WO2023231786A1 - 一种微气泡起泡器及出水装置 - Google Patents

一种微气泡起泡器及出水装置 Download PDF

Info

Publication number
WO2023231786A1
WO2023231786A1 PCT/CN2023/094892 CN2023094892W WO2023231786A1 WO 2023231786 A1 WO2023231786 A1 WO 2023231786A1 CN 2023094892 W CN2023094892 W CN 2023094892W WO 2023231786 A1 WO2023231786 A1 WO 2023231786A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
bubble
bubble cutting
water flow
recessed
Prior art date
Application number
PCT/CN2023/094892
Other languages
English (en)
French (fr)
Inventor
谢邦超
陈斌
林晓龙
陈东海
Original Assignee
厦门松霖科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门松霖科技股份有限公司 filed Critical 厦门松霖科技股份有限公司
Publication of WO2023231786A1 publication Critical patent/WO2023231786A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/03Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements self-supporting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/08Jet regulators or jet guides, e.g. anti-splash devices
    • E03C1/084Jet regulators with aerating means

Definitions

  • the present disclosure relates to the technical field of water outlet equipment, and in particular, to a microbubble bubbler and a water outlet device.
  • the present disclosure provides a microbubble bubbler and water outlet device, which have good impurity removal effect and long service life.
  • a microbubble bubbler including:
  • An air-water mixing assembly is used to form the water flow into bubble water, and the water outlet direction of the air-water mixing assembly is the first direction;
  • a bubble cutting component is used to cut the bubble water and cut the bubbles in the bubble water into micro bubbles to form micro bubble water;
  • At least part of the bubble cutting assembly forms an angle with the first direction, the bubble cutting assembly is provided with an impurity discharge channel, and the impurity discharge channel is used to discharge impurities;
  • the included angle is not equal to 90 degrees.
  • the impurity discharge channel is provided at the farthest position of the bubble cutting assembly relative to the gas-water mixing assembly.
  • the bubble cutting assembly is recessed in a direction away from the air-water mixing assembly, forming a recessed structure.
  • the impurity discharge channel is provided at the maximum groove depth of the recessed structure.
  • the bubble cutting assembly protrudes toward the direction close to the air-water mixing assembly, forming a protruding structure.
  • the impurity discharge channel is provided at the smallest position of the protruding structure. height position.
  • the bubble cutting component is recessed in a direction away from the gas-water mixing component to form a recessed structure, and the bubble cutting component protrudes in a direction close to the gas-water mixing component. , forming a convex structure.
  • the recessed structure is arranged coaxially with respect to the gas-water mixing assembly, and the protruding structure is ringed around the recessed structure; or,
  • the protruding structure is arranged coaxially with respect to the gas-water mixing component, and the recessed structure is arranged around the protruding structure.
  • the impurity discharge channel is provided at the center of the recessed structure; and/or,
  • the impurity discharge channel is provided at the farthest position of the protruding structure relative to its center.
  • the number of the protruding structures is multiple, and the recessed structure is located between two adjacent protruding structures; and/or,
  • the protruding structure is located between two adjacent recessed structures.
  • the protruding structure and the adjacent concave structure at least partially overlap.
  • the impurity discharge channel is a through hole provided on the bubble cutting component.
  • the cross-sectional shape of the through hole is any one of a circle, an arc, a triangle, and a polygon.
  • the bubble cutting assembly includes a plurality of filters arranged in a stack along the direction of water flow;
  • At least some of the filter nets have different mesh numbers.
  • the microbubble bubbler further includes an outlet surface cover, the filter component is disposed upstream of the air-water mixing component along the water flow direction; and the bubble cutting component is disposed on the outlet surface. between the cover and the air-water mixing assembly.
  • a water outlet device including the above-mentioned microbubble bubbler.
  • the microbubble bubbler provided by the embodiment of the present disclosure realizes primary filtration along the flowing water flow by arranging a filter component to prevent larger impurities from entering the microbubble bubbler; and by arranging an air-water mixing component, it is used to introduce air into the air. Bubbles are generated in the water mixing component and mixed with the water flow to form bubble water; by setting the bubble cutting component, the bubble cutting component can cut the bubbles in the bubble water into micro bubbles to form micro bubble water, so that the micro bubble water can be cut into micro bubbles due to the micro bubbles. Dirt from capillaries or fruits and vegetables is taken away to improve cleanliness.
  • the bubble cutting component forms an included angle with the first direction, and the included angle is not equal to 90 degrees.
  • the bubble cutting component is not set horizontally, but is set tilted. If there are impurities on the bubble cutting component, the bubble cutting component will Due to the role of the guide slope, when the high-speed jet of water is ejected, the impurities will slide down along the bubble cutting assembly, Until it slides to the bottom position of the bubble cutting assembly along the water flow direction, impurities will accumulate at the bottom of the bubble cutting assembly and will not spread throughout the entire bubble cutting assembly, reducing the risk of clogging of the entire bubble cutting assembly.
  • an impurity discharge channel is provided on the bubble cutting component.
  • the impurity discharge channel provides a discharge channel for impurities to discharge impurities from the inside of the microbubble bubbler.
  • the water outlet device provided by the embodiment of the present disclosure includes the above-mentioned microbubble bubbler.
  • the air-water mixing component By setting up filter components, primary filtration of the flowing water flow is achieved to prevent larger impurities from entering the microbubble bubbler.
  • the air-water mixing component By setting the air-water mixing component, the air is introduced into the air-water mixing component and mixed with the water flow to generate bubbles to form bubble water; by setting the bubble cutting component, the bubble cutting component can cut the bubbles in the bubble water into tiny bubbles to form Micro-bubble water allows the micro-bubble water to take away the dirt from capillaries or fruits and vegetables due to tiny bubbles, thereby improving cleanliness.
  • the bubble cutting component forms an included angle with the first direction, and the included angle is not equal to 90 degrees.
  • the bubble cutting component is not set horizontally, but is set tilted. If there are impurities on the bubble cutting component, the bubble cutting component will Due to the role of the guide slope, when the high-speed jet of water is ejected, the impurities will slide down the bubble cutting assembly until they slide to the bottom of the bubble cutting assembly along the direction of the water flow. That is, the impurities will accumulate at the bottom of the bubble cutting assembly and will not Throughout the entire bubble cutting assembly, reducing the risk of clogging of the entire bubble cutting assembly.
  • an impurity discharge channel is provided on the bubble cutting component.
  • the impurity discharge channel provides a discharge channel for impurities to discharge impurities from the inside of the microbubble bubbler.
  • Figure 1 is a schematic structural diagram of a microbubble bubbler according to a first exemplary embodiment
  • Figure 2 is a cross-sectional view of a microbubble bubbler according to a first exemplary embodiment
  • Figure 3 is a schematic diagram of the exploded structure of a microbubble bubbler according to a first exemplary embodiment
  • Figure 4 is a top view of a microbubble bubbler according to a first exemplary embodiment
  • Figure 5 is a bottom view of a microbubble bubbler according to a first exemplary embodiment
  • Figure 6 is a schematic structural diagram showing a bubble cutting assembly in a microbubble bubbler according to the first exemplary embodiment
  • Figure 7 is a schematic structural diagram of a bubble cutting assembly in a microbubble bubbler according to the first exemplary embodiment
  • Figure 8 is a second structural schematic diagram of a bubble cutting assembly in a microbubble bubbler according to the first exemplary embodiment
  • Figure 9 is a diagram showing a bubble cutting assembly in a microbubble bubbler according to a second exemplary embodiment. Schematic;
  • Figure 10 is a schematic structural diagram of a bubble cutting assembly in a microbubble bubbler according to a second exemplary embodiment
  • Figure 11 is a second structural schematic diagram of a bubble cutting assembly in a microbubble bubbler according to a second exemplary embodiment
  • Figure 12 is a schematic structural diagram showing a bubble cutting assembly in a microbubble bubbler according to a third exemplary embodiment
  • Figure 13 is a schematic structural diagram of a bubble cutting assembly in a microbubble bubbler according to the third exemplary embodiment
  • Figure 14 is a schematic second structural diagram of a bubble cutting assembly in a microbubble bubbler according to the third exemplary embodiment
  • Figure 15 is a schematic structural diagram of a bubble cutting assembly in a microbubble bubbler according to a fourth exemplary embodiment.
  • references to "the” object or “an” object are also intended to mean one of a possible plurality of such objects.
  • connection can be a fixed connection, a detachable connection, an integral connection, an electrical connection, or a signal.
  • Connection can be a direct connection or an indirect connection through an intermediary.
  • the microbubble bubbler includes a filter component 1, a gas-water mixing component 2 and a bubble cutting component 3.
  • the filter component 1 is In filtering the water flow, the air-water mixing component 2 is used to form the water flow into bubble water.
  • the water outlet direction of the air-water mixing component 2 is the first direction.
  • the bubble cutting component 3 is used to cut the bubbles in the bubble water into tiny bubbles to form micro-bubbles. water.
  • the microbubble bubbler provided in this embodiment realizes primary filtration of the water flow along the direction of the water flow by providing the filter component 1 to prevent impurities from entering the microbubble bubbler.
  • the air-water mixing assembly 2 is provided to introduce air into the air-water mixing assembly 2 and mix it with the water flow to generate bubbles to form bubble water.
  • the bubble cutting component 3 can cut the bubbles in the bubble water into micro bubbles to form micro bubble water, so that the micro bubble water can take away the dirt from capillaries or fruits and vegetables due to the tiny bubbles, thereby improving cleanliness. .
  • the bubble cutting assembly 3 In order to avoid the risk of blockage caused by impurities remaining on the bubble cutting assembly 3 when the bubble cutting assembly 3 cuts bubble water, thus affecting the service life of the bubble cutting assembly 3.
  • at least part of the bubble cutting assembly 3 provided in this embodiment forms an angle with the first direction.
  • the bubble cutting assembly 3 is provided with an impurity discharge channel 31 along the water flow direction.
  • the impurity discharge channel 31 is used to discharge impurities in microbubble water.
  • the included angle is less than 90 degrees or greater than 90 degrees.
  • the bubble cutting component 3 forms an included angle with the first direction.
  • the included angle is less than 90 degrees or greater than 90 degrees.
  • the bubble cutting component 3 is not set horizontally, but is set inclined. , if there are impurities remaining on the bubble cutting assembly 3, the bubble cutting assembly 3 acts as a guide slope. When the high-speed jet of water is ejected, the impurities will slide along the bubble cutting assembly 3 until it slides to the bubble cutting assembly 3 along the direction of the water flow.
  • the bottom position of the bubble cutting assembly 3 means that impurities will accumulate at the bottom position of the bubble cutting assembly 3 and will not spread throughout the entire bubble cutting assembly 3 , thereby reducing the risk of clogging of the entire bubble cutting assembly 3 .
  • an impurity discharge channel 31 is provided on the bubble cutting assembly 3.
  • the impurity discharge channel 31 provides a channel for the impurities to be discharged, so as to remove the impurities from the microbubbles. discharged from inside the device.
  • the impurity removal channel 31 is arranged along the direction of the water flow, so that the impurity removal channel 31 and the flow direction of the water flow are in the same direction.
  • the spray of the water flow provides impurities with movement power, thereby facilitating the smooth discharge of the impurities from the impurity removal channel 31. The effect is good.
  • the water outlet direction of the air-water mixing assembly 2 can be the vertical direction, or it can have a certain angle with the vertical direction. It can be understood that when the air-water mixing assembly 2 The water outlet direction is the vertical direction, then the water flow direction is the first direction, and the second direction can be the horizontal direction. At this time, The first direction and the second direction are arranged perpendicularly to each other. As shown in FIG. 2 , the arrow direction X represents the first direction, and the arrow direction Y represents the second direction. Among them, the filter component 1, the gas-water mixing component 2 and the bubble cutting component 3 are arranged along the direction of the water flow, and the filter component 1, the gas-water mixing component 2 and the bubble cutting component 3 are arranged in sequence from top to bottom.
  • the filter component 1 includes a support member and a filter member.
  • the support member is an annular structure.
  • the support member is used to install and support the filter member.
  • the filter member is a filter mesh structure. Wherein, the filter element is at least partially inclined relative to the second direction.
  • the filter element is installed at an angle. If there are more impurities on the filter element, the filter element will act as a guiding slope. When the high-speed jet of water is ejected, the impurities will slide along the filter element until they slide to the edge of the filter element. The bottom position of the water flow direction, that is, impurities will accumulate at the bottom of the filter element and will not spread throughout the entire filter element, reducing the risk of clogging of the entire filter element.
  • the filter element can also be set horizontally, and the microbubble aerator can be removed to flush out impurities accumulated on the filter element.
  • the microbubble bubbler does not need to be equipped with a filter.
  • the microbubble bubbler also includes an outlet surface cover 4, a filter component 1 arranged upstream of the air-water mixing component 2 along the water flow direction, and a bubble cutting component 3 is arranged between the outlet surface cover 4 and the air-water mixing component 2.
  • the bubble cutting assembly 3 is arranged between the outlet surface cover 4 and the air-water mixing assembly 2, that is, the outlet surface cover 4 is arranged downstream of the bubble cutting assembly 3 along the water flow direction for the discharge of tiny bubbles.
  • the water outlet cover 4 is provided with a water outlet, and the water outlet is connected to the impurity discharge channel 31, so that the impurities flowing out from the impurity discharge channel 31 are discharged through the water outlet, and the water outlet provides a discharge space for the final discharge of impurities. Avoid clogging of the impurity discharge channel 31 to ensure the cleanliness inside the microbubble bubbler.
  • the air-water mixing assembly 2 includes a diverter 21 and a mixer 22 .
  • the outlet surface cover 4 is fastened to the mixer 22 and the diverter 21 .
  • An air inlet flow channel is formed between the side walls of the mixer 22 and the diverter 21 .
  • the air inlet flow channel is connected to the first chamber 100 .
  • a second chamber 200 is formed between the outlet surface cover 4 and the mixer 22, and the bubble cutting assembly 3 is disposed in the second chamber 200.
  • An air inlet flow channel may also be formed between the side wall of the outlet surface cover 4 and the side wall of the diverter 21 .
  • the water flows through the first water inlet hole 211 and the second water inlet hole 221 in sequence. Since the circulation area of the second water inlet hole 221 is larger than the circulation area of the first water inlet hole 211, according to Bernoulli's principle, the second water inlet hole A certain negative pressure will be generated in 221, so that the outside air passes through the air inlet flow channel and the first chamber 100 and is sucked into the second water inlet hole 221, and forms a mixed water flow with certain bubbles with the water flow. The water flow enters the second chamber 200.
  • the impurity discharge channel 31 is provided at the farthest position of the bubble cutting assembly 3 relative to the air-water mixing assembly 2 .
  • the impurity discharge channel 31 is equivalent to being provided at the bottom position of the bubble cutting assembly 3 along the water flow direction. Since impurities will flow along the Slide down the bubble cutting assembly 3 until it slides to the bottom position of the bubble cutting assembly 3 along the water flow direction, so that the impurity discharge channel 31 can just connect with the sliding impurities, which is equivalent to the impurities and the impurity discharge channel 31 being set up directly to ensure that all impurities can enter In the impurity removal channel 31, under the water flushing of the high-speed jet, impurities are more easily flushed into the impurity removal channel 31, thereby realizing the process of impurity discharge.
  • the bubble cutting assembly 3 is recessed away from the air-water mixing assembly 2 to form a recessed structure 32 .
  • the bubble cutting assembly 3 is recessed in a direction away from the air-water mixing assembly 2.
  • the formed recessed structure 32 is a trumpet-shaped structure.
  • the large end of the trumpet-shaped structure is set toward the air-water mixing assembly 2, and the small end of the trumpet-shaped structure faces toward the air-water mixing assembly 2.
  • the two side walls of the recessed structure 32 are inclined relative to the second direction, so that the impurities can slide along the inclined groove walls, and the recessed structure 32 plays a role in collecting impurities. It can be understood that the impurities do not spread throughout the entire side wall, but are collected along the groove wall to the groove bottom of the recessed structure 32 to avoid large-area blockage of the groove wall of the recessed structure 32 .
  • the impurity discharge channel 31 is provided at the maximum groove depth of the recessed structure 32 .
  • the impurity discharge channel 31 By arranging the impurity discharge channel 31 at the maximum groove depth position of the recessed structure 32, it is equivalent to arranging the impurity discharge channel 31 at the groove bottom position of the recessed structure 32. Since a large amount of impurities are collected into the recessed structure 32 along the groove wall of the recessed structure 32, At the bottom of the groove, the impurity discharge channel 31 is just opposite to the position where the impurities gather in the bubble cutting assembly 3, ensuring that the impurities are directly discharged from the impurity discharge channel 31.
  • the impurity discharge channel 31 is provided at the center position of the recessed structure 32 along the second direction, which is equivalent to the impurity discharge channel 31 being provided at the collection point. Click nearby location.
  • the recessed structure 32 can also be an asymmetric structure relative to the axis of the microbubble assembly.
  • the impurity removal channel 31 only needs to be provided at the lowest point of the recessed structure 32 along the water flow direction.
  • the impurity discharge channel 31 is a through hole provided on the bubble cutting assembly 3 .
  • the impurity removal channel 31 can be formed by directly opening a through hole in the bubble cutting assembly 3. The structure is simple, easy to implement, and the production and processing cost is relatively low.
  • the cross-sectional shape of the through hole is any one of a circle, an arc, a triangle, and a polygon.
  • This embodiment does not limit the specific shape of the through hole, that is, the impurity discharge channel 31, and can be adjusted according to actual production needs.
  • the impurity discharge channel 31 provided in the recessed structure 32 can be a circular hole structure, so that the impurities along the circumferential direction of the bubble cutting assembly 3 can be uniformly collected to the central position.
  • the recessed structure 32 and the outlet surface cover 4 can form a conical structure, and the cross section of the conical structure is a triangular structure.
  • the maximum groove depth of the recessed structure 32 along the water flow direction is the recessed structure 32 and the outlet surface.
  • the position where the water surface cover 4 contacts; the recessed structure 32 and the outlet surface cover 4 can also be formed into a frustum structure with a cross-section.
  • the minimum height position of the recessed structure 32 along the water flow direction is the bottom surface of the frustum structure along the water flow direction. At this time, the bottom surface can It can provide the support force of the bubble cutting assembly 3 on the outlet surface cover 4 and provide a larger installation space for the impurity discharge channel 31.
  • the bubble cutting assembly 3 protrudes toward the direction close to the air-water mixing assembly 2 to form a protruding structure 33 .
  • the bubble cutting assembly 3 protrudes in a direction close to the air-water mixing assembly 2.
  • the protruding structure 33 formed is a trumpet-shaped structure.
  • the large mouth end of the trumpet-shaped structure is set toward the water outlet cover 4, and the small mouth end of the trumpet-shaped structure is disposed toward the water outlet cover 4.
  • the two side walls of the protruding structure 33 are inclined with respect to the second direction, so that the impurities can slide along the inclined side walls, and the protruding structure 33 plays a role in dispersing impurities. It can be understood that the impurities do not spread throughout the entire side wall, but are dispersed along the side wall to the bottom of the protruding structure 33 to avoid large-area blockage of the side wall of the protruding structure 33 .
  • the waste removal channel 31 is located at the minimum height of the protruding structure 33 .
  • the impurity discharge channel 31 By arranging the impurity discharge channel 31 at the minimum height position of the protruding structure 33, it is equivalent to disposing the impurity discharge channel 31 at the edge of the protruding structure 33. Since a large amount of impurities are dispersed to the protrusion along the side walls of the protruding structure 33, At the edge of the structure 33, the impurity discharge channel 31 is just opposite to the position where the impurities are dispersed in the bubble cutting assembly 3, ensuring that the impurities are directly discharged from the impurity discharge channel 31.
  • the impurity discharge channel 31 is located at the farthest position of the protruding structure 33 relative to its center, which is equivalent to the discharge channel.
  • the miscellaneous channel 31 is arranged near the dispersion point.
  • the protruding structure 33 can also be an asymmetric structure relative to the axis of the microbubble assembly. In this case, the impurity discharge channel 31 only needs to be provided at the lowest point of the protruding structure 33 along the water flow direction. .
  • the impurity discharge channel 31 provided in the protruding structure 33 can be an arc hole structure, such as a semicircular hole structure, which is equivalent to opening inward along the edge of the bubble cutting component 3 .
  • the semicircular hole structure evenly disperses impurities along the circumferential direction of the bubble cutting assembly 3 to the edge.
  • the number of impurity removal channels 31 may be multiple, and the plurality of impurity removal channels 31 are evenly arranged along the axial direction of the bubble cutting assembly 3 to ensure uniform dispersion of impurities.
  • the protruding structure 33 and the outlet surface cover 4 can form a conical structure, and the cross section of the conical structure is a triangular structure.
  • the minimum height position of the protruding structure 33 along the water flow direction is the protruding structure 33.
  • the protruding structure 33 and the water outlet cover 4 can also form a pentagonal cross-section structure.
  • the minimum height position of the protruding structure 33 along the water flow direction is the protrusion.
  • the protrusion At the lower end of the side wall of structure 33.
  • the bubble cutting assembly 3 is recessed away from the air-water mixing assembly 2, forming a recessed structure 32, and the bubble cutting assembly 3 is moved closer to the air-water mixing assembly 2
  • the direction protrudes, forming a protruding structure 33.
  • the bubble cutting assembly 3 does not only have the recessed structure 32, or the bubble cutting assembly 3 does not only have the protruding structure 33.
  • the bubble cutting assembly 3 can also have both the recessed structure 32 and the protruding structure 33. Due to the groove of the recessed structure 32 Both the wall and the side wall of the protruding structure 33 are inclined relative to the second direction, thereby ensuring the smoothness and reliability of the impurities sliding down.
  • the cross section of the bubble cutting assembly 3 forms a folded structure.
  • the protruding structure 33 and the adjacent concave structure 32 at least partially overlap.
  • the protruding structure 33 and the recessed structure 32 will have a common inclined surface, that is, the side wall of the protruding structure 33 is exactly the groove wall of the recessed structure 32.
  • the recessed structure 32 is coaxially arranged relative to the gas-water mixing assembly 2, and the protruding structure 33 is arranged around the recessed structure 32; or, as shown in Figure 15, The protruding structure 33 is arranged coaxially with respect to the gas-water mixing component 2 , and the recessed structure 32 is arranged around the protruding structure 33 .
  • the recessed structure 32 is coaxially arranged relative to the gas-water mixing assembly 2, and the protruding structure 33 is arranged around the recessed structure 32, that is, the recessed structure 32 is located at the center of the bubble cutting assembly 3 .
  • the bubble cutting assembly 3 is symmetrical with respect to the axis of the gas-water mixing assembly 2, for half of the bubble cutting assembly 3, it is equivalent to dividing the radius of the bubble cutting assembly 3 into two parts, so that one of the two parts has a protrusion.
  • the two inclined side walls in the structure 33 are used to segment the radius part of the bubble cutting assembly 3, save the time for the impurities from the top of the bubble cutting assembly 3 to slide to the bottom along the water flow direction, and improve the timeliness and efficiency of impurity removal. effectiveness.
  • the protruding structure 33 is coaxially arranged relative to the gas-water mixing assembly 2 , and the recessed structure 32 is arranged around the protruding structure 33 , that is, the protruding structure 33 is disposed at the center of the bubble cutting assembly 3 .
  • the bubble cutting assembly 3 is symmetrical with respect to the axis of the gas-water mixing assembly 2, for half of the bubble cutting assembly 3, it is equivalent to dividing the radius of the bubble cutting assembly 3 into two parts, and the two parts have one of the groove structures.
  • the trash discharge channel 31 is located at the center of the recessed structure 32; and/or, along the second direction, the trash discharge channel 31 is located at the farthest position of the protruding structure 33 relative to the center thereof.
  • the impurity channel 31 is equivalent to the impurity discharge channel 31 located at the maximum groove depth of the recessed structure 32. Since a large amount of impurities gather along the groove wall of the recessed structure 32 to the groove bottom of the recessed structure 32, the impurity discharge channel 31 is just in line with the impurities. The gathering positions of the bubble cutting components 3 are facing each other to ensure that impurities are directly discharged from the impurity discharge channel 31 .
  • the protruding structure 33 is arranged around the recessed structure 32, and a waste removal channel 31 is provided at the farthest position of the protruding structure 33 relative to its center, that is, the waste removal channel
  • the channel 31 is disposed at the minimum height of the protruding structure 33, which is equivalent to the discharging channel 31 being disposed at the edge of the protruding structure 33. Since A large amount of impurities are dispersed along the side walls of the protruding structure 33 to the edge of the protruding structure 33 .
  • the impurity discharge channel 31 is just opposite to the position where the impurities are dispersed in the bubble cutting assembly 3 , ensuring that the impurities are directly discharged from the impurity discharge channel 31 .
  • the protruding structure 33 when the protruding structure 33 is coaxially disposed with the gas-water mixing component 2, that is, when the protruding structure 33 is disposed at the center of the bubble cutting component 3, the protruding structure 33 is disposed at the farthest position relative to its center.
  • the walls are dispersed to the edge of the protruding structure 33, and the impurity discharge channel 31 is just opposite to the position where the impurities are dispersed in the bubble cutting assembly 3, ensuring that the impurities are directly discharged from the impurity discharge channel 31.
  • the protruding structure 33 is coaxially arranged with the gas-water mixing component 2, and the recessed structure 32 is arranged around the protruding structure 33.
  • the number and position of the impurity discharge channel 31 may be one or multiple, and one impurity discharge channel 31 may be provided only at the center of the recessed structure 32, or, The channel 31 may be provided only at the farthest position of the protruding structure 33 relative to its center, or multiple waste removal channels 31 may be respectively provided at the center position of the recessed structure 32 and at the farthest position of the protruding structure 33 relative to its center.
  • the number of protruding structures 33 is multiple, and the recessed structure 32 is located between two adjacent protruding structures 33; and/or, the number of recessed structures 32 is multiple, and the protruding structure 33 is located between two adjacent protruding structures 33. between two adjacent recessed structures 32.
  • the number of the protruding structures 33 and the recessed structures 32 can be multiple.
  • the protruding structures 33 and the recessed structures 32 are nested with each other, and the radii of the protruding structures 33 and the recessed structures 32 are different.
  • the cross section of the bubble cutting component 3 is similar to a continuous fold line structure, ensuring that impurities are not temporarily stored on the top of the bubble cutting component 3 and that the impurities slide down to the bottom of the bubble cutting component 3 .
  • the radius of the bubble cutting assembly 3 is a certain value, the greater the number of the protruding structures 33 and the recessed structures 32, the greater the inclination angle of the protruding structures 33 and the recessed structures 32 along the second direction. Smaller, that is, the slower the slope of the inclined surface, the slower it may affect the sliding speed of impurities. Therefore, the number of protruding structures 33, the number of recessed structures 32, and the slope of protruding structures 33 and recessed structures 32 can be selected according to actual needs. , so that the quantity and slope are in a certain balanced correlation, thereby ensuring the timely discharge of impurities.
  • the projection of the air-water mixing component 2 at least partially covers the projection of the bubble cutting component 3 .
  • the micro-bubble water discharged from the gas-water mixing component 2 can directly pass through the bubble cutting component 3. Realize the filtration of impurities.
  • the bubble cutting assembly 3 includes a plurality of filter screens 34 stacked along the water flow direction; wherein, among the plurality of filter screens 34, at least some of the filter screens 34 have different mesh numbers.
  • the mesh number of the filter screen 34 located at the uppermost layer along the water flow direction is the largest; the mesh number of the filter screen 34 located at the uppermost layer along the water flow direction is greater than or equal to 200 meshes.
  • one part of the filter screens 34 can be a fine-pore filter screen, that is, the filter screen 34 located on the uppermost layer along the water flow direction, and the other part of the filter screen 34 can be a dense-pore filter screen, that is, the filter screens 34 below the uppermost filter screen 34.
  • a plurality of fine-pore filters and a plurality of fine-pore filters form an alternately stacked sparse and dense bubble cutting assembly 3 to improve the effect of cutting bubbles.
  • This embodiment also provides a water outlet device, which is suitable for use in the technical fields of showers, faucets, and toilets.
  • the water outlet device includes a microbubble bubbler.
  • the water outlet device realizes primary filtration of the water flow along the direction of the water flow by arranging the filter component 1 to prevent impurities from entering the microbubble bubbler; by arranging the air-water mixing component 2, it is used to introduce air into the air-water mixing
  • the bubbles in the component 2 are mixed with the water flow to generate bubbles to form bubble water; by setting the bubble cutting component 3, the bubbles in the bubble water are cut into tiny bubbles to form micro-bubble water, so that the micro-bubble water can cut the capillary pores or the texture of fruits and vegetables due to the tiny bubbles. Dirt is taken away to improve cleanliness.
  • the bubble cutting component 3 forms an included angle with the first direction, and the included angle is less than 90 degrees or greater than 90 degrees.
  • the bubble cutting component 3 is not set horizontally, but is set tilted. If there are impurities remaining on the bubble cutting component 3,
  • the bubble cutting assembly 3 plays the role of a guide bevel. When the high-speed jet of water is ejected, the impurities will slide down the bubble cutting assembly 3 until they slide to the bottom position of the bubble cutting assembly 3 along the water flow direction. That is, the impurities will be in the bubble cutting assembly 3 are gathered at the bottom position and will not spread throughout the entire bubble cutting assembly 3, thereby reducing the risk of clogging of the filter holes of the entire bubble cutting assembly 3.
  • the impurity discharge channel 31 provides a channel for the impurities to be discharged, so that the impurities can be bubbled from the microbubbles.
  • the impurities are discharged from the inside of the device; by arranging the impurity removal channel 31 along the direction of the water flow, the impurity removal channel 31 and the flow direction of the water flow are in the same direction.
  • the jet of water flow provides impurities with movement power, thereby facilitating the smooth discharge of impurities from the impurity removal channel 31. The mixed effect is good.
  • the water outlet device further includes a water inlet pipe, the water inlet pipe is connected with the microbubble bubbler, and the water inlet pipe is used to deliver water flow to the microbubble generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)

Abstract

一种微气泡起泡器包括过滤部件(1)、气水混合组件(2)和气泡切割组件(3),过滤部件(1)用于过滤水流;气水混合组件(2)用于将水流形成气泡水,气水混合组件的出水方向为第一方向;气泡切割组件(3)用于切割气泡水并将气泡水内的气泡切割成微小气泡,形成微气泡水;气泡切割组件(3)至少部分相对于第一方向形成一夹角,气泡切割组件(3)设置有排杂通道(31),用于排放杂质;其中,夹角不等于90度。

Description

一种微气泡起泡器及出水装置
本公开要求于2022年6月2日提交的申请号为202210626316.6、名称为“一种微气泡起泡器及出水装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及出水设备技术领域,尤其涉及一种微气泡起泡器及出水装置。
背景技术
相关技术中,在使用喷头进行冲洗、淋浴操作时,时常需要增加一些精油、香水等功能物质,以在喷水的同时,还具有附加功能。如果水本身或者这些功能物质具有较多的杂质,容易在喷头的微气泡起泡器内出现杂质残留,从而出现堵孔的风险,影响使用寿命。
发明内容
本公开提供一种微气泡起泡器及出水装置,排杂效果好,使用寿命长。
根据本公开的一个方面,提供了一种微气泡起泡器,包括:
过滤部件,用于过滤水流;
气水混合组件,用于将所述水流形成气泡水,所述气水混合组件的出水方向为第一方向;
气泡切割组件,用于切割所述气泡水并将所述气泡水内的气泡切割成微小气泡,形成微气泡水;
所述气泡切割组件的至少部分与第一方向形成一夹角,所述气泡切割组件设置有排杂通道,所述排杂通道用于排放杂质;
其中,所述夹角不等于90度。
根据本公开的一个实施例,沿水流方向,所述排杂通道设置于所述气泡切割组件相对于所述气水混合组件距离最远的位置处。
根据本公开的一个实施例,沿水流方向,所述气泡切割组件向远离所述气水混合组件的方向凹陷,形成凹陷结构。
根据本公开的一个实施例,沿水流方向,所述排杂通道设置于所述凹陷结构的最大槽深位置处。
根据本公开的一个实施例,沿水流方向,所述气泡切割组件向靠近所述气水混合组件的方向凸出,形成凸出结构。
根据本公开的一个实施例,沿水流方向,所述排杂通道设置于所述凸出结构的最小 高度位置处。
根据本公开的一个实施例,沿水流方向,所述气泡切割组件向远离所述气水混合组件的方向凹陷,形成凹陷结构,所述气泡切割组件向靠近所述气水混合组件的方向凸出,形成凸出结构。
根据本公开的一个实施例,所述凹陷结构相对于所述气水混合组件同轴设置,所述凸出结构环设于所述凹陷结构的周围;或,
所述凸出结构相对于所述气水混合组件同轴设置,所述凹陷结构环设于所述凸出结构的周围。
根据本公开的一个实施例,所述排杂通道设置于所述凹陷结构的中心位置处;和/或,
所述排杂通道设置于所述凸出结构相对其中心最远位置处。
根据本公开的一个实施例,所述凸出结构的数量为多个,所述凹陷结构位于相邻两个所述凸出结构之间;和/或,
所述凹陷结构的数量为多个,所述凸出结构位于相邻两个所述凹陷结构之间。
根据本公开的一个实施例,所述凸出结构和与其相邻的所述凹陷结构至少部分重合。
根据本公开的一个实施例,所述排杂通道为设置于所述气泡切割组件上的通孔。
根据本公开的一个实施例,所述通孔的横截面的形状为圆形、弧形、三角形及多边形中任意之一。
根据本公开的一个实施例,所述气泡切割组件包括多个沿水流方向层叠设置的过滤网;
其中,多个所述过滤网中,至少部分所述过滤网的目数不同。
根据本公开的一个实施例,所述微气泡起泡器还包括出水面盖,所述过滤部件沿水流方向设置于所述气水混合组件的上游;所述气泡切割组件设置于所述出水面盖和气水混合组件之间。
根据本公开的另一个方面,提供了一种出水装置,包括上述的微气泡起泡器。
本公开实施例提供的微气泡起泡器,通过设置过滤部件,实现沿流动水流的一次过滤,避免较大杂质进入微气泡起泡器内;通过设置气水混合组件,用于将空气引入气水混合组件内并与水流混合产生气泡,形成气泡水;通过设置气泡切割组件,气泡切割组件能够将气泡水内的气泡切割成微小气泡,形成微气泡水,使微气泡水因微小气泡而将毛细孔或蔬果的脏污带走,提高清洁度。
同时,通过气泡切割组件的至少部分与第一方向形成一夹角,夹角不等于90度,气泡切割组件不是水平设置,而是倾斜设置,如果气泡切割组件上存留有杂质,气泡切割组件起到导向斜面的作用,当高速喷射的水流喷射时,杂质会沿着气泡切割组件下滑, 直至滑动至气泡切割组件沿水流方向的底部位置,即杂质会在气泡切割组件的底部位置聚集,不会遍及整个气泡切割组件,减少整个气泡切割组件堵塞的风险。同时,为了防止微气泡起泡器的杂质存留在气泡切割组件上,在气泡切割组件上设置排杂通道,排杂通道为杂质提供排放的通道,以将杂质从微气泡起泡器内部排出。
本公开实施例提供的出水装置,包括上述的微气泡起泡器。
通过设置过滤部件,实现流动水流的一次过滤,避免较大杂质进入微气泡起泡器内。通过设置气水混合组件,用于将空气引入气水混合组件内并与水流混合产生气泡,形成气泡水;通过设置气泡切割组件,气泡切割组件能够将气泡水内的气泡切割成微小气泡,形成微气泡水,使所述微气泡水因微小气泡而将毛细孔或蔬果的脏污带走,提高清洁度。
同时,通过气泡切割组件的至少部分与第一方向形成一夹角,夹角不等于90度,气泡切割组件不是水平设置,而是倾斜设置,如果气泡切割组件上存留有杂质,气泡切割组件起到导向斜面的作用,当高速喷射的水流喷射时,杂质会沿着气泡切割组件下滑,直至滑动至气泡切割组件沿水流方向的底部位置,即杂质会在气泡切割组件的底部位置聚集,不会遍及整个气泡切割组件,减少整个气泡切割组件堵塞的风险。同时,为了防止微气泡起泡器的杂质存留在气泡切割组件上,在气泡切割组件上设置排杂通道,排杂通道为杂质提供排放的通道,以将杂质从微气泡起泡器内部排出。
附图说明
为了更好地理解本公开,可参考在下面的附图中示出的实施例。在附图中的部件未必是按比例的,并且相关的元件可能省略,以便强调和清楚地说明本公开的技术特征。另外,相关要素或部件可以有如本领域中已知的不同的设置。此外,在附图中,同样的附图标记在各个附图中表示相同或类似的部件。其中:
图1是根据第一个示例性实施方式示出的一种微气泡起泡器的结构示意图;
图2是根据第一个示例性实施方式示出的一种微气泡起泡器的剖视图;
图3是根据第一个示例性实施方式示出的一种微气泡起泡器的爆炸结构示意图;
图4是根据第一个示例性实施方式示出的一种微气泡起泡器的俯视图;
图5是根据第一个示例性实施方式示出的一种微气泡起泡器的仰视图;
图6是根据第一个示例性实施方式示出的一种微气泡起泡器中显示气泡切割组件的结构示意图;
图7是根据第一个示例性实施方式示出的一种微气泡起泡器中气泡切割组件的结构示意图一;
图8是根据第一个示例性实施方式示出的一种微气泡起泡器中气泡切割组件的结构示意图二;
图9是根据第二个示例性实施方式示出的一种微气泡起泡器中显示气泡切割组件的 结构示意图;
图10是根据第二个示例性实施方式示出的一种微气泡起泡器中气泡切割组件的结构示意图一;
图11是根据第二个示例性实施方式示出的一种微气泡起泡器中气泡切割组件的结构示意图二;
图12是根据第三个示例性实施方式示出的一种微气泡起泡器中显示气泡切割组件的结构示意图;
图13是根据第三个示例性实施方式示出的一种微气泡起泡器中气泡切割组件的结构示意图一;
图14是根据第三个示例性实施方式示出的一种微气泡起泡器中气泡切割组件的结构示意图二;
图15是根据第四个示例性实施方式示出的一种微气泡起泡器中气泡切割组件的结构示意图。
附图标记说明如下:
100、第一腔室;200、第二腔室;
1、过滤部件;2、气水混合组件;3、气泡切割组件;4、出水面盖;
21、分流器;211、第一进水孔;
22、混合器;221、第二进水孔;
31、排杂通道;32、凹陷结构;33、凸出结构;34、过滤网。
具体实施方式
下面将结合本公开示例实施例中的附图,对本公开示例实施例中的技术方案进行清楚、完整的描述。本文中的描述的示例实施例仅仅是用于说明的目的,而并非用于限制本公开的保护范围,因此应当理解,在不脱离本公开的保护范围的情况下,可以对示例实施例进行各种修改和改变。
在本公开的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”是指两个或两个以上;术语“和/或”包括一个或多个相关联列出项目的任何组合和所有组合。特别地,提到“该/所述”对象或“一个”对象同样旨在表示可能的多个此类对象中的一个。
除非另有规定或说明,术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接,或信号连接;“连接”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
进一步地,本公开的描述中,需要理解的是,本公开的示例实施例中所描述的“上”、“下”、“内”、“外”等方位词是以附图所示的角度来进行描述的,不应理解为对本公开的示例实施例的限定。还需要理解的是,在上下文中,当提到一个元件或特征连接在另外元件(一个或多个)“上”、“下”、或者“内”、“外”时,其不仅能够直接连接在另外(一个或多个)元件“上”、“下”或者“内”、“外”,也可以通过中间元件间接连接在另外(一个或多个)元件“上”、“下”或者“内”、“外”。
本公开的一个实施例提供了一种微气泡起泡器,请参考图1至图3,该微气泡起泡器包括过滤部件1、气水混合组件2及气泡切割组件3,过滤部件1用于过滤水流,气水混合组件2用于将水流形成气泡水,气水混合组件2出水方向为第一方向,气泡切割组件3用于将气泡水内的气泡切割成微小气泡,以形成微气泡水。
本实施例提供的微气泡起泡器,通过设置过滤部件1,实现沿水流方向流动水流的一次过滤,避免杂质进入微气泡起泡器内。通过设置气水混合组件2,用于将空气引入气水混合组件2内并与水流混合产生气泡,形成气泡水。通过设置气泡切割组件3,气泡切割组件3能够将气泡水内的气泡切割成微小气泡,形成微气泡水,使微气泡水因微小气泡而将毛细孔或蔬果的脏污带走,提高清洁度。
为了避免在气泡切割组件3切割气泡水时,杂质会残留在气泡切割组件3上导致堵塞风险,从而影响气泡切割组件3的使用寿命。为此,如图2-图3所示,本实施例提供的气泡切割组件3的至少部分与第一方向形成一夹角,气泡切割组件3沿水流方向设置有排杂通道31,排杂通道31用于排放微气泡水内的杂质。其中,夹角小于90度或大于90度。
本实施例提供的微气泡起泡器,通过气泡切割组件3的至少部分与第一方向形成一夹角,夹角小于90度或大于90度,气泡切割组件3不是水平设置,而是倾斜设置,如果气泡切割组件3上存留有杂质,气泡切割组件3起到导向斜面的作用,当高速喷射的水流喷射时,杂质会沿着气泡切割组件3下滑,直至滑动至气泡切割组件3沿水流方向的底部位置,即杂质会在气泡切割组件3的底部位置聚集,不会遍及整个气泡切割组件3,减少整个气泡切割组件3堵塞的风险。同时,为了防止微气泡起泡器的杂质存留在气泡切割组件3上,在气泡切割组件3上设置排杂通道31,排杂通道31为杂质提供排放的通道,以将杂质从微气泡起泡器内部排出。
可以理解的是,排杂通道31沿水流方向设置,使排杂通道31和水流的流动方向同向,水流的喷射为杂质提供运动的动力,从而便于杂质从排杂通道31顺利排出,排杂效果好。
需要特别说明的是,如果水流方向为竖直方向,气水混合组件2的出水方向可以为竖直方向,也可以与竖直方向具有一定的角度,可以理解的是,当气水混合组件2的出水方向为竖直方向,则水流方向即为第一方向,第二方向具体可以为水平方向,此时, 第一方向和第二方向相互垂直设置,参见图2所示,箭头方向X表示第一方向,箭头方向Y表示第二方向。其中,过滤部件1、气水混合组件2及气泡切割组件3沿水流方向设置,则过滤部件1、气水混合组件2及气泡切割组件3从上到下依次设置。
在一个实施例中,如图2-图4所示,过滤部件1包括支撑件和过滤件,支撑件为环形结构,支撑件用于安装和支撑过滤件,过滤件为滤网结构。其中,过滤件至少部分相对于第二方向倾斜设置。
本项目中,过滤件是倾斜设置,如果过滤件上存留较多的杂质,过滤件起到导向斜面的作用,当高速喷射的水流喷射时,杂质会沿着过滤件下滑直至滑动至过滤件沿水流方向的底部位置,即杂质会在过滤件的底部位置聚集,不会遍及整个过滤件,减少整个过滤件堵塞的风险。过滤件也可以水平设置,微气泡起泡器可拆卸下来以冲洗聚集在过滤件上的杂质。微气泡起泡器也可不设置过滤件。
在一个实施例中,如图2、图3和图5所示,该微气泡起泡器还包括出水面盖4,过滤部件1沿水流方向设置于气水混合组件2的上游,气泡切割组件3设置于出水面盖4和气水混合组件2之间。
通过将过滤部件1沿水流方向设置于气水混合组件2上游,实现沿水流方向流动水流的一次过滤,避免较大杂质进入微气泡起泡器内。通过泡切割组件3设置于出水面盖4和气水混合组件2之间,即出水面盖4沿水流方向设置于气泡切割组件3下游,用于微小气泡的出水。
需要特别说明的是,出水面盖4设置有出水孔,出水孔连通于排杂通道31,使从排杂通道31流出的杂质通过出水孔进行排出,出水孔为杂质的最终排放提供排放空间,避免出现排杂通道31堵塞的情况,以保证微气泡起泡器内部的清洁度。
在一个实施例中,如图2和图3所示,气水混合组件2包括分流器21和混合器22。出水面盖4扣合于混合器22和分流器21,混合器22的侧壁与分流器21的侧壁之间形成进气流道,进气流道连通于第一腔室100。出水面盖4与混合器22之间形成一第二腔室200,气泡切割组件3设于第二腔室200内。也可以是出水面盖4的侧壁与分流器21的侧壁之间形成进气流道。
水流依次流经第一进水孔211和第二进水孔221,由于第二进水孔221的流通面积大于第一进水孔211的流通面积,根据伯努利原理,第二进水孔221内会产生一定的负压,使得外界的空气依次穿过进气流道、第一腔室100后被吸入第二进水孔221内,并与水流形成带有一定气泡的混合水流,该混合水流进入第二腔室200。
在一个实施例中,如图6所示,沿水流方向,排杂通道31设置于气泡切割组件3相对于气水混合组件2距离最远的位置处。
通过将排杂通道31设置于气泡切割组件3相对于气水混合组件2距离最远的位置处,即排杂通道31相当于设置于气泡切割组件3沿水流方向的底部位置,由于杂质会沿 着气泡切割组件3下滑直至滑动至气泡切割组件3沿水流方向的底部位置,使得排杂通道31能够正好与滑落的杂质对接,相当于杂质和排杂通道31正对设置,保证杂质能够全部进入排杂通道31内,在高速射流的水流冲刷下,杂质更容易冲洗到排杂通道31内,从而实现杂质排出的过程。
在一个实施例中,如图6所示,沿水流方向,气泡切割组件3向远离气水混合组件2的方向凹陷,形成凹陷结构32。
气泡切割组件3向远离气水混合组件2的方向凹陷,示例性的,形成的凹陷结构32为喇叭形结构,喇叭形结构的大口端朝向气水混合组件2设置,喇叭形结构的小口端朝向出水面盖4设置。此时,凹陷结构32的两个侧壁相对于第二方向倾斜设置,使杂质能够沿倾斜设置的槽壁滑动,凹陷结构32起到杂质汇集的作用。可以理解的是,杂质并没有遍及整个侧壁,而是沿槽壁汇集至凹陷结构32的槽底,避免凹陷结构32的槽壁出现大面积堵塞的情况。
在一个实施例中,沿水流方向,排杂通道31设置于凹陷结构32的最大槽深位置处。
通过将排杂通道31设置于凹陷结构32的最大槽深位置处,相当于排杂通道31设置于凹陷结构32的槽底位置,由于大量的杂质沿凹陷结构32的槽壁汇集至凹陷结构32的槽底,排杂通道31刚好与杂质在气泡切割组件3汇集的位置正对,保证杂质直接从排杂通道31排出。
可以理解的是,如果凹陷结构32为相对于微气泡组件的轴线对称结构,此时,排杂通道31设置于凹陷结构32的沿第二方向的中心位置,相当于排杂通道31设置于汇集点附近位置。
可以理解的是,在一些实施例中,凹陷结构32还可以为相对于微气泡组件的轴线非对称结构,此时排杂通道31只要设置于凹陷结构32沿水流方向的最低点即可。
在一个实施例中,如图6-图8所示,排杂通道31为设置于气泡切割组件3上的通孔。通过在气泡切割组件3上直接开设通孔就能形成排杂通道31,结构简单,易于实现,生产加工成本比较低。
具体地,通孔的横截面的形状为圆形、弧形、三角形及多边形中任意之一。本实施例对通孔,即排杂通道31的具体形状并不作限定,可以根据实际生产需要进行调整。
可以理解的是,设置于凹陷结构32的排杂通道31可以为圆孔结构,使沿气泡切割组件3周向方向的杂质均匀汇集至中心位置。
需要特别说明的是,凹陷结构32和出水面盖4可以围成圆锥结构,圆锥结构的横截面为三角形结构,此时凹陷结构32沿水流方向的最大槽深位置处即为凹陷结构32和出水面盖4相接触的位置处;凹陷结构32和出水面盖4还可以围成横截面为锥台结构,凹陷结构32沿水流方向的最小高度位置处即为锥台结构沿水流方向的底面,此时该底面能 够对气泡切割组件3提供在出水面盖4的支撑力,且能够为排杂通道31提供较大的设置空间。
在一个实施例中,如图9所示,沿水流方向,气泡切割组件3向靠近气水混合组件2的方向凸出,形成凸出结构33。
气泡切割组件3向靠近气水混合组件2的方向凸出,示例性的,形成的凸出结构33为喇叭形结构,喇叭形结构的大口端朝向出水面盖4设置,喇叭形结构的小口端朝向气水混合组件2设置。此时,凸出结构33的两个侧壁相对于第二方向倾斜设置,使杂质能够沿倾斜设置的侧壁滑动,凸出结构33起到杂质分散的作用。可以理解的是,杂质并没有遍及整个侧壁,而是沿侧壁分散至凸出结构33的底部,避免凸出结构33的侧壁出现大面积堵塞的情况。
在一个实施例中,如图9-图11所示,沿水流方向,排杂通道31位于凸出结构33的最小高度位置处。
通过将排杂通道31设置于凸出结构33的最小高度位置处,相当于排杂通道31设置于凸出结构33的边缘位置,由于大量的杂质沿凸出结构33的侧壁分散至凸出结构33的边缘,排杂通道31刚好与杂质在气泡切割组件3分散的位置正对,保证杂质直接从排杂通道31排出。
可以理解的是,如果凸出结构33为相对于微气泡组件的轴线对称结构,此时,沿第二方向,排杂通道31位于凸出结构33相对于其中心最远位置处,相当于排杂通道31设置于分散点附近位置。
可以理解的是,在一些实施例中,凸出结构33还可以为相对于微气泡组件的轴线非对称结构,此时排杂通道31只要设置于凸出结构33沿水流方向的最低点即可。
可以理解的是,如图9-图11所示,设置于凸出结构33的排杂通道31可以为弧形孔结构,例如半圆孔结构,相当于沿气泡切割组件3的边缘向内开设形成半圆孔结构,使沿气泡切割组件3周向方向的杂质均匀分散至边缘位置。其中,排杂通道31的数量可以为多个,多个排杂通道31沿气泡切割组件3的轴向均匀设置,以保证杂质分散的均匀性。
需要特别说明的是,凸出结构33和出水面盖4可以围成圆锥结构,圆锥结构的横截面为三角形结构,此时凸出结构33沿水流方向的最小高度位置处即为凸出结构33和出水面盖4相接触的位置处,凸出结构33和出水面盖4还可以围成横截面为五边形结构,此时凸出结构33沿水流方向的最小高度位置处即为凸出结构33侧壁的下端位置处。
在一个实施例中,如图12-图14所示,沿水流方向,气泡切割组件3向远离气水混合组件2的方向凹陷,形成凹陷结构32,气泡切割组件3向靠近气水混合组件2的方向凸出,形成凸出结构33。
换而言之,气泡切割组件3不是只有凹陷结构32,或者气泡切割组件3不是只有凸出结构33,气泡切割组件3还可以同时具有凹陷结构32和凸出结构33,由于凹陷结构32的槽壁和凸出结构33的侧壁均相对于第二方向倾斜设置,从而可以保证杂质下滑的顺畅性和可靠性。
可以理解的是,如果凸出结构33和凹陷结构32的数量一个,使气泡切割组件3的横截面形成一个折线结构。
在一个实施例中,凸出结构33和与其相邻的凹陷结构32至少部分重合。
对于相邻的凸出结构33和凹陷结构32而言,凸出结构33和凹陷结构32会有共用的倾斜面,即凸出结构33的侧壁刚好为凹陷结构32的槽壁。
在一个实施例中,如图12-图14所示,凹陷结构32相对于气水混合组件2同轴设置,凸出结构33环设于凹陷结构32的周围;或,如图15所示,凸出结构33相对于气水混合组件2同轴设置,凹陷结构32环设于凸出结构33的周围。
如图12-图14所示,通过凹陷结构32相对于气水混合组件2同轴设置,凸出结构33环设于凹陷结构32的周围,即凹陷结构32设置于气泡切割组件3的中心位置。当气泡切割组件3相对于气水混合组件2的轴线对称时,对于气泡切割组件3的半边而言,相当于将气泡切割组件3的半径分隔成两部分,使两个部分具有其中一个凸出结构33中两个倾斜的侧壁,以实现对气泡切割组件3的半径部分进行分段化处理,节省沿水流方向气泡切割组件3顶部杂质滑动至底部的时间,提高杂质排杂的及时性和有效性。
如图15所示,通过凸出结构33相对于气水混合组件2同轴设置,凹陷结构32环设于凸出结构33的周围,即凸出结构33设置于气泡切割组件3的中心位置。当气泡切割组件3相对于气水混合组件2的轴线对称时,对于气泡切割组件3的半边而言,相当于将气泡切割组件3的半径分隔成两部分,两个部分具有其中一个凹槽结构中两个倾斜的槽壁,以实现对气泡切割组件3的半径部分进行分段化处理,节省沿水流方向气泡切割组件3顶部杂质滑动至底部的时间,提高杂质排杂的及时性和有效性。
在一个实施例中,沿第二方向,排杂通道31位于凹陷结构32的中心位置处;和/或,沿第二方向,排杂通道31位于凸出结构33相对其中心最远位置处。
如图12-图14所示,当凹陷结构32于气水混合组件2同轴设置,即凹陷结构32设置于气泡切割组件3的中心位置时,通过在凹陷结构32的中心位置处设置有排杂通道31,相当于排杂通道31设置于凹陷结构32的最大槽深位置处,由于大量的杂质沿凹陷结构32的槽壁汇集至凹陷结构32的槽底,排杂通道31刚好与杂质在气泡切割组件3汇集的位置正对,保证杂质直接从排杂通道31排出。
当凹陷结构32于气水混合组件2同轴设置,凸出结构33环设于凹陷结构32的周围,通过,凸出结构33相对其中心最远位置处设置有排杂通道31,即排杂通道31设置于凸出结构33的最小高度位置处,相当于排杂通道31设置于凸出结构33的边缘位置,由于 大量的杂质沿凸出结构33的侧壁分散至凸出结构33的边缘,排杂通道31刚好与杂质在气泡切割组件3分散的位置正对,保证杂质直接从排杂通道31排出。
如图15所示,当凸出结构33于气水混合组件2同轴设置,即凸出结构33设置于气泡切割组件3的中心位置时,通过凸出结构33相对其中心最远位置处设置有排杂通道31,即排杂通道31设置于凸出结构33的最小高度位置处,相当于排杂通道31设置于凸出结构33的边缘位置,由于大量的杂质沿凸出结构33的侧壁分散至凸出结构33的边缘,排杂通道31刚好与杂质在气泡切割组件3分散的位置正对,保证杂质直接从排杂通道31排出。
凸出结构33与气水混合组件2同轴设置,凹陷结构32环设于凸出结构33的周围,通过在凹陷结构32的中心位置处设置排杂通道31,相当于排杂通道31设置于凹陷结构32的最大槽深位置处,由于大量的杂质沿凹陷结构32的槽壁汇集至凹陷结构32的槽底,排杂通道31刚好与杂质在气泡切割组件3汇集的位置正对,保证杂质直接从排杂通道31排出。
可以理解的是,在此种情况下,排杂通道31的数量和位置可以为一个也可以为多个,一个排杂通道31可以只设置于凹陷结构32的中心位置处,或者,一个排杂通道31可以只设置于凸出结构33相对其中心最远位置处,或者多个排杂通道31分别设置于凹陷结构32的中心位置处和凸出结构33相对其中心最远位置处。
在一个实施例中,凸出结构33的数量为多个,凹陷结构32位于相邻两个凸出结构33之间;和/或,凹陷结构32的数量为多个,凸出结构33位于相邻两个凹陷结构32之间。
可以理解的是,凸出结构33和凹陷结构32的数量均可以为多个,凸出结构33和凹陷结构32相互套设,凸出结构33和凹陷结构32的半径各不相同。此时,气泡切割组件3的横截面类似于连续的折线结构,保证气泡切割组件3顶部不会暂存杂质,杂质均滑落至气泡切割组件3的底部。
可以理解的是,在气泡切割组件3的半径为一定值的情况下,凸出结构33和凹陷结构32的数量越多,则凸出结构33和凹陷结构32沿第二方向的倾斜角度就越小,即倾斜面的坡度越缓慢,可能会影响杂质滑动的速度,因此,可以根据实际需要选择凸出结构33的数量、凹陷结构32的数量和凸出结构33的坡度、凹陷结构32的坡度,使数量和坡度处于一定的平衡相关性,从而保证杂质排出的及时性。
在一个实施例中,沿水流方向,气水混合组件2的投影至少部分覆盖气泡切割组件3的投影。
通过气水混合组件2的投影覆盖气泡切割组件3的投影,在保证微气泡组件和气泡切割组件3正对设置的同时,使气水混合组件2排放微气泡水能够直接通气泡切割组件3,实现杂质的过滤。
在一个实施例中,气泡切割组件3包括多个沿水流方向层叠设置的过滤网34;其中,多个过滤网34中,至少部分过滤网34的目数不同。位于沿水流方向最上层的过滤网34的目数最大;位于沿水流方向最上层的过滤网34的目数大于等于200目。
例如,其中一部分过滤网34可以为疏孔滤网,即位于沿水流方向最上层的过滤网34,另一部分过滤网34可以为密孔滤网,即最上层过滤网34以下的过滤网34,多个疏孔滤网和多个密孔滤网形成交替层叠设置的疏密相间的气泡切割组件3,提高切割气泡的效果。
本实施例还提供了一种出水装置,适用于花洒、水龙头、马桶技术领域,该出水装置包括微气泡起泡器。
本实施例提供的出水装置,通过设置过滤部件1,实现沿水流方向流动水流的一次过滤,避免杂质进入微气泡起泡器内;通过设置气水混合组件2,用于将空气引入气水混合组件2内并与水流混合产生气泡形成气泡水;通过设置气泡切割组件3,将气泡水内的气泡切割成微小气泡以形成微气泡水,使微气泡水因微小气泡而将毛细孔或蔬果的脏污带走,提高清洁度。
同时,气泡切割组件3至少部分与第一方向形成一夹角,夹角小于90度或大于90度,气泡切割组件3不是水平设置,而是倾斜设置,如果气泡切割组件3上存留有杂质,气泡切割组件3起到导向斜面的作用,当高速喷射的水流喷射时,杂质会沿着气泡切割组件3下滑直至滑动至气泡切割组件3沿水流方向的底部位置,即杂质会在气泡切割组件3的底部位置聚集,不会遍及整个气泡切割组件3,减少整个气泡切割组件3的滤网孔堵塞的风险。同时,由于微气泡水内的杂质会存留在气泡切割组件3上,通过在气泡切割组件3上设置排杂通道31,排杂通道31为杂质提供排放的通道,以将杂质从微气泡起泡器内部排出;通过将排杂通道31沿水流方向设置,使排杂通道31和水流的流动方向同向,水流的喷射为杂质提供运动的动力,从而便于杂质从排杂通道31顺利排出,排杂效果好。
在一个实施例中,该出水装置还包括进水管,进水管与微气泡起泡器连通,进水管用于向微气泡发生器输送水流。
本领域技术人员在考虑说明书及实践这里公开的发明创造后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和示例实施方式仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的保护范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种微气泡起泡器,其特征在于,包括:
    过滤部件(1),用于过滤水流;
    气水混合组件(2),用于将所述水流形成气泡水,所述气水混合组件的出水方向为第一方向;
    气泡切割组件(3),用于切割气泡水并将所述气泡水内的气泡切割成微小气泡,形成微气泡水;
    所述气泡切割组件(3)的至少部分与第一方向形成一夹角,所述气泡切割组件(3)设置有排杂通道(31),所述排杂通道(31)用于排放杂质;
    其中,所述夹角不等于90度。
  2. 根据权利要求1所述的微气泡起泡器,其特征在于,沿水流方向,所述排杂通道(31)设置于所述气泡切割组件(3)相对于所述气水混合组件(2)距离最远的位置处。
  3. 根据权利要求1所述的微气泡起泡器,其特征在于,沿水流方向,所述气泡切割组件(3)向远离所述气水混合组件(2)的方向凹陷,形成凹陷结构(32)。
  4. 根据权利要求3所述的微气泡起泡器,其特征在于,沿水流方向,所述排杂通道(31)设置于所述凹陷结构(32)的最大槽深位置处。
  5. 根据权利要求1所述的微气泡起泡器,其特征在于,沿水流方向,所述气泡切割组件(3)向靠近所述气水混合组件(2)的方向凸出,形成凸出结构(33)。
  6. 根据权利要求5所述的微气泡起泡器,其特征在于,沿水流方向,所述排杂通道(31)设置于所述凸出结构(33)的最小高度位置处。
  7. 根据权利要求1所述的微气泡起泡器,其特征在于,沿水流方向,所述气泡切割组件(3)向远离所述气水混合组件(2)的方向凹陷,形成凹陷结构(32),所述气泡切割组件(3)向靠近所述气水混合组件(2)的方向凸出,形成凸出结构(33)。
  8. 根据权利要求7所述的微气泡起泡器,其特征在于,所述凹陷结构(32)相对于所述气水混合组件(2)同轴设置,所述凸出结构(33)环设于所述凹陷结构(32)的周围;或,
    所述凸出结构(33)相对于所述气水混合组件(2)同轴设置,所述凹陷结构(32)环设于所述凸出结构(33)的周围。
  9. 根据权利要求8所述的微气泡起泡器,其特征在于,所述排杂通道(31)设置于所述凹陷结构(32)的中心位置处;和/或,
    所述排杂通道(31)设置于所述凸出结构(33)相对其中心最远位置处。
  10. 根据权利要求8所述的微气泡起泡器,其特征在于,所述凸出结构(33)的数量为多个,所述凹陷结构(32)位于相邻两个所述凸出结构(33)之间;和/或,
    所述凹陷结构(32)的数量为多个,所述凸出结构(33)位于相邻两个所述凹陷结构(32)之间。
  11. 根据权利要求7所述的微气泡起泡器,其特征在于,所述凸出结构(33)和与其相邻的所述凹陷结构(32)至少部分重合。
  12. 根据权利要求1-11任一项所述的微气泡起泡器,其特征在于,所述排杂通道(31)为设置于所述气泡切割组件(3)上的通孔。
  13. 根据权利要求12所述的微气泡起泡器,其特征在于,所述通孔的横截面的形状为圆形、弧形、三角形及多边形中任意之一。
  14. 根据权利要求1-11任一项所述的微气泡起泡器,其特征在于,所述气泡切割组件(3)包括多个沿水流方向层叠设置的过滤网(34);
    其中,多个所述过滤网(34)中,至少部分所述过滤网(34)的目数不同;位于沿水流方向最上层的所述过滤网(34)的目数最大;
    位于沿水流方向最上层的所述过滤网(34)的目数大于等于200目。
  15. 根据权利要求1所述的微气泡起泡器,其特征在于,还包括出水面盖(4),所述过滤部件(1)沿水流方向设置于所述气水混合组件(2)的上游;所述气泡切割组件(3)设置于所述出水面盖(4)和气水混合组件(2)之间。
  16. 一种出水装置,其特征在于,包括权利要求1-15任一项所述的微气泡起泡器。
PCT/CN2023/094892 2022-06-02 2023-05-17 一种微气泡起泡器及出水装置 WO2023231786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210626316.6 2022-06-02
CN202210626316.6A CN117211374A (zh) 2022-06-02 2022-06-02 一种微气泡起泡器及出水装置

Publications (1)

Publication Number Publication Date
WO2023231786A1 true WO2023231786A1 (zh) 2023-12-07

Family

ID=89026936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094892 WO2023231786A1 (zh) 2022-06-02 2023-05-17 一种微气泡起泡器及出水装置

Country Status (2)

Country Link
CN (1) CN117211374A (zh)
WO (1) WO2023231786A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7535349B1 (ja) 2024-01-23 2024-08-16 株式会社No. 微細気泡発生器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809362A (en) * 1955-03-28 1959-02-25 Elie Prodromos Aghnides Improvements in and relating to water aerators
CH649116A5 (en) * 1980-01-11 1985-04-30 Wildfang Dieter Kg Jet regulator for connection to sanitary fittings
US20020084353A1 (en) * 2001-01-02 2002-07-04 Griffin John A. Aerator with variable air input
US20060011748A1 (en) * 2004-07-13 2006-01-19 Dyapason S.R.L. Flow regulator
CN102822427A (zh) * 2010-03-23 2012-12-12 纽珀有限公司 射流调节器
CN203389782U (zh) * 2013-08-06 2014-01-15 厦门松霖科技有限公司 一种具有独立气水混合孔的起泡器
CN205776572U (zh) * 2016-05-27 2016-12-07 李军 起泡器
US20200224395A1 (en) * 2017-09-06 2020-07-16 Neoperl Gmbh Jet regulator
CN211837316U (zh) * 2020-03-11 2020-11-03 上海捷乔纳米科技有限公司 微纳米气泡起泡器
CN112177108A (zh) * 2020-10-27 2021-01-05 福建西河卫浴科技有限公司 一种侧进式起泡器
CN215166173U (zh) * 2021-01-28 2021-12-14 厦门市聚时天源科技有限公司 一种微气泡起泡器
CN215330244U (zh) * 2021-05-19 2021-12-28 九牧厨卫股份有限公司 一种起泡器
CN217352737U (zh) * 2022-06-02 2022-09-02 厦门松霖科技股份有限公司 一种微气泡起泡器及出水装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809362A (en) * 1955-03-28 1959-02-25 Elie Prodromos Aghnides Improvements in and relating to water aerators
CH649116A5 (en) * 1980-01-11 1985-04-30 Wildfang Dieter Kg Jet regulator for connection to sanitary fittings
US20020084353A1 (en) * 2001-01-02 2002-07-04 Griffin John A. Aerator with variable air input
US20060011748A1 (en) * 2004-07-13 2006-01-19 Dyapason S.R.L. Flow regulator
CN102822427A (zh) * 2010-03-23 2012-12-12 纽珀有限公司 射流调节器
CN203389782U (zh) * 2013-08-06 2014-01-15 厦门松霖科技有限公司 一种具有独立气水混合孔的起泡器
CN205776572U (zh) * 2016-05-27 2016-12-07 李军 起泡器
US20200224395A1 (en) * 2017-09-06 2020-07-16 Neoperl Gmbh Jet regulator
CN211837316U (zh) * 2020-03-11 2020-11-03 上海捷乔纳米科技有限公司 微纳米气泡起泡器
CN112177108A (zh) * 2020-10-27 2021-01-05 福建西河卫浴科技有限公司 一种侧进式起泡器
CN215166173U (zh) * 2021-01-28 2021-12-14 厦门市聚时天源科技有限公司 一种微气泡起泡器
CN215330244U (zh) * 2021-05-19 2021-12-28 九牧厨卫股份有限公司 一种起泡器
CN217352737U (zh) * 2022-06-02 2022-09-02 厦门松霖科技股份有限公司 一种微气泡起泡器及出水装置

Also Published As

Publication number Publication date
CN117211374A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2023231786A1 (zh) 一种微气泡起泡器及出水装置
KR970002860B1 (ko) 포말토수장치
JP4663786B2 (ja) 浮選セル
US11400424B2 (en) Micro-bubble acquisition apparatus
JP6044816B1 (ja) 泡沫吐水装置及び泡沫吐水ユニット
JP5854365B2 (ja) 泡沫吐水装置
US20210299620A1 (en) Progressive-perforation-type crushing and refining structure
CN111632409B (zh) 一种用于沉淀池的文丘里内构件
CN217352737U (zh) 一种微气泡起泡器及出水装置
CN113069858A (zh) 一种挡板式除尘器
RU2602880C2 (ru) Кольцевой скруббер с кольцевым впрыском
JP2007056559A (ja) シャワーヘッド
CN109847607B (zh) 一种无动力气泡微细化装置
CN219003402U (zh) 出水结构和起泡器
CN115121137B (zh) 大处理量射流式溶气罐及溶气设备
CN216779135U (zh) 一种产生微气泡的出水组件
WO2020042465A1 (zh) 空气净化装置和具有其的空气净化器
CN114983310A (zh) 一种分离器及清洁设备
WO2009130803A1 (ja) 節水具
CN111871105A (zh) 高效除尘柜
WO2019119644A1 (zh) 节水降噪装置及出水装置
CN214973127U (zh) 微纳米气泡水发生装置
CN101657582B (zh) 浮选室,用于浮选室的注射器,及将液流供给浮选室的方法
RU2418171C1 (ru) Эжекторный воздухоочиститель и форсунка для него
CN220633782U (zh) 一种微细气泡发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814971

Country of ref document: EP

Kind code of ref document: A1