WO2023231949A1 - 一种电池防护底板、电池包复合防护结构及车辆 - Google Patents

一种电池防护底板、电池包复合防护结构及车辆 Download PDF

Info

Publication number
WO2023231949A1
WO2023231949A1 PCT/CN2023/096761 CN2023096761W WO2023231949A1 WO 2023231949 A1 WO2023231949 A1 WO 2023231949A1 CN 2023096761 W CN2023096761 W CN 2023096761W WO 2023231949 A1 WO2023231949 A1 WO 2023231949A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced resin
resin layer
fiber
bottom plate
metal plate
Prior art date
Application number
PCT/CN2023/096761
Other languages
English (en)
French (fr)
Inventor
万龙
鲁志佩
彭青波
朱燕
谭志佳
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023231949A1 publication Critical patent/WO2023231949A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material

Definitions

  • This application belongs to the field of vehicle battery technology, and specifically relates to a battery protective bottom plate, a battery pack composite protective structure and a vehicle.
  • the battery pack of new energy electric vehicles is usually placed at the bottom of the vehicle. In the face of more complex working conditions, the vehicle is easily impacted by external stones and other hard objects during driving. Certain protective measures are usually required at the bottom of the battery pack. to avoid surface damage and electrolyte leakage caused by impact on the battery pack.
  • the existing battery pack bottom protection solution mainly protects the bottom of the battery pack by setting up steel plates. In order to prevent the steel plates from being corroded by water vapor and other factors, the electrophoresis process is used for anti-corrosion treatment.
  • the steel plate Due to the poor overall stiffness of the flat steel plate, the steel plate needs to be stamped.
  • the high-strength steel plate used in the existing battery pack bottom protection structure is difficult to stamp, which has problems affecting production efficiency.
  • the overall impact resistance of the existing steel plate is relatively low. Poor, the steel plate will vibrate greatly when it is impacted, which can easily cause the rivets and other connecting parts at the installation position of the steel plate to be damaged or fall off.
  • the PVC layer on the surface of the steel plate is easily affected by the impact and falls off, affecting its corrosion resistance.
  • this application provides a battery protection bottom plate, a battery pack composite protection structure and a vehicle.
  • the present application provides a battery protective bottom plate, including an upper fiber-reinforced resin layer, a metal plate, and a lower fiber-reinforced resin layer.
  • the metal plate is located between the upper fiber-reinforced resin layer and the lower fiber-reinforced resin layer. time; and the metal plate, the upper fiber reinforced resin layer and the lower fiber reinforced resin layer meet the following conditions:
  • d 1 is the thickness of the lower fiber-reinforced resin layer, in mm;
  • d 2 is the thickness of the metal plate, in mm;
  • d 3 is the thickness of the upper fiber-reinforced resin layer, in mm;
  • ⁇ 1 is the lower fiber reinforcement.
  • the metal plate, the upper fiber reinforced resin layer and the lower fiber reinforced resin layer meet the following conditions:
  • the thickness d 3 of the upper fiber-reinforced resin layer is 0.4-1.6 mm; the thickness d 1 of the lower fiber-reinforced resin layer is 0.6-2 mm.
  • the thickness d 2 of the metal plate ranges from 0.7 to 1.6 mm.
  • the density ⁇ 2 of the metal plate is 2.7-8.5 g/cm 3 .
  • the density ⁇ 3 of the upper fiber-reinforced resin layer is 1.3-1.9 g/cm 3
  • the density ⁇ 1 of the lower fiber-reinforced resin layer is 1.3-1.9 g/cm 3 .
  • the tensile strength ⁇ 2 of the metal plate ranges from 590 to 1180 MPa.
  • the tensile strength ⁇ 3 of the upper fiber-reinforced resin layer is 240-380 MPa
  • the tensile strength ⁇ 1 of the lower fiber-reinforced resin layer is 240-380 MPa.
  • the battery protective bottom plate further includes a fiber-reinforced resin frame, and the metal plate and the fiber-reinforced resin frame are located between the upper fiber-reinforced resin layer and the lower fiber-reinforced resin layer, so The metal plate is located inside the fiber-reinforced resin frame, the top surface of the fiber-reinforced resin frame is integrally connected to the upper fiber-reinforced resin layer, and the bottom surface of the fiber-reinforced resin frame is integrally connected to the lower fiber-reinforced resin layer.
  • a plurality of mounting holes are spaced inside the edge of the battery protection bottom plate, and the mounting holes pass through the upper fiber-reinforced resin layer, the fiber-reinforced resin frame, and the lower fiber-reinforced resin in sequence. layer.
  • the upper fiber reinforced resin layer, the fiber reinforced resin frame and the lower fiber reinforced resin layer are each independently selected from the group consisting of glass fiber reinforced polyamide resin parts, glass fiber reinforced polypropylene resin parts, glass Fiber reinforced polyethylene resin parts, glass fiber reinforced polycarbonate resin parts or glass fiber reinforced polystyrene resin parts.
  • the upper fiber reinforced resin layer, the fiber reinforced resin frame and the lower fiber reinforced resin layer are all glass fiber reinforced resin parts, and the glass fiber reinforced resin parts contain 50% to 70% Glass fiber, the alkali content of the glass fiber is ⁇ 0.8%.
  • the upper fiber-reinforced resin layer includes multiple layers of mutually laminated first fiber-reinforced prepreg; the fiber-reinforced resin frame includes multiple layers of mutually laminated second fiber-reinforced prepreg; the lower layer includes multiple layers of mutually laminated second fiber-reinforced prepreg.
  • the fiber-reinforced resin layer includes multiple layers of third fiber-reinforced prepregs laminated on each other.
  • the metal plate is a steel plate, and the outer surface of the steel plate is provided with a galvanized layer, a galvanized iron alloy layer or an electrophoretic paint protective layer.
  • the present application also provides a battery pack composite protection structure, which includes a battery pack and a battery protection bottom plate as described above.
  • the battery protection bottom plate is arranged below the battery pack.
  • the battery pack and the battery protection bottom plate are arranged below the battery pack.
  • a buffer zone is formed between the battery protection bottom plates.
  • the buffer zone is filled with a buffer layer, and the buffer layer is selected from honeycomb materials or hard foam materials.
  • the present application provides a vehicle, including a battery protection bottom plate or a battery pack composite protection structure as described above.
  • the upper fiber-reinforced resin layer and the lower fiber-reinforced resin layer are composited on the front and back surfaces of the metal plate.
  • the upper fiber-reinforced resin layer and the lower fiber-reinforced resin layer can improve the performance of the metal plate.
  • the lower fiber-reinforced resin layer can resist the impact of stones and other materials on the bottom of the battery protection bottom plate, avoiding corrosion problems at the impact site; on the other hand, after the upper fiber-reinforced resin layer and the lower fiber-reinforced resin layer are combined with the metal plate It effectively improves the stiffness and strength of the metal plate, has higher impact resistance, eliminates the need for additional stamping processing of the metal plate, and improves production efficiency.
  • the thickness d 3 of the upper fiber-reinforced resin layer the thickness d 1 of the lower fiber-reinforced resin layer, the thickness d 2 of the metal plate, and the The density ⁇ 2 of the metal plate, the density ⁇ 3 of the upper fiber reinforced resin layer, the density ⁇ 1 of the lower fiber reinforced resin layer, the tensile strength ⁇ 2 of the metal plate, the density of the upper fiber reinforced resin layer
  • the tensile strength ⁇ 3 of the lower fiber-reinforced resin layer and the tensile strength ⁇ 1 of the lower fiber-reinforced resin layer.
  • the thickness d 3 of the upper fiber-reinforced resin layer and the lower fiber-reinforced resin layer The thickness d 1 of the layer, the thickness d 2 of the metal plate, the density ⁇ 2 of the metal plate, the density ⁇ 3 of the upper fiber reinforced resin layer, the density ⁇ 1 of the lower fiber reinforced resin layer, the The tensile strength ⁇ 2 of the metal plate, the tensile strength ⁇ 3 of the upper fiber-reinforced resin layer, and the tensile strength ⁇ 1 of the lower fiber-reinforced resin layer satisfy the relationship:
  • the battery protection bottom plate is subjected to energy impact at a certain speed, its upper fiber reinforced resin layer and lower fiber reinforced resin layer will not be damaged, and it can adapt to the application conditions of long-term impact conditions. At the same time, it can reduce the The risk of connection failure of the battery protection bottom plate under long-term vibration conditions is thereby improved, thereby improving the connection stability of the installation location of the battery protection bottom plate.
  • Figure 1 is a schematic structural diagram of a battery protection bottom plate provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of different first fiber-reinforced prepreg unidirectional tapes in the upper fiber-reinforced resin layer provided by an embodiment of the present application;
  • Figure 3 is a schematic structural diagram of different first fiber woven cloth-reinforced prepregs in the upper fiber-reinforced resin layer provided by an embodiment of the present application;
  • Figure 4 is a schematic structural diagram of a battery pack composite protection structure provided by an embodiment of the present application.
  • Figure 5 is an enlarged schematic diagram of position A in Figure 4.
  • Figure 6 is a schematic bottom cross-sectional view of the battery pack composite protection structure provided by an embodiment of the present application.
  • Figure 7 is a schematic bottom cross-sectional view of a battery pack composite protection structure provided by another embodiment of the present application.
  • Figure 8 is a schematic bottom cross-sectional view of a battery pack composite protection structure provided by another embodiment of the present application.
  • Figure 9 is a schematic diagram of a vehicle provided by an embodiment of the present application.
  • an embodiment of the present application provides a battery protective bottom plate 1, including an upper fiber reinforced resin layer 11, a metal plate 12 and a lower fiber reinforced resin layer 14.
  • the metal plate 12 is located on the upper fiber reinforced resin layer.
  • Layer 11 and the lower fiber reinforced resin layer 14; and the metal plate 12, the upper fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14 meet the following conditions:
  • the upper fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14 are composited on the front and back surfaces of the metal plate 12.
  • the upper fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14 can improve the anti-corrosion performance of the metal plate 12.
  • the lower fiber-reinforced resin layer 14 can resist the impact of stones and the like on the bottom of the battery protection bottom plate 1 and avoid corrosion problems at the impact site; on the other hand, the upper fiber-reinforced resin layer 11 and the lower fiber-reinforced resin layer 14 are in contact with the metal plate 12 After compounding, the stiffness and strength of the metal plate 12 are effectively improved, and the metal plate 12 has higher impact resistance. There is no need to perform additional stamping processing on the metal plate 12, thereby improving production efficiency.
  • the tensile strength ⁇ 1 satisfies the relationship: When, it is helpful to ensure that the upper fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14 are not damaged when the battery protective bottom plate 1 withstands energy impact at a certain speed, and can adapt to the application conditions of long-term impact conditions. At the same time, This reduces the risk of connection failure of the battery protection bottom plate 1 under long-term vibration conditions, thereby improving the connection stability of the installation location of the battery protection bottom plate 1 .
  • the metal plate 12, the upper fiber reinforced resin layer 11 and the lower fiber reinforced tree meets the following conditions:
  • the impact of the material selection of the metal plate 12 , the upper fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14 on the impact resistance of the battery pack 3 can be comprehensively combined, which is beneficial to improving the battery pack 3 service life.
  • the thickness d 3 of the upper fiber-reinforced resin layer 11 is 0.4-1.6 mm; the thickness d 1 of the lower fiber-reinforced resin layer 14 is 0.6-2 mm.
  • the thickness d3 of the upper fiber reinforced resin layer 11 can be 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm or 1.6mm etc.
  • the thickness d 1 of the lower fiber reinforced resin layer 14 may be 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.8mm or 2.0mm etc.
  • the thickness d3 of the upper fiber-reinforced resin layer 11 and the thickness d1 of the lower fiber-reinforced resin layer 14 affect the protective effect on the metal plate 12 and the enhancement effect on the mechanical properties of the metal plate 12.
  • the thickness d 3 of the fiber-reinforced resin layer 11 and the thickness d 1 of the lower fiber-reinforced resin layer 14 are within the above range, falling off on the surface of the metal plate 12 can be avoided under high-energy impact, and the surface of the metal plate 12 can be effectively maintained.
  • the metal plate 12 has anti-corrosion and strength-enhancing effects.
  • the thickness d 2 of the metal plate 12 is 0.7 ⁇ 1.6 mm.
  • the thickness d of the metal plate 12 may be 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm or 1.6mm, etc.
  • the thickness d2 of the metal plate 12 affects the overall mechanical strength of the battery protective bottom plate 1.
  • the tensile strength of the metal plate 12 is constant, as the thickness of the metal plate 12 increases, its protective strength also gradually increases, but its protective strength also gradually increases. Material costs have also gradually increased, and the ground clearance of the bottom of the vehicle 100 has been reduced.
  • the thickness d 2 of the metal plate 12 is within the above range, the overall mechanical strength of the battery protection bottom plate 1 can be ensured, the cost can be effectively controlled, the distance from the ground can be ensured, and it is also conducive to lightweight control of the vehicle 100 .
  • the density ⁇ 2 of the metal plate 12 is 2.7-8.5 g/cm 3 .
  • the density ⁇ 2 of the metal plate 12 can be 2.7g/cm 3 , 3.1g/cm 3 , 3.5g/ cm 3 , 4.2g/cm 3 , 4.8g/cm 3 , 5.3g/cm 3 , 5.7g/cm 3 , 6.0g/cm 3 , 6.7g/cm 3 , 7.5g/cm 3 , 7.6g/cm 3 , 7.8g/cm 3 , 8.0g/cm 3 , 8.1g/cm 3 , 8.2g /cm 3 , 8.3g/cm 3 , 8.4g/cm 3 or 8.5g/cm 3 etc.
  • the density ⁇ 2 of the metal plate 12 can be adjusted by selecting the material and specific model of the metal plate 12 , and is related to the weight and mechanical strength of the metal plate 12 .
  • the density ⁇ 2 of the metal plate 12 is at the above-mentioned When in the range, it has good mechanical strength and is conducive to lightweight control of the vehicle 100 .
  • the density ⁇ 3 of the upper fiber-reinforced resin layer 11 is 1.3-1.9 g/cm 3
  • the density ⁇ 1 of the lower fiber-reinforced resin layer 14 is 1.3-1.9 g/cm 3 .
  • the density ⁇ 3 of the upper fiber-reinforced resin layer 11 and the density ⁇ 1 of the lower fiber-reinforced resin layer 14 can be independently selected from 1.3g/cm 3 , 1.4g/cm 3 , and 1.5g/cm. 3 , 1.6g/cm 3 , 1.7g/cm 3 , 1.8g/cm 3 or 1.9g/cm 3 , etc.
  • the density ⁇ 3 of the upper fiber-reinforced resin layer 11 and the density ⁇ 1 of the lower fiber-reinforced resin layer 14 are related to the resin and reinforcing fiber materials selected, and are also affected by the reinforcing fiber content.
  • the density ⁇ 3 of the layer 11 and the density ⁇ 1 of the lower fiber-reinforced resin layer 14 are in the above range, there is a sufficient amount of reinforcing fibers, which is beneficial to improving the quality of the upper fiber-reinforced resin layer 11 and the lower fiber-reinforced resin.
  • the tensile strength ⁇ 2 of the metal plate 12 is 590 to 1180 MPa.
  • the tensile strength ⁇ 2 of the metal plate 12 may be 590MPa, 600MPa, 650MPa, 700MPa, 750MPa, 800MPa, 850MPa, 900MPa, 950MPa, 1000MPa or 1180MPa, etc.
  • the tensile strength ⁇ 2 of the metal plate 12 can be tested through the GB/T 228.1-2010 Metal Materials Tensile Test Part 1: Room Temperature Test Plan.
  • the metal plate 12 is It can withstand higher impact without irreversible deformation; but usually, the higher the tensile strength ⁇ 2 of the metal plate 12 , the elongation at break will decrease.
  • the tensile strength ⁇ 2 of the metal plate 12 is above the When within the range, the impact strength and anti-cracking performance of the metal plate 12 can be effectively guaranteed.
  • the tensile strength ⁇ 3 of the upper fiber-reinforced resin layer 11 is 240-380 MPa
  • the tensile strength ⁇ 1 of the lower fiber-reinforced resin layer 14 is 240-380 MPa.
  • the tensile strength ⁇ 3 of the upper fiber-reinforced resin layer 11 and the tensile strength ⁇ 1 of the lower fiber-reinforced resin layer 14 can be independently selected from 240MPa, 280MPa, 290MPa, 300MPa, 310MPa, 320MPa, 330MPa, 340MPa, 350MPa, 360MPa, 370MPa or 380MPa, etc.
  • the tensile strength ⁇ 3 of the upper fiber-reinforced resin layer 11 and the tensile strength ⁇ 1 of the lower fiber-reinforced resin layer 14 can be tested by GB/T 1447-2005 Fiber Reinforced Plastics Tensile Properties Test Method, Type I
  • the sample is suitable for fiber-reinforced thermoplastic plates. The sample is made and tested according to the Type I sample specified in the national standard.
  • the tensile strength of the upper fiber-reinforced resin layer 11 is ⁇ 3 and the tensile strength of the lower fiber-reinforced resin layer 14 is ⁇ 1.
  • the improvement is beneficial to improving the deformation resistance of the upper fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14; but with the tensile strength ⁇ 3 of the upper fiber reinforced resin layer 11 and the lower fiber reinforced
  • the increase in the tensile strength ⁇ 1 of the resin layer 14 will affect the adhesion of the upper fiber-reinforced resin layer 11 and the lower fiber-reinforced resin layer 14 to the metal plate 12, resulting in delamination upon impact;
  • the tensile strength ⁇ 3 of the fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14 When the tensile strength ⁇ 1 is within the above range, the upper fiber reinforced resin layer 11 and the lower fiber reinforced resin layer 14 can effectively resist external impact without delamination or falling off problems.
  • the above nine parameters are interrelated and inseparable.
  • the thickness d 3 of the upper fiber reinforced resin layer 11 and the thickness of the metal plate 12 When d 2 or the thickness d 1 of the lower fiber reinforced resin layer 14 increases, either the density ⁇ 2 of the metal plate 12 , the density ⁇ 3 of the upper fiber reinforced resin layer 11 or the lower fiber reinforced resin
  • the density ⁇ 1 of the layer 14 increases, the impact resistance of the battery protection bottom plate 1 increases, and at the same time, the tensile strength ⁇ 2 of the metal plate 12 , the tensile strength ⁇ 3 of the upper fiber-reinforced resin layer 11 and the lower fiber reinforcement can be reduced.
  • the tensile strength of the resin layer 14 is required to be ⁇ 1 , but this will lead to an increase in the total mass and thickness of the battery protective bottom plate 1, which is not conducive to the lightweight requirements and cost control of the vehicle 100, and also causes the vehicle 100 to lift off the ground. The reduction of distance.
  • the battery protection bottom plate 1 also includes a fiber-reinforced resin frame 13, and the metal plate 12 and the fiber-reinforced resin frame 13 are located on the upper fiber-reinforced resin layer 11 and Between the lower fiber-reinforced resin layer 14, the metal plate 12 is located inside the fiber-reinforced resin frame 13, and the top surface of the fiber-reinforced resin frame 13 is integrally connected to the upper fiber-reinforced resin layer 11. The bottom surface of the fiber reinforced resin frame 13 is integrally connected to the lower fiber reinforced resin layer 14 .
  • a fiber-reinforced resin frame 13 is provided on the outer periphery of the metal plate 12 as a frame connection transition piece between the upper fiber-reinforced resin layer 11 and the lower fiber-reinforced resin layer 14, which can effectively offset the effect of the thickness of the metal plate 12 on the upper fiber-reinforced resin layer 11 and the lower fiber-reinforced resin layer 11.
  • the influence of the frame connection of the fiber-reinforced resin layer 14 ensures the strength of the frame position of the battery protection bottom plate 1, which is conducive to using the frame position of the battery protection bottom plate 1 as its installation structure on the battery to improve its impact resistance.
  • a plurality of mounting holes 15 are spaced inside the edge of the battery protection bottom plate 1, and the mounting holes 15 pass through the upper fiber reinforced resin layer 11, the fiber reinforced resin layer 11, and the fiber reinforced resin layer 11. Reinforced resin frame 13 and the lower fiber reinforced resin layer 14.
  • the mounting holes 15 are used to install and fasten the battery protective bottom plate 1 at the bottom of the battery pack 3.
  • the mounting holes 15 are arranged inside the edge of the battery protective bottom plate 1 and pass through the upper fiber reinforced resin layer in sequence. 11. So
  • the fiber reinforced resin frame 13 and the lower fiber reinforced resin layer 14 can prevent the mounting hole 15 from penetrating the metal plate 12 and avoid corrosion problems caused by the metal plate 12 being exposed at the mounting hole 15.
  • the The fiber-reinforced resin frame 13 is conducive to improving the overall thickness and tensile shear strength of the installation location, and has sufficient installation stability.
  • a plurality of mounting holes 15 are provided around the periphery of the metal plate 12 to evenly distribute the top gravity and bottom impact forces on the metal plate 12 .
  • a connecting piece is set through the mounting hole 15 to fix the battery protective bottom plate 1 to the bottom of the battery pack 3 .
  • the connecting piece is a rivet, a screw or a bolt.
  • the resins of the upper fiber reinforced resin layer 11 , the fiber reinforced resin frame 13 and the lower fiber reinforced resin layer 14 are each independently selected from thermosetting and/or thermoplastic materials.
  • examples may include, but are not limited to, epoxies, phenolics, phenols, cyanate esters, imides (e.g., polyimide, bismaleimide (BMI), polyetherimide), Polypropylene, polyester, benzoxazine, polybenzimidazole, polybenzothiazole, polyamide, polyamideimide, polysulfone, polyethersulfone, polycarbonate , polyethylene terephthalates and polyetherketones (for example, polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), etc.) and combinations thereof.
  • PEK polyetherketone
  • PEEK polyetheretherketone
  • PEKK polyetherketoneketone
  • the fibers of the upper fiber reinforced resin layer 11 , the fiber reinforced resin frame 13 and the lower fiber reinforced resin layer 14 are each independently selected from glass fiber, aramid fiber, carbon fiber, graphite fiber , boron fiber, aramid fiber and their mixtures.
  • the fibers of the upper fiber-reinforced resin layer 11, the fiber-reinforced resin frame 13 and the lower fiber-reinforced resin layer 14 can be in the form of chopped fibers, long-cut fibers, non-woven fabrics, unidirectional reinforced fiber base materials, or woven fabrics. Embedded in resin.
  • the upper fiber reinforced resin layer 11 , the fiber reinforced resin frame 13 and the lower fiber reinforced resin layer 14 are each independently selected from a glass fiber reinforced polyamide resin piece or a glass fiber reinforced polypropylene resin. parts, glass fiber reinforced polyethylene resin parts, glass fiber reinforced polycarbonate resin parts or glass fiber reinforced polystyrene resin parts.
  • the same resin material is selected for the fiber-reinforced resin layer, the fiber-reinforced resin frame 13 and the lower fiber-reinforced resin layer 14.
  • the same resin material can ensure the affinity of materials between different layers. , thereby ensuring the degree of integration between different layers and improving the overall strength.
  • the upper fiber reinforced resin layer 11 , the fiber reinforced resin frame 13 and the lower fiber reinforced resin layer 14 are all glass fiber reinforced resin parts, and the glass fiber reinforced resin parts contain 50% ⁇ 70% glass fiber is conducive to improving the material strength of the upper fiber reinforced resin layer 11, the fiber reinforced resin frame 13 and the lower fiber reinforced resin layer 14.
  • the glass fibers have an alkali content of ⁇ 0.8%.
  • the alkali content of the glass fiber is less than 0.8%, it is beneficial to improve the anti-aging properties of the upper fiber-reinforced resin layer 11, the fiber-reinforced resin frame 13 and the lower fiber-reinforced resin layer 14, and slow down the aging process after long-term use. Material performance degradation.
  • the glass fiber is selected from E-glass fiber or S-glass fiber.
  • the upper fiber-reinforced resin layer 11 includes multiple layers of first fiber-reinforced prepreg stacked on each other; the fiber-reinforced resin frame 13 includes multiple layers of mutually stacked second fiber-reinforced prepreg;
  • the fiber-reinforced resin layer 14 described below includes multiple layers of third fiber-reinforced prepregs laminated on each other.
  • the upper fiber-reinforced resin layer 11 includes multiple layers of mutually laminated first fiber-reinforced prepreg unidirectional tapes 111.
  • the fibers of the two adjacent layers of first fiber-reinforced prepreg unidirectional tapes 111 The arrangement direction is approximately 90° in staggered plying, and the allowable deviation range of the plying angle of the two adjacent layers of first fiber-reinforced prepreg unidirectional tapes 111 is ⁇ 20°.
  • the fibers in the first fiber-reinforced prepreg unidirectional belt 111 are arranged in one direction. When subjected to a tensile force along the fiber extension direction, the fibers in the first fiber-reinforced prepreg unidirectional belt 111 It can effectively bear its tensile effect. By staggering the fiber arrangement directions of the adjacent first fiber-reinforced prepreg unidirectional tapes at approximately 90°, it is beneficial to improve the strength of the upper fiber-reinforced resin layer 11 in all directions. Force uniformity.
  • the fiber-reinforced resin frame 13 includes multiple layers of second fiber-reinforced prepreg unidirectional tapes laminated on each other.
  • the fibers in the second fiber-reinforced prepreg unidirectional tapes are arranged in one direction, and the two adjacent layers are
  • the fiber arrangement direction of the two-fiber-reinforced prepreg unidirectional tape is roughly 90° staggered, and the allowable deviation range of the lamination angle of two adjacent layers of second fiber-reinforced prepreg unidirectional tape is ⁇ 20°.
  • the lower fiber-reinforced resin layer 14 includes multiple layers of third fiber-reinforced prepreg unidirectional tapes laminated on each other.
  • the fibers in the third fiber-reinforced prepreg unidirectional tapes are arranged in one direction. Two adjacent layers
  • the fiber arrangement direction of the third fiber-reinforced prepreg unidirectional tape is roughly 90° staggered, and the allowable deviation range of the lamination angle of two adjacent layers of third fiber-reinforced prepreg unidirectional tape is ⁇ 20°. .
  • the fiber arrangement of the fiber-reinforced resin frame 13 and the lower fiber-reinforced resin layer 14 is similar to that of the upper fiber-reinforced resin layer 11 and will not be described again.
  • the upper fiber-reinforced resin layer 11 includes multiple layers of mutually laminated first fiber woven cloth reinforced prepreg 112.
  • the first fiber woven cloth reinforced prepreg 112 The fibers in the fabric are interlaced to form a woven fabric.
  • the fiber-reinforced resin frame 13 includes multiple layers of second fiber-woven cloth-reinforced prepregs laminated on each other, and the fibers in the second fiber-woven cloth-reinforced prepreg form a woven cloth in a staggered form.
  • the lower fiber-reinforced resin layer 14 includes multiple layers of third fiber-woven cloth-reinforced prepregs laminated on each other.
  • the fibers in the third fiber-woven cloth-reinforced prepreg form a woven cloth in a staggered form.
  • the metal plate 12 is selected from iron and its alloys, aluminum and its alloys, magnesium and its alloys, copper and its alloys, titanium and its alloys, or nickel and its alloys.
  • the metal plate 12 is a steel plate, and the outer surface of the steel plate is provided with a galvanized layer, a galvanized iron alloy layer or an electrophoretic paint protective layer.
  • using a steel plate as the metal plate 12 has better tensile strength and elongation, can meet the requirements of impact resistance, and is conducive to improving the protection of the battery pack 3 .
  • a galvanized layer, galvanized iron alloy layer or electrophoretic paint protective layer is provided on the outer surface of the steel plate to improve the anti-corrosion performance of the steel plate.
  • the upper fiber reinforced resin layer 11 or the lower fiber reinforced resin layer 14 is damaged,
  • the galvanized layer or the galvanized iron alloy layer and the steel plate form a galvanic cell effect, the galvanized layer or the galvanized iron alloy layer will corrode preferentially than the steel plate, thereby causing damage to the steel plate. It plays a protective role, and the electrophoretic paint protective layer has good adhesion and can effectively isolate the steel plate from the external environment.
  • FIG. 4 another embodiment of the present application provides a battery pack composite protection structure 10, which includes a battery pack 3 and a battery protection bottom plate 1 as described above.
  • the battery protection bottom plate 1 is disposed on the battery pack.
  • Below 3, a buffer zone 4 is formed between the battery pack 3 and the battery protective bottom plate 1.
  • the battery pack composite protection structure 10 adopts the above-mentioned battery protection bottom plate 1, it can effectively ensure the protective strength of the battery protection bottom plate 1 and the position of the battery protection bottom plate 1 in the battery pack while ensuring a low overall thickness. Stable connection on 3.
  • the battery pack 3 includes a tray 31 and batteries disposed on the tray 31 .
  • the buffer zone 4 may be disposed between the battery pack 3 and the battery protective bottom plate 1 in different ways.
  • a groove is provided inwardly on the bottom surface of the tray 31 to form the buffer area 4 .
  • the battery protection bottom plate 1 is flat, and the battery protection bottom plate 1 covers the on the buffer 4.
  • the frame position of the battery protection bottom plate 1 is connected to the bottom surface of the tray 31 , and a groove is provided inwardly on the bottom surface of the tray 31 .
  • the battery protection bottom plate 1 faces toward It protrudes in a direction away from the tray 31 to form the buffer zone 4 between the tray 31 and the battery protection bottom plate 1 .
  • the frame position of the battery protection bottom plate 1 is connected to the bottom surface of the tray 31 , the bottom surface of the tray 31 is a plane, and the battery protection bottom plate 1 faces away from the tray.
  • the direction of 31 protrudes to form the buffer zone 4 between the tray 31 and the battery protective bottom plate 1 .
  • the buffer zone 4 is filled with a buffer layer 2, and the buffer layer 2 is selected from honeycomb materials or Rigid foam material.
  • Honeycomb material or hard foam material can absorb the space for collapse and deformation of the battery protective bottom plate 1 when it is subjected to strong external impact, buffer and absorb part of the energy of the external strong impact, and prevent the compression deformation of the battery protective bottom plate 1 from impacting the internal cells of the battery pack 3 to further protect the battery pack 3.
  • the honeycomb material is selected from PP honeycomb material or aluminum honeycomb material;
  • the hard foaming material is selected from PU hard foaming material, PET hard foaming material, PMI hard foaming material, PVC rigid foam material, PET rigid foam material, MPP rigid foam material, PLA rigid foam material, PI rigid foam material or EPTU foam material.
  • FIG. 9 Another embodiment of the present application provides a vehicle 100, as shown in FIG. 9, including the battery protection bottom plate 1 or the battery pack composite protection structure 10 as described above.
  • the battery pack composite protective structure disclosed in the present application which includes a battery pack, a buffer layer and a battery protective bottom plate.
  • the battery protective bottom plate includes a metal plate, an upper fiber reinforced resin layer, a fiber reinforced resin frame and a lower fiber reinforced layer.
  • the metal plate is a galvanized steel plate, the metal plate is located between the upper fiber reinforced resin layer and the lower fiber reinforced resin layer, the metal plate is located inside the fiber reinforced resin frame, the The top surface of the fiber-reinforced resin frame is integrally connected to the upper fiber-reinforced resin layer, and the bottom surface of the fiber-reinforced resin frame is integrally connected to the lower fiber-reinforced resin layer; the battery protection bottom plate is provided below the battery pack, so A buffer zone is formed between the battery pack and the battery protection bottom plate, the buffer zone is filled with the buffer layer, and the frame of the battery protection bottom plate is installed at the bottom frame position of the battery pack through rivets.
  • the thickness d3 of the upper fiber-reinforced resin layer is 1.6mm
  • the thickness d1 of the lower fiber-reinforced resin layer is 1.6mm
  • the thickness d2 of the metal plate is 1.6mm
  • the density ⁇ of the metal plate 2 is 7.9g/cm 3
  • the density ⁇ 3 of the upper fiber-reinforced resin layer is 1.7g/cm 3
  • the density ⁇ 1 of the lower fiber-reinforced resin layer is 1.7g/cm 3
  • the tensile strength of the metal plate is
  • the tensile strength ⁇ 2 is 780 MPa
  • the tensile strength ⁇ 3 of the upper fiber-reinforced resin layer is 360 MPa
  • the tensile strength ⁇ 1 of the lower fiber-reinforced resin layer is 360 MPa.
  • Examples 2 to 27 are used to illustrate the battery pack composite protective structure disclosed in this application, including most of the structures in Example 1, and the differences are:
  • the upper fiber reinforced resin layer, metal plate and lower fiber reinforced resin layer provided in Examples 2 to 27 in Table 1 were used.
  • Comparative Examples 1 to 7 are used to compare and illustrate the battery pack composite protective structure disclosed in this application, including most of the structures in Example 1, and the differences are as follows:
  • the upper fiber reinforced resin layer, metal plate and lower fiber reinforced resin layer provided in Comparative Examples 1 to 7 in Table 1 were used.
  • a sphere as the impact head to impact the battery protection bottom plate of the battery pack composite protection structure to simulate the working conditions of the bottom of the vehicle being hit by foreign objects.
  • the diameter of the sphere is 25mm
  • the weight is 10kg
  • the impact energy is 300J
  • the impact speed is 8.5m/s, select the center point of the battery protection bottom plate and four points around the center point as the impact points, and conduct 5 impacts.
  • the dent amount required for a 300J energy impact is no more than 3mm.
  • PSD represents power spectral density, which represents the power spectral density of vibration at a certain frequency; the r.m.s. value represents the comprehensive acceleration of vibration and feeds back the vibration intensity.
  • the thickness d 3 of the upper fiber reinforced resin layer has an interrelated role in improving the impact resistance of the battery pack and the installation stability of the battery protective bottom plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Laminated Bodies (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池防护底板、电池包复合防护结构及车辆,电池防护底板包括上纤维增强树脂层、金属板和下纤维增强树脂层,所述金属板位于所述上纤维增强树脂层和所述下纤维增强树脂层之间;且满足以下条件: (I)

Description

一种电池防护底板、电池包复合防护结构及车辆
相关申请的交叉引用
本申请基于申请号为202210609361.0、申请日为2022年05月31日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于车辆电池技术领域,具体涉及一种电池防护底板、电池包复合防护结构及车辆。
背景技术
新能源电动车的电池包通常设置于车辆的底部,面对较为复杂的工况,在车辆行驶的过程中容易受到外部石子等硬物的冲击,通常需要在电池包的底部设置一定的防护措施,以避免电池包受冲击影响导致表面破损和电解液泄露的问题。现有的电池包底部防护方案主要是通过设置钢板对电池包底部进行保护,为避免钢板受到水汽等因素的腐蚀,采用电泳工艺进行防腐处理,另外,由于钢板的底部直接露出于车身底部,因此需要在钢板朝向地面的一侧喷涂0.5-1.2mm的PVC层起到耐石子冲击的作用,同时达到防止电泳层刮花的目的,避免影响防腐效果。
由于平整的钢板整体刚度较差,需要对钢板进行冲压,而现有电池包底部防护结构采用的高强度钢板冲压困难,存在影响生产效率的问题,同时,现有的钢板的整体耐冲击性能较差,受冲击时钢板产生的振动较大,易引起钢板安装位置的铆钉等连接件的损坏或脱落,钢板表面的PVC层易受冲击脱落,影响其耐腐蚀性能。
发明内容
针对现有电池包底部防护结构存在抗冲击性能不足和振动工况出现连接失效的问题,本申请提供了一种电池防护底板、电池包复合防护结构及车辆。
本申请解决上述技术问题所采用的技术方案如下:
一方面,本申请提供了一种电池防护底板,包括上纤维增强树脂层、金属板和下纤维增强树脂层,所述金属板位于所述上纤维增强树脂层和所述下纤维增强树脂层之间;且所述金属板、所述上纤维增强树脂层和所述下纤维增强树脂层满足以下条件:
其中,d1为下纤维增强树脂层的厚度,单位为mm;d2为金属板的厚度,单位为mm;d3为上纤维增强树脂层的厚度,单位为mm;ρ1为下纤维增强树脂层的密度,单位为g/cm3;ρ2为金属板的密度,单位为g/cm3;ρ3为上纤维增强树脂层的密度,单位为g/cm3;σ1为下纤维增强树脂层的拉伸强度,单位为MPa;σ2为金属板的拉伸强度,单位为MPa;σ3为上纤维增强树脂层的拉伸强度,单位为MPa。
在一些实施例中,所述金属板、所述上纤维增强树脂层和所述下纤维增强树脂层满足以下条件:
在一些实施例中,所述上纤维增强树脂层的厚度d3为0.4-1.6mm;所述下纤维增强树脂层的厚度d1为0.6-2mm。
在一些实施例中,所述金属板的厚度d2为0.7~1.6mm。
在一些实施例中,所述金属板的密度ρ2为2.7-8.5g/cm3
在一些实施例中,所述上纤维增强树脂层的密度ρ3为1.3~1.9g/cm3,所述下纤维增强树脂层的密度ρ1为1.3~1.9g/cm3
在一些实施例中,所述金属板的拉伸强度σ2为590~1180MPa。
在一些实施例中,所述上纤维增强树脂层的拉伸强度σ3为240~380MPa,所述下纤维增强树脂层的拉伸强度σ1为240~380MPa。
在一些实施例中,所述电池防护底板还包括有纤维增强树脂框,所述金属板和所述纤维增强树脂框位于所述上纤维增强树脂层和所述下纤维增强树脂层之间,所述金属板位于所述纤维增强树脂框内部,所述纤维增强树脂框的顶面与所述上纤维增强树脂层一体连接,所述纤维增强树脂框的底面与所述下纤维增强树脂层一体连接。
在一些实施例中,所述电池防护底板的边缘内侧间隔开设有多个安装孔,所述安装孔依次穿过所述上纤维增强树脂层、所述纤维增强树脂框和所述下纤维增强树脂层。
在一些实施例中,所述上纤维增强树脂层、所述纤维增强树脂框和所述下纤维增强树脂层各自独立地选自玻璃纤维增强聚酰胺树脂件、玻璃纤维增强聚丙烯树脂件、玻璃纤维增强聚乙烯树脂件、玻璃纤维增强聚碳酸酯树脂件或玻璃纤维增强聚苯乙烯树脂件。
在一些实施例中,所述上纤维增强树脂层、所述纤维增强树脂框和所述下纤维增强树脂层均为玻璃纤维增强树脂件,所述玻璃纤维增强树脂件含有50%~70%的玻璃纤维,所述玻璃纤维的碱含量<0.8%。
在一些实施例中,所述上纤维增强树脂层包括多层相互层叠的第一纤维增强预浸料;所述纤维增强树脂框包括多层相互层叠的第二纤维增强预浸料;所述下纤维增强树脂层包括多层相互层叠的第三纤维增强预浸料。
在一些实施例中,所述金属板为钢板,所述钢板的外表面设置镀锌层、镀锌铁合金层或电泳漆保护层。
另一方面,本申请还提供了一种电池包复合防护结构,包括电池包和如上所述的电池防护底板,所述电池防护底板设置于所述电池包的下方,所述电池包和所述电池防护底板之间形成有缓冲区。
在一些实施例中,所述缓冲区中填充有缓冲层,所述缓冲层选自蜂窝材料或硬质发泡材料。
另一方面,本申请提供了一种车辆,包括如上所述的电池防护底板或者电池包复合防护结构。
根据本申请提供的电池防护底板,通过上纤维增强树脂层和下纤维增强树脂层复合在金属板的正反两个表面,一方面,上纤维增强树脂层和下纤维增强树脂层能够提高金属板的防腐性能,同时,下纤维增强树脂层能抵抗石子等对电池防护底板底部的冲击,避免冲击部位的腐蚀问题;另一方面,上纤维增强树脂层和下纤维增强树脂层与金属板复合后有效地提高了金属板的刚度和强度,具有更高的抗冲击能力,不需要额外对金属板进行冲压处理,提高生产效率。
进一步的,在提高所述电池防护底板的抗冲击性能方面,所述上纤维增强树脂层的厚度d3、所述下纤维增强树脂层的厚度d1、所述金属板的厚度d2、所述金属板的密度ρ2、所述上纤维增强树脂层的密度ρ3、所述下纤维增强树脂层的密度ρ1、所述金属板的拉伸强度σ2、所述上纤维增强树脂层的拉伸强度σ3和所述下纤维增强树脂层的拉伸强度σ1之间存在明显的关联关系,具体的,当所述上纤维增强树脂层的厚度d3、所述下纤维增强树脂层的厚度d1、所述金属板的厚度d2、所述金属板的密度ρ2、所述上纤维增强树脂层的密度ρ3、所述下纤维增强树脂层的密度ρ1、所述金属板的拉伸强度σ2、所述上纤维增强树脂层的拉伸强度σ3和所述下纤维增强树脂层的拉伸强度σ1满足关系式:时,有利于保证所述电池防护底板在承受一定速度的能量冲击时,其上纤维增强树脂层和下纤维增强树脂层不被破坏,能够适应长期冲击工况的应用条件,同时,降低所述电池防护底板在长期振动工况条件下的连接失效风险,进而提高所述电池防护底板安装位置的连接稳固性。
附图说明
图1是本申请一实施例提供的电池防护底板的结构示意图;
图2是本申请一实施例提供的上纤维增强树脂层中不同第一纤维增强预浸料单向带的结构示意图;
图3是本申请一实施例提供的上纤维增强树脂层中不同第一纤维编织布增强预浸料的结构示意图;
图4是本申请一实施例提供的电池包复合防护结构的结构示意图;
图5是图4中A处的放大示意图;
图6是本申请一实施例提供的电池包复合防护结构的底部截面示意图;
图7是本申请另一实施例提供的电池包复合防护结构的底部截面示意图;
图8是本申请另一实施例提供的电池包复合防护结构的底部截面示意图;
图9是本申请一实施例提供的车辆的示意图。
说明书附图中的附图标记如下:
100、车辆;10、电池包复合防护结构;
1、电池防护底板;11、上纤维增强树脂层;110、第一纤维增强预浸料;111、第一
纤维增强预浸料单向带;112、第一纤维编织布增强预浸料;12、金属板;13、纤维增强树脂框;14、下纤维增强树脂层;15、安装孔;2、缓冲层;3、电池包;31、托盘;4、缓冲区。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
参见图1所示,本申请实施例提供了一种电池防护底板1,包括上纤维增强树脂层11、金属板12和下纤维增强树脂层14,所述金属板12位于所述上纤维增强树脂层11 和所述下纤维增强树脂层14之间;且所述金属板12、所述上纤维增强树脂层11和所述下纤维增强树脂层14满足以下条件:
其中,d1为下纤维增强树脂层14的厚度,单位为mm;d2为金属板12的厚度,单位为mm;d3为上纤维增强树脂层11的厚度,单位为mm;ρ1为下纤维增强树脂层14的密度,单位为g/cm3;ρ2为金属板12的密度,单位为g/cm3;ρ3为上纤维增强树脂层11的密度,单位为g/cm3;σ1为下纤维增强树脂层14的拉伸强度,单位为MPa;σ2为金属板12的拉伸强度,单位为MPa;σ3为上纤维增强树脂层11的拉伸强度,单位为MPa。
通过上纤维增强树脂层11和下纤维增强树脂层14复合在金属板12的正反两个表面,一方面,上纤维增强树脂层11和下纤维增强树脂层14能够提高金属板12的防腐性能,同时,下纤维增强树脂层14能抵抗石子等对电池防护底板1底部的冲击,避免冲击部位的腐蚀问题;另一方面,上纤维增强树脂层11和下纤维增强树脂层14与金属板12复合后有效地提高了金属板12的刚度和强度,具有更高的抗冲击能力,不需要额外对金属板12进行冲压处理,提高生产效率。
进一步的,在提高所述电池防护底板1的抗冲击性能方面,所述上纤维增强树脂层11的厚度d3、所述下纤维增强树脂层14的厚度d1、所述金属板12的厚度d2、所述金属板12的密度ρ2、所述上纤维增强树脂层11的密度ρ3、所述下纤维增强树脂层14的密度ρ1、所述金属板12的拉伸强度σ2、所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14的拉伸强度σ1之间存在明显的关联关系,具体的,当所述上纤维增强树脂层11的厚度d3、所述下纤维增强树脂层14的厚度d1、所述金属板12的厚度d2、所述金属板12的密度ρ2、所述上纤维增强树脂层11的密度ρ3、所述下纤维增强树脂层14的密度ρ1、所述金属板12的拉伸强度σ2、所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14的拉伸强度σ1满足关系式:时,有利于保证所述电池防护底板1在承受一定速度的能量冲击时,其上纤维增强树脂层11和下纤维增强树脂层14不被破坏,能够适应长期冲击工况的应用条件,同时,降低所述电池防护底板1在长期振动工况条件下的连接失效风险,进而提高所述电池防护底板1安装位置的连接稳固性。
在一些实施例中,所述金属板12、所述上纤维增强树脂层11和所述下纤维增强树 脂层14满足以下条件:
通过上述关系式的限定,能够综合所述金属板12、所述上纤维增强树脂层11和所述下纤维增强树脂层14的选材对于电池包3抗冲击性能的影响,有利于提高电池包3的使用寿命。
在一些实施例中,所述上纤维增强树脂层11的厚度d3为0.4-1.6mm;所述下纤维增强树脂层14的厚度d1为0.6-2mm。
具体的,所述上纤维增强树脂层11的厚度d3可以为0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm或1.6mm等。所述下纤维增强树脂层14的厚度d1可以为0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.8mm或2.0mm等。
所述上纤维增强树脂层11的厚度d3和所述下纤维增强树脂层14的厚度d1影响对于所述金属板12的防护效果以及对于金属板12力学性能的增强效果,当所述上纤维增强树脂层11的厚度d3和所述下纤维增强树脂层14的厚度d1处于上述范围中时,在高能量的冲击下能够避免在所述金属板12表面的脱落,能够有效保持对于所述金属板12的防腐蚀和强度增强效果。
在一些实施例中,所述金属板12的厚度d2为0.7~1.6mm。
具体的,所述金属板12的厚度d可以为0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm或1.6mm等。
所述金属板12的厚度d2影响所述电池防护底板1的总体力学强度,当金属板12的拉伸强度一定时,随着金属板12的厚度提升,其防护强度也逐渐提高,但其材料成本也逐渐提高,并缩小了车辆100底部的离地距离。当所述金属板12的厚度d2处于上述范围中时,即能够保证所述电池防护底板1的总体力学强度,又能够有效控制成本,保证与地面的距离,也利于车辆100轻量化控制。
在一些实施例中,所述金属板12的密度ρ2为2.7-8.5g/cm3
具体的,所述金属板12的密度ρ2可以为2.7g/cm3、3.1g/cm3、3.5g/cm3、4.2g/cm3、4.8g/cm3、5.3g/cm3、5.7g/cm3、6.0g/cm3、6.7g/cm3、7.5g/cm3、7.6g/cm3、7.8g/cm3、8.0g/cm3、8.1g/cm3、8.2g/cm3、8.3g/cm3、8.4g/cm3或8.5g/cm3等。
所述金属板12的密度ρ2可通过所述金属板12的材料和具体型号选择进行调整,与所述金属板12的重量和力学强度相关,当所述金属板12的密度ρ2处于上述范围中时,其具有较好的力学强度,同时利于车辆100的轻量化控制。
在一些实施例中,所述上纤维增强树脂层11的密度ρ3为1.3~1.9g/cm3,所述下纤维增强树脂层14的密度ρ1为1.3~1.9g/cm3
具体的,所述上纤维增强树脂层11的密度ρ3和所述下纤维增强树脂层14的密度ρ1可以分别独立地选自1.3g/cm3、1.4g/cm3、1.5g/cm3、1.6g/cm3、1.7g/cm3、1.8g/cm3或1.9g/cm3等。
所述上纤维增强树脂层11的密度ρ3和所述下纤维增强树脂层14的密度ρ1与其选用的树脂和增强纤维的材料相关,同时受增强纤维含量影响,当所述上纤维增强树脂层11的密度ρ3和所述下纤维增强树脂层14的密度ρ1处于上述范围中时,其中具有足量的增强纤维,利于提高所述上纤维增强树脂层11和所述下纤维增强树脂层14的拉伸强度。
在一些实施例中,所述金属板12的拉伸强度σ2为590~1180MPa。
具体的,所述金属板12的拉伸强度σ2可以为590MPa、600MPa、650MPa、700MPa、750MPa、800MPa、850MPa、900MPa、950MPa、1000MPa或1180MPa等。
所述金属板12的拉伸强度σ2可通过GB/T 228.1—2010金属材料拉伸试验第1部分:室温试验方案进行测试,当拉伸强度σ2越高时,所述金属板12越能够抵抗越高的冲击而不发生不可逆形变;但通常情况下,金属板12的拉伸强度σ2越高,其断裂延伸率会下降,当所述金属板12的拉伸强度σ2处于上述范围中时,能够有效保证所述金属板12的抗冲击强度和防开裂性能。
在一些实施例中,所述上纤维增强树脂层11的拉伸强度σ3为240~380MPa,所述下纤维增强树脂层14的拉伸强度σ1为240~380MPa。
具体的,所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14的拉伸强度σ1可以各自独立地选自240MPa、280MPa、290MPa、300MPa、310MPa、320MPa、330MPa、340MPa、350MPa、360MPa、370MPa或380Mpa等。
所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14的拉伸强度σ1可通过GB/T 1447-2005纤维增强塑料拉伸性能试验方法进行测试,I型试样适合纤维增强热塑性板材,按照国标规定的I型试样制作样品进行测试,所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14的拉伸强度σ1的提高有利于提高所述上纤维增强树脂层11和所述下纤维增强树脂层14的抗形变能力;但随着所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14的拉伸强度σ1的提高会影响所述上纤维增强树脂层11和所述下纤维增强树脂层14对于所述金属板12的附着力,导致受冲击分层;当所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14 的拉伸强度σ1处于上述范围内时,所述上纤维增强树脂层11和所述下纤维增强树脂层14能够有效抵抗外部冲击而不出现分层或脱落的问题。
对于提高电池包3避免分层和抗铆钉疲劳损坏方面,以上九个参数是相互关联,密不可分的,例如,当所述上纤维增强树脂层11的厚度d3、所述金属板12的厚度d2或所述下纤维增强树脂层14的厚度d1增大时,或是所述金属板12的密度ρ2、所述上纤维增强树脂层11的密度ρ3或所述下纤维增强树脂层14的密度ρ1增大时,电池防护底板1的抗冲击性能提升,同时可降低对于金属板12的拉伸强度σ2、上纤维增强树脂层11的拉伸强度σ3和下纤维增强树脂层14的拉伸强度σ1的要求,但相应的会导致所述电池防护底板1的总质量和总厚度的提高,不利于车辆100轻量化要求和成本控制,也导致了车辆100离地距离的缩小。当金属板12的拉伸强度σ2增大时,其抗形变能力增强,但发生形变时也更容易破裂,且当所述金属板12的拉伸强度σ2与所述上纤维增强树脂层11的拉伸强度σ3和所述下纤维增强树脂层14的拉伸强度σ1不能较好地匹配时,容易造成振动不同步,进而更易出现分层现象。因此,通过关系式综合各因素对于电池包3防护性能和抗振动性能的影响,有利于达到更好的抗冲击效果和更长的使用寿命。
如图1所示,在一些实施例中,所述电池防护底板1还包括有纤维增强树脂框13,所述金属板12和所述纤维增强树脂框13位于所述上纤维增强树脂层11和所述下纤维增强树脂层14之间,所述金属板12位于所述纤维增强树脂框13内部,所述纤维增强树脂框13的顶面与所述上纤维增强树脂层11一体连接,所述纤维增强树脂框13的底面与所述下纤维增强树脂层14一体连接。
在金属板12的外周设置有纤维增强树脂框13作为上纤维增强树脂层11和下纤维增强树脂层14的边框位置连接过渡件,能够有效抵消金属板12厚度对于上纤维增强树脂层11和下纤维增强树脂层14边框连接的影响,保证电池防护底板1的边框位置强度,进而有利于将电池防护底板1的边框位置作为其在电池上的安装结构,提高其抗冲击能力。
如图5所示,在一些实施例中,所述电池防护底板1的边缘内侧间隔开设有多个安装孔15,所述安装孔15依次穿过所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14。
所述安装孔15用于所述电池防护底板1在电池包3底部的安装紧固,通过将安装孔15设置于所述电池防护底板1的边缘内侧并依次穿过所述上纤维增强树脂层11、所 述纤维增强树脂框13和所述下纤维增强树脂层14,可避免所述安装孔15穿过所述金属板12,避免金属板12在安装孔15处露出导致的腐蚀问题,同时,所述纤维增强树脂框13利于提高安装位置的整体厚度和抗拉伸剪切强度,具有足够的安装稳固性。
多个所述安装孔15环绕于所述金属板12的外周设置,以均匀分散所述金属板12受到的顶部重力和底部的冲击作用力。
具体的,在安装时,设置连接件穿过所述安装孔15以将所述电池防护底板1固定于电池包3底部,所述连接件为铆钉、螺钉或螺栓。
在不同的实施例中,所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14的树脂各自独立地选自热固性和/或热塑性材料。实例可以包括但不限于环氧树脂、酚醛塑料、酚类、氰酸酯类、酰亚胺类(例如,聚酰亚胺、双马来酰亚胺(BMI)、聚醚酰亚胺)、聚丙烯类、聚酯类、苯并噁嗪类、聚苯并咪唑类、聚苯并噻唑类、聚酰胺类、聚酰胺酰亚胺类、聚砜类、聚醚砜类、聚碳酸酯类、聚对苯二甲酸乙二醇酯类和聚醚酮类(例如,聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酮酮(PEKK)等)及其组合。
在不同的实施例中,所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14的纤维各自独立地选自玻璃纤维、芳纶纤维、碳纤维、石墨纤维、硼纤维、芳族聚酰胺纤维及其混合。
所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14的纤维可以以短切纤维、长切纤维、无纺布、单向增强纤维基材、编织布等形式嵌入于树脂中。
在一些实施例中,所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14各自独立地选自玻璃纤维增强聚酰胺树脂件或玻璃纤维增强聚丙烯树脂件、玻璃纤维增强聚乙烯树脂件、玻璃纤维增强聚碳酸酯树脂件或玻璃纤维增强聚苯乙烯树脂件。
在一些实施例中,所述纤维增强树脂层、所述纤维增强树脂框13和所述下纤维增强树脂层14选择相同的树脂材料,相同的树脂材料能够保证不同层之间材料的亲和性,进而保证不同层之间的结合一体程度,提高整体强度。
在一些实施例中,所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14均为玻璃纤维增强树脂件,所述玻璃纤维增强树脂件含有50%~70%的玻璃纤维,利于提高所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14的材料强度。
在一些实施例中,所述玻璃纤维的碱含量<0.8%。
当所述玻璃纤维的碱含量低于0.8%时,利于提高所述上纤维增强树脂层11、所述纤维增强树脂框13和所述下纤维增强树脂层14的抗老化性能,减缓长期使用后材料的性能衰减。
在一些实施例中,所述玻璃纤维选自E玻纤或S玻纤。
在一些实施例中,所述上纤维增强树脂层11包括多层相互层叠的第一纤维增强预浸料;所述纤维增强树脂框13包括多层相互层叠的第二纤维增强预浸料;所述下纤维增强树脂层14包括多层相互层叠的第三纤维增强预浸料。
如图2所示,所述上纤维增强树脂层11包括多层相互层叠的第一纤维增强预浸料单向带111,相邻的两层第一纤维增强预浸料单向带111的纤维排布方向呈大致90°交错铺层,且相邻的两层第一纤维增强预浸料单向带111的铺层角度允许偏差范围为±20°。
所述第一纤维增强预浸料单向带111中的纤维单向排布,当受到沿纤维延伸方向的拉伸作用力时,所述第一纤维增强预浸料单向带111中的纤维能够有效承载其拉力作用,通过将相邻的第一纤维增强预浸单向带的纤维排布方向呈大致90°交错铺层,有利于提高所述上纤维增强树脂层11在各方向上的受力均匀性。
所述纤维增强树脂框13包括多层相互层叠的第二纤维增强预浸料单向带,所述第二纤维增强预浸料单向带中的纤维单向排布,相邻的两层第二纤维增强预浸料单向带的纤维排布方向呈大致90°交错铺层,且相邻的两层第二纤维增强预浸料单向带的铺层角度允许偏差范围为±20°。
所述下纤维增强树脂层14包括多层相互层叠的第三纤维增强预浸料单向带,所述第三纤维增强预浸料单向带中的纤维单向排布,相邻的两层第三纤维增强预浸料单向带的纤维排布方向呈大致90°交错铺层,且相邻的两层第三纤维增强预浸料单向带的铺层角度允许偏差范围为±20°。
所述纤维增强树脂框13和所述下纤维增强树脂层14的纤维排布与所述上纤维增强树脂层11相似,不再赘述。
如图3所示,在另一实施例中,所述上纤维增强树脂层11包括多层相互层叠的第一纤维编织布增强预浸料112,所述第一纤维编织布增强预浸料112中的纤维以交错的形式形成编织布。
所述纤维增强树脂框13包括多层相互层叠的第二纤维编织布增强预浸料,所述第二纤维编织布增强预浸料中的纤维以交错的形式形成编织布。
所述下纤维增强树脂层14包括多层相互层叠的第三纤维编织布增强预浸料,所述第三纤维编织布增强预浸料中的纤维以交错的形式形成编织布。
在一些实施例中,所述金属板12选自铁及其合金、铝及其合金、镁及其合金、铜及其合金、钛及其合金或镍及其合金。
在一些实施例中,所述金属板12为钢板,所述钢板的外表面设置有镀锌层、镀锌铁合金层或电泳漆保护层。
相对其他金属材料,采用钢板作为所述金属板12,具有较好的拉伸强度和延伸率,能够满足抗冲击的需求,利于提高对电池包3的保护作用。
在所述钢板的外表面设置镀锌层、镀锌铁合金层或电泳漆保护层,用于提高钢板的防腐性能,当所述上纤维增强树脂层11或所述下纤维增强树脂层14发生破损时,所述镀锌层或所述镀锌铁合金层与所述钢板形成的原电池效应使得所述镀锌层或所述镀锌铁合金层会优先于所述钢板发生腐蚀,进而对所述钢板起到保护作用,而所述电泳漆保护层具有较好的附着性,能够有效隔离钢板和外部环境。
如图4所示,本申请的另一实施例提供了一种电池包复合防护结构10,包括电池包3和如上所述的电池防护底板1,所述电池防护底板1设置于所述电池包3的下方,所述电池包3和所述电池防护底板1之间形成有缓冲区4。
所述电池包复合防护结构10由于采用上述电池防护底板1,在保证较低的整体厚度的情况下,有效保证所述电池防护底板1的防护强度以及所述电池防护底板1在所述电池包3上的稳定连接。
在一些实施例中,所述电池包3包括托盘31和设置于所述托盘31上的电池。
在不同的实施例中,所述缓冲区4可以以不同方式设置于所述电池包3和所述电池防护底板1之间。
如图6所示,在一实施例中,所述托盘31的底面向内设置有凹槽以形成所述缓冲区4,所述电池防护底板1为平板状,所述电池防护底板1覆盖于所述缓冲区4上。
如图7所示,在一实施例中,所述电池防护底板1的边框位置连接于所述托盘31的底面,所述托盘31的底面向内设置有凹槽,所述电池防护底板1向背离所述托盘31的方向凸出,以在所述托盘31和所述电池防护底板1之间形成所述缓冲区4。
如图8所示,在一实施例中,所述电池防护底板1的边框位置连接于所述托盘31的底面,所述托盘31的底面为平面,所述电池防护底板1向背离所述托盘31的方向凸出,以在所述托盘31和所述电池防护底板1之间形成所述缓冲区4。
在一些实施例中,所述缓冲区4中填充有缓冲层2,所述缓冲层2选自蜂窝材料或 硬质发泡材料。
蜂窝材料或硬质发泡材料能吸收电池防护底板1受到外部强冲击作用下的溃缩形变空间,缓冲吸收一部分外部强冲击的能量,阻止电池防护底板1压缩形变冲击到电池包3内部电芯上,对电池包3进行进一步防护。
在一些实施例中,所述蜂窝材料选自PP蜂窝材料或铝蜂窝材料;所述硬质发泡材料选自PU硬质发泡材料,PET硬质发泡材料,PMI硬质发泡材料,PVC硬质发泡材料,PET硬质发泡材料,MPP硬质发泡材料,PLA硬质发泡材料,PI硬质发泡材料或EPTU发泡材料。
本申请的另一实施例提供了一种车辆100,如图9所示,包括如上所述的电池防护底板1或者电池包复合防护结构10。
以下通过实施例对本申请进行进一步的说明,下表1中的公式为
表1

实施例1
本实施例用于说明本申请公开的电池包复合防护结构,包括电池包、缓冲层和电池防护底板,所述电池防护底板包括金属板、上纤维增强树脂层、纤维增强树脂框和下纤维增强树脂层,所述金属板为镀锌钢板,所述金属板位于所述上纤维增强树脂层和所述下纤维增强树脂层之间,所述金属板位于所述纤维增强树脂框内部,所述纤维增强树脂框的顶面与所述上纤维增强树脂层一体连接,所述纤维增强树脂框的底面与所述下纤维增强树脂层一体连接;所述电池防护底板设置于电池包的下方,所述电池包和所述电池防护底板之间形成有缓冲区,所述缓冲区中填充有所述缓冲层,且所述电池防护底板的边框通过铆钉安装于所述电池包的底部边框位置。
其中,所述上纤维增强树脂层厚度d3为1.6mm、所述下纤维增强树脂层的厚度d1为1.6mm、所述金属板的厚度d2为1.6mm、所述金属板的密度ρ2为7.9g/cm3、所述上纤维增强树脂层的密度ρ3为1.7g/cm3和所述下纤维增强树脂层的密度ρ1为1.7g/cm3、所述金属板的拉伸强度σ2为780MPa、所述上纤维增强树脂层的拉伸强度σ3为360MPa和所述下纤维增强树脂层的拉伸强度σ1为360MPa。
实施例2~27
实施例2~27用于说明本申请公开的电池包复合防护结构,包括实施例1中的大部分结构,其不同之处在于:
采用表1中实施例2~27提供的上纤维增强树脂层、金属板和下纤维增强树脂层。
对比例1~7
对比例1~7用于对比说明本申请公开的电池包复合防护结构,包括实施例1中的大部分结构,其不同之处在于:
采用表1中对比例1~7提供的上纤维增强树脂层、金属板和下纤维增强树脂层。
性能测试
对上述实施例和对比例提供的电池包复合防护结构进行如下性能测试:
1、采用球体作为冲击头对电池包复合防护结构的电池防护底板进行冲击,以模拟整车底部受到异物撞击的工况,球体的直径为25mm,重量为10kg,冲击能量为300J,冲击速度为8.5m/s,选取电池防护底板的中心点以及中心点外周的四个点作为冲击点,进行5次冲击。
测量电池包托盘在各个冲击点的凹陷变形量,选取凹陷变形量最大的冲击点,记录为电池包托盘的凹陷变形量。一般地,300J能量冲击的凹陷量要求是不高于3mm。
2、将电池包复合防护结构安装在振动台上,进行30w里程模拟振动,查看振动后安装铆钉情况、以及电池防护底板是否分层。
30w里程模拟振动测试:按GB/T 2423.43的要求,将测试对象安装在振动台上,测试并记录每个安装点扭矩。振动测试在三个方向上进行,测试过程参照GB/T 2423.56,具体测试条件如下:
首先,在Z方向上随机振动21h(随机振动条件如表2),然后在Z方向上定频振动1h(定频振动条件:24Hz定频频率,1g定频幅值);
其次,在Y方向上随机振动21h(随机振动条件如表2),然后在Y方向上定频振动1h(定频振动条件:24Hz定频频率,1g定频幅值);
再者,在X方向上随机振动21h(随机振动条件如表2),然后在X方向上定频振动1h(定频振动条件:24Hz定频频率,1g定频幅值)。
其中PSD代表功率谱密度,代表振动在某频率下的功率谱密度;r.m.s.值代表振动的综合加速度,反馈振动强度。
表2随机振动试验

得到的测试结果填入表3。
表3

从表3的测试结果可以看出,所述上纤维增强树脂层厚度d3、所述下纤维增强树脂层的厚度d1、所述金属板的厚度d2、所述金属板的密度ρ2、所述上纤维增强树脂层密度ρ3、所述下纤维增强树脂层的密度ρ1、所述金属板的拉伸强度σ2、所述上纤维增强树脂层的拉伸强度σ3和所述下纤维增强树脂层的拉伸强度σ1在提升电池包抗冲击作用和所述电池防护底板的安装稳定性方面具有相互关联的作用,当其满足时,得到的电池包复合防护结构能够适应长期冲击工况的应用条件。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种电池防护底板(1),其中,包括上纤维增强树脂层(11)、金属板(12)和下纤维增强树脂层(14),所述金属板(12)位于所述上纤维增强树脂层(11)和所述下纤维增强树脂层(14)之间;且所述金属板(12)、所述上纤维增强树脂层(11)和所述下纤维增强树脂层(14)满足以下条件:
    其中,d1为下纤维增强树脂层(14)的厚度,单位为mm;d2为金属板(12)的厚度,单位为mm;d3为上纤维增强树脂层(11)的厚度,单位为mm;ρ1为下纤维增强树脂层(14)的密度,单位为g/cm3;ρ2为金属板(12)的密度,单位为g/cm3;ρ3为上纤维增强树脂层(11)的密度,单位为g/cm3;σ1为下纤维增强树脂层(14)的拉伸强度,单位为MPa;σ2为金属板(12)的拉伸强度,单位为MPa;σ3为上纤维增强树脂层(11)的拉伸强度,单位为MPa。
  2. 根据权利要求1所述的电池防护底板(1),其中,所述金属板(12)、所述上纤维增强树脂层(11)和所述下纤维增强树脂层(14)满足以下条件:
  3. 根据权利要求1或2所述的电池防护底板(1),其中,所述上纤维增强树脂层(11)的厚度d3为0.4-1.6mm;所述下纤维增强树脂层(14)的厚度d1为0.6-2mm。
  4. 根据权利要求1-3中任一项所述的电池防护底板(1),其中,所述金属板(12)的厚度d2为0.7~1.6mm。
  5. 根据权利要求1-4中任一项所述的电池防护底板(1),其中,所述金属板(12)的密度ρ2为2.7-8.5g/cm3
  6. 根据权利要求1-5中任一项所述的电池防护底板(1),其中,所述上纤维增强树脂层(11)的密度ρ3为1.3~1.9g/cm3,所述下纤维增强树脂层(14)的密度ρ1为1.3~1.9g/cm3
  7. 根据权利要求1-6中任一项所述的电池防护底板(1),其中,所述金属板(12)的拉伸强度σ2为590~1180MPa。
  8. 根据权利要求1-7中任一项所述的电池防护底板(1),其中,所述上纤维增强树脂层(11)的拉伸强度σ3为240~380MPa,所述下纤维增强树脂层(14)的拉伸强度σ1为240~380MPa。
  9. 根据权利要求1-8中任一项所述的电池防护底板(1),其中,所述电池防护底板(1)还 包括有纤维增强树脂框(13),所述金属板(12)和所述纤维增强树脂框(13)位于所述上纤维增强树脂层(11)和所述下纤维增强树脂层(14)之间,所述金属板(12)位于所述纤维增强树脂框(13)内部,所述纤维增强树脂框(13)的顶面与所述上纤维增强树脂层(11)一体连接,所述纤维增强树脂框(13)的底面与所述下纤维增强树脂层(14)一体连接。
  10. 根据权利要求9所述的电池防护底板(1),其中,所述电池防护底板(1)的边缘内侧间隔开设有多个安装孔(15),所述安装孔(15)依次穿过所述上纤维增强树脂层(11)、所述纤维增强树脂框(13)和所述下纤维增强树脂层(14)。
  11. 根据权利要求9或10所述的电池防护底板(1),其中,所述上纤维增强树脂层(11)、所述纤维增强树脂框(13)和所述下纤维增强树脂层(14)各自独立地选自玻璃纤维增强聚酰胺树脂件、玻璃纤维增强聚丙烯树脂件、玻璃纤维增强聚乙烯树脂件、玻璃纤维增强聚碳酸酯树脂件或玻璃纤维增强聚苯乙烯树脂件。
  12. 根据权利要求9-11中任一项所述的电池防护底板(1),其中,所述上纤维增强树脂层(11)、所述纤维增强树脂框(13)和所述下纤维增强树脂层(14)均为玻璃纤维增强树脂件,所述玻璃纤维增强树脂件含有50%~70%的玻璃纤维,所述玻璃纤维的碱含量<0.8%。
  13. 根据权利要求9-12中任一项所述的电池防护底板(1),其中,所述上纤维增强树脂层(11)包括多层相互层叠的第一纤维增强预浸料(110);
    所述纤维增强树脂框(13)包括多层相互层叠的第二纤维增强预浸料;
    所述下纤维增强树脂层(14)包括多层相互层叠的第三纤维增强预浸料。
  14. 根据权利要求1-13中任一项所述的电池防护底板(1),其中,所述金属板(12)为钢板,所述钢板的外表面设置镀锌层、镀锌铁合金层或电泳漆保护层。
  15. 一种电池包复合防护结构(10),其中,包括电池包(3)和如权利要求1~14任意一项所述的电池防护底板(1),所述电池防护底板(1)设置于所述电池包(3)的下方,所述电池包(3)和所述电池防护底板(1)之间形成有缓冲区(4)。
  16. 根据权利要求15所述的电池包复合防护结构(10),其中,所述缓冲区(4)中填充有缓冲层(2),所述缓冲层(2)选自蜂窝材料或硬质发泡材料。
  17. 一种车辆,其中,包括如权利要求1~14任意一项所述的电池防护底板(1),或包括如权利要求15或16所述的电池包复合防护结构(10)。
PCT/CN2023/096761 2022-05-31 2023-05-29 一种电池防护底板、电池包复合防护结构及车辆 WO2023231949A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210609361.0 2022-05-31
CN202210609361.0A CN117199675A (zh) 2022-05-31 2022-05-31 一种电池防护底板、电池包复合防护结构及车辆

Publications (1)

Publication Number Publication Date
WO2023231949A1 true WO2023231949A1 (zh) 2023-12-07

Family

ID=89002181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096761 WO2023231949A1 (zh) 2022-05-31 2023-05-29 一种电池防护底板、电池包复合防护结构及车辆

Country Status (2)

Country Link
CN (1) CN117199675A (zh)
WO (1) WO2023231949A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090676A1 (ja) * 2015-11-25 2017-06-01 三菱樹脂株式会社 積層パネル及びその成形品の製造方法
JP2018183915A (ja) * 2017-04-25 2018-11-22 三菱ケミカル株式会社 積層パネル
WO2019034478A1 (de) * 2017-08-16 2019-02-21 Thyssenkrupp Steel Europe Ag Unterfahrschutz für ein batteriegehäuse
WO2021112077A1 (ja) * 2019-12-02 2021-06-10 東洋鋼鈑株式会社 積層複合体
CN215451600U (zh) * 2021-06-08 2022-01-07 比亚迪股份有限公司 电池包底护板及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090676A1 (ja) * 2015-11-25 2017-06-01 三菱樹脂株式会社 積層パネル及びその成形品の製造方法
JP2018183915A (ja) * 2017-04-25 2018-11-22 三菱ケミカル株式会社 積層パネル
WO2019034478A1 (de) * 2017-08-16 2019-02-21 Thyssenkrupp Steel Europe Ag Unterfahrschutz für ein batteriegehäuse
WO2021112077A1 (ja) * 2019-12-02 2021-06-10 東洋鋼鈑株式会社 積層複合体
CN215451600U (zh) * 2021-06-08 2022-01-07 比亚迪股份有限公司 电池包底护板及车辆

Also Published As

Publication number Publication date
CN117199675A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2023231957A1 (zh) 一种电池防护底板及电池包复合防护结构、车辆
US20210351455A1 (en) Battery case for electric car
EP2085215B1 (en) High-toughness fiber-metal laminate
WO2023231950A1 (zh) 一种电池防护底板、电池包复合防护结构及车辆
Mohan et al. Impact response of aluminum foam core sandwich structures
US11878642B2 (en) Vehicle back beam and vehicle including same
WO2012074394A1 (en) Metal sheet-fiber reinforced composite laminate
US20220216560A1 (en) Battery containment construct
US20210296728A1 (en) Lower protecting plate of battery module for electric car
CN205300395U (zh) 一种新型轻质复合防弹结构
WO2023231949A1 (zh) 一种电池防护底板、电池包复合防护结构及车辆
CN213483866U (zh) 电池包和车辆
US20220231361A1 (en) Lightweight and high-impact-resistant electric vehicle battery enclosure with fiber metal laminate composites
Wang et al. Symmetric and asymmetric intercalation effect on the low-velocity impact behavior of carbon/Kevlar hybrid woven laminates
WO2023231960A1 (zh) 一种电池防护底板及电池包复合防护结构、车辆
Ao et al. Impact resistance and damage mechanism of polyurea coated CFRP laminates under quasi-static indentation and low velocity impact
WO2023231958A1 (zh) 一种电池包复合防护结构及车辆
WO2009009207A2 (en) Thermoplastic composite/metal laminate structures and methods of making thermoplastic composite/metal laminate structures
Deng et al. Study on the failure mechanism of 1060‐H112 aluminum alloy‐carbon/glass fiber laminate
CN109216603A (zh) 电池托盘、电池包总成以及具有它的车辆
CN213800063U (zh) 玻璃钢船艇甲板结构
CN208970603U (zh) 一种蜂窝芯结构的电池包箱体
Pan et al. Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
CN117199669A (zh) 一种电池防护底板、电池包复合防护结构及车辆
CN112829569A (zh) 一种电池包托盘底部防护板及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815130

Country of ref document: EP

Kind code of ref document: A1