WO2023231772A1 - 一种数据传输方法和装置 - Google Patents

一种数据传输方法和装置 Download PDF

Info

Publication number
WO2023231772A1
WO2023231772A1 PCT/CN2023/094730 CN2023094730W WO2023231772A1 WO 2023231772 A1 WO2023231772 A1 WO 2023231772A1 CN 2023094730 W CN2023094730 W CN 2023094730W WO 2023231772 A1 WO2023231772 A1 WO 2023231772A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
communication device
channel
information
network device
Prior art date
Application number
PCT/CN2023/094730
Other languages
English (en)
French (fr)
Inventor
周辉
邓雁莎
范巍巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231772A1 publication Critical patent/WO2023231772A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a data transmission method and device.
  • CSMA/CA carrier sense multiple access with collision avoidance
  • CCA clear channel assessment
  • CW contention window
  • the transmitting node only performs random backoff based on its own CCA detection results, without considering the channel status at the receiving node.
  • the backoff efficiency is low, which reduces the utilization of channels in unlicensed frequency bands.
  • This application provides a data transmission method and device to improve channel utilization in unlicensed frequency bands.
  • a data transmission method is provided.
  • the method may be performed by a chip that performs or functions similarly to the first communication device.
  • the first communication device receives first information sent from each of the M second communication devices, and the first information includes the interference size detected on K channels by the second communication device that sent the first information.
  • K and M are integers greater than or equal to 1.
  • the first communication device performs listen before talk (LBT).
  • LBT listen before talk
  • the back-off speed of LBT is determined based on the first information. It can be understood that the backoff speed is used to indicate the number of times the first communication device backs off within a time unit.
  • the first communication device determines the interference level of the second communication device and learns the channel status of the second communication device, which can reduce the problems of exposed nodes and hidden nodes and optimize the scheduling strategy.
  • the interference size of the device dynamically adjusts the backoff speed of LBT to avoid a long random backoff process and improve channel utilization.
  • the interference size of the K channels may be the interference size of each channel detected by the terminal device.
  • the interference size of the K channels may be the interference size of some channels among the interference sizes of each channel detected by the terminal device, such as the interference size of the channel with the largest interference among the interference sizes detected by the terminal device or the interference size of the channel with the largest interference detected by the terminal device. The smallest interference size among the detected interference sizes.
  • the interference size is determined based on multiple threshold values. Based on the above plan, through The quantized interference size obtained by multiple threshold values can allow the interference size to reflect the channel status of the second communication device in a more detailed and accurate manner compared to the method of determining the interference size through a single threshold value.
  • the first communication device can dynamically adjust the backoff speed of the LBT according to the interference level of the second communication device, thereby avoiding a long backoff process and improving channel utilization.
  • the first communication device may determine the backoff speed through a predefined or preset formula and interference size. In another example, the first communication device may determine the backoff speed through a predefined or preset table and interference size.
  • the first communication device may determine the final interference size based on the first information of the M second communication devices.
  • the first communication device may determine the backoff speed based on the final interference level.
  • the first communication device may determine the final interference size based on the first information of the M second communication devices and the interference size of the first communication device.
  • the final interference size is the smallest interference size or the largest interference size among the interference sizes indicated by the first information of the M second communication devices. In another possible situation, the final interference size is the smallest interference size or the largest interference size among the interference sizes indicated by the first information of the M second communication devices and the interference sizes of the first communication device.
  • the first communication device sends first indication information to one or more scheduled second communication devices among the M second communication devices, and the first indication information indicates the channel occupation of the first channel. duration.
  • the channel occupancy duration is determined based on the first information of one or more second communication devices, and the first channel is used for the first communication device to transmit information with one or more second communication devices.
  • the first communication device can dynamically determine the channel occupancy time of the second communication device according to the interference level of the second communication device, which can reduce the problem of being unable to send data within the channel occupancy time due to the large interference level of the second communication device. situation, the channel utilization can be improved.
  • the channel occupancy duration is determined based on the first information of one or more second communication devices and the interference of the first communication device, and the interference of the first communication device is determined based on the idleness of the first communication device. determined by channel assessment.
  • the first communication device can comprehensively consider the interference levels of the second communication device and the first communication device, and dynamically determine the channel occupation time of the second communication device, which can reduce the interference level caused by the second communication device or the first communication device. If the data cannot be sent within the channel occupancy time, the channel utilization can be improved.
  • the first communication device receives the first information of layer 1 of M second communication devices. Based on the above solution, since the first information feedback delay of layer 1 is shorter than the first information of layer 3, the delay of the interference size of the second communication device obtained by the first communication device is also shorter, thereby interfering The size can more accurately reflect the current interference level of the second communication device.
  • the first communication device sends second indication information to the M second communication devices.
  • the second indication information may indicate that the K channels are the channels with the smallest interference measured by the M second communication devices or The channel with the greatest interference.
  • the first communication device can instruct the second communication device to report the smallest interference or the largest interference among the measured interference sizes through the second instruction information, which can save transmission resources and at the same time let the first communication device know The desired amount of interference.
  • the backoff speed is based on M pieces of first information received by the first communication device.
  • the minimum value of interference is determined. Based on the above solution, the first communication device can schedule the second communication device with minimal interference.
  • the backoff speed is determined based on the minimum value of the interference in the M pieces of first information and the interference of the first communication device, and the interference of the first communication device is determined based on the idle channel of the first communication device. determined by assessment. Based on the above solution, the first communication device can schedule the second communication device with the smallest interference, and determine a more appropriate backoff speed based on its own interference, allowing the first communication device to access the channel faster and improve channel utilization.
  • the second aspect provides a data transmission method.
  • the method may be executed by the second communication device, or by a chip similar to the function of the second communication device.
  • the second communication device determines first information, and the first information includes interference levels detected by the second communication device on K channels. Among them, K is an integer greater than or equal to 1.
  • the amount of interference is determined based on multiple threshold values.
  • the second communication device sends the first information to the first communication device.
  • the interference size of the K channels may be the interference size of each channel detected by the terminal device.
  • the interference size of the K channels may be the interference size of some channels among the interference sizes of each channel detected by the terminal device, such as the interference size of the channel with the largest interference among the interference sizes detected by the terminal device or the interference size of the channel with the largest interference detected by the terminal device. The smallest interference size among the detected interference sizes.
  • the second communication device receives first indication information from the first communication device, and the first indication information indicates the channel occupancy duration of the first channel.
  • the channel occupancy duration is determined based on the first information, and the first channel is used for the first communication device and the second communication device to transmit information.
  • the channel occupancy duration is determined based on the first information and interference of the first communication device, and the interference of the first communication device is determined based on an idle channel evaluation of the first communication device.
  • the second communication device sends the first information of layer 1 to the first communication device.
  • the second communication device receives second indication information from the first communication device, and the second indication information may indicate that the K channels are the channels with the smallest interference or the highest interference measured by the second communication device. channel.
  • the second communication device may send the interference level measured on the channel with the least interference or the interference level measured on the channel with the greatest interference to the first communication device.
  • a communication device including a processing unit and a transceiver unit.
  • the transceiver unit is configured to receive first information sent from each of the M second communication devices, where the first information includes interference levels detected on K channels by the second communication device that sent the first information.
  • K and M are integers greater than or equal to 1.
  • the processing unit is used to monitor first and then send LBT.
  • the backoff speed of the LBT is determined based on the first information, and the backoff speed is used to indicate the number of times the network device backs off within a time unit.
  • the interference size of the K channels may be the interference size of each channel detected by the terminal device.
  • the interference size of the K channels may be the interference size of some channels among the interference sizes of each channel detected by the terminal device, such as the interference size of the channel with the largest interference among the interference sizes detected by the terminal device or the interference size of the channel with the largest interference detected by the terminal device. The smallest interference size among the detected interference sizes.
  • the interference size is determined based on multiple threshold values.
  • different interference sizes correspond to different backoff speeds. In other words, if the interference size is different, the backoff speed will be different, and the interference size corresponds to the backoff speed one-to-one. In one possible implementation, the larger the interference size, the smaller the backoff speed.
  • the processing unit may be used to determine the interference size through a predefined or preset formula and Treatment speed. In another example, the processing unit may be used to determine the backoff speed through a predefined or preset table and interference size.
  • the processing unit may be configured to determine the final interference size according to the first information of the M terminal devices.
  • Network equipment can determine the backoff speed based on the final interference level.
  • the processing unit may be configured to determine the final interference size based on the first information of the M terminal devices and the interference size of the network device.
  • the final interference size is the smallest interference size or the largest interference size among the interference sizes indicated by the first information of the M terminal devices. In another possible situation, the final interference size is the smallest interference size or the largest interference size among the interference sizes indicated by the first information of the M terminal devices and the interference sizes of the network devices.
  • the transceiver unit is further configured to: send first indication information to one or more scheduled terminal devices among the M terminal devices, where the first indication information indicates the channel occupancy duration of the first channel;
  • the channel occupation duration is determined based on the first information of one or more terminal devices, and the first channel is used for transmitting information between the network device and one or more terminal devices.
  • the channel occupancy duration is determined based on the first information of one or more terminal devices and the interference of the network device, and the interference of the network device is determined based on the idle channel evaluation of the network device.
  • the transceiver unit is configured to receive first information from M terminal devices, specifically: receive first information of layer 1 of M terminal devices.
  • the transceiver unit is also configured to: send second indication information to the M terminal devices.
  • the second indication information may indicate that the K channels are the channels with the smallest interference measured by the M second communication devices or The channel with the greatest interference.
  • the backoff speed is determined based on the minimum value of interference among the M pieces of first information received by the network device.
  • the backoff speed is determined based on the minimum value of the interference in the M pieces of first information and the interference of the network device, and the interference of the network device is determined based on the idle channel evaluation of the network device.
  • a communication device including a processing unit and a transceiver unit.
  • a processing unit configured to determine first information, where the first information includes interference levels detected by the terminal equipment on the K channels. Among them, K is an integer greater than or equal to 1. The amount of interference is determined based on multiple threshold values.
  • the transceiver unit is used to send the first information to the network device.
  • the interference size of the K channels may be the interference size of each channel detected by the terminal device.
  • the interference size of the K channels may be the interference size of some channels among the interference sizes of each channel detected by the terminal device, such as the interference size of the channel with the largest interference among the interference sizes detected by the terminal device or the interference size of the channel with the largest interference detected by the terminal device. The smallest interference size among the detected interference sizes.
  • the transceiver unit is further configured to: receive first indication information from the network device, the first indication information indicating the channel occupancy duration of the first channel; the channel occupancy duration is determined based on the first information, and the first indication information indicates the channel occupancy duration of the first channel.
  • One channel is used to transmit information between network equipment and terminal equipment.
  • the channel occupancy duration is determined based on the first information and the interference of the network device, and the interference of the network device is determined based on the idle channel evaluation of the network device.
  • the transceiver unit is configured to send the first information to the network device, specifically: send the first information of layer 1 to the network device.
  • the transceiver unit is also configured to: receive second indication information from the network device.
  • the second indication information may indicate that the K channels are the channels with the smallest interference or the largest interference measured by the second communication device. channel.
  • the transceiver unit is specifically configured to send the interference level measured on the channel with the minimum interference or the interference level measured on the channel with the maximum interference to the first communication device.
  • inventions of the present application provide a communication device.
  • the communication device may be the communication device in any one of the third to fourth aspects in the above-mentioned embodiments, or may be provided in the third to fourth aspects.
  • the communication device includes a communication interface and a processor, and optionally, a memory. Wherein, the memory is used to store computer programs or instructions or data, and the processor is coupled to the memory and the communication interface. When the processor reads the computer program, instructions or data, the communication device is caused to execute the above first to second aspects.
  • the communication interface can be implemented through antennas, feeders, codecs, etc. in the communication device, or if the communication device is a chip provided in network equipment or terminal equipment, the communication interface can be the input of the chip /Output interface, such as input/output pins, etc.
  • the communication device may also include a transceiver for communicating with other devices. For example, when the communication device is a network device, the other device is a terminal device; or, when the communication device is a terminal device, the other device is a network device.
  • the present application provides a communication device, including: a logic circuit and an input-output interface.
  • the input and output interface is used to input first information sent from each of the M second communication devices.
  • the first information includes the interference size detected on K channels by the second communication device that sent the first information.
  • K and M are integers greater than or equal to 1.
  • Logic circuits are used to perform LBT.
  • the back-off speed of LBT is determined based on the first information. It can be understood that the backoff speed is used to indicate the number of times the communication device backs off within a time unit.
  • a logic circuit is used to determine first information, where the first information includes the magnitude of interference detected by the terminal device on K channels.
  • K is an integer greater than or equal to 1.
  • the amount of interference is determined based on multiple threshold values.
  • the input and output interface is used for outputting the first information to the first communication device.
  • embodiments of the present application provide a chip system, which includes a processor and may also include a memory for implementing the method executed by the communication device in any one of the first to second aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • embodiments of the present application provide a communication system, which includes the communication device described in any one of the second to third aspects.
  • the present application provides a computer-readable storage medium that stores a computer program or instructions.
  • the methods executed by the terminal device in the above aspects are implemented. ; or implement methods performed by a network device in each of the above aspects.
  • a computer program product includes: computer program code or instructions.
  • the computer program product includes: computer program code or instructions.
  • the methods performed by the network device in the above aspects are executed. , or causing the methods performed by the terminal device in the above aspects to be executed.
  • a communication device in an eleventh aspect, includes a unit or module that performs the methods of the above aspects.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the carrier sensing multiple access technology with collision avoidance in the prior art
  • Figure 3 is a schematic flow chart of the type 4 LBT mechanism in the prior art
  • Figure 4 is a schematic diagram of the hidden node problem and the exposed node problem provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of an RMTC configuration example in the prior art
  • Figure 6 is one of the exemplary flow charts of a data transmission method provided by an embodiment of the present application.
  • Figure 7A is a schematic diagram of a Type 1 LBT mechanism provided by an embodiment of the present application.
  • Figure 7B is a schematic diagram of the Type 2 LBT mechanism provided by the embodiment of the present application.
  • Figure 8 is one of the exemplary flow charts of a data transmission method provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of an LBT mechanism in a multi-carrier scenario provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 14 is a block diagram of a terminal device provided by an embodiment of the present application.
  • Figure 15 is a block diagram of a base station according to an embodiment of the present application.
  • Channel refers to a continuous segment of frequency domain resources on the spectrum where terminal equipment can measure signal quality, such as an LBT channel, which can also be called a carrier or an unlicensed frequency band carrier.
  • Time unit may refer to any one of slots, symbols, mini-slots, frames, subframes or half-frames.
  • Wireless communication systems can work in licensed frequency bands or unlicensed frequency bands. It is understandable that the use of unlicensed frequency bands can improve the system capacity of the wireless communication system.
  • a wireless communication system includes one or more network devices and one or more terminal devices.
  • the terminal equipment involved in this application includes equipment that provides voice and/or data signal connectivity to users. Specifically, it includes equipment that provides voice to users, or includes equipment that provides data signal connectivity to users, or includes providing users with Equipment for voice and data signal connectivity. This may include, for example, a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station, remote station, access point (AP), remote terminal equipment (remote terminal), Access terminal, user terminal, user agent, or user device, satellite, drone, balloon or aircraft, etc.
  • this may include a mobile phone (or "cellular" phone), a computer with a mobile terminal device, a portable, pocket-sized, handheld, computer-built-in mobile device, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning systems (GPS), laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device. Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices. If the various terminal devices introduced above are located on the vehicle (for example, placed or installed in the vehicle), they can be considered as vehicle-mounted terminal equipment.
  • the vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example. ).
  • OBU on-board unit
  • Terminal devices can be distributed throughout the wireless communication system and can be stationary or mobile. Terminal devices may include: mobile devices, mobile stations, mobile units, wireless units, remote units, user agents, mobile clients, etc.
  • the network equipment involved in this application includes access network (AN) equipment, such as base stations (for example, access points), which may refer to the access network communicating with wireless terminal equipment through one or more cells over the air interface.
  • AN access network
  • base stations for example, access points
  • the communication equipment, or for example, the network equipment in a vehicle-to-everything (V2X) technology is the road side unit (RSU).
  • RSU road side unit
  • the network equipment may include an evolutionary base station (NodeB or eNB or e-NodeB, evolutionary Node B) in a long term evolution (LTE) system or long term evolution-advanced (LTE-A), or It can include the next generation nodes in the evolved packet core network (evolved packet core, EPC), the fifth generation mobile communication technology (the 5th generation, 5G), and the new radio interface (new radio, NR) system (also referred to as the NR system) B (next generation node B, gNB) may also include the centralized unit (centralized unit, CU) and distributed unit (distributed unit, DU) in the cloud access network (cloud radio access network, Cloud RAN) system, satellite , drones, balloons or airplanes, etc., are not limited by the embodiments of this application.
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • EPC evolved packet core network
  • 5G fifth generation mobile communication technology
  • NR new radio interface
  • the network device may be used to communicate with the terminal device under the control of a network device controller (not shown in Figure 1).
  • the network device controller may be part of the core network (not shown in Figure 1) or may be integrated into the network device.
  • Network devices can communicate wirelessly with terminal devices through one or more antennas. Each network device can provide communication coverage for its corresponding coverage area. The coverage area corresponding to the network device can be divided into multiple sectors (sectors), where one sector corresponds to a part of the coverage area (not shown in Figure 1).
  • Network devices can also communicate with each other directly or indirectly through a backhaul (blackhaul) link. As can be understood, the backhaul link may be a wired communication connection or a wireless communication connection.
  • Network equipment may include: network equipment transceiver station (BTS), wireless transceiver, a basic service set (BSS), an extended service set (ESS), NodeB, eNodeB, gNodeB etc.
  • BTS network equipment transceiver station
  • BSS basic service set
  • ESS extended service set
  • NodeB NodeB
  • eNodeB gNodeB etc.
  • a wireless communication system may include several different types of network equipment, such as macro network equipment (macro base station), micro network equipment (micro base station), etc.
  • Network equipment can apply different wireless technologies, such as cell wireless access technology or WLAN access technology.
  • Network equipment can transmit downlink data to terminal equipment, where the data uses information Channel coding is used to encode the data, and the channel-coded data is transmitted to the terminal device after being modulated by the constellation.
  • the terminal equipment can transmit uplink data to the network equipment, and the uplink data can also be progressively encoded using channel coding.
  • the encoded data is transmitted to the network equipment after constellation modulation.
  • the wireless communication system can be a new radio (NR) communication system that can work in an unlicensed frequency band, such as an NR in unlicensed spectrum (NR-U) system, or it can be a new radio that can work in an unlicensed frequency band.
  • NR new radio
  • LTE long term evolution
  • Wireless communication systems can use the enhanced licensed-assisted access (eLAA) solution to achieve channel binding between primary and secondary cells.
  • eLAA enhanced licensed-assisted access
  • the primary cell (PC) works in the licensed frequency band to transmit key messages and services that require service quality assurance
  • SC secondary cell
  • the secondary cell can support uplink and downlink at the same time.
  • the wireless communication system may also include a wireless fidelity (WiFi) network.
  • WiFi wireless fidelity
  • the wireless communication system adopts the LBT mechanism.
  • some terminal devices can connect to access points through WiFi communications to use unlicensed spectrum resources, and some terminal devices can also connect to network devices through mobile communications to use unlicensed spectrum resources.
  • any device When using an unlicensed frequency band, any device must first listen to see if the frequency band is occupied. If the frequency band is not busy, it can occupy and transmit data.
  • Wireless communication systems can support multi-carrier operation.
  • Multicarrier transmitters can transmit modulated signals on multiple carriers simultaneously.
  • each communication connection can carry multi-carrier signals modulated using different wireless technologies.
  • Each modulated signal can be sent on a different carrier, and can also carry control information, such as reference signals, control channels, etc., overhead information (overhead information), data, etc.
  • the working frequency band of the wireless communication system has been expanded from the licensed frequency band to the unlicensed frequency band. Since multiple wireless communication systems are allowed to coexist in unlicensed frequency bands, competition and fairness issues between different systems need to be considered for communication in unlicensed frequency bands.
  • CSMA/CA carrier sense multiple access with collision avoidance
  • CCA clear channel assessment
  • CW contention window
  • NR-U The communication system in NR that operates in the unlicensed frequency band is called NR-U.
  • NR-U The communication system in NR that operates in the unlicensed frequency band.
  • LAA licensed assisted access
  • devices working in unlicensed frequency bands need to follow the principles of LBT to avoid collision.
  • the LBT mechanism of type 4 includes initial idle channel assessment (initial CCA, ICCA) and extended channel assessment ( extended CCA, ECCA).
  • ICCA when traffic arrives at the transmitting node, such as network equipment or terminal equipment, ICCA is triggered. If the transmitting node detects that the channel status continues to be idle for a defer period in ICCA, it can immediately occupy the channel, and the channel occupation time is preset. If the transmitting node detects that the channel status is busy within a delay period, it enters ECCA. It can be understood that the above-mentioned delay period may be predefined or preset. ECCA It refers to generating a random CCA channel detection backoff number N between (0, CW-1), and CW is pre-configured. The transmitting node first needs to ensure that the channel remains idle for a delay period.
  • the transmitting node If it is detected that the channel status is busy within a delay period, another delay period needs to be generated until the channel continues to be idle within a certain delay period. After the transmitting node is idle for a delay period, it performs CCA detection in each subsequent time slot. If the channel is idle, the random number N is decremented. If the channel is busy, it is necessary to ensure that the channel remains idle for a delay time again, and then perform CCA detection in each time slot. When the random number N decreases to 0, the channel can be occupied to send data to the receiving node. It can be understood that the occupation time length of the channel is also preset.
  • CCA detection determines whether the channel is in an idle state or a busy state based on a preset threshold value. For example, when the channel detection energy is higher than -72dBm, CCA detection determines that the channel is busy; when the channel detection energy is lower than -72dBm, CCA detection determines that the channel is idle.
  • the transmitting node only performs random backoff based on its own CCA detection results, without considering the channel status at the receiving node. This will cause the hidden node problem (hidden node problem) and exposed node problem (exposed node problem) as shown in Figure 4.
  • the transmitting node A and the transmitting node C are far apart, which causes the transmitting node A and the transmitting node C to both determine that the channel is idle in the CCA detection, and occupy the channel to transmit to the receiving node B at the same time. Since the transmissions of transmitting node A and transmitting node C interfere with each other, receiving node B fails to receive.
  • transmitting node B and transmitting node C are relatively close to each other. As a result, when transmitting node B or transmitting node C is transmitting, the other node will determine that the channel is busy during CCA detection and does not occupy the channel for transmission. However, in fact, since the receiving node A is far away from the transmitting node C, and the receiving node D is far away from the transmitting node B, the simultaneous transmission of the transmitting node B and the transmitting node C will not cause strong mutual interference.
  • a single threshold value such as -72dBm
  • N is decremented at a fixed backoff speed (such as 1).
  • a single threshold and fixed backoff speed cannot be adjusted to dynamically changing interference levels in the environment. Therefore, the channel utilization rate of unlicensed frequency bands is reduced.
  • RSSI received signal strength indicator
  • CO channel occupancy
  • the terminal device performs measurements according to the preset RSSI measurement time configuration (RSSI measurement time configuration, RMTC).
  • the RMTC includes the measurement period [40, 80, 160, 320, 640 milliseconds], subframe offset [0,...,639], and measurement duration [1, 14, 28, 42, 70 symbols].
  • Figure 5 shows a specific RMTC configuration example, in which the measurement duration is 70 symbols and the measurement period is 40 milliseconds.
  • the terminal device will measure the average RSSI and CO and report it to the network device to achieve efficient wireless resource management.
  • the measurement of RSSI and CO needs to be triggered by the downlink DRS signal, and the transmission of the DRS signal is limited by the LBT process. Therefore, the measurement of RSSI and CO cannot be performed due to the transmission failure of the DRS signal.
  • the terminal device uploads RSSI and CO for a long period, and the measured values are average values over a long period of time, so the effectiveness of the measured values is poor.
  • the above two points make it impossible for network equipment to obtain the real-time interference level at terminal equipment, affecting the channel utilization of unlicensed frequency bands.
  • embodiments of the present application provide a data transmission method.
  • the terminal device can send the interference size detected by the terminal device to the network device, so that the appropriate backoff speed can be determined to perform LBT.
  • an exemplary flow chart of a data transmission method provided by an embodiment of the present application may include the following operations.
  • the terminal device sends the first information to the network device.
  • the network device receives the first information from the terminal device.
  • the M terminal devices may send the first information to the network device respectively, and the network device may receive the first information from the M terminal devices.
  • M is an integer greater than or equal to 1.
  • the first information may include interference sizes detected by the terminal device on K channels.
  • K is an integer greater than or equal to 1.
  • the terminal device can perform CCA on K channels.
  • the terminal equipment can determine the amount of interference on each channel based on the CCA results on each channel.
  • the terminal device determines the amount of interference on each channel based on the threshold value and the above CCA result on each channel.
  • the number of threshold values and the value of the threshold value in the above situation are only shown as examples, and do not serve as a limitation on the number of threshold values and the value of the threshold value.
  • the number of threshold values of the terminal device and the value of the threshold value may be predefined, preset, determined by the terminal device, or indicated by the network device. It can be understood that the number of threshold values and the values of the threshold values of different terminal devices may be the same or different.
  • the terminal equipment can obtain the quantified interference size through multiple threshold values. Compared with the method of determining the interference size through a single threshold value, the interference size can be more detailed and accurate to reflect the channel of the terminal equipment. state.
  • the terminal device may send the interference sizes of K channels to the network device.
  • the end device can send the measured interference level on each channel to the network device.
  • the network device can determine the interference size on each channel of the terminal device, thereby optimizing the scheduling strategy, such as scheduling the channel with the smallest interference size of the terminal device.
  • the terminal device may send the interference sizes of some of the K channels to the network device.
  • the terminal device may send the interference size of the channel with the largest interference size among the K channels to the network device, or the terminal device may send the interference size of the channel with the smallest interference size among the K channels to the network device.
  • the terminal device can report the maximum interference size or the minimum interference size to the network device, which can save transmission resources and allow the network device to optimize the scheduling strategy.
  • the terminal device may send the average interference size of the interference levels of K channels to the network device.
  • the terminal device can determine the average value, root mean square, or variance of the interference magnitudes of K channels, and the terminal device can report the calculated average value, root mean square, or variance to the network device as the average interference magnitude. In this way, the terminal device can report the average interference size to the network device, which can save transmission resources and allow the network device to optimize the scheduling strategy.
  • the terminal device may send the first information of layer 1 to the network device.
  • the first information of layer 1 is different from the first information of layer 3.
  • the first information of layer 3 is the first information obtained by performing processing such as filtering on the first information of layer 1.
  • the first information of layer 1 can be considered as the first information that has not been processed by layer 3. Therefore, the feedback delay of the first information of layer 3 is relatively large. Since the first information of layer 1 of the terminal device is not filtered and processed, the signal processing result received by the physical layer is directly fed back after a certain time unit, and the processing delay is shorter than that of layer 3.
  • the terminal device may send the first information to the network device through physical layer resources.
  • the terminal device may send the first information to the network device through scheduling request resources allocated by the network device.
  • the scheduling request resource may be allocated by the network device to the terminal device through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the network device may indicate the period of scheduling the request resource and the time-frequency resource of the scheduling request resource to the terminal device through RRC signaling.
  • the terminal device may send the first information to the network device on the symbol corresponding to the determined symbol index l, where l 0 is the starting symbol index.
  • S602 The network device performs LBT.
  • the above-mentioned backoff speed of LBT may be determined based on the first information received by the network device in S601. It can be understood that the backoff speed can be used to indicate the number of times the network device backs off within a time unit.
  • the network device may determine the final interference size based on the M pieces of first information received in S601.
  • each first information may include an interference size
  • the interference size may be implemented with reference to the interference sizes of K channels reported by the terminal device in S601.
  • the network device can separate from the M first information Among the M interference sizes included, the interference size with the smallest interference size is selected as the final interference size.
  • the network device can optimize the scheduling strategy based on the interference level sent by the terminal device. For example, the network device can schedule the terminal device with the smallest interference.
  • the network device may select the interference size with the largest interference size as the final interference size from the M interference sizes respectively included in the M pieces of first information. In this way, the network device can optimize the scheduling strategy based on the interference level sent by the terminal device. For example, the network device can schedule the terminal device with the largest interference.
  • each first information may include K interference sizes, and the K interference sizes may be the interference sizes of K channels measured by the terminal equipment. Then the network device can select the interference size of the channel with the largest interference size from the interference sizes of the K channels included in each first information as the interference size of the terminal device. Or the network device may select the interference size of the channel with the smallest interference size from the interference sizes of the K channels included in each first information as the interference size of the terminal device. Alternatively, the network device may determine the average interference size as the interference size of the terminal device based on the interference sizes of the K channels included in each first information. For example, the network device may determine the average, root mean square or variance of the interference sizes of K channels as the interference size of the terminal device.
  • the network device selects the interference size with the smallest interference size from the interference sizes of the M terminal devices as the final interference size. In this way, the network device can optimize the scheduling strategy based on the interference level sent by the terminal device. For example, the network device can schedule the terminal device with the smallest interference. Alternatively, the network device may select the interference size with the largest interference size from the interference sizes of the M terminal devices as the final interference size. In this way, the network device can optimize the scheduling strategy based on the interference level sent by the terminal device. For example, the network device can schedule the terminal device with the largest interference.
  • the network device can determine the final interference size based on its own interference size and the first information received in S601. Among them, the network device can perform CCA on L channels and determine the interference size on each channel based on the CCA results on each channel.
  • L may be an integer greater than or equal to 1.
  • the network device can determine the interference size on each channel based on a threshold value and the above-mentioned CCA result on each channel. It can be understood that the way the network device determines the interference size on each channel based on a threshold value and the CCA result on each channel can refer to the way the terminal device determines the size of each channel based on a threshold value and the CCA result on each channel.
  • the interference magnitude on the channel is implemented in a manner.
  • the network device can determine the interference size on each channel based on multiple threshold values and the above-mentioned CCA results on each channel. It can be understood that the way in which the network device determines the interference size on each channel based on multiple threshold values and the CCA result on each channel can refer to the terminal device determining based on multiple threshold values and the CCA result on each channel. implemented in a manner that interferes with the size of each channel.
  • the number of threshold values and the value of the threshold value in the above situation are only shown as examples, and do not serve as a limitation on the number of threshold values and the value of the threshold value.
  • the number of threshold values of the network device and the value of the threshold value may be predefined, preset, or determined by the network device. It can be understood that the number of threshold values and the value of the threshold value of the terminal device may be the same as or different from the number and value of the threshold value of the network device.
  • the network device can determine the interference level of the network device from the interference levels of the L channels. For example, the network device may select the interference size with the smallest interference size from the interference sizes of the L channels as the interference size of the network device. For another example, the network device may select the interference size with the largest interference size from the interference sizes of the L channels as the interference size of the network device. For another example, the network device can determine the average interference size of the L channels as the interference size of the network device. For example, the network device can determine the average, root mean square or variance of the interference sizes of the L channels as the interference of the L channels. The size of the average interference size.
  • the network device may determine the final interference level based on the interference level on each channel and the first information received in S601. Below, different situations are introduced.
  • Each first information may include an interference size, and the interference size may be implemented with reference to the interference sizes of K channels reported by the terminal device in S601. Then the network device can select the interference size with the smallest interference size as the first interference size from the M interference sizes contained in the M pieces of first information. The network device may select the smallest interference size as the final interference size from the first interference size and the interference size of the network device. In this way, network equipment can schedule terminal equipment with minimal interference to reduce interference to communications. The network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • the network device may select the interference size with the smallest interference size as the first interference size from the M interference sizes included in the M pieces of first information.
  • the network device may select the largest interference size as the final interference size from the first interference size and the interference size of the network device. In this way, network equipment can schedule terminal equipment with minimal interference to reduce interference to communications.
  • the network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • Each first information may include an interference size, and the interference size may be implemented with reference to the interference sizes of K channels reported by the terminal device in S601. Then the network device can select the interference size with the largest interference size as the first interference size from the M interference sizes contained in the M pieces of first information. The network device may select the smallest interference size as the final interference size from the first interference size and the interference size of the network device. The network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • the network device may select the interference size with the largest interference size as the first interference size from the M interference sizes included in the M pieces of first information.
  • the network device may select the largest interference size as the final interference size from the first interference size and the interference size of the network device.
  • the network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • Each first information may include K interference sizes, and the K interference sizes may be interference sizes of K channels measured by the terminal equipment. Then the network device can select the interference size of the channel with the largest interference size from the interference sizes of the K channels included in each first information as the interference size of the terminal device. Or the network device may select the interference size of the channel with the smallest interference size from the interference sizes of the K channels included in each first information as the interference size of the terminal device. Alternatively, the network device may determine the average interference size as the interference size of the terminal device based on the interference sizes of the K channels included in each first information. For example, the network device may determine the average, root mean square or variance of the interference sizes of K channels as the interference size of the terminal device.
  • the network device may select the interference size with the smallest interference size from the interference sizes of the M terminal devices as the first interference size.
  • the network device may select the smallest interference size as the final interference size from the first interference size and the interference size of the network device. In this way, network equipment can schedule terminal equipment with minimal interference to reduce interference to communications.
  • the network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • the network device may select the interference size with the smallest interference size from the interference sizes of the M terminal devices as the first interference size.
  • the network device may select the largest interference size as the final interference size from the first interference size and the interference size of the network device. In this way, network equipment can schedule terminal equipment with minimal interference to reduce interference to communications.
  • the network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • Each first information may include K interference sizes, and the K interference sizes may be interference sizes of K channels measured by the terminal equipment. Then the network device can select the interference size of the channel with the largest interference size from the interference sizes of the K channels included in each first information as the interference size of the terminal device. Or the network device may select the interference size of the channel with the smallest interference size from the interference sizes of the K channels included in each first information as the interference size of the terminal device. Alternatively, the network device may determine the average interference size as the interference size of the terminal device based on the interference sizes of the K channels included in each first information. For example, the network device may determine the average, root mean square or variance of the interference sizes of K channels as the interference size of the terminal device.
  • the network device may select the interference size with the largest interference size from the interference sizes of the M terminal devices as the first interference size.
  • the network device may select the smallest interference size as the final interference size from the first interference size and the interference size of the network device.
  • the network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • the network device may select the interference size with the largest interference size from the interference sizes of the M terminal devices as the first interference size.
  • the network device may select the largest interference size as the final interference size from the first interference size and the interference size of the network device.
  • the network device can determine the backoff speed based on the interference level of the terminal device to be scheduled, thereby making the backoff speed more accurate.
  • the network device can determine the LBT backoff speed based on the final interference size.
  • the backoff speed is different.
  • the final interference size can correspond to the backoff speed.
  • the larger the final interference size the smaller the backoff speed can be.
  • the smaller the final interference size the greater the retreat speed can be.
  • Z 1 can be an integer greater than or equal to 1, such as 2, 3 or 4, etc.
  • I final represents the final interference size
  • f(I final ) represents the backoff speed.
  • the network device can determine the backoff speed corresponding to the final interference size according to the table.
  • Table 1 is used as an example for explanation.
  • Table 1 An example of the corresponding relationship between the final interference size and the back-off speed
  • Table 1 is only shown as an example and does not constitute a limitation on the corresponding relationship between the final interference size and the retreat speed.
  • the corresponding relationship between the final interference size and the backoff speed may be predefined or preset, and is not specifically limited in this application.
  • the network device may consider that the interference level of the network device or terminal device is at the highest state, and then the network device may need to ensure that the channel remains idle for a delay time.
  • the network device can perform LBT.
  • N k N k-1 -f (I final ), which can be understood as the network device backs off f (I final ) when it determines that the channel is idle. Second-rate. In S602, the network device may access the channel when N is less than or equal to 0.
  • the terminal device reports the quantified interference size to the network device. That is, the terminal device reports the interference size determined based on one or more threshold values to the network device. Therefore, the network device can determine the interference size of the terminal device. It is understood that The channel status of the terminal device can therefore reduce the problems of exposed nodes and hidden nodes and optimize the scheduling strategy.
  • the network equipment dynamically adjusts the backoff speed of LBT based on the interference level of the terminal equipment and the interference level of the network equipment to avoid a longer or shorter backoff process and improve channel utilization.
  • the embodiment shown in Figure 6 may also include S603.
  • the network device sends the first indication information to one or more scheduled terminal devices among the M terminal devices.
  • the first information may indicate the channel occupation duration of the first channel.
  • the first channel may be used to transmit information, such as data, between one or more scheduled terminal devices and network devices.
  • the scheduled one or more terminal devices may be determined by the network device according to the first information received in S601. For example, the network device may select the terminal device corresponding to the first information with the smallest interference size among the interference sizes contained in the first information as the scheduled terminal device. That is to say, the number of scheduled terminal devices may be less than or equal to M.
  • the channel occupancy duration of the first channel may be determined based on the first information of the one or more terminal devices. It can be understood that the network device may determine the second interference size of each terminal device according to the first information of one or more terminal devices. It should be noted that the manner in which the network device determines the second interference size of each terminal device based on the first information of one or more terminal devices can be implemented with reference to the manner in which the network device determines the first interference size in the above situations 1 to 4. . In another possible situation, the channel occupation duration of the first channel may be determined based on the first information of the one or more terminal devices and the interference level of the network device.
  • the network device can determine the second interference size of one or more terminal devices according to the first information of the one or more terminal devices and the interference size of the network device, thereby determining each terminal device according to the second interference size.
  • the channel occupancy time wherein, the network device determines the second interference size of one or more terminal devices based on the first information of one or more terminal devices and the interference size of the network device. You can refer to the network device in situations 1 to 4 to determine the final interference. Size implementation.
  • the network equipment can dynamically determine the channel occupation time of the terminal equipment according to the interference level of the terminal equipment, or based on the interference level of the terminal equipment and the network equipment, so that the terminal equipment with higher interference level can occupy the channel for a shorter time. Allowing terminal equipment with lower interference to occupy the channel for a longer period of time can improve channel utilization.
  • the second interference level of the terminal device and the channel occupation duration can be in one-to-one correspondence.
  • the greater the second interference level of the terminal device the shorter the channel occupation time can be.
  • the greater the second interference level of the terminal device the shorter the channel occupation time can be.
  • the second interference size of the terminal device may be the largest interference size among the interference sizes of the K channels, the smallest interference size, or the average interference size of the K channels, which will not be described again here.
  • the second interference size of the terminal device may be sent by the terminal device, or may be determined by the network device based on the interference sizes of K channels sent by the terminal device.
  • the network device may determine the channel occupancy time based on a formula.
  • the channel occupancy duration g(I) Z 2 -I.
  • I represents the second interference size
  • Z 2 can be an integer greater than or equal to 1, such as 5, 6 or 7, etc. It can be understood that the above formula is only shown as an example and does not constitute a limitation of the formula for determining the channel occupation duration according to the second interference level of the terminal device.
  • the formula for determining the channel occupation duration according to the second interference level of the terminal device may be predefined or preset, which is not specifically limited in this application.
  • the network device may determine the channel occupation duration corresponding to the second interference level of the terminal device according to the table.
  • Table 2 is used as an example for explanation.
  • Table 2 Example of the corresponding relationship between the second interference level of a terminal device and the channel occupation time
  • the unit of channel occupation duration may be time unit, second, millisecond or microsecond, etc.
  • the network device may also send the start time unit of the first channel to one or more scheduled terminal devices respectively.
  • the network device may send the starting time of the first channel to one or more terminal devices through a message.
  • the network device may send messages to one or more terminal devices respectively, and each message is used to indicate the starting time of the first channel.
  • one or more scheduled terminal devices can transmit information with the network device on the first channel according to the starting time unit of the first channel and the channel occupancy duration of the first channel.
  • the terminal device may perform LBT before the terminal device transmits information with the network device on the first channel.
  • the terminal device may perform LBT.
  • the terminal device After network equipment accesses the channel, it can use the physical downlink control channel (physical downlink control channel (PDCCH) to send scheduling commands to the terminal device, such as channel occupation duration.
  • PDCCH physical downlink control channel
  • the scheduled terminal equipment performs different types of LBT mechanisms according to the interval between the uplink transmission start time and the PDCCH transmission completion time.
  • the terminal device executes the LBT mechanism of type 1.
  • the terminal device executes the LBT mechanism of type 2.
  • the terminal device executes the LBT mechanism of type 2.
  • the terminal device transmits information with the network device through the first channel when the PDCCH transmission is completed.
  • the terminal device may send data to the network device through the first channel.
  • the terminal device transmits information with the network device through the first channel after a delay time has passed when the PDCCH transmission is completed. For example, the terminal device may send data to the network device through the first channel.
  • network equipment can dynamically adjust the channel occupancy time based on the interference level of network equipment and the interference level of terminal equipment, which can improve channel utilization.
  • S801 The network device is in idle state.
  • the network device can be in an idle state, that is, no data is sent or received.
  • S802 The network device determines whether there is service arrival.
  • the network device can determine whether a service has arrived, that is, the network device can determine whether data needs to be sent or received.
  • the network device may execute S803; when it is determined that no service arrives, the network device may execute S801.
  • S803 The network device determines whether the channel continues to be idle for a delay period.
  • a network device can monitor a channel for a period of time and determine whether the channel is idle for a delay period. It is understandable that the delay duration may be predefined or preset, such as 34us. In S803, if the network device determines that the channel continues to be idle for a delay period, the network device can perform S804. If the network device determines that the channel does not continue to be idle for a delay period, the network device can perform S805.
  • S804 Data transmission between network equipment and terminal equipment.
  • the network device may send the channel occupancy duration of the first channel to the terminal device.
  • the network device can send the start time unit to the terminal device.
  • the network device can perform data transmission with the terminal device on the first channel.
  • S801 After the network device and the terminal device complete data transmission, S801 can be executed.
  • the network device generates a random number N between (0, CW-1).
  • CW is pre-configured. It is understandable that network equipment enters the ECCA stage starting from S805.
  • S806 The network device determines whether the channel continues to be idle for a delay period.
  • a network device can monitor a channel for a period of time and determine whether the channel is idle for a delay period. It is understandable that the delay duration may be predefined or preset, such as 34us. In S806, if the network device determines that the channel continues to be idle for a delay period, the network device can perform S807. If the network device determines that the channel does not continue to be idle for a delay period, the network device can perform S806.
  • S807 The network device determines whether N is less than or equal to 0.
  • the network device can determine whether the random number N is less than or equal to 0. If the random number N is less than or equal to 0, the network device executes S804. If the random number N is greater than 0, the network device executes S808.
  • S808 The network device monitors whether the channel is idle within a time unit.
  • the network device may monitor whether the channel is idle within a time unit, such as a time slot. If the network device detects that the channel is idle within a time unit, the network device may execute S809.
  • the network device determines whether the backoff speed f(I) is less than or equal to 0.
  • the network device can consider that the interference level of the network device or terminal device is at the highest state, and then the network device needs to ensure that the channel remains idle for a delay time, that is, execute S806. If the backoff speed f(I) is not equal to 0, the network device can perform S810.
  • N k-1 represents the value of the random number N after the previous round of backoff
  • N k represents the value of the random number N after the current round of backoff.
  • the LBT method in the single carrier scenario is introduced as shown in Figure 8.
  • network equipment can access the channel through LBT scheme A or LBT scheme B.
  • the unlicensed carrier frequency band shown in Figure 9 can be understood as a channel, such as an LBT channel.
  • each unlicensed carrier frequency band can correspond to one channel.
  • the network device checks whether other unlicensed frequency band carriers, such as unlicensed frequency band carrier 2 and unlicensed frequency band carrier 3 shown in Figure 9, have been idle continuously for a delay period.
  • the unlicensed frequency band carrier that has completed the back-off process (unlicensed frequency band carrier 1 shown in Figure 9), and the unlicensed frequency band carrier that has not completed the back-off process but has been idle for a delay period (unlicensed frequency band shown in Figure 9 Carrier 3), both start data transmission, that is, the network device can send or receive data on the unlicensed frequency band carrier 1 and the unlicensed frequency band carrier 3.
  • the unlicensed frequency band carrier (unlicensed frequency band carrier 2 shown in Figure 9) that has not completed the backoff process and has not been continuously idle for a delay period does not participate in data transmission.
  • the backoff process on each unlicensed band carrier is the same as shown in Figure 8. That is to say, on each unlicensed frequency band carrier, the network device can determine the backoff speed according to the first information sent by the terminal device, thereby performing LBT. Optionally, on each unlicensed frequency band carrier, the network device may determine the backoff speed based on the first information sent by the terminal device and the interference level of the network device, thereby performing LBT.
  • the terminal device can send the lowest value among the interference levels of K channels to the network device. This is because multi-carrier LBT scheme A gives priority to ensuring that data transmission starts as early as possible. If the network device implements multi-carrier LBT solution B, the terminal device can send the maximum value of the interference levels of K channels to the network device. In multi-carrier LBT solution B, data transmission must be started after all unlicensed band carriers have completed the backoff process. This is because multi-carrier LBT scheme B requires that K channels start transmitting at the same time.
  • the network device may indirectly indicate to the terminal device through the second indication information whether the network device adopts the multi-carrier LBT solution A or the multi-carrier LBT solution B.
  • the network device may send second indication information to the terminal device, the second indication information may instruct the terminal device to send the lowest value of the measured interference levels to the network device, or the second indication information may instruct the terminal device to send the lowest value of the measured interference level to the network device. Send the maximum value among the measured interference levels. That is to say, the network device may send second instruction information to the terminal device, instructing the network device to perform multi-carrier LBT solution A or the network device to perform multi-carrier LBT solution B.
  • the second instruction information sent by the network device to the terminal device instructs the terminal device to send the minimum value of the measured interference levels
  • the second instruction information may be considered to instruct the network device to perform multi-carrier LBT scheme A. If the second indication information sent by the network device to the terminal device instructs the terminal device to send the highest measured interference level If the value is large, it can be considered that the second indication information instructs the network device to perform multi-carrier LBT solution B.
  • FIG 10 is a schematic block diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 can correspondingly implement the functions or steps implemented by the network device or the terminal device in each of the above method embodiments.
  • the communication device may include a processing unit 1010 and a transceiver unit 1020.
  • a storage unit may also be included, which may be used to store instructions (code or programs) and/or data.
  • the processing unit 1010 and the transceiver unit 1020 can be coupled with the storage unit.
  • the processing unit 1010 can read the instructions (code or program) and/or data in the storage unit to implement the corresponding method.
  • Each of the above units can be set up independently or partially or fully integrated.
  • the communication device 1000 can correspondingly implement the behaviors and functions of the network device in the above method embodiments.
  • the communication device 1000 may be a network device, or may be a component (such as a chip or circuit) used in the network device.
  • the transceiver unit 1020 may be used to perform all receiving or sending operations performed by the network device in the embodiments shown in FIGS. 6 to 9 .
  • S602 in the embodiment shown in FIG. 6 .
  • the transceiver unit 1020 is configured to receive first information sent from each of M terminal devices, where the first information includes the interference size detected on K channels by the terminal device that sent the first information.
  • K and M are integers greater than or equal to 1.
  • the processing unit 1010 is used to perform monitoring first and then sending LBT.
  • the backoff speed of the LBT is determined based on the first information, and the backoff speed is used to indicate the number of times the network device backs off within a time unit.
  • the communication device 1000 can correspondingly implement the behaviors and functions of the terminal device in the above method embodiments.
  • the communication device 1000 may be a terminal device, or may be a component (such as a chip or circuit) used in the terminal device.
  • the transceiver unit 1020 may be used to perform all receiving or sending operations performed by the terminal device in the embodiments shown in FIGS. 6 to 9 .
  • the processing unit 1010 is configured to determine first information, where the first information includes the magnitude of interference detected by the terminal device on K channels. Among them, K is an integer greater than or equal to 1. The amount of interference is determined based on multiple threshold values.
  • the transceiver unit 1020 is used to send the first information to the network device.
  • processing unit 1010 and the transceiver unit 1020 For operations performed by the processing unit 1010 and the transceiver unit 1020, please refer to the relevant descriptions of the foregoing method embodiments.
  • processing unit 1010 in the embodiment of the present application can be implemented by a processor or processor-related circuit components
  • transceiver unit 1020 can be implemented by a transceiver or transceiver-related circuit components or a communication interface.
  • an embodiment of the present application provides a communication device 1100.
  • the communication device 1100 includes a processor 1110 .
  • the communication device 1100 may also include a memory 1120 for storing instructions executed by the processor 1110 or input data required for the processor 1110 to run the instructions or data generated after the processor 1110 executes the instructions.
  • the processor 1110 can implement the method shown in the above method embodiment through instructions stored in the memory 1120 .
  • an embodiment of the present application provides a communication device 1200.
  • the communication device 1200 It can be a chip or a system on a chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1200 may include at least one processor 1210 coupled with a memory.
  • the memory may be located within the device or outside the device.
  • the communication device 1200 may further include at least one memory 1220.
  • the memory 1220 stores the computer programs, configuration information, computer programs or instructions and/or data necessary to implement any of the above embodiments; the processor 1210 may execute the computer program stored in the memory 1220 to complete the method in any of the above embodiments.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1210 may cooperate with the memory 1220.
  • the specific connection medium between the above-mentioned transceiver 1230, processor 1210 and memory 1220 is not limited in the embodiment of the present application.
  • the communication device 1200 may also include a transceiver 1230, and the communication device 1200 may interact with other devices through the transceiver 1230.
  • the transceiver 1230 can be a circuit, a bus, a transceiver, or any other device that can be used for information exchange, or is also called a signal transceiver unit. As shown in Figure 12, the transceiver 1230 includes a transmitter 1231, a receiver 1232 and an antenna 1233.
  • the transceiver in the communication device 1200 can also be an input-output circuit and/or a communication interface, which can input data (or receive data) and output data ( Or, sending data),
  • the processor is an integrated processor or microprocessor or integrated circuit, and the processor can determine the output data according to the input data.
  • the communication device 1200 can be applied to network equipment.
  • the specific communication device 1200 can be a network device, or a device that can support the network device to implement the functions of the network device in any of the above-mentioned embodiments.
  • the memory 1220 stores the necessary computer programs, computer programs or instructions and/or data to implement the functions of the network device in any of the above embodiments.
  • the processor 1210 can execute the computer program stored in the memory 1220 to complete the method performed by the network device in any of the above embodiments.
  • the communication device 1200 can be applied to a terminal device.
  • the specific communication device 1200 can be a terminal device, or can support a terminal device to realize the functions of the terminal device in any of the above-mentioned embodiments. installation.
  • the memory 1220 stores necessary computer programs, computer programs or instructions and/or data to implement the functions of the terminal device in any of the above embodiments.
  • the processor 1210 can execute the computer program stored in the memory 1220 to complete the method executed by the terminal device in any of the above embodiments.
  • the communication device 1200 provided in this embodiment can be applied to a network device to complete the method executed by the network device, or applied to a terminal device to complete the method executed by the terminal device. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, and will not be described again here.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute each method, step and logical block diagram disclosed in the embodiment of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • Memory may also be any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of performing a storage function, used to store computer programs, computer programs or instructions and/or data.
  • the embodiment of the present application also provides another communication device 1300, including: an input and output interface 1310 and a logic circuit 1320; the input and output interface 1310 is used to receive code instructions and transmit them to the logic circuit 1320; Logic circuit 1320 is used to run code instructions to perform the method performed by the network device or terminal device in any of the above embodiments.
  • the communication device 1300 can be applied to a network device to perform the method performed by the network device, specifically, for example, the method performed by the network device in the embodiments shown in FIGS. 6 to 9 .
  • the input and output interface 1310 is used to input first information sent from each of the M second communication devices.
  • the first information includes the interference size detected on K channels by the second communication device that sent the first information.
  • K and M are integers greater than or equal to 1.
  • the back-off speed of LBT is determined based on the first information. It can be understood that the backoff speed is used to indicate the number of times the network device backs off within a time unit.
  • the communication device 1300 can be applied to a terminal device to perform the method performed by the terminal device. Specifically, for example, the method performed by the terminal device in the method embodiments shown in Figures 6 to 9. method.
  • the logic circuit 1320 is used to determine first information, and the first information includes the interference size detected by the terminal device on K channels. Among them, K is an integer greater than or equal to 1. The amount of interference is determined based on multiple threshold values.
  • the input and output interface 1310 is used to output the first information to the network device.
  • the communication device 1300 provided in this embodiment can be applied to a network device to perform the method performed by the above network device, or applied to a terminal device to complete the method performed by the terminal device. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, and will not be described again here.
  • Figure 14 shows the terminal device provided by the embodiment of the present application.
  • the terminal device may include: an input and output module (including an audio input and output module, a key input module, a display, etc.), a user interface, one or more terminal processors, a transmitter, a receiver, an antenna, and a memory. These components can be connected through a bus or other means.
  • Figure 14 takes the connection through a bus as an example. in:
  • the communication interface can be used by the terminal device to communicate with other communication devices, such as base stations.
  • the communication interface may include: Global System for Mobile Communication (GSM) (2G) communication interface, Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, long-term evolution ( One or more of Long Term Evolution (LTE) (4G), and New Radio (NR) communication interface, etc.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • 3G Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • NR New Radio
  • terminal equipment can also be configured with wired communication interfaces, such as Local Access Network (LAN) interfaces.
  • LAN Local Access Network
  • Antennas can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the transmitter can be used to transmit and process the signal output by the terminal processor, for example, modulate the signal in a licensed frequency band or modulate a signal in an unlicensed frequency band.
  • transmitters may include unlicensed spectrum transmitters and licensed spectrum transmitters.
  • the unlicensed spectrum transmitter can support the terminal device to transmit signals on one or more unlicensed spectrums
  • the licensed spectrum transmitter can support the terminal device to transmit signals on one or more licensed spectrums.
  • the transmitter can have the function of transmitting in the unlicensed spectrum and the licensed spectrum respectively. This does not mean that the transmitter must contain two parts: an unlicensed transmitter and a licensed transmitter, or only one part can realize both. function.
  • the receiver can be used to receive and process mobile communication signals received by the antenna.
  • the receiver can demodulate a received signal that has been modulated on an unlicensed frequency band, or it can demodulate a received signal that has been modulated on a licensed frequency band.
  • the receiver may include an unlicensed spectrum receiver and a licensed spectrum receiver.
  • the unlicensed spectrum receiver can support the terminal device to receive signals modulated on the unlicensed spectrum
  • the licensed spectrum receiver can support the terminal device to receive signals modulated on the licensed spectrum.
  • the receiver can have the function of receiving in the unlicensed spectrum and the licensed spectrum respectively. This does not mean that the receiver must contain two parts: the unlicensed receiver and the licensed receiver, or only one part can realize the two functions. .
  • the transmitter and receiver may be viewed as a wireless modem.
  • the number of transmitters and receivers can be one or more.
  • the terminal device may also include other communication components, such as a GPS module, a Bluetooth module, a Wireless Fidelity (WiFi) module, etc.
  • the terminal device can also support other wireless communication signals, such as satellite signals, shortwave signals, and so on.
  • the terminal device can also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • the input and output module can be used to realize interaction between the terminal device and the user/external environment, and can mainly include an audio input and output module, a key input module, a display, etc. Specifically, the input and output module may also include: a camera, a touch screen, a sensor, etc. Wherein, the input and output modules communicate with the terminal processor through a user interface.
  • a memory is coupled to the terminal processor for storing various software programs and/or sets of instructions.
  • the memory may include high-speed random access memory, and may also include non-volatile memory, such as one or more disk storage devices, flash memory devices or other non-volatile solid-state storage devices.
  • the memory can store an operating system (hereinafter referred to as the system), such as ANDROID, IOS, WINDOWS, or LINUX and other embedded operating systems.
  • the memory can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory can also store a user interface program, which can vividly display the content of the application program through a graphical operation interface, and receive user control operations on the application program through input controls such as menus, dialog boxes, and buttons.
  • the memory may be used to store the implementation program on the terminal device side of the unlicensed frequency band transmission method provided by one or more embodiments of the present application.
  • the implementation of the unlicensed frequency band transmission method provided by one or more embodiments of this application please refer to subsequent embodiments.
  • a terminal processor can be used to read and execute computer-readable instructions.
  • the terminal processor can be used to call a program stored in the memory, such as the implementation program of the unlicensed frequency band transmission method on the terminal device side provided by one or more embodiments of the present application, and execute the instructions contained in the program.
  • the terminal device may be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, etc.
  • terminal device shown in Figure 14 is only an implementation manner of the embodiment of the present application. In actual applications, the terminal device may also include more or fewer components, which is not limited here.
  • Figure 15 shows a base station provided by some embodiments of the present application.
  • a base station may include: a communication interface, one or more base station processors, a transmitter, a receiver, an antenna, and a memory. These components can be connected through a bus or other means.
  • Figure 15 takes the connection through a bus as an example. in:
  • the communication interface can be used by the base station to communicate with other communication devices, such as terminal equipment or other base stations.
  • the communication interface may include: Global System for Mobile Communications (GSM) (2G) communication interface, Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, Long Term Evolution (LTE) (4G), and New Radio (NR for short) ) one or more of the communication interfaces, etc.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • 3G Third Generation
  • LTE Long Term Evolution
  • NR New Radio
  • the base station can also be configured with a wired communication interface to support wired communication.
  • the backhaul link between one base station and other base stations can be a wired communication connection.
  • Antennas can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the transmitter can be used to transmit and process the signal output by the base station processor, for example, modulate the signal in a licensed frequency band or modulate a signal in an unlicensed frequency band.
  • transmitters may include unlicensed spectrum transmitters and licensed spectrum transmitters.
  • the unlicensed spectrum transmitter can support the base station to transmit signals on one or more unlicensed spectrums
  • the licensed spectrum transmitter can support the base station to transmit signals on one or more licensed spectrums.
  • the receiver can be used to receive and process mobile communication signals received by the antenna.
  • the receiver can demodulate a received signal that has been modulated on an unlicensed frequency band, or it can demodulate a received signal that has been modulated on a licensed frequency band.
  • the receiver may include an unlicensed spectrum receiver and a licensed spectrum receiver.
  • the unlicensed spectrum receiver can support the base station to receive signals modulated on the unlicensed spectrum
  • the licensed spectrum receiver can support the base station to receive signals modulated on the licensed spectrum.
  • the transmitter and receiver may be viewed as a wireless modem.
  • the number of transmitters and receivers can be one or more.
  • a memory is coupled to the base station processor for storing various software programs and/or sets of instructions.
  • the memory may include high-speed random access memory, and may also include non-volatile memory, such as one or more disk storage devices, flash memory devices or other non-volatile solid-state storage devices.
  • the memory can store operating systems (hereinafter referred to as systems), such as uCOS, VxWorks, RTLinux and other embedded operating systems.
  • systems such as uCOS, VxWorks, RTLinux and other embedded operating systems.
  • the memory can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the base station processor can be used to manage wireless channels, establish and tear down calls and communication links, and control the handover of terminal equipment in the control area.
  • the base station processor may include: Administration Module/Communication Module (AM/CM) (used as a center for voice channel switching and information exchange), Basic Module (BM) (used for completing calls) processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions), code conversion and sub-multiplexer unit (Transcoder and SubMultiplexer, TCSM) (used to complete multiplexing, demultiplexing and code conversion functions), etc. wait.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM code conversion and sub-multiplexer unit
  • the base station processor may be used to read and execute computer-readable instructions.
  • the base station processor can be used to call a program stored in the memory, such as a program for implementing the unlicensed frequency band transmission method on the base station side provided by one or more embodiments of the present application, and execute instructions contained in the program.
  • the base station may be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), an extended service set (ESS), gNodeB, NodeB, eNodeB, etc.
  • Base stations can be implemented as several different types of base stations, such as macro base stations, micro base stations, etc.
  • the base station can apply different wireless technologies, such as cell wireless access technology or WLAN wireless access technology.
  • embodiments of the present application also provide a communication system.
  • the communication system includes at least one communication device applied to network equipment and at least one communication device applied to terminal equipment.
  • the technical effects that can be obtained may refer to the above method embodiments and will not be described again here.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer programs or instructions.
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program codes.
  • embodiments of the present application further provide a chip, including a processor, to support the communication device in realizing the functions involved in the network equipment or terminal equipment in the above method embodiments.
  • the chip is connected to a memory or the chip includes a memory, which is used to store computer programs or instructions and data necessary for the communication device.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer programs or instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture that includes the instruction means,
  • the instruction means implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer programs or instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in a process or processes in the flow diagram and/or in a block or blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法和装置,用来提升非授权频段的信道的利用率,涉及无线通信技术领域。该方法中,网络设备接收来自M个第二通信装置各自发送的第一信息,第一信息包括发送该第一信息的第二通信装置在K个信道上检测到的干扰大小。K、M为大于或等于1的整数。网络设备执行LBT。其中,LBT的退避速度是根据第一信息确定的。可以理解的是,退避速度用于指示一个时间单元内网络设备退避的次数。基于上述方案,网络设备确定终端设备的干扰大小,了解到终端设备的信道状态,可以减少暴露节点和隐藏节点的问题,同时优化调度策略,网络设备根据终端设备的干扰大小动态调节LBT的退避速度,避免随机退避过程较长,提高信道利用率。

Description

一种数据传输方法和装置
相关申请的交叉引用
本申请要求在2022年05月31日提交中国专利局、申请号为202210612492.4、申请名称为“一种数据传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种数据传输方法和装置。
背景技术
无线通信系统工作在非授权频段上时,采用基于带冲突避免的载波监听多址接入(carrier sense multiple access with collision avoidance,CSMA/CA)技术。节点在发送数据前需要先进行空闲信道评估(clear channel assessment,CCA),从而确定信道是否被占用。此外,为了保证多个节点同时竞争信道的公平性,还引入了随机退避的机制,各节点根据各自对应的竞争窗(contention window,CW)选择一个随机退避数N,当检测时隙内信道空闲时,对应的退避数N递减,只有当随机退避递减为零后,才可以接入信道。但是,目前的随机退避过程中,发射节点只根据自身CCA检测结果进行随机退避,没有考虑接收节点处的信道状态,存在隐藏节点和暴露节点的问题,同时由于随机退避过程退避速率固定,在某些场景中退避效率较低,降低了非授权频段的信道的利用率。
发明内容
本申请提供了一种数据传输方法和装置,用来提升非授权频段的信道的利用率。
第一方面,提供了一种数据传输方法。该方法可以由执行,或者类似第一通信装置功能的芯片执行。该方法中,第一通信装置接收来自M个第二通信装置各自发送的第一信息,第一信息包括发送该第一信息的第二通信装置在K个信道上检测到的干扰大小。其中,K、M为大于或等于1的整数。第一通信装置执行先监听后发送(listen before talk,LBT)。其中,LBT的退避速度是根据第一信息确定的。可以理解的是,退避速度用于指示一个时间单元内第一通信装置退避的次数。
基于上述方案,第一通信装置确定第二通信装置的干扰大小,了解到第二通信装置的信道状态,可以减少暴露节点和隐藏节点的问题,同时优化调度策略,第一通信装置根据第二通信装置的干扰大小动态调节LBT的退避速度,避免随机退避过程较长,提高信道利用率。
在一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小。另一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小中部分信道的干扰大小,如终端设备检测得到的干扰大小中干扰最大的信道的干扰大小或者终端设备检测得到的干扰大小中干扰最小的干扰大小。
在一种可能的实现方式中,干扰大小是根据多个门限值确定的。基于上述方案,通过 多个门限值得到量化后的干扰大小,相较于通过单一的门限值确定干扰大小的方式,能够让干扰大小较为细致和准确的反映出第二通信装置的信道状态。
在一种可能的实现方式中,不同的干扰大小对应不同的退避速度。换句话说,也就是干扰大小不同,则退避速度不同,干扰大小与退避速度一一对应。在一种可能的实现方式中,干扰大小越大,退避速度越小。基于上述方案,第一通信装置可以根据第二通信装置的干扰大小动态调节LBT的退避速度,避免随即退避过程较长,可以提高信道利用率。
在一个示例中,第一通信装置可以通过预定义的或者预先设置的公式和干扰大小确定退避速度。另一个示例中,第一通信装置可以通过预定义的或者预先设置的表格和干扰大小确定退避速度。
在一个示例中,第一通信装置可以根据M个第二通信装置的第一信息确定最终干扰大小。第一通信装置可以根据最终干扰大小确定退避速度。可选的,第一通信装置可以根据M个第二通信装置的第一信息和第一通信装置的干扰大小确定最终干扰大小。
一种可能的情况中,最终干扰大小是M个第二通信装置的第一信息指示的干扰大小中取值最小的干扰大小或者取值最大的干扰大小。另一种可能的情况中,最终干扰大小是M个第二通信装置的第一信息指示的干扰大小以及第一通信装置的干扰大小中取值最小的干扰大小或者取值最大的干扰大小。
在一种可能的实现方式中,第一通信装置向M个第二通信装置中的被调度的一个或多个第二通信装置发送第一指示信息,第一指示信息指示第一信道的信道占用时长。其中,信道占用时长是根据一个或多个第二通信装置的第一信息确定的,第一信道用于第一通信装置与一个或多个第二通信装置传输信息。
基于上述方案,第一通信装置可以根据第二通信装置的干扰大小动态确定第二通信装置的信道占用时长,可以减少由于第二通信装置的干扰大小较大而无法在信道占用时长内发送数据的情况,可以提升信道的利用率。
在一种可能的实现方式中,信道占用时长是根据一个或多个第二通信装置的第一信息和第一通信装置的干扰确定的,第一通信装置的干扰是根据第一通信装置的空闲信道评估确定的。
基于上述方案,第一通信装置可以综合考虑第二通信装置和第一通信装置的干扰大小,动态确定第二通信装置的信道占用时长,可以减少由于第二通信装置或者第一通信装置的干扰大小较大而无法在信道占用时长内发送数据的情况,可以提升信道的利用率。
在一种可能的实现方式中,第一通信装置接收M个第二通信装置的层1的第一信息。基于上述方案,由于层1的第一信息反馈时延较短,短于层3的第一信息,因此第一通信装置获取到的第二通信装置的干扰大小的时延也较短,从而干扰大小可以较为准确的反应第二通信装置当前的干扰大小。
在一种可能的实现方式中,第一通信装置向M个第二通信装置发送第二指示信息,第二指示信息可以指示K个信道为M个第二通信装置测得的干扰最小的信道或干扰最大的信道。
基于上述方案,第一通信装置可以通过第二指示信息向第二通信装置指示上报测得的干扰大小中最小的干扰或最大的干扰,可以在节省传输资源的同时,让第一通信装置了解到期望的干扰大小。
在一种可能的实现方式中,退避速度是根据第一通信装置接收到的M个第一信息中的 干扰的最小值确定的。基于上述方案,第一通信装置可以调度干扰大小最小的第二通信装置。
在一种可能的实现方式中,退避速度是根据M个第一信息中的干扰与第一通信装置的干扰中的最小值确定的,第一通信装置的干扰是根据第一通信装置的空闲信道评估确定的。基于上述方案,第一通信装置可以调度干扰大小最小的第二通信装置,且结合自身的干扰大小确定较为合适的退避速度,可以让第一通信装置较快的接入信道,提高信道利用率。
第二方面,提供了一种数据传输方法。该方法可以由第二通信装置执行,或者类似第二通信装置功能的芯片执行。该方法中,第二通信装置确定第一信息,第一信息包括第二通信装置在K个信道上检测到的干扰大小。其中,K为大于或等于1的整数。干扰大小是根据多个门限值确定的。第二通信装置向第一通信装置发送第一信息。
在一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小。另一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小中部分信道的干扰大小,如终端设备检测得到的干扰大小中干扰最大的信道的干扰大小或者终端设备检测得到的干扰大小中干扰最小的干扰大小。
在一种可能的实现方式中,第二通信装置接收来自第一通信装置的第一指示信息,第一指示信息指示第一信道的信道占用时长。其中,信道占用时长是根据第一信息确定的,第一信道用于第一通信装置与第二通信装置传输信息。
在一种可能的实现方式中,信道占用时长是根据第一信息和第一通信装置的干扰确定的,第一通信装置的干扰是根据第一通信装置的空闲信道评估确定的。
在一种可能的实现方式中,第二通信装置向第一通信装置发送层1的第一信息。
在一种可能的实现方式中,第二通信装置接收来自第一通信装置的第二指示信息,第二指示信息可以指示K个信道为第二通信装置测得的干扰最小的信道或干扰最大的信道。第二通信装置可以向第一通信装置发送前述干扰最小的信道上测得的干扰大小或前述干扰最大的信道上测得的干扰大小。
第三方面,提供了一种通信装置,包括处理单元和收发单元。
收发单元,用于接收来自M个第二通信装置各自发送的第一信息,第一信息包括发送该第一信息的第二通信装置在K个信道上检测到的干扰大小。其中,K、M为大于或等于1的整数。处理单元,用于执行先监听后发送LBT。其中,LBT的退避速度是根据第一信息确定的,退避速度用于指示一个时间单元内网络设备退避的次数。
在一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小。另一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小中部分信道的干扰大小,如终端设备检测得到的干扰大小中干扰最大的信道的干扰大小或者终端设备检测得到的干扰大小中干扰最小的干扰大小。
在一种可能的实现方式中,干扰大小是根据多个门限值确定的。
在一种可能的实现方式中,不同的干扰大小对应不同的退避速度。换句话说,也就是干扰大小不同,则退避速度不同,干扰大小与退避速度一一对应。在一种可能的实现方式中,干扰大小越大,退避速度越小。
在一个示例中,处理单元可以用于通过预定义的或者预先设置的公式和干扰大小确定 退避速度。另一个示例中,处理单元可以用于通过预定义的或者预先设置的表和干扰大小确定退避速度。
在一个示例中,处理单元可以用于根据M个终端设备的第一信息确定最终干扰大小。网络设备可以根据最终干扰大小确定退避速度。可选的,处理单元可以用于根据M个终端设备的第一信息和网络设备的干扰大小确定最终干扰大小。
一种可能的情况中,最终干扰大小是M个终端设备的第一信息指示的干扰大小中取值最小的干扰大小或者取值最大的干扰大小。另一种可能的情况中,最终干扰大小是M个终端设备的第一信息指示的干扰大小以及网络设备的干扰大小中取值最小的干扰大小或者取值最大的干扰大小。
在一种可能的实现方式中,收发单元还用于:向M个终端设备中的被调度的一个或多个终端设备发送第一指示信息,第一指示信息指示第一信道的信道占用时长;信道占用时长是根据一个或多个终端设备的第一信息确定的,第一信道用于网络设备与一个或多个终端设备传输信息。
在一种可能的实现方式中,信道占用时长是根据一个或多个终端设备的第一信息和网络设备的干扰确定的,网络设备的干扰是根据网络设备的空闲信道评估确定的。
在一种可能的实现方式中,收发单元用于接收来自M个终端设备的第一信息,具体用于:接收M个终端设备的层1的第一信息。
在一种可能的实现方式中,收发单元还用于:向M个终端设备发送第二指示信息,第二指示信息可以指示K个信道为M个第二通信装置测得的干扰最小的信道或干扰最大的信道。
在一种可能的实现方式中,退避速度是根据网络设备接收到的M个第一信息中的干扰的最小值确定的。
在一种可能的实现方式中,退避速度是根据M个第一信息中的干扰与网络设备的干扰中的最小值确定的,网络设备的干扰是根据网络设备的空闲信道评估确定的。
第四方面,提供了一种通信装置,包括处理单元和收发单元。
处理单元,用于确定第一信息,第一信息包括终端设备在K个信道上检测到的干扰大小。其中,K为大于或等于1的整数。干扰大小是根据多个门限值确定的。收发单元,用于向网络设备发送第一信息。
在一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小。另一个示例中,K个信道的干扰大小可以是终端设备检测得到的每个信道的干扰大小中部分信道的干扰大小,如终端设备检测得到的干扰大小中干扰最大的信道的干扰大小或者终端设备检测得到的干扰大小中干扰最小的干扰大小。
在一种可能的实现方式中,收发单元还用于:接收来自网络设备的第一指示信息,第一指示信息指示第一信道的信道占用时长;信道占用时长是根据第一信息确定的,第一信道用于网络设备与终端设备传输信息。
在一种可能的实现方式中,信道占用时长是根据第一信息和网络设备的干扰确定的,网络设备的干扰是根据网络设备的空闲信道评估确定的。
在一种可能的实现方式中,收发单元用于向网络设备发送第一信息,具体用于:向网络设备发送层1的第一信息。
在一种可能的实现方式中,收发单元还用于:接收来自网络设备的第二指示信息,第二指示信息可以指示K个信道为第二通信装置测得的干扰最小的信道或干扰最大的信道。收发单元具体用于向第一通信装置发送前述干扰最小的信道上测得的干扰大小或前述干扰最大的信道上测得的干扰大小。
第五方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第三方面至第四方面中任一方面的通信装置,或者为设置在第三方面至第四方面中任一方面的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述第一方面至第二方面中任一方面方法实施例中由网络设备或终端设备所执行的方法。
应理解,该通信接口可以通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在网络设备或终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。所述通信装置还可以包括收发器,用于该通信装置与其它设备进行通信。示例性地,当该通信装置为网络设备时,该其它设备为终端设备;或者,当该通信装置为终端设备时,该其它设备为网络设备。
第六方面,本申请提供了一种通信装置,包括:逻辑电路和输入输出接口。
示例性的,输入输出接口,用于输入来自M个第二通信装置各自发送的第一信息,第一信息包括发送该第一信息的第二通信装置在K个信道上检测到的干扰大小。其中,K、M为大于或等于1的整数。逻辑电路用于执行LBT。其中,LBT的退避速度是根据第一信息确定的。可以理解的是,退避速度用于指示一个时间单元内通信装置退避的次数。
示例性的,逻辑电路,用于确定第一信息,第一信息包括终端设备在K个信道上检测到的干扰大小。其中,K为大于或等于1的整数。干扰大小是根据多个门限值确定的。输入输出接口,用于向第一通信装置输出第一信息。
第七方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面至第二方面中任一方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第八方面,本申请实施例提供了一种通信系统,所述通信系统包括第二方面至第三方面中任一方面所述的通信装置。
第九方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现上述各方面中由终端设备执行的方法;或实现上述各方面中由网络设备执行的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码或指令,当所述计算机程序代码或指令被运行时,使得上述各方面中由网络设备执行的方法被执行,或使得上述各方面中由终端设备执行的方法被执行。
第十一方面,提供了一种通信装置,所述通信装置包括执行上述各方面方法的单元或模块。
上述第二方面至第十一方面及其实现方式的有益效果可以参考对第一方面的方法及 其实现方式的有益效果的描述。
附图说明
图1为本申请实施例提供的通信系统示意图;
图2为现有技术中基于带冲突避免的载波监听多址接入技术的示意图;
图3为现有技术中类型4的LBT机制的流程示意图;
图4为本申请实施例提供的隐藏节点问题和暴露节点问题的示意图;
图5为现有技术中RMTC配置实例的示意图;
图6为本申请实施例提供的一种数据传输方法的示例性流程图之一;
图7A为本申请实施例提供的类型1的LBT机制的示意图;
图7B为本申请实施例提供的类型2的LBT机制的示意图;
图8为本申请实施例提供的一种数据传输方法的示例性流程图之一;
图9为本申请实施例提供的一种多载波场景的LBT机制的示意图;
图10为本申请实施例提供的一种通信装置的示意图之一;
图11为本申请实施例提供的一种通信装置的示意图之一;
图12为本申请实施例提供的一种通信装置的示意图之一;
图13为本申请实施例提供的一种通信装置的示意图之一;
图14为本申请实施例提供的终端设备的框图;
图15为本申请实施例的基站的框图。
具体实施方式
以下,介绍本申请实施例涉及的技术术语。
1)信道,指终端设备可以测量信号质量的频谱上连续的一段频域资源,如LBT信道,又可以称为载波或者非授权频段载波。
2)时间单元,可以是指时隙、符号、微时隙、帧、子帧或者半帧中的任意一种。
以下,结合附图介绍本申请实施例提供的技术方案。
参阅图1,示出了本申请涉及的无线通信系统。无线通信系统可以工作在授权频段,也可以工作在非授权频段。可以理解的,非授权频段的使用可以提高无线通信系统的系统容量。
如图1所示,无线通信系统包括一个或多个网络设备和一个或多个终端设备。
本申请涉及的终端设备,包括向用户提供语音和/或数据信号连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据信号连通性的设备,或包括向用户提供语音和数据信号连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、 接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)、卫星、无人机、气球或飞机等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
终端设备可以分布在整个无线通信系统中,可以是静止的,也可以是移动的。终端设备可以包括:移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
本申请所涉及的网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括演进的分组核心网络(evolved packet core,EPC)、第五代移动通信技术(the 5th generation,5G)、新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),卫星、无人机、气球或飞机等,本申请实施例并不限定。
其中,网络设备可用于在网络设备控制器(图1中未示出)的控制下与终端设备通信。在一些实施例中,网络设备控制器可以是核心网(图1中未示出)的一部分,也可以集成到网络设备中。网络设备可以通过一个或多个天线来和终端设备进行无线通信。各个网络设备均可以为各自对应的覆盖范围提供通信覆盖。网络设备对应的覆盖范围可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(图1中未示出)。网络设备与网络设备之间也可以通过回程(blackhaul)链接,网络设备与网络设备之间可以直接的或者间接的相互通信。可以理解的时,回程链接可以是有线通信连接,也可以是无线通信连接。
网络设备可以包括:网络设备收发台(base transceiver station,BTS),无线收发器,一个基本服务集(basic service set,BSS),一个扩展服务集(extended service set,ESS),NodeB,eNodeB,gNodeB等等。
无线通信系统可以包括几种不同类型的网络设备,例如宏网络设备(macro base station)、微网络设备(micro base station)等。网络设备可以应用不同的无线技术,例如小区无线接入技术,或者WLAN接入技术。网络设备可以向终端设备传输下行数据,其中数据采用信 道编码进行编码,信道编码后的数据经过星座调制后传输至终端设备。终端设备可以向网络设备传输上行数据,上行数据也可以采用信道编码进步编码,编码后的数据经过星座调制后传输至网络设备。
无线通信系统可以是能够工作在非授权频段的新空口(new radio,NR)通信系统,例如NR无节制频谱(NR in unlicensed spectrum,NR-U)系统,也可以是能够工作在非授权频段的长期演进(long term evolution,LTE)系统。无线通信系统可以采用增强的授权辅助接入(enhanced licensed-assisted access eLAA)方案来实现主辅小区之间的信道绑定。在eLAA方案中,主小区(primary cell,PC)工作在授权频段,传送关键的消息和需要服务质量保证的业务,辅小区(secondary cell,SC)工作在非授权频段,用于实现数据平面性能的提升,辅小区可同时支持上行与下行。
另外,无线通信系统还可以包括无线保真(wirelesss fidelity,WiFi)网络。为了实现运营商网络和WiFi网络之间的和谐共存,无线通信系统采用LBT机制。例如,在无线通信系统中,一些终端设备可以通过WiFi通信连接接入点来使用非授权频谱资源,一些终端设备也可以通过移动通信连接网络设备来使用非授权频谱资源。在使用非授权频段时,任何设备必须先监听,看看该频段是否被占用,如果该频段不忙,才可以占用并传输数据。
无线通信系统可以支持多载波(multi-carrier)操作。多载波发射器可以在多个载波上同时发射调制信号。例如,每一个通信连接都可以承载利用不同无线技术调制的多载波信号。每一个调制信号均可以在不同的载波上发送,也可以承载控制信息,如参考信号、控制信道等,开销信息(overhead information)和数据等等。
随着无线通信技术的不断演进,频谱资源紧缺的问题日益凸显。为了缓解频谱资源的压力,无线通信系统的工作频段从授权频段扩展到了非授权(unlicensed)频段。由于非授权频段上允许多套无线通信系统共存,因此非授权频段上的通信需要考虑不同系统之间的竞争以及公平性问题。
无线通信系统工作在非授权频段上时,采用基于带冲突避免的载波监听多址接入(carrier sense multiple access with collision avoidance,CSMA/CA)技术。节点在发送数据前需要先进行空闲信道评估(clear channel assessment,CCA),从而确定信道是否被占用。此外,为了保证多个节点同时竞争信道的公平性,还引入了随机退避的机制,各节点根据各自对应的竞争窗(contention window,CW)选择一个随机退避数N,当检测时隙内信道空闲时,对应的退避数N递减,只有当随机退避结束后,才可以接入信道,如图2所示。
NR中工作于非授权频段的通信系统称为NR-U。为了确保NR-U能够在公平友好的基础上与现有的接入技术如WiFi,授权辅助接入(licensed assisted access,LAA)等共存,工作在未授权频段的设备需要遵循LBT的原则以避免碰撞。
一方面,在非授权频段中,发射节点需要通过竞争的方式使用非授权频段。如图3所示,按照第三代合作伙伴计划(3th generation partnership project,3GPP)的讨论,类型4(cat 4)的LBT机制包含初始空闲信道评估(initial CCA,ICCA)和扩展信道评估(extended CCA,ECCA)。
如图3所示,当发射节点,如网络设备或者终端设备有业务到达时,触发ICCA。如果发射节点在ICCA检测到信道状态持续空闲一个推迟时长(defer period),则可以立即占用信道,信道的占用时间是预先设置的。若发射节点在一个推迟时长内检测到信道状态为忙,则进入到ECCA。可以理解的是,上述推迟时长可以是预定义的或者预先设置的。ECCA 是指在(0,CW-1)之间生成一个随机的CCA信道检测退避次数N,CW是预先配置的。发射节点首先需要确保信道持续空闲一个推迟时长。若在一个推迟时长内检测到信道状态为忙,则需要生成另一个推迟时长,直到在某个推迟时长内信道持续空闲。发射节点在空闲一个推迟时长后,在接下来的每个时隙进行CCA检测,若信道为空闲状态,则随机数N递减。若信道为忙状态,则需要再次确保信道持续空闲一个推迟时长,然后在每个时隙进行CCA检测。当随机数N递减为0时,才可以占用信道向接收节点发送数据。可以理解的是,信道的占用时间长度也是预先设置的。
其中,CCA检测判定信道处于空闲状态或是忙状态是基于预先设定的门限值。例如,当信道检测能量高于-72dBm时,CCA检测判定信道忙;当信道检测能量低于-72dBm时,CCA检测判定信道处于空闲状态。
但是,在Cat4类型LBT的ECCA过程中,发射节点只根据自身CCA检测结果进行随机退避,而不考虑接收节点处的信道状态。从而会引发如图4所示的隐藏节点问题(hidden node problem)与暴露节点问题(exposed node problem)。
在隐藏节点问题中:发射节点A与发射节点C相隔较远,从而导致发射节点A与发射节点C在CCA检测中均判定信道为空闲状态,并同时占用信道向接收节点B进行传输。由于发射节点A与发射节点C的传输互相干扰,导致接收节点B接收失败。
在暴露节点问题中:发射节点B与发射节点C相隔较近,从而导致发射节点B或发射节点C在传输时,另一节点会在CCA检测中判定信道为忙状态,不占用信道进行传输。但实际上由于接收节点A距离发射节点C较远,接收节点D距离发射节点B较远,发射节点B与发射节点C的同时传输并不会造成较强的相互干扰。
其次,在Cat4类型LBT的ECCA过程中,采用的是单一门限值,例如-72dBm,对信道忙或空闲进行判定,并以固定的退避速度(如1)对随机数N进行递减。单一门限值与固定的退避速度无法根据环境中动态变化的干扰水平进行调节。因此,降低了非授权频段的信道利用率。
另一方面,考虑到高效的无线资源管理对NR-U性能表现的重要性,NR-U延用了LAA中采用的接收信号强度指示(received signal strength indicator,RSSI)以及信道占用度(channel occupancy,CO)两个关键指标。RSSI可以反映非授权频段给定载波的干扰水平,CO是在测量时间段内RSSI测量值高于预先设定的门限值的百分比。网络设备通过接收终端设备上报的RSSI以及CO测量值,从而量化终端设备所处位置的信道状态。
终端设备测量RSSI需要下行发现参考信号(discovery reference signal,DRS)触发。终端设备根据预先设置的RSSI测量时间配置(RSSI measurement time configuration,RMTC)进行测量。其中RMTC包括测量周期[40,80,160,320,640毫秒],子帧偏移[0,…,639],测量时长[1,14,28,42,70符号]。图5示出了一个具体的RMTC配置实例,其中测量时长为70个符号,测量周期为40毫秒。
如图5中所示,终端设备会测量平均RSSI以及CO,并上报给网络设备,从而实现高效无线资源管理。首先RSSI与CO的测量需要下行DRS信号触发,而DRS信号的传输又受限于LBT过程。因此RSSI与CO的测量会由于DRS信号的传输失败而无法执行。其次,终端设备上传RSSI以及CO的周期较长,且测量值为长时间的平均值,测量值的实效性差。以上两点导致网络设备无法获取终端设备处即时的干扰水平,影响非授权频段的信道利用率。
有鉴于此,本申请实施例提供一种数据传输方法。该方法中,终端设备可以向网络设备发送终端设备检测到的干扰大小,从而可以确定合适的退避速度执行LBT。参阅图6,为本申请实施例提供的一种数据传输方法的示例性流程图,可以包括以下操作。
S601:终端设备向网络设备发送第一信息。
相应的,网络设备接收来自终端设备的第一信息。可选的,M个终端设备可以分别向网络设备发送第一信息,网络设备可以接收来自M个终端设备的第一信息。其中,M是大于或等于1的整数。
在一种可能的实现方式中,第一信息可以包括终端设备在K个信道上检测到的干扰大小。其中,K为大于或等于1的整数。例如,终端设备可以在K个信道上进行CCA。终端设备可以根据每个信道上的CCA结果,确定每个信道上的干扰大小。可选的,终端设备根据门限值和上述每个信道上的CCA结果确定每个信道上的干扰大小。
一种可能的情况中,终端设备可以根据一个门限值和上述每个信道上的CCA结果确定每个信道上的干扰大小。以门限值为-72dBm为例,如果一个信道上的CCA结果小于-72dBm则可以认为干扰水平较低,因此终端设备可以确定该一个信道上的干扰大小I=0;如果一个信道上的CCA结果大于-72dBm则可以认为干扰水平较高,因此终端设备可以确定该一个信道上的干扰大小I=1。可以理解的是,在一个信道上的CCA结果等于-72dBm时,终端设备可以确定该一个信道上的干扰大小I=0,或者I=1。
另一种可能的情况中,终端设备可以根据多个门限值和上述每个信道上的CCA结果确定每个信道上的干扰大小。以门限值为3个为例,且门限值分别为-82dBm、-77dBm和-72dBm为例,如果一个信道上的CCA结果小于-82dB,终端设备可以认为该信道上的干扰水平较低,因此终端设备可以确定该信道上的干扰大小I=0。如果一个信道上的CCA结果大于-82dBm且小于-77dBm,终端设备可以认为该信道上的干扰水平次低,因此终端设备可以确定该信道上的干扰大小I=1。可选的,如果该一个信道上的CCA结果等于-82dBm,终端设备可以确定该信道上的干扰大小I=0或者I=1。如果一个信道上的CCA结果大于-77dBm且小于-72dBm,终端设备可以认为该一个信道上的干扰水平次高,因此终端设备可以确定该信道上的干扰大小I=2。可选的,如果该一个信道上的CCA结果等于-77dBm,终端设备可以确定该一个信道上的干扰大小I=1或者I=2。如果一个信道上的CCA结果小于-72dBm,终端设备可以认为该一个信道上的干扰水平较高,因此终端设备可以确定该一个信道上的干扰大小I=3。可选的,如果该一个信道上的CCA结果等于-72dBm,终端设备可以确定该一个信道上的干扰大小I=2或者I=3。
可以理解的是,上述情况中门限值的数量与门限值的取值仅作为示例示出,并不作为对门限值的数量与门限值的取值的限定。可选的,终端设备的门限值的数量与门限值的取值可以是预先定义的、预先设置的、终端设备确定的或者网络设备指示的。可以理解的是,不同的终端设备的门限值的数量与门限值的取值可以相同也可以不同。
基于上述方案,终端设备可以通过多个门限值得到量化后的干扰大小,相较于通过单一的门限值确定干扰大小的方式,能够让干扰大小较为细致和准确的反映出终端设备的信道状态。
在一个示例中,终端设备可以向网络设备发送K个信道的干扰大小。换句话说,终端设备可以向网络设备发送每个信道上测得的干扰大小。这样,网络设备可以确定终端设备的每个信道上的干扰大小,从而优化调度策略,如调度终端设备的干扰大小最小的信道。
另一个示例中,终端设备可以向网络设备发送K个信道中部分信道的干扰大小。例如,终端设备可以向网络设备发送K个信道中干扰大小最大的信道的干扰大小,或者终端设备可以向网络设备发送K个信道中干扰大小最小的信道的干扰大小。这样,终端设备可以向网络设备上报最大的干扰大小或者最小的干扰大小,可以节省传输资源的同时让网络设备优化调度策略。
再一个示例中,终端设备可以向网络设备发送K个信道的干扰水平的平均干扰大小。例如,终端设备可以确定K个信道的干扰大小的平均值、均方根或者方差,终端设备可以将计算得到的平均值、均方根或者方差作为平均干扰大小上报给网络设备。这样,终端设备可以向网络设备上报平均干扰大小,可以节省传输资源的同时让网络设备优化调度策略。
在一种可能的实现方式中,终端设备可以向网络设备发送层1的第一信息。其中,层1的第一信息与层3的第一信息不相同。层3的第一信息是对层1的第一信息进行滤波等处理后的第一信息。换句话说,层1的第一信息可以认为是未经过层3的处理的第一信息。因此,层3的第一信息的反馈时延较大。由于终端设备的层1的第一信息的不经过滤波等处理,直接将物理层接收到的信号处理结果在一定时间单位后进行反馈,处理时延相比层3的处理时延更短。
或者说,终端设备可以通过物理层资源向网络设备发送第一信息,例如终端设备可以通过网络设备分配的调度请求资源向网络设备发送第一信息。该调度请求资源可以是网络设备通过无线资源控制(radio resource control,RRC)信令为终端设备分配的。例如,网络设备可以通过RRC信令向终端设备指示调度请求资源的周期和调度请求资源的时频资源。
一种可能的情况中,终端设备可以根据调度请求资源的周期确定用于发送第一信息的时间单元。举例来说,若分配的调度请求(scheduling request,SR)资源的周期SR大于1个时隙,则终端设备根据确定用于传输第一信息的时隙索引其中,nf表示系统帧帧索引,系统帧内时隙的个数,SRoffset表示时间单元偏移可以是预先设置的。终端设备可以在确定的时隙索引对应的时隙上向网络设备发送第一信息。若分配的调度请求资源的周期SR等于1个时隙,则SRoffset=0,并且每个调度请求资源的时隙均可以用于传输第一信息。若分配的调度请求周期SR小于1个时隙,则终端设备根据(l-l0mod SR)mod SR=0确定用于传输第一信息的符号索引l。终端设备可以在确定的符号索引l对应的符号上向网络设备发送第一信息,其中l0是起时符号索引。
S602:网络设备执行LBT。
在一种可能的实现方式中,上述LBT的退避速度可以是根据S601中网络设备接收到的第一信息确定的。可以理解的是,退避速度可以用于指示一个时间单元内网络设备退避的次数。
在一个示例中,网络设备可以根据S601中接收到的M个第一信息确定最终干扰大小。一种可能的情况中,每个第一信息中可以包含一个干扰大小,该一个干扰大小可以参照S601中终端设备上报K个信道的干扰大小实施。那么网络设备可以从M个第一信息分别 包含的M个干扰大小中,选择干扰大小取值最小的干扰大小作为最终干扰大小。这样,网络设备可以基于终端设备发送的干扰水平优化调度策略,例如网络设备可以调度干扰大小最小的终端设备。或者,网络设备可以从M个第一信息分别包含的M个干扰大小中,选择干扰大小取值最大的干扰大小作为最终干扰大小。这样,网络设备可以基于终端设备发送的干扰水平优化调度策略,例如网络设备可以调度干扰大小最大的终端设备。
另一种可能的情况中,每个第一信息中可以包含K个干扰大小,该K个干扰大小可以是中终端设备测得的K个信道的干扰大小。那么网络设备可以从每个第一信息包含的K个信道的干扰大小中,选择干扰大小最大的信道的干扰大小作为该终端设备的干扰大小。或者网络设备可以从每个第一信息包含的K个信道的干扰大小中,选择干扰大小最小的信道的干扰大小作为该终端设备的干扰大小。或者,网络设备可以根据每个第一信息包含的K个信道的干扰大小确定平均干扰大小作为该终端设备的干扰大小。例如,网络设备可以确定K个信道的干扰大小的平均值、均方根或者方差作为该终端设备的干扰大小。网络设备从M个终端设备的干扰大小中,选择干扰大小取值最小的干扰大小作为最终干扰大小。这样,网络设备可以基于终端设备发送的干扰水平优化调度策略,例如网络设备可以调度干扰大小最小的终端设备。或者,网络设备可以从M个终端设备的干扰大小中,选择干扰大小取值最大的干扰大小作为最终干扰大小。这样,网络设备可以基于终端设备发送的干扰水平优化调度策略,例如网络设备可以调度干扰大小最大的终端设备。
另一种可能的实现方式中,网络设备可以根据自身的干扰大小和S601中接收到的第一信息确定最终干扰大小。其中,网络设备可以在L个信道上进行CCA,并根据每个信道上的CCA结果确定每个信道上的干扰大小。上述L可以是大于或等于1的整数。
一种可能的情况中,网络设备可以根据一个门限值和上述每个信道上的CCA结果确定每个信道上的干扰大小。可以理解的是,网络设备根据一个门限值和每个信道上的CCA结果确定每个信道上的干扰大小的方式可以参照终端设备根据一个门限值和每个信道上的CCA结果确定每个信道上的干扰大小的方式实施。
另一种可能的情况中,网络设备可以根据多个门限值和上述每个信道上的CCA结果确定每个信道上的干扰大小。可以理解的是,网络设备根据多个门限值和每个信道上的CCA结果确定每个信道上的干扰大小的方式可以参照终端设备根据多个门限值和每个信道上的CCA结果确定每个信道上的干扰大小的方式实施。
可以理解的是,上述情况中门限值的数量与门限值的取值仅作为示例示出,并不作为对门限值的数量与门限值的取值的限定。可选的,网络设备的门限值的数量与门限值的取值可以是预先定义的、预先设置的或者网络设备确定的。可以理解的是,终端设备的门限值的数量与门限值的取值,可以与网络设备的门限值的数量与门限值的取值相同或者不同。
需要说明的是,网络设备可以从L个信道的干扰大小中,确定网络设备的干扰大小。例如,网络设备可以从L个信道的干扰大小中选择干扰大小最小的干扰大小作为网络设备的干扰大小。又例如,网络设备可以从L个信道的干扰大小中选择干扰大小最大的干扰大小作为网络设备的干扰大小。又例如,网络设备可以确定L个信道的干扰大小的平均干扰大小作为网络设备的干扰大小,如网络设备可以确定L个信道的干扰大小的平均值、均方根或者方差作为L个信道的干扰大小的平均干扰大小。
网络设备在确定每个信道上的干扰水平后,可以根据每个信道上的干扰水平以及S601中接收到的第一信息确定最终干扰水平。以下,分别以不同的情况进行介绍。
情况1:
每个第一信息中可以包含一个干扰大小,该一个干扰大小可以参照S601中终端设备上报K个信道的干扰大小实施。那么网络设备可以从M个第一信息包含的M个干扰大小中,选择干扰大小取值最小的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最小的干扰大小作为最终干扰大小。这样,网络设备可以调度干扰大小最小的终端设备,降低对通信的干扰。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
或者,网络设备可以从M个第一信息包含的M个干扰大小中,选择干扰大小取值最小的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最大的干扰大小作为最终干扰大小。这样,网络设备可以调度干扰大小最小的终端设备,降低对通信的干扰。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
情况2:
每个第一信息中可以包含一个干扰大小,该一个干扰大小可以参照S601中终端设备上报K个信道的干扰大小实施。那么网络设备可以从M个第一信息包含的M个干扰大小中,选择干扰大小取值最大的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最小的干扰大小作为最终干扰大小。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
或者,网络设备可以从M个第一信息包含的M个干扰大小中,选择干扰大小取值最大的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最大的干扰大小作为最终干扰大小。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
情况3:
每个第一信息中可以包含K个干扰大小,该K个干扰大小可以是中终端设备测得的K个信道的干扰大小。那么网络设备可以从每个第一信息包含的K个信道的干扰大小中,选择干扰大小最大的信道的干扰大小作为该终端设备的干扰大小。或者网络设备可以从每个第一信息包含的K个信道的干扰大小中,选择干扰大小最小的信道的干扰大小作为该终端设备的干扰大小。或者,网络设备可以根据每个第一信息包含的K个信道的干扰大小确定平均干扰大小作为该终端设备的干扰大小。例如,网络设备可以确定K个信道的干扰大小的平均值、均方根或者方差作为该终端设备的干扰大小。
网络设备可以从M个终端设备的干扰大小中,选择干扰大小取值最小的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最小的干扰大小作为最终干扰大小。这样,网络设备可以调度干扰大小最小的终端设备,降低对通信的干扰。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
或者,网络设备可以从M个终端设备的干扰大小中,选择干扰大小取值最小的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最大的干扰大小作为最终干扰大小。这样,网络设备可以调度干扰大小最小的终端设备,降低对通信的干扰。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
情况4:
每个第一信息中可以包含K个干扰大小,该K个干扰大小可以是终端设备测得的K个信道的干扰大小。那么网络设备可以从每个第一信息包含的K个信道的干扰大小中,选择干扰大小最大的信道的干扰大小作为该终端设备的干扰大小。或者网络设备可以从每个第一信息包含的K个信道的干扰大小中,选择干扰大小最小的信道的干扰大小作为该终端设备的干扰大小。或者,网络设备可以根据每个第一信息包含的K个信道的干扰大小确定平均干扰大小作为该终端设备的干扰大小。例如,网络设备可以确定K个信道的干扰大小的平均值、均方根或者方差作为该终端设备的干扰大小。
网络设备可以从M个终端设备的干扰大小中,选择干扰大小取值最大的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最小的干扰大小作为最终干扰大小。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
或者,网络设备可以从M个终端设备的干扰大小中,选择干扰大小取值最大的干扰大小作为第一干扰大小。网络设备可以从第一干扰大小与网络设备的干扰大小中,选择取值最大的干扰大小作为最终干扰大小。网络设备可以根据想要调度的终端设备的干扰大小确定退避速度,从而让退避速度更加准确。
在一种可能的实现方式中,网络设备可以根据最终干扰大小确定LBT的退避速度。可选的,最终干扰大小不同时,退避速度不同。换句话说,最终干扰大小可以与退避速度一一对应。例如,最终干扰大小越大,退避速度可以越小。或者说最终干扰大小越小,退避速度可以越大。一个示例中,网络设备可以根据公式确定退避速度。例如,退避速度f(Ifinal)=Z1-Ifinal。其中,Z1可以是一个大于或等于1的整数,如2、3或者4等,Ifinal表示最终干扰大小,f(Ifinal)表示退避速度。可以理解的是,上述公式仅作为示例示出,并不构成根据最终干扰大小确定退避速度的公式的限定。根据最终干扰大小确定退避速度的公式可以是预定义的或者预先设置的本申请不做具体限定。
另一个示例中,网络设备可以根据表格确定最终干扰大小对应的退避速度。以下,以表1为例进行说明。
表1:一种最终干扰大小与退避速度的对应关系的示例
如表1所示,网络设备确定的最终干扰大小Ifinal=0时,根据上述表1网络设备可以确定退避速度为3。又例如,网络设备确定的最终干扰大小Ifinal=1时,根据上述表1网络设备可以确定退避速度为2,以此类推。根据上述表1以及网络设备确定的最终干扰大小, 网络设备可以确定退避速度。也就是说,可以以表格的形式呈现最终干扰大小和退避速度之间的对应关系,当网络设备确定最终干扰大小后,可以通过查表得到相应的退避速度。
可以理解的是,上述表1仅作为示例示出,并不构成对最终干扰大小与退避速度的对应关系的限定。最终干扰大小与退避速度的对应关系可以是预定义的或者预先设置的,本申请不做具体限定。
可选的,在f(Ifinal)=0时,网络设备可以认为网络设备或者终端设备的干扰水平处于最高状态,那么网络设备可以需要确保信道保持空闲一个推迟时间。在f(Ifinal)大于0时,网络设备可以执行LBT。
需要说明的是,网络设备执行LBT可以参照图3实施。可以理解的是,在图3中网络设备在ECCA过程中,如果网络设备确定信道空闲,则令Nk=Nk-1-1,可以理解为网络设备在确定信道空闲时退避一次。其中,Nk-1是上一轮退避后随机数N的取值,Nk是本轮退避后随机数N的取值。而在S602中,网络设备在ECCA过程中,如果网络设备确定信道空闲,则Nk=Nk-1-f(Ifinal),可以理解为网络设备在确定信道空闲时退避f(Ifinal)次。在S602中,网络设备可以在N小于或等于0时,接入信道。
基于上述方案,终端设备向网络设备上报量化后的干扰大小,也就是终端设备向网络设备上报根据一个或多个门限值确定的干扰大小,因此网络设备可以确定终端设备的干扰大小,了解到终端设备的信道状态,因此可以减少暴露节点和隐藏节点的问题,可以优化调度策略。此外,网络设备根据终端设备的干扰大小以及网络设备的干扰大小动态调节LBT的退避速度,避免随即退避过程较长或者较短,可以提高信道利用率。
可选的,图6所示的实施例中,还可以包括S603。
S603:网络设备向M个终端设备中的被调度的一个或多个终端设备发送第一指示信息。
其中,第一信息可以指示第一信道的信道占用时长。第一信道可以用于被调度的一个或多个终端设备与网络设备传输信息,如传输数据等。
可以理解的是,被调度的一个或多个终端设备可以是网络设备根据S601中接收到的第一信息确定的。例如,网络设备可以根据第一信息包含的干扰大小中,选择干扰大小最小的第一信息对应的终端设备作为被调度的终端设备。也就是说,被调度终端设备数量可以小于或等于M。
一种可能的情况中,第一信道的信道占用时长可以是根据上述一个或多个终端设备的第一信息确定的。可以理解的是,网络设备可以根据一个或多个终端设备的第一信息确定每个终端设备的第二干扰大小。需要说明的是,网络设备根据一个或多个终端设备的第一信息确定每个终端设备的第二干扰大小的方式,可以参照上述情况1至情况4中网络设备确定第一干扰大小的方式实施。另一种可能的情况中,第一信道的信道占用时长可以是根据上述一个或多个终端设备的第一信息以及网络设备的干扰大小确定的。可以理解的是,网络设备可以根据一个或多个终端设备的第一信息以及网络设备的干扰大小,确定一个或多个终端设备的第二干扰大小,从而根据第二干扰大小确定每个终端设备的信道占用时长。其中,网络设备根据一个或多个终端设备的第一信息以及网络设备的干扰大小,确定一个或多个终端设备第二干扰大小的方式,可以参照情况1至情况4中网络设备确定最终干扰 大小实施。
基于上述方案,网络设备可以根据终端设备的干扰大小,或者根据终端设备和网络设备的干扰大小,动态确定终端设备的信道占用时长,可以让干扰大小较高的终端设备占用信道的时间短一点,让干扰大小较低的终端设备占用信道的时间长一点,可以提升信道的利用率。
终端设备的第二干扰大小不同时,信道占用时长不同。换句话说,终端设备的第二干扰大小与信道占用时长可以一一对应。例如,终端设备的第二干扰大小越大,信道占用时长可以越小。或者说终端设备的第二干扰大小越大,信道占用时长可以越小。可以理解的是,终端设备的第二干扰大小可以是K个信道的干扰大小中取值最大的干扰大小、取值最小的干扰大小或者K个信道的平均干扰大小,此处不再赘述。可以理解的是,终端设备的第二干扰大小可以是终端设备发送的,也可以是网络设备根据终端设备发送的K个信道的干扰大小确定的。
一个示例中,网络设备可以根据公式确定信道占用时长。例如,信道占用时长g(I)=Z2-I。其中,I表示第二干扰大小,Z2可以是一个大于或等于1的整数,如5、6或者7等。可以理解的是,上述公式仅作为示例示出,并不构成根据终端设备的第二干扰大小确定信道占用时长的公式的限定。根据终端设备的第二干扰大小确定信道占用时长的公式可以是预定义的或者预先设置的本申请不做具体限定。
另一个示例中,网络设备可以根据表确定终端设备的第二干扰大小对应的信道占用时长。以下,以表2为例进行说明。
表2:一种终端设备的第二干扰大小与信道占用时长的对应关系的示例
可以理解的是,信道占用时长的单位可以是时间单元、秒、毫秒或者微秒等。
如表2所示,网络设备确定终端设备的第二干扰大小I=0时,根据上述表2网络设备可以确定信道占用时长为6。又例如,网络设备确定终端设备的第二干扰大小I=1时,根据上述表2网络设备可以确定信道占用时长为5,以此类推。根据上述表2以及网络设备确定的终端设备的第二干扰大小,网络设备可以确定信道占用时长。也就是说,可以以表格的形式呈现第二干扰大小和信道占用时长之间的对应关系,当网络设备确定终端设备的第二干扰大小后,可以通过查表得到相应的信道占用时长。
可选的,网络设备还可以向被调度的一个或多个终端设备分别发送第一信道的起始时间单元。例如,网络设备可以通过一个消息向一个或多个终端设备发送第一信道的起始时间。又例如,网络设备可以向一个或多个终端设备分别发送消息,每个消息用于指示第一信道的起始时间。这样,被调度的一个或多个终端设备可以根据第一信道的起始时间单元与第一信道的信道占用时长,与网络设备在第一信道上传输信息。
在一种可能的实现方式中,终端设备在第一信道上与网络设备传输信息之前,终端设备可以执行LBT。网络设备接入信道后可以通过物理下行控制信道(physical downlink  control channel,PDCCH)向终端设备发送调度命令,如信道占用时长。被调度的终端设备根据上行传输起始时刻与PDCCH传输完成时刻的间隔执行不同类型的LBT机制。
例如,在上述间隔小于或等于16us时,终端设备执行类型1的LBT机制。又例如,在上述间隔等于16us或等于25us时,终端设备执行类型2的LBT机制。又例如,在上述间隔大于25us,终端设备执行类型2的LBT机制。
如图7A所示,在类型1的LBT机制中,终端设备在PDCCH传输完成时刻通过第一信道与网络设备传输信息。例如,终端设备可以通过第一信道向网络设备发送数据。
如图7B所示,在类型2的LBT机制中,终端设备在PDCCH传输完成时刻经过一个推迟时长后,通过第一信道与网络设备传输信息。例如,终端设备可以通过第一信道向网络设备发送数据。
基于上述方案,网络设备可以通过网络设备的干扰大小以及终端设备的干扰大小,动态调节信道占用时长,可以提升信道利用率。
以下,通过图8介绍S602中的LBT方式,可以包括以下操作。
S801:网络设备处于空闲状态。
在S801中,网络设备可以处于空闲状态,也就是无数据发送或者接收的状态。
S802:网络设备确定是否有业务到达。
在S802中,网络设备可以判断是否有业务到达,也就是网络设备可以判断是否需要发送数据或者接收数据。在确定有业务到达时,网络设备可以执行S803,在确定无业务到达时,网络设备可以执行S801。
S803:网络设备判断信道是否持续空闲一个推迟时长。
举例来说,网络设备可以持续一段时间监听信道,并可以判断信道是否空闲一个推迟时长。可以理解的是,推迟时长可以是预定义的或者预先设置的,如34us。在S803中,如果网络设备确定信道持续空闲一个推迟时长,则网络设备可以执行S804,如果网络设备确定信道未持续空闲一个推迟时长,则网络设备可以执行S805。
可以理解的是,S801~S803属于ICCA阶段。
S804:网络设备与终端设备进行数据传输。
例如,网络设备可以向终端设备发送第一信道的信道占用时长。可选的,网络设备可以向终端设备发送起始时间单元。网络设备可以与终端设备在第一信道上进行数据传输。
在网络设备与终端设备完成数据传输后,可以执行S801。
S805:网络设备在(0,CW-1)之间生成一个随机数N。
其中,CW是预先配置的。可以理解的是,由S805开始网络设备进入ECCA阶段。
S806:网络设备判断信道是否持续空闲一个推迟时长。
举例来说,网络设备可以持续一段时间监听信道,并可以判断信道是否空闲一个推迟时长。可以理解的是,推迟时长可以是预定义的或者预先设置的,如34us。在S806中,如果网络设备确定信道持续空闲一个推迟时长,则网络设备可以执行S807,如果网络设备确定信道未持续空闲一个推迟时长,则网络设备可以执行S806。
S807:网络设备判断N是否小于或等于0。
在S807中,网络设备可以判断随机数N是否小于或等于0,如果随机数N小于或等于0,则网络设备执行S804。如果随机数N大于0,则网络设备执行S808。
S808:网络设备在一个时间单元内监测信道是否空闲。
在S808中,网络设备可以在一个时间单元内,如一个时隙内监测信道是否空闲,如果在一个时间单元内网络设备监测到信道空闲,那么网络设备可以执行S809。
S809:网络设备判断退避速度f(I)是否小于或等于0。
如果退避速度f(I)等于0,网络设备可以认为网络设备或者终端设备的干扰水平处于最高状态,那么网络设备需要确保信道保持空闲一个推迟时间,也就是执行S806。如果退避速度f(I)不等于0,那么网络设备可以执行S810。
S810:令Nk=Nk-1-f(I)。
其中,Nk-1表示上一轮退避后随机数N的取值,Nk表示在本轮退避后随机数N的取值。在S810中,可以认为网络设备在一个时间单元内退避了f(Ifinal)次,返回执行S807。
通过图8示出的方式介绍了单载波场景的LBT方式。在多载波场景中,网络设备可以通过LBT方案A或者LBT方案B接入信道。需要说明的是,图9中示出的非授权载波频段可以理解为信道,如LBT信道。其中,每个非授权载波频段可以对应一个信道。
参阅图9,以3个非授权频段载波,即K=3为例,在多载波LBT方案A中,当任一非授权频段载波,如图9中示出的非授权频段载波1退避过程结束后,网络设备查看其它非授权频段载波,如图9所示的非授权频段载波2和非授权频段载波3是否已经连续空闲一个推迟时长。已完成退避过程的非授权频段载波(图9中示出的非授权频段载波1),以及未完成退避过程但已经连续空闲一个推迟时长的非授权频段载波(图9中示出的非授权频段载波3),均开始数据传输,也就是网络设备可以在非授权频段载波1和非授权频段载波3上发送或者接收数据。未完成退避过程且未连续空闲一个推迟时长的非授权频段载波(图9中示出的非授权频段载波2)不参与数据传输。
需要说明的是,在多载波场景中,每个非授权频段载波上的退避过程与图8示出的方式相同。也就是说,在每个非授权频段载波上网络设备可以根据终端设备发送的第一信息确定退避速度,从而执行LBT。可选的,在每个非授权频段载波上网络设备可以根据终端设备发送的第一信息和网络设备的干扰大小确定退避速度,从而执行LBT。
在一种可能的实现方式中,若网络设备执行多载波LBT方案A,则终端设备可以向网络设备发送K个信道的干扰水平中的最低值。这是因为多载波LBT方案A优先保证尽早的开始数据传输。若网络设备执行多载波LBT方案B,则本终端设备可以向网络设备发送K个信道的干扰水平中的最大值。在多载波LBT方案B中,必须等待所有非授权频段载波完成退避过程之后,开始数据传输。这是因为多载波LBT方案B要求在K个信道同时开始传输。可以理解的是,网络设备可以向通过第二指示信息向终端设备间接指示网络设备采用多载波LBT方案A还是多载波LBT方案B。例如,网络设备可以向终端设备发送第二指示信息,该第二指示信息可以指示终端设备向网络设备发送测得的干扰水平中的最低值,或者该第二指示信息可以指示终端设备向网络设备发送测得的干扰水平中的最大值。也就是说,网络设备可以向终端设备发送第二指示信息,指示网络设备执行多载波LBT方案A或者网络设备执行多载波LBT方案B。
举例来说,如果网络设备向终端设备发送的第二指示信息指示终端设备发送测得的干扰水平中的最小值,那么可以认为该第二指示信息指示网络设备执行多载波LBT方案A。如果网络设备向终端设备发送的第二指示信息指示终端设备发送测得的干扰水平中的最 大值,那么可以认为该第二指示信息指示网络设备执行多载波LBT方案B。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图10为本申请实施例提供的通信装置1000的示意性框图。该通信装置1000可以对应实现上述各个方法实施例中由网络设备或终端设备实现的功能或者步骤。该通信装置可以包括处理单元1010和收发单元1020。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理单元1010和收发单元1020可以与该存储单元耦合,例如,处理单元1010可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置1000能够对应实现上述方法实施例中网络设备的行为和功能。例如通信装置1000可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路)。收发单元1020可以用于执行图6~图9所示的实施例中由网络设备所执行的全部接收或发送操作。例如图6所示的实施例中的S601,和/或用于支持本文所描述的技术的其它过程;其中,处理单元1010用于执行如图6所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。例如图6所示的实施例中的S602。
例如,收发单元1020,用于接收来自M个终端设备各自发送的第一信息,第一信息包括发送该第一信息的终端设备在K个信道上检测到的干扰大小。其中,K、M为大于或等于1的整数。处理单元1010,用于执行先监听后发送LBT。其中,LBT的退避速度是根据第一信息确定的,退避速度用于指示一个时间单元内网络设备退避的次数。
在一些可能的实施方式中,通信装置1000能够对应实现上述方法实施例中终端设备的行为和功能。例如通信装置1000可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路)。收发单元1020可以用于执行图6~图9所示的实施例中由终端设备所执行的全部接收或发送操作。例如图6所示的实施例中的S601,和/或用于支持本文所描述的技术的其它过程;其中,处理单元1010用于执行由终端设备所执行的除了收发操作之外的全部操作,例如确定第一信息,和/或用于支持本文所描述的技术的其它过程。
例如,处理单元1010,用于确定第一信息,第一信息包括终端设备在K个信道上检测到的干扰大小。其中,K为大于或等于1的整数。干扰大小是根据多个门限值确定的。收发单元1020,用于向网络设备发送第一信息。
有关处理单元1010和收发单元1020所执行的操作,可以参见前述方法实施例的相关描述。
应理解,本申请实施例中的处理单元1010可以由处理器或处理器相关电路组件实现,收发单元1020可以由收发器或收发器相关电路组件或者通信接口实现。
基于同一构思,如图11所示,本申请实施例提供一种通信装置1100。该通信装置1100包括处理器1110。可选的,通信装置1100还可以包括存储器1120,用于存储处理器1110执行的指令或存储处理器1110运行指令所需要的输入数据或存储处理器1110运行指令后产生的数据。处理器1110可以通过存储器1120存储的指令实现上述方法实施例所示的方法。
基于同一构思,如图12所示,本申请实施例提供一种通信装置1200,该通信装置1200 可以是芯片或者芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1200可以包括至少一个处理器1210,该处理器1210与存储器耦合,可选的,存储器可以位于该装置之内,也可以位于该装置之外。例如,通信装置1200还可以包括至少一个存储器1220。存储器1220保存实施上述任一实施例中必要计算机程序、配置信息、计算机程序或指令和/或数据;处理器1210可能执行存储器1220中存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1210可能和存储器1220协同操作。本申请实施例中不限定上述收发器1230、处理器1210以及存储器1220之间的具体连接介质。
通信装置1200中还可以包括收发器1230,通信装置1200可以通过收发器1230和其它设备进行信息交互。收发器1230可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置,或称为信号收发单元。如图12所示,该收发器1230包括发射机1231、接收机1232和天线1233。此外,当该通信装置1200为芯片类的装置或者电路时,该通信装置1200中的收发器也可以是输入输出电路和/或通信接口,可以输入数据(或称,接收数据)和输出数据(或称,发送数据),处理器为集成的处理器或者微处理器或者集成电路,处理器可以根据输入数据确定输出数据。
在一种可能的实施方式中,该通信装置1200可以应用于网络设备,具体通信装置1200可以是网络设备,也可以是能够支持网络设备实现上述涉及的任一实施例中网络设备的功能的装置。存储器1220保存实现上述任一实施例中的网络设备的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1210可执行存储器1220存储的计算机程序,完成上述任一实施例中网络设备执行的方法。
在另一种可能的实施方式中,该通信装置1200可以应用于终端设备,具体通信装置1200可以是终端设备,也可以是能够支持终端设备,实现上述涉及的任一实施例中终端设备的功能的装置。存储器1220保存实现上述任一实施例中的终端设备的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1210可执行存储器1220存储的计算机程序,完成上述任一实施例中终端设备执行的方法。
由于本实施例提供的通信装置1200可应用于网络设备,完成上述网络设备执行的方法,或者应用于终端设备,完成终端设备执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于 此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、计算机程序或指令和/或数据。
基于以上实施例,参见图13,本申请实施例还提供另一种通信装置1300,包括:输入输出接口1310和逻辑电路1320;输入输出接口1310,用于接收代码指令并传输至逻辑电路1320;逻辑电路1320,用于运行代码指令以执行上述任一实施例中网络设备或者终端设备执行的方法。
以下,对该通信装置应用于网络设备或者终端设备所执行的操作进行详细说明。
一种可选的实施方式中,该通信装置1300可应用于网络设备,执行上述网络设备所执行的方法,具体的例如前述图6~图9所示的实施例中网络设备所执行的方法。
例如,输入输出接口1310,用于输入来自M个第二通信装置各自发送的第一信息,第一信息包括发送该第一信息的第二通信装置在K个信道上检测到的干扰大小。其中,K、M为大于或等于1的整数。逻辑电路1320,用于执行LBT。其中,LBT的退避速度是根据第一信息确定的。可以理解的是,退避速度用于指示一个时间单元内网络设备退避的次数。
另一种可选的实施方式中,该通信装置1300可应用于终端设备,执行上述终端设备所执行的方法,具体的例如前述图6~图9所示的方法实施例中终端设备所执行的方法。
例如,逻辑电路1320,用于确定第一信息,第一信息包括终端设备在K个信道上检测到的干扰大小。其中,K为大于或等于1的整数。干扰大小是根据多个门限值确定的。输入输出接口1310,用于向网络设备输出第一信息。
由于本实施例提供的通信装置1300可应用于网络设备,执行上述网络设备所执行的方法,或者应用于终端设备,完成终端设备执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,图14示出了本申请实施例提供的终端设备。如图14所示,终端设备可包括:输入输出模块(包括音频输入输出模块、按键输入模块以及显示器等)、用户接口、一个或多个终端处理器、发射器、接收器、天线以及存储器。这些部件可通过总线或者其它方式连接,图14以通过总线连接为例。其中:
通信接口可用于终端设备与其他通信设备,例如基站,进行通信。具体的,通信接口可包括:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信接口、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信接口,长期演进(Long Term Evolution,简称LTE)(4G),以及新空口(New Radio,简称NR)通信接口等等中的一种或几种。不限于无线通信接口,终端设备还可以配置有有线的通信接口,例如局域接入网(Local Access Network,LAN)接口。
天线可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。
发射器可用于对终端处理器输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器可包括非授权频谱发射器和授权频谱发射器。其中,非授权频谱发射器可以支持终端设备在一个或多个非授权频谱上发射信号,授权频谱发射器可以支持终端设备在一个或多个授权频谱上发射信号。需要说明的是,发射器可以具有在非授权频谱和授权频谱各自发送的功能,这不意味着发射器中必须包含非授权发射器和授权发射器两部分,也可以只有一部分可以实现两 个功能。
接收器可用于对天线接收的移动通信信号进行接收处理。例如,接收器可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器可包括非授权频谱接收器和授权频谱接收器。其中,非授权频谱接收器可以支持终端设备接收调制在非授权频谱上的信号,授权频谱接收器可以支持终端设备接收调制在授权频谱上的信号。需要说明的是,接收器可以具有在非授权频谱和授权频谱各自接收的功能,这不意味着接收器中必须包含非授权接收器和授权接收器两部分,也可以只有一部分可以实现两个功能。
在本申请的一些实施例中,发射器和接收器可看作一个无线调制解调器。在终端设备中,发射器和接收器的数量均可以是一个或者多个。
除了图14所示的发射器和接收器,终端设备还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,WiFi)模块等。不限于上述表述的无线通信信号,终端设备还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端设备还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端设备和用户/外部环境之间的交互,可主要包括音频输入输出模块、按键输入模块以及显示器等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口与终端处理器进行通信。
存储器与终端处理器耦合,用于存储各种软件程序和/或多组指令。具体的,存储器可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器可用于存储本申请的一个或多个实施例提供的非授权频段传输方法在终端设备侧的实现程序。关于本申请的一个或多个实施例提供的非授权频段传输方法的实现,请参考后续实施例。
终端处理器可用于读取和执行计算机可读指令。具体的,终端处理器可用于调用存储于存储器中的程序,例如本申请的一个或多个实施例提供的非授权频段传输方法在终端设备侧的实现程序,并执行该程序包含的指令。
可以理解的,终端设备可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图14所示的终端设备仅仅是本申请实施例的一种实现方式,实际应用中,终端设备还可以包括更多或更少的部件,这里不作限制。
基于以上实施例,图15示出了本申请的一些实施例提供的基站。如图15所示,基站可包括:通信接口、一个或多个基站处理器、发射器、接收器、天线和存储器。这些部件可通过总线或者其它方式连接,图15以通过总线连接为例。其中:
通信接口可用于基站与其他通信设备,例如终端设备或其他基站,进行通信。具体的, 通信接口可包括:全球移动通信系统(GSM)(2G)通信接口、宽带码分多址(WCDMA)(3G)通信接口,长期演进(LTE)(4G),以及新空口(New Radio,简称NR)通信接口等等中的一种或几种。不限于无线通信接口,基站还可以配置有有线的通信接口来支持有线通信,例如一个基站与其他基站之间的回程链接可以是有线通信连接。
天线可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。
发射器可用于对基站处理器输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器可包括非授权频谱发射器和授权频谱发射器。其中,非授权频谱发射器可以支持基站在一个或多个非授权频谱上发射信号,授权频谱发射器可以支持基站在一个或多个授权频谱上发射信号。
接收器可用于对天线接收的移动通信信号进行接收处理。例如,接收器可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器可包括非授权频谱接收器和授权频谱接收器。其中,非授权频谱接收器可以支持基站接收调制在非授权频谱上的信号,授权频谱接收器可以支持基站接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器和接收器可看作一个无线调制解调器。在基站中,发射器和接收器的数量均可以是一个或者多个。
存储器与基站处理器耦合,用于存储各种软件程序和/或多组指令。具体的,存储器可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
基站处理器可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内终端设备的过区切换进行控制等。具体的,基站处理器可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,基站处理器可用于读取和执行计算机可读指令。具体的,基站处理器可用于调用存储于存储器中的程序,例如本申请的一个或多个实施例提供的非授权频段传输方法在基站侧的实现程序,并执行该程序包含的指令。
可以理解的,基站可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),gNodeB,NodeB,eNodeB等等。基站可以实施为几种不同类型的基站,例如宏基站、微基站等。基站可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
基于以上实施例,本申请实施例还提供一种通信系统。该通信系统包括至少一个应用于网络设备的通信装置和至少一个应用于终端设备的通信装置。所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当指令被执行时,使上述任一实施例中终端设备执行的方法被实施或者网络设备执行的方法被实施。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述图10~图15的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中网络设备或者终端设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的计算机程序或指令和数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序或指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序或指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序或指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序或指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种数据传输方法,其特征在于,包括:
    第一通信装置接收来自M个第二通信装置各自发送的第一信息,所述第一信息包括发送所述第一信息的第二通信装置在K个信道上检测到的干扰大小;所述K、M为大于或等于1的整数;
    所述第一通信装置执行先监听后发送LBT;其中,所述LBT的退避速度是根据所述第一信息确定的;所述退避速度用于指示一个时间单元内所述第一通信装置退避的次数。
  2. 根据权利要求1所述的方法,其特征在于,所述干扰大小是根据多个门限值确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,不同的所述干扰大小对应不同的所述退避速度。
  4. 根据权利要求2或3所述的方法,其特征在于,所述干扰大小越大,所述退避速度越小。
  5. 根据权利要求1~4任一所述的方法,其特征在于,还包括:
    所述第一通信装置向所述M个第二通信装置中的被调度的一个或多个第二通信装置发送第一指示信息,所述第一指示信息指示第一信道的信道占用时长;所述信道占用时长是根据所述一个或多个第二通信装置的第一信息确定的,所述第一信道用于所述第一通信装置与所述一个或多个第二通信装置传输信息。
  6. 根据权利要求5所述的方法,其特征在于,所述信道占用时长是根据所述一个或多个第二通信装置的第一信息和所述第一通信装置的干扰确定的,所述第一通信装置的干扰是根据所述第一通信装置的空闲信道评估确定的。
  7. 根据权利要求1~6任一所述的方法,其特征在于,所述第一通信装置接收来自M个第二通信装置的第一信息,包括:
    所述第一通信装置接收所述M个第二通信装置的层1的所述第一信息。
  8. 根据权利要求1~7任一所述的方法,其特征在于,还包括:
    所述第一通信装置向所述M个第二通信装置发送第二指示信息,所述第二指示信息指示所述K个信道为所述M个第二通信装置测得的干扰最小的信道或所述干扰最大的信道。
  9. 根据权利要求1~8任一所述的方法,其特征在于,所述退避速度是根据所述第一通信装置接收到的M个所述第一信息中的干扰的最小值确定的。
  10. 根据权利要求9所述的方法,其特征在于,所述退避速度是根据M个所述第一信息中的干扰与所述第一通信装置的干扰中的最小值确定的,所述第一通信装置的干扰是根据所述第一通信装置的空闲信道评估确定的。
  11. 一种数据传输方法,其特征在于,包括:
    第二通信装置确定第一信息,所述第一信息包括所述第二通信装置在K个信道上检测到的干扰大小;所述K为大于或等于1的整数;所述干扰大小是根据多个门限值确定的;
    所述第二通信装置向第一通信装置发送所述第一信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第二通信装置向第一通信装置发送所述第一信息,包括:
    所述第二通信装置向所述第一通信装置发送层1的所述第一信息。
  13. 根据权利要求11或12所述的方法,其特征在于,还包括:
    所述第二通信装置接收来自所述第一通信装置的第二指示信息,所述第二指示信息指示所述K个信道为所述第二通信装置测得的干扰最小的信道或干扰最大的信道;
    所述第二通信装置向第一通信装置发送所述第一信息,包括:
    所述第二通信装置向所述第一通信装置发送所述干扰最小的信道上测得的干扰大小或所述干扰最大的信道上测得的干扰大小。
  14. 一种通信装置,其特征在于,包括:所述装置包括处理器和存储器,
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行存储器中的计算机程序或指令,使所述装置执行如权利要求1~10中任一项所述的方法或者使所述装置执行如权利要求11~13中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被电子装置调用时,使所述电子装置执行如权利要求1~10中任一项所述的方法或者如权利要求11~13中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1~10中任一项所述的方法或者如权利要求11~13中任一项所述的方法。
  17. 一种通信系统,其特征在于,包括用于执行如权利要求1~10中任一项所述的方法的第一通信装置和用于执行如权利要求11~13中任一项所述的方法的第二通信装置。
PCT/CN2023/094730 2022-05-31 2023-05-17 一种数据传输方法和装置 WO2023231772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210612492.4A CN117202391A (zh) 2022-05-31 2022-05-31 一种数据传输方法和装置
CN202210612492.4 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231772A1 true WO2023231772A1 (zh) 2023-12-07

Family

ID=89003987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094730 WO2023231772A1 (zh) 2022-05-31 2023-05-17 一种数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN117202391A (zh)
WO (1) WO2023231772A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200100284A1 (en) * 2018-09-24 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for contention window size adaptation of nr unlicensed
CN111699641A (zh) * 2020-04-29 2020-09-22 北京小米移动软件有限公司 信道检测方法、装置、通信设备及存储介质
WO2021232413A1 (zh) * 2020-05-22 2021-11-25 株式会社Ntt都科摩 发送设备、接收设备、干扰信息发送方法和信道接入方法
CN114503769A (zh) * 2019-10-28 2022-05-13 华为技术有限公司 数据的发送、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200100284A1 (en) * 2018-09-24 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for contention window size adaptation of nr unlicensed
CN114503769A (zh) * 2019-10-28 2022-05-13 华为技术有限公司 数据的发送、接收方法及装置
CN111699641A (zh) * 2020-04-29 2020-09-22 北京小米移动软件有限公司 信道检测方法、装置、通信设备及存储介质
WO2021232413A1 (zh) * 2020-05-22 2021-11-25 株式会社Ntt都科摩 发送设备、接收设备、干扰信息发送方法和信道接入方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Channel access mechanism for NR from 52.6 to 71 GHz", 3GPP TSG RAN WG1 MEETING #104BIS-E, R1-2103572, 7 April 2021 (2021-04-07), XP052178274 *
XIAOMI: "Channel access mechanism for NR on 52.6-71 GHz", 3GPP TSG RAN WG1 #104 R1- 2101113, 18 January 2021 (2021-01-18), XP051970674 *

Also Published As

Publication number Publication date
CN117202391A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
EP3952355A1 (en) Communication method and device
US20200068624A1 (en) Data sending method and apparatus thereof
WO2019223589A1 (zh) 基于多接入点ap协作的空间复用的方法和装置
US10623981B2 (en) Information transmission method, apparatus, and system
WO2011051745A1 (en) Scheduling of direct to direct communication
WO2020156429A1 (zh) 确定传输资源的方法和装置
JP2022514288A (ja) アンライセンススペクトルで動作する方法およびデバイス
WO2019056370A1 (zh) 一种通信方法和装置
CN115735348A (zh) 无线通信中双工模式之间的智能切换
US20220217749A1 (en) Sidelink configuration method and apparatus, device, and storage medium
CN112997433B (zh) 用于harq传输的方法以及通信设备
WO2021004085A1 (en) Methods and devices for wireless communication
WO2021072659A1 (zh) 资源配置方法及设备
US20120327867A1 (en) Subframe Scheduling
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2019157634A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
WO2020259063A1 (en) Method and apparatus for supporting transmission adaptation
AU2020274825A1 (en) Methods, terminal device and network node for uplink transmission
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
WO2019153358A1 (zh) 一种信道传输方法及装置、计算机存储介质
WO2023231772A1 (zh) 一种数据传输方法和装置
WO2021087886A1 (zh) 定时器设置方法及相关设备
WO2019157639A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
WO2023072258A1 (en) Method and apparatus for carrier aggregation
EP4346260A1 (en) Communication method and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814957

Country of ref document: EP

Kind code of ref document: A1