive structure 2 and the polymer body 12 cannot be separated and peeled off without damaging the carbon fiber watch case.
  • raw fibers may include carbon fiber, glass fiber and other fibers used to improve structural strength, and may also include colored fibers with colors.
  • the material of the colored fiber can be any one or a combination of at least two of quartz fiber, glass fiber, basalt fiber, aramid fiber, metal fiber, and ceramic fiber.
  • the weaving process may specifically be a weaving or knitting process, specifically including but not limited to 2.5D weaving, 3D weaving, and 3D knitting processes.
  • the fibers may be in three-dimensional four-way, three-dimensional five-way, three-dimensional six-way, three-dimensional seven-way, etc.
  • the braided body 11 has a braided texture.
  • the braiding angle can be adjusted to change the appearance texture of the braided body 11, thereby changing the appearance of the main structure 1, and thus the appearance of the carbon fiber watch case can be adjusted. Changes enable the appearance of the carbon fiber watch case to meet consumer preferences.
  • the braiding angle during the braiding process can be selected from the range of 20°-40°.
  • the braided body 11 When injecting the polymer body into the braided body to form the main structure, the braided body 11 is first placed in a closed mold, and the liquid polymer body 12 is injected into the mold through resin transfer molding. The liquid polymer 12 is poured into the gaps in the network structure of the braid 11 and fills the gaps in the network structure of the braid 11 . This allows the liquid polymer 12 to wrap around the raw fibers of the braid 11 , and the polymer 12 is in close contact with the raw fibers of the braid 11 . Then, the liquid polymer 12 is solidified and formed according to the curing process of the polymer 12, so that the polymer 12 and the braid 11 can form a continuous interlocking structure, that is, the main structure 1.
  • the polymer body 12 can be a thermosetting polymer material (such as epoxy resin, acrylic resin, etc., these resins can be used alone or in combination), or a thermoplastic polymer material (such as polycarbonate, polyamide, etc.) , these resins can be used alone or in combination), or they can be a combination of thermosetting polymer materials and thermoplastic polymer materials (such as the combination of epoxy resin and polycarbonate, the combination of acrylic resin and polycarbonate, polyamide , the quantity and type of materials in the combination are not limited).
  • a thermosetting polymer material such as epoxy resin, acrylic resin, etc., these resins can be used alone or in combination
  • a thermoplastic polymer material such as polycarbonate, polyamide, etc.
  • the conductive structure 2 is implemented after the main structure 1 is formed.
  • the above step S2 can be implemented in the following manner:
  • S21 Form a conductive structure on the surface of the main structure.
  • the conductive structure 2 is in the form of a layer (it can also be considered as a thin film).
  • water plating, spraying, physical vapor deposition, etc. can be used to form the conductive material on the surface of the main structure 1, so that the conductive structure 2 is closely combined with the surface of the main structure 1 to form an integrated structure.
  • the metal plating layer can be a single layer of metal (such as a copper layer, a gold layer, etc.) or a multi-layer metal (such as an inner layer of chromium + an outer layer of nickel, an inner layer of copper + an outer layer of nickel) , inner layer chromium + middle layer nickel + outer layer gold).
  • the dispersion medium in the conductive ink includes conductive materials such as metal powder, carbon tubes, and graphene.
  • the surface of the main structure 1 can be processed first, so that when the conductive structure 2 is formed onto the surface of the main structure 1, the conductive structure 2 has better bonding with the surface of the main structure 1, reducing the conductive structure. 2 Possibility of peeling from the surface of main structure 1.
  • Such a preparation method can closely combine the conductive structure 2 with the surface of the main structure 1 and take into account the compatibility of the polymer body 12 and the conductive structure 2, so that the material selection range of the polymer body 12 and the conductive structure 2 is wider. Conducive to technology promotion.
  • the conductive structure 2 needs to extend to the inner surface a1 and the outer surface a2 of the main structure 1 to conduct conduction.
  • the inner surface a1 and the outer surface a2 of the electrical structure 2 are connected to the conductive structure 2 .
  • the conductive structure 2 is implemented before the main structure 1 is formed.
  • the above step S2 can be implemented in the following manner:
  • the braided body 11 has a network-like structure, and the network-like structure has gaps.
  • the braided body 11 shown in Figure 4b as an example, as shown in Figure 10, the braided body 11 is set to have a first surface b1 and a second surface b2, and the first surface b1 and the second surface b2 are opposite along the second direction Y.
  • the conductive structure 2 is embedded in the gap of the braid 11. One end of the conductive structure 2 is exposed to the first surface b1, and the other end is exposed to the second surface b2 (not shown in Figure 10 due to limited viewing angle).
  • the conductive structure 2 here can specifically be a polymer material, a metal material, a conductive ceramic, etc.
  • the conductive structure 2 of different materials can be selected according to different conductivity requirements.
  • step S3 is implemented to inject polymer into the braided body to form a main structure, and the conductive structure 2 penetrates the inner surface and the outer surface of the main structure.
  • the structure illustrated in FIG. 10 is placed in a closed mold, and the liquid polymer 12 is injected into the mold through resin transfer molding.
  • the liquid polymer 12 is poured into the gaps in the network structure of the braid 11 and fills the gaps in the network structure of the braid 11.
  • the liquid polymer 12 will also partially wrap the conductive structure 2.
  • the liquid polymer 12 is solidified and formed according to the curing process of the polymer 12, so that the polymer 12 and the braid 11 can form a continuous interlocking structure, that is, the main structure 1.
  • the polymer body 12 and the conductive structure 2 are closely combined.
  • the inner surface a1 of the main structure 1 corresponds to the first surface b1 of the braid 11
  • the outer surface a2 of the main structure 1 corresponds to the second surface b2 of the braid 11
  • the polymer 12 is any one or a combination of thermosetting polymer and thermoplastic polymer.
  • the conductive structure 2 is also implemented before forming the main structure 1 .
  • the braided body 11 formed in step S1 the braided body 11 is reserved with through holes penetrating the braided body 11.
  • the braided body 11 has a through hole T. This through hole T is formed during braiding (the braided structure of the braided body 11 is not shown here).
  • the braided body 11 is set to have a first surface b1 and a second surface b2, and the through hole T penetrates the first surface b1 and the second surface b2 of the braided body 11.
  • the above step S2 can be implemented in the following manner:
  • a liquid conductive material such as conductive glue, liquid conductive ceramics, etc.
  • a liquid conductive material such as conductive glue, liquid conductive ceramics, etc.
  • the structure can be shown in Figure 14.
  • the first surface b1 and the second surface b2 are opposite along the second direction Y.
  • One end of the conductive structure 2 is exposed to the first surface b1, and the other end is exposed to the second surface b2.
  • the conductive structure 2 here can specifically select conductive structures 2 of different materials according to different conductivity requirements.
  • step S3 is implemented.
  • the structure illustrated in FIG. 14 is placed in a closed mold, and the liquid polymer 12 is injected into the mold through resin transfer molding.
  • the liquid polymer 12 is poured into the gaps in the network structure of the braid 11 and fills the gaps in the network structure of the braid 11.
  • the liquid polymer 12 will also partially wrap the conductive structure 2.
  • the liquid polymer 12 is solidified and formed according to the curing process of the polymer 12, so that the polymer 12 and the braid 11 can form a continuous interlocking structure, that is, the main structure 1.
  • the polymer body 12 and the conductive structure 2 are closely combined.
  • the conductive structure 2 is exposed to the inner surface a1 of the main structure 1, and the other end of the conductive structure 2 is exposed to the outer surface a2 of the main structure 1.
  • the structure can be seen in Figure 15. Knot 14 and 15 together, the inner surface a1 of the main structure 1 is coplanar with the first surface b1 of the braid 11 , and the outer surface a2 of the main structure is coplanar with the second surface b2 of the braid 11 .
  • the polymer 12 is any one or a combination of thermosetting polymer and thermoplastic polymer.
  • the preparation process shown in Figure 13 adopts the method of reserved pores and casting encapsulation to prepare the carbon fiber watch case.
  • the conductive structure 2 is prepared by using conductive glue, conductive ceramics and other materials. The compatibility between these materials and the polymer body 12 is relatively good. When performing resin transfer molding, the polymer body 12 has a wider range of material selection, which is conducive to the popularization and use of this technical solution.
  • the carbon fiber watch case in the embodiment of the present application may be the middle frame 101 in Figure 2a, or it may be the bottom case 102 in Figure 2a.
  • the structures of the middle frame 101 and the bottom case 102 are completely different.
  • the raw fibers can be directly woven into a braid 11 of a preset shape, which is suitable for the carbon fiber watch case to be prepared. match.
  • the polymer body 12 is poured into the braided body 11 and solidified to form the main structure 1 .
  • the closed mold is also preset to match the shape of the braided body 11 .
  • the liquid polymer body 12 After the liquid polymer body 12 is poured, the liquid polymer body 12 can be filled into the network gaps of the braided body 11. After the polymer body 12 is solidified, the main structure 1 is prepared. Alternatively, as shown in Figure 16b, it can be woven to form a braided body base material, which is just a simple cube, plate, etc. structure. Then, the braided body base material is subjected to shape processing through bending, punching, shearing and other shape processing methods to obtain the braided body 11. The obtained braided body 11 has a preset shape of the carbon fiber watch case. Then, the liquid polymer 12 is poured into the braided body 11 and solidified to obtain the main structure 1 .
  • the closing mold here is also preset to match the shape of the braided body 11 .
  • the braided base material can also be woven first, and the braided base material is just a simple cube, plate, etc. structure.
  • the polymer body 12 is poured into the braid base material and then solidified to form the main structure base material.
  • the main structure base material is processed by stamping, shearing, etc. to obtain the main structure 1.
  • the closed mold does not need to match the preset carbon fiber watch case, as long as the polymer body 12 can be poured into the gaps of the braided body 11.
  • the conductive structure 2 needs to have a first contact point located on the inner surface a1 and a second contact point located on the outer surface a2 on the main structure 1.
  • filling the polymer body 12 into the network structure gaps of the braid 11 can be prepared by resin transfer molding.
  • the solid polymer body 12 and the braided body 11 can achieve continuous structural interlocking.
  • Both the braid 11 and the polymer 12 have a three-dimensional network structure.
  • the structural interlocking of the braid 11 and the polymer 12 can avoid reliability problems such as fracture, peeling, delamination, and poor sealing of the carbon fiber watch case.
  • using the above-mentioned molding process there is no need to introduce internal structures such as brackets and fixed columns, which is conducive to the lightweighting of the carbon fiber watch case.
  • the carbon fiber watch case provided by the embodiment of this application can be applied to smart watches.
  • the smart watch includes a carbon fiber watch case 10, a screen assembly 20 and a watch body (not shown here).
  • the watch body is disposed in the space between the carbon fiber watch case 10 and the screen assembly 20.
  • the carbon fiber watch case 10 may include a bottom case 102 and a middle frame 101 .
  • the middle frame 101 is annular and has an opposite top opening and a bottom opening.
  • the screen assembly 20 is fastened to the top opening of the middle frame 101
  • the bottom case 102 is fastened to the bottom opening of the middle frame 101 .
  • a receiving space is formed between the screen assembly 20 and the bottom case 102 , and the holding space can be used to place a watch. body.
  • the carbon fiber watch case 10 has the advantages of light weight, high strength, good sealing performance, and has a fashionable appearance and aesthetic feeling.
  • the watch body is specifically the functional body of the smart watch, which has functions such as time display and information processing.
  • the watch body has a circuit board 301 and an antenna component 302 arranged on the circuit board 301 .
  • the watch body is also provided with an elastic piece 303 attached to the inside of the middle frame 101 (which can be considered as the inner surface a1 of the main structure 1).
  • the antenna assembly 302 and the elastic piece 303 are connected through a wiring 304.
  • the antenna assembly 302 here is located in the carbon fiber watch case 10. Since the middle frame 101 and the bottom case 102 are carbon fiber watch cases and have electromagnetic signal shielding functions, the antenna assembly 302 It is impossible to achieve electromagnetic signal transmission with devices outside the carbon fiber watch case 10.
  • the conductive structure 2 on the middle frame 101 can be in contact with the elastic piece 303, so that the signal of the antenna component 302 can be derived.
  • the conductive structure 2 can be regarded as a feed point of the antenna component 302. It should be understood that in the specific design and manufacturing of electronic equipment, the position and number of the conductive structures 2 can be adjusted as needed, and are not limited here.
  • each elastic piece 303 is connected to the antenna component 302 on the circuit board 301 through a trace 304. Cut the smart watch along the plane shown by M-M to obtain the cross-sectional structural diagram of the smart watch shown in Figure 19. Combined with the enlarged view of part N in Figure 19 shown in Figure 20, it can be seen that the antenna component 302 is mounted on the circuit board 301 On the top, the elastic piece 303 is attached to the inside of the middle frame 101 (equivalent to the inner surface a1 of the main structure 1), and the conductive structure 2 penetrates the inside and outside of the middle frame 101.
  • the conductive structure 2 is equivalent to a feeding point of the antenna component 302 .
  • the antenna component 302 can receive electromagnetic signals emitted from the outside through the conductive structure 2 , and can also transmit the electromagnetic signals of the antenna component 302 through the conductive structure 2 to facilitate reception by the outside world.
  • smart watches can also be equipped with watch straps.
  • the carbon fiber case 10 of the smart watch has two sets of connecting parts, and each set of connecting parts has two symmetrically arranged head pieces 103 .
  • a corresponding group of head grains 103 is connected to a watch strap 40 .
  • the watch strap 40 here can also be woven with carbon fiber to meet the bending requirements of wearing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

一种碳纤维表壳(10),包括主体结构(1)和导电结构(2);主体结构(1)具有内表面(a1)和外表面(a2),导电结构(2)具有位于内表面(a1)的第一触点和位于外表面(a2)的第二触点以导通碳纤维表壳(10)的内表面(a1)和外表面(a2);主体结构(1)包括编织体(11)和高分子体(12);编织体(11)包括碳纤维,且编织体(11)具有网络状结构;高分子体(12)至少填充于编织体(11)的网络状结构的空隙内以使编织体(11)和导电结构(2)形成一体式结构。导电结构(2)可以使主体结构(1)的内表面(a1)和外表面(a2)实现导电功能,在碳纤维表壳(10)应用到电子设备时,防止碳纤维的电磁屏蔽对电子产品的电磁信号传递造成影响。还提供一种碳纤维表壳(10)的制备方法以及一种智能手表。

Description

碳纤维表壳及其制备方法、智能手表
相关申请的交叉引用
本申请要求在2022年05月30日提交中国专利局、申请号为202210599140.X、申请名称为“碳纤维表壳及其制备方法、智能手表”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及可穿戴设备技术领域,尤其涉及到一种碳纤维表壳及其制备方法、智能手表。
背景技术
随着智能手表等可穿戴设备的快速发展和普及,消费者对智能手表的依赖越来越强。目前的智能手表,不但具备基本的时间显示功能,还可以实现健康监控以及网络通讯。
目前的手表外壳大多采用塑胶或金属材质。塑胶轻便但强度较低,金属强度高却比较笨重,不能够满足消费者的穿戴需求。在满足智能手表基本功能的前提下,如何同时获得高强度与佩戴轻便性,是目前智能手表外壳亟待解决的问题。
发明内容
本申请提供了一种碳纤维表壳及其制备方法、智能手表,能够满足消费者的对智能手表的消费需求。
第一方面,本申请提供一种碳纤维表壳,该碳纤维表壳可以应用到可以实现电磁信号传递的智能手表等电子设备中。该碳纤维表壳包括主体结构和导电结构,导电结构与主体结构能够紧密结合为一体。主体结构具体包括编织体和高分子体。编织体由包括碳纤维的原料纤维通过三维编织工艺编织而成,使得编织体呈网络状结构。高分子体至少填充于编织体的网络状结构的空隙内以使编织体和导电结构形成一体式结构,编织体的网络状结构的空隙相互连通,因此,高分子体呈连续的结构,从而高分子体和编织体可以形成连续互锁的结构。其中,主体结构具有内表面和外表面,导电结构与主体结构结合时,导电结构具有位于主体结构内表面的第一触点和位于主体结构外表面的第二触点。导电结构自身具有导电性,可以通过第一触点和第二触点实现主体结构的内表面与外表面的电磁导通。也就是说,位于主体结构内表面一侧的电器件可以与位于主体结构外表面一侧的电器件通过导电结构实现电磁信号连接。
上述碳纤维表壳中,编织体和高分子体连续互锁,使得主体结构具有一体式结构,提高碳纤维表壳的机械强度、密封性,保证较高的可靠性。其中,导电结构可以使主体结构的内表面和外表面实现导电功能,在碳纤维表壳应用到智能手表等电子设备时,防止碳纤维的电磁屏蔽对智能手表等电子设备的电磁信号传递造成影响。
导电结构与主体结构的结合方式有多种实现方式。
一种可能的方式中,导电结构呈柱状并嵌设于主体结构内。导电结构贯穿主体结构, 且导电结构的一端露出主体结构的内表面以形成上述第一触点,导电结构的另一端露出主体结构的外表面以形成第二触点。该导电结构可以为导电金属、导电胶、导电陶瓷中的任意一种或至少两种的组合。
另一种可能的方式中,导电结构呈薄膜状并形成于主体结构的表面。该导电结构延伸至主体结构的内表面以形成第一触点,并延伸至主体结构的外表面以形成第二触点。该导电结构可以为金属镀层、导电油墨层、导电沉积层中的任意一种或至少两种的组合。
本申请中编织体可以是三维编织体,三维编织体具有更为立体的结构,有利于编织体与高分子体的连续互锁结构形成。
可能地,形成编织体的原料纤维除了碳纤维,还包括具有丰富颜色的彩色纤维,彩色纤维可以为碳纤维表壳提供多彩的颜色。彩色纤维与碳纤维采用编织工艺编织形成编织体。此处的彩色纤维可以是石英纤维、玻璃纤维、玄武岩纤维、芳纶纤维、金属纤维、陶瓷纤维中的任意一种或至少两种的组合。
为了保证编织体足够的强度,碳纤维在编织体中的体积占比不小于40%。为了较好的三维编织外观,编织体在主体结构中的体积占比为30%-60%。另外,编织体的编织角限定为20°-40°。
其中,高分子体具体可以为热固性高分子体、热塑性高分子体中的任意一种或两种的组合。
第二方面,本申请还提供一种碳纤维表壳的制备方法,可以用于制备上述碳纤维表壳。该制备方法包括:
采用编织工艺将原料纤维编织形成编织体;所述编织体具有网络状结构,且所述编织体包括碳纤维;
设置导电结构;
向编织体灌注高分子体以使高分子体与编织体形成主体结构;
其中,高分子体至少填充于编织体的网络状结构的空间内以使编织体和导电结构形成一体式结构;主体结构具有内表面和外表面,导电结构具有位于内表面的第一触点和位于外表面的第二触点。根据导电结构与主体结构不同的结合方式,设置导电结构的步骤和向编织体灌注高分子体以使高分子体与编织体形成主体结构的步骤实施顺序可以调换。
向编织体灌注高分子体以使高分子体与编织体形成主体结构的步骤之前,导电结构可呈柱状并嵌设于主体结构内,上述设置导电结构具体实施为:
将导电结构嵌入编织体的空隙中;
或者,在形成编织体时预留有贯穿编织体的通孔;
上述设置导电结构具体实施为:向通孔内浇筑导电材料以形成导电结构;
、当设置导电结构实施向编织体灌注高分子体以使高分子体与编织体形成主体结构的步骤之后,导电结构可呈薄膜状并形成于主体结构的表面,上述设置导电结构具体实施为:在主体结构的表面形成导电结构。
其中,在主体结构的表面形成导电结构的制备工艺包括水镀、喷涂、物理气相沉积中的任意一种或至少两种的组合。
第三方面,本申请还提供一种智能手表。该智能手表包括主体以及上述碳纤维表壳。该碳纤维表壳形成有安装空间,主体可以设置于安装空间内;主体包括电路板以及设置于电路板上的天线单元,天线单元通过弹片与导电结构的第一触点连接。导电结构相当于天 线单元的一个馈点,天线单元可以通过导电结构与外界的设备进行电磁信号传递。
附图说明
图1为现有技术中的一种碳纤维表壳的结构示意图;
图2a为本申请实施例提供的一种智能手表的表壳的结构示意图;
图2b为本申请实施例提供的一种碳纤维表壳的结构示意图;
图2c为本申请实施例提供的一种碳纤维表壳的剖面结构示意图;
图3a为本申请实施例提供的一种碳纤维表壳的结构示意图;
图3b为本申请实施例提供的一种碳纤维表壳的剖面结构示意图;
图4a为本申请实施例提供的一种碳纤维表壳中主体结构的剖面结构示意图;
图4b为本申请实施例提供的一种碳纤维表壳中编织体的结构示意图;
图5a为本申请实施例提供的一种碳纤维表壳中主体结构的剖面结构示意图;
图5b为本申请实施例提供的一种碳纤维表壳中编织体的结构示意图;
图6a为本申请实施例提供的一种碳纤维表壳中主体结构的剖面结构示意图;
图6b为本申请实施例提供的一种碳纤维表壳中编织体的结构示意图;
图7a和图7b为本申请实施例提供的一种碳纤维表壳的制备方法的流程示意图;
图8为本申请实施例提供的一种碳纤维表壳的制备方法的流程示意图;
图9为本申请实施例提供的一种碳纤维表壳的制备方法的流程示意图;
图10为本申请实施例提供的一种碳纤维表壳的制备方法中将导电结构嵌入编织体的结构示意图;
图11为本申请实施例提供的一种碳纤维表壳的制备方法中得到的碳纤维表壳的结构示意图;
图12为本申请实施例提供的一种碳纤维表壳的制备方法中在编织体上预留通孔的结构示意图;
图13为本申请实施例提供的一种碳纤维表壳的制备方法的流程示意图;
图14为本申请实施例提供的一种碳纤维表壳的制备方法中在通孔中浇注导电结构的剖面结构示意图;
图15为本申请实施例提供的一种碳纤维表壳的制备方法中得到的碳纤维表壳的结构示意图;
图16a至16c为本申请实施例提供的一种碳纤维表壳的制备方法中形成碳纤维表壳形状的制备流程示意图;
图17a为本申请实施例提供的一种智能手表的结构示意图;
图17b为本申请实施例提供的一种智能手表的爆炸图;
图18为本申请实施例提供的一种智能手表的俯视图;
图19为图18中M-M的剖面结构示意图;
图20为图19中N部放大图;
图21为本申请实施例提供的一种智能手表的结构示意图。
具体实施方式
现有的智能手表中,常采用塑胶材质的外壳或金属材质的外壳。随着生活水平的提高,消费者对产品的质感要求逐渐提高。塑胶材质的手表外壳强度低且质感显廉价,因此,塑胶材质的手表外壳逐渐被消费者所抛弃。而金属材质的智能手表外壳虽然强度高,但是笨重的质感导致佩戴舒适感差,也常被消费者所诟病。在此背景下,碳纤维由于其优异的物理性能和特殊的纹理表面而受到关注,可以考虑应用在智能手表的外壳制造中。目前,碳纤维制备的结构一般为两层或多层的板材结构。如图1所示,沿厚度方向,该碳纤维结构由多层碳纤维层1’和多层树脂层2’交替分布形成。其中,碳纤维结构最内层为碳纤维层1’,碳纤维结构最外层为树脂层2’。任意相邻的两层之间,碳纤维层1’与树脂层2’压合在一起。由于碳纤维复合材料韧性差、层间强度较低,该碳纤维结构难以形成复杂结构(需配合内胆或支架使用),且容易出现浮纤、脱层、开裂、密封性差等问题,自然不能满足消费者对智能手表外壳的要求。此外,碳纤维自身的电磁屏蔽特性也不利于智能手表的通讯功能实现。因此,目前的碳纤维结构限制了碳纤维在智能手表的外壳制备中的应用发展。
基于此,本申请实施例提供一种碳纤维表壳,具有较高强度和可靠性,不会影响智能手表的通讯功能实现,可以满足消费者对智能手表外壳的要求。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供一种碳纤维表壳,该碳纤维表壳可以应用到具有智能手表中。应当理解,如图2a所示,碳纤维表壳可以具体为中框101或底壳102,中框101和底壳102的材质相同。并且,中框101与底壳102之间可以是图2a所述的可拆卸的,也可以是一体式的。如图2b所示,以该碳纤维表壳具体为中框101为例,碳纤维表壳包括主体结构1和导电结构2,主体结构1包括有碳纤维。碳纤维可以使主体结构1具有较轻的质量,提高佩戴舒适度。其中,主体结构1具有内表面a1和外表面a2,导电结构2可以连通主体结构1的内表面a1和外表面a2,避免碳纤维的电磁屏蔽功能影响智能手表的通讯功能。其中的导电结构2可以作为天线的馈点用于实现智能手表的电磁信号的接收与发射。
如图2b所示,导电结构2呈膜层状。结合图2c所示,导电结构2相当于形成于主体结构1的表面。导电结构2包括第一延伸部c1、第二延伸部c2以及连接于第一延伸部c1和第二延伸部c2之间的连接部c3,该连接部c3相当于贴附于主体结构1的内表面a1与外表面a2之间的侧面。结合图2b所示的结构,主体结构1呈连续的环状,环状的内壁为主体结构1的内表面a1,环状的外壁为主体结构1的外表面a2。可以看做导电结构2自主体结构1的内表面a1越过主体结构1延伸至主体结构1的外表面a2。其中,第一延伸部c1延伸至主体结构1的内表面a1,第二延伸部c2延伸至主体结构1的外表面a2。当碳纤 维表壳需要在主体结构1的内表面a1和外表面a2之间实现电磁信号传递时,导电结构2的第一延伸部c1可以充当第一触点,导电结构2的第二延伸部c2可以充当第二触点。一般地,结合图2b,智能手表的电路板以及天线部分将设置于主体结构1的内表面a1一侧,天线可以与导电结构2的第一延伸部c1连接,天线的信号可以通过第一延伸部c1、连接部c3传递到第二延伸部c2进行电磁信号发射以便外部设备接收,而外部的信号则可以通过第二延伸部c2、连接部c3传递到第一延伸部c1到天线进行电磁信号的接收。也就是说,导电结构2的存在,可以使得主体结构1内表面a1一侧的电磁信号和外表面a2一侧的电磁信号可以通过导电结构2实现传输。在这种结构中,导电结构2具体可以为金属镀层、导电油墨层、导电沉积层中的任意一种或至少两种的组合。示例性地,当导电结构2为金属镀层,金属镀层具体可以为单金属结构(例如铜层、金层)或多层金属结构(内层铬+外层镍、内层铜+外层镍、内层铬+中层镍+外层金)。当导电结构2为导电油墨层,导电油墨中的分散介质可以包括金属粉末、碳管、石墨烯等导电粒子。
为了进一步增强导电结构2与主体结构1的结构的一体化,使导电结构2与主体结构1的结合更紧密,可以将导电结构2嵌入主体结构1中。如图3a中,导电结构2呈柱状。结合图3b所示,导电结构2以贯穿主体结构1的内表面a1和外表面a2的方式与主体结构1结合。其中,导电结构2的其中一个端部b1露出主体结构1的内表面a1,导电结构2的另一个端部b2露出主体结构1的外表面a2。当碳纤维表壳需要在主体结构1的内表面a1和外表面a2之间实现电磁信号传递时,导电结构2的端部b1可以充当第一触点,导电结构2的端部b2可以充当第二触点,使得主体结构1内表面a1一侧的电磁信号和外表面a2一侧的电磁信号可以通过导电结构2实现传输。在这种结构中,导电结构2具体可以为导电金属、导电胶、导电陶瓷中的任意一种或至少两种的组合。
其中,如图4a所示,主体结构1具体包括编织体11和高分子体12。编织体11由原料纤维通过编织工艺编织而成,具有网络状的立体结构。可以认为,编织体11所占据的空间内,不同的原料纤维依照编织工艺的走线方式延伸、交织、缠绕在一起,形成一个具有多空隙的立体结构。碳纤维自身具有强度高且质轻的优势,作为碳纤维表壳,用于构成编织体11的纤维包括碳纤维,碳纤维可以为编织体11提供较高的结构强度以及较轻的质量。将碳纤维编织为网络状的立体结构,能够进一步提高主体结构1的强度,还能降低主体结构1的质量。高分子体12具体可以为热固性高分子材料(例如环氧树脂、丙烯酸树脂等,这些树脂可以单独使用,也可以组合使用),也可以为热塑性高分子材料(例如聚碳酸酯、聚酰胺等,这些树脂可以单独使用,也可以组合使用),还可以是热固性高分子材料与热塑性高分子材料的组合(例如环氧树脂与聚碳酸酯的组合、丙烯酸树脂与聚碳酸酯、聚酰胺的组合,组合中的材料数量和种类不做限定)。
如图4a所示,编织体11网络状的立体结构会形成相互连通的空隙,将高分子体12填充到这些空隙中,高分子体12可以形成与编织体11相互匹配的网络状结构。高分子体12填充到这些空隙中,高分子体12能够将编织体11包裹,编织体11的网络状结构可以与高分子体12的网络状结构实现结构上的连续互锁,使得主体结构1具有较高的强度,增加结构的可靠性。
在主体结构1的成型过程中,可以将导电结构2结合到主体结构1中,使得导电结构2与编织体11、高分子体12具有一体式结构。导电结构2能够克服碳纤维的电磁屏蔽性,使得碳纤维表壳具有导电的功能。也就是说,本申请实施例提供的碳纤维表壳在制备中, 主体结构1可以与导电结构2以一体成型的工艺制备,从而将导电结构2结合主体结构1,使得二者之间具有一体式的结构,保证导电结构2的结构稳定性。
将包括碳纤维的纤维编织成编织体11具体可以采用机织或编织的工艺,具体包括但不仅限于2.5D机织、3D机织、3D编织工艺。采用不同的编织工艺,可以得到包括但不仅限于角联锁编织体、三向正交编织体、面内准各向同性编织体。编织体11具有编织状的纹理,在编织过程中,可以调整编织的编织角大小,以改变编织体11的外观纹理,进而改变主体结构1的外观,也就可以对碳纤维表壳的外观进行调节改变,使得碳纤维表壳的外观能够满足消费者的喜好要求。其中,编织的编织角可以选取20°-40°范围。此处的编织角指的是编织体11中任意两根相交接触的纤维之间的夹角。应当理解,选用不同的编织工艺以及编织参数,编织体11将会呈现不同的外观纹理。接下来,将通过具体的编织体结构对本申请实施例中的主体结构1进行详细介绍。
图4a示出了一种主体结构1,其编织体11为一种2.5D机织物,具体为角联锁编织体。结合图4b所示,依照编织方式,该编织体11包括第一纤维体111和第二纤维体112。其中,第一纤维体111、第二纤维体112中的至少一种纤维是碳纤维,其他的纤维可以包括能够呈现颜色的彩色纤维,这种彩色纤维可以为主体结构1提供多彩的外观。第一纤维体111在一个平面内呈蛇形延伸,第二纤维体112则沿一个直线方向延伸,且该直线方向垂直于第一纤维体111所在的平面。相邻的两条第一纤维体111可以参照图中的第一纤维体111a(实线所示)和第一纤维体111b(虚线所示)所示,在垂直于第一纤维体111所在的平面的方向上,第二纤维体112穿插在第一纤维体111a和第一纤维体111b交错编织形成的空隙内。建立具有第一方向X、第二方向Y和第三方向Z的坐标系作为参考,第二纤维体112沿第三方向Z延伸,第一纤维体111平行于第一方向X和第二方向Y形成的平面,相邻的第一纤维体111a和第一纤维体111b蛇形延伸并沿第一方向X相互错位编织,第二纤维体112穿插在第一纤维体111编织形成的空隙内,最终编织得到具有角联锁编织体的2.5D机织物。
3D编织体也即三维编织体。其中,纤维可能呈三维四向、三维五向、三维六向、三维七向等形态。图5a示出的主体结构1中的编织体11为一种3D机织物,具体为三相正交编织体。结合图5b所示,该编织体11包括第一纤维体111、第二纤维体112和第三纤维体113。其中,第一纤维体111、第二纤维体112和第三纤维体113中的至少一种纤维是碳纤维。一并参考图4a和图4b,第一纤维体111沿一个直线方向延伸,第二纤维体112沿另一个直线方向延伸,且第一纤维体111和第二纤维体112的延伸方向相互垂直,二者呈正交编织的形态。第三纤维体113在一个平面内呈蛇形延伸,该平面垂直于第一纤维体111且平行于第二纤维体112,多个第三纤维体113所在的平面相互平行。相邻的两条第三纤维体113可以参照图中的第三纤维体113a(实线所示)和第三纤维体113b(虚线所示)所示,在垂直于第三纤维体113所在的平面的方向上,第三纤维体113a和第三纤维体113b相互交错地穿插在第一纤维体111和第二纤维体112正交编织的空隙内。建立具有第一方向X、第二方向Y和第三方向Z的坐标系作为参考,第一纤维体111沿第一方向X延伸,第二纤维体112沿第三方向Z延伸,第一纤维体111与第二纤维体112正交编织,第三纤维体113平行于第一方向X和第二方向Y形成的平面,以蛇形穿设在第一纤维体111和第二纤维体112正交编织的空隙之间,最终编织得到三相正交结构的3D机织物。
图6a示出了又一种主体结构1,其编织体11为一种三维四向编织体11。结合图6b 所示,该编织体11包括第一纤维体111、第二纤维体112、第三纤维体113以及第四纤维体114。其中,第一纤维体111、第二纤维体112、第三纤维体113和第四纤维体114中的至少一种纤维是碳纤维。第一纤维体111沿第二方向Y延伸,第二纤维体112、第三纤维体113、第四纤维体114围绕第一纤维体111穿梭交织,最终编织得到三维四向编织体。
应当理解,在图4b、图5b以及图6b中,编织体11的结构仅做示例,为了说明编织体11具有网络状结构,高分子体12可以填充到这些网络状结构的间隙内。编织体11的间隙是相互连通的,因此填充到间隙中的高分子体12的结构是连续的。连续的高分子体12与编织体11之间能够形成连续互锁的结构,实现高分子体12与编织体11的一体式结构。
结合图4a、图5a和图6a,编织体11和高分子体12具有不同的外观表现,编织体11具有编织状的纹理表面,高分子体12则呈塑胶感。在碳纤维表壳中,编织体11和高分子体12的体积占比对碳纤维表壳的整体外观具有一定的影响。本申请实施例并不限定编织体11在主体结构1中的体积占比,主体结构1可以根据需要进行调整。例如,为了体现碳纤维表壳具有一定的纹理高级感,可以将编织体11在主体结构1中的体积占比调整为30%-60%,具体地,编织体11在主体结构1中的体积占比可以是30%、35%、40%、50%、60%。应当理解,编织体11在主体结构1中的占比越高,主体结构1的纹理感越强。其中,编织体11在主体结构1中的体积占比为40%及以上时,碳纤维表壳的塑胶感基本消失,呈现出较为明显的纹理感。
结合图4b、图5b以及图6b,编织体11可以采用不同的纤维进行编织,在包括碳纤维的基础上,用于构成编织体11的原料纤维还可以包括具有彩色外观的彩色纤维,彩色纤维可以与碳纤维一起采用编织工艺编织成编织体11。其中,彩色纤维的材质具体可以是玻璃纤维、金属纤维、陶瓷纤维、芳纶纤维、玄武岩纤维等。彩色纤维的加入,能够改变碳纤维表壳的颜色。结合图4b、图5b以及图6b可知,不同结构的编织体11具有不同的纹理结构,可以使碳纤维表壳呈现丰富的纹理和配色。
综上,本申请实施例所提供的碳纤维表壳,具有碳纤维的编织体11与高分子体12形成连续互锁的结构,能够保证碳纤维表壳具有较高的强度和密封性,可靠性强。除了编织体11和高分子体12的连续互锁结构,碳纤维表壳没有其他用于支撑的内胆或支架,可以达到轻量化的目的。通过调整编织体11中碳纤维与彩色限位的占比以及制备方式,可以改善碳纤维表壳的外表美观性,满足消费者的个性化需求。导电结构2的加入,使得碳纤维表壳可以克服碳纤维的电磁屏蔽特性,满足智能手表的通讯需求。
本申请实施例还提供一种碳纤维表壳制备方法,可以用于制备上述碳纤维表壳。基于上述碳纤维表壳的结构,如图7a和图7b所示,该制备方法可以包括以下步骤:
S1:采用编织工艺将原料纤维编织形成编织体;编织体具有网络状结构,且该编织体包括碳纤维。
S2:设置导电结构;
S3:向编织体灌注高分子体以使高分子体和编织体形成主体结构。
其中,步骤S2和步骤S3的先后顺序不做限定。
结合图4a、图5a以及图6a所示,高分子体12至少填充于编织体11的网络状结构的空间内以使编织体11和导电结构2形成一体式结构。主体结构1具有内表面a1和外表面a2,导电结构2具有位于内表面a1的第一触点和位于外表面a2的第二触点。导电结构2可以以形成于主体结构1表面的方式设置于主体结构1上(参照图2b和图2c),导电结构 2也可以以贯穿主体结构1的内表面a1和外表面a2的方式设置于与主体结构1上(参照图3a和图3b),只要能够实现导电结构2与编织体11的一体式结构即可。从外观上看,编织体11、导电结构2以及高分子体12呈整体结构,在不破坏该碳纤维表壳的情况下,编织体11、导电结构2以及高分子体12不能被分割剥离。
具体地,原料纤维可以包括碳纤维、玻璃纤维等用于提高结构强度的纤维,还可以包括具有颜色的彩色纤维。彩色纤维的材质可以为石英纤维、玻璃纤维、玄武岩纤维、芳纶纤维、金属纤维、陶瓷纤维中的任意一种或至少两种的组合。
参照图4a、图5a以及图6a,编织工艺具体可以是机织或编织的工艺,具体包括但不仅限于2.5D机织、3D机织、3D编织工艺。采用不同的编织工艺,可以得到包括但不仅限于角联锁编织体、三向正交编织体、面内准各向同性编织体。其中,在三维编织体中,纤维可能呈三维四向、三维五向、三维六向、三维七向等形态。编织体11具有编织状的纹理,在编织过程中,可以调整编织的编织角大小,以改变编织体11的外观纹理,进而改变主体结构1的外观,也就可以对碳纤维表壳的外观进行调节改变,使得碳纤维表壳的外观能够满足消费者的喜好要求。其中,编织过程中的编织角可以选取20°-40°范围。
在向编织体灌注高分子体以形成主体结构时,先将编织体11放置于闭合模具中,通过树脂传递模塑成型的方式向模具中注入液态的高分子体12。液态的高分子体12灌注进入编织体11的网络状结构的空隙中,并将编织体11的网络状结构的空隙填充满。使得液态的高分子体12能够包裹编织体11的原料纤维,高分子体12与编织体11的原料纤维紧密接触。接着按照高分子体12的固化工艺将液态高分子体12固化成型,使得高分子体12能够与编织体11形成连续互锁的结构,即主体结构1。其中,高分子体12可以为热固性高分子材料(例如环氧树脂、丙烯酸树脂等,这些树脂可以单独使用,也可以组合使用),也可以为热塑性高分子材料(例如聚碳酸酯、聚酰胺等,这些树脂可以单独使用,也可以组合使用),还可以是热固性高分子材料与热塑性高分子材料的组合(例如环氧树脂与聚碳酸酯的组合、丙烯酸树脂与聚碳酸酯、聚酰胺的组合,组合中的材料数量和种类不做限定)。
在图7a所示的制备方法中,导电结构2在形成主体结构1之后实施。结合图8所示,上述步骤S2具体可以采用以下方式实施:
S21:在主体结构的表面形成导电结构。
结合图3a,导电结构2呈层状(也可以认为是薄膜)。具体可以采用水镀、喷涂、物理气相沉积法等方式将具有导电功能的材料成型在主体结构1的表面,使得导电结构2与主体结构1的表面紧密结合,形成一体式的结构。以导电结构2为金属镀层为例,金属镀层可以为单层金属(例如铜层、金层等),还可以是多层金属(例如内层铬+外层镍、内层铜+外层镍、内层铬+中层镍+外层金)。以导电结构2为导电油墨膜层为例,导电油墨中的分散介质包括金属粉末、碳管、石墨烯等导电材料。在形成导电结构2之前,可以先对主体结构1的表面进行处理,使得导电结构2成形到主体结构1的表面时,导电结构2与主体结构1的表面具有更好的结合性,降低导电结构2自主体结构1的表面剥离的可能性。这样的制备方式,可以将导电结构2紧密结合到主体结构1的表面,并兼顾了高分子体12与导电结构2的相容性,使得高分子体12和导电结构2的选材范围更广,有利于技术推广。
需要注意,导电结构2需要延伸至主体结构1的内表面a1以及外表面a2,以导通导 电结构2的内表面a1和外表面a2。
在图7a所示的制备方法中,导电结构2在形成主体结构1之前实施。结合图9所示,上述步骤S2具体可以采用以下方式实施:
S22:将导电结构嵌入编织体的空隙中。
以图3a和图3b的结构为例,编织体11具有网络状结构,网络状结构具有间隙。以图4b所示的编织体11为例,如图10所示,设定编织体11具有第一表面b1和第二表面b2,第一表面b1和第二表面b2沿第二方向Y相对。导电结构2嵌入编织体11的间隙中,导电结构2的其中一端露出第一表面b1,另一端露出第二表面b2(由于视角所限,图10中未示出)。此处的导电结构2具体可以为高分子材料、金属材料、导电陶瓷等,可以根据不同的导电性要求,选择不同材质的导电结构2。
完成步骤S22之后,实施步骤S3,向编织体灌注高分子体以形成主体结构,导电结构2贯穿主体结构的内表面和外表面。
示例性地,将图10所示例的结构放置于闭合模具中,通过树脂传递模塑成型的方式向模具内注入液态的高分子体12。液态的高分子体12灌注进入编织体11的网络状结构的空隙中,并将编织体11的网络状结构的空隙填充满,液态的高分子体12也会将导电结构2部分包裹。接着按照高分子体12的固化工艺将液态高分子体12固化成型,使得高分子体12能够与编织体11形成连续互锁的结构,也即主体结构1。并且,高分子体12与导电结构2之间紧密结合。导电结构2的一端露出主体结构1的内表面a1,导电结构2的另一端露出主体结构1的外表面a2,得到如图11所示的结构。结合图10和图11,主体结构1的内表面a1与编织体11的第一表面b1对应,主体结构1的外表面a2与编织体11的第二表面b2对应。其中,高分子体12为热固性高分子体、热塑性高分子体中的任意一种或两种的组合。
在另一种实施例方式中,导电结构2也是在形成主体结构1之前实施。在步骤S1形成的编织体11中,编织体11预留有贯穿编织体11的通孔。如图12所示,编织体11具有一通孔T。该通孔T在进行编织时形成(此处未示出编织体11的编织结构)。设定编织体11具有第一表面b1和第二表面b2,通孔T贯穿编织体11的第一表面b1和第二表面b2。结合图13所示,上述步骤S2具体可以采用以下方式实施:
S23:向通孔内浇筑导电材料以形成导电结构。
结合图12所示,通过模板辅助,向通孔T内灌注液态的导电材料(例如导电胶、液态导电陶瓷等)后固化成像得到固态的导电结构2。其结构可以参照图14所示,第一表面b1和第二表面b2沿第二方向Y相对。导电结构2的其中一端露出第一表面b1,另一端露出第二表面b2。此处的导电结构2具体可以根据不同的导电性要求,选择不同材质的导电结构2。
完成步骤S22之后,实施步骤S3,将图14所示例的结构放置于闭合模具中,通过树脂传递模塑成型的方式向模具内注入液态的高分子体12。液态的高分子体12灌注进入编织体11的网络状结构的空隙中,并将编织体11的网络状结构的空隙填充满,液态的高分子体12也会将导电结构2部分包裹。接着按照高分子体12的固化工艺将液态高分子体12固化成型,使得高分子体12能够与编织体11形成连续互锁的结构,也即主体结构1。并且,高分子体12与导电结构2之间紧密结合。导电结构2的一端露出主体结构1的内表面a1,导电结构2的另一端露出主体结构1的外表面a2,其结构可以参照图15所示。结 合图14和图15,主体结构1的内表面a1与编织体11的第一表面b1共面,主体结构的外表面a2与编织体11的第二表面b2共面。其中,高分子体12为热固性高分子体、热塑性高分子体中的任意一种或两种的组合。
图13所示的制备工艺采用预留孔隙-浇筑封装的方式制备碳纤维表壳,导电结构2选用导电胶、导电陶瓷等材料制备,这些材料与高分子体12之间的相容性比较好,在进行树脂传递模塑成型时,高分子体12具有更大的选材范围,有利于该技术方案的推广使用。
本申请实施例中的碳纤维表壳可能是图2a中的中框101,也可能是图2a中的底壳102。中框101和底壳102的结构完全不同。在制备碳纤维表壳中,如图16a所示,可以在制备编织体11的过程中,直接将原料纤维编织形成预设形状的编织体11,该预设形状与所要制备的碳纤维表壳相适配。然后,向编织体11灌注高分子体12并固化,以形成主体结构1。在灌注液态的高分子体12时,闭合模具也是预设与编织体11的形状相适配的。灌注液态的高分子体12后,液态的高分子体12可以填充到编织体11的网络空隙中,高分子体12固化后主体结构1制备完成。或者,如图16b所示,可以编织形成编织体母材,编织体母材只是一个简单的立方体、板材等结构。然后通过弯曲、冲压、剪切等形状处理方式对编织体母材进行形状处理以得到编织体11,得到的编织体11具有预设的碳纤维表壳形状。然后向编织体11灌注液态的高分子体12并固化得到主体结构1,当然,此处的闭合模具也是预设与编织体11的形状相适配的。或者,如图16c所示,还可以先编织形成编织体母材,编织体母材只是一个简单的立方体、板材等结构。向编织体母材灌注高分子体12后固化形成主体结构母材。然后根据碳纤维表壳的形状采用冲压、剪切等方式加工主体结构母材得到主体结构1。在灌注高分子体12的过程中,闭合模具不需要与预设的碳纤维表壳保持相适配,只要能够实现高分子体12能够灌注进入编织体11的空隙中即可。需要注意的是,不论采用哪种方式,在最终得到碳纤维表壳中,导电结构2都需要在主体结构1上具有位于内表面a1的第一触点以及位于外表面a2的第二触点。
结合上述实施例,将高分子体12填充到编织体11的网络状结构空隙中,可以采用树脂传递模塑成型的方式制备。固态的高分子体12与编织体11能够实现结构上的连续互锁。编织体11和高分子体12均为立体网络状结构,编织体11和高分子体12的结构互锁能够避免碳纤维表壳出现断裂、起皮、脱层、密封性差等可靠性问题。而且,采用上述成型工艺,不需要引入支架、固定柱等内部结构,有利于碳纤维表壳实现轻量化。
本申请实施例提供的碳纤维表壳可以应用到智能手表。如图17a和图17b所示,智能手表包括碳纤维表壳10、屏幕组件20和表体(此处未示出),表体被设置于碳纤维表壳10与屏幕组件20之间的空间内。其中,碳纤维表壳10可以包括底壳102以及中框101。中框101呈环形,具有相对的顶部开口底部开口。屏幕组件20扣合于中框101的顶部开口处,底壳102扣合于中框101的底部开口,在屏幕组件20与底壳102之间形成一容纳空间,该容纳空间可以用于放置表体。碳纤维表壳10具有质量轻、强度高、密封性好的优点,其具有时尚的外观与美感。
如图17b所示,表体具体为智能手表的功能主体,具有显示时间、信息处理等功能。为了实现电磁信号传输,表体具有电路板301以及设置于电路板301上的天线组件302。表体还设置有贴附于中框101内侧(可以认为是主体结构1的内表面a1)的弹片303,天线组件302与弹片303之间通过走线304连接。此处的天线组件302位于碳纤维表壳10内,由于中框101和底壳102是碳纤维表壳,具有电磁信号屏蔽功能,导致天线组件302 无法与碳纤维表壳10外的设备实现电磁信号传输。中框101上的导电结构2可以与弹片303接触,从而可以将天线组件302的信号导出,导电结构2可以看作天线组件302的馈点。应当理解,在电子设备的具体设计制造中,导电结构2的位置与数量可以根据需要进行调整,此处不做限定。
进一步地参照图18所示的智能手表的俯视图(隐藏了屏幕组件20),在中框101的内侧对称设置有两个弹片303。每个弹片303通过走线304与电路板301上的天线组件302连接。沿M-M所示平面剖切智能手表,得到图19所示的智能手表的剖面结构示意图,结合图20所示的图19中N部放大图,可以看到,天线组件302贴装于电路板301上,弹片303贴附于中框101内侧(相当于主体结构1的内表面a1),导电结构2贯穿中框101的内侧与外侧。导电结构2位于中框101内侧的一端(即第一触点)与弹片303接触,导电结构2的另一端(即第二触点)露出中框101的外侧。导电结构2就相当于天线组件302的一个馈点。天线组件302可以通过该导电结构2接收外部发射的电磁信号,也可以通过该导电结构2将天线组件302的电磁信号发射以便于外界接收。
为了方便佩戴,智能手表还可以配备有表带。如图21所示,该智能手表的碳纤维表壳10上具有两组连接部,每组连接部具有两个对称设置的头粒103。一组对应的头粒103对应连接一个表带40。此处的表带40也可以采用碳纤维编织,以满足佩戴弯折要求。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种碳纤维表壳,其特征在于,包括:主体结构和导电结构;所述主体结构具有内表面和外表面,所述导电结构具有位于所述内表面的第一触点和位于所述外表面的第二触点以导通所述碳纤维表壳的内表面的外表面;
    所述主体结构包括编织体和高分子体;所述编织体包括碳纤维,且所述编织体具有网络状结构;所述高分子体至少填充于所述编织体的网络状结构的空隙内以使所述编织体和所述导电结构形成一体式结构。
  2. 如权利要求1所述的碳纤维表壳,其特征在于,所述导电结构嵌设于所述主体结构内,且所述导电结构的一端露出所述主体结构的内表面以形成所述第一触点,所述导电结构的另一端露出所述主体结构的外表面以形成所述第二触点。
  3. 如权利要求2所述的碳纤维表壳,其特征在于,所述导电结构为导电金属、导电胶、导电陶瓷中的任意一种或至少两种的组合。
  4. 如权利要求1所述的碳纤维表壳,其特征在于,所述导电结构形成于所述主体结构的表面,且所述导电结构延伸至所述主体结构的内表面以形成所述第一触点,并延伸至所述主体结构的外表面以形成所述第二触点。
  5. 如权利要求4所述的碳纤维表壳,其特征在于,所述导电结构为金属镀层、导电油墨层、导电沉积层中的任意一种或至少两种的组合。
  6. 如权利要求1-5中任一项所述的碳纤维表壳,其特征在于,所述编织体为三维编织体,所述三维编织体由三维编织工艺编织而成。
  7. 如权利要求1-6中任一项所述的碳纤维表壳,其特征在于,所述编织体还包括彩色纤维。
  8. 如权利要求7所述的碳纤维表壳,其特征在于,所述彩色纤维为石英纤维、玻璃纤维、玄武岩纤维、芳纶纤维、金属纤维、陶瓷纤维中的任意一种或至少两种的组合。
  9. 如权利要求1-8中任一项所述的碳纤维表壳,其特征在于,所述编织体在所述主体结构中的体积占比为30%-60%。
  10. 如权利要求1-9中任一项所述的碳纤维表壳,其特征在于,所述编织体的编织角为20°-40°。
  11. 如权利要求1-10中任一项所述的碳纤维表壳,其特征在于,所述高分子体为热固性高分子体、热塑性高分子体中的任意一种或两种的组合。
  12. 一种碳纤维表壳的制备方法,其特征在于,包括:
    采用编织工艺将原料纤维编织形成编织体;所述编织体具有网络状结构,且所述编织体包括碳纤维;
    设置导电结构;
    向所述编织体灌注高分子体以使所述高分子体与所述编织体形成主体结构;
    其中,所述高分子体至少填充于所述编织体的网络状结构的空间内以使所述编织体和所述导电结构形成一体式结构;所述主体结构具有内表面和外表面,所述导电结构具有位于所述内表面的第一触点和位于所述外表面的第二触点。
  13. 如权利要求12所述的制备方法,其特征在于,所述设置导电结构包括:
    将所述导电结构嵌入所述编织体的空隙中。
  14. 如权利要求12所述的制备方法,其特征在于,所述编织体预留有贯穿所述编织体的通孔;
    所述设置导电结构包括:
    向所述通孔内浇筑导电材料以形成所述导电结构。
  15. 如权利要求12所述的制备方法,其特征在于,所述设置导电结构包括:
    在所述主体结构的表面形成所述导电结构。
  16. 如权利要求15所述的制备方法,其特征在于,在所述主体结构的表面形成导电结构的制备工艺包括水镀、喷涂、物理气相沉积中的任意一种或至少两种的组合。
  17. 一种智能手表,其特征在于,表体和如权利要求1-11中任一项所述的碳纤维表壳;
    所述碳纤维表壳形成有安装空间,所述表体设置于所述安装空间内;所述表体包括电路板以及设置于所述电路板上的天线单元,所述天线单元通过弹片与所述导电结构的第一触点连接。
PCT/CN2023/096804 2022-05-30 2023-05-29 碳纤维表壳及其制备方法、智能手表 WO2023231955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210599140.XA CN117192951A (zh) 2022-05-30 2022-05-30 碳纤维表壳及其制备方法、智能手表
CN202210599140.X 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231955A1 true WO2023231955A1 (zh) 2023-12-07

Family

ID=88983702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096804 WO2023231955A1 (zh) 2022-05-30 2023-05-29 碳纤维表壳及其制备方法、智能手表

Country Status (2)

Country Link
CN (1) CN117192951A (zh)
WO (1) WO2023231955A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271657A (ja) * 1995-03-31 1996-10-18 Seiko Epson Corp 時計用ケース体
US20010041239A1 (en) * 2000-01-20 2001-11-15 Fredrik Palmqvist Electronic equipment provided with a shell element
CN1876356A (zh) * 2006-05-26 2006-12-13 肖忠渊 用高级碳纤维复合材料制造飞行器具
CN103037642A (zh) * 2011-09-30 2013-04-10 深圳富泰宏精密工业有限公司 外壳,使用该外壳的电子装置及该外壳的制造方法
CN202904239U (zh) * 2012-11-22 2013-04-24 张世明 一种碳纤维成型手表
CN107870554A (zh) * 2017-04-13 2018-04-03 飞亚达(集团)股份有限公司 一种碳纤维复合材料超强防磁手表及其制作方法
CN110509476A (zh) * 2019-08-14 2019-11-29 Oppo广东移动通信有限公司 中框、电子设备及中框的锻造工艺方法
CN112083641A (zh) * 2019-06-13 2020-12-15 广东小天才科技有限公司 智能主机及智能手表

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271657A (ja) * 1995-03-31 1996-10-18 Seiko Epson Corp 時計用ケース体
US20010041239A1 (en) * 2000-01-20 2001-11-15 Fredrik Palmqvist Electronic equipment provided with a shell element
CN1876356A (zh) * 2006-05-26 2006-12-13 肖忠渊 用高级碳纤维复合材料制造飞行器具
CN103037642A (zh) * 2011-09-30 2013-04-10 深圳富泰宏精密工业有限公司 外壳,使用该外壳的电子装置及该外壳的制造方法
CN202904239U (zh) * 2012-11-22 2013-04-24 张世明 一种碳纤维成型手表
CN107870554A (zh) * 2017-04-13 2018-04-03 飞亚达(集团)股份有限公司 一种碳纤维复合材料超强防磁手表及其制作方法
CN112083641A (zh) * 2019-06-13 2020-12-15 广东小天才科技有限公司 智能主机及智能手表
CN110509476A (zh) * 2019-08-14 2019-11-29 Oppo广东移动通信有限公司 中框、电子设备及中框的锻造工艺方法

Also Published As

Publication number Publication date
CN117192951A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN105307068B (zh) 由交织纤维形成的电子设备和电子设备附件
TWI660652B (zh) 印刷電路板及其製造方法
CN108323144A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN108323143A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
WO2014067188A1 (zh) 移动终端机壳与天线一体化制作方法
CN106332447A (zh) 一种用于印制电路板埋嵌技术的电感结构及其制作方法
WO2023231955A1 (zh) 碳纤维表壳及其制备方法、智能手表
CN105244324A (zh) 电子封装用陶瓷绝缘子及其制作方法
CN106952678B (zh) 一种用于线缆的电磁屏蔽膜
CN207604033U (zh) 多网络通孔电路板
CN210224271U (zh) 一种电子设备用天线结构及电子设备
US20170175312A1 (en) Member, member manufacturing method, electronic device, and electronic device manufacturing method
CN106163164B (zh) 一种壳体及其制备方法
CN108886194B (zh) 一种电子终端
TW201417982A (zh) 電子裝置之殼體的組裝方法及電子裝置之殼體的組合
US9112265B2 (en) Method for manufacturing antenna structure
CN201017706Y (zh) 可产生不同阻抗的排线包覆结构
CN210405759U (zh) 接地膜和屏蔽膜接地结构
CN102486975B (zh) 按键结构
CN103879064A (zh) 能避免信号阻隔的复合纤维外壳及其制造方法
CN102963062A (zh) 复合板、超材料及其加工方法
CN208754593U (zh) 电磁屏蔽膜及线路板
CN201657311U (zh) 一种单指向电容式麦克风
WO2022247436A1 (zh) 穿戴式电子设备
CN104953262A (zh) Lds薄膜天线及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815136

Country of ref document: EP

Kind code of ref document: A1