WO2023231960A1 - 一种电池防护底板及电池包复合防护结构、车辆 - Google Patents

一种电池防护底板及电池包复合防护结构、车辆 Download PDF

Info

Publication number
WO2023231960A1
WO2023231960A1 PCT/CN2023/096818 CN2023096818W WO2023231960A1 WO 2023231960 A1 WO2023231960 A1 WO 2023231960A1 CN 2023096818 W CN2023096818 W CN 2023096818W WO 2023231960 A1 WO2023231960 A1 WO 2023231960A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced resin
bottom plate
battery
layer
Prior art date
Application number
PCT/CN2023/096818
Other languages
English (en)
French (fr)
Inventor
谭志佳
万龙
彭青波
王然
孙泽楠
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023231960A1 publication Critical patent/WO2023231960A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/236Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains

Definitions

  • This application belongs to the field of vehicle battery technology, and specifically relates to a battery protective bottom plate, a battery pack composite protective structure, and a vehicle.
  • the battery pack In electric vehicles, the battery pack is generally located in the lower part of the chassis of the vehicle and is connected to the chassis through bolts. The lower surface of the battery pack is exposed. During daily driving of the vehicle, the bottom of the battery pack is easily bumped, causing the box to break and fail to protect itself. During driving, stones on the bottom Splash will also cause impact to the battery pack.
  • a protective plate In order to face complex working conditions, a protective plate is usually installed at the bottom of the battery pack. The protective plate protects the bottom of the battery pack. The protective plate is usually a steel plate.
  • the bottom surface is sprayed with a PVC layer for impact resistance and anti-corrosion.
  • the overall impact resistance of the existing protective panels still needs to be improved. Specifically: under the impact of external hard objects, the PVC layer on the bottom surface of the protective panels is easily pulverized. As a result, it falls off from the surface of the protective plate, exposing the steel plate inside, affecting the corrosion resistance of the protective plate.
  • this application provides a battery protection bottom plate, battery pack composite protection structure, and vehicle.
  • the present application provides a battery protective bottom plate, which includes a protective layer, a metal plate and a fiber-reinforced resin layer.
  • the metal plate is located between the protective layer and the fiber-reinforced resin layer, and the metal plate and The fiber-reinforced resin layer meets the following conditions:
  • d 1 is the thickness of the fiber-reinforced resin layer, in mm;
  • d 2 is the thickness of the metal plate, in mm
  • ⁇ 2 is the fracture elongation of the metal plate
  • ⁇ 2 is the tensile strength of the metal plate, in MPa
  • ⁇ 0 is the elongation at break of the fiber-reinforced resin layer
  • ⁇ 0 is the tensile strength of the fiber-reinforced resin layer, in MPa.
  • the metal plate and the fiber-reinforced resin layer meet the following conditions:
  • the thickness d 1 of the fiber-reinforced resin layer is 0.6-2.0 mm.
  • the thickness d 2 of the metal plate ranges from 0.7 to 1.6 mm.
  • the metal plate has an elongation at break ⁇ 2 of 5% to 20%.
  • the tensile strength ⁇ 2 of the metal plate ranges from 590 to 1180 MPa.
  • the fiber-reinforced resin layer has an elongation at break ⁇ 0 of 2.5% to 8%.
  • the tensile strength ⁇ 0 of the fiber-reinforced resin layer is 240 to 380 MPa.
  • the material of the protective layer is selected from fiber-reinforced resin materials, resin coatings or electrophoretic coatings.
  • the thickness of the protective layer ranges from 0.4 to 1.6 mm.
  • the battery protective bottom plate further includes a fiber-reinforced resin frame, the metal plate and the fiber-reinforced resin frame are located between the protective layer and the fiber-reinforced resin layer, and the metal plate is located between Inside the fiber-reinforced resin frame, the top surface of the fiber-reinforced resin frame is integrally connected to the protective layer, and the bottom surface of the fiber-reinforced resin frame is integrally connected to the fiber-reinforced resin layer.
  • a plurality of mounting holes are spaced inside the edge of the battery protective bottom plate, and the mounting holes pass through the protective layer, the fiber-reinforced resin frame and the fiber-reinforced resin layer in sequence.
  • the protective layer, the fiber reinforced resin frame and the fiber reinforced resin layer are each independently selected from the group consisting of glass fiber reinforced polyamide resin parts, glass fiber reinforced polypropylene resin parts, glass fiber reinforced polyethylene Resin parts, glass fiber reinforced polycarbonate resin parts or glass fiber reinforced polystyrene resin parts.
  • the protective layer, the fiber-reinforced resin frame and the fiber-reinforced resin layer are all glass fiber-reinforced resin parts, and the glass fiber-reinforced resin parts contain 60% to 70% glass fiber, so The alkali content of the glass fiber is ⁇ 0.8%.
  • the protective layer includes multiple layers of first fiber reinforced prepreg layered on top of each other.
  • the fiber-reinforced resin frame includes multiple layers of second fiber-reinforced prepreg layered on each other.
  • the fiber-reinforced resin layer includes multiple layers of third fiber-reinforced prepreg laminated on each other.
  • the metal plate is a steel plate, and the outer surface of the steel plate is provided with a galvanized layer, a galvanized iron alloy layer or an electrophoretic paint protective layer.
  • the present application provides a battery pack composite protection structure, which includes a battery pack and a battery protection bottom plate as described above.
  • the battery protection bottom plate is disposed below the battery pack.
  • the battery pack and the battery A buffer zone is formed between the protective bottom plates.
  • the buffer zone is filled with a buffer layer, and the buffer layer is selected from honeycomb materials or hard foam materials.
  • the present application provides a vehicle, including a battery protection bottom plate or a battery pack composite protection structure as described above.
  • a fiber-reinforced resin layer is compounded on the surface of the metal plate.
  • the fiber-reinforced resin layer serves as the bottom cladding structure of the metal plate, which can avoid direct contact between the metal plate and the air and external moisture. , which plays an anti-corrosion protection role for the metal plate.
  • the fiber-reinforced resin also has good mechanical strength, effectively improving the stiffness and strength of the metal plate, making it have higher impact resistance.
  • the inventor found that when a fiber-reinforced resin layer and a metal plate are used to match, some combination groups can obtain a battery protective bottom plate with excellent impact resistance, while some combination groups have surface damage to the fiber-reinforced resin layer, and through further The test found that the tensile strength and elongation at break of the selected fiber-reinforced resin layer need to have a certain corresponding relationship with the tensile strength and elongation at break of the metal plate to ensure that the battery protection bottom plate is impacted by external energy. The adhesion between the fiber-reinforced resin layer and the metal plate is not destroyed.
  • the relationship formula is summarized by combining the thickness of the fiber-reinforced resin layer and the metal plate:
  • the thickness of the fiber-reinforced resin layer d 1 , the thickness of the metal plate d 2 , the elongation at break of the metal plate ⁇ 2 , the elongation at break of the fiber-reinforced resin layer ⁇ 0 , the tensile strength of the metal plate ⁇ 2 , the elongation at break of the fiber-reinforced resin layer When the tensile strength ⁇ 0 meets the above conditions, it is beneficial to obtain a battery protective bottom plate with excellent impact resistance and corrosion resistance.
  • FIG. 1 is a schematic structural diagram of the battery protection bottom plate provided by this application.
  • Figure 2 is a schematic structural diagram of different first fiber reinforced prepreg unidirectional tapes in the protective layer provided by this application;
  • Figure 3 is a schematic structural diagram of different first fiber woven cloth reinforced prepregs in the protective layer provided by this application;
  • FIG. 4 is a schematic structural diagram of the battery pack composite protection structure provided by this application.
  • Figure 5 is an enlarged schematic diagram of position A in Figure 4.
  • Figure 6 is a schematic bottom cross-sectional view of the battery pack composite protection structure provided by an embodiment of the present application.
  • Figure 7 is a schematic bottom cross-sectional view of a battery pack composite protection structure provided by another embodiment of the present application.
  • Figure 8 is a schematic bottom cross-sectional view of a battery pack composite protection structure provided by another embodiment of the present application.
  • Battery protective bottom plate 11. Protective layer; 111. First fiber reinforced prepreg one-way tape; 112. First fiber woven cloth reinforced prepreg; 12. Metal plate; 13. Fiber reinforced resin frame; 14. Fiber reinforced resin layer; 15. Mounting hole; 2. Buffer layer; 3. Battery pack; 31. Tray; 4. Buffer zone.
  • an embodiment of the present application provides a battery protective bottom plate 1, which includes a protective layer 11, a metal plate 12 and a fiber-reinforced resin layer 14.
  • the metal plate 12 is located between the protective layer 11 and the fiber-reinforced resin layer 14. between the reinforced resin layers 14, and the metal plate 12 and the fiber reinforced resin layer 14 meet the following conditions:
  • d 1 is the thickness of the fiber-reinforced resin layer 14, in mm;
  • d 2 is the thickness of the metal plate 12 in mm
  • ⁇ 2 is the fracture elongation of the metal plate 12
  • ⁇ 2 is the tensile strength of the metal plate 12, in MPa
  • ⁇ 0 is the elongation at break of the fiber-reinforced resin layer 14;
  • ⁇ 0 is the tensile strength of the fiber-reinforced resin layer 14, in MPa.
  • the fiber-reinforced resin layer 14 serves as the bottom surface cladding structure of the metal plate 12, which can prevent the metal plate 12 from direct contact with air and external moisture, and plays an anti-corrosion protection role for the metal plate 12.
  • the fiber-reinforced resin also has The better mechanical strength effectively improves the stiffness and strength of the metal plate 12, making it have higher impact resistance.
  • the relationship formula is summarized based on the thickness of the fiber-reinforced resin layer 14 and the metal plate 12:
  • the thickness d 1 of the fiber-reinforced resin layer 14 When the thickness d 1 of the fiber-reinforced resin layer 14 , the thickness d 2 of the metal plate 12 , the elongation at break ⁇ 2 of the metal plate 12 , the elongation at break ⁇ 0 of the fiber-reinforced resin layer 14 , and the tensile strength ⁇ 2 of the metal plate 12 When the tensile strength ⁇ 0 of the fiber-reinforced resin layer 14 meets the above conditions, it is beneficial to obtain a battery protective bottom plate 1 with excellent impact resistance and corrosion resistance.
  • the metal plate 12 and the fiber-reinforced resin layer 14 meet the following conditions:
  • the impact of the selection of the metal plate 12 and the fiber-reinforced resin layer 14 on the impact resistance of the battery pack 3 can be integrated, which is beneficial to the surface of the fiber-reinforced resin layer 14 when subjected to external impact. falling off, ensuring the corrosion resistance of the battery protective bottom plate 1 and prolonging its service life.
  • the thickness d 1 of the fiber-reinforced resin layer 14 is 0.6-2.0 mm.
  • the thickness d 1 of the fiber-reinforced resin layer 14 can be 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.8 mm or 2.0mm.
  • the thickness d 1 of the fiber-reinforced resin layer 14 is related to the resistance of the metal plate 12 to external air and water vapor corrosion, and also affects its bonding strength with the metal plate 12 and the overall composite structure with the metal plate 12 Strength, when the thickness d 1 of the fiber-reinforced resin layer 14 is within the above range, it can avoid falling off on the surface of the metal plate 12 under high-energy impact, and can effectively maintain the corrosion protection of the metal plate 12 and strength-enhancing effects.
  • the thickness d 2 of the metal plate 12 is 0.7 ⁇ 1.6 mm.
  • the thickness d 2 of the metal plate 12 may be 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm or 1.6mm.
  • the thickness d2 of the metal plate 12 affects the overall mechanical strength of the battery protective bottom plate 1.
  • the tensile strength of the metal plate 12 is constant, as the thickness of the metal plate 12 increases, its protective strength also gradually increases, but its protective strength also gradually increases. Material costs have also gradually increased and the ground clearance of the vehicle's bottom has been reduced.
  • the thickness d 2 of the metal plate 12 is within the above range, it can not only ensure the overall mechanical strength of the battery protective bottom plate 1 , but also effectively control costs, ensure the distance from the ground, and is also conducive to vehicle lightweight control.
  • the elongation at break ⁇ 2 of the metal plate 12 is 5% to 20%.
  • the fracture elongation ⁇ 2 of the metal plate 12 can be 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16 %, 17%, 18%, 19% or 20%.
  • the tensile strength ⁇ 2 of the metal plate 12 is 590 to 1180 MPa.
  • the tensile strength ⁇ 2 of the metal plate 12 may be 590MPa, 600MPa, 650MPa, 700MPa, 750MPa, 800MPa, 850MPa, 900MPa, 950MPa, 1000MPa or 1180MPa.
  • the tensile strength ⁇ 2 and elongation at break ⁇ 2 of the metal plate 12 can be tested through the GB/T 228.1-2010 Metal Materials Tensile Test Part 1: Room Temperature Test Plan, and the metal plate 12 serves as the battery protection
  • the tensile strength ⁇ 2 of the main protective component of the bottom plate 1 is used as the strength index of the metal plate 12 in the face of relatively complex impact conditions, affecting the deformation resistance of the metal plate 12 within its elastic deformation range.
  • the metal plate 12 can resist higher impact without irreversible deformation; and the elongation at break ⁇ 2 affects the ability of the metal plate 12 to resist rupture after deformation,
  • the metal plate 12 can withstand higher impact without cracking; but usually, the tensile strength ⁇ 2 of the metal plate 12 is higher, and the elongation at break ⁇ 2 will be.
  • the impact of different parameters on the protective performance of the metal plate 12 can be effectively taken into consideration to ensure the impact resistance and anti-cracking performance of the metal plate 12 .
  • the fiber-reinforced resin layer 14 has an elongation at break ⁇ 0 of 2.5% to 8%.
  • the elongation at break ⁇ 0 of the fiber-reinforced resin layer 14 can be 2.5%, 2.6%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6% , 3.8%, 3.9%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%.
  • the tensile strength ⁇ 0 of the fiber-reinforced resin layer 14 is 240-380 MPa.
  • the tensile strength ⁇ 0 of the fiber-reinforced resin layer 14 may be 240MPa, 260MPa, 280MPa, 290MPa, 300MPa, 310MPa, 320MPa, 330MPa, 340MPa, 350MPa, 360MPa, 370MPa or 380MPa.
  • the elongation at break ⁇ 0 of the fiber-reinforced resin layer 14 and the tensile strength ⁇ 0 of the fiber-reinforced resin layer 14 can be determined by It was tested according to the GB/T 1447-2005 tensile property test method for fiber-reinforced plastics.
  • Type I specimens are suitable for fiber-reinforced thermoplastic sheets. Samples were made and tested in accordance with the Type I specimens stipulated in the national standard.
  • the fiber-reinforced resin layer 14 is the surface layer of the battery protective bottom plate 1 that is in direct contact with the impact object.
  • the increase in tensile strength ⁇ 0 is conducive to improving the deformation resistance of the fiber-reinforced resin layer 14; As the tensile strength ⁇ 0 increases, the elongation at break ⁇ 0 decreases, which also affects the adhesion of the fiber-reinforced resin layer 14 to the metal plate 12 , resulting in delamination upon impact; when the fiber-reinforced resin When the tensile strength ⁇ 0 and elongation at break ⁇ 0 of the layer 14 are within the above range, the fiber-reinforced resin layer 14 can effectively resist external impact without delamination or falling off.
  • the above six parameters are interrelated and inseparable in terms of improving the impact resistance of the battery pack 3 and preventing the fiber-reinforced resin layer from powdering and falling off.
  • the tensile strength ⁇ 2 of the metal plate 12 When the tensile strength ⁇ 0 of the fiber-reinforced resin layer 14 cannot be well matched, it is easy to cause the vibration to be out of synchronization, and then delamination is more likely to occur.
  • the tensile strength ⁇ 0 of the fiber-reinforced resin layer 14 is correlated with the elongation at break ⁇ 2 of 12; when the thickness d 2 of the metal plate 12
  • the thickness d 1 of the fiber-reinforced resin layer 14 increases, the requirements for the tensile strength ⁇ 2 of the metal plate 12 and the tensile strength ⁇ 0 of the fiber-reinforced resin layer 14 can be reduced, but this will lead to
  • the increase in the total mass and thickness of the battery protective bottom plate 1 is not conducive to vehicle lightweight requirements and cost control, and also leads to a reduction in the vehicle's ground clearance. Therefore, through the relationship
  • Combining the impact of various factors on the protective performance of the battery pack 3 is beneficial to improving the impact resistance of the battery protective bottom plate 1 and avoiding the problems of impact delamination and surface powdering.
  • the material of the protective layer 11 is selected from fiber-reinforced resin materials, resin coatings or electrophoretic coatings.
  • the protective layer 11 is used to improve the corrosion resistance and composite strength of the metal plate 12 .
  • the thickness of the protective layer 11 is 0.4-1.6 mm.
  • the thickness of the protective layer 11 may be 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm or 1.6mm.
  • the thickness of the protective layer 11 mainly affects its resistance to water vapor penetration and its bonding strength with the metal plate 12. When the thickness of the protective layer 11 is within the above range, the protective performance of the metal plate 12 can be effectively improved and the The bonding strength with the metal plate 12.
  • the battery protective bottom plate 1 further includes a fiber-reinforced resin frame 13, and the metal plate 12 and The fiber-reinforced resin frame 13 is located between the protective layer 11 and the fiber-reinforced resin layer 14.
  • the metal plate 12 is located inside the fiber-reinforced resin frame 13.
  • the top surface of the fiber-reinforced resin frame 13 is in contact with the fiber-reinforced resin frame 13.
  • the protective layer 11 is integrally connected, and the bottom surface of the fiber-reinforced resin frame 13 is integrally connected to the fiber-reinforced resin layer 14 .
  • a fiber-reinforced resin frame 13 is provided on the outer periphery of the metal plate 12 as a transition piece for the frame connection between the protective layer 11 and the fiber-reinforced resin layer 14, which can effectively offset the effect of the thickness of the metal plate 12 on the frame connection between the protective layer 11 and the fiber-reinforced resin layer 14.
  • the impact ensures the strength of the frame position of the battery protection bottom plate 1, which is conducive to using the frame position of the battery protection bottom plate 1 as its installation structure on the battery to improve its impact resistance.
  • a plurality of mounting holes 15 are spaced inside the edge of the battery protective bottom plate 1, and the mounting holes 15 pass through the protective layer 11, the fiber in sequence. Reinforce the resin frame 13 and the fiber-reinforced resin layer 14 .
  • the mounting holes 15 are used to install and fasten the battery protective bottom plate 1 at the bottom of the battery pack 3.
  • the mounting holes 15 are arranged inside the edge of the battery protective bottom plate 1 and pass through the protective layer 11 and the
  • the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 can prevent the mounting hole 15 from passing through the metal plate 12 and avoid corrosion problems caused by the metal plate 12 being exposed at the mounting hole 15.
  • the fiber The reinforced resin frame 13 is conducive to improving the overall thickness and tensile shear strength of the installation location, and has sufficient installation stability.
  • a plurality of mounting holes 15 are provided around the periphery of the metal plate 12 to evenly distribute the top gravity and bottom impact forces on the metal plate 12 .
  • a connecting piece is set through the mounting hole 15 to fix the battery protective bottom plate 1 to the bottom of the battery pack 3 .
  • the connecting piece is a rivet, a screw or a bolt.
  • the resins of the protective layer 11 , the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 are each independently selected from thermosetting and/or thermoplastic materials. Examples may include, but are not limited to, epoxies, phenolics, phenols, cyanate esters, imides (e.g., polyimide, bismaleimide (BMI), polyetherimide), Polypropylene, polyester, benzoxazine, polybenzimidazole, polybenzothiazole, polyamide, polyamideimide, polysulfone, polyethersulfone, polycarbonate , polyethylene terephthalates and polyetherketones (for example, polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), etc.) and combinations thereof.
  • PEK polyetherketone
  • PEEK polyetheretherketone
  • PEKK polyetherketoneketone
  • the fibers of the protective layer 11 , the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 are each independently selected from glass fiber, aramid fiber, carbon fiber, graphite fiber, boron fiber, Aramid fibers and their blends.
  • the fibers of the protective layer 11, the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 can be embedded in the form of chopped fibers, long-cut fibers, non-woven fabrics, unidirectional reinforced fiber base materials, woven fabrics, etc. in resin.
  • the protective layer 11 , the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 Each is independently selected from glass fiber reinforced polyamide resin parts, glass fiber reinforced polypropylene resin parts, glass fiber reinforced polyethylene resin parts, glass fiber reinforced polycarbonate resin parts or glass fiber reinforced polystyrene resin parts.
  • the protective layer 11 , the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 are made of the same resin material.
  • the same resin material can ensure the affinity of materials between different layers, and thus Ensure the integration between different layers and improve the overall strength.
  • the protective layer 11 , the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 are all glass fiber reinforced resin parts, and the glass fiber reinforced resin parts contain 60% to 70% glass. Fiber is beneficial to improving the material strength of the protective layer 11 , the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14 .
  • the glass fibers have an alkali content of ⁇ 0.8%.
  • the alkali content of the glass fiber is less than 0.8%, it is beneficial to improve the anti-aging properties of the protective layer 11, the fiber-reinforced resin frame 13 and the fiber-reinforced resin layer 14, and slow down the performance attenuation of the materials after long-term use. .
  • the glass fiber is selected from E-glass fiber or S-glass fiber.
  • the protective layer 11 includes multiple layers of first fiber-reinforced prepreg laminated on each other.
  • the fiber-reinforced resin frame 13 includes multiple layers of second fiber-reinforced prepreg laminated on each other.
  • the fiber-reinforced resin layer 14 includes multiple layers of third fiber-reinforced prepreg laminated on each other.
  • the protective layer 11 includes multiple layers of first fiber-reinforced prepreg unidirectional tapes 111 stacked on each other, and two adjacent layers of first fiber-reinforced prepreg unidirectional tapes
  • the fiber arrangement direction of 111 is approximately 90° in staggered lay-up, and the allowable deviation range of the lay-up angle of the two adjacent layers of first fiber-reinforced prepreg unidirectional tapes 111 is ⁇ 20°.
  • the fibers in the first fiber-reinforced prepreg unidirectional belt 111 are arranged in one direction. When subjected to a tensile force along the fiber extension direction, the fibers in the first fiber-reinforced prepreg unidirectional belt 111 It can effectively bear its tensile force. By staggering the fiber arrangement directions of the adjacent first fiber-reinforced prepreg unidirectional belts 111 at approximately 90°, it is beneficial to improve the stress resistance of the protective layer 11 in all directions. force uniformity.
  • the fiber-reinforced resin frame 13 includes multiple layers of second fiber-reinforced prepreg unidirectional tapes laminated on each other.
  • the fibers in the second fiber-reinforced prepreg unidirectional tapes are arranged in one direction, and the two adjacent layers are
  • the fiber arrangement direction of the two-fiber-reinforced prepreg unidirectional tape is roughly 90° staggered, and the allowable deviation range of the lamination angle of two adjacent layers of second fiber-reinforced prepreg unidirectional tape is ⁇ 20°.
  • the fiber-reinforced resin layer 14 includes multiple layers of third fiber-reinforced prepreg unidirectional tapes stacked on each other.
  • the fibers in the third fiber-reinforced prepreg unidirectional tapes are arranged in one direction, and the adjacent two layers of the fiber-reinforced prepreg unidirectional tapes are arranged in one direction.
  • the fiber arrangement direction of the three-fiber reinforced prepreg unidirectional tape is roughly 90° staggered, and the allowable deviation range of the lamination angle of two adjacent layers of third fiber-reinforced prepreg unidirectional tape is ⁇ 20°.
  • the fiber arrangement of the fiber reinforced resin frame 13 and the fiber reinforced resin layer 14 is similar to that of the protective layer 11. No longer.
  • the protective layer 11 includes multiple layers of mutually laminated first fiber woven cloth reinforced prepreg 112, and the fibers in the first fiber woven cloth reinforced prepreg 112 The woven cloth is formed in a staggered pattern.
  • the fiber-reinforced resin frame 13 includes multiple layers of second fiber-woven cloth-reinforced prepregs laminated on each other, and the fibers in the second fiber-woven cloth-reinforced prepreg form a woven cloth in a staggered form.
  • the fiber-reinforced resin layer 14 includes multiple layers of third fiber-woven cloth-reinforced prepregs stacked on each other, and the fibers in the third fiber-woven cloth-reinforced prepreg form a woven cloth in a staggered form.
  • the metal plate 12 is selected from iron and its alloys, aluminum and its alloys, magnesium and its alloys, copper and its alloys, titanium and its alloys, or nickel and its alloys.
  • the metal plate 12 is a steel plate, and the outer surface of the steel plate is provided with a galvanized layer, a galvanized iron alloy layer or an electrophoretic paint protective layer.
  • using a steel plate as the metal plate 12 has better tensile strength and elongation, can meet the requirements of impact resistance, and is conducive to improving the protection of the battery pack 3 .
  • a galvanized layer, galvanized iron alloy layer or electrophoretic paint protective layer is provided on the outer surface of the steel plate to improve the anti-corrosion performance of the steel plate.
  • the protective layer 11 or the fiber-reinforced resin layer 14 is damaged, the The galvanic cell effect formed by the galvanized layer or the galvanized iron alloy layer and the steel plate causes the galvanized layer or the galvanized iron alloy layer to corrode prior to the steel plate, thereby protecting the steel plate.
  • the electrophoretic paint protective layer has good adhesion and can effectively isolate the steel plate from the external environment.
  • FIG. 4 As shown in Figures 4, 6 to 8, another embodiment of the present application provides a battery pack composite protection structure, including a battery pack 3 and a battery protection bottom plate 1 as described above.
  • the battery protection bottom plate 1 is provided with Below the battery pack 3, a buffer area 4 is formed between the battery pack 3 and the battery protection bottom plate 1.
  • the battery pack composite protection structure adopts the above-mentioned battery protection bottom plate 1, it can effectively ensure the protective strength and good corrosion resistance of the battery protection bottom plate 1 while ensuring a low overall thickness.
  • the battery pack 3 includes a tray 31 and batteries disposed on the tray 31 .
  • the buffer zone 4 may be disposed between the battery pack 3 and the battery protective bottom plate 1 in different ways.
  • a groove is provided inwardly on the bottom surface of the tray 31 to form the buffer area 4 .
  • the battery protection bottom plate 1 is flat, and the battery protection bottom plate 1 covers the on the buffer 4.
  • the frame position of the battery protection bottom plate 1 is connected to the bottom surface of the tray 31 , and a groove is provided inwardly on the bottom surface of the tray 31 .
  • the battery protection bottom plate 1 faces toward It protrudes in a direction away from the tray 31 to form the buffer area 4 between the tray 31 and the battery protection bottom plate 1 .
  • the frame position of the battery protection bottom plate 1 is connected to the bottom surface of the tray 31 , the bottom surface of the tray 31 is a plane, and the battery protection bottom plate 1 faces away from the tray.
  • the direction of 31 protrudes to form the buffer zone 4 between the tray 31 and the battery protective bottom plate 1 .
  • the buffer area 4 is filled with a buffer layer 2, and the buffer layer 2 is selected from honeycomb materials or hard foam materials.
  • Honeycomb material or hard foam material can absorb the space for collapse and deformation of the battery protective bottom plate when it is subjected to strong external impact, buffer and absorb part of the energy of external strong impact, and prevent the compression deformation of the battery protective bottom plate 1 from impacting the internal cells of the battery pack 3 , further protecting the battery pack 3.
  • the honeycomb material is selected from PP honeycomb material or aluminum honeycomb material;
  • the hard foaming material is selected from PU hard foaming material, PET hard foaming material, PMI hard foaming material, PVC rigid foam material, PET rigid foam material, MPP rigid foam material, PLA rigid foam material, PI rigid foam material or EPTU foam material.
  • Another embodiment of the present application provides a vehicle, including a battery protection bottom plate or a battery pack composite protection structure as described above.
  • the battery protective bottom plate includes a metal plate, a protective layer, a fiber-reinforced resin frame and a fiber-reinforced resin layer.
  • the metal plate is a galvanized steel plate
  • the protective layer is a fiber-reinforced resin material
  • the metal plate is located between the protective layer and the fiber-reinforced resin layer
  • the fiber-reinforced resin layer is located on the side of the metal plate.
  • the metal plate is located inside the fiber-reinforced resin frame, the top surface of the fiber-reinforced resin frame is integrally connected to the protective layer, and the bottom surface of the fiber-reinforced resin frame is integrally connected to the fiber-reinforced resin layer;
  • the battery protection bottom plate is disposed below the battery pack.
  • a buffer zone is formed between the battery pack and the battery protection bottom plate. The buffer zone is filled with the buffer layer, and the frame of the battery protection bottom plate passes through The rivets are installed on the bottom frame of the battery pack.
  • the thickness d1 of the fiber-reinforced resin layer is 1.6mm
  • the thickness of the protective layer is 1.5mm
  • the thickness d2 of the metal plate is 1.2mm
  • the fracture elongation ⁇ 2 of the metal plate is 18%
  • the fracture of the fiber-reinforced resin layer The elongation ⁇ 0 is 3%
  • the tensile strength ⁇ 2 of the metal plate is 780 MPa
  • the tensile strength ⁇ 0 of the fiber-reinforced resin layer is 380 MPa.
  • Examples 2 to 20 are used to illustrate the battery pack composite protective structure disclosed in this application, including most of the structures in Example 1, and the differences are:
  • the metal plates and fiber-reinforced resin layers provided in Examples 2 to 20 in Table 1 were used.
  • Comparative Examples 1 to 5 are used to compare and illustrate the battery pack composite protective structure disclosed in this application, including most of the structures in Example 1, and the differences are as follows:
  • a sphere as the impact head to impact the battery protection bottom plate of the battery pack composite protection structure to simulate the working conditions of the bottom of the vehicle being hit by foreign objects.
  • the diameter of the sphere is 25mm
  • the weight is 10kg
  • the impact energy is 300J
  • the impact speed is 8.5m/s, select the center point of the battery protection bottom plate and four points around the center point as the impact points, and conduct 5 impacts.
  • the dent amount required for a 300J energy impact is no more than 3mm.
  • the grading standards for powdering degree are as follows:
  • R1 The powdered diameter of the fiber resin layer is ⁇ 2mm, and there is no exposed metal plate;
  • R2 The powdered diameter of the fiber resin layer is ⁇ 5mm, and there is no exposed metal plate;
  • R3 The powdered diameter of the fiber resin layer is ⁇ 8mm, and there is no exposed metal plate;
  • R4 The powdered diameter of the fiber resin layer is ⁇ 10mm, and there is no exposed metal plate;
  • R5 The powdered area of the fiber resin layer is >10mm, and the metal plate can be seen exposed.
  • PSD represents the power spectral density, which represents the power spectral density of vibration at a certain frequency
  • r.m.s. value represents the comprehensive acceleration of vibration and feedbacks the vibration intensity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

为克服现有电池包底部防护板存在表面PVC层受冲击脱落导致耐腐蚀性能不足的问题,本申请提供了一种电池防护底板,包括防护层、金属板和纤维增强树脂层,所述金属板位于所述防护层和所述纤维增强树脂层之间,且所述金属板和所述纤维增强树脂层满足以下式I条件。同时,本申请还公开了包括上述电池防护底板的电池包复合防护结构和车辆。

Description

一种电池防护底板及电池包复合防护结构、车辆
相关申请的交叉引用
本申请要求于2022年5月31日提交的申请号为202210612280.6的中国专利申请的优先权权益,并将其全部引入本文。
技术领域
本申请属于车辆电池技术领域,具体涉及一种电池防护底板及电池包复合防护结构、车辆。
背景技术
随着电动汽车的迅速发展,人们对电动汽车的安全要求也越来越高,动力电池包作为电动汽车的动力来源,其安全的重要性不言而喻。在电动汽车中,电池包一般位于车辆的底盘下部,通过螺栓与底盘连接,电池包的下表面裸露在外,车辆日常行驶过程中电池包底部容易磕碰导致箱体破裂防护失效,行驶过程中底部石子飞溅也会对电池包造成冲击,为了面对复杂的工况,通常在电池包的底部设置有防护板,通过防护板对电池包的底部起到保护作用,防护板通常为钢板,防护板的底面喷涂有PVC层以起到抗冲击和防腐作用,然而现有的防护板的整体抗冲击性能仍有待提升,具体为:在外部硬物的冲击下,防护板底面的PVC层容易粉化,从而从防护板表面脱落,进而使其内部的钢板露出,影响防护板的耐腐蚀性能。
发明内容
针对现有电池包底部防护板存在表面PVC层受冲击脱落导致耐腐蚀性能不足的问题,本申请提供了一种电池防护底板及电池包复合防护结构、车辆。
本申请解决上述技术问题所采用的技术方案如下:
一方面,本申请提供了一种电池防护底板,包括防护层、金属板和纤维增强树脂层,所述金属板位于所述防护层和所述纤维增强树脂层之间,且所述金属板和所述纤维增强树脂层满足以下条件:
其中,d1为纤维增强树脂层的厚度,单位为mm;
d2为金属板的厚度,单位为mm;
ε2为金属板的断裂延伸率;
σ2为金属板的拉伸强度,单位为MPa;
ε0为纤维增强树脂层的断裂延伸率;
σ0为纤维增强树脂层的拉伸强度,单位为MPa。
在一些实施方式中,所述金属板和所述纤维增强树脂层满足以下条件:
在一些实施方式中,所述纤维增强树脂层的厚度d1为0.6-2.0mm。
在一些实施方式中,所述金属板的厚度d2为0.7~1.6mm。
在一些实施方式中,所述金属板的断裂延伸率ε2为5%~20%。
在一些实施方式中,所述金属板的拉伸强度σ2为590~1180MPa。
在一些实施方式中,所述纤维增强树脂层的断裂延伸率ε0为2.5%~8%。
在一些实施方式中,所述纤维增强树脂层的拉伸强度σ0为240~380MPa。
在一些实施方式中,所述防护层的材料选自纤维增强树脂材料、树脂涂料或电泳涂料。
在一些实施方式中,所述防护层的厚度为0.4~1.6mm。
在一些实施方式中,所述电池防护底板还包括有纤维增强树脂框,所述金属板和所述纤维增强树脂框位于所述防护层和所述纤维增强树脂层之间,所述金属板位于所述纤维增强树脂框内部,所述纤维增强树脂框的顶面与所述防护层一体连接,所述纤维增强树脂框的底面与所述纤维增强树脂层一体连接。
在一些实施方式中,所述电池防护底板的边缘内侧间隔开设有多个安装孔,所述安装孔依次穿过所述防护层、所述纤维增强树脂框和所述纤维增强树脂层。
在一些实施方式中,所述防护层、所述纤维增强树脂框和所述纤维增强树脂层各自独立地选自玻璃纤维增强聚酰胺树脂件、玻璃纤维增强聚丙烯树脂件、玻璃纤维增强聚乙烯树脂件、玻璃纤维增强聚碳酸酯树脂件或玻璃纤维增强聚苯乙烯树脂件。
在一些实施方式中,所述防护层、所述纤维增强树脂框和所述纤维增强树脂层均为玻璃纤维增强树脂件,所述玻璃纤维增强树脂件含有60%~70%的玻璃纤维,所述玻璃纤维的碱含量<0.8%。
在一些实施方式中,所述防护层包括多层相互层叠的第一纤维增强预浸料。
在一些实施方式中,所述纤维增强树脂框包括多层相互层叠的第二纤维增强预浸料。
在一些实施方式中,所述纤维增强树脂层包括多层相互层叠的第三纤维增强预浸料。
在一些实施方式中,所述金属板为钢板,所述钢板的外表面设置镀锌层、镀锌铁合金层或电泳漆保护层。
另一方面,本申请提供了一种电池包复合防护结构,包括电池包和如上所述的电池防护底板,所述电池防护底板设置于所述电池包的下方,所述电池包和所述电池防护底板之间形成有缓冲区。
在一些实施方式中,所述缓冲区中填充有缓冲层,所述缓冲层选自蜂窝材料或硬质发泡材料。
另一方面,本申请提供了一种车辆,包括如上所述的电池防护底板或电池包复合防护结构。
根据本申请提供的电池防护底板,将纤维增强树脂层复合在金属板的表面,所述纤维增强树脂层作为所述金属板的底面覆层结构,能够避免金属板与空气和外部水分的直接接触,对金属板起到防腐保护作用,同时,纤维增强树脂也具有较好的力学强度,有效提高了金属板的刚度和强度,使其具有更高的抗冲击能力。
进一步的,发明人发现,采用纤维增强树脂层和金属板配合时,部分配合组能够得到抗冲击性能优异的电池防护底板,而部分配合组则出现了纤维增强树脂层的表面破坏,并通过进一步试验发现选用的纤维增强树脂层的拉伸强度和断裂延伸率与金属板的拉伸强度和断裂延伸率需具备一定的对应关系,才能够在所述电池防护底板受到外部能量冲击碰撞时,保证纤维增强树脂层与金属板之间的粘连而不被破坏,结合纤维增强树脂层和金属板的厚度总结了关系式:
当纤维增强树脂层的厚度d1、金属板的厚度d2、金属板的断裂延伸率ε2、纤维增强树脂层的断裂延伸率ε0、金属板的拉伸强度σ2、纤维增强树脂层的拉伸强度σ0满足上述条件时,有利于得到一种抗冲击和耐腐蚀性能优异的电池防护底板。
附图说明
图1是本申请提供的电池防护底板的结构示意图;
图2是本申请提供的防护层中不同第一纤维增强预浸料单向带的结构示意图;
图3是本申请提供的防护层中不同第一纤维编织布增强预浸料的结构示意图;
图4是本申请提供的电池包复合防护结构的结构示意图;
图5是图4中A处的放大示意图;
图6是本申请一实施例提供的电池包复合防护结构的底部截面示意图;
图7是本申请另一实施例提供的电池包复合防护结构的底部截面示意图;
图8是本申请另一实施例提供的电池包复合防护结构的底部截面示意图。
说明书附图中的附图标记如下:
1、电池防护底板;11、防护层;111、第一纤维增强预浸料单向带;112、第一纤维编织布增强预浸料;12、金属板;13、纤维增强树脂框;14、纤维增强树脂层;15、安装孔;2、缓冲层;3、电池包;31、托盘;4、缓冲区。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
参见图1所示,本申请一实施例提供了一种电池防护底板1,包括防护层11、金属板12和纤维增强树脂层14,所述金属板12位于所述防护层11和所述纤维增强树脂层14之间,且所述金属板12和所述纤维增强树脂层14满足以下条件:
其中,d1为纤维增强树脂层14的厚度,单位为mm;
d2为金属板12的厚度,单位为mm;
ε2为金属板12的断裂延伸率;
σ2为金属板12的拉伸强度,单位为MPa;
ε0为纤维增强树脂层14的断裂延伸率;
σ0为纤维增强树脂层14的拉伸强度,单位为MPa。
所述纤维增强树脂层14作为所述金属板12的底面覆层结构,能够避免金属板12与空气和外部水分的直接接触,对金属板12起到防腐保护作用,同时,纤维增强树脂也具有较好的力学强度,有效提高了金属板12的刚度和强度,使其具有更高的抗冲击能力。
进一步的,发明人发现,采用纤维增强树脂层14和金属板12配合时,部分配合组能够得到抗冲击性能优异的电池防护底板1,而部分配合组则出现了纤维增强树脂层14的表面破坏,并通过进一步试验发现选用的纤维增强树脂层14的拉伸强度和断裂延伸率与金属板12的拉伸强度和断裂延伸率需具备一定的对应关系,才能够在所述电池防护底板1收到外部能量冲击碰撞时,保证纤维增强树脂层14与金属板12之间的粘连而不被破坏,结合纤维增强树脂层14和金属板12的厚度总结了关系式:
当纤维增强树脂层14的厚度d1、金属板12的厚度d2、金属板12的断裂延伸率ε2、纤维增强树脂层14的断裂延伸率ε0、金属板12的拉伸强度σ2、纤维增强树脂层14的拉伸强度σ0满足上述条件时,有利于得到一种抗冲击和耐腐蚀性能优异的电池防护底板1。
在一些实施例中,所述金属板12和所述纤维增强树脂层14满足以下条件:
通过上述关系式的限定,能够综合所述金属板12和所述纤维增强树脂层14的选材对于电池包3抗冲击性能的影响,有利于表面所述纤维增强树脂层14在受到外部冲击时的脱落情况,保证所述电池防护底板1的抗腐蚀性能,延长使用寿命。
在一些实施例中,所述纤维增强树脂层14的厚度d1为0.6-2.0mm。
具体的,所述纤维增强树脂层14的厚度d1可以为0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.8mm或2.0mm。
所述纤维增强树脂层14的厚度d1与所述金属板12耐外部空气和水汽腐蚀的效果相关,同时也影响着其与所述金属板12的结合强度以及与金属板12复合后的整体强度,当所述纤维增强树脂层14的厚度d1处于上述范围中时,在高能量的冲击下能够避免在所述金属板12表面的脱落,能够有效保持对于所述金属板12的防腐蚀和强度增强效果。
在一些实施例中,所述金属板12的厚度d2为0.7~1.6mm。
具体的,所述金属板12的厚度d2可以为0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm或1.6mm。
所述金属板12的厚度d2影响所述电池防护底板1的总体力学强度,当金属板12的拉伸强度一定时,随着金属板12的厚度提升,其防护强度也逐渐提高,但其材料成本也逐渐提高,并缩小了车辆底部的离地距离。当所述金属板12的厚度d2处于上述范围中时,既能够保证所述电池防护底板1的总体力学强度,又能够有效控制成本,保证与地面的距离,也利于车辆轻量化控制。
在一些实施例中,所述金属板12的断裂延伸率ε2为5%~20%。
具体的,所述金属板12的断裂延伸率ε2可以为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%。
在一些实施例中,所述金属板12的拉伸强度σ2为590~1180MPa。
具体的,所述金属板12的拉伸强度σ2可以为590MPa、600MPa、650MPa、700MPa、750MPa、800MPa、850MPa、900MPa、950MPa、1000MPa或1180MPa。
所述金属板12的拉伸强度σ2和断裂延伸率ε2可通过GB/T 228.1—2010金属材料拉伸试验第1部分:室温试验方案进行测试,所述金属板12作为所述电池防护底板1中起主要防护作用的部件,面对较为复杂的冲击工况,其拉伸强度σ2作为所述金属板12的强度指标,影响所述金属板12在其弹性形变范围内的抗变形能力,当拉伸强度σ2越高时,所述金属板12能够抵抗越高的冲击而不发生不可逆形变;而断裂延伸率ε2影响所述金属板12发生变形后的抵抗破裂的能力,当断裂延伸率ε2越高时,所述金属板12能够抵抗更高的冲击而不发生开裂;但通常情况下,金属板12的拉伸强度σ2越高,其断裂延伸率ε2会下降,当拉伸强度σ2和断裂延伸率ε2处于上述范围中时,能够有效兼顾不同参数对于所述金属板12防护性能的影响,保证金属板12的抗冲击强度和防开裂性能。
在一些实施例中,所述纤维增强树脂层14的断裂延伸率ε0为2.5%~8%。
具体的,所述纤维增强树脂层14的断裂延伸率ε0可以为2.5%、2.6%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.8%、3.9%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%。
在一些实施例中,所述纤维增强树脂层14的拉伸强度σ0为240~380MPa。
具体的,所述纤维增强树脂层14的拉伸强度σ0可以为240MPa、260MPa、280MPa、290MPa、300MPa、310MPa、320MPa、330MPa、340MPa、350MPa、360MPa、370MPa或380MPa。
所述纤维增强树脂层14的断裂延伸率ε0和所述纤维增强树脂层14的拉伸强度σ0可通 过GB/T 1447-2005纤维增强塑料拉伸性能试验方法进行测试,I型试样适合纤维增强热塑性板材,按照国标规定的I型试样制作样品进行测试。在受到冲击时,所述纤维增强树脂层14为所述电池防护底板1直接与冲击物接触的面层,拉伸强度σ0的提高有利于提高所述纤维增强树脂层14的抗形变能力;随着拉伸强度σ0的提高会导致断裂延伸率ε0的下降,同时影响所述纤维增强树脂层14对于所述金属板12的附着力,导致受冲击分层;当所述纤维增强树脂层14的拉伸强度σ0和断裂延伸率ε0处于上述范围内时,所述纤维增强树脂层14能够有效抵抗外部冲击而不出现分层或脱落的问题。
实际应用过程中,对于提高电池包3抗冲击效果以及避免纤维增强树脂层粉化脱落方面,以上六个参数是相互关联,密不可分的,例如,当所述金属板12的拉伸强度σ2与所述纤维增强树脂层14的拉伸强度σ0不能较好的匹配时,容易造成振动不同步,进而更易出现分层现象,而当金属板12的断裂延伸率ε2和所述纤维增强树脂层14的断裂延伸率ε0不能较好的匹配时,容易造成所述纤维增强树脂层14受冲击出现粉化的问题;且所述金属板12的拉伸强度σ2和所述金属板12的断裂延伸率ε2相关联,所述纤维增强树脂层14的拉伸强度σ0和所述纤维增强树脂层14的断裂延伸率ε0相关联;当所述金属板12的厚度d2和纤维增强树脂层14的厚度d1增大时,可以降低对于所述金属板12的拉伸强度σ2与所述纤维增强树脂层14的拉伸强度σ0的要求,但相应的会导致所述电池防护底板1的总质量和总厚度的提高,不利于车辆轻量化要求和成本控制,也导致了车辆离地距离的缩小。因此,通过关系式
综合各因素对于电池包3防护性能的影响,有利于提高所述电池防护底板1的抗冲击性,避免受冲击分层和表面粉化的问题。
在一些实施例中,所述防护层11的材料选自纤维增强树脂材料、树脂涂料或电泳涂料。所述防护层11用于提高所述金属板12的防腐蚀性能和复合强度。
在一些实施例中,所述防护层11的厚度为0.4~1.6mm。具体的,所述防护层11的厚度可以为0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm或1.6mm。防护层11的厚度主要影响其抗水汽渗透的性能,以及其与金属板12的结合强度,当防护层11的厚度处于上述范围中时,能够有效提高对于所述金属板12的防护性能,提高与所述金属板12的结合强度。
在一些实施例中,所述电池防护底板1还包括有纤维增强树脂框13,所述金属板12和 所述纤维增强树脂框13位于所述防护层11和所述纤维增强树脂层14之间,所述金属板12位于所述纤维增强树脂框13内部,所述纤维增强树脂框13的顶面与所述防护层11一体连接,所述纤维增强树脂框13的底面与所述纤维增强树脂层14一体连接。
在金属板12的外周设置有纤维增强树脂框13作为防护层11和纤维增强树脂层14的边框位置连接过渡件,能够有效抵消金属板12厚度对于防护层11和纤维增强树脂层14边框连接的影响,保证电池防护底板1的边框位置强度,进而有利于将电池防护底板1的边框位置作为其在电池上的安装结构,提高其抗冲击能力。
如图4和图5所示,在一些实施例中,所述电池防护底板1的边缘内侧间隔开设有多个安装孔15,所述安装孔15依次穿过所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14。
所述安装孔15用于所述电池防护底板1在电池包3底部的安装紧固,通过将安装孔15设置于所述电池防护底板1的边缘内侧并依次穿过所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14,可避免所述安装孔15穿过所述金属板12,避免金属板12在安装孔15处露出导致的腐蚀问题,同时,所述纤维增强树脂框13利于提高安装位置的整体厚度和抗拉伸剪切强度,具有足够的安装稳固性。
多个所述安装孔15环绕于所述金属板12的外周设置,以均匀分散所述金属板12受到的顶部重力和底部的冲击作用力。
具体的,在安装时,设置连接件穿过所述安装孔15以将所述电池防护底板1固定于电池包3底部,所述连接件为铆钉、螺钉或螺栓。
在不同的实施例中,所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14的树脂各自独立地选自热固性和/或热塑性材料。实例可以包括但不限于环氧树脂、酚醛塑料、酚类、氰酸酯类、酰亚胺类(例如,聚酰亚胺、双马来酰亚胺(BMI)、聚醚酰亚胺)、聚丙烯类、聚酯类、苯并噁嗪类、聚苯并咪唑类、聚苯并噻唑类、聚酰胺类、聚酰胺酰亚胺类、聚砜类、聚醚砜类、聚碳酸酯类、聚对苯二甲酸乙二醇酯类和聚醚酮类(例如,聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酮酮(PEKK)等)及其组合。
在不同的实施例中,所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14的纤维各自独立地选自玻璃纤维、芳纶纤维、碳纤维、石墨纤维、硼纤维、芳族聚酰胺纤维及其混合。
所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14的纤维可以以短切纤维、长切纤维、无纺布、单向增强纤维基材、编织布等形式嵌入于树脂中。
在一些实施例中,所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14 各自独立地选自玻璃纤维增强聚酰胺树脂件、玻璃纤维增强聚丙烯树脂件、玻璃纤维增强聚乙烯树脂件、玻璃纤维增强聚碳酸酯树脂件或玻璃纤维增强聚苯乙烯树脂件。
在一些实施例中,所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14选择相同的树脂材料,相同的树脂材料能够保证不同层之间材料的亲和性,进而保证不同层之间的结合一体程度,提高整体强度。
在一些实施例中,所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14均为玻璃纤维增强树脂件,所述玻璃纤维增强树脂件含有60%~70%的玻璃纤维,利于提高所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14的材料强度。
在一些实施例中,所述玻璃纤维的碱含量<0.8%。
当所述玻璃纤维的碱含量低于0.8%时,利于提高所述防护层11、所述纤维增强树脂框13和所述纤维增强树脂层14的抗老化性能,减缓长期使用后材料的性能衰减。
在一些实施例中,所述玻璃纤维选自E玻纤或S玻纤。
在一些实施例中,所述防护层11包括多层相互层叠的第一纤维增强预浸料。
在一些实施例中,所述纤维增强树脂框13包括多层相互层叠的第二纤维增强预浸料。
在一些实施例中,所述纤维增强树脂层14包括多层相互层叠的第三纤维增强预浸料。
如图2所示,在一实施例中,所述防护层11包括多层相互层叠的第一纤维增强预浸料单向带111,相邻的两层第一纤维增强预浸料单向带111的纤维排布方向呈大致90°交错铺层,且相邻的两层第一纤维增强预浸料单向带111的铺层角度允许偏差范围为±20°。
所述第一纤维增强预浸料单向带111中的纤维单向排布,当受到沿纤维延伸方向的拉伸作用力时,所述第一纤维增强预浸料单向带111中的纤维能够有效承载其拉力作用,通过将相邻的第一纤维增强预浸料单向带111的纤维排布方向呈大致90°交错铺层,有利于提高所述防护层11在各方向上的受力均匀性。
所述纤维增强树脂框13包括多层相互层叠的第二纤维增强预浸料单向带,所述第二纤维增强预浸料单向带中的纤维单向排布,相邻的两层第二纤维增强预浸料单向带的纤维排布方向呈大致90°交错铺层,且相邻的两层第二纤维增强预浸料单向带的铺层角度允许偏差范围为±20°。
所述纤维增强树脂层14包括多层相互层叠的第三纤维增强预浸料单向带,所述第三纤维增强预浸料单向带中的纤维单向排布,相邻的两层第三纤维增强预浸料单向带的纤维排布方向呈大致90°交错铺层,且相邻的两层第三纤维增强预浸料单向带的铺层角度允许偏差范围为±20°。
所述纤维增强树脂框13和所述纤维增强树脂层14的纤维排布与所述防护层11相似, 不再赘述。
如图3所示,在另一实施例中,所述防护层11包括多层相互层叠的第一纤维编织布增强预浸料112,所述第一纤维编织布增强预浸料112中的纤维以交错的形式形成编织布。
所述纤维增强树脂框13包括多层相互层叠的第二纤维编织布增强预浸料,所述第二纤维编织布增强预浸料中的纤维以交错的形式形成编织布。
所述纤维增强树脂层14包括多层相互层叠的第三纤维编织布增强预浸料,所述第三纤维编织布增强预浸料中的纤维以交错的形式形成编织布。
在一些实施例中,所述金属板12选自铁及其合金、铝及其合金、镁及其合金、铜及其合金、钛及其合金或镍及其合金。
在一实施例中,所述金属板12为钢板,所述钢板的外表面设置有镀锌层、镀锌铁合金层或电泳漆保护层。
相对其他金属材料,采用钢板作为所述金属板12,具有较好的拉伸强度和延伸率,能够满足抗冲击的需求,利于提高对电池包3的保护作用。
在所述钢板的外表面设置镀锌层、镀锌铁合金层或电泳漆保护层,用于提高钢板的防腐性能,当所述防护层11或所述纤维增强树脂层14发生破损时,所述镀锌层或所述镀锌铁合金层与所述钢板形成的原电池效应使得所述镀锌层或所述镀锌铁合金层会优先于所述钢板发生腐蚀,进而对所述钢板起到保护作用,而所述电泳漆保护层具有较好的附着性,能够有效隔离钢板和外部环境。
如图4、图6至图8所示,本申请的另一实施例提供了一种电池包复合防护结构,包括电池包3和如上所述的电池防护底板1,所述电池防护底板1设置于所述电池包3的下方,所述电池包3和所述电池防护底板1之间形成有缓冲区4。
所述电池包复合防护结构由于采用上述电池防护底板1,在保证较低的整体厚度的情况下,有效保证所述电池防护底板1的防护强度以及具有较好的抗腐蚀性能。
在一些实施例中,所述电池包3包括托盘31和设置于所述托盘31上的电池。
在不同的实施例中,所述缓冲区4可以以不同方式设置于所述电池包3和所述电池防护底板1之间。
如图6所示,在一实施例中,所述托盘31的底面向内设置有凹槽以形成所述缓冲区4,所述电池防护底板1为平板状,所述电池防护底板1覆盖于所述缓冲区4上。
如图7所示,在一实施例中,所述电池防护底板1的边框位置连接与所述托盘31的底面,所述托盘31的底面向内设置有凹槽,所述电池防护底板1向背离所述托盘31的方向凸出,以在所述托盘31和所述电池防护底板1之间形成所述缓冲区4。
如图8所示,在一实施例中,所述电池防护底板1的边框位置连接与所述托盘31的底面,所述托盘31的底面为平面,所述电池防护底板1向背离所述托盘31的方向凸出,以在所述托盘31和所述电池防护底板1之间形成所述缓冲区4。
在一些实施例中,所述缓冲区4中填充有缓冲层2,所述缓冲层2选自蜂窝材料或硬质发泡材料。
蜂窝材料或硬质发泡材料能吸收电池防护底板受到外部强冲击作用下的溃缩形变空间,缓冲吸收一部分外部强冲击的能量,阻止电池防护底板1压缩形变冲击到电池包3内部电芯上,对电池包3进行进一步防护。
在一些实施例中,所述蜂窝材料选自PP蜂窝材料或铝蜂窝材料;所述硬质发泡材料选自PU硬质发泡材料,PET硬质发泡材料,PMI硬质发泡材料,PVC硬质发泡材料,PET硬质发泡材料,MPP硬质发泡材料,PLA硬质发泡材料,PI硬质发泡材料或EPTU发泡材料。
本申请的另一实施例提供了一种车辆,包括如上所述的电池防护底板或电池包复合防护结构。
以下通过实施例对本申请进行进一步的说明。
表1

实施例1
本实施例用于说明本申请公开的电池包复合防护结构,包括电池包、缓冲层和电池防护底板,所述电池防护底板包括金属板、防护层、纤维增强树脂框和纤维增强树脂层,所述金属板为镀锌钢板,所述防护层为纤维增强树脂材料,所述金属板位于所述防护层和所述纤维增强树脂层之间,且所述纤维增强树脂层位于所述金属板的下方,所述金属板位于所述纤维增强树脂框内部,所述纤维增强树脂框的顶面与所述防护层一体连接,所述纤维增强树脂框的底面与所述纤维增强树脂层一体连接;所述电池防护底板设置于电池包的下方,所述电池包和所述电池防护底板之间形成有缓冲区,所述缓冲区中填充有所述缓冲层,且所述电池防护底板的边框通过铆钉安装于所述电池包的底部边框位置。
其中,纤维增强树脂层的厚度d1为1.6mm、防护层的厚度为1.5mm、金属板的厚度d2为1.2mm、金属板的断裂延伸率ε2为18%、纤维增强树脂层的断裂延伸率ε0为3%、金属板的拉伸强度σ2为780MPa、纤维增强树脂层的拉伸强度σ0为380MPa。
实施例2~20
实施例2~20用于说明本申请公开的电池包复合防护结构,包括实施例1中的大部分结构,其不同之处在于:
采用表1中实施例2~20提供的金属板和纤维增强树脂层。
对比例1~5
对比例1~5用于对比说明本申请公开的电池包复合防护结构,包括实施例1中的大部分结构,其不同之处在于:
采用表1中对比例1~5提供的金属板和纤维增强树脂层。
性能测试
对上述实施例和对比例提供的电池包复合防护结构进行如下性能测试:
1、采用球体作为冲击头对电池包复合防护结构的电池防护底板进行冲击,以模拟整车底部受到异物撞击的工况,球体的直径为25mm,重量为10kg,冲击能量为300J,冲击速度为8.5m/s,选取电池防护底板的中心点以及中心点外周的四个点作为冲击点,进行5次冲击。
测量电池包托盘在各个冲击点的凹陷变形量,选取凹陷变形量最大的冲击点,记录为电池托盘的凹陷变形量。一般地,300J能量冲击的凹陷量要求不高于3mm。
采用游标卡尺测量电池防护底板受冲击后发生粉化区域的直径,对单个冲击点重复测量三次,确定平均数值,选择粉化区域直径最大的冲击点,记录为纤维树脂层面层粉化直径。其中粉化程度定级标准如下:
R1:纤维树脂层面层粉化直径<2mm,未裸露金属板;
R2:纤维树脂层面层粉化直径<5mm,未裸露金属板;
R3:纤维树脂层面层粉化直径<8mm,未裸露金属板;
R4:纤维树脂层面层粉化直径<10mm,未裸露金属板;
R5:纤维树脂层粉化面积>10mm,可见金属板裸露。
2、将电池包复合防护结构安装在振动台上,进行30w里程模拟振动,查看振动后连接处是否破损以及电池防护底板是否分层。
30w里程模拟振动测试:按GB/T 2423.43的要求,将测试对象安装在振动台上,测试并记录每个安装点扭矩。振动测试在三个方向上进行,测试过程参照GB/T 2423.56,具体测试条件如下:
首先,在Z方向上随机振动21h(随机振动条件如表2),然后在Z方向上定频振动1h(定频振动条件:24Hz定频频率,1g定频幅值);
其次,在Y方向上随机振动21h(随机振动条件如表2),然后在Y方向上定频振动1h(定频振动条件:24Hz定频频率,1g定频幅值);
再者,在X方向上随机振动21h(随机振动条件如表2),然后在X方向上定频振动1h(定频振动条件:24Hz定频频率,1g定频幅值)。
其中PSD代表功率谱密度,代表振动在某频率下的功率谱密度;r.m.s.值代表振动的综合加速度,反馈振动强度。
表2随机振动试验
得到的测试结果填入表3。
表3

从表3的测试结果可以看出,当纤维增强树脂层的厚度d1、金属板的厚度d2、金属板的断裂延伸率ε2、金属板的拉伸强度σ2、纤维增强树脂层的断裂延伸率ε0、纤维增强树脂层的拉伸强度σ0满足条件
时,有利于得到一种抗冲击性能优异的电池防护底板,能够避免长期冲击工况下,金属板表面的纤维增强树脂层脱落,提高其耐腐蚀性能。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种电池防护底板,其特征在于,包括防护层(11)、金属板(12)和纤维增强树脂层(14),所述金属板(12)位于所述防护层(11)和所述纤维增强树脂层(14)之间,且所述金属板(12)和所述纤维增强树脂层(14)满足以下条件:
    其中,d1为纤维增强树脂层(14)的厚度,单位为mm;
    d2为金属板(12)的厚度,单位为mm;
    ε2为金属板(12)的断裂延伸率;
    σ2为金属板(12)的拉伸强度,单位为MPa;
    ε0为纤维增强树脂层(14)的断裂延伸率;
    σ0为纤维增强树脂层(14)的拉伸强度,单位为MPa。
  2. 根据权利要求1所述的电池防护底板,其特征在于,所述金属板(12)和所述纤维增强树脂层(14)满足以下条件:
  3. 根据权利要求1或2所述的电池防护底板,其特征在于,所述纤维增强树脂层(14)的厚度d1为0.6-2.0mm。
  4. 根据权利要求1~3中任一项所述的电池防护底板,其特征在于,所述金属板(12)的厚度d2为0.7~1.6mm。
  5. 根据权利要求1~4中任一项所述的电池防护底板,其特征在于,所述金属板(12)的断裂延伸率ε2为5%~20%。
  6. 根据权利要求1~5中任一项所述的电池防护底板,其特征在于,所述金属板(12)的拉伸强度σ2为590~1180MPa。
  7. 根据权利要求1~6中任一项所述的电池防护底板,其特征在于,所述纤维增强树脂层(14)的断裂延伸率ε0为2.5%~8%。
  8. 根据权利要求1~7中任一项所述的电池防护底板,其特征在于,所述纤维增强树脂层(14)的拉伸强度σ0为240~380MPa。
  9. 根据权利要求1~8中任一项所述的电池防护底板,其特征在于,所述防护层(11)的材料选自纤维增强树脂材料、树脂涂料或电泳涂料。
  10. 根据权利要求1~9中任一项所述的电池防护底板,其特征在于,所述防护层(11)的厚度为0.4~1.6mm。
  11. 根据权利要求1~10中任一项所述的电池防护底板,其特征在于,所述电池防护底板(1)还包括有纤维增强树脂框(13),所述金属板(12)和所述纤维增强树脂框(13)位于所述防护层(11)和所述纤维增强树脂层(14)之间,所述金属板(12)位于所述纤维增强树脂框(13)内部,所述纤维增强树脂框(13)的顶面与所述防护层(11)一体连接,所述纤维增强树脂框(13)的底面与所述纤维增强树脂层(14)一体连接。
  12. 根据权利要求11所述的电池防护底板,其特征在于,所述电池防护底板(1)的边缘内侧间隔开设有多个安装孔(15),所述安装孔(15)依次穿过所述防护层(11)、所述纤维增强树脂框(13)和所述纤维增强树脂层(14)。
  13. 根据权利要求11或12所述的电池防护底板,其特征在于,所述防护层(11)、所述纤维增强树脂框(13)和所述纤维增强树脂层(14)各自独立地选自玻璃纤维增强聚酰胺树脂件、玻璃纤维增强聚丙烯树脂件、玻璃纤维增强聚乙烯树脂件、玻璃纤维增强聚碳酸酯树脂件或玻璃纤维增强聚苯乙烯树脂件。
  14. 根据权利要求11或12所述的电池防护底板,其特征在于,所述防护层(11)、所述纤维增强树脂框(13)和所述纤维增强树脂层(14)均为玻璃纤维增强树脂件,所述玻璃纤维增强树脂件含有60%~70%的玻璃纤维,所述玻璃纤维的碱含量<0.8%。
  15. 根据权利要求11~14中任一项所述的电池防护底板,其特征在于,所述防护层(11)包括多层相互层叠的第一纤维增强预浸料;
    和/或,所述纤维增强树脂框(13)包括多层相互层叠的第二纤维增强预浸料;
    和/或,所述纤维增强树脂层(14)包括多层相互层叠的第三纤维增强预浸料。
  16. 根据权利要求1~15中任一项所述的电池防护底板,其特征在于,所述金属板(12)为钢板,所述钢板的外表面设置镀锌层、镀锌铁合金层或电泳漆保护层。
  17. 一种电池包复合防护结构,其特征在于,包括电池包(3)和如权利要求1~16任意一项所述的电池防护底板(1),所述电池防护底板(1)设置于所述电池包(3)的下方,所述电池包(3)和所述电池防护底板(1)之间形成有缓冲区(4)。
  18. 根据权利要求17所述的电池包复合防护结构,其特征在于,所述缓冲区(4)中填充有缓冲层(2),所述缓冲层(2)选自蜂窝材料或硬质发泡材料。
  19. 一种车辆,其特征在于,包括如权利要求1-16任意一项所述的电池防护底板(1), 或者包括如权利要求17或18所述的电池包复合防护结构。
PCT/CN2023/096818 2022-05-31 2023-05-29 一种电池防护底板及电池包复合防护结构、车辆 WO2023231960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210612280.6A CN117199667A (zh) 2022-05-31 2022-05-31 一种电池防护底板及电池包复合防护结构、车辆
CN202210612280.6 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231960A1 true WO2023231960A1 (zh) 2023-12-07

Family

ID=88994768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096818 WO2023231960A1 (zh) 2022-05-31 2023-05-29 一种电池防护底板及电池包复合防护结构、车辆

Country Status (2)

Country Link
CN (1) CN117199667A (zh)
WO (1) WO2023231960A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090678A (ja) * 2005-09-29 2007-04-12 Jfe Steel Kk 耐衝撃性を有する重防食被覆鋼材
WO2017090676A1 (ja) * 2015-11-25 2017-06-01 三菱樹脂株式会社 積層パネル及びその成形品の製造方法
JP2018183915A (ja) * 2017-04-25 2018-11-22 三菱ケミカル株式会社 積層パネル
CN215451600U (zh) * 2021-06-08 2022-01-07 比亚迪股份有限公司 电池包底护板及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090678A (ja) * 2005-09-29 2007-04-12 Jfe Steel Kk 耐衝撃性を有する重防食被覆鋼材
WO2017090676A1 (ja) * 2015-11-25 2017-06-01 三菱樹脂株式会社 積層パネル及びその成形品の製造方法
JP2018183915A (ja) * 2017-04-25 2018-11-22 三菱ケミカル株式会社 積層パネル
CN215451600U (zh) * 2021-06-08 2022-01-07 比亚迪股份有限公司 电池包底护板及车辆

Also Published As

Publication number Publication date
CN117199667A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2023231957A1 (zh) 一种电池防护底板及电池包复合防护结构、车辆
US10908651B2 (en) Electronic device housing
Ferrante et al. Low velocity impact response of basalt-aluminium fibre metal laminates
EP2085215B1 (en) High-toughness fiber-metal laminate
Ma et al. Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins
Williams et al. The effect of resin on the impact damage tolerance of graphite-epoxy laminates
US20170043552A1 (en) Prepreg material capable of providing lightning strike protection and burn-through resistance
Andrew et al. The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates
Wang et al. Improvement of impact-resistant property of glass fiber-reinforced composites by carbon nanotube-modified epoxy and pre-stretched fiber fabrics
Mourad et al. Damage assessment of nanofiller-reinforced woven kevlar KM2plus/Epoxy resin laminated composites
WO2023231950A1 (zh) 一种电池防护底板、电池包复合防护结构及车辆
Çetin The effect of carbon nanotubes modified polyurethane adhesive on the impact behavior of sandwich structures
WO2020227458A1 (en) Battery containment construct
Patekar et al. State of the art review on mechanical properties of sandwich composite structures
US7935214B2 (en) Toughened resin fiber laminates with titanium particles
Taherzadeh-Fard et al. Mechanical properties and energy absorption capacity of chopped fiber reinforced natural rubber
WO2023231960A1 (zh) 一种电池防护底板及电池包复合防护结构、车辆
US20220231361A1 (en) Lightweight and high-impact-resistant electric vehicle battery enclosure with fiber metal laminate composites
Deng et al. Study on the failure mechanism of 1060‐H112 aluminum alloy‐carbon/glass fiber laminate
WO2023231949A1 (zh) 一种电池防护底板、电池包复合防护结构及车辆
WO2009009207A2 (en) Thermoplastic composite/metal laminate structures and methods of making thermoplastic composite/metal laminate structures
WO2023231958A1 (zh) 一种电池包复合防护结构及车辆
Pan et al. Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
Cuomo et al. A thermoplastic polymer coating for improved impact resistance of railways CFRP laminates
Vijayan et al. Investigating the Influence of Nano-Silica on Low-Velocity Impact Behavior of Aluminium-Glass Fiber Sandwich Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815140

Country of ref document: EP

Kind code of ref document: A1