WO2023231743A9 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023231743A9
WO2023231743A9 PCT/CN2023/093756 CN2023093756W WO2023231743A9 WO 2023231743 A9 WO2023231743 A9 WO 2023231743A9 CN 2023093756 W CN2023093756 W CN 2023093756W WO 2023231743 A9 WO2023231743 A9 WO 2023231743A9
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information
combination
phase
resources
Prior art date
Application number
PCT/CN2023/093756
Other languages
English (en)
French (fr)
Other versions
WO2023231743A1 (zh
Inventor
刘梦婷
高鑫
沙桐
雷镇东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231743A1 publication Critical patent/WO2023231743A1/zh
Publication of WO2023231743A9 publication Critical patent/WO2023231743A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • Positioning accuracy depends largely on the bandwidth of the positioning signal. The larger the bandwidth, the higher the positioning accuracy. However, the spectrum of most operators is “discrete” or “fragmented”, making it difficult to obtain a large-bandwidth spectrum.
  • carrier aggregation (CA) technology can be used to send or receive signals on multiple aggregated carriers. For the receiving end, corresponding measurements can be made based on the signals on these multiple carriers to obtain better positioning performance.
  • phase discontinuities between signals sent on different carriers may cause large errors in measurement results, thereby affecting positioning performance.
  • Embodiments of the present application provide a communication method and device for reducing errors caused by phase discontinuities between signals.
  • a first aspect provides a first communication method, which can be executed by a first device, or by other devices that include the functions of the first device, or by a chip system or other functional modules that can implement the first device.
  • the function of a device, the chip system or functional module is, for example, provided in the first device.
  • the method includes: receiving first information, where the first information includes information about the second device on M resources, where the M resources are frequency resources, and M is a positive integer; in one of the M resources or Receive a first signal from the second device on multiple resources; obtain measurement information, where the measurement information is determined based on the first signal and the first information.
  • the information of the second device on the M resources includes phase information of the second device on the M resources, and/or the second Capability information of the device on the M resources.
  • the first device after receiving signals on one or more of the M resources, can determine the phase information between the received signals based on the first information, so that all the signals can be taken into consideration when obtaining the measurement information.
  • the phase information between the received signals reduces the measurement error caused by the phase difference between different signals and improves the accuracy of the obtained measurement information.
  • the first information may include the phase information of the second device on M resources, and/or include the second device on Capability information on M resources, so the following is divided into two parts to introduce.
  • the first information includes the phase information of the second device on M resources.
  • the first resource among the M resources belongs to a first resource combination
  • the first information includes the first resource of the second device in the first resource combination. Phase information on the resource.
  • the phase information of the second device on the first resource in the first resource combination includes one or more of the following: The phase on the first resource in the first resource combination; the number of phases of the second device on the first resource in the first resource combination; the phase number of the second device on the first resource The set of phase values on the first resource in the resource combination; the phase value range of the second device on the first resource in the first resource combination; the phase value range of the second device on the first resource in the resource combination; The phase error information on the first resource in the first resource combination; the phase of the second device on the second resource and the phase of the second device on the first resource in the first resource combination.
  • the second resource is any one of the M first resources except the first resource; or the second device is on the first resource in the first resource combination. The difference between the phase and the reference phase.
  • the phase difference between the second device on the second resource and the second device on the first resource in the first resource combination is not 0.
  • the first information received by the first device may include a phase difference that is not 0, or in other words, the phase information in the first information is the phase information of a resource that has a phase difference from the first resource.
  • the first device if it is found that the first information does not include the phase difference between some resources, it can be determined that the phase difference between these resources is 0. This not only enables the first device to obtain the phase difference between resources, but also reduces the capacity of the first information, thereby reducing signaling overhead.
  • the second resource belongs to a second resource combination
  • the second resource combination and the first resource combination are the same resource combination, or the second resource combination is the same as the first resource combination.
  • the first resource combination is a different resource combination.
  • the first resource combination is one or more frequency band combinations.
  • the first resource is one or more frequency bands, or one or more carriers.
  • M resources correspond to M channels one-to-one.
  • the channel used is the same; when the second device sends a signal on different resources among the M resources, the channel used is the same.
  • the channels are different.
  • the first resource among the M resources is a resource set
  • the M resources are M resource sets.
  • the first information may include the phase information of the second device on at least one resource set among the M resource sets, and the phase information corresponding to the second device can be reported through the granularity of the resource set. It can not only report more complete content, but also help reduce signaling overhead.
  • the resource set is a carrier set
  • the M resource sets are M carrier sets
  • the first resource set is a first carrier set
  • the first resource is a frequency band combination, and the M resources are M frequency band combinations; or the first resource is a frequency band, and the M resources are M frequency bands; or the first resource is Carriers, M resources are M carriers.
  • the second device will use the same channel on a frequency band combination, or no matter which frequency band combination a frequency band belongs to, the second device will use the same channel on the frequency band, or no matter which frequency band combination a carrier belongs to Which frequency band combination, the second device uses the same channel on this carrier, then the first information can consider using this implementation method.
  • This implementation method is relatively simple and can save the transmission overhead caused by the first information.
  • the measurement information is used for positioning. For example, it can be used to locate a second device.
  • the first information is carried in capability information.
  • the first information is carried in the capability information message of the second device.
  • the first information includes capability information of the second device on M resources.
  • the capability information of the second device on M resources included in the first information may be phase-related capability information of the second device on M resources.
  • the first resource among the M resources belongs to a first resource combination
  • the capability information includes the first resource of the second device in the first resource combination. capability information.
  • the capability information of the second device on the first resource in the first resource combination includes one or more of the following: The number of resource particles corresponding to the first resource; the frequency domain range of the first resource in the first resource combination; the second device on the first resource in the first resource combination The corresponding frequency division coefficient.
  • the first resource in the first resource combination corresponds to one or more resource particles
  • the resource particles and channels are in one-to-one correspondence
  • the second device is on the first resource in the first resource combination.
  • the number of resource particles corresponding to the first resource in the first resource combination reflects the number of channels used by the second device on the first resource in the first resource combination, so that the first device can determine accordingly.
  • the frequency range of the first resource in the first resource combination includes the frequency range of each channel used by the second device when transmitting signals on the first resource in the first resource combination. In this manner, the first device can determine the phase difference between signals sent by the second device on the first resource in the first resource combination based on the frequency range.
  • the frequency division coefficient corresponding to the first resource in the first resource combination of the second device includes each frequency division coefficient used by the second device when sending a signal on the first resource in the first resource combination.
  • the frequency division coefficient of the channel In this new way, if the first device learns the frequency division coefficient of a channel, it can determine the phase value set or phase value range or phase of the signal sent by the second device on the channel, thereby being able to determine the phase value of the second device. The phase of the signal sent on this channel.
  • the first resource is one or more frequency bands, or one or more carriers.
  • the first resource combination is one or more frequency band combinations.
  • M resources correspond to M channels one-to-one.
  • the first resource among the M resources is a resource set
  • the M resources are M resource sets.
  • the resource set is a carrier set
  • the M resource sets are M carrier sets
  • the first resource set is a first carrier set
  • the first resource is a frequency band combination, and the M resources are M frequency band combinations; or the first resource is a frequency band, and the M resources are M frequency bands; or the first resource is Carriers, M resources are M carriers.
  • the measurement information is used for positioning.
  • the first information is carried in capability information.
  • a second communication method is provided, which method can be executed by a third device, or by other devices that include the functions of the third device, or by a chip system or other functional modules that can implement the third device.
  • the chip system or functional module is, for example, provided in the third device.
  • the method includes: obtaining first information, where the first information includes information about the second device on M resources, where the M resources are frequency resources, and M is a positive integer; and sending the first information.
  • the information of the second device on the M resources includes phase information of the second device on the M resources, and/or the second Capability information of the device on the M resources.
  • the first information may include phase information of the second device on the M resources, and/or include capability information of the second device on the M resources, the following is also divided into two parts.
  • the first information includes the phase information of the second device on M resources.
  • the first resource among the M resources belongs to a first resource combination
  • the first information includes the first resource of the second device in the first resource combination. Phase information on the resource.
  • the phase information of the second device on the first resource in the first resource combination includes one or more of the following: The phase on the first resource in the first resource combination; the number of phases of the second device on the first resource in the first resource combination; the phase number of the second device on the first resource The phase value set or phase value range on the first resource in the resource combination; the phase error information of the second device on the first resource in the first resource combination; or, the The phase difference between the second device on the second resource and the second device on the first resource in the first resource combination, where the second resource is the M resources except the first Any resource outside the resource; or, the difference between the phase corresponding to the second device on the first resource in the first resource combination and the reference phase.
  • a phase difference between the second device on the second resource and the second device on the first resource in the first resource combination is not 0.
  • the second resource belongs to a second resource combination
  • the second resource combination and the first resource combination are the same resource combination, or the second resource combination is the same as the first resource combination.
  • the first resource combination is a different resource combination.
  • the first resource combination is one or more frequency band combinations.
  • the first resource is one or more frequency bands, or one or more carriers.
  • M resources correspond to M channels one-to-one.
  • the first resource is a frequency band combination, and the M resources are M frequency band combinations; or the first resource is a frequency band, and the M resources are M frequency bands; or, the The first resource is a carrier, and the M resources are M carriers.
  • the first resource among the M resources is a resource set
  • the M resources are M resource sets.
  • the resource set is a carrier set
  • the M resource sets are M carrier sets
  • the first resource set is a first carrier set
  • the method further includes: sending a first signal on one or more of the M resources.
  • the first signal is used for positioning.
  • sending the first information includes: sending capability information of the second device, so The capability information of the second device includes the first information.
  • the third device and the second device may be the same device.
  • the capability information of the second device is a UE capability information message.
  • the first information includes capability information of the second device on M resources.
  • the first resource among the M resources belongs to a first resource combination
  • the first information includes the first resource of the second device in the first resource combination. Capability information on resources.
  • the capability information of the first resource of the second device in the first resource combination includes one or more of the following: the The number of resource particles corresponding to the first resource; the frequency range of the first resource in the first resource combination; or, the frequency range of the second device corresponding to the first resource in the first resource combination. Frequency division coefficient.
  • the first resource in the first resource combination corresponds to one or more resource particles
  • the resource particles and channels are in one-to-one correspondence
  • the second device is on the first resource in the first resource combination.
  • the number of resource particles corresponding to the first resource in the first resource combination reflects the number of channels used by the second device on the first resource in the first resource combination, so that the first device can determine accordingly.
  • the frequency range of the first resource in the first resource combination includes the frequency range of each channel used by the second device when transmitting signals on the first resource in the first resource combination. In this manner, the first device can determine the phase difference between signals sent by the second device on the first resource in the first resource combination based on the frequency range.
  • the frequency division coefficient corresponding to the first resource in the first resource combination of the second device includes each frequency division coefficient used by the second device when sending a signal on the first resource in the first resource combination.
  • the frequency division coefficient of the channel In this new way, if the first device learns the frequency division coefficient of a channel, it can determine the phase value set or phase value range or phase of the signal sent by the second device on the channel, thereby being able to determine the phase value of the second device. The phase of the signal sent on this channel.
  • the first resource is one or more frequency bands, or one or more carriers.
  • the first resource combination is one or more frequency band combinations.
  • the first resource among the M resources is a resource set, and the M resources are M resource sets.
  • the resource set is a carrier set
  • the M resource sets are M carrier sets
  • the first resource is a first resource set.
  • the first resource among the M first resources is a frequency band combination, and the M resources are M frequency band combinations; or the first resource is a frequency band, and the M resources are M frequency bands. ; Or, the first resource is a carrier, and the M resources are M carriers.
  • the method further includes: sending a first signal on one or more of the M resources.
  • the first signal is used for positioning.
  • a communication device may be the one described in the first aspect and/or the second aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit.
  • the transceiver unit (or the receiving unit) is used to receive first information.
  • the first information includes the second device in M Information on resources, the M resources are frequency resources, M is a positive integer; the transceiver unit (or the receiving unit) is also used to transmit information on one or more of the M resources.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the first device described in the first aspect and/or the second aspect.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the first device described in the first aspect and/or the second aspect.
  • a fourth aspect provides another communication device.
  • the communication device may be the third device described in the first aspect and/or the second aspect. It may be a larger device including a third device, or it may be a functional module in the third device, such as a baseband device or a chip system.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the processing unit is used to obtain first information, the first information includes information about the second device on M resources, the M resources are frequency resources, and M is a positive integer; the transceiver unit (or, The sending unit) is used to send the first information.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the third device described in the first aspect and/or the second aspect.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the third device described in the first aspect and/or the second aspect.
  • a fifth aspect provides a communication system, including the communication device described in the third aspect and the communication device described in the fourth aspect.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store a computer program or instructions that, when executed, cause the method executed by the first device or the third device in the above aspects. be realized.
  • a seventh aspect provides a computer program product containing instructions that, when run on a computer, enables the methods described in the above aspects to be implemented.
  • An eighth aspect provides a chip system, including a processor and an interface.
  • the processor is configured to call and run instructions from the interface, so that the chip system implements the methods of the above aspects.
  • Figure 1 is a schematic diagram of carrier aggregation technology
  • Figure 2 is a schematic diagram of capability parameters
  • Figure 3 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 4 is a flow chart of the first communication method provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of signaling provided by an embodiment of the present application.
  • Figure 6 is a flow chart of the second communication method provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the positioning process in the embodiment of the present application.
  • Figure 8 is a flow chart of a positioning process provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of yet another device provided by an embodiment of the present application.
  • Carrier aggregation technology combines component carriers (CCs) in available frequency bands to improve spectrum utilization efficiency, increase data rates, and improve network performance. Taking two component carriers participating in aggregation as an example, carrier aggregation can include several types. Examples are introduced below.
  • frequency band can also be called “frequency band”
  • frequency band to which the two CCs belong
  • the aggregation of these two component carriers is called intra-band contiguous CA).
  • CA intra-band contiguous CA
  • the aggregation of the two component carriers is called intra-band non-contiguous CA (intra-band non-contiguous CA).
  • intra-band non-contiguous CA intra-band non-contiguous CA
  • the aggregation of the two component carriers is called cross-band carrier aggregation or inter-band carrier aggregation (intra-band CA).
  • intra-band CA inter-band carrier aggregation
  • One BC may include one or more frequency bands. Since one frequency band may include one or more carriers, it can also be understood that one BC may include one or more carriers.
  • Each BC corresponds to a feature set combination (FeatureSetsCombination, FSC), and each frequency band (band) in a frequency band combination corresponds to a feature set (FeatureSetperBand) of the frequency band.
  • the frequency band feature set includes the uplink feature set (FeatureSetUplink) and the downlink feature set (FeatureSetDownlink); each carrier corresponds to a carrier feature set (FeatureSetPerCC).
  • the carrier feature set includes the uplink carrier feature set (FeatureSetDownlinkPerCC) and the downlink carrier feature set (FeatureSetDownlinkPerCC). FeatureSetDownlinkPerCC).
  • the UE may report the capabilities of the UE through a feature set, such as reporting one or more of the capabilities of a frequency band combination, the capabilities of each frequency band in the frequency band combination, or the capabilities of each carrier in the frequency band combination.
  • each feature set can be represented by an identifier (ID).
  • the FSC ID is 1, and the FSC corresponds to BC1 and BC2, for example.
  • BC1 is a combination of frequency band n41, frequency band n78 and frequency band n88.
  • the number of carriers participating in the BC1 combination in frequency band n41 is 8, the number of carriers participating in the BC1 combination in frequency band n78 is 4, and the number of carriers participating in the BC1 combination in frequency band n88 is 2.
  • BC2 is a combination of frequency band n41 and frequency band n78, where the number of carriers participating in the BC2 combination in frequency band n41 is 4, and the number of carriers participating in the BC2 combination in frequency band n78 is 4.
  • the FSC may include feature sets of frequency band n41, frequency band n78 and frequency band n88.
  • the feature set also includes feature set 1 corresponding to BC1 and feature set 2 corresponding to BC2 in frequency band n41.
  • frequency band n41 corresponds to feature set 1 of BC1, which includes feature set downlink ID1 (FeatureSetDownlink ID1) and feature set uplink ID1 (FeatureSetUplink ID1), which respectively represent the downlink capability and uplink capability of frequency band n41 in BC1.
  • the feature set downlink ID1 of feature set 1 corresponding to frequency band n41 also includes the IDs of the eight carriers in frequency band n41 that participate in the BC1 combination, for example, they are the component carrier IDs (FeatureSetPerCC ID) in feature set 1. 1 ⁇ 8.
  • frequency band n41 corresponds to feature set 2 of BC2, which includes feature set downlink ID1 (FeatureSetDownlink ID1) and feature set uplink ID2 (FeatureSetUplink ID2), which respectively represent the downlink capability and uplink capability of frequency band n41 in BC2.
  • the feature set downlink ID1 of the feature set 2 corresponding to the frequency band n41 also includes the IDs of the four carriers in the frequency band n41 that participate in the BC2 combination, for example, the component carrier IDs (FeatureSetPerCC ID) 1 to 4 in the feature set 2 respectively.
  • Other contents included in the FSC are also similar and will not be described in detail.
  • Uu User to network interface universal (Uu) positioning Uu positioning, positioning reference signals, positioning assistance data, positioning measurement results and other information are transmitted through the Uu port.
  • the "U” in Uu means user to network interface
  • the "u” in Uu means universal.
  • the Uu interface is a cellular communication interface and requires the participation of access network equipment.
  • SL positioning is a technology that uses SL to send sidelink positioning reference signal (S-PRS) and perform positioning measurements.
  • positioning reference signals can be transmitted between UEs through the PC5 (proximity based services communication 5) interface, but positioning assistance data, positioning measurement results and other information can be transmitted through the PC5 interface or the Uu interface.
  • a positioning reference signal can be understood as a signal that can be used for positioning or provides a reference for positioning.
  • the positioning reference signal may include a downlink positioning reference signal (DL-PRS), an uplink sounding reference signal (UL-SRS), a positioning reference signal, PRS), or one or more of S-PRS.
  • DL-PRS downlink positioning reference signal
  • U-SRS uplink sounding reference signal
  • PRS positioning reference signal
  • other reference signals such as channel state information reference signal (CSI-RS), synchronization signal and physical broadcast channel (PBCH) block (synchronization signal and PBCH block (SSB)), time-frequency tracking One or more reference signals (Tracking Reference Signal, TRS) can also be used for positioning.
  • CSI-RS channel state information reference signal
  • PBCH physical broadcast channel
  • SSB synchronization signal and PBCH block
  • TRS time-frequency tracking One or more reference signals
  • TRS Time-frequency tracking One or more reference signals
  • the positioning reference signal in this application is a reference signal that can be
  • DL-PRS is used for downlink positioning method and uplink and downlink joint positioning method.
  • SRS can include uplink reference signals (MIMO-SRS) for multiple input multiple output (MIMO), and uplink positioning reference signals dedicated to positioning (ie. Positioning detection reference signal (positioning-SRS, pos-SRS)).
  • MIMO-SRS multiple input multiple output
  • positioning-SRS Positioning detection reference signal
  • pos-SRS Positioning detection reference signal
  • both MIMO-SRS and pos-SRS can be used for uplink positioning methods and uplink and downlink joint positioning methods.
  • UL-SRS can also be called uplink positioning reference signal.
  • PRS may include DL-PRS and/or UL-SRS.
  • S-PRS is a reference signal transmitted on SL and dedicated for positioning in SL scenarios.
  • the first device, the second device or the third device in the embodiment of the present application may be a device with wireless transceiver function, and may be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, or a vehicle-mounted device. equipment, or wireless devices (for example, communication modules, modems, or chip systems, etc.) built into the above equipment.
  • the tag is, for example, a terminal device, a fixed device or a mobile device in the terminal device, or a wireless device built into the above device.
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR) , augmented reality (AR), industrial control (industrial control), self-driving (self driving), Terminal equipment for remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios.
  • devices-to-device communication device-to-device, D2D
  • car-to-everything vehicle to everything
  • V2X machine-to-machine/machine-type communications
  • IoT Internet of things
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • self-driving self driving
  • the terminal equipment may sometimes be referred to as a UE, a terminal, an access station, a UE station, a remote station, a wireless communication device, a user device, or the like.
  • the terminal device is described by taking a UE as an example.
  • first device the second device or the third device may also be a network device, and the explanation of the network device is as follows.
  • Network equipment which may include access network equipment, is an access equipment for terminal equipment to wirelessly access the mobile communication system, including access network (AN) equipment, such as base stations. Access network equipment may also include equipment that communicates with terminal equipment over the air interface. Access network equipment may include an evolutionary base station (evolutional Node B) in a long term evolution (LTE) system or an advanced long term evolution (long term evolution-advanced, LTE-A) system, which may be referred to as eNB or e-NodeB. ). eNB is a device deployed in a wireless access network that meets the fourth generation (4G) mobile communication technology standards to provide wireless communication functions for terminal equipment.
  • 4G fourth generation
  • the access network equipment can also be a new radio controller (NR controller), a base station (gNode B, gNB) in the 5G system, a centralized network element (centralized unit), or a new wireless base station , it can be a radio frequency remote module, it can be a micro base station (also called a small station), it can be a relay, it can be a distributed unit (distributed unit), it can be various forms of macro base stations, it can be Transmission reception point (TRP), reception point (RP), transmission measurement function (TMF) or transmission point (TP) or any other wireless access equipment, this application implements Examples are not limited to this.
  • NR controller new radio controller
  • gNode B, gNB base station
  • centralized unit centralized unit
  • a new wireless base station it can be a radio frequency remote module
  • it can be a micro base station (also called a small station)
  • it can be a relay
  • it can be a distributed unit (distributed unit)
  • it can be various forms of
  • Access network equipment can also include wireless network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), Home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS Home base station
  • Home base station for example, home evolved NodeB, or home Node B, HNB
  • base band unit base band unit
  • BBU wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the access network equipment.
  • Network equipment can correspond to eNB in the 4
  • the base station in the embodiment of the present application may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer functions of the wireless network they possess. For example, the PDCP layer and above protocol layer functions are set in the CU.
  • the protocol layers below PDCP such as the Radio Link Control (RLC) layer and media Access control (media access control, MAC) layer and other functions are set in DU. It should be noted that this division of protocol layers is just an example, and division can also be performed on other protocol layers.
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or partially remote and partially integrated in the DU.
  • control plane (CP) and user plane (UP) of the CU can also be separated and implemented into different entities, respectively control plane CU entities (CU-CP entities). and user plane CU entities (CU-UP entities).
  • CU-CP entities control plane CU entities
  • CU-UP entities user plane CU entities
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU may directly encapsulate the signaling and transparently transmit it to the UE or CU through the protocol layer without parsing the signaling.
  • the CU is divided into network equipment on the radio access network (radio access network, RAN) side.
  • the CU can also be divided into network equipment on the core network (core network, CN) side. This application describes There is no restriction on this.
  • Network equipment may also include core network equipment, such as location management function (LMF), mobility management entity (MME), and broadcast multicast service center. (broadcast multicast service center, BMSC), etc., or may also include corresponding functional entities in the 5G system, such as core network control plane (CP) or user plane (UP) network functions, such as: SMF, Access and mobility management function (AMF), etc.
  • CP core network control plane
  • UP user plane
  • SMF Serving Mobility Management Function
  • AMF Access and mobility management function
  • the core network control plane can also be understood as a core network control plane function (CPF) entity.
  • CPF core network control plane function
  • the terminal equipment is connected to the radio access network (radio access network, RAN) network element through wireless means, and the radio access network element is connected to the core network equipment through wireless or wired means.
  • the core network equipment and the radio access network element can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network element can be integrated on the same physical device, or they can be one
  • the physical device integrates some functions of the core network equipment and some functions of the wireless access network elements.
  • Terminal equipment can be fixed or movable.
  • the communication device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • Transmission point (TP), reception point (RP), and sending-reception node transmission-reception point, TRP.
  • TP which can also be called a transmission node or a sending node, etc., represents a group of transmitting antennas that are geographically located at the same location.
  • the concept of TP can be applied to a cell, a part of a cell or a TP that only supports DL-PRS.
  • the TP may include the antenna of the base station (such as ng-eNB or gNB, etc.), remote radio heads, the remote antenna of the base station, or the antenna of the TP that only supports DL-PRS, etc.
  • one cell may include one or more TPs.
  • the RP which may also be called a receiving node, etc., represents a group of receiving antennas that are geographically located at the same location. This concept applies to a cell, a part of a cell or an RP that only supports UL-SRS.
  • the RP may include an antenna of a base station (such as ng-eNB or gNB), a remote radio module, a remote antenna of the base station, or an antenna of an RP that only supports UL-SRS, etc.
  • one cell may include one or more RPs.
  • TRP means a group of antennas that are geographically co-located and support TP and/or RP functions.
  • an antenna may also be understood as an antenna array, and an antenna array may include one or more antenna elements.
  • Communication is the path a communication device takes to send and/or receive signals. Among them, if a device sends multiple signals through the same channel, the phases between these signals are continuous; and if a device sends signals through different channels, the phases between these signals may be continuous or different. Continuous, depending on random phase on each channel.
  • the phase information of a communication device on a resource can be understood as the phase information or random phase information when the communication device sends a signal on the resource, or it can be understood as the communication device sending on the channel (such as a radio frequency channel) corresponding to the resource.
  • the random phase information of the signal can be understood as the phase information or random phase information when the communication device sends a signal on the resource, or it can be understood as the communication device sending on the channel (such as a radio frequency channel) corresponding to the resource.
  • the random phase information of the signal can be understood as the phase information or random phase information when the communication device sends a signal on the resource, or it can be understood as the communication device sending on the channel (such as a radio frequency channel) corresponding to the resource.
  • the signal will undergo a phase jump during the process from the baseband circuit at the transmitting end to the radio frequency circuit, and the phase after the jump is a random phase.
  • the phase of signal 1 generated by the baseband circuit of the second device is A
  • the phase B after the jump is a random phase.
  • the random phase of the signal can satisfy the following relationship:
  • Equation 1 represents random phase.
  • Equation 1 is a relatively stable value, for example, it can be modeled It forms a Gaussian distribution, and its mean value is relatively stable, which is related to the internal chip design of the device. In addition, It can jitter within a certain range, that is, there is variance.
  • phase difference exists between different signals or "the phase discontinuity of different signals” mentioned in various embodiments of this application means that these signals cannot be spliced or synthesized into an equivalent large-bandwidth signal.
  • the signal transmitting end sends five reference signals with a bandwidth of 20MHz. These five bandwidths may be continuous or discontinuous in the frequency domain. There may also be gaps or overlaps in the frequency domain.
  • the signal receiving end may convert the After splicing five signals, a signal with a bandwidth close to 100MHz is obtained.
  • the characteristics of the spliced signal are similar or identical to those of the signal transmitting end directly sending a signal with a bandwidth close to 100MHz (continuous in the frequency domain).
  • resources may also be understood to include frequency domain resources or frequency resources.
  • the first resource may include one or more (or, one or more) frequency resources.
  • Frequency resource refers to a continuous spectrum resource in the frequency domain, and one channel corresponds to one or more resources. Since resources can have multiple granularities, a resource is a subcarrier, one or more resource blocks (RBs), a bandwidth part (BWP), a component carrier, a frequency band (band), a Frequency band, frequency layer, frequency point, or frequency range (FR).
  • RBs resource blocks
  • BWP bandwidth part
  • FR frequency range
  • frequency band A and frequency band B have different channels.
  • discontinuous carriers on the same frequency band correspond to different channels.
  • CC3 and CC4 on frequency band B can correspond to different channels.
  • non-consecutive carriers on the same frequency band may correspond to the same channel.
  • non-contiguous carriers on the frequency band may correspond to the same channel.
  • consecutive carriers on the same frequency band may correspond to the same channel.
  • CC1 and CC2 on frequency band A can correspond to the same channel.
  • continuous carriers on the same frequency band may correspond to different channels.
  • the same carrier can correspond to the same channel.
  • CC1 can correspond to a channel, and a device uses the same channel no matter which frequency position of CC1 it sends a signal.
  • the same carrier may correspond to different channels.
  • the same carrier may correspond to different channels.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • first signaling and the second signaling can be the same signaling, or they can be different signaling.
  • this name does not indicate the content, information size, and sending order of the two signalings. , sender/receiver, priority or importance, etc. are different.
  • the numbering of steps in the various embodiments introduced in this application is only to distinguish different steps and is not used to limit the order between steps. For example, S401 may occur before S402, or may occur after S402, or may occur simultaneously with S402.
  • positioning accuracy depends to a large extent on the bandwidth of the positioning signal.
  • delay information such as TDOA positioning and radio transmission technology (RTT) positioning
  • RTT radio transmission technology
  • the greater the bandwidth of the positioning signal the higher the positioning accuracy.
  • one way to obtain large bandwidth is to use carrier aggregation to obtain large bandwidth.
  • positioning signals can be sent on multiple carriers participating in the aggregation, and the receiving end can "splice" the received multiple positioning signals into a large-bandwidth reference signal (the bandwidth of which is close to that occupied by the signal sent by the sending end). The sum of the total bandwidth), thereby obtaining higher positioning accuracy.
  • the first information may include phase information of the second device on M resources. Then, after receiving signals on one or more of the M resources, the first device can determine phase information of different signals from different resources based on the first information, thereby avoiding possible measurement errors based on the phase information.
  • the measurement information is that the measurement information can be used for positioning measurement. Then, through the technical solutions of the embodiments of this application, the first device can reduce or eliminate the phase difference between different signals in a corresponding manner by acquiring phase information on one or more resources to improve positioning accuracy.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access Address
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX microwave access
  • 5G fifth generation
  • 5G new radio
  • NR new radio
  • the technical solutions provided by the embodiments of this application can be applied to device-to-device (D2D) scenarios, such as NR-D2D scenarios, etc., or can be applied to vehicle to everything (V2X) scenarios, such as NR-V2X scenarios, etc.
  • D2D device-to-device
  • V2X vehicle to everything
  • it can be applied to the Internet of Vehicles, such as V2X, vehicle-to-vehicle (V2V), etc., or it can be used in fields such as intelligent driving, assisted driving, or intelligent connected vehicles.
  • both communicating parties may be UEs; if applied to a non-D2D scenario, one communicating party may be a UE and the other party may be a network device (such as an access network device), or both communicating parties may be network devices. .
  • the communication parties are UE and access network equipment as an example.
  • Figure 3 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 3 includes UE (also called target UE), access network equipment 1 and access network equipment 2, core network equipment such as AMF and LMF, and calibration equipment.
  • the actual communication system may also include three access network devices. or three or more.
  • the access network device 1 is, for example, the serving access network device of the target UE.
  • the calibration equipment can communicate with the target UE and the access network equipment.
  • the calibration equipment can also communicate with the LMF.
  • the calibration device is, for example, an access network device or a UE.
  • access network equipment 1 and access network equipment 2 belong to the next generation (NG) RAN, and the access network equipment communicates with each other through the Xn interface.
  • NL1 represents the communication interface between AMF and LMF.
  • the control plane of LMF is the enhanced serving mobile location center (E-SMLC), and the user plane of LMF is the secure user plane location (SUPL) positioning platform (SUPL location platform, SLP) .
  • the LMF is responsible for supporting different types of location services related to the target UE, including positioning the target UE and delivering assistance data to the target UE.
  • the AMF may receive a location service request related to the target UE, where the location service request is used to request positioning of the target UE. Or the AMF can also initiate location services for the target UE on its own. For example, the AMF can generate a location service request on its own. The AMF may send the location service request to the LMF to initiate the positioning process for the target UE.
  • the target UE can measure the positioning reference signal from the access network device or other devices to position the target UE.
  • the access network device can provide corresponding information to the target UE, such as configuring a positioning reference signal for the UE, and may also send a positioning reference signal to the UE.
  • the access network device may also send information for configuring the positioning reference signal to the LMF.
  • the methods provided by the embodiments of the present application are introduced below with reference to the accompanying drawings.
  • the drawings corresponding to various embodiments of the present application all optional steps are represented by dotted lines.
  • the methods provided by various embodiments of this application can be applied to the scenario shown in Figure 3.
  • the first device involved in various embodiments of this application is the UE, access network device 1, access network device 2 or LMF in Figure 3.
  • the second device involved in various embodiments of the present application is, for example, access network device 1, access network device 2, or UE in Figure 3.
  • the third device involved in various embodiments of the present application is, for example, the second device, calibration device or LMF in FIG. 3 .
  • the UE can send information to the access network device through radio resource control (RRC) signaling; or, the UE can send the information to be sent to the LMF (for example, the UE uses the LTE positioning protocol (LTE positioning protocol, LPP) message sends this information to LMF), and LMF then sends part or all of the content of the information or the adjusted/modified content of the information to the access network equipment (for example, LMF positions through NR The protocol attachment (NR positioning protocol annex, NRPPa) message sends this information to the access network device).
  • the access network device can send information to the UE through broadcast messages or unicast messages.
  • the broadcast messages are such as system information blocks (SIB) or positioning system information blocks (posSIB).
  • the unicast messages are, for example, RRC. signaling; alternatively, the access network device can send part or all of the content of the information to be sent or the adjusted/modified content of the information to be sent to the LMF (for example, the access network device sends the information to the LMF through the NRPPa message LMF), the LMF then sends the information to the UE (for example, the LMF sends the information to the UE through an LPP message).
  • the calibration equipment may be a terminal type equipment, an access network equipment type equipment, or other types of equipment. Information interaction between the calibration device and the first device/second device depends on the type of the calibration device. Reference may be made to the above description, which is not limited in this application.
  • the calibration device can send the information to be sent to the first device, or send it to the first device through other devices (such as the second device, access network device, LMF, etc.), etc.
  • the following information sending process can refer to this document. The description of the paragraph will not be described in detail later.
  • the embodiment of the present application provides a first communication method. Please refer to Figure 4, which is a flow chart of the method.
  • the third device sends the first information.
  • the first device receives the first information.
  • the positioning process provided by the embodiments of the present application can be uplink positioning, downlink positioning, joint uplink and downlink positioning, ranging/angle measurement/phase measurement (without distinguishing between up and down). line), feeling Sensing process.
  • the following description takes the uplink positioning process as an example.
  • the second device is a UE and the first device is an access network device.
  • the positioning process provided by the embodiment of this application may be a downlink positioning process.
  • the second device is an access network device. network equipment, and the first device is a UE; alternatively, the positioning process provided by the embodiment of the present application can also be an uplink and downlink positioning process.
  • the method of the embodiment of the present application can be executed twice, and one of the During the execution process, the second device is the UE and the first device is the access network device. During another execution process, the second device is the access network device and the first device is the UE.
  • multiple access network devices may participate in positioning, and the embodiment of this application describes the behavior of one of the access network devices.
  • the access network device is, for example, the UE's serving access network device.
  • the third device may be the same device as the first device or the second device, or the third device may be another device.
  • the third device may be an LMF, or may be any device other than the first device and the second device. External UE or access network equipment, etc.
  • the first information may include (or indicate) phase information of the second device on M resources.
  • the phase information of the second device on the M resources can be understood as the phase information of the second resource on the M resources. Therefore, it can also be understood that the first information may include (or indicate) the phase information corresponding to the M resources of the second device.
  • the M resources are M frequency resources.
  • the M resources are all or part of the frequency resources supported by the second device, and M is a positive integer.
  • the M resources are frequency resources used for positioning among the frequency resources supported by the second device, which is equivalent to only sending the phase information of the second device on the frequency resources used for positioning to the first device, without the need to The phase information of the second device on the frequency resources of other services or functions is sent to the first device, so that the hardware implementation of the second device will not be exposed too much and is conducive to protecting the privacy and security of the second device.
  • one resource among M resources may correspond to one or more channels.
  • M resources correspond to M channels one by one.
  • one resource among M resources corresponds to multiple channels.
  • multiple resources among M resources correspond to one channel.
  • the M resources are, for example, M frequency bands; or if different carriers correspond to different channels, then M resources For example, it is M carriers; or, if continuous carriers on one frequency band correspond to the same channel, and discontinuous carriers on one frequency band correspond to different channels, then one of the M resources is, for example, continuous multiple carriers on frequency band 1.
  • Carriers, and another resource among the M resources is, for example, carrier 1 on frequency band 2.
  • Carrier 1 is not continuous with other carriers on frequency band 2.
  • Frequency band 1 and frequency band 2 are the same frequency band or different frequency bands.
  • M resources may also have other implementation methods, as long as one of the resources corresponds to a channel.
  • the first information indicates the phase information when the second device sends signals on M resources, but does not necessarily mean that the second device sends signals on all of the M resources during the process. , or the signal can be sent on some of the M resources.
  • the first information can be implemented in a variety of ways. Examples are introduced below.
  • the M resources may belong to one or more resource combinations, and the first information may include phase information of the second device on the resources in at least one of the one or more resource combinations.
  • the first resource among the M resources may be any one of the M resources, and the M resources include the first resource.
  • the first resource belongs to the first resource combination.
  • the first information may include phase information of the second device on the first resource in the first resource combination.
  • the first resource combination is the first frequency band combination.
  • a frequency band combination may include one or more carriers, or include one or more frequency bands
  • the first resource may be A carrier or a frequency band.
  • the first information may include phase information of the second device on part or all of the frequency bands in at least one of the one or more frequency band combinations; or, the first resource is a carrier, The first information may then include phase information of the second device on some or all of the carriers in at least one of the one or more frequency band combinations.
  • the first resource may belong to multiple resource combinations, or in other words, among the multiple resource combinations included in the M resources, two or more resource combinations include the first resource.
  • the first resource One resource can correspond to multiple channels.
  • the first resource may belong to the first resource combination.
  • the first resource belongs to multiple resource combinations.
  • the first information may include the phase information of the second device on the first resource in the first resource combination, and the phase information of the second device on the second resource combination. Phase information on the first resource in the resource combination.
  • the M resources are frequency band 1 to frequency band 3.
  • these three frequency bands may form four frequency band combinations, namely frequency band combination 1, frequency band combination 2, frequency band combination 3 and frequency band combination 4.
  • Frequency band combination 1 includes frequency band 1 and frequency band 2
  • frequency band combination 2 includes frequency band 1 and frequency band 3
  • frequency band combination 3 includes frequency band 2 and frequency band 3
  • frequency band combination 4 includes frequency band 1, frequency band 2 and frequency band 3.
  • the first resource is frequency band 1. It can be seen that frequency band 1 belongs to frequency band combination 1, frequency band combination 2, and frequency band combination 4.
  • the first information may indicate phase information of the second device on frequency band 1 in frequency band combination 1, and may indicate phase information of the second device on frequency band 1 in frequency band combination 2.
  • the second device can send signals through two channels.
  • Different carriers can correspond to different channels, that is, non-contiguous carriers may use different channels.
  • CC3 and CC4 in Figure 1 are discontinuous carriers belonging to frequency band B, and frequency band B belongs to two frequency band combinations, such as frequency band combination 1 and frequency band combination 2 respectively. There may be two situations:
  • CC3 and CC4 belong to frequency band B in different frequency band combinations.
  • CC3 belongs to frequency band B in frequency band combination 1
  • CC4 belongs to frequency band B in frequency band combination 2.
  • One possible implementation is to associate the phase information of CC3 with frequency band B in frequency band combination 1, and the phase information of CC4 with frequency band B in frequency band combination 2, that is, two phase information need to be reported.
  • CC3 and CC4 belong to frequency band B in the same frequency band combination.
  • CC3 and CC4 both belong to frequency band B in frequency band combination 1.
  • One possible implementation is to associate the phase information of CC3 and CC4 with frequency band B in frequency band combination 1, that is, only one phase information needs to be reported.
  • the phase information of the second device on discontinuous carriers included in the same frequency band may be different.
  • the frequency band can be included in different frequency band combinations, and the frequency band can include different carriers in different frequency band combinations, so that The second device's phase information on the discontinuous carrier may be indicated to the first device.
  • frequency band B includes CC3 in frequency band combination 1, and frequency band B includes CC4 in frequency band combination 2.
  • the first information may indicate the phase information of the second device on frequency band B included in frequency band combination 1, which is equivalent to indicating the phase information of the second device on CC3; and, the first information may indicate the second device on frequency band B included in frequency band combination 2.
  • the phase information on frequency band B is equivalent to indicating the phase information on CC4 of the second device.
  • the phase information of the second device on the first resource in the first resource combination may include one or more of the following: the phase of the second device on the first resource in the first resource combination, the second The number of phases of the device on the first resource in the first resource combination, the phase value set or phase value range of the second device on the first resource in the first resource combination, the number of phases of the second device on the first resource combination the phase error information on the first resource in the second device, or the second device on the second The phase difference between the resource and the second device on the first resource in the first resource combination.
  • the second resource is another resource included in the M resources except the first resource.
  • the second resource is included in the second resource combination.
  • the phase of the second device on the first resource in the first resource combination may be the actual phase when the second device sends a signal on the channel corresponding to the first resource in the first resource combination, or it may be called the absolute phase, that is, , is the actual value of the phase when the second device sends a signal on the channel corresponding to the first resource in the first resource combination.
  • the phase when the second device sends a signal on the first resource in the first resource combination may be the relative phase when the second device sends a signal on the channel corresponding to the first resource in the first resource combination.
  • the phase is, for example, the difference between the actual phase and the reference phase when the second device sends a signal on the channel corresponding to the first resource in the first resource combination.
  • the reference phase is, for example, the maximum value or the minimum value among the phases indicated by the first information, or a certain phase among the phases indicated by the first information.
  • the reference phase may be 90° or 270°, or the reference phase may be any one of these three phases, for example 180°.
  • the reference phase may not be determined based on the first information, but may adopt a fixed value, such as 180°.
  • the fixed value may be set by the first device and notified to the third device, or set by the third device and notified to the first device. , or determined through negotiation between the first device and the third device, or set by the LMF, or predefined through a protocol, or preconfigured in the first device and/or the third device.
  • the actual phase when the second device sends a signal on the channel corresponding to the first resource in the first resource combination is 90°, then the second device transmits a signal on the channel corresponding to the first resource in the first resource combination.
  • the phase information on the first resource in the resource combination may include 90°.
  • the first resource of the second device in the first resource combination can include 0°. If the first information includes the phase of the second device on the first resource in the first resource combination, the first device can directly learn the phase of the second device on the first resource in the first resource combination, thereby determining these signals The phase difference between them requires no additional operations and is relatively simple.
  • the number of phases of the second device on the first resource in the first resource combination may include the number of channels corresponding to the second device on the first resource in the first resource combination. For example, if the number of channels corresponding to the first resource of the second device in the first resource combination is 1, then the number of phases of the second device on the first resource in the first resource combination is 1 or 0; or, If the number of channels of the second device corresponding to the first resource in the first resource combination is greater than 1, then the number of phases of the second device on the first resource in the first resource combination is greater than or equal to 1.
  • the number of phases of the second device on the first resource in the first resource combination is equal to the number of corresponding channels of the second device on the first resource in the first resource combination.
  • the first device can obtain phase difference information between signals received from the first resource in the first resource combination based on the number of phases of the second device on the first resource in the first resource combination. For example, the number of phases of the second device on the first resource in the first resource combination is 1 or 0, indicating that the second device shares a channel when sending signals on the first resource in the first resource combination, then the first The device can determine that the phase difference between different signals received by the first device on the first resource in the first resource combination is 0. For another example, the number of phases of the second device on the first resource in the first resource combination is 4, indicating that the second device may use 4 different channels when sending signals on the first resource in the first resource combination.
  • the first device can determine that there are 4 possible absolute values of the phase difference between the two signals received by the first device on the first resource in the first resource combination, such as 0°, 90°, 180°, 270°, thereby providing assistance for the first device to determine the measurement information.
  • the phase value set or phase value range of the second device on the first resource in the first resource combination may include the second device transmitting on one or more channels corresponding to the first resource in the first resource combination.
  • the phase of the signal is Value set or phase value range.
  • the set of phase values of the second device on the first resource in the first resource combination may refer to the formula in Formula 1
  • the phase value range of the second device on the first resource in the first resource combination may refer to Equation 1.
  • the first information may include the phase value set or phase value range corresponding to the channel, such as ⁇ (-5°, 5°), (85°, 95°), (175°, 185°), (265°, 275°) ⁇ , the phase value set or phase value range is in Formula 1 set of values.
  • (x, y) means that the value range is greater than x and less than y.
  • (85°, 95°) can mean that the value range is greater than 85° and less than 95°.
  • the first information may include a phase value set of a channel corresponding to the second device on the first resource in the first resource combination, for example, ⁇ 0°, 90°, 180°, 270° ⁇ .
  • the phase The value set is, for example, in Formula 1 set of values.
  • the first device obtains the phase value set or phase value range of the second device on the first resource in the first resource combination, and can determine the phase value set or phase value range of the second device on the first resource in the first resource combination accordingly. phase information. The specific determination method will be introduced later.
  • the phase error information of the second device on the first resource in the first resource combination may include phase error information when the second device sends signals on one or more channels corresponding to the first resource in the first resource combination. .
  • the phase error information when the second device sends a signal on a channel corresponding to the first resource in the first resource combination may include the second device sending a signal on a channel corresponding to the first resource in the first resource combination.
  • the error information of a phase (actual phase) when the second device sends a signal on a channel corresponding to the first resource in the first resource combination may include one or more of the following: phase error upper bound, phase error Lower bound, the mean of the phase error, the variance of the phase error, the standard deviation of the phase error, or, the range of the phase error.
  • the error information of a phase is ⁇ -10°, 10° ⁇ , which indicates that the phase has an error of plus or minus 10°.
  • the phase when the second device sends a signal on the first resource in the first resource combination can be determined through a search algorithm according to the phase error information.
  • the phase error information can be used as auxiliary information.
  • the first device does not need to conduct a full-range search, which improves search efficiency.
  • the phase difference between the second device on the second resource and the first resource in the first resource combination may include the second device transmitting on the channel corresponding to the second resource and the channel corresponding to the first resource in the first resource combination. phase difference in the signal.
  • the second resource at this time is included in the second resource combination, and the second resource combination and the first resource combination may be the same resource combination, or they may be different resource combinations.
  • M resources include resource 1 to resource 3, and M resources belong to two resource combinations, where resource combination 1 includes resource 1 and resource 2, and resource combination 2 includes resource 2 and resource 3.
  • the first information may include one or more of the following: a phase difference of the second device on resource 1 in resource combination 1 and a second device on resource 2 in resource combination 1; The phase difference between resource 1 in combination 1 and the second device on resource 2 in resource combination 2. The phase difference between the second device on resource 1 in resource combination 1 and the second device on resource 3 in resource combination 2. Phase difference, the phase difference between the second device on resource 2 in resource combination 1 and the second device on resource 2 in resource combination 2, the second device on resource 2 in resource combination 1 and the second device on resource The phase difference on resource 3 in combination 2, and the phase difference between the second device on resource 2 in resource combination 2 and the second device on resource 3 in resource combination 2. In this way, when the second device sends a signal on the corresponding resource, the first device can learn the phase difference between the corresponding signals.
  • the first information may include a phase difference that is not 0. If the phase difference when the second device sends signals on the two resources is 0, the phase difference may not be included in the first information. For example, if the second device is on the second resource If the phase difference between the second device and the first resource in the first resource combination is not 0, the first information may include the phase difference; and if the second device is on the second resource and the first resource in the first resource combination is If the phase difference is 0, the first information may not include the phase difference.
  • the phase difference between the second device sending a signal on resource 2 in resource combination 2 and the second device sending a signal on resource 3 in resource combination 2 is 0 , then the phase difference may not be included in the first information.
  • the first device if it is found that the first information does not include the phase difference between some resources, it can be determined that the phase difference between these resources is 0. This not only enables the first device to obtain the phase difference between different resources, but also reduces signaling overhead.
  • the first information may also include a phase difference of 0.
  • the phase difference when the second device sends signals on the two resources is not 0, the phase difference may not be included in the first information.
  • the first device if it is found that the first information does not include the phase difference between some resources, it can be determined that the phase difference between these resources is not 0. This not only enables the first device to obtain whether there is a phase difference between different resources, but also reduces signaling overhead.
  • the phase difference between the second device on the second resource in the second resource combination and the second device on the first resource in the first resource combination involves the second resource combination.
  • the second resource and the first resource in the first resource combination therefore optionally, the phase difference may be repeatedly included in the first information.
  • the first information may include the information of the first resource in the first resource combination, then the information of the first resource in the first resource combination may include the phase difference; the first information may also include the second resource in the second resource combination. information, then the information of the second resource in the second resource combination may also include the phase difference.
  • the first information may also include the phase difference only once. In other words, the phase difference only appears once in the first information.
  • the first information includes information about the first resource in the first resource combination, and the information about the first resource in the first resource combination may include the phase difference; the first information also includes information about the second resource in the second resource combination. , the information of the second resource in the second resource combination may not include the phase difference.
  • the first information may include a first indication corresponding to the second resource in the second resource combination, and the first indication may indicate the The first resource in a resource combination is used to indicate that the phase difference is included in the information of the first resource in the first resource combination. This approach can reduce signaling overhead.
  • the first information may also include phase information of the second device on other resources among the M resources.
  • phase information of the second device please refer to the above introduction to the first resource and will not go into details.
  • the second device uses the same channel on one or more frequency band combinations, or no matter which frequency band combination a frequency band belongs to, the second device uses the same channel on the frequency band, or no matter which frequency band combination a carrier belongs to Frequency band combination, the second device uses the same channel on this carrier, for this reason, method 2 is proposed.
  • the first information may include phase information of the second device on at least one of the M resources.
  • one of the M resources is a first resource
  • the first information may include phase information of the second device on the first resource.
  • the first resource is a frequency band combination, and the M resources are M frequency band combinations.
  • the first resource is, for example, a frequency band, and the M resources are M frequency bands.
  • the first resource is a carrier, and the M resources are M carriers.
  • Method 2 is relatively simple and can save the transmission overhead caused by the first information.
  • the first information may include a phase difference that is not 0. If the phase difference when the second device sends signals on the two resources is 0, the phase difference may not be included in the first information. For example, if the phase difference between the second device on the second resource and the second device on the first resource is not 0, the first information may include the phase difference; and if the second device on the second resource If the phase difference from when the second device sends the signal on the first resource is 0, then the first information may not include the phase difference.
  • the second resource is one resource among the M resources except the first resource.
  • the first information may also include a phase difference of 0.
  • the second device sends on two resources If the phase difference of the signal is not 0, then the phase difference may not be included in the first information.
  • phase difference involves at least two resources, for example, the phase difference between when the second device sends a signal on the second resource and when the second device sends a signal on the first resource involves the second resource and the first resource, so optionally, the The phase difference may be repeatedly included in the first information.
  • the relevant introduction of method 1 mentioned above please refer to the relevant introduction of method 1 mentioned above.
  • the first resource is any resource among the M resources.
  • one resource among M resources is a resource set
  • the M resources can be M resource sets.
  • the resource set is a carrier set
  • a resource set may include one or more carriers.
  • the channels used are the same; when the second device sends signals on different resource sets, the channels used are different. That is, resource collections and channels have a corresponding relationship.
  • Figure 1 for example, when the second device sends signals on CC1 and CC2 included in frequency band A, it uses channel 1; when the second device sends signals on CC3 included in frequency band B, it uses channel 2; Devices using channel 3 when transmitting on CC4, which is included in Band B.
  • CC1 and CC2 may belong to one carrier set, for example, called carrier set 1; CC3 belongs to another carrier set, for example, called carrier set 2; and CC4 belongs to yet another carrier set, for example, called carrier set 3.
  • the M resources include a first resource
  • the first resource is any one of the M resources.
  • the first resource may be a resource set, for example, called the first resource set.
  • the first information may include one or more of the following: phase information of the second device on the first resource set, an identification of the first resource set, or a resource identification in the first resource set. .
  • the phase information of the second device on the first resource set may include one or more of the following: the phase of the second device on the first resource set, the phase information of the second device on the first resource set, The number of phases on the first resource set, the phase value set or phase value range of the second device on the first resource set, the phase error information of the second device on the first resource set, or, the second device The phase difference between the second resource set and the first resource set.
  • the second resource set is another resource set among the M resource sets except the first resource set.
  • the phase of the second device on the first resource set may be the actual phase when the second device sends a signal on the channel corresponding to the first resource set, or it is called the absolute phase, that is, the phase of the second device on the first resource set.
  • the phase of the second device on the first resource set may be the relative phase when the second device sends a signal on the channel corresponding to the first resource set.
  • the relative phase is, for example, the phase of the second device on the channel corresponding to the first resource set.
  • the difference between the actual phase and the reference phase when the signal is sent on the channel please refer to the first implementation method above.
  • the number of phases of the second device on the first resource set may include the number of channels of the second device on the first resource set. For more information on this, please refer to the first implementation method above.
  • the phase value set or phase value range of the second device on the first resource set may include the phase value set or phase value range when the second device sends a signal on the channel corresponding to the first resource set.
  • the second device sends a signal on the channel corresponding to the first resource set.
  • the phase error information of the second device on the first resource set may include phase error information when the second device sends a signal on the channel corresponding to the first resource set.
  • the phase error information when the second device sends a signal on the channel corresponding to the first resource set may include error information of the phase value when the second device sends a signal on the channel corresponding to the first resource set, or may include the second device. Error information of the phase value set when the second device sends a signal on a channel corresponding to the first resource set.
  • the error information of the phase may include one or more of the following: upper bound of phase error, lower bound of phase error, mean value of phase error, variance of phase error, phase error The standard deviation, or, phase error range.
  • the phase difference between the second device on the second resource set and the first resource set may include the phase difference when the second device sends signals on the channel corresponding to the second resource set and on the channel corresponding to the first resource set.
  • the first information may include a phase difference that is not 0. If the phase difference is 0 when the second device sends signals on the two resource sets, the phase difference may not be included in the first information. For example, if the phase difference between the second device on the second resource set and the second device on the first resource set is not 0, the first information may include the phase difference; and if the second device on the second resource set If the phase difference between the second device and the second device on the first resource set is 0, the first information may not include the phase difference.
  • the first information may also include a phase difference of 0.
  • the phase difference when the second device sends signals on the two resource sets is not 0, the phase difference may not be included in the first information.
  • the phase difference involves at least two resources, for example, the phase difference when the second device sends a signal on the second resource set and the second device sends a signal on the first resource set involves the second resource set and the first resource set, optionally , the phase difference may be repeatedly included in the first information.
  • the phase difference may be repeatedly included in the first information.
  • the first information may also include phase information of the second device on other resource sets among the M resource sets.
  • phase information of the second device please refer to the above introduction to the first resource collection and will not go into details.
  • a device may use the same channel, that is, for the device, the channel used is the same no matter which resource the signal is sent on. Method 4 is proposed for this purpose.
  • the first information may include phase information of the second device, the phase information being applicable to at least one of the M resources.
  • the first information only needs to indicate or include phase information when the second device sends a signal, thereby saving the signaling overhead of the first information and simplifying the indication method.
  • the first information can also be used as a reference when the network configures resources.
  • the signal to be sent eg, the first signal
  • the signal to be sent should be configured in the same channel as much as possible to reduce the complexity of the receiving end.
  • the first information may be included in the capability information of the second device.
  • the first information may be included in the capability information of the second device.
  • the second device sends the first signal on one or more of the M resources.
  • the first device receives the first signal from the second device on one or more of the M resources.
  • the first signal may be sent through broadcast, multicast or unicast. If the first signal is broadcast or multicast, there may be multiple devices capable of receiving the first signal, and the first device may be, for example, one of the receiving devices. If the first signal is unicast, the first signal is a signal sent by the second device to the first device.
  • the second device may send the first signal on one or more resources simultaneously.
  • the first signals on the one or more resources may not be sent at the same time.
  • the second device uses frequency hopping to send the signals.
  • the first signal may include S signals, and S may be an integer greater than or equal to 2.
  • S may be an integer greater than or equal to 2.
  • a signal sent by the second device on one frequency band can be understood as one signal
  • the M resources are, for example, M frequency bands. Then the first signal can be sent on S frequency bands among the M frequency bands.
  • the signal sent by the second device on one carrier can be understood as one signal.
  • the M resources are, for example, M carriers. Then the first signal can be sent on S carriers among the M carriers.
  • these S carriers may be S component carriers participating in carrier aggregation.
  • the first signal can be sent on S BWPs among the M BWPs, and these S BWPs can Included within one or more carriers.
  • the division granularity of the first signal can be smaller.
  • the signal sent by the second device on one frequency unit is understood as one signal, and the M resources are, for example, M frequency units, then the first signal can be divided into M frequency units. It is transmitted on S frequency units, and these S frequency units can be included in one or more carriers.
  • the granularity of the frequency unit is smaller than the granularity of the BWP.
  • the frequency domain range occupied by the frequency unit is smaller than the frequency domain range occupied by the BWP.
  • f1 to f5 represent 5 frequency units.
  • the second device transmits a signal on band A in Figure 5, it uses channel 1; when the second device transmits a signal on CC3 in band B in Figure 5, it uses channel 2; the second device in Figure 5 When transmitting signals on CC4 within Band B, channel 3 is used.
  • the first signal for example, includes signal 1 and signal 2.
  • signal 1 and signal 2 can be sent on different frequency bands, for example, on f1 and f3 respectively; are sent on carriers, such as f3 and f4 respectively; alternatively, signal 1 and signal 2 can be sent on continuous carriers in the same frequency band, such as f1 and f2 respectively; alternatively, signal 1 and signal 2 can be sent on Send on the same carrier, for example, send on f4 and f5 respectively.
  • the signal included in the first signal can be used for positioning.
  • the first signal includes a positioning reference signal.
  • the first device obtains measurement information.
  • the measurement information may be determined based on the first signal and the first information.
  • S403 may be replaced by: the first device determines the measurement information according to the first signal and the first information.
  • the first device may determine the phase information of the signals included in the first signal, and/or determine the phase difference between the signals included in the first signal.
  • the first device can perform phase compensation on part or all of the signals included in the first signal according to the determined phase difference to obtain a measurement result of a large bandwidth signal.
  • the large bandwidth signal is called a second signal. signal, the bandwidth of the second signal is close to (may be slightly smaller than, equal to, or slightly larger than) the sum of the bandwidths of the respective signals included in the first signal.
  • the first device may estimate a transmission delay from the second device to the first device based on the second signal, and the measurement information may include information about the transmission delay.
  • the transmission delay can be used for UE positioning.
  • the first device may perform channel estimation based on the second signal, where the channel refers to the channel through which the first signal sent by the second device (or the first signal received by the UE) passes.
  • the first device obtains a more accurate channel estimation result based on the phase information of the first signal.
  • the channel estimation result obtained by the first device may include one or more of the following: channel parameters, channel matrix, channel fading matrix, channel impulse response matrix, multipath delay, cluster energy, or channel parameter estimation results Distribution.
  • the channel estimation results can be used for communication or positioning.
  • the first device may position the UE.
  • the first device is a UE
  • the second device is an access network device.
  • the UE executes the embodiment shown in Figure 4, so that the UE can obtain Measurement information corresponding to each access network device. After obtaining the plurality of measurement information, the UE may position the UE based on the obtained plurality of measurement information.
  • other devices such as LMF or access network equipment or other UEs, etc.
  • the first device may send multiple obtained measurement information to other devices (such as LMF or access network equipment or other devices). UE, etc.), the other device positions the UE.
  • the first device is an access network device
  • the second device is a UE.
  • there may be one or more access network devices involved in positioning the UE and each of these one or more access network devices can be configured as shown in Figure 4
  • the measurement information is obtained using the embodiment shown.
  • one of the access network devices can receive measurement information from other access network devices among multiple access network devices, so that one of the access network devices can obtain multiple measurement information, then the access network device can receive the measurement information according to the The multiple measurement information obtained positions the UE.
  • the access network device is, for example, the serving access network device of the UE, or any access network device participating in the positioning; or, each access network device participating in the positioning can
  • the obtained measurement information is sent to the LMF or other UE, which locates the UE.
  • the positioning technologies that can be used for positioning the UE are time of arrival (TOA) positioning and time difference of arrival (time difference of arrival).
  • TOA time of arrival
  • time difference of arrival time difference of arrival
  • TDOA time of arrival
  • U-AoA uplink angle-of-arriva
  • DL-AoD downlink angle of departure
  • multi-RTT multi-RTT
  • the first information may include phase information corresponding to M resources of the second device. Then, after receiving the signal on one or more of the M resources, the first device can determine the phase information of the received signal based on the first information, and the first device can further reduce or eliminate the phase difference in a corresponding manner. , to improve the accuracy of the measurement information obtained.
  • one application scenario of the measurement information is that the measurement information can be used to locate the second information, thereby improving the positioning accuracy of the second device.
  • embodiments of the present application provide a second communication method. Please refer to Figure 6 for a flow chart of this method.
  • the second device sends the first information.
  • the first device receives the first information.
  • the third device and the second device are, for example, the same device.
  • the first information may include capability information of the second device on M resources, or in other words, the first information may include capability information of the second device associated with M resources, where M is a positive integer.
  • the phase information of the second device on the resource can be determined.
  • the phase information of the second device on a resource can be understood as the random phase information when the second device sends a signal on the resource, or it can be understood as the random phase information when the second device sends a signal on the channel corresponding to the resource. phase information.
  • phase information for more information on this, please refer to S401 of the embodiment shown in FIG. 4 .
  • the first information can also be implemented in multiple ways, as described below with examples.
  • the M resources may belong to one or more resource combinations, and the first information may include capability information of the second device on resources in at least one of the one or more resource combinations.
  • the first resource among the M resources may be any one of the M resources, and the M resources include the first resource.
  • the first resource belongs to the first resource combination.
  • the first information may include capability information of the second device on the first resource in the first resource combination.
  • the first resource combination is the first frequency band combination. Since a frequency band combination may include one or more carriers or one or more frequency bands, the first resource may be one carrier or one frequency band. If the first resource is a frequency band, the first information may include phase information of the second device on part or all of the frequency bands in at least one of the one or more frequency band combinations. It can be understood that the first information is based on Granular reporting per frequency band combination per frequency band (perBCperBand); or, if the first resource is a carrier, then the first information may include the second device on part or all of the carriers in at least one of the one or more frequency band combinations.
  • the phase information can be understood as, the first information is combined per carrier per frequency band (perBCperCC) granular reporting.
  • the first resource may belong to multiple resource combinations, or in other words, among the multiple resource combinations included in the M resources, two or more resource combinations include the first resource.
  • the One resource can correspond to multiple channels.
  • the first resource may belong to the first resource combination.
  • the first information may include the phase information of the second device on the first resource in the first resource combination, and the phase information of the second device on the second resource combination. Phase information on the first resource in the resource combination. For more information on this, please refer to S401 in the embodiment shown in Figure 4 .
  • the second device can send signals through two channels.
  • Different carriers can correspond to different channels, that is, non-contiguous carriers may use different channels.
  • CC3 and CC4 in Figure 1 are discontinuous carriers belonging to frequency band B, and frequency band B belongs to two frequency band combinations, such as frequency band combination 1 and frequency band combination 2 respectively. There may be two situations. For this, please refer to Figure 4 S401 in the embodiment shown.
  • the capability information of the second device on non-consecutive carriers included in the same frequency band may be different.
  • the frequency band can be included in different frequency band combinations, and the frequency band can include different carriers in different frequency band combinations, so that Capability information of the second device on the non-contiguous carrier may be indicated to the first device.
  • CC3 and CC4 in Figure 1 are discontinuous carriers belonging to frequency band B, and frequency band B belongs to two frequency band combinations, such as frequency band combination 1 and frequency band combination 2 respectively.
  • frequency band B is frequency band n41 in Figure 2
  • frequency band combination 1 is BC1 in Figure 2
  • frequency band combination 2 is BC2 in Figure 2.
  • frequency band B includes CC3, for example, one of the eight component carriers included in frequency band n41 under BC1 in Figure 2; in frequency band combination 2, frequency band B includes CC4 , for example, one of the four component carriers included in frequency band n41 under BC2 in Figure 2 .
  • the first information may indicate capability information of the second device on frequency band B included in frequency band combination 1, which is equivalent to indicating phase information of the second device on CC3; and, the first information may indicate the capability information of the second device on frequency band B included in frequency band combination 2.
  • the capability information on frequency band B is equivalent to the capability information indicating the second device on CC4.
  • the capability information of the second device on the first resource in the first resource combination may include one or more of the following: the number of resource particles corresponding to the first resource in the first resource combination, the number of resource particles of the second device The frequency division coefficient corresponding to the first resource in the first resource combination, or the frequency range of the first resource in the first resource combination.
  • the number of resource particles corresponding to the first resource in the first resource combination can be understood as the number of channels used by the second device when sending signals on the first resource in the first resource combination.
  • the first resource in the first resource combination corresponds to one or more resource particles, and the resource particles and channels are in a one-to-one correspondence. That is to say, the second device corresponds to the first resource in the first resource combination. or multiple channels.
  • the resource element is, for example, a carrier, or a carrier combination (for example, a carrier corresponding to the same channel in the first resource may belong to a carrier combination), or a BWP, or a BWP combination, or a frequency unit or frequency unit with a granularity smaller than the BWP combination.
  • the first device can determine the number of channels used by the second device when sending signals on the first resource in the first resource combination based on the number of resource particles, and based on the number of channels, the first device can determine The phase when the signal is transmitted on the first resource in the first combination of resources. For example, the number of channels used by the second device when sending signals on the first resource in the first resource combination is 1, then the first device can determine that the first device receives signals on the first resource in the first resource combination. between different signals The phase difference is 0.
  • the number of channels used by the second device when sending signals on the first resource in the first resource combination is 4, then the first device can determine that the first device uses the first resource on the first resource combination.
  • the frequency division coefficient corresponding to the first resource in the first resource combination of the second device includes, for example, the frequency division coefficient associated with each channel used by the second device when sending a signal on the first resource in the first resource combination, which It reflects the frequency division capability of the second device on the channel corresponding to the first resource in the first resource combination.
  • the frequency division coefficient corresponding to the first resource in the first resource combination of the second device may include the frequency division coefficient of the channel, For example, the frequency division coefficient of this channel is 4 or 8, etc.
  • the first device learns the frequency division coefficient of a channel, it can determine the phase value set of the signal sent by the second device on the channel (for example, if the frequency division coefficient of a channel is 4, then the phase value corresponding to the channel The set is ⁇ 0°, 90°, 180°, 270° ⁇ ), thereby being able to determine the phase of the signal sent by the second device on this channel.
  • the frequency range of the first resource in the first resource combination includes, for example, when the second device sends a signal on the first resource in the first resource combination.
  • the frequency range of each channel used For example, the frequency range of a channel used by the second device when sending signals on the first resource in the first resource combination is 2.5GHz ⁇ 3.5GHz, then the first device can determine that the frequency range of the channel sent by the second device is within this frequency range.
  • the phase difference between the signals is 0.
  • the frequency range 1 of a channel used by the second device when sending a signal on the first resource in the first resource combination is A
  • the frequency range 1 used by the second device when sending a signal on the first resource in the first resource combination is The frequency range 2 of the other channel
  • the frequency range associated with the second device and the first resource in the first resource combination may also indicate the phase difference between frequency range 1 and frequency range 2, for example, C, then the second device is within these two frequency ranges.
  • the phase difference between the transmitted signals is C.
  • the first information can be used as a reference when the network configures resources.
  • the signal to be sent should be configured within the frequency range associated with the same channel to reduce the complexity of the receiving end.
  • the second device uses the same channel on one or more frequency band combinations, or no matter which frequency band combination a frequency band belongs to, the second device uses the same channel on the frequency band, or no matter which frequency band combination a carrier belongs to Frequency band combination, the second device uses the same channel on the carrier, for this reason, method B is proposed.
  • the first information may include capability information of the second device on at least one of the M resources. It can be understood that the first information is reported at a per-band combination (perBC) granularity.
  • one of the M resources is a first resource
  • the first information may include capability information of the second device on the first resource.
  • the phase information when the second device sends a signal on the resource can be determined.
  • the phase information when the second device sends a signal on a resource for example, is the phase information when the second device sends a signal on a channel corresponding to the resource.
  • the first resource is, for example, a frequency band combination
  • the M resources are M frequency band combinations
  • the first information may be reported at a per-band combination (perBC) granularity
  • the first resource is, for example, a frequency band
  • the M resources are M frequency bands
  • the first information may be reported at a per-band (perBand) granularity
  • the first resource is a carrier
  • the M resources are M carriers
  • the first information may be reported at a per-carrier (perCC) granularity.
  • Method B is relatively simple and can save the transmission overhead caused by the first information.
  • the capability information of the second device on the first resource may include one or more of the following: the number of resource particles corresponding to the first resource, the frequency division coefficient of the second device corresponding to the first resource, or, The frequency range of the first resource.
  • the number of resource particles corresponding to the first resource can be understood as the number of resource particles that the second device sends when it sends a signal on the first resource.
  • the first resource corresponds to one or more resource particles, and the resource particles and channels have a one-to-one correspondence.
  • resource particles please refer to S401 in the embodiment shown in FIG. 4 . Then, if the number of resource particles corresponding to the first resource is P, the number of channels used by the second device when sending signals on the first resource is P, and P is a positive integer.
  • the first device can determine the number of channels used by the second device when sending signals on the first resource based on the number of resource particles, and based on the number of channels, the first device can determine the number of channels used by the second device when sending signals on the first resource. phase of the signal.
  • the frequency division coefficient corresponding to the first resource of the second device includes, for example, the frequency division coefficient associated with each channel used by the second device when sending signals on the first resource, which reflects the frequency division capability of the second device on the channel. .
  • the frequency division coefficient associated with each channel used by the second device when sending signals on the first resource which reflects the frequency division capability of the second device on the channel.
  • the frequency range of the first resource unit includes the frequency range of each channel used by the second device when sending signals on the first resource unit.
  • the frequency range of each channel used by the second device when sending signals on the first resource unit includes the frequency range of each channel used by the second device when sending signals on the first resource unit.
  • one resource among M resources is a resource set
  • the M resources can be M resource sets.
  • the resource set is a carrier set, and a resource set may include one or more carriers.
  • a resource set may include one or more carriers.
  • the first information may include capability information of the second device on at least one resource set among the M resource sets.
  • the phase information when the second device sends a signal on the resource set can be determined.
  • the phase information when the second device sends a signal on a resource set is the phase information when the second device sends a signal on a channel corresponding to the resource set.
  • the channels used are the same; when the second device sends signals on different resource sets, the channels used are different. That is, there is a one-to-one correspondence between resource collections and channels.
  • the M resources include a first resource
  • the first resource is any one of the M resources.
  • the first resource may be a resource set, for example, called the first resource set.
  • the first information may include one or more of the following: the number of resource particles corresponding to the first resource set, the frequency division coefficient of the second device corresponding to the first resource set, or the first resource The frequency range of the collection.
  • the number of resource particles corresponding to the first resource set can be understood as the number of channels used by the second device when sending signals on the first resource set.
  • the first resource set includes one or more resource particles, and the resource particles have a one-to-one correspondence with the channels.
  • resource particles please refer to S401 of the embodiment shown in Figure 4 . Then, if the number of resource particles corresponding to the first resource set is P, the number of channels used by the second device when sending signals on the first resource set is P, and P is a positive integer.
  • the first device can determine the number of channels used by the second device when sending signals on the first resource set based on the number of resource particles, and based on the number of channels, the first device can determine the number of channels used by the second device on the first resource set. The phase when the signal is sent.
  • the frequency division coefficient corresponding to the first resource set of the second device includes, for example, the frequency division coefficient associated with the channel used by the second device when sending signals on the first resource set, which reflects the frequency division coefficient of the second device on the channel. ability. For this, please refer to the introduction of the first implementation method above.
  • the frequency range of the first resource set is, for example, the frequency range of the channel used by the second device when sending signals on the first resource unit. For this, please refer to the introduction of method A above.
  • a device may use the same channel, that is, for the device, the channel used is the same no matter which resource the signal is sent on.
  • Method D is proposed for this purpose.
  • the first information may include capability information of the second device, the capability information being applicable to at least one resource among the M resources.
  • the phase information when the second device sends a signal can be determined, and the phase information can be applicable to the at least one resource, that is, the second device is on any one or more of the at least one resource.
  • a signal is sent, and the phase information of the signal is the phase information indicated by the capability information of the second device.
  • the first information only needs to indicate the capability information of the device, thereby saving the transmission overhead of the first information and simplifying the indication method.
  • the first information may be included in the capability information of the second device, and the message carrier of the capability information is, for example, an LPP ProvideCapabilities message or a UE Capability Information (UECapabilityInformation) message.
  • This capability information may be called capability information A, for example, it is the total capability information of the second device.
  • the second device is a UE
  • the first device is an LMF
  • the capability information A is carried in the LPP capability message
  • the UE can add the first information to the LPP capability message and send it to the LMF.
  • the second device is a UE and the first device is an access network device.
  • the UE can add the first information to the UE capability information message and send it to the access network device without additionally sending the first information to the access network device. , thereby saving signaling overhead.
  • the first information since the first information may be included in the capability information A of the second device, it is considered that the first information includes capability information of the second device on M resources.
  • the following takes method A and the UE capability information message as an example to introduce a way in which the first information is included in the UE capability information message of the second device.
  • the first information may include the capability information of the second device on frequency band n41 in BC2, and the second device on frequency band n78 in BC2. capability information.
  • the capability information corresponding to the feature set uplink ID2 included in the feature set 2 corresponding to the n41 frequency band may include the capability information of the second device on the frequency band n41 in BC2, or in other words, indicate that the second device is in the frequency band Phase information on CC1 of n41; in the capability information corresponding to the feature set uplink ID2 included in the feature set 2 corresponding to the n78 frequency band, the capability information of the second device on the frequency band n78 in BC2 can be included, or in other words, the second device Capability information of the device on CC2 of band n78.
  • the following will take method B and the UE capability information message as an example to introduce a way in which the first information is included in the UE capability information message of the second device.
  • the first information may include the capability information of the second device on CC1 included in frequency band n41 in BC2, and include the capability information of the second device on CC1 included in frequency band n41 in BC2.
  • Band n78 includes capability information on CC2.
  • the capability information corresponding to each component carrier ID1 of the feature set uplink ID2 corresponding to the feature set 2 corresponding to the n41 frequency band may include the capability information of the second device on CC1 included in the frequency band n41 in BC2.
  • Capability information in the feature set included in the feature set 2 corresponding to the n78 frequency band, the feature set corresponding to the uplink ID2, and the capability information corresponding to each component carrier ID1, may include the capability information of the second device on CC2 included in the frequency band n78 in BC2 .
  • the second device sends the first signal on one or more of the M resources.
  • the first device receives the first signal from the second device on one or more of the M resources.
  • S602 For more information about S602, reference may be made to S402 in the embodiment shown in FIG. 4 .
  • the first device obtains measurement information.
  • the measurement information may be determined based on the first signal and the first information.
  • S603 may be replaced by: the first device determines the measurement information according to the first signal and the first information.
  • the first signal includes two signals, and the first information indicates the frequency division coefficient of the channel used by the second device to send the two signals.
  • the first information indicates the frequency division of channel 1
  • the coefficient N1 is 4, and the frequency division coefficient N2 of channel 2 is also 4.
  • the first signal includes Signal 1 and Signal 2, which are transmitted on frequency band 1 and frequency band 2 respectively, and the bandwidths of these two signals are both 100 MHz.
  • the first device determines based on this that the set of phase values of each of the two signals sent by the second device is ⁇ 0°, 90°, 180°, 270° ⁇ .
  • the phase difference between the two signals is The value set of absolute values is ⁇ 0°, 90°, 180°, 270° ⁇ .
  • the first device can use these four phase differences to perform phase compensation respectively, and perform correlation processing with the local signal based on the large-bandwidth signal spliced after phase compensation. If one of the large-bandwidth signals is correlated with the local signal and the ratio of the first peak to the second peak in the obtained correlation peak is the largest, it means that the phase difference corresponding to the large-bandwidth signal is the difference between signal 1 and signal 2. actual phase difference.
  • the first device performs phase compensation on signal 1 and/or signal 2 based on the actual phase difference, so that the UE can be positioned based on the large-bandwidth signal spliced after phase compensation.
  • the UE is, for example, a first device or a second device.
  • S603 For more information about S603, please refer to S403 in the embodiment shown in FIG. 4 .
  • the first information may include capability information of the second device in M resources. Then, after receiving the signal on one or more of the M resources, the first device can determine the phase information of the received signal based on the first information, so as to consider the phase information of the received signal when obtaining the measurement information, for example Corresponding methods can be used to reduce or eliminate the phase difference between different signals to improve the accuracy of the obtained measurement information.
  • one application scenario of the measurement information is that the measurement information can be used to locate the second device. Then, by estimating the phase information of the received signal, the impact of the phase information on the positioning accuracy can be reduced, thereby improving the positioning accuracy of the second device.
  • the access network equipment in the following process can be replaced by a terminal node.
  • the terminal node includes, for example, a UE or a road side unit (RSU).
  • RSU road side unit
  • the message carrier involved can also be changed accordingly.
  • Figure 8 which is a flow chart of another communication method provided by the embodiment of the present application. It is also an application mode of the embodiment shown in Figure 4 or Figure 6. Therefore, there is no detailed description of the embodiment shown in Figure 8.
  • the first device is a UE and the uplink and downlink joint positioning process is taken as an example for description.
  • the second device and the third device may be the same device or different devices.
  • LMF requests configuration information from the access network device.
  • the access network device sends configuration information to the LMF.
  • the LMF may perform S801 with all access network devices participating in this positioning.
  • the access network devices participating in this positioning may include the serving access network device of the UE to be positioned, and may also include the access network device connected to the service.
  • One or more access network devices adjacent to the access network device are 3 as an example for explanation.
  • the LMF can exchange configuration information with each access network device through NRPPa messages.
  • the configuration information may include configuration information of the reference signal.
  • the reference signal includes, for example, a downlink reference signal in the positioning reference signal, and/or also includes other downlink reference signals.
  • the LMF may send a first request message to each access network device through a TRP information request message, and the first request message may be used to request configuration information.
  • Each access network device can send this configuration information to the LMF through a TRP information response (TRP information response) message.
  • TRP information response TRP information response
  • the LMF may also request the first information of the access network device.
  • the access network device may also send the first information of the access network device.
  • the first information of the access network device may include phase information when the access network device sends signals on M resources.
  • the first request message may be used to request the configuration information and the first information of the access network device, or the first request message may request the configuration information, and the LMF additionally sends a second request message to the access network device.
  • the second request message Can be used to request the first information of the access network device.
  • the sending method of the second request message may refer to the sending method of the first request message.
  • this configuration For example, the information and the first information of the access network device may be carried in the same message and sent, or may also be carried in different messages and sent. If the configuration information and the first information of the access network device are carried and sent in different messages, the way in which the access network device sends the first information of the access network device to the LMF may refer to the way in which the configuration information is sent.
  • the access network device may also send the first information of the access network device to the UE through RRC signaling or other messages.
  • the UE sends the capability information of the UE to the LMF.
  • the LMF receives capability information from the UE.
  • the LPP capability transfer (LPP capability transfer) process is performed between the LMF and the UE, so that the UE can send capability information to the LMF.
  • the message carrier of the UE's capability information transmitted in S802 may be an LPP message, such as an LPP ProvideCapabilities message.
  • LPP ProvideCapabilities message such as an LPP ProvideCapabilities message.
  • it may be a general positioning capability message, such as Common IEsProvideCapabilities, or a positioning method specific message, such as uplink capability (UL-ProvideCapabilities) or uplink TDOA capability (UL-TDOA).
  • UL-ProvideCapabilities uplink capability
  • UL-TDOA uplink TDOA capability
  • -ProvideCapabilities multi-RTT-ProvideCapabilities, etc., or other messages, which are not limited by the embodiments of this application
  • the capability information sent by the UE in S802 may include the first information of the UE.
  • the capability information in S802 may include all or part of the first information of the UE, or may include an adjusted or modified result of the first information of the UE.
  • the UE may also send the first information of the UE to the access network device through RRC signaling or other messages.
  • the LMF will request the first information from the UE, and the message carrier may be an LPP message, such as an LPP RequestCapabilities information message.
  • LPP RequestCapabilities information message such as CommonIEsRequestCapabilities, or a request capability message for a specific positioning method, such as uplink request capability (UL-RequestCapabilities), uplink TDOA request capability (UL-TDOA-RequestCapabilities), or multiple times. Round trip time request capabilities (Multi-RTT-RequestCapabilities), etc., or other messages are not limited in the embodiments of this application.
  • the LMF sends a positioning request message to the serving access network device.
  • the serving access network device receives the positioning request message from the LMF.
  • the positioning request message is an NRPPa positioning information request message.
  • the NRPPa positioning information request may request uplink information of the UE to be located, such as UL-SRS configuration information.
  • the serving access network device determines the resources available for transmitting the uplink reference signal.
  • the serving access network device sends UL-SRS configuration information to the UE.
  • the UE receives UL-SRS configuration information from the serving access network device.
  • the service access network device sends UL-SRS configuration information to the LMF.
  • the LMF receives UL-SRS configuration information from the serving access network device.
  • the serving access network device can send UL-SRS configuration information to the LMF through the NRPPa positioning information response message.
  • the LMF sends a positioning activation request message to the serving access network device.
  • the serving access network device receives the positioning activation request message from the LMF.
  • the positioning activation request message is, for example, an NRPPa positioning activation request (NRRPPa positioning activation request) message.
  • the LMF can send an NRPPa positioning activation request message to the serving access network device to request activation of the UE's SRS transmission. If the SRS is configured for periodic transmission, S807 does not need to be executed.
  • SPS semi-persistent scheduling
  • aperiodic transmission the LMF can send an NRPPa positioning activation request message to the serving access network device to request activation of the UE's SRS transmission. If the SRS is configured for periodic transmission, S807 does not need to be executed.
  • the serving access network device sends an activation request to the UE.
  • the UE receives activation from the serving access network device. ask.
  • the activation request may be used to request activation of the UE's SRS transmission.
  • the UE After receiving the activation request, the UE can send SRS according to the UL-SRS configuration information.
  • the service access network device sends a positioning activation response message to the LMF.
  • the LMF receives the positioning activation response message from the serving access network device.
  • the positioning activation response message is a response to the positioning activation request message in S807.
  • the positioning activation response message is an NRPPa positioning activation response (NRPPa positioning activation response) message.
  • the LMF sends a measurement request message to the access network device.
  • the measurement request message may include the first measurement information.
  • the access network device receives the measurement request message from the LMF.
  • the first measurement information may include information required by the access network device to perform uplink measurement.
  • the access network equipment includes, for example, all access network equipment participating in positioning.
  • the LMF may send the first measurement information to the access network device through an NRPPa measurement request message.
  • the first measurement information is different from the measurement information described in the embodiment shown in FIG. 4 or FIG. 6 .
  • the LMF may send part or all of the first information or capability information of the UE to the access network device, or adjust or modify the first information and send it to the access network device.
  • the LMF may add part or all of the first information to one message (such as an NRPPa measurement request message) and send it to the access network device, or may also send part or all of the first information to the access network device through different messages. the first information.
  • the LMF sends auxiliary information to the UE.
  • the UE receives assistance information from the LMF.
  • the auxiliary information may include information required by the UE to perform downlink measurements.
  • the auxiliary information may include first information about the access network device.
  • the LMF may send part or all of the first information to the UE, or adjust or modify the first information before sending it to the UE.
  • the LMF can add part or all of the auxiliary information and the first information to one message (for example, LPP provides assistance data message) and send it to the UE, or it can also send the auxiliary information and part or all of the auxiliary information to the UE through different messages. All said first information.
  • the UE may obtain the first information of the access network device through other methods.
  • the calibration device may send the first information of the access network device to the UE.
  • the calibration device may send the first information of the access network device to the UE through an RRC message; or, if the calibration device is a UE, the calibration device may send an access network device to the UE through an SL message.
  • the first information about network equipment.
  • the message carrier of the assistance information may be an LPP message, such as an LPP ProvideAssistanceData message.
  • LPP ProvideAssistanceData may be a general provision assistance data message such as common information element provision assistance data (CommonIEsProvideAssistanceData), or a provision capability message for a specific positioning method, such as downlink TDOA provision assistance data (DL-TDOA-ProvideAssistanceData), downlink AoD provision Assistance data (DL-AoD-ProvideAssistanceData), multiple round trip time provision assistance data (Multi-RTT-ProvideAssistanceData), etc., or other messages are not limited in the embodiments of this application.
  • CommonIEsProvideAssistanceData Common information element provision assistance data
  • DL-TDOA-ProvideAssistanceData downlink AoD provision Assistance data
  • Multi-RTT-ProvideAssistanceData multiple round trip time provision assistance data
  • the UE will request the first information of the access network device from the LMF, and the message carrier may be an LPP message, such as an LPP Request Assistance Data (LPP RequestAssistanceData) message.
  • LPP RequestAssistanceData LPP Request Assistance Data
  • the LMF sends a third request message to the UE.
  • the UE receives the third request message from the LMF.
  • the third request message may be used to carry the first information of the access network device or to request the first information of the UE.
  • the third request message is, for example, an LPP request location information (LPP RequestLocationInformation) message.
  • it can be a general request location information message such as a common information element requesting location information (CommonIEsRequestLocationInformation), or a specific positioning method providing capability message, as shown in the following line TDOA request location information (DL-TDOA-RequestLocationInformation), downlink AoD request location information (DL-AoD-RequestLocationInformation), or multiple round trip time request location information (Multi-RTT-RequestLocationInformation), etc., or other messages, embodiments of this application Not limited.
  • CommonIEsRequestLocationInformation Common Information element requesting location information
  • DL-TDOA-RequestLocationInformation downlink AoD request location information
  • Multi-RTT-RequestLocationInformation multiple round trip time request location information
  • the first information of the UE obtained by the LMF through S812 may include the phase information of the UE on M resources.
  • the UE performs downlink measurement. All or part of the access network equipment participating in positioning can send downlink reference signals, such as DL-PRS, channel state information reference signal (CSI-RS) or synchronization signals and physical broadcast channel (PBCH) ) block (synchronization signal and PBCH block, SSB), the UE can measure the received downlink reference signal.
  • downlink reference signals such as DL-PRS, channel state information reference signal (CSI-RS) or synchronization signals and physical broadcast channel (PBCH) ) block (synchronization signal and PBCH block, SSB)
  • the UE may obtain the measurement result using the first information of the access network device.
  • the access network device performs uplink measurement.
  • the UE can send an uplink reference signal, such as an SRS, and all or part of the access network equipment participating in positioning can receive the SRS to perform uplink measurements.
  • an uplink reference signal such as an SRS
  • the first information of the UE can be used to obtain the measurement result.
  • the UE sends the downlink measurement result to the LMF.
  • the LMF receives the downlink measurement results from the UE.
  • the UE may send the downlink measurement result to the LMF through an LPP message, such as an LPP provide location information (LPP provide location information) message.
  • LPP LPP provide location information
  • the UE may send the first information of the UE to the LMF.
  • the UE can add the downlink measurement results and the UE's first information to one message (such as the LPP location information message) and send it to the LMF, or it can also send the downlink measurement results and the UE's first information to the LMF through different messages.
  • the first information of the UE obtained by the LMF through S812 may include phase information of the second device on M resources.
  • the first information sent by the UE to the LMF may be all or part of the first information obtained by the UE, or the UE may adjust or modify the obtained first information and then send it to the LMF.
  • the access network device sends the uplink measurement result to the LMF.
  • the LMF receives the uplink measurement result from the access network device.
  • Any access network device that has obtained the uplink measurement results can execute S816.
  • the access network device can send the uplink measurement results to the LMF through the NRPPa measurement response message.
  • the LMF sends a positioning deactivation message to the service access network device.
  • the service access network device receives the positioning deactivation message from the LMF.
  • the positioning deactivation message is a response to the positioning activation request message in S807.
  • the positioning deactivation message is an NRPPa positioning deactivation message.
  • the serving access network device can send a deactivation request to the UE. After the UE receives the deactivation request, it can stop sending SRS.
  • LMF positions the UE.
  • the LMF After the LMF obtains the downlink measurement results and the uplink measurement results, it can position the UE based on the downlink measurement results and the uplink measurement results. For example, the LMF may determine the location of the UE based on the downlink measurement results and the uplink measurement results, and optionally, based on the first information of the access network device and/or the first information of the UE.
  • the embodiment shown in Figure 8 is only one application scenario of the embodiment shown in Figure 4 or Figure 6.
  • the embodiment shown in Figure 4 or Figure 6 may also have other application scenarios, such as for other Positioning scenarios, or not used for positioning, but used in other communication scenarios, are not limited by the embodiments of this application.
  • Figure 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may be the first device or the circuit system of the first device in the embodiment shown in any one of FIG. 4, FIG. 6 or FIG. 8, and is used to implement the method corresponding to the above method embodiment. First device method.
  • the communication device 900 may be as shown in Figure 4,
  • the third device or the circuit system of the third device described in the embodiment shown in any of the figures in Figure 6 or Figure 8 can be used to implement the specific functions corresponding to the method of the third device in the above method embodiment. See the description in the above method embodiment.
  • one circuit system is a chip system.
  • the communication device 900 includes at least one processor 901 .
  • the processor 901 can be used for internal processing of the device to implement certain control processing functions.
  • processor 901 includes instructions.
  • processor 901 can store data.
  • different processors may be independent devices, may be located in different physical locations, and may be located on different integrated circuits.
  • different processors may be integrated into one or more processors, for example, on one or more integrated circuits.
  • communication device 900 includes one or more memories 903 for storing instructions.
  • the memory 903 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 900 includes a communication line 902 and at least one communication interface 904.
  • the memory 903, the communication line 902, and the communication interface 904 are all optional, they are all represented by dotted lines in FIG. 9 .
  • the communication device 900 may also include a transceiver and/or an antenna.
  • the transceiver may be used to send information to or receive information from other devices.
  • the transceiver may be called a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 900 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter can be used to generate a radio frequency signal from a baseband signal
  • the receiver can be used to convert the radio frequency signal into a baseband signal.
  • the processor 901 may include a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application. circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Communication line 902 may include a path that carries information between the above-mentioned components.
  • Communication interface 904 uses any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Cable access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Cable access network etc.
  • the memory 903 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory 903 may exist independently and be connected to the processor 901 through a communication line 902. Alternatively, the memory 903 can also be integrated with the processor 901.
  • the memory 903 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 901 for execution.
  • the processor 901 is configured to execute computer execution instructions stored in the memory 903, thereby implementing the paging method provided by the above embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9 .
  • the communication device 900 may include multiple processors, such as the processor 901 and the processor 905 in FIG. 9 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the chip When the device shown in FIG. 9 is a chip (or chip system), such as a chip of a first device or a chip of a third device, the chip includes a processor 901 (which may also include a processor 905) and a communication line 902. , memory 903 and communication interface 904.
  • the communication interface 904 may be an input interface, a pin or a circuit, etc.
  • Memory 903 may be a register, cache, etc.
  • the processor 901 and the processor 905 may be a general CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the paging method in the above embodiment.
  • Embodiments of the present application can divide the device into functional modules according to the above method examples.
  • each functional module can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • FIG. 10 shows a schematic diagram of a device.
  • the device 1000 may be the first device or the third device involved in the above method embodiments, or the third device.
  • the device 1000 includes a sending unit 1001 (also known as a sending module 1001), a processing unit 1002 (also known as a processing module 1002) and a receiving unit 1003 (also known as a receiving module 1003).
  • the sending unit 1001 and the receiving unit 1003 may belong to a sending and receiving unit (or called a sending and receiving module), and the sending and receiving unit can realize the sending function and the receiving function.
  • the transceiver unit implements the sending function
  • it may be called the sending unit 1001
  • the transceiver unit implements the receiving function it may be called the receiving unit 1003.
  • the sending unit 1001 and the receiving unit 1003 may be the same functional module, which is called a sending and receiving unit, and the sending and receiving unit can implement the sending function and the receiving function; or the sending unit 1001 and the receiving unit 1003 may be different Functional modules and transceiver units are the collective names for these functional modules.
  • the device 1000 can be used to implement the steps performed by the first device or the third device in the methods of the embodiments of the present application.
  • the device 1000 can be used to implement the steps performed by the first device or the third device in the methods of the embodiments of the present application.
  • the functions/implementation processes of the sending unit 1001, the receiving unit 1003 and the processing unit 1002 in Figure 10 can be implemented by the processor 901 and/or the processor 905 in Figure 9 calling computer execution instructions stored in the memory 903. .
  • the function/implementation process of the processing unit 1002 in Figure 10 can be implemented by the processor 901 and/or the processor 905 in Figure 9 calling the computer execution instructions stored in the memory 903.
  • the function/implementation process of unit 1003 can be implemented through the communication interface 904 in Figure 9.
  • the functions/implementation processes of the sending unit 1001 and the receiving unit 1003 can also be implemented through pins or circuits.
  • This application also provides a computer-readable storage medium that stores a computer program or instructions.
  • the steps performed by the first device or the third device in the foregoing method embodiment are implemented. method of execution.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application essentially or contributes to the technical solution or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions.
  • Storage media include: U disk, mobile hard drive disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the first device or the third device in any of the foregoing method embodiments. The method performed.
  • Embodiments of the present application also provide a processing device, including a processor and an interface; the processor is configured to execute the method executed by the first device or the third device involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be programmed by general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (ASICs), and field programmable A field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the functions described.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of this application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form in the field in the storage medium.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium and can store and write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be installed in the ASIC, and the ASIC can be installed in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种通信方法及装置。该方法包括:第一设备接收第一信息,第一信息包括第二设备在M个资源上的相位信息,M个资源为频率资源。第一设备在M个资源中的一个或多个资源上接收来自第二设备的第一信号。第一设备获得测量信息,该测量信息是基于第一信号和第一信息确定的。本申请实施例中,第一设备在M个资源中的一个或多个资源上接收信号后,可以根据第一信息确定所接收的信号之间的相位信息,从而在获得测量信息时可以考虑所接收的信号之间的相位信息,降低不同信号之间相位差带来的干扰,以提高所获得的测量信息的准确性。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年06月02日提交中国国家知识产权局、申请号为202210625704.2、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着物联网的发展,在数据与智能化越来越多地参与未来产业定义时,精准的位置服务在物联网发展中发挥了不可替代的作用,业界对高精度定位的需求也越来越高。如工业级精密行业、自动导引车(automated guided vehicle,AGV)导航、自动驾驶等场景均存在高精度定位需求。因此,如何实现高精度定位是现阶段需要解决的一个重要问题。
定位精度很大程度上依赖定位信号的带宽,带宽越大,定位精度越高。然而,大多数运营商频谱呈现“离散化”或者“碎片化”的现象,很难获得一段大带宽频谱。目前,可以采用载波聚合(carrier aggregation,CA)技术,在聚合的多个载波上发送或接收信号。对于接收端来说,可基于这多个载波上的信号进行相应的测量,获得更优的定位性能。
然而,不同载波上发送的信号之间可能存在相位不连续的问题,由此可能给测量结果造成较大的误差,进而影响定位性能。
发明内容
本申请实施例提供一种通信方法及装置,用于减小由于信号之间相位不连续而带来的误差。
第一方面,提供第一种通信方法,该方法可由第一设备执行,或由包括第一设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一设备的功能,该芯片系统或功能模块例如设置在第一设备中。该方法包括:接收第一信息,所述第一信息包括第二设备在M个资源上的信息,所述M个资源为频率资源,M为正整数;在所述M个资源中的一个或多个资源上接收来自所述第二设备的第一信号;获得测量信息,所述测量信息是基于所述第一信号和所述第一信息确定的。
在一种可选的实施方式中,所述第二设备在所述M个资源上的信息,包括所述第二设备在所述M个资源上的相位信息,和/或,所述第二设备在所述M个资源上的能力信息。
本申请实施例中,第一设备在M个资源中的一个或多个资源上接收信号后,可以根据第一信息确定所接收的信号之间的相位信息,从而在获得测量信息时可以考虑所接收的信号之间的相位信息,降低不同信号之间相位差带来测量误差,提高所获得的测量信息的准确性。
由于第一信息可以包括第二设备在M个资源上的相位信息,和/或,包括第二设备在 M个资源上的能力信息,因此下面分为两部分来介绍。
1、第一信息包括第二设备在M个资源上的相位信息。
在一种可选的实施方式中,所述M个资源中的第一资源属于第一资源组合,所述第一信息包括所述第二设备在所述第一资源组合中的所述第一资源上的相位信息。
在一种可选的实施方式中,所述第二设备在所述第一资源组合中的所述第一资源上的相位信息,包括如下一项或多项:所述第二设备在所述第一资源组合中的所述第一资源上的相位;所述第二设备在所述第一资源组合中的所述第一资源上的相位个数;所述第二设备在所述第一资源组合中的所述第一资源上的相位取值集合;所述第二设备在所述第一资源组合中的所述第一资源上的相位取值范围;所述第二设备在所述第一资源组合中的所述第一资源上的相位误差信息;所述第二设备在第二资源上与所述第二设备在所述第一资源组合中的所述第一资源上的相位差,所述第二资源是所述M个第一资源中除所述第一资源外的任一个资源;或,所述第二设备在所述第一资源组合中的所述第一资源上的相位与参考相位的差值。
在一种可选的实施方式中,所述第二设备在所述第二资源上与在所述第二设备在所述第一资源组合中的所述第一资源上的相位差不为0。该方式下,第一设备接收的第一信息可以包括不为0的相位差,或者说,第一信息中的相位信息,为与第一资源存在相位差的资源的相位信息。对于第一设备来说,如果发现第一信息并未包括某些资源之间的相位差,则可以确定这些资源之间的相位差为0。这样既能够使得第一设备获得资源之间的相位差,也能减少第一信息的容量,从而减小信令开销。
在一种可选的实施方式中,所述第二资源属于第二资源组合,所述第二资源组合与所述第一资源组合为同一个资源组合,或者,所述第二资源组合与所述第一资源组合为不同的资源组合。
在一种可选的实施方式中,所述第一资源组合为一个或多个频带组合。
在一种可选的实施方式中,所述第一资源为一个或多个频带,或为一个或多个载波。
在一种可选的实施方式中,M个资源一一对应M个通道。该方式下,对于M个资源,第二设备在M个资源中的一个资源上发送信号时,所使用的通道相同;第二设备在M个资源中的不同的资源上发送信号时,所使用的通道不同。
在一种可选的实施方式中,M个资源中的第一资源为一个资源集合,M个资源为M个资源集合。
该方式下,第一信息就可以包括第二设备在M个资源集合中的至少一个资源集合上的相位信息,通过资源集合的粒度就可以上报第二设备所对应的相位信息。既能够上报较为完善的内容,也有助于减小信令开销。
在一种可选的实施方式中,所述资源集合为载波集合,M个资源集合为M个载波集合,第一资源集合为第一载波集合。
在一种可选的实施方式中,所述第一资源为频带组合,M个资源为M个频带组合;或者,第一资源为频带,M个资源为M个频带;或者,第一资源为载波,M个资源为M个载波。基于上述方式,在一些场景下,第二设备在一个频带组合上会使用同一个通道,或者无论一个频带属于哪个频带组合,第二设备在该频带上都使用同一个通道,或者无论一个载波属于哪个频带组合,第二设备在该载波上都使用同一个通道,那么第一信息可以考虑采用这种实现方式。这种实现方式较为简单,能够节省第一信息所带来的传输开销。
在一种可选的实施方式中,所述测量信息用于定位。例如,可用于对第二设备进行定位。
在一种可选的实施方式中,所述第一信息承载于能力信息中。例如,第一信息承载在第二设备的能力信息消息中。
2、第一信息包括第二设备在M个资源上的能力信息。例如,第一信息包括的第二设备在M个资源上的能力信息,可以是第二设备在M个资源上与相位相关的能力信息。
在一种可选的实施方式中,所述M个资源中的第一资源属于第一资源组合,所述能力信息包括所述第二设备在所述第一资源组合中的所述第一资源上的能力信息。
在一种可选的实施方式中,所述第二设备在所述第一资源组合中的所述第一资源上的能力信息,包括如下一项或多项:所述第一资源组合中的所述第一资源对应的资源粒子的数量;所述第一资源组合中的所述第一资源的频域范围;所述第二设备在所述第一资源组合中的所述第一资源上对应的分频系数。
在一种可选的实施方式中,第一资源组合中的第一资源对应一个或多个资源粒子,资源粒子与通道是一一对应,第二设备在第一资源组合中的第一资源上对应一个或多个通道。该方式下,通过第一资源组合中的第一资源所对应的资源粒子的数量,反映第二设备在第一资源组合中的第一资源上使用的通道数量,从而第一设备可以据此确定第二设备在第一资源组合中的第一资源上所发送的信号之间的相位差。而根据该通道数量,第一设备能够确定第二设备在第一资源组合中的第一资源上发送信号时的相位。
在一种可选的实施方式中,第一资源组合中的第一资源的频率范围,包括第二设备在第一资源组合中的第一资源上发送信号时使用的各个通道的频率范围。该方式下,第一设备根据该频率范围,能够确定第二设备在第一资源组合中的第一资源上所发送的信号之间的相位差。
在一种可选的实施方式中,第二设备在第一资源组合中的第一资源对应的分频系数,包括第二设备在第一资源组合中的第一资源上发送信号时使用的各个通道的分频系数。改方式下,第一设备如果获知了一个通道的分频系数,就能确定第二设备在该通道上发送的信号的相位取值集合或相位取值范围或相位,从而能够确定第二设备在该通道上发送的信号的相位。
在一种可选的实施方式中,所述第一资源为一个或多个频带,或为一个或多个载波。
在一种可选的实施方式中,所述第一资源组合为一个或多个频带组合。
在一种可选的实施方式中,M个资源一一对应M个通道。
在一种可选的实施方式中,所述M个资源中的第一资源为一个资源集合,M个资源为M个资源集合。
在一种可选的实施方式中,所述资源集合为载波集合,M个资源集合为M个载波集合,第一资源集合为第一载波集合。
在一种可选的实施方式中,所述第一资源为频带组合,M个资源为M个频带组合;或者,第一资源为频带,M个资源为M个频带;或者,第一资源为载波,M个资源为M个载波。
在一种可选的实施方式中,所述测量信息用于定位。
在一种可选的实施方式中,所述第一信息承载于能力信息中。
关于第一方面的第2点所包括的各种可选的实施方式的技术效果,也可参考第一方面 的第1点中的相应实施方式的技术效果的介绍。
第二方面,提供第二种通信方法,该方法可由第三设备执行,或由包括第三设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第三设备的功能,该芯片系统或功能模块例如设置在第三设备中。该方法包括:获得第一信息,所述第一信息包括第二设备在M个资源上的信息,所述M个资源为频率资源,M为正整数;发送所述第一信息。
在一种可选的实施方式中,所述第二设备在所述M个资源上的信息,包括所述第二设备在所述M个资源上的相位信息,和/或,所述第二设备在所述M个资源上的能力信息。
由于第一信息可以包括第二设备在M个资源上的相位信息,和/或,包括第二设备在M个资源上的能力信息,因此下面也分为两部分来介绍。
1、第一信息包括第二设备在M个资源上的相位信息。
在一种可选的实施方式中,所述M个资源中的第一资源属于第一资源组合,所述第一信息包括所述第二设备在所述第一资源组合中的所述第一资源上的相位信息。
在一种可选的实施方式中,所述第二设备在所述第一资源组合中的所述第一资源上的相位信息,包括如下一项或多项:所述第二设备在所述第一资源组合中的所述第一资源上的相位;所述第二设备在所述第一资源组合中的所述第一资源上的相位个数;所述第二设备在所述第一资源组合中的所述第一资源上的相位取值集合或相位取值范围;所述第二设备在所述第一资源组合中的所述第一资源上的相位误差信息;或,所述第二设备在第二资源上与所述第二设备在所述第一资源组合中的所述第一资源上的相位差,所述第二资源是所述M个资源中除所述第一资源外的任一个资源;或,所述第二设备在所述第一资源组合中的所述第一资源上对应的相位与参考相位的差值。
在一种可选的实施方式中,所述第二设备在所述第二资源上与所述第二设备在所述第一资源组合中的所述第一资源上的相位差不为0。
在一种可选的实施方式中,所述第二资源属于第二资源组合,所述第二资源组合与所述第一资源组合为同一个资源组合,或者,所述第二资源组合与所述第一资源组合为不同的资源组合。
在一种可选的实施方式中,所述第一资源组合为一个或多个频带组合。
在一种可选的实施方式中,所述第一资源为一个或多个频带,或为一个或多个载波。
在一种可选的实施方式中,M个资源一一对应M个通道。
在一种可选的实施方式中,所述第一资源为频带组合,M个资源为M个频带组合;或者,所述第一资源为频带,M个资源为M个频带;或者,所述第一资源为载波,M个资源为M个载波。
在一种可选的实施方式中,所述M个资源中的第一资源为一个资源集合,M个资源为M个资源集合。
在一种可选的实施方式中,所述资源集合为载波集合,M个资源集合为M个载波集合,第一资源集合为第一载波集合。
在一种可选的实施方式中,所述方法还包括:在所述M个资源中的一个或多个资源上发送第一信号。
在一种可选的实施方式中,所述第一信号用于定位。
在一种可选的实施方式中,发送所述第一信息,包括:发送第二设备的能力信息,所 述第二设备的能力信息包括所述第一信息。此时,第三设备与第二设备可以是同一设备。例如,第二设备的能力信息为UE能力信息消息。
2、第一信息包括第二设备在M个资源上的能力信息。
在一种可选的实施方式中,所述M个资源中的第一资源属于第一资源组合,所述第一信息包括所述第二设备在所述第一资源组合中的所述第一资源上的能力信息。
在一种可选的实施方式中,所述第二设备在所述第一资源组合中的所述第一资源的能力信息包括如下一项或多项:所述第一资源组合中的所述第一资源对应的资源粒子的数量;所述第一资源组合中的所述第一资源的频率范围;或,所述第二设备在所述第一资源组合中的所述第一资源对应的分频系数。
在一种可选的实施方式中,第一资源组合中的第一资源对应一个或多个资源粒子,资源粒子与通道是一一对应,第二设备在第一资源组合中的第一资源上对应一个或多个通道。该方式下,通过第一资源组合中的第一资源所对应的资源粒子的数量,反映第二设备在第一资源组合中的第一资源上使用的通道数量,从而第一设备可以据此确定第二设备在第一资源组合中的第一资源上所发送的信号之间的相位差。而根据该通道数量,第一设备能够确定第二设备在第一资源组合中的第一资源上发送信号时的相位。
在一种可选的实施方式中,第一资源组合中的第一资源的频率范围,包括第二设备在第一资源组合中的第一资源上发送信号时使用的各个通道的频率范围。该方式下,第一设备根据该频率范围,能够确定第二设备在第一资源组合中的第一资源上所发送的信号之间的相位差。
在一种可选的实施方式中,第二设备在第一资源组合中的第一资源对应的分频系数,包括第二设备在第一资源组合中的第一资源上发送信号时使用的各个通道的分频系数。改方式下,第一设备如果获知了一个通道的分频系数,就能确定第二设备在该通道上发送的信号的相位取值集合或相位取值范围或相位,从而能够确定第二设备在该通道上发送的信号的相位。
在一种可选的实施方式中,所述第一资源为一个或多个频带,或为一个或多个载波。
在一种可选的实施方式中,所述第一资源组合为一个或多个频带组合。
所述M个资源中的第一资源为一个资源集合,所述M个资源为M个资源集合。
在一种可选的实施方式中,所述资源集合为载波集合,所述M个资源集合为M个载波集合,所述第一资源为第一资源集合。
在一种可选的实施方式中,所述M个第一资源中的第一资源为频带组合,M个资源为M个频带组合;或者,第一资源为频带,M个资源为M个频带;或者,第一资源为载波,M个资源为M个载波。
在一种可选的实施方式中,所述方法还包括:在所述M个资源中的一个或多个资源上发送第一信号。
在一种可选的实施方式中,所述第一信号用于定位。
关于第二方面的第2点所包括的各种可选的实施方式的技术效果,可参考如下一项或多项:第一方面的第1点中的相应实施方式的技术效果的介绍,第一方面的第2点中的相应实施方式的技术效果的介绍,或,第二方面的第1点中的相应实施方式的技术效果的介绍。
第三方面,提供一种通信装置。所述通信装置可以为上述第一方面和/或第二方面所述 的第一设备。或为包括第一设备的较大设备,或为第一设备中的功能模块,例如基带装置或芯片系统等。所述通信装置包括处理单元(有时也称为处理模块)和收发单元,所述收发单元(或,所述接收单元),用于接收第一信息,所述第一信息包括第二设备在M个资源上的信息,所述M个资源为频率资源,M为正整数;所述收发单元(或,所述接收单元),还用于在所述M个资源中的一个或多个资源上接收来自所述第二设备的第一信号;所述处理单元,用于获得测量信息,所述测量信息是基于所述第一信号和所述第一信息确定的。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面和/或第二方面所述的第一设备的功能。
第四方面,提供另一种通信装置。所述通信装置可以为上述第一方面和/或第二方面所述的第三设备。或为包括第三设备的较大设备,或为第三设备中的功能模块,例如基带装置或芯片系统等。所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。所述处理单元,用于获得第一信息,所述第一信息包括第二设备在M个资源上的信息,所述M个资源为频率资源,M为正整数;所述收发单元(或,所述发送单元),用于发送所述第一信息。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面和/或第二方面所述的第三设备的功能。
第五方面,提供一种通信系统,包括第三方面所述的通信装置以及第四方面所述的通信装置。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一设备或第三设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第八方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为载波聚合技术的一种示意图;
图2为能力参数的一种示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的第一种通信方法的流程图;
图5为本申请实施例提供的发送信号的示意图;
图6为本申请实施例提供的第二种通信方法的流程图;
图7为本申请实施例中的定位过程的一种示意图;
图8为本申请实施例提供的一种定位过程的流程图;
图9为本申请实施例提供的一种装置的示意图;
图10为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
(1)载波聚合。
载波聚合技术通过把可用频段的分量载波(component carrier,CC)组合起来,以达到提高频谱利用效率、提高数据速率、改善网络性能的效果。以两个分量载波参与聚合为例,载波聚合可包括几种类型,下面举例介绍。
如果这两个CC所属的频段(“频段”也可称为“频带”)相同,并且在频域上连续。则这两个分量载波的聚合称为频带内连续的载波聚合(intra-band contiguous CA)。例如图1中频带A上的CC1和CC2的聚合。需要说明的是,一些场景下,若两个CC所属的频段相同,且两个CC之间存在保护带宽,由于保护带宽占用的频谱较小,此时也可以认为这两个CC是连续的。
如果这两个分量载波所属的频带相同,但在频域上不连续,则这两个分量载波的聚合称为频带内非连续的载波聚合(intra-band non-contiguous CA)。例如图1中频带B上的CC3和CC4的聚合。
如果这两个分量载波所属的频带不同,则这两个分量载波的聚合称为跨频带的载波聚合或频带间载波聚合(intra-band CA)。例如图1中频带A上的CC1和频带B上的CC3的聚合。
(2)频段组合(band combination,BC)。
一个BC可以包括一个或多个频带,由于一个频带可以包括一个或多个载波,因此也可理解为,一个BC可包括一个或多个载波。
每个BC对应一个特性集组合(FeatureSetsCombination,FSC),一个频段组合中的每个频段(band)对应一个该频段的特性集(FeatureSetperBand)。例如,频段特性集包括上行特性集(FeatureSetUplink)和下行特性集(FeatureSetDownlink);每个载波对应一个载波特性集(FeatureSetPerCC),例如载波特性集包括上行载波特性集(FeatureSetDownlinkPerCC)和下行载波特性集(FeatureSetDownlinkPerCC)。UE可通过特性集来上报该UE的能力,例如上报频段组合的能力、频段组合中每个频段的能力、或频段组合中每个载波的能力中的一项或多项。可选的,每个特性集可以通过一个标识(identifier,ID)来体现。
可参考图2,为一种FSC的示例。该FSC ID为1,该FSC例如对应BC1和BC2。其中,BC1为频带n41、频带n78和频带n88的组合,其中频带n41中参与BC1组合的载波数为8、频带n78中参与BC1组合的载波数为4、频带n88中参与BC1组合的载波数为2。BC2为频带n41和频带n78的组合,其中频带n41中参与BC2组合的载波数为4、频带n78中参与BC2组合的载波数为4。该FSC可包括频带n41、频带n78和频带n88的特征集,以频带n41的特征集为例,该特征集又包括频带n41对应于BC1的特征集1和对应于BC2的特征集2。例如频带n41对应于BC1的特征集1包括特征集下行ID1(FeatureSetDownlink ID1)和特征集上行ID1(FeatureSetUplink ID1),分别表示频带n41在BC1中的下行能力和上行能力。例如在频带n41对应的特征集1的特征集下行ID1中又包括频带n41中参与BC1组合的8个载波的ID,例如分别为特征集1中的分量载波ID(FeatureSetPerCC ID) 1~8。又例如,频带n41对应于BC2的特征集2包括特征集下行ID1(FeatureSetDownlink ID1)和特征集上行ID2(FeatureSetUplink ID2),分别表示频带n41在BC2中的下行能力和上行能力。在频带n41对应的特征集2的特征集下行ID1中又包括频带n41中参与BC2组合的4个载波的ID,例如分别为特征集2中的分量载波ID(FeatureSetPerCC ID)1~4。对于该FSC包括的其他内容也是类似的,不多赘述。
(3)用户网络接口通用(user to network interface universal,Uu)定位Uu定位,定位参考信号、定位辅助数据、定位测量结果等信息的传输均通过Uu口进行。其中,Uu中的“U”表示用户网络接口(user to network interface),Uu中的“u”表示通用(universal)。Uu接口为蜂窝通信接口,需要接入网设备参与。
(4)侧行(sidelink,SL)定位SL定位,是一种利用SL发送侧行定位参考信号(sidelink positioning reference signal,S-PRS)并进行定位测量的技术。其中,UE之间可通过PC5(proximity based services communication 5,近距离服务通信5)接口传输定位参考信号,但定位辅助数据、定位测量结果等信息可以通过PC5接口或者Uu接口进行传输。
(5)定位参考信号。
定位参考信号可以理解为能够用于定位或者为定位提供参考的信号。本申请各个实施例中,定位参考信号可包括下行定位参考信号(downlink positioning reference signal,DL-PRS)、上行探测参考信号(uplink sounding reference signal,UL-SRS)、定位参考信号(positioning reference signal,PRS)、或S-PRS中的一种或多种。另外,其余参考信号如信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号和物理广播信道(physical broadcast channel,PBCH)块(synchronization signal and PBCH block,SSB)、时频跟踪参考信号(Tracking Reference Signal,TRS)中的一种或多种也可用于定位,本申请中的定位参考信号为能够用于定位信息的参考信号,本申请实施例对定位参考信号的具体形式不作限定。
DL-PRS,用于下行定位方法和上下行联合定位方法。
UL-SRS,从广义的角度来说,SRS可包括用于多输入多输出(multiple input multiple output,MIMO)的上行参考信号(即MIMO-SRS),以及专用于定位的上行定位参考信号(即定位探测参考信号(positioning–SRS,pos-SRS))。其中,MIMO-SRS和pos-SRS都可以用于上行定位方法和上下行联合定位方法。另外,在用于定位时,UL-SRS也可称为上行定位参考信号。
PRS,可包括DL-PRS和/或UL-SRS。
S-PRS,在SL上传输并专用于SL场景下的定位的参考信号。
(6)本申请实施例中的第一设备、第二设备或第三设备可以是一种具有无线收发功能的设备,可以是固定设备、移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。标签例如为终端设备,或是终端设备中的固定设备或移动设备,或是内置于上述设备中的无线装置。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、 远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为UE、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
此外,第一设备、第二设备或第三设备还可以是网络设备,对该网络设备的解释参见下文。
(7)网络设备,可包括接入网设备,是终端设备通过无线方式接入到该移动通信系统中的接入设备,包括接入网(access network,AN)设备,例如基站。接入网设备也可以包括在空口与终端设备通信的设备。接入网设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolutional Node B),可简称为eNB或e-NodeB)。eNB是一种部署在无线接入网中满足第四代移动通信技术(the fourth generation,4G)标准的为终端设备提供无线通信功能的装置。接入网设备还可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的基站(gNode B,gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站(也称为小站),可以是中继(relay),可以是分布式网元(distributed unit),可以是各种形式的宏基站,可以是传输接收点(transmission reception point,TRP)、接收点(reception point,RP)、传输测量功能(transmission measurement function,TMF)或传输点(transmission point,TP)或者任何其它无线接入设备,本申请实施例不限于此。接入网设备也可以包括无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。本申请的实施例对接入网设备所使用的具体技术和具体设备形态不做限定。网络设备在4G系统中可以对应eNB,在5G系统中对应gNB。
本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如PDCP层及以上协议层功能设置在CU,PDCP以下的协议层,例如无线链路控制(Radio Link Control,RLC)层和媒体接入控制(media access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给终端设备,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。在该网络架构中,将CU划分为无线接入网(radio access network,RAN)侧的网络设备,此外,也可以将CU划分作为核心网(core network,CN)侧的网络设备,本申请对此不做限制。
网络设备还可包括核心网设备,例如包括位置管理功能网元(location management function,LMF)、移动管理实体(mobility management entity,MME)、广播多播服务中心 (broadcast multicast service center,BMSC)等,或者也可以包括5G系统中的相应功能实体,例如核心网控制面(control plane,CP)或用户面(user plan,UP)网络功能等,例如:SMF、接入和移动性管理功能(access and mobility management function,AMF)等。其中,核心网控制面也可以理解为核心网控制面功能(control plane function,CPF)实体。
本申请实施例中,终端设备通过无线的方式与无线接入网(radio access network,RAN)网元相连,无线接入网网元通过无线或有线方式与核心网设备连接。核心网设备与无线接入网网元可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网网元的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网网元的功能。终端设备可以是固定位置的,也可以是可移动的。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(8)传输点(transmission point,TP),接收点(reception point,RP),以及发送-接收节点(transmission-reception point,TRP)。
TP,也可以称为传输节点或者发送节点等,表示地理上位于同一位置的一组发射天线。TP的概念可适用于一个小区、一个小区的一部分或一个仅支持DL-PRS的TP。TP可以包括基站(例如ng-eNB或gNB等)的天线、射频拉远模块(remote radio heads)、基站的远程天线、或仅支持DL-PRS的TP的天线等。其中,一个小区可以包括一个或多个TP。
RP,也可以称为接收节点等,表示地理上位于同一位置的一组接收天线。该概念适用于一个小区、一个小区的一部分或一个仅支持UL-SRS的RP。RP可以包括基站(例如ng-eNB或gNB)的天线、射频拉远模块、基站的远程天线、或仅支持UL-SRS的RP的天线等。其中,一个小区可以包括一个或多个RP。
TRP,表示地理上位于同一位置、支持TP和/或RP功能的一组天线。本申请中,天线也可以理解为天线阵列,一个天线阵列可包括一个或多个天线元件。
(9)通道。
通信为通信设备发送和/或接收信号时的路径。其中,如果一个设备通过同一个通道发送多个信号,则这些信号之间的相位连续;而如果一个设备通过不同的通道发送信号,则这些信号之间的相位可能是连续的,也可能是不连续的,取决于每个通道上的随机相位。
(10)资源上的相位信息。
一个通信设备在一个资源上的相位信息,可以理解为该通信设备在该资源上发送信号时的相位信息或者随机相位信息,或者理解为该通信设备该资源对应的通道(例如射频通道)上发送信号时的随机相位信息。
由于硬件电路实现的原因,针对在一个通道上发送的信号来说,该信号从发送端的基带电路到射频电路的过程中会发生相位跳变,跳变后的相位为随机相位。例如,以第二设备为例,第二设备的基带电路生成的信号1的相位为A,而信号1从第二设备的基带电路到达第二设备的射频电路后,相位变成了B,若B与A不同,则信号产生了相位跳变,其中跳变后的相位B,即随机相位。其中,信号的随机相位可满足如下关系:
公式1中,表示随机相位。示例性地,公式1中的为相对稳定的数值,例如可建模 成高斯分布,其均值相对稳定,与设备的芯片内部设计相关,另外,可在一定范围内抖动,即存在方差。公式1中的为随机值部分,与该通道的分频系数有关,N表示该通道的分频系数。例如,当N=4时,表示设备在该通道上能够实现四分频,可以为{0°,90°,180°,270°}四个值中的任意一个。在实际发送过程中,可能是{0°,90°,180°,270°}中的一个值,即,当N=4时,{0°,90°,180°,270°}可以理解为是随机值的取值范围或取值集合。
又例如,当N=8时,表示设备在该通道上能够实现八分频,可以为{0°,45°,90°,135°,180°,225°,270°,315°}八个值中的任意一个。在实际发送过程中,可能是{0°,45°,90°,135°,180°,225°,270°,315°}中的一个值,即,当N=8时,{0°,45°,90°,135°,180°,225°,270°,315°}可以理解为是随机值的取值范围或取值集合。
本申请的各个实施例所提到的“不同信号之间存在相位差”或“不同信号的相位不连续”,指的是这些信号不能拼接或合成一个等效的大带宽信号。示例性地,信号发送端发送了5个带宽为20MHz的参考信号,这5个带宽在频域上可以连续也可以不连续,在频域上也可存在间隔或重叠,信号接收端可以将该5个信号拼接后得到一个带宽接近100MHz的信号,该拼接得到的信号的特征与信号发送端直接发送一个带宽接近100MHz(在频域上连续)的信号的特征类似或相同。
(11)资源与通道的关系。本申请中,资源也可以理解为包括频域资源或频率资源,例如,第一资源可包括一个或多个(或,一份或多份)频率资源。“频率资源”是指在频域上连续的一段频谱资源,一个通道对应一个或者多个资源。由于资源的粒度可以有多种,一个资源是一个子载波、一个或者多个资源块(resource block,RB)、一个带宽部分(bandwidth part,BWP)、一个分量载波、一个频带(band)、一个频段、频率层(frequency layer)、频点(frequency point)、或频率范围(frequency range,FR)。
例如,以频带为例,不同的频带可以对应不同的通道。可参考图1,例如频带A和频带B对应的通道不同。又例如,同一个频带上的非连续的载波对应的通道不同。例如图1中,频带B上的CC3和CC4可以对应不同的通道。或者,在某些场景下,同一个频带上的非连续的载波也可能对应同一个通道,例如对于高频率的频带,则该频带上的非连续的载波可能对应同一个通道。又例如,同一个频带上的连续的载波可能对应同一个通道。例如图1中,频带A上的CC1和CC2可以对应同一个通道。或者,在某些场景下,同一个频带上的连续的载波也可能对应不同的通道。再例如,同一个载波可以对应同一个通道。例如图1中,CC1可对应一个通道,一个设备无论在CC1的哪个频率位置发送信号,都使用同一个通道。或者,在某些场景下,同一个载波也可能对应不同的通道,例如在不同的频带组合中,同一个载波可以对应不同的通道。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信令和第二信令,可以是同一个信令,也可以是不同的信令,且,这种名称也并不是表示这两个信令的内容、信息量大小、发送顺序、发送端/接收端、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S401可以发生在S402之前,或者可能发生在S402之后,或者也可能与S402同时发生。
下面介绍与本申请实施例相关的技术特征。
通过研究发现,定位精度在很大程度上依赖于定位信号带宽。一般来说,对于基于时延信息的定位方法来说,例如TDOA定位和无线传输技术(adio transmission technology,RTT)定位,定位信号的带宽越大,则定位精度越高。为了提高定位精度,对于待定位的UE来说,一种获得大带宽的方式为,采用载波聚合方式来获得大带宽。在这种方式下,可以在参与聚合的多个载波上发送定位信号,接收端可以将接收的多个定位信号“拼接”成一个大带宽的参考信号(其带宽接近发送端发送的信号占用的总带宽之和),从而获得较高的定位精度。但由于各个载波上的信号之间存在相位差,导致定位精度有所降低。鉴于此,提供本申请实施例的技术方案。本申请实施例中,第一信息可包括第二设备在M个资源的相位信息。那么第一设备在M个资源中的一个或多个资源上接收信号后,可以根据第一信息确定来自不同资源上的不同信号的相位信息,从而根据相位信息避免可能存在的测量误差。例如该测量信息的一种应用场景为,该测量信息可用于定位测量。那么,通过本申请实施例的技术方案,第一设备通过获取一个或者多个资源上的相位信息,可以采用相应的方式减小或消除不同信号之间的相位差,以提高定位的精度。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统,码分多址(code division multiple access,CDMA)系统,宽带码分多址(wideband code division multiple access,WCDMA)系统,通用分组无线业务(general packet radio service,GPRS),长期演进(long term evolution,LTE)系统,LTE频分双工(frequency division duplex,FDD)系统,LTE时分双工(time division duplex,TDD),通用移动通信系统(universal mobile telecommunication system,UMTS),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)系统或新无线(new radio,NR)等,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。另外本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于车到一切(vehicle to everything,V2X)场景,例如NR-V2X场景等。例如可应用于车联网,例如V2X、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域。如果应用于D2D场景,则通信双方可以均为UE;如果应用于非D2D场景,则通信的一方可以是UE,另一方是网络设备(例如接入网设备),或者通信双方可能均为网络设备。在下文的介绍过程中,以通信双方分别是UE和接入网设备为例。
请参考图3,为本申请实施例的一种应用场景示意图。图3包括UE(也可称为目标UE),接入网设备1和接入网设备2,AMF和LMF等核心网设备,以及包括校准设备。需注意的是,图3以两个接入网设备为例,实际通信系统包括的接入网设备还可以是三个 或三个以上。其中,接入网设备1例如为该目标UE的服务接入网设备。校准设备能够与目标UE和接入网设备通信,可选的,校准设备还能与LMF通信。该校准设备例如为接入网设备或UE。图3中,例如接入网设备1和接入网设备2属于下一代(next generation,NG)RAN,接入网设备之间通过Xn接口通信。NL1表示AMF与LMF之间的通信接口。
其中,LMF的控制面为增强服务移动位置中心(enhanced serving mobile location centre,E-SMLC),LMF的用户面为安全用户面定位(secure user plane location,SUPL)定位平台(SUPL location platform,SLP)。LMF负责支持有关目标UE的不同类型的位置服务,包括对目标UE进行定位以及向目标UE传递辅助数据等。
AMF可以接收与目标UE相关的位置服务请求,该位置服务请求用于请求对目标UE进行定位。或者AMF也可以自行启动针对目标UE的位置服务,例如AMF可自行生成位置服务请求。AMF可将该位置服务请求发送给LMF,以启动对目标UE的定位过程。
如果是下行定位过程,则目标UE可以测量来自接入网设备或其他设备的定位参考信号,以对该目标UE进行定位。
接入网设备可以为目标UE提供相应的信息,例如为UE配置定位参考信号,还可能向UE发送定位参考信号等。接入网设备还可将用于配置定位参考信号的信息发送给LMF。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。在本申请的各个实施例对应的附图中,凡是可选的步骤均用虚线表示。本申请的各个实施例所提供的方法均可应用于图3所示的场景。例如,本申请的各个实施例所涉及的第一设备为图3中的UE、接入网设备1、接入网设备2或LMF。本申请的各个实施例所涉及的第二设备例如为图3中的接入网设备1、接入网设备2、或UE。本申请的各个实施例所涉及的第三设备例如为图3中的第二设备、校准设备或LMF。
本申请的各个实施例中,UE可以通过无线资源控制(radio resource control,RRC)信令向接入网设备发送信息;或者,UE可以将待发送的信息发送给LMF(例如UE通过LTE定位协议(LTE positioning protocol,LPP)消息将该信息发送给LMF),LMF再将该信息中的部分或全部内容或将该信息进行调整/修改后的内容发送给接入网设备(例如LMF通过NR定位协议附属(NR positioning protocol annex,NRPPa)消息将该信息发送给接入网设备)。接入网设备可以通过广播消息或单播消息向UE发送信息,广播消息例如系统信息块(system information blocks,SIB)或定位系统信息块(positioning system information blocks,posSIB),单播消息例如为RRC信令;或者,接入网设备可以将待发送的信息中的部分或全部内容或将待发送的信息进行调整/修改后的内容发送给LMF(例如接入网设备通过NRPPa消息将信息发送给LMF),LMF再将该信息发送给UE(例如LMF通过LPP消息将该信息发送给UE)。校准设备可以是终端类型的设备,或者接入网设备类型的设备,或者其它类型的设备。校准设备和第一设备/第二设备之间的信息交互取决于校准设备的类型,可参考上述描述,本申请不做限定。校准设备可将待发送的信息发送给第一设备,或者通过其它设备(如第二设备、接入网设备、LMF等)发送给第一设备等等,后文的信息发送过程均可参考本段的描述,后文不再多赘述。
本申请实施例提供第一种通信方法,请参见图4,为该方法的流程图。
S401、第三设备发送第一信息。相应的,第一设备接收第一信息。
其中,如果将本申请实施例的技术方案应用于定位场景,则本申请实施例提供的定位过程可以是上行定位、下行定位、联合上下行定位、测距/测角/测相(不区分上下行)、感 知(Sensing)过程。下述以上行定位过程为例进行说明,例如第二设备为UE,第一设备为接入网设备;或者,本申请实施例提供的定位过程可以是下行定位过程,例如第二设备为接入网设备,第一设备为UE;或者,本申请实施例提供的定位过程也可以是上下行定位过程,例如在上下行定位过程中,可以执行两次本申请实施例的方法,在其中的一次执行过程中,第二设备为UE,第一设备为接入网设备,在其中的另一次执行过程中,第二设备为接入网设备,第一设备为UE。另外,参与定位的可能有多个接入网设备,本申请实施例是以描述了其中一个接入网设备的行为。可选的,该接入网设备例如为UE的服务接入网设备。在上述场景中,第三设备可以与第一设备或第二设备为同一设备,或者第三设备也可以是其它设备,例如,第三设备为LMF,或为除第一设备和第二设备之外的UE或接入网设备等。
第一信息可包括(或,指示)第二设备在M个资源的相位信息。可选的,第二设备在M个资源的相位信息,可以理解为第二资源在M个资源对应的相位信息。因此也可以理解为,第一信息可包括(或指示)第二设备在M个资源对应的相位信息。示例性的,M个资源为M个频率资源,例如M个资源为第二设备所支持的全部或部分频率资源,M为正整数。可选的,M个资源为第二设备所支持的频率资源中用于定位的频率资源,相当于只是将第二设备在用于定位的频率资源上的相位信息发送给第一设备,无需将第二设备在其他业务或功能的频率资源上的相位信息发送给第一设备,这样不会过多暴露第二设备的硬件实现,有利于保护第二设备的隐私与安全。
本申请实施例中,M个资源中的一个资源可对应一个或多个通道,例如,M个资源一一对应M个通道。又例如,M个资源中的一个资源对应多个通道。再如,M个资源中的多个资源对应一个通道。
可选的,如果不同的频带对应不同的通道,而一个频带上的所有载波对应同一个通道,则M个资源例如为M个频带;或者,如果不同的载波对应不同的通道,则M个资源例如为M个载波;或者,如果一个频带上连续的载波对应同一个通道,而一个频带上不连续的载波对应不同的通道,则M个资源中的一个资源例如为频带1上的连续的多个载波,而M个资源中的另一个资源例如为频带2上的载波1,载波1与频带2上的其他载波不连续,频带1与频带2为同一频带,或者为不同的频带。除此之外,M个资源还可能有其他实现方式,只要其中的一个资源对应一个通道即可。
值得注意的是,第一信息指示第二设备在M个资源上发送信号时的相位信息,但并不一定表示第二设备在所述过程中在M个资源中的所有资源上均发送了信号,也可以是在M个资源中的部分资源上发送信号。
第一信息可以有多种实现方式,下面举例介绍。
1、方式1。
M个资源可以属于一个或多个资源组合,第一信息可以包括第二设备在这一个或多个资源组合中的至少一个资源组合中的资源上的相位信息。以M个资源中的第一资源为例,第一资源可以为M个资源中的任一个资源,M个资源包括第一资源。第一资源属于第一资源组合。在这种实现方式下,第一信息可以包括第二设备在第一资源组合中的第一资源上的相位信息。
可选的,当资源组合为频带组合,此时,第一资源组合为第一频带组合。由于一个频带组合可以包括一个或者多个载波,或者包括一个或者多个频带,因此,第一资源可以是 一个载波或者一个频带。如果第一资源为一个频带,那么第一信息可包括第二设备在一个或多个频带组合中的至少一个频带组合中的部分或全部频带上的相位信息;或者,第一资源为一个载波,那么第一信息可包括第二设备在一个或多个频带组合中的至少一个频带组合中的部分或全部载波上的相位信息。
上述方式1中,第一资源可属于多个资源组合,或者说,M个资源所包括的多个资源组合中,有两个或者两个以上的资源组合均包括第一资源,此时,第一资源可以对应多个通道。
在前文介绍了,第一资源可以属于第一资源组合,在一种可选的方式中,如果第一资源对应多个通道,则第一资源属于多个资源组合。以第一资源属于第一资源组合和第二资源组合为例,此时,第一信息可以包括第二设备在第一资源组合中的第一资源上的相位信息,和第二设备在第二资源组合中的第一资源上的相位信息。
举例来说,M个资源为频带1~频带3,例如这3个频带可能组成4个频带组合,分别为频带组合1、频带组合2、频带组合3和频带组合4。其中频带组合1包括频带1和频带2,频带组合2包括频带1和频带3,频带组合3包括频带2和频带3,频带组合4包括频带1、频带2和频带3。例如第一资源为频带1,可见,频带1属于频带组合1,也属于频带组合2,还属于频带组合4。第一信息可指示第二设备在频带组合1中的频带1上的相位信息,以及指示第二设备在频带组合2中的频带1上的相位信息。
示例性地,第二设备如果在同一频带上的两个非连续的载波上发送信号,可以通过两个通道发送,不同的载波可对应不同的通道,即,非连续载波可能会使用不同的通道。例如,图1中的CC3和CC4是属于频带B的非连续载波,频带B属于两个频带组合,例如分别为频带组合1和频带组合2。则可能存在两种情况:
第一种情况,CC3和CC4属于不同的频带组合中的频带B,例如CC3属于频带组合1中的频带B,CC4属于频带组合2中的频带B。一种可能的实现方式,将CC3的相位信息与频带组合1中的频带B关联,CC4的相位信息与频带组合2中的频带B关联,即需要上报两个相位信息。
第二种情况,CC3和CC4属于相同的频带组合中的频带B,例如CC3和CC4均属于频带组合1中的频带B。一种可能的实现方式,将CC3和CC4的相位信息与频带组合1中的频带B关联,即只需要上报一个相位信息。
如果是第一种情况,第二设备在同一个频带所包括的非连续的载波上的相位信息可能是不同的。为了将第二设备在该频带上的相位信息均告知第一设备,可将该频带分别包括在不同的频带组合中,且该频带在不同的频带组合中包括的可以是不同的载波,这样就可将第二设备在非连续载波上的相位信息指示给第一设备。一种可能的实现方式,在频带组合1中频带B包括CC3,在频带组合2中频带B包括CC4。第一信息可指示第二设备在频带组合1包括的频带B上的相位信息,相当于指示第二设备在CC3上的相位信息;以及,第一信息可指示第二设备在频带组合2包括的频带B上的相位信息,相当于指示第二设备在CC4上的相位信息。
可选的,第二设备在第一资源组合中的第一资源上的相位信息,可以包括如下一项或多项:第二设备在第一资源组合中的第一资源上的相位,第二设备在第一资源组合中的第一资源上的相位个数,第二设备在第一资源组合中的第一资源上的相位取值集合或相位取值范围,第二设备在第一资源组合中的第一资源上的相位误差信息,或,第二设备在第二 资源上与第二设备在第一资源组合中的第一资源上的相位差。其中,第二资源是M个资源包括的除了第一资源外的另一个资源,例如第二资源包括在第二资源组合中。
第二设备在第一资源组合中的第一资源上的相位,可以是第二设备在第一资源组合中的第一资源对应的通道上发送信号时的实际相位,或者称为绝对相位,即,是第二设备在第一资源组合中的第一资源对应的通道上发送信号时的相位的实际值。或者,第二设备在第一资源组合中的第一资源上发送信号时的相位,可以是第二设备在第一资源组合中的第一资源对应的通道上发送信号时的相对相位,该相对相位例如为第二设备在第一资源组合中的第一资源对应的通道上发送信号时的实际相位与参考相位的差值。
参考相位例如为第一信息所指示的相位中的最大值或最小值,或为第一信息所指示的相位中的某一个相位。例如,第一信息指示了3个相位,分别为90°、180°、270°,则参考相位可以是90°或270°,或者参考相位也可以是这3个相位中的任意一个相位,例如180°。通过这种方式,只需要上报一个绝对值(例如最大值)作为参考相位,其它相位只需上报与该参考相位的相对值,数值较小,可节省比特数。或者,参考相位也可以不根据第一信息确定,而是采用某一固定值,例如180°,该固定值可由第一设备设置并通知第三设备,或者由第三设备设置并通知第一设备,或者由第一设备和第三设备协商确定,或者由LMF设置,或者通过协议预定义,或者预配置在第一设备和/或第三设备中。以第一资源组合中的第一资源对应一个通道为例,第二设备在第一资源组合中的第一资源对应的通道上发送信号时的实际相位为90°,则第二设备在第一资源组合中的第一资源上的相位信息可以包括90°。又例如,参考相位为90°,第二设备在第一资源组合中的第一资源对应的通道上发送信号时的实际相位为90°,则第二设备在第一资源组合中的第一资源上的相位信息可以包括0°。如果第一信息包括第二设备在第一资源组合中的第一资源上的相位,则第一设备可直接获知第二设备在第一资源组合中的第一资源上的相位,从而确定这些信号之间的相位差,无需再进行额外的操作,较为简单。
第二设备在第一资源组合中的第一资源上的相位个数,可以包括第二设备在第一资源组合中的第一资源上所对应的通道个数。例如,如果第二设备在第一资源组合中的第一资源对应的通道的数量为1,则第二设备在第一资源组合中的第一资源上的相位个数为1或者0;或者,如果第二设备在第一资源组合中的第一资源对应的通道的数量大于1,则第二设备在第一资源组合中的第一资源上的相位个数大于或等于1。可选的,第二设备在第一资源组合中的第一资源上的相位个数与第二设备在第一资源组合中的第一资源上对应的通道的个数相等。第一设备根据第二设备在第一资源组合中的第一资源上的相位个数,就能获得从第一资源组合中的第一资源上接收到的信号之间的相位差信息。例如,第二设备在第一资源组合中的第一资源上的相位个数为1或者0,表明第二设备在第一资源组合中的第一资源上发送信号时共用一个通道,那么第一设备能够确定,第一设备在第一资源组合中的第一资源上接收到的不同信号之间的相位差为0。又例如,第二设备在第一资源组合中的第一资源上的相位个数为4,表明第二设备在第一资源组合中的第一资源上发送信号时可能采用4个不同的通道,那么第一设备能够确定,第一设备在第一资源组合中的第一资源上接收到的两个信号之间的相位差的绝对值有4种可能,例如0°、90°、180°、270°,从而为第一设备确定测量信息提供辅助。
第二设备在第一资源组合中的第一资源上的相位取值集合或相位取值范围,可以包括第二设备在第一资源组合中的第一资源所对应的一个或多个通道上发送信号时的相位取 值集合或相位取值范围。其中,第二设备在第一资源组合中的第一资源上的相位取值集合,可以是指公式1中的的取值集合,或者是公式1中的的取值集合。同理,第二设备在第一资源组合中的第一资源上的相位取值范围,可以是指公式1中的的取值范围,或者是公式1中的的取值范围。例如第二设备在第一资源组合中的第一资源上发送信号时使用的一个通道的分频系数为4,则第一信息可包括该通道对应的相位取值集合或相位取值范围,如{(-5°,5°),(85°,95°),(175°,185°),(265°,275°)},该相位取值集合或相位取值范围为公式1中的的取值集合。其中,(x,y),表示取值范围为大于x且小于y,例如(85°,95°),可表示取值范围为大于85°且小于95°。
又例如,第一信息可包括第二设备在第一资源组合中的第一资源上对应的一个通道的相位取值集合,例如为{0°,90°,180°,270°},该相位取值集合例如为公式1中的的取值集合。第一设备获得了第二设备在第一资源组合中的第一资源上的相位取值集合或相位取值范围,就可以据此确定第二设备在第一资源组合中的第一资源上的相位信息。具体确定方式将在后文介绍。
第二设备在第一资源组合中的第一资源上的相位误差信息,可以包括第二设备在第一资源组合中的第一资源所对应的一个或多个通道上发送信号时的相位误差信息。第二设备在第一资源组合中的第一资源所对应的一个通道上发送信号时的相位误差信息,可包括第二设备在第一资源组合中的第一资源所对应的一个通道上发送信号时的相位值的误差信息,或者,包括第二设备在第一资源组合中的第一资源所对应的一个通道上发送信号时的相位取值集合的误差信息。而第二设备在第一资源组合中的第一资源所对应的一个通道上发送信号时的一个相位(实际相位)的误差信息,可包括如下一项或多项:相位误差上界,相位误差下界,相位误差的均值,相位误差的方差,相位误差的标准差,或,相位误差范围。例如第二设备在第一资源组合中的第一资源所对应的一个通道上发送信号时的一个相位的误差信息为{-10°,10°},这表明该相位有正负10°的误差。对于第一设备来说,示例性地,可根据相位误差信息,通过搜索算法确定第二设备在第一资源组合中的第一资源上发送信号时的相位。相位误差信息可作为辅助信息,第一设备无需进行全范围搜索,提高了搜索效率。
第二设备在第二资源与第一资源组合中的第一资源上的相位差,可以包括第二设备在第二资源对应的通道上与第一资源组合中的第一资源对应的通道上发送信号时的相位差。例如此时的第二资源包括在第二资源组合中,第二资源组合与第一资源组合可以是同一个资源组合,或者是不同的资源组合。例如,M个资源包括资源1~资源3,M个资源属于2个资源组合,其中资源组合1包括资源1和资源2,资源组合2包括资源2和资源3。示例性地,第一信息可以包括以下一项或多项:第二设备在资源组合1中的资源1上与第二设备在资源组合1中的资源2上的相位差,第二设备在资源组合1中的资源1上与第二设备在资源组合2中的资源2上的相位差,第二设备在资源组合1中的资源1上与第二设备在资源组合2中的资源3上的相位差,第二设备在资源组合1中的资源2上与第二设备在资源组合2中的资源2上的相位差,第二设备在资源组合1中的资源2上与第二设备在资源组合2中的资源3上的相位差,以及第二设备在资源组合2上中的资源2与第二设备在资源组合2中的资源3上的相位差。这样,当第二设备在相应的资源上发送信号时,第一设备能获知相应信号之间的相位差。
可选的,第一信息可以包括不为0的相位差,如果第二设备在两个资源上发送信号时的相位差为0,则该相位差可以不包括在第一信息中。例如,如果第二设备在第二资源上 与第一资源组合中的第一资源上的相位差不为0,则第一信息可以包括该相位差;而如果第二设备在第二资源上与第一资源组合中的第一资源上的相位差为0,则第一信息可以不包括该相位差。例如采用如上的示例中第一信息包括所有列举项的情况,如果第二设备在资源组合2中的资源2上与第二设备在资源组合2中的资源3上发送信号时的相位差为0,则该相位差可以不包括在第一信息中。对于第一设备来说,如果发现第一信息并未包括某些资源之间的相位差,则可以确定这些资源之间的相位差为0。这样既能够使得第一设备获得不同资源之间的相位差,也能减小信令开销。
可选的,第一信息也可以包括为0的相位差。例如,如果第二设备在两个资源上发送信号时的相位差不为0,则该相位差可以不包括在第一信息中。对于第一设备来说,如果发现第一信息并未包括某些资源之间的相位差,则可以确定这些资源之间的相位差不为0。这样既能够使得第一设备获得不同资源之间是否存在相位差,也能减小信令开销。
因为一个相位差至少涉及两个资源,例如第二设备在第二资源组合中的第二资源上与第二设备在第一资源组合中的第一资源上的相位差就涉及第二资源组合中的第二资源以及第一资源组合中的第一资源,因此可选的,该相位差可以重复包括在第一信息中。例如第一信息可包括第一资源组合中的第一资源的信息,则第一资源组合中的第一资源的信息可以包括该相位差;第一信息还包括第二资源组合中的第二资源的信息,则第二资源组合中的第二资源的信息也可包括该相位差。或者,第一信息也可以只包括一次该相位差,换句话说,该相位差在第一信息中只出现一次。例如第一信息包括第一资源组合中的第一资源的信息,第一资源组合中的第一资源的信息可以包括该相位差;第一信息还包括第二资源组合中的第二资源的信息,第二资源组合中的第二资源的信息可以不包括该相位差,可选地,第一信息可包括与第二资源组合中的第二资源对应的第一指示,第一指示可以指示第一资源组合中的第一资源,以表示该相位差包括在第一资源组合中的第一资源的信息中。这种方式能够减小信令开销。
另外,第一信息还可包括第二设备在M个资源中的其他资源上的相位信息。对此可参考如上对于第一资源的介绍,不多赘述。
2、方式2。
在一些场景下,第二设备在一个或多个频带组合上会使用同一个通道,或者无论一个频带属于哪个频带组合,第二设备在该频带上都使用同一个通道,或者无论一个载波属于哪个频带组合,第二设备在该载波上都使用同一个通道,为此,提出方式2。
第一信息可包括第二设备在M个资源中的至少一个资源上的相位信息。例如M个资源中的一个资源为第一资源,第一信息可包括第二设备在第一资源上的相位信息。
可选的,第一资源为频带组合,M个资源为M个频带组合。或者,第一资源例如为频带,M个资源为M个频带。或者,第一资源为载波,M个资源为M个载波。方式2较为简单,能够节省第一信息所带来的传输开销。
可选的,第一信息可以包括不为0的相位差,如果第二设备在两个资源上发送信号时的相位差为0,则该相位差可以不包括在第一信息中。例如,如果第二设备在第二资源上与第二设备在第一资源上发送信号时的相位差不为0,则第一信息可以包括该相位差;而如果第二设备在第二资源上与第二设备在第一资源上发送信号时的相位差为0,则第一信息可以不包括该相位差。其中,第二资源为M个资源中除了第一资源外的一个资源。
可选的,第一信息也可以包括为0的相位差。例如,如果第二设备在两个资源上发送 信号时的相位差不为0,则该相位差可以不包括在第一信息中。
因为一个相位差至少涉及两个资源,例如第二设备在第二资源上与第二设备在第一资源上发送信号时的相位差就涉及第二资源以及第一资源,因此可选的,该相位差可以重复包括在第一信息中。关于该部分内容,可参考前述方式1的相关介绍。
应理解,第一资源为M个资源中的任意资源。
3、方式3。
例如M个资源中的一个资源为一个资源集合,则M个资源可以是M个资源集合。
可选的,资源集合为载波集合,一个资源集合可包括一个或多个载波。例如,第二设备在一个资源集合所包括的载波上发送信号时,所使用的通道相同;第二设备在不同的资源集合上发送信号时,所使用的通道不同。即,资源集合与通道是对应的关系。以图1为例,例如第二设备在其中的频带A包括的CC1和CC2上发送信号时,均使用通道1;第二设备在频带B包括的CC3上发送信号时,使用通道2;第二设备在频带B包括的CC4上发送信号时,使用通道3。那么,CC1和CC2可以属于一个载波集合,例如称为载波集合1;CC3属于另一个载波集合,例如称为载波集合2;CC4属于又一个载波集合,例如称为载波集合3。
可选的,在这种实现方式下,例如M个资源包括第一资源,第一资源是M个资源中的任一个资源,第一资源可以是一个资源集合,例如称为第一资源集合。对于第一资源集合来说,第一信息可包括以下一项或多项:第二设备在第一资源集合上的相位信息,第一资源集合的标识,或,第一资源集合中的资源标识。
继续以第一资源集合为例,可选的,第二设备在第一资源集合上的相位信息,可以包括如下一项或多项:第二设备在第一资源集合上的相位,第二设备在第一资源集合上的相位个数,第二设备在第一资源集合上的相位取值集合或相位取值范围,第二设备在第一资源集合上的相位误差信息,或,第二设备在第二资源集合与第一资源集合上的相位差。其中,第二资源集合是M个资源集合中除了第一资源集合外的另一资源集合。
第二设备在第一资源集合上的相位,可以是第二设备在第一资源集合对应的通道上发送信号时的实际相位,或者称为绝对相位,即,是第二设备在第一资源集合对应的通道上发送信号时的相位的实际值。或者,第二设备在第一资源集合上的相位,可以是第二设备在第一资源集合对应的通道上发送信号时的相对相位,该相对相位例如为第二设备在第一资源集合对应的通道上发送信号时的实际相位与参考相位的差值。对此的更多介绍可参考上述第一种实现方式。
第二设备在第一资源集合上的相位个数,可以包括第二设备在第一资源集合所对应的通道个数。对此的更多介绍可参考上述第一种实现方式。
第二设备在第一资源集合上的相位取值集合或相位取值范围,可以包括第二设备在第一资源集合所对应的通道上发送信号时的相位取值集合或相位取值范围。对此的更多介绍可参考上述第一种实现方式。
第二设备在第一资源集合上的相位误差信息,可以包括第二设备在第一资源集合所对应的通道上发送信号时的相位误差信息。第二设备在第一资源集合所对应的通道上发送信号时的相位误差信息,可包括第二设备在第一资源集合所对应的通道上发送信号时的相位值的误差信息,或者,包括第二设备在第一资源集合所对应的一个通道上发送信号时的相位取值集合的误差信息。而第二设备在第一资源集合所对应的通道上发送信号时的一个相 位(实际相位,或相位取值集合中的任一个相位)的误差信息,可包括如下一项或多项:相位误差上界,相位误差下界,相位误差的均值,相位误差的方差,相位误差的标准差,或,相位误差范围。
第二设备在第二资源集合与第一资源集合上的相位差,可以包括第二设备在第二资源集合对应的通道上与第一资源集合对应的通道上发送信号时的相位差。
可选的,第一信息可以包括不为0的相位差,如果第二设备在两个资源集合上发送信号时的相位差为0,则该相位差可以不包括在第一信息中。例如,如果第二设备在第二资源集合上与第二设备在第一资源集合上的相位差不为0,则第一信息可以包括该相位差;而如果第二设备在第二资源集合上与第二设备在第一资源集合上的相位差为0,则第一信息可以不包括该相位差。
可选的,第一信息也可以包括为0的相位差。例如,如果第二设备在两个资源集合上发送信号时的相位差不为0,则该相位差可以不包括在第一信息中。
因为相位差至少涉及两个资源,例如第二设备在第二资源集合上与第二设备在第一资源集合上发送信号时的相位差就涉及第二资源集合以及第一资源集合,可选的,该相位差可以重复包括在第一信息中,关于该部分内容可参考前述方式1的相关介绍。
另外,第一信息还可包括第二设备在M个资源集合中的其他资源集合上的相位信息。对此可参考如上对于第一资源集合介绍,不多赘述。
4、方式4。
在一些场景下,一个设备可能使用同一个通道,即,对于该设备来说,无论在哪个资源上发送信号,所使用的通道都是相同的。为此提出方式4。
第一信息可包括第二设备的相位信息,该相位信息适用于M个资源中的至少一个资源。例如在这种情况下,第一信息只需指示或包括第二设备发送信号时的相位信息即可,由此能够节省第一信息的信令开销,且简化指示方式。
另外,根据如上介绍可知,如果第二设备在一个通道内发送多个信号,则对第二设备来说,这多个信号之间的相位可以是连续的。因此,第一信息也可供网络配置资源时进行参考,例如,尽量将待发送的信号(例如第一信号)配置在同一个通道内,以减少接收端的复杂度。
可选的,第一信息可以包括在第二设备的能力信息中,关于该部分内容的介绍可参考后文将要介绍的图6所示的实施例。
S402、第二设备在M个资源中的一个或多个资源上发送第一信号。相应的,第一设备在M个资源中的一个或多个资源上接收来自第二设备的第一信号。其中,第一信号可以通过广播、组播或单播等方式发送,如果第一信号为广播或组播,则可能有多个设备能够接收第一信号,第一设备例如为其中一个接收设备。如果第一信号为单播,则第一信号为第二设备发送给第一设备的信号。
可选的,第二设备可以在一个或多个资源上同时发送第一信号。或者,这一个或多个资源上的第一信号也可以不是同时发送的,例如第二设备采用跳频方式发送。
其中,第一信号可包括S个信号,S可以是大于或等于2的整数。例如,可将第二设备在一个频带上发送的信号理解为一个信号,M个资源例如为M个频带,则第一信号可以在M个频带中的S个频带上发送。又例如,可将第二设备在一个载波上发送的信号理解为一个信号,M个资源例如为M个载波,则第一信号可以在M个载波中的S个载波上发 送,示例性地,这S个载波可以是参与载波聚合的S个分量载波。又例如,将第二设备在一个BWP上发送的信号理解为一个信号,M个资源例如为M个BWP,则第一信号可以在M个BWP中的S个BWP上发送,这S个BWP可以包括在一个或多个载波内。或者,第一信号的划分粒度可以更小,例如将第二设备在一个频率单元上发送的信号理解为一个信号,M个资源例如为M个频率单元,则第一信号可以在M个频率单元中的S个频率单元上发送,这S个频率单元可以包括在一个或多个载波内。其中,频率单元的粒度小于BWP的粒度,例如频率单元所占用的频域范围小于BWP占用的频域范围。
可参考图5,其中的f1~f5表示5个频率单元。例如,第二设备在图5中的频带A上发送信号时,使用通道1;第二设备在图5中的频带B内的CC3上发送信号时,使用通道2;第二设备在图5中的频带B内的CC4上发送信号时,使用通道3。第一信号例如包括信号1和信号2,例如信号1和信号2可以在不同的频带上发送,例如分别在f1和f3上发送;或者,信号1和信号2可以在同一个频带内的非连续载波上发送,例如分别在f3和f4上发送;或者,信号1和信号2可以在同一个频带内的连续载波上发送,例如分别在f1和f2上发送;或者,信号1和信号2可以在同一个载波上发送,例如分别在f4和f5上发送。
可选的,第一信号所包括的全部或部分信号可用于定位。例如第一信号包括定位参考信号。
S403、第一设备获得测量信息。其中,该测量信息可以基于第一信号以及第一信息确定。或者S403也可以替换为,第一设备根据第一信号和第一信息确定测量信息。
示例性地,第一设备根据第一信息,可以确定第一信号所包括的信号的相位信息,和/或,确定第一信号所包括的各个信号之间的相位差。一种可能的实现方式中,第一设备可根据确定的相位差对第一信号包括的部分或全部信号进行相位补偿,获得一个大带宽信号的测量结果,例如将该大带宽信号称为第二信号,第二信号的带宽接近(可略小于或等于或略大于)第一信号所包括的各个信号的带宽之和。
例如,第一设备根据第二信号可以估计第二设备到第一设备的传输时延,该测量信息可以包括该传输时延的信息。可选的,该传输时延可用于UE进行定位。
又例如,第一设备可根据第二信号进行信道估计,所述信道指的是第二设备发送的第一信号(或者说UE接收到的第一信号)所经过的信道。一种可能的实现方式中,第一设备根据第一信号的相位信息,获得较为精确的信道估计结果。第一设备所获得的信道估计结果可包括如下一项或多项:信道参数,信道矩阵,信道衰落矩阵,信道冲激响应矩阵,多径的时延,簇的能量,或,信道参数估计结果的分布。可选地,该信道估计结果可用于通信或定位。
其中,可由第一设备对UE进行定位。例如第一设备是UE,第二设备是接入网设备。一种可能的实现方式中,参与对该UE定位的接入网设备可能有一个或多个,对于参与定位的接入网设备的信号,UE均执行图4所示的实施例,从而可以获得对应于每个接入网设备的测量信息。在获得多个测量信息后,UE可根据获得的多个测量信息对该UE进行定位。或者,也可由其他设备(例如LMF或接入网设备或其它UE等)对UE进行定位,例如第一设备可将获得的多个测量信息发送给其他设备(例如LMF或接入网设备或其他UE等),由所述其他设备对该UE进行定位。
或者,例如第一设备是接入网设备,第二设备是UE。一种可能的实现方式中,参与对该UE定位的接入网设备可能有一个或多个,这一个或多个接入网设备均可通过图4所 示的实施例获得测量信息。例如其中的一个接入网设备可以从多个接入网设备中的其他接入网设备接收测量信息,从而其中的一个接入网设备可以获得多个测量信息,那么该接入网设备可以根据获得的多个测量信息对UE进行定位,该接入网设备例如为UE的服务接入网设备,或者是参与定位的任一个接入网设备;或者,各个参与定位的接入网设备可将获得的测量信息发送给LMF或其他UE,由其对UE进行定位。
可选的,用于对UE进行定位的设备(接入网设备、UE、LMF或校准设备等)可采用的定位技术为到达时间(time of arrival,TOA)定位、到达时间差(time difference of arrival,TDOA)定位、上行到达角(uplink angle-of-arriva,UL-AoA)定位、下行离开角(downlink angle of departure,DL-AoD)定位,多次往返时间(multiple round trip time,multi-RTT)定位,载波相位定位(carrier phase positioning),或者这些定位方法中某些方法的融合定位等,不做限制。
本申请实施例中,第一信息可包括第二设备在M个资源对应的相位信息。那么第一设备在M个资源中的一个或多个资源上接收信号后,可以根据第一信息确定所接收的信号的相位信息,第一设备可以进一步采用相应的方式减小或消除该相位差,以提高所获得的测量信息的准确性。例如该测量信息的一种应用场景为,该测量信息可用于对第二信息进行定位,从而提高对于第二设备的定位精度。
为了解决相同的技术问题,本申请实施例提供第二种通信方法。请参考图6,为该方法的流程图。
S601、第二设备发送第一信息。相应的,第一设备接收第一信息。本申请实施例中,第三设备与第二设备例如为同一设备。
第一信息可包括第二设备在M个资源上的能力信息,或者说,第一信息包括第二设备与M个资源关联的能力信息,M为正整数。其中,根据第二设备在一个资源上的能力信息,能够确定第二设备在该资源上的相位信息。第二设备在一个资源上的相位信息,可以理解为是第二设备在该资源上发送信号时的随机相位信息,或者理解为,是第二设备在该资源对应的通道上发送信号时的随机相位信息。对此的更多内容可参考图4所示的实施例的S401。
本申请实施例中,第一信息也可以有多种实现方式,下面举例介绍。
1、方式A。
M个资源可以属于一个或多个资源组合,第一信息可以包括第二设备在这一个或多个资源组合中的至少一个资源组合中的资源上的能力信息。以M个资源中的第一资源为例,第一资源可以为M个资源中的任一个资源,M个资源包括第一资源。第一资源属于第一资源组合。在这种实现方式下,第一信息可以包括第二设备在第一资源组合中的第一资源上的能力信息。
可选的,当资源组合为频带组合,此时,第一资源组合为第一频带组合。由于一个频带组合可以包括一个或者多个载波,或者包括一个或者多个频带,因此,第一资源可以是一个载波或者一个频带。如果第一资源为一个频带,那么第一信息可包括第二设备在一个或多个频带组合中的至少一个频带组合中的部分或全部频带上的相位信息,可理解为,第一信息是按照每频带组合每频带(perBCperBand)的粒度上报;或者,第一资源为一个载波,那么第一信息可包括第二设备在一个或多个频带组合中的至少一个频带组合中的部分或全部载波上的相位信息,可理解为,第一信息是按照每频带组合每载波(perBCperCC) 的粒度上报。
上述方式A中,第一资源可属于多个资源组合,或者说,M个资源所包括的多个资源组合中,有两个或者两个以上的资源组合均包括第一资源,此时,第一资源可以对应多个通道。在前文介绍了,第一资源可以属于第一资源组合,在一种可选的方式中,如果第一资源对应多个通道,则第一资源属于多个资源组合。以第一资源属于第一资源组合和第二资源组合为例,此时,第一信息可以包括第二设备在第一资源组合中的第一资源上的相位信息,和第二设备在第二资源组合中的第一资源上的相位信息。对此更多的介绍等内容可参考图4所示的实施例中的S401。
示例性地,第二设备如果在同一频带上的两个非连续的载波上发送信号,可以通过两个通道发送,不同的载波可对应不同的通道,即,非连续载波可能会使用不同的通道。例如,图1中的CC3和CC4是属于频带B的非连续载波,频带B属于两个频带组合,例如分别为频带组合1和频带组合2,则可能存在两种情况,对此可参考图4所示的实施例中的S401。
如果是第一种情况,第二设备在同一个频带所包括的非连续的载波上的能力信息可能是不同的。为了将第二设备在该频带上的能力信息均告知第一设备,可将该频带分别包括在不同的频带组合中,且该频带在不同的频带组合中包括的可以是不同的载波,这样就可将第二设备在非连续载波上的能力信息指示给第一设备。例如,图1中的CC3和CC4是属于频带B的非连续载波,频带B属于两个频带组合,例如分别为频带组合1和频带组合2。例如,频带B为图2中的频带n41,频带组合1为图2中的BC1,频带组合2为图2中的BC2。一种可能的实现方式,在频带组合1中频带B包括CC3,例如为图2中BC1下的频带n41所包括的8个分量载波中的其中一个分量载波;在频带组合2中频带B包括CC4,例如为图2中BC2下的频带n41所包括的4个分量载波中的其中一个分量载波。第一信息可指示第二设备在频带组合1包括的频带B上的能力信息,相当于指示第二设备在CC3上的相位信息;以及,第一信息可指示第二设备在频带组合2包括的频带B上的能力信息,相当于指示第二设备在CC4上的能力信息。
可选的,第二设备在第一资源组合中的第一资源上的能力信息,可以包括如下一项或多项:第一资源组合中的第一资源对应的资源粒子的数量,第二设备在第一资源组合中的第一资源对应的分频系数,或,第一资源组合中的第一资源的频率范围。
第一资源组合中的第一资源对应的资源粒子的数量,可以理解为是第二设备在第一资源组合中的第一资源上发送信号时所使用的通道的数量。例如,第一资源组合中的第一资源对应一个或多个资源粒子,资源粒子与通道是一一对应的关系,也就是说,第二设备在第一资源组合中的第一资源上对应一个或多个通道。资源粒子例如为载波,或者为载波组合(例如第一资源内对应于同一个通道的载波可以属于一个载波组合),或者为BWP,或者为BWP组合,或者为粒度小于BWP的频率单元或频率单元组合。那么,如果第一资源组合中的第一资源对应的资源粒子的数量为P,则第二设备在第一资源组合中的第一资源上发送信号时使用的通道的数量为P,P为正整数。第一设备根据资源粒子的数量就能确定第二设备在第一资源组合中的第一资源上发送信号时所使用的通道的数量,而根据该通道的数量,第一设备能够确定第二设备在第一资源组合中的第一资源上发送信号时的相位。例如,第二设备在第一资源组合中的第一资源上发送信号时所使用的通道的数量为1,那么第一设备能够确定,第一设备在第一资源组合中的第一资源上接收到的不同信号之间的 相位差为0。又例如,第二设备在第一资源组合中的第一资源上发送信号时所使用的通道的数量为4,那么第一设备能够确定,第一设备在第一资源组合中的第一资源上接收到的两个信号之间的相位差的绝对值有4种可能,例如0°、90°、180°、270°,从而为第一设备确定测量信息提供辅助。
第二设备在第一资源组合中的第一资源对应的分频系数,例如包括第二设备在第一资源组合中的第一资源上发送信号时使用的各个通道所关联的分频系数,这体现了第二设备在第一资源组合中的第一资源对应的通道上的分频能力。例如第二设备在第一资源组合中的第一资源上发送信号时使用一个通道,则第二设备在第一资源组合中的第一资源对应的分频系数可包括该通道的分频系数,例如该通道的分频系数为4或8等。第一设备如果获知了一个通道的分频系数,就能确定第二设备在该通道上发送的信号的相位取值集合(例如一个通道的分频系数为4,则该通道对应的相位取值集合为{0°,90°,180°,270°}),从而能够确定第二设备在该通道上发送的信号的相位。
第一资源组合中的第一资源的频率范围(或者说,第一资源组合中的第一资源对应的频率范围),例如包括第二设备在第一资源组合中的第一资源上发送信号时使用的各个通道的频率范围。例如,第二设备在第一资源组合中的第一资源上发送信号时使用的一个通道的频率范围为2.5GHz~3.5GHz,则第一设备能够确定,第二设备在该频率范围内所发送的信号之间的相位差为0。又例如,第二设备在第一资源组合中的第一资源上发送信号时使用的一个通道的频率范围1为A,第二设备在第一资源组合中的第一资源上发送信号时使用的另一个通道的频率范围2为B。可选的,第二设备与第一资源组合中的第一资源关联的频率范围还可以指示频率范围1与频率范围2的相位差,例如为C,则第二设备在这两个频率范围内所发送的信号之间的相位差为C。如此,第一信息可供网络配置资源时进行参考,例如,尽量将待发送的信号(例如第一信号)配置在同一个通道关联的频率范围内,以减小接收端的复杂度。
2、方式B。
在一些场景下,第二设备在一个或多个频带组合上会使用同一个通道,或者无论一个频带属于哪个频带组合,第二设备在该频带上都使用同一个通道,或者无论一个载波属于哪个频带组合,第二设备在该载波上都使用同一个通道,为此,提出方式B。
第一信息可包括第二设备在M个资源中的至少一个资源上的能力信息,可理解为,第一信息是按照每频带组合(perBC)的粒度上报。例如M个资源中的一个资源为第一资源,第一信息可包括第二设备在第一资源上的能力信息。根据第二设备在一个资源上的能力信息,能够确定第二设备在该资源上发送信号时的相位信息。第二设备在一个资源上发送信号时的相位信息,例如为第二设备在该资源对应的通道上发送信号时的相位信息。
可选的,第一资源例如为频带组合,M个资源为M个频带组合,第一信息可按照每频带组合(perBC)的粒度上报。或者,第一资源例如为频带,M个资源为M个频带,第一信息可按照每频带(perBand)的粒度上报。或者,第一资源为载波,M个资源为M个载波,第一信息可按照每载波(perCC)的粒度上报。方式B较为简单,能够节省第一信息所带来的传输开销。
可选的,第二设备在第一资源上的能力信息,可以包括如下一项或多项:第一资源对应的资源粒子的数量,第二设备在第一资源对应的分频系数,或,第一资源的频率范围。
第一资源对应的资源粒子的数量,可以理解为是第二设备在第一资源上发送信号时所 使用的通道的数量。例如,第一资源对应一个或多个资源粒子,资源粒子与通道是一一对应的关系。关于资源粒子的介绍可参考图4所示的实施例中的S401。那么,如果第一资源对应的资源粒子的数量为P,则第二设备在第一资源上发送信号时使用的通道的数量为P,P为正整数。第一设备根据资源粒子的数量就能确定第二设备在第一资源上发送信号时所使用的通道的数量,而根据该通道的数量,第一设备能够确定第二设备在第一资源上发送信号时的相位。
第二设备在第一资源对应的分频系数,例如包括第二设备在第一资源上发送信号时使用的各个通道所关联的分频系数,这体现了第二设备在通道上的分频能力。对此可参考如上第一种实现方式的介绍。
第一资源单元的频率范围,例如包括第二设备在第一资源单元上发送信号时使用的各个通道的频率范围。对此可参考如上方式A的介绍。
3、方式C。
例如M个资源中的一个资源为一个资源集合,则M个资源可以是M个资源集合。
可选的,资源集合为载波集合,一个资源集合可包括一个或多个载波,对此的更多介绍可参考图4所示的实施例中的S401。
可选的,在这种实现方式下,第一信息可以包括第二设备在M个资源集合中的至少一个资源集合上的能力信息。根据第二设备在一个资源集合上的能力信息,能够确定第二设备在该资源集合上发送信号时的相位信息。第二设备在一个资源集合上发送信号时的相位信息,例如为第二设备在该资源集合对应的通道上发送信号时的相位信息。例如,第二设备在一个资源集合所包括的不同的载波上发送信号时,所使用的通道相同;第二设备在不同的资源集合上发送信号时,所使用的通道不同。即,资源集合与通道是一一对应的关系。
可选的,在这种实现方式下,例如M个资源包括第一资源,第一资源是M个资源中的任一个资源,第一资源可以是一个资源集合,例如称为第一资源集合。对于第一资源集合来说,第一信息可包括以下一项或多项:第一资源集合对应的资源粒子的数量,第二设备在第一资源集合对应的分频系数,或,第一资源集合的频率范围。
第一资源集合对应的资源粒子的数量,可以理解为是第二设备在第一资源集合上发送信号时所使用的通道的数量。例如,第一资源集合包括一个或多个资源粒子,资源粒子与通道是一一对应的关系。关于资源粒子的介绍可参考图4所示的实施例的S401。那么,如果第一资源集合对应的资源粒子的数量为P,则第二设备在第一资源集合上发送信号时使用的通道的数量为P,P为正整数。第一设备根据资源粒子的数量就能确定第二设备在第一资源集合上发送信号时所使用的通道的数量,而根据该通道的数量,第一设备能够确定第二设备在第一资源集合上发送信号时的相位。
第二设备在第一资源集合对应的分频系数,例如包括第二设备在第一资源集合上发送信号时使用的通道所关联的分频系数,这体现了第二设备在通道上的分频能力。对此可参考如上第一种实现方式的介绍。
第一资源集合的频率范围,例如为第二设备在第一资源单元上发送信号时使用的通道的频率范围。对此可参考如上方式A的介绍。
4、方式D。
在一些场景下,一个设备可能使用同一个通道,即,对于该设备来说,无论在哪个资源上发送信号,所使用的通道都是相同的。为此提出方式D。
第一信息可包括第二设备的能力信息,该能力信息适用于M个资源中的至少一个资源。根据第二设备的能力信息,能够确定第二设备发送信号时的相位信息,该相位信息可适用于所述至少一个资源,即,第二设备在至少一个资源中的任意一个或多个资源上发送信号,该信号的相位信息均为第二设备的能力信息指示的相位信息。例如在这种情况下,第一信息只需指示该设备的能力信息即可,由此能够节省第一信息的传输开销,且简化指示方式。
可选的,第一信息可以包括在第二设备的能力信息中,该能力信息的消息载体例如为LPP提供能力(LPP ProvideCapabilities)消息或UE能力信息(UECapabilityInformation)消息。该能力信息可称为能力信息A,例如为第二设备的总的能力信息。例如第二设备为UE,第一设备为LMF,能力信息A承载在LPP提供能力消息中,那么UE可将第一信息添加到LPP提供能力消息中发送给LMF。例如第二设备为UE,第一设备为接入网设备,那么UE可将第一信息添加到UE能力信息消息中发送给接入网设备,而无需再额外向接入网设备发送第一信息,从而节省信令开销。本申请实施例中,由于第一信息可以包括在第二设备的能力信息A中,因此认为第一信息包括的是第二设备在M个资源上的能力信息。下面以方式A、以及以UE能力信息消息为例,介绍第一信息包括在第二设备的UE能力信息消息中的一种方式。
以第二设备的UE能力信息消息通过图2所示的方式上报为例。例如参与载波聚合的载波为频带n41上的CC1和频带n78上的CC2,则第一信息可以包括第二设备在BC2中的频带n41上的能力信息,以及包括第二设备在BC2中的频带n78上的能力信息。例如图2中,在n41频带对应的特征集2包括的特征集上行ID2对应的能力信息中,可以包括第二设备在BC2中的频带n41上的能力信息,或者说,指示第二设备在频带n41的CC1上的相位信息;在n78频带对应的特征集2包括的特征集上行ID2对应的能力信息中,可以包括第二设备在BC2中的频带n78上的能力信息,或者说,包括第二设备在频带n78的CC2上的能力信息。
下面再以方式B、以及以UE能力信息消息为例,介绍第一信息包括在第二设备的UE能力信息消息中的一种方式。
继续以第二设备的UE能力信息消息通过图2所示的方式上报为例。例如参与载波聚合的载波为频带n41上的CC1和频带n78上的CC2,则第一信息可以包括第二设备在BC2中的频带n41包括的CC1上的能力信息,以及包括第二设备在BC2中的频带n78包括的CC2上的能力信息。例如图2中,在n41频带对应的特征集2包括的特征集上行ID2对应的特征集每个分量载波ID1对应的能力信息中,可以包括第二设备在BC2中的频带n41包括的CC1上的能力信息;在n78频带对应的特征集2包括的特征集上行ID2对应的特征集每个分量载波ID1对应的能力信息中,可以包括第二设备在BC2中的频带n78包括的CC2上的能力信息。
S602、第二设备在M个资源中的一个或多个资源上发送第一信号。相应的,第一设备在M个资源中的一个或多个资源上接收来自第二设备的第一信号。
关于S602的更多内容,可参考图4所示的实施例中的S402。
S603、第一设备获得测量信息。其中,该测量信息可以基于第一信号以及第一信息确定。或者S603也可以替换为,第一设备根据第一信号和第一信息确定测量信息。
例如参考图7,为定位过程的一种示意图。以第一信号包括两个信号、第一信息指示第二设备发送这两个信号所使用的通道的分频系数为例。例如第一信息指示通道1的分频 系数N1为4,通道2的分频系数N2也为4。第一信号包括的信号1和信号2分别在频带1和频带2上发送,这两个信号的带宽均为100MHz。第一设备据此确定,第二设备发送这两个信号中的每个信号的相位取值集合为{0°,90°,180°,270°},那么,这两个信号的相位差的绝对值的取值集合为{0°,90°,180°,270°}。例如,第一设备可以分别利用这4种相位差进行相位补偿,并根据相位补偿后拼接得到的大带宽信号与本地信号进行相关处理。如果其中的一个大带宽信号在与本地信号进行相关处理后,得到的相关峰中的第一峰与第二峰的比值最大,则表明该大带宽信号对应的相位差就是信号1和信号2的实际相位差。第一设备根据该实际相位差对信号1和/或信号2进行相位补偿,从而可根据相位补偿后拼接的大带宽信号对UE进行定位。UE例如为第一设备或第二设备。
关于S603的更多内容,可参考图4所示的实施例中的S403。
本申请实施例中,第一信息可包括第二设备在M个资源的能力信息。那么第一设备在M个资源中的一个或多个资源上接收信号后,可以根据第一信息确定所接收的信号的相位信息,从而在获得测量信息时考虑所接收的信号的相位信息,例如可以采用相应的方式减小或消除不同信号之间的相位差,以提高所获得的测量信息的准确性。例如该测量信息的一种应用场景为,该测量信息可用于对第二设备进行定位。那么,通过估计所接收的信号的相位信息,能够减小该相位信息对于定位精度的影响,从而提高对于第二设备的定位精度。
接下来,以Uu定位为例,介绍图4或图6所示的实施例的一种应用场景。对于sidelink定位,则可将如下流程中的接入网设备替换为终端节点,终端节点例如包括UE或路侧单元(road side unit,RSU)等。另外涉及到的消息载体也可相应变动。请参考图8,为本申请实施例提供的另一种通信方法的流程图,也是图4或图6所示的实施例的一种应用方式,因此对于图8所示的实施例中未详细介绍的内容,例如第一信息的实现方式等,可参考图4或图6所示的实施例的介绍。在图8所示的实施例中,以第一设备为UE、且以上下行联合定位过程为例进行说明,第二设备和第三设备可以为同一设备或不同设备。
S801、LMF向接入网设备请求配置信息。相应的,接入网设备向LMF发送配置信息。其中,LMF可以与参与本次定位的所有接入网设备之间执行S801,该参与本次定位的接入网设备可包括待定位的UE的服务接入网设备,还可包括与该服务接入网设备相邻的一个或多个接入网设备。图8中,以参与定位的接入网设备的数量是3为例进行说明。
例如,LMF可以通过NRPPa消息与各个接入网设备交互配置信息。该配置信息可包括参考信号的配置信息。该参考信号例如包括定位参考信号中的下行参考信号,和/或还包括其他下行参考信号。例如LMF可以通过TRP信息请求(TRP information request)消息向各个接入网设备发送第一请求消息,该第一请求消息可用于请求配置信息。各个接入网设备可以通过TRP信息响应(TRP information response)消息向LMF发送该配置信息。
可选的,如果待传输的第一信息包括接入网设备或者UE的第一信息,则LMF除了向接入网设备请求配置信息外,还可以请求接入网设备的第一信息。相应的,接入网设备除了向LMF发送该配置信息外,还可以发送接入网设备的第一信息。其中,接入网设备的第一信息可包括接入网设备在M个资源上发送信号时的相位信息。第一请求消息可以用于请求该配置信息和接入网设备的第一信息,或者,第一请求消息可请求配置信息,LMF另外还向接入网设备发送第二请求消息,第二请求消息可用于请求接入网设备的第一信息。第二请求消息的发送方式可参考第一请求消息的发送方式。对于接入网设备来说,该配置 信息与接入网设备的第一信息例如携带在同一条消息中发送,或者也可以携带在不同的消息中发送。如果该配置信息与接入网设备的第一信息携带在不同的消息中发送,则接入网设备向LMF发送接入网设备的第一信息的方式可参考配置信息的发送方式。
可选的,接入网设备还可通过RRC信令或其他消息将接入网设备的第一信息发送给UE。
S802、UE向LMF发送该UE的能力信息。相应的,LMF从UE接收能力信息。例如,LMF与UE之间执行LPP能力传输(LPP capability transfer)过程,从而UE可将能力信息发送给LMF。S802所传输的UE的能力信息的消息载体可以为LPP消息,例如LPP提供能力(LPP ProvideCapabilities)消息。示例性地,可以为通用的提供定位能力消息如通用信息元素提供能力(CommonIEsProvideCapabilities),或者,特定定位方法的提供能力消息,如上行提供能力(UL-ProvideCapabilities)、上行TDOA提供能力(UL-TDOA-ProvideCapabilities)、或多次往返时间提供能力(Multi-RTT-ProvideCapabilities)等,或者其它消息,本申请实施例不作限定。
可选的,S802中UE所发送的能力信息可包括UE的第一信息。其中,S802中的能力信息可包括UE的全部或部分第一信息,或者包括UE的第一信息调整或修改后的结果。另外可选的,该UE还可以通过RRC信令或其他消息将UE的第一信息发送给接入网设备。
可选地,LMF会向UE请求第一信息,其消息载体可以为LPP消息,例如为LPP请求能力(LPP RequestCapabilities)信息消息。示例性地,可以为通用的请求定位能力消息如CommonIEsRequestCapabilities,或者,特定定位方法的请求能力消息,如上行请求能力(UL-RequestCapabilities)、上行TDOA请求能力(UL-TDOA-RequestCapabilities)、或多次往返时间请求能力(Multi-RTT-RequestCapabilities)等,或者其它消息,本申请实施例不作限定。
S803、LMF向服务接入网设备发送定位请求消息。相应的,服务接入网设备从LMF接收该定位请求消息。例如该定位请求消息为NRPPa定位信息请求(NRPPa positioning information request)消息。该NRPPa定位信息请求可请求待定位的UE的上行信息,例如UL-SRS配置信息。
S804、服务接入网设备确定可用于传输上行参考信号的资源。
S805、服务接入网设备向UE发送UL-SRS配置信息。相应的,UE从服务接入网设备接收UL-SRS配置信息。
S806、服务接入网设备向LMF发送UL-SRS配置信息。相应的,LMF从服务接入网设备接收UL-SRS配置信息。
例如,服务接入网设备可通过NRPPa定位信息响应(NRPPa positioning information response)消息向LMF发送UL-SRS配置信息。
S807、LMF向服务接入网设备发送定位激活请求消息。相应的,服务接入网设备从LMF接收定位激活请求消息。该定位激活请求消息例如为NRPPa定位激活请求(NRPPa positioning activation request)消息。
如果SRS被配置为半持续调度(semi-persistent scheduling,SPS)或者非周期性传输,则LMF可以向服务接入网设备发送NRPPa定位激活请求消息,以请求激活UE的SRS传输。而如果SRS被配置为周期性传输,则可不必执行S807。
S808、服务接入网设备向UE发送激活请求。相应的,UE从服务接入网设备接收激活 请求。该激活请求可用于请求激活UE的SRS传输。
UE接收该激活请求后,就可以根据UL-SRS配置信息发送SRS。
S809、服务接入网设备向LMF发送定位激活响应消息。相应的,LMF从服务接入网设备接收该定位激活响应消息。该定位激活响应消息是S807中的定位激活请求消息的响应。例如该定位激活响应消息为NRPPa定位激活响应(NRPPa positioning activation response)消息。
S810、LMF向接入网设备发送测量请求消息,测量请求消息可包括第一测量信息。相应的,接入网设备从LMF接收测量请求消息。第一测量信息可包括该接入网设备执行上行测量所需的信息。该接入网设备例如包括参与定位的所有接入网设备。
例如,LMF可通过NRPPa测量请求(NRPPa measurement request)消息向接入网设备发送第一测量信息。其中,第一测量信息与图4或图6所示的实施例中所述的测量信息不同。
可选的,在S810中,LMF可将UE的第一信息或能力信息中的部分或全部发送给接入网设备,或者将第一信息进行调整或修改之后发送给接入网设备。例如LMF可将所述第一信息中的部分或全部添加到一条消息(例如NRPPa测量请求消息)中发送给接入网设备,或者也可以通过不同的消息分别向接入网设备发送部分或全部所述第一信息。
S811、LMF向UE发送辅助信息。相应的,UE从LMF接收辅助信息。该辅助信息可包括该UE执行下行测量所需的信息。
可选的,该辅助信息可包括接入网设备的第一信息。例如,LMF可将所述第一信息中的部分或全部发送给UE,或者将第一信息进行调整或修改之后发送给UE。例如LMF可将辅助信息和所述第一信息中的部分或全部添加到一条消息(例如LPP提供辅助数据消息)中发送给UE,或者也可以通过不同的消息分别向UE发送辅助信息和部分或全部所述第一信息。
或者,UE可通过其他方式获得接入网设备的第一信息。例如,校准设备可以向UE发送接入网设备的第一信息。其中,如果校准设备为接入网设备,则校准设备可以通过RRC消息向UE发送接入网设备的第一信息;或者,如果校准设备为UE,则校准设备可以通过SL消息向UE发送接入网设备的第一信息。
所述辅助信息的消息载体可以为LPP消息,例如LPP提供辅助数据(LPP ProvideAssistanceData)消息。示例性地,可以为通用的提供辅助数据消息如通用信息元素提供辅助数据(CommonIEsProvideAssistanceData),或者,特定定位方法的提供能力消息,如下行TDOA提供辅助数据(DL-TDOA-ProvideAssistanceData)、下行AoD提供辅助数据(DL-AoD-ProvideAssistanceData)、或多次往返时间提供辅助数据(Multi-RTT-ProvideAssistanceData)等,或者其它消息,本申请实施例不作限定。
可选地,UE会向LMF请求接入网设备的第一信息,其消息载体可以为LPP消息,例如为LPP请求辅助数据(LPP RequestAssistanceData)消息。
S812、LMF向UE发送第三请求消息。相应的,UE从LMF接收第三请求消息。第三请求消息可用于携带接入网设备的第一信息或者用于请求UE的第一信息。第三请求消息例如为LPP请求位置信息(LPP RequestLocationInformation)消息。示例性地,可以为通用的请求位置信息消息如通用信息元素请求位置信息(CommonIEsRequestLocationInformation),或者,特定定位方法的提供能力消息,如下行 TDOA请求位置信息(DL-TDOA-RequestLocationInformation)、下行AoD请求位置信息(DL-AoD-RequestLocationInformation)、或多次往返时间请求位置信息(Multi-RTT-RequestLocationInformation)等,或者其它消息,本申请实施例不作限定。
可选地,LMF通过S812所获得的UE的第一信息,可以包括UE在M个资源上的相位信息。
S813、UE执行下行测量。参与定位的全部或部分接入网设备可以发送下行参考信号,例如DL-PRS,信道状态信息参考信号(channel state information reference signal,CSI-RS)或同步信号和物理广播信道(physical broadcast channel,PBCH)块(synchronization signal and PBCH block,SSB),UE可对接收的下行参考信号进行测量。
UE可以利用接入网设备的第一信息获得测量结果。
S814、接入网设备执行上行测量。UE可以发送上行参考信号,例如SRS,参与定位的全部或部分接入网设备能够接收该SRS,从而执行上行测量。
对于一个接入网设备来说,可以利用UE的第一信息获得测量结果。
S815、UE向LMF发送下行测量结果。相应的,LMF从UE接收下行测量结果。例如,UE可通过LPP消息,例如通过LPP提供位置信息(LPP provide location information)消息向LMF发送下行测量结果。
可选的,在S815中,UE可以向LMF发送UE的第一信息。例如,UE可将下行测量结果和UE的第一信息添加到一条消息(例如LPP提供位置信息消息)中发送给LMF,或者也可以通过不同的消息分别向LMF发送下行测量结果和UE的第一信息。LMF通过S812所获得的UE的第一信息,可以包括第二设备在M个资源上的相位信息。其中,UE发送给LMF的第一信息,可以是UE得到的全部或部分第一信息,或者UE也可将得到的第一信息进行调整或修改后发送给LMF。
S816、接入网设备向LMF发送上行测量结果。相应的,LMF从接入网设备接收该上行测量结果。凡是得到了上行测量结果的接入网设备都可执行S816。例如,接入网设备可通过NRPPa测量响应(NRPPa measurement response)消息向LMF发送上行测量结果。
S817、LMF向服务接入网设备发送定位去激活消息。相应的,服务接入网设备从LMF接收该定位去激活消息。该定位去激活消息是S807中的定位激活请求消息的响应。例如该定位去激活消息为NRPPa定位去激活(NRPPa positioning deactivation)消息。服务接入网设备在接收该定位去激活消息后,可以向UE发送去激活请求,UE接收该去激活请求后,就可以停止发送SRS。
S818、LMF对UE进行定位。
LMF得到了下行测量结果以及上行测量结果,就可以根据下行测量结果和上行测量结果对UE进行定位。例如,LMF可根据下行测量结果和上行测量结果,可选地,还可以根据接入网设备的第一信息和/或UE的第一信息,确定该UE的位置。
图8所示的实施例只是图4或图6所示的实施例的一种应用场景,除此之外,图4或图6所示的实施例还可能有其他应用场景,例如用于其他定位场景,或者不用于定位,而是用于其他通信场景,本申请实施例不做限制。
图9给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置900可以是图4、图6或图8中的任一个附图所示的实施例中的第一设备或该第一设备的电路系统,用于实现上述方法实施例中对应于第一设备的方法。或者,所述通信装置900可以是图4、 图6或图8中的任一个附图所示的实施例所述的第三设备或该第三设备的电路系统,用于实现上述方法实施例中对应于第三设备的方法具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置900包括至少一个处理器901。处理器901可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器901包括指令。可选地,处理器901可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置900包括一个或多个存储器903,用以存储指令。可选地,所述存储器903中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置900包括通信线路902,以及至少一个通信接口904。其中,因为存储器903、通信线路902以及通信接口904均为可选项,因此在图9中均以虚线表示。
可选地,通信装置900还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置900的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器901可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路902可包括一通路,在上述组件之间传送信息。
通信接口904,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器903可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器903可以是独立存在,通过通信线路902与处理器901相连接。或者,存储器903也可以和处理器901集成在一起。
其中,存储器903用于存储执行本申请方案的计算机执行指令,并由处理器901来控制执行。处理器901用于执行存储器903中存储的计算机执行指令,从而实现本申请上述实施例提供的寻呼方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置900可以包括多个处理器,例如图9中的处理器901和处理器905。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图9所示的装置为芯片(或芯片系统)时,例如是第一设备的芯片,或第三设备的芯片,则该芯片包括处理器901(还可以包括处理器905)、通信线路902、存储器903和通信接口904。具体地,通信接口904可以是输入接口、管脚或电路等。存储器903可以是寄存器、缓存等。处理器901和处理器905可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述实施例的寻呼方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了一种装置示意图,该装置1000可以是上述各个方法实施例中所涉及的第一设备或第三设备,或者为第一设备中的芯片或第三设备中的芯片。该装置1000包括发送单元1001(或者称为发送模块1001)、处理单元1002(或者称为处理模块1002)和接收单元1003(或者称为接收模块1003)。其中,发送单元1001和接收单元1003可以属于收发单元(或称为收发模块),该收发单元能够实现发送功能和接收功能。在收发单元实现发送功能时,可称为发送单元1001,在收发单元实现接收功能时,可称为接收单元1003。可选的,发送单元1001和接收单元1003可以是同一个功能模块,该功能模块称为收发单元,该收发单元能实现发送功能和接收功能;或者,发送单元1001和接收单元1003可以是不同的功能模块,收发单元是对这些功能模块的统称。
应理解,该装置1000可以用于实现本申请实施例的方法中由第一设备或第三设备执行的步骤,相关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图10中的发送单元1001、接收单元1003以及处理单元1002的功能/实现过程可以通过图9中的处理器901和/或处理器905调用存储器903中存储的计算机执行指令来实现。或者,图10中的处理单元1002的功能/实现过程可以通过图9中的处理器901和/或处理器905调用存储器903中存储的计算机执行指令来实现,图10中的发送单元1001和接收单元1003的功能/实现过程可以通过图9中的通信接口904来实现。
可选的,当该装置1000是芯片或电路时,则发送单元1001和接收单元1003的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由第一设备或第三设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬 盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由第一设备或第三设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的第一设备或第三设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图 仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,应用于第一设备,所述方法包括:
    接收第一信息,所述第一信息包括第二设备在M个资源上的相位信息,所述M个资源为频率资源,M为正整数;
    在所述M个资源中的一个或多个资源上接收第一信号;
    获得测量信息,所述测量信息是基于所述第一信号和所述第一信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述M个资源中的第一资源属于第一资源组合,所述第一信息包括所述第二设备在所述第一资源组合中的所述第一资源上的相位信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第二设备在所述第一资源组合中的所述第一资源上的相位信息,包括如下一项或多项:
    所述第二设备在所述第一资源组合中的所述第一资源上的相位;
    所述第二设备在所述第一资源组合中的所述第一资源上的相位个数;
    所述第二设备在所述第一资源组合中的所述第一资源上的相位取值集合;
    所述第二设备在所述第一资源组合中的所述第一资源上的相位取值范围;
    所述第二设备在所述第一资源组合中的所述第一资源上的相位误差信息;
    所述第二设备在第二资源上与所述第二设备在所述第一资源组合中的所述第一资源上的相位差,所述第二资源是所述M个第一资源中除所述第一资源外的任一个资源;或,
    所述第二设备在所述第一资源组合中的所述第一资源上的相位与参考相位的差值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第二设备在所述第二资源上与所述第二设备在所述第一资源组合中的所述第一资源上的相位差不为0。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二资源属于第二资源组合,所述第二资源组合与所述第一资源组合为同一个资源组合,或者为不同的资源组合。
  6. 根据权利要求2~5任一项所述的方法,其特征在于,所述第一资源组合为一个或多个频带组合。
  7. 根据权利要求2~6任一项所述的方法,其特征在于,所述第一资源为一个或多个频带,或为一个或多个载波。
  8. 根据权利要求1所述的方法,其特征在于,所述M个资源中的第一资源为一个资源集合。
  9. 根据权利要求8所述的方法,其特征在于,所述资源集合为载波集合。
  10. 根据权利要求1所述的方法,其特征在于,所述M个资源中的第一资源为频带组合、频带或载波。
  11. 根据权利要求1~10任一项所述的方法,其特征在于,所述测量信息用于定位。
  12. 根据权利要求1~11任一项所述的方法,其特征在于,所述第一信息承载于能力信息中。
  13. 一种通信方法,其特征在于,应用于第三设备,所述方法包括:
    获得第一信息,所述第一信息包括第二设备在M个资源上的相位信息,所述M个资源为频率资源,M为正整数;
    发送所述第一信息。
  14. 根据权利要求13所述的方法,其特征在于,所述M个资源中的第一资源属于第一资源组合,所述第一信息包括所述第二设备在所述第一资源组合中的所述第一资源上的相位信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第二设备在所述第一资源组合中的所述第一资源上的相位信息,包括如下一项或多项:
    所述第二设备在所述第一资源组合中的所述第一资源上的相位;
    所述第二设备在所述第一资源组合中的所述第一资源上的相位个数;
    所述第二设备在所述第一资源组合中的所述第一资源上的相位取值集合或相位取值范围;
    所述第二设备在所述第一资源组合中的所述第一资源上的相位误差信息;或,
    所述第二设备在第二资源上与所述第二设备在所述第一资源组合中的所述第一资源上的相位差,所述第二资源是所述M个资源中除所述第一资源外的任一个资源;或,
    所述第二设备在所述第一资源组合中的所述第一资源上对应的相位与参考相位的差值。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二设备在所述第二资源上与所述第二设备在所述第一资源组合中的所述第一资源上的相位差不为0。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第二资源属于第二资源组合,或者,所述第二资源属于所述第一资源组合。
  18. 根据权利要求14~17任一项所述的方法,其特征在于,所述第一资源组合为一个或多个频带组合。
  19. 根据权利要求14~18任一项所述的方法,其特征在于,所述第一资源为一个或多个频带,或为一个或多个载波。
  20. 根据权利要求13所述的方法,其特征在于,所述M个资源中的第一资源为一个资源集合。
  21. 根据权利要求20所述的方法,其特征在于,所述资源集合为载波集合。
  22. 根据权利要求13所述的方法,其特征在于,所述M个第一资源中的第一资源为频带组合、频带或载波。
  23. 根据权利要求13~22任一项所述的方法,其特征在于,所述方法还包括:
    在所述M个资源中的一个或多个资源上发送第一信号。
  24. 根据权利要求13~23任一项所述的方法,其特征在于,所述第一信号用于定位。
  25. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~12任一项所述的方法,或用于执行如权利要求13~24任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12任一项所述的方法,或使得所述计算机执行如权利要求13~24任一项所述的方法。
  27. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~12任一项所述的方法,或实现如权利要求13~24任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12任一项所述的方法,或使得所述计算机执行如权利要求13~24任一项所述的方法。
PCT/CN2023/093756 2022-06-02 2023-05-12 一种通信方法及装置 WO2023231743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210625704.2 2022-06-02
CN202210625704.2A CN117221808A (zh) 2022-06-02 2022-06-02 一种通信方法及装置

Publications (2)

Publication Number Publication Date
WO2023231743A1 WO2023231743A1 (zh) 2023-12-07
WO2023231743A9 true WO2023231743A9 (zh) 2024-01-11

Family

ID=89026932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093756 WO2023231743A1 (zh) 2022-06-02 2023-05-12 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117221808A (zh)
WO (1) WO2023231743A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316534A1 (en) * 2016-10-27 2018-05-02 Fraunhofer Gesellschaft zur Förderung der Angewand Channel estimation of frequency sub bands
WO2021253241A1 (zh) * 2020-06-16 2021-12-23 北京小米移动软件有限公司 参考信号资源的配置方法、装置、通信设备及存储介质
CN114286444A (zh) * 2020-09-28 2022-04-05 华为技术有限公司 一种上行参考信号的关联方法及通信装置
CN114727221A (zh) * 2022-03-22 2022-07-08 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
WO2023231743A1 (zh) 2023-12-07
CN117221808A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2020048438A1 (zh) 一种射频参数的上报方法及装置
WO2021233234A1 (zh) 一种管理上行测量的方法、装置和系统
AU2021227065B2 (en) Determination of spatial relations for positioning
WO2019193194A1 (en) Methods for controlling measurements that are mutually-exclusive with other measurements
WO2022029695A1 (en) Configuring positioning signals and measurements to reduce latency
WO2023011188A1 (zh) 一种通信方法及装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2023011195A1 (zh) 一种通信方法及通信装置
US20230413096A1 (en) Methods for Positioning Reference Signal (PRS) Activity Reporting
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2021012822A1 (zh) 一种通信方法及装置
WO2023231743A1 (zh) 一种通信方法及装置
US11956668B2 (en) Duplicated data-based transmission method and related devices
WO2022147800A1 (zh) 一种定位信息的传输方法和装置
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
WO2023241617A1 (zh) 频域资源配置方法及装置
WO2023216791A1 (zh) 一种定位方法、装置、存储介质及芯片
WO2024031479A1 (zh) 无线通信方法、用户设备和网络设备
WO2023151434A1 (zh) 通信方法和通信装置
WO2023088039A1 (zh) 一种通信方法及装置
WO2023143114A1 (zh) 通信方法和通信装置
WO2022206306A1 (zh) 一种通信方法和装置
WO2024051584A1 (zh) 配置的方法和装置
WO2023131319A1 (zh) 定时提前确定方法及相关装置
WO2022147711A1 (zh) 信号处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814928

Country of ref document: EP

Kind code of ref document: A1