WO2024031479A1 - 无线通信方法、用户设备和网络设备 - Google Patents

无线通信方法、用户设备和网络设备 Download PDF

Info

Publication number
WO2024031479A1
WO2024031479A1 PCT/CN2022/111575 CN2022111575W WO2024031479A1 WO 2024031479 A1 WO2024031479 A1 WO 2024031479A1 CN 2022111575 W CN2022111575 W CN 2022111575W WO 2024031479 A1 WO2024031479 A1 WO 2024031479A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
gaps
type
information
user equipment
Prior art date
Application number
PCT/CN2022/111575
Other languages
English (en)
French (fr)
Inventor
张晋瑜
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/111575 priority Critical patent/WO2024031479A1/zh
Publication of WO2024031479A1 publication Critical patent/WO2024031479A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a wireless communication method, user equipment and network equipment.
  • Measurement gaps also called measurement intervals
  • pre-MG pre-configured measurement gaps
  • NCSG Network controlled small gap
  • multiple concurrent measurement gaps multiple concurrent MGs
  • This application provides a wireless communication method, user equipment and network equipment. Each aspect involved in this application is introduced below.
  • a wireless communication method including: a first user equipment sending first information to a network device, the first information being used to indicate a first capability of the first user equipment, and the first capability Associated with a joint configuration of measurement gaps of the first type and measurement gaps of the second type.
  • a wireless communication method including: a network device receiving first information sent by a first user equipment, the first information being used to indicate a first capability of the first user equipment, and the first Capabilities are associated with a joint configuration of first type measurement gaps and second type measurement gaps.
  • a wireless communication method including: a first user equipment receiving first information, the first user equipment having a plurality of preconfigured measurement gaps, and the first information being used to determine the plurality of preconfigured measurement gaps. Configuring an activation/deactivation mechanism of the measurement gaps; wherein the activation/deactivation mechanisms of the multiple preconfigured measurement gaps are the same activation/deactivation mechanism; or, the activation/deactivation of the multiple preconfigured measurement gaps The mechanisms are different activation/deactivation mechanisms.
  • a fourth aspect provides a wireless communication method, including: a network device sending first information to a first user equipment, the first user equipment having multiple preconfigured measurement gaps, the first information being used to determine the The activation/deactivation mechanism of multiple preconfigured measurement gaps; wherein the activation/deactivation mechanism of the multiple preconfigured measurement gaps is the same activation/deactivation mechanism; or the activation/deactivation mechanism of the multiple preconfigured measurement gaps /Deactivation mechanisms are different activation/deactivation mechanisms.
  • a user equipment including: a communication module configured to send first information to a network device, where the first information is used to indicate a first capability of the user equipment, and the first capability is related to a first capability. Joint configuration association of type measurement gaps and second type measurement gaps.
  • a sixth aspect provides a network device, including: a communication module configured to receive first information sent by a first user equipment, where the first information is used to indicate a first capability of the first user equipment, and the first A capability is associated with a joint configuration of first type measurement gaps and second type measurement gaps.
  • a user equipment including: a communication module configured to receive first information, the first user equipment has multiple preconfigured measurement gaps, and the first information is used to determine the multiple preconfigured measurement gaps.
  • Activation/deactivation mechanism of measurement gaps wherein, the activation/deactivation mechanism of the multiple preconfigured measurement gaps is the same activation/deactivation mechanism; or, the activation/deactivation mechanism of the multiple preconfigured measurement gaps for different activation/deactivation mechanisms.
  • a network device including: a communication module configured to send first information to a first user equipment, where the first user equipment has a plurality of preconfigured measurement gaps, and the first information is used to determine the The activation/deactivation mechanism of the multiple preconfigured measurement gaps; wherein the activation/deactivation mechanism of the multiple preconfigured measurement gaps is the same activation/deactivation mechanism; or, the activation/deactivation mechanism of the multiple preconfigured measurement gaps is Activation/deactivation mechanisms are different activation/deactivation mechanisms.
  • a ninth aspect provides a user equipment, including a memory and a processor, the memory is used to store a program, and the processor is used to call the program in the memory, so that the user equipment executes the first aspect or the third aspect. methods described in this aspect.
  • a network device including a memory and a processor, the memory is used to store a program, and the processor is used to call the program in the memory, so that the network device executes the second aspect or the fourth aspect. the method described.
  • An eleventh aspect provides a device, including a processor, for calling a program from a memory, so that the device executes the method described in any one of the first to fourth aspects.
  • a chip including a processor for calling a program from a memory, so that a device installed with the chip executes the method described in any one of the first to fourth aspects.
  • a thirteenth aspect provides a computer-readable storage medium having a program stored thereon, the program causing a computer to perform the method described in any one of the first to fourth aspects.
  • a fourteenth aspect provides a computer program product, including a program that causes a computer to perform the method described in any one of the first to fourth aspects.
  • a fifteenth aspect provides a computer program that causes a computer to perform the method described in any one of the first to fourth aspects.
  • the embodiments of the present application introduce the ability to be associated with the joint configuration of multiple types of measurement gaps for user equipment, which helps the network device jointly configure multiple types of measurement gaps.
  • Figure 1 is a system architecture diagram of a communication system to which embodiments of the present application can be applied.
  • Figure 2 is an example diagram of the synchronization signal and PBCH block (SSB) measurement method.
  • Figure 3 is an example diagram of a measurement method based on NCSG.
  • FIG. 4 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a wireless communication method provided by another embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a UE provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a UE provided by another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • NR new radio
  • the evolution system of the NR system the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum
  • the NR NR-based access to unlicensed spectrum, NR-U) system on the unlicensed spectrum
  • UMTS universal mobile telecommunication system
  • WLAN wireless local area networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • the embodiments of the present application can also be applied to other communication systems, such as future communication systems.
  • the future communication system may be, for example,
  • communication systems can not only support traditional cellular communication, but also support one or more other types of communication.
  • the communication system may support one or more of the following communications: device to device (D2D) communication, machine to machine (M2M) communication, machine type communication (MTC) , vehicle-to-vehicle (V2V) communication, and vehicle-to-everything (V2X) communication, etc.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of the present application can be applied to unlicensed spectrum.
  • This unlicensed spectrum can also be considered as shared spectrum.
  • the communication system in the embodiment of the present application can also be applied to licensed spectrum.
  • This licensed spectrum can also be considered as dedicated spectrum.
  • the embodiments of the present application can be applied to terrestrial communication networks (terrestrial networks, TN) systems, and can also be applied to non-terrestrial networks (non-terrestrial networks, NTN) systems.
  • the NTN system may include an NR-based NTN system and an Internet of things (IoT)-based NTN system.
  • IoT Internet of things
  • the communication system may include one or more user equipment (UE).
  • UE user equipment
  • the UE mentioned in the embodiments of this application may also be called terminal equipment, access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (mobile Terminal, MT), remote station, remote Terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the UE may be a station (STATION, ST) in the WLAN.
  • the UE may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) ) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, UEs in next-generation communication systems (such as NR systems), or future evolution of public land mobile UE in the public land mobile network (PLMN) network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a UE may point to a device that provides voice and/or data connectivity to the user.
  • the UE may be a handheld device, a vehicle-mounted device, etc. with wireless connection capabilities.
  • the UE can be a mobile phone (mobile phone), tablet computer (Pad), notebook computer, handheld computer, mobile Internet device (mobile internet device, MID), wearable device, virtual reality (VR) ) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grids Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the UE may be deployed on land.
  • the UE can be deployed indoors or outdoors.
  • the UE may be deployed on water, such as on a ship.
  • the UE may be deployed in the air, such as on aircraft, balloons, and satellites.
  • a communication system may also include one or more network devices.
  • the network device in the embodiment of the present application may be a device used to communicate with the UE, and the network device may also be called an access network device or a radio access network device.
  • the network device may be a base station, for example.
  • the network device in the embodiment of this application may refer to an access network (radio access network, RAN) node (or device) that connects the UE to the wireless network.
  • RAN radio access network
  • Access network equipment can broadly cover the following names, or be replaced with the following names, such as: Node B (NodeB), evolved NodeB (eNB), next generation NodeB (gNB) , relay station, access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, Access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), remote radio unit (RRU), active antenna unit ( active antenna unit (AAU), radio frequency head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved NodeB
  • gNB next generation NodeB
  • MSR multi-standard wireless
  • Access node wireless node
  • AP wireless node
  • AP access point
  • BBU base band unit
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • network equipment may be satellites or balloon stations.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, or other locations.
  • network equipment can provide services for a cell, and the UE communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment (for example, base station).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: urban cell (metro cell), micro cell (micro cell), pico cell (pico) Cell), femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • FIG. 1 is an architectural schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (also known as a communication terminal or terminal).
  • Network device 110 may provide communications coverage for a specific geographic area and may communicate with UEs located within the coverage area.
  • Figure 1 exemplarily shows one network device and two UEs.
  • the communication system 100 may include multiple network devices and other numbers of UEs may be included within the coverage of each network device. The embodiments of the present application do not limit this.
  • the wireless communication system shown in Figure 1 may also include other networks such as mobility management entity (mobility management entity, MME), access and mobility management function (AMF), etc. Entity, the embodiment of this application does not limit this.
  • MME mobility management entity
  • AMF access and mobility management function
  • the communication device may include a network device 110 and a UE 120 with communication functions.
  • the network device 110 and the UE 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • a UE In a communication system, a UE usually needs to perform one or more measurement tasks. For example, the UE needs to perform one or more of SSB measurement, channel state information reference signal (channel state information reference signal, CSI-RS) measurement, positioning reference signal (positioning reference signal, PRS) measurement and other measurement work.
  • SSB measurement channel state information reference signal
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • MG positioning reference signal
  • some communication systems have enhanced the MG in various forms. The following introduces several enhancement technologies related to MG.
  • Pre-configured MG pre-configured MG, pre-MG
  • Some communication systems introduce pre-MG.
  • the main reason for introducing pre-MG is that when the UE works in different bandwidth parts (BWP), the UE may have different measurement requirements for SSB measurement (even for the same measurement object).
  • BWP1 bandwidth part 1
  • SCS sub-carrier space
  • CP cyclic prefix
  • the UE When the UE switches from BWP1 to BWP2 (corresponding to frequency band 2), since the frequency domain location of the SSB is not within BWP2, the UE needs to be within the MG to perform SSB measurements.
  • BWP There are many ways to switch BWP. For example, the UE can quickly complete BWP switching based on a timer or based on downlink control information (DCI).
  • DCI downlink control information
  • the protocol such as Release 16
  • the configuration and release of MG need to be completed through RRC signaling, and the delay is relatively large.
  • some versions of the protocol such as Release 17 have enhanced the MG, introduced pre-MG, and introduced pre-MG with the BWP switch.
  • MG activation/deactivation mechanism In order to enable the MG configuration to be adaptively and quickly adjusted with the BWP switch.
  • SSB measurement mainly uses SSB measurement as an example to explain, because in relevant protocols, one of the judgment conditions for whether SSB measurement (whether it is same-frequency measurement or inter-frequency measurement) requires the MG is whether the frequency domain position of the SSB is located at the current location of the UE. Within the activated BWP. Therefore, for SSB measurement, the UE's requirements for the MG may also change with the BWP handover.
  • CSI-RS measurement and PRS measurement do not have the above characteristics of SSB measurement. For example, for CSI-RS measurement, if the UE performs intra-frequency measurement, you do not need to configure an MG for the UE; if the UE performs inter-frequency measurement, you need to configure an MG for the UE.
  • the network device can choose to configure a common MG for the UE, or it can also configure a pre-MG that is always active for the UE.
  • the activation/deactivation mechanism of pre-MG mainly includes two types: one is the network-controlled activation/deactivation mechanism, and the other is the UE autonomous activation/deactivation mechanism.
  • the above two activation/deactivation mechanisms correspond to two different capabilities of the UE.
  • proposal R4-2210436 introduces the above two capabilities of UE.
  • the first capability is identified by "19-3-1" in R4-2210436, which is pre-MG (pre-configured measurement gap with network-controlled activation and deactivation mechanism) with network device-controlled activation/deactivation mechanism.
  • the second capability is identified by "19-3-2" in R4-2210436, which is pre-MG (pre-configured measurement gap with UE autonomous activation and deactivation mechanism) with UE autonomous activation/deactivation mechanism. If the UE supports at least one of these two capabilities, the network device can configure pre-MG for the UE. If the UE supports the above two capabilities at the same time, that is, the UE supports both pre-MG activation mechanisms, and when the network configures pre-MG activation/deactivation indication information, the network-controlled activation/deactivation mechanism can be used first. .
  • the network device will add a deactivated MG set to the BWP configuration to indicate to the UE that the MGs in the deactivated MG set can be deactivated when switching to the BWP, and the MGs that do not belong to the deactivated MG set will be Can be activated by default.
  • the deactivated MG set is usually presented in the form of a list. Therefore, the deactivated MG set may also be called a deactivated MG list.
  • the form of the deactivated MG list given in Release 17 is as follows:
  • deactivatedMeasGapList-r17 SEQUENCE(SIZE(1..maxNrofGapId-r17))OF MeasGapId-r17 OPTIONAL,--Cond PreConfigMG
  • enhanced positioning pre-MG enhanced positioning pre-MG
  • the network device pre-configures one or some MGs, and then the pre-configured MG can be quickly activated/deactivated when triggered by certain conditions or signaling.
  • the enhanced positioning pre-MG is a MG introduced specifically for PRS measurement.
  • the activation/deactivation method of the enhanced positioning pre-MG is also different from the pre-MG mentioned above. different. For example, enhanced positioning pre-MG can be activated/deactivated through the medium access control element (MAC CE).
  • MAC CE medium access control element
  • the UE can only use one or two MGs when performing radio resource management (RRM)/positioning measurements. Whether the UE uses one MG or two MGs depends on the capabilities of the UE. For example, if the UE supports MG (per-FR MG, also called per-FR gap) for frequency range (per frequency range, per-FR), an MG pattern (MG pattern) can be configured on FR1 and FR2 respectively. , MGP). For another example, if the UE supports per-UE MG (per-UE MG, also called per-UE gap), only one MG pattern can be configured for the UE.
  • RRM radio resource management
  • configuring only one MG pattern for the UE may not include all signals in the MG, which may cause some signals to not be measured accurately or cause MG's waste.
  • some versions of the communication protocol introduce multiple simultaneous and independent MG patterns.
  • the multiple simultaneous and independent MG patterns may be called multiple concurrent MGs, or concurrent MGs for short.
  • the introduction of concurrent MG helps UE to operate under different SMTC configurations, and/or in measurement scenarios of multiple different signals (such as SSB, CSI-RS, PRS), and/or for different wireless access
  • the measurement work can be completed better in the scenario where radio access technology (RAT) is used for measurement.
  • RAT radio access technology
  • the above-mentioned wireless access technologies may include, for example, evolved universal terrestrial radio access (E-UTRA) and NR.
  • some versions of the communication protocol (such as Release 17) support indicating the MG associated with the measurement configuration in the measurement configuration.
  • the concept of priority (which may be included in the configuration of the MG, for example) can also be introduced to prioritize the conflicting MGs. Lower level MGs are discarded.
  • Whether the UE supports concurrent MG is also a capability of the UE. Detailed introduction of this capability can be found in relevant proposals or documents. For example, proposal R4-2210436 introduces this capability of UE. This capability is identified by "19-2" in R4-2210436.
  • proposal R4-2210436 introduces this capability of UE. This capability is identified by "19-2" in R4-2210436.
  • Concurrent MGs have certain limits on the number of configured MGs. For example, for UEs that do not support per-FR MG, currently only up to two per-UE MGs can be configured; for UEs that support per-FR MG capabilities, the configuration of concurrent MGs that they can support can be found in Table 1 below.
  • Table 1 Number of gap combination configurations for UEs that support both concurrent MG patterns and independent MG patterns
  • the gap combination configuration identifiers 3, 4, and 5 in Table 1 are only used when the per-UEMG is associated with any one of the PRS measurements defined in TS38.215 for RSTD, PRS-RSRP, and UE reception and transmission time difference measurements. Applicable when (Gap Combination Configuration Id 3,#4,#5 will be only applied when the per-UE measurement gap is associated to measure PRS for any RSTD,PRS-RSRP,and UE Rx-Tx time difference measurement defined in TS 38.215 ).
  • NCSG can reduce the interruption time required for measurement.
  • a typical NCSG scenario is shown in Figure 3.
  • the UE can use the idle radio frequency chain (RF chain) resources to perform neighbor cell measurements, and using the measurement length (measurement length, ML) will not cause long interruptions. time.
  • RF chain idle radio frequency chain
  • ML measurement length
  • data transmission and reception of the measurement and serving cells can be maintained at the same time, and only a short visible interruption length (Visible Interruption Length, VIL) is required before and after the measurement.
  • VIL Visible Interruption Length
  • the NCSG pattern is somewhat different from the pattern of ordinary MG, the NCSG pattern is defined in some protocols (such as Table 9.1.9.3-1 of TS 38.133), which includes a repeating cycle with visible interruption. repetition period, VIRP) and ML.
  • NCSG has certain restrictions on measurement objects. For example, one or more of the following measurements can be performed based on NCSG: intra-frequency/inter-frequency SSB measurement, secondary cell measurement in deactivated or dormant state, and cross-system E-UTRAN measurement. However, some measurements do not support the use of NCSG. Such measurements may include, for example, PRS measurements and inter-frequency CSI-RS measurements.
  • proposal R4-2210436 introduces the capabilities that UE needs to support when using NCSG.
  • section 19-1 of R4-2210436 introduces “19-1” in R4-2210436 introduces the ability to support network controlled NCSG (Network controlled NCSG).
  • “19-1-1” in R4-2210436 introduces whether to support per-FR NCSG (Support of per-FR NCSG). If the UE does not support per-FR NCSG, only per-UE NCSG can be configured for the UE by default.
  • “19-1-2" in R4-2210436 is used by the UE to report the NCSG pattern it supports, and "19-1-3" is used by the UE to report its support for NR-only measurement. NCSG pattern.
  • Case 1 Preconfigured MG and multiple concurrent MGs (that is, at least one MG in the concurrent MG is a preconfigured MG);
  • Case 2 NCSG and multiple concurrent MGs (that is, at least one MG in the concurrent MGs is NCSG).
  • RRM requirements for UEs configured with a combination of pre-configured MGs, and/or multiple concurrent MGs and/or NCSG[RAN4]
  • Case 1 Pre-configured MGs and multiple concurrent MGs (i.e., concurrent MGs where at least one of the gaps is a pre-configured gap)
  • MG enhancement solutions such as preconfigured MG, multi-concurrent MG, and NCSG shows that each enhancement solution requires UE to have corresponding capability support. Therefore, when combining multiple MG enhanced features, it should also be determined whether the UE has the corresponding capabilities. Otherwise, if the network device jointly configures multiple MG enhanced features, but the UE cannot use the joint configuration, it will cause a waste of configuration resources.
  • Figure 4 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application. The method in Figure 4 is described from the perspective of interaction between the first UE and the network device.
  • the first UE and network device may be any type of UE and network device mentioned above.
  • the first UE sends first information to the network device.
  • the first information may be used to indicate a first capability of the first UE (or the first information may be information associated with the first capability).
  • the first capability may be associated with the association of a first type MG and a second type MG.
  • the first capability may be associated with a joint configuration of a first type MG and a second type MG.
  • the first information may be called capability information of the first UE.
  • Sending the first information to the network device by the first UE may include: the first UE sends a capability reporting message to the network device, where the capability reporting message carries the capability information.
  • the first type MG and the second type MG may be understood as MGs configured in different ways. Therefore, in this embodiment, the first type MG and the second type MG may also be referred to as the first type MG configuration and the second type MG configuration respectively.
  • the first type of MG may correspond to an enhanced characteristic of the MG.
  • the second type of MG may correspond to another enhanced characteristic of the MG.
  • the first type MG or the gap configured based on the first type MG may be per-UE MG or per-FR MG (such as per-FR1 MG or per-FR2 MG).
  • the second type MG or the gap configured based on the second type MG may be per-UE MG or per-FR MG (such as per-FR1 MG or per-FR2 MG).
  • the first type MG includes pre-MG and/or NCSG
  • the second type MG includes concurrent MG.
  • the first type MG is a pre-MG
  • the second type MG is a concurrent MG.
  • the first type MG is NCSG
  • the second type MG is concurrent MG.
  • the first type MG includes pre-MG and NCSG, and the second type MG is a concurrent MG.
  • the first type MG includes pre-MG and the second type MG includes NCSG.
  • the first type MG includes NCSG and the second type MG includes pre-MG.
  • the first type MG includes pre-MG for positioning (activation/deactivation via MAC CE) and the second type MG includes NCSG.
  • the first type MG and/or the second type MG may also be other enhanced MG types or new MGs introduced in subsequent versions of the protocol.
  • Embodiments of the present application introduce capabilities associated with joint or joint configuration of multiple types of MGs (ie, the first capability mentioned above) for the first UE.
  • the first UE indicates the first capability to the network device through the first information, which helps the network device to reasonably configure the measurement time slot of the first UE.
  • the first capability is a capability associated with the union (or joint configuration) of the first type MG and the second type MG.
  • the embodiment of the present application does not limit the specific content of the first capability, and it may be any type of capability that contributes to the union (or joint configuration).
  • the first capability may be used to report to the network device one or more of the number, type, combination, etc. of the configured first type of MG supported by the first UE. After learning the first capability of the first UE, the network device can configure a reasonable MG for the first UE based on the first capability.
  • the first capability may be a capability indicating whether the UE supports joint configuration.
  • the first capability may be a capability indicating which types of measurement time slots the UE can support for association.
  • the first capability may be a capability that indicates which specific configurations in the joint configuration the UE supports.
  • the joint configuration may have multiple configuration parameters, and the first capability may be the ability to instruct the UE to support which parameter or parameters it supports, or to instruct the UE to support a certain value of a certain parameter.
  • the first information may be used to indicate the first capability. If the definition of the first capability is different, the content of the first information may also be different, which is not specifically limited in the embodiments of this application.
  • the first information may be used by the network device to determine federation configurations supported by the first terminal device. For example, the first information may be used by the network device to determine one or more of the following information associated with the federated configuration: the number of first type MGs, the number of second type MGs, per-FR capabilities, the type of federated configuration ( Specifically, which types of measurement time slots are combined), the activation/deactivation mechanism of pre-MG in the joint configuration (in the case where pre-MG is included in the joint configuration), etc.
  • the first information may include one or more of the second to fifth information mentioned below.
  • the following takes the second information to the fifth information as examples to illustrate the content of the first information in detail. It should be understood that the first to fifth information mentioned in the embodiments of this application can all be replaced by signaling or messages. Alternatively, the first to fifth information mentioned in the embodiments of this application may be carried in the same or different signaling or messages.
  • the first information includes second information, that is, information used to indicate or determine whether joint configuration can be performed for the first UE.
  • the second information may directly indicate that the first UE supports or does not support the joint configuration of the first type MG and the second type MG.
  • the first type MG is a preconfigured gap
  • the second type MG is a concurrent MG.
  • a new capability can be set, such as simPreGapAndConcurrentGap.
  • the second information may indicate whether the value of simPreGapAndConcurrentGap is true or false.
  • simPreGapAndConcurrentGap it means that the first UE supports the joint configuration of the first type MG and the second type MG; when the value of simPreGapAndConcurrentGap is false, it means that the first UE does not support the first type MG and the second type MG. Joint configuration of MG.
  • the first type MG is an NCSG and the second type MG is a concurrent MG.
  • a new capability can be set, such as simNCSGAndConcurrentGap.
  • the second information may indicate whether the value of simNCSGAndConcurrentGap is true or false. When the value of simNCSGAndConcurrentGap is true, it means that the first UE supports the joint configuration of the first type MG and the second type MG; when the value of simNCSGAndConcurrentGap is false, it means that the first UE does not support the first type MG and the second type MG. Joint configuration of MG.
  • the first type MG includes preconfigured gaps and NCSG
  • the second type MG is a concurrent MG.
  • a new capability can be set, such as simPreGapAndNCSGAndConcurrentGap.
  • the second information may indicate whether the value of simPreGapAndNCSGAndConcurrentGap is true or false.
  • simPreGapAndNCSGAndConcurrentGap it means that the first UE supports the joint configuration of the first type MG and the second type MG; when the value of simPreGapAndNCSGAndConcurrentGap is false, it means that the first UE does not support the first type MG and the second type MG. Joint configuration of MG.
  • the second information may indirectly or implicitly indicate that the first UE supports or does not support the joint configuration of the first type MG and the second type MG.
  • the second information may respectively indicate that the first UE supports the first type MG and the second type MG (it should be understood that in this example, the second information may include multiple types of information, and the multiple types of information may be reported to the network device at once, It can also be reported to the network device separately).
  • the first UE supports the first type MG and the second type MG respectively, it can be considered that the first UE supports the joint configuration of the first type MG and the second type MG; if the first UE does not support the first type MG or the second type MG MG, it can be considered that the first UE does not support the joint configuration of the first type MG and the second type MG.
  • the implementation of the second information provided by this embodiment does not require setting up new signaling for the UE to support reporting of the second information, and can save air interface overhead.
  • the first type MG is a preconfigured gap
  • the second type MG is a concurrent MG. If the second information indicates that the first UE supports the preconfigured gap, and the second information indicates that the first UE supports concurrent MGs, it may be considered that the first UE supports the joint configuration of the first type MG and the second type MG. If the second information indicates that the first UE does not support the preconfigured gap, or the second information indicates that the first UE does not support concurrent MGs, it may be considered that the first UE does not support the joint configuration of the first type MG and the second type MG.
  • the first type MG is an NCSG and the second type MG is a concurrent MG. If the second information indicates that the first UE supports NCSG, and the second information indicates that the first UE supports concurrent MGs, it may be considered that the first UE supports the joint configuration of the first type MG and the second type MG. If the second information indicates that the first UE does not support NCSG, or the second information indicates that the first UE does not support concurrent MGs, it may be considered that the first UE does not support the joint configuration of the first type MG and the second type MG.
  • the first type MG includes pre-MG and NCSG
  • the second type MG is a concurrent MG. If the second information indicates that the first UE supports pre-MG, NCSG and concurrent MG respectively, it may be considered that the first UE supports the joint configuration of the first type MG and the second type MG. If the second information indicates that the first UE does not support pre-MG, or the second information indicates that the first UE does not support concurrent MG, or the second information indicates that the first UE does not support NCSG, it may be considered that the first UE does not support the first type. Joint configuration of MG and second type MG.
  • the first type MG includes pre-MG and NCSG
  • the second type MG is a concurrent MG. If the second information directly indicates that the first UE supports both pre-MG and concurrent MG (for example, see simPreGapAndConcurrentGap in the previous article), and the second information directly indicates that the first UE supports both NCSG and concurrent MG (for example, see simNCSGAndConcurrentGap in the previous article) ), it can be considered that the first UE supports the joint configuration of the first type MG and the second type MG.
  • the second information indicates that the first UE does not support pre-MG and concurrent MG at the same time, or the second information indicates that the first UE does not support NCSG and concurrent MG at the same time, it may be considered that the first UE does not support the first type of MG and the second type. Joint configuration of MG.
  • the second information may be a combination of any of the information listed above.
  • the second information may include one or more of the following information: the first UE supports pre-MG; the first UE supports NCSG; the first UE supports concurrent MG; the first UE supports both pre-MG and concurrent MG. ; The first UE supports NCSG and concurrent MG at the same time; and the first UE supports pre-MG, NCSG, and concurrent MG at the same time.
  • the second information may indicate that the first UE can support multiple MGs, and some or all of the multiple MGs correspond one-to-one to the multiple MGs.
  • the second information may indicate that the first UE supports multiple MGs, and the multiple MGs include the first MG and the second MG.
  • the first MG is a pre-MG, and the second MG for NCSG.
  • the second information may indicate that the first UE may support one or more MGs, and a certain MG in the one or more MGs simultaneously supports multiple types of MGs.
  • the second information may indicate that the first UE supports multiple MGs, the multiple MGs include the first MG, the first MG is the pre-MG, and the first MG is the NCSG.
  • the network device After receiving the second information, the network device can determine whether joint configuration of the first type MG and the second type MG can be performed for the first UE. Then, the network device may simultaneously configure the first type MG and the second type MG for the first UE. There are many ways to configure the first type MG and the second type MG at the same time. Several examples are given below.
  • the network device can configure one or more MGs in the configuration shown in Table 1 as the preconfigured measurement configuration. For example, referring to Table 1, configuration 0 contains two per-FR1 MGs and one per-FR2 MG, then the network device can configure one of the MGs as the preconfigured measurement configuration.
  • the network device can add a pre-MG based on the configuration shown in Table 1. For example, see Table 1, configuration 0 contains two per-FR1 MG and one per-FR2 MG, then the network device can add a per-FR2 pre-MG based on the per-FR2 MG.
  • the network device can configure one or more MGs in the configuration shown in Table 1 as NCSG.
  • configuration 0 contains two per-FR1 MGs and one per-FR2 MG, then the network device can configure one of the MGs as NCSG.
  • the network device can add a new NCSG based on the configuration shown in Table 1. For example, see Table 1, configuration 0 contains two per-FR1 MGs and one per-FR2MG, then the network device can add a new NCSG based on the per-FR2 MG.
  • the first information includes third information, that is, information used to indicate or determine the number of first type MGs configured for the first UE.
  • the third information may be used to determine the maximum number of first type MGs configured for the first UE. That is to say, the third information may be used to determine how many first type MGs can be configured for the first UE at most. Taking the first type of MG as a pre-MG as an example, it can be determined according to the third information how many preconfigured gaps can be configured for the first UE at most. Taking the first type of MG as an NCSG as an example, it can be determined according to the third information that up to several NCSGs can be configured for the first UE.
  • the third information may be used to indicate the number of first type MGs supported by the first UE.
  • the number of first type MGs may be the number of per-UEs. In other words, the number of the first type MG may be counted at a per-UE granularity.
  • the number of first type MGs may also be the number of per-FRs. In other words, the number of the first type MG can be counted at per-FR granularity.
  • the third information may be used to indicate a maximum number of first type MGs supported by the first UE.
  • the maximum number mentioned here can be the maximum number per-UE. In other words, the maximum number can be counted at per-UE granularity.
  • the third information may be used to indicate a maximum number of first type MGs supported by the first UE.
  • the maximum number mentioned here can be the maximum number per-FR. In other words, the maximum number can be counted at per-FR granularity.
  • the third information may indicate one or more of the following: for FR1, a maximum of several first type MGs can be configured for the UE; for FR2, a maximum of several first type MGs can be configured for the UE. If statistics are based on per-FR granularity, the first UE needs to support the per-FR capability.
  • the per-FR capability of the first UE is an explicitly indicated capability, or it may be a default capability. Taking the first type of MG as pre-MG as an example, Release17 does not introduce per-FR pre-MG capabilities. By default, when the UE supports per-FR capabilities and pre-MG capabilities, it also supports per-FR pre- MG capabilities.
  • the maximum number of first type MGs supported by the first UE may also include a combination of the above two situations.
  • the third information may include both the maximum number of per-UE and the maximum number of per-FR.
  • the above number may also refer to the number of simultaneous activations (those that are preconfigured but not activated may not be counted).
  • the first information includes fourth information, which is used to indicate or determine the joint configuration of the first type MG and the second type MG. information
  • the second type MG may include one or more configurations.
  • the fourth information may be used to indicate the target configuration of the one or more configurations. Taking the second type MG as a concurrent MG as an example, it can be seen from Table 1 in the previous article that the second type MG includes 8 configurations. The fourth information may indicate one or more configurations of the concurrent MGs as the target configuration.
  • the target configuration may be understood as a configuration in which the first UE supports the introduction of the first type of MG.
  • the first type MG as pre-MG and/or NCSG and the second type MG as concurrent MG as an example
  • the fourth information indicates configuration 0 in Table 1
  • the network device may configure some or all MGs in configuration 0 as pre-MGs and/or NCSGs, or may add new MGs in configuration 0 as pre-MGs and/or NCSGs. .
  • the second type MG may include one or more configurations, and some or all of the one or more configurations are joint configurations of the first type MG and the second type MG.
  • the fourth information may directly indicate one or more joint configurations in the joint configuration as the target configuration. Taking the first type MG as pre-MG and/or NCSG and the second type MG as concurrent MG as an example, Table 1 can be extended and the first type MG can be added to some configurations in Table 1, or it can also be added New configuration options, the new configuration options are options that support federated configuration. Then, the first UE may select a target configuration from configuration options that support joint configuration, and then indicate the target configuration to the network device through fourth information.
  • the fourth information may also be used to indicate the number of first type MGs.
  • the "number of first type MGs" may refer to the number of first type MGs that need to be introduced in the target configuration.
  • the fourth information may also be used to indicate that the first type of MG is a per-FR MG and/or a per-UE MG.
  • the target configuration as a configuration in which the first UE supports the introduction of the first type of MG as an example, then "the first type of MG is a per-FR MG and/or a per-UE MG” may refer to the first type of MG introduced in the target configuration.
  • MG is a per-FR MG or a per-UE MG.
  • the MGs in the target configuration are all per-UE MGs.
  • the MG may include multiple MGs, and the fourth information indicates that some or all of the multiple MGs are the first type MGs.
  • the configuration of the concurrent MG is a combination of two per-UE MGs.
  • the fourth information may indicate that the number of first type MGs is 1 or 2. If the number of first type MGs is 1, it means that the first UE supports a combination of one first type MG and one ordinary MG. If the number of first type MGs is 2, it means that the first UE supports the combination of two first type MGs.
  • the target configuration indicated by the fourth information may be rolled back.
  • the fourth information indicates that the first UE supports configuring two MGs in the concurrent MG as pre-MG/NCSG, then in some In this case, only one MG among the concurrent MGs can be configured as pre-MG/NCSG.
  • the first UE does not support per-FR MG (such as not having the capability of per-FR MG)
  • the fourth information indicates that the first UE supports two per-UEs in the concurrent MG. If all MGs are configured as pre-MG, in some cases, only one MG among the concurrent MGs can be configured as pre-MG.
  • the fourth information may include multiple indication information.
  • the plurality of indication information corresponds one-to-one to a plurality of configurations included in the second type of measurement configuration.
  • Each indication information in the plurality of indication information may be used to indicate whether the configuration corresponding to each indication information belongs to the target configuration.
  • the fourth information may be a bitmap, and accordingly, each indication information in the fourth information may be 1 bit.
  • the second type MG may include 8 configurations as shown in Table 1 above.
  • the fourth information may be a bitmap with a length of 8, and the 8 bits in the bitmap correspond to the 8 configurations in Table 1. If a certain bit has a value of 1, it may indicate that the first UE supports the introduction of pre-MG in the configuration corresponding to the bit.
  • the second type MG may include 8 configurations as shown in Table 1 above.
  • the fourth information may be a bitmap with a length of 8, and the 8 bits in the bitmap correspond to the 8 configurations in Table 1. If a certain bit has a value of 1, it may indicate that the first UE supports the introduction of NCSG in the configuration corresponding to the bit.
  • Example 3.1 The first type of MG is pre-MG, and the second type of MG is concurrent MG.
  • the concurrent MG gap combination configuration 0 (referred to as configuration 0) supports two per-FR1 MGs and one per-FR2MG.
  • configuration 0 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 1 (referred to as configuration 1) supports one per-FR1 MG and two per-FR2MG.
  • configuration 1 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 2 (referred to as configuration 2) supports two per-UE MGs.
  • configuration 2 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 3 (referred to as configuration 3) supports one per-FR1 MG and one per-UE MG.
  • configuration 3 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 4 (referred to as configuration 4) supports one per-FR2 MG and one per-UE MG.
  • configuration 4 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 5 (referred to as configuration 5) supports one per-FR1 MG, one per-FR2MG, and one per-UE MG.
  • configuration 5 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • the concurrent MG gap combination configuration 6 (referred to as configuration 6) supports two per-FR1 MGs.
  • configuration 6 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 7 (referred to as configuration 7) supports two per-FR2 MGs.
  • configuration 7 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • Example 3.2 The first type of MG is NCSG, and the second type of MG is concurrent MG.
  • Example 3.2 can provide a joint configuration method similar to Example 3.1, and only need to replace the pre-MG in Example 3.1 with NCSG.
  • the concurrent MG may not be Replace the per-UE MG in configuration 3/4/5 with NCSG.
  • the specific joint configuration corresponding to this embodiment is given below.
  • the gap combination configuration 0 of concurrent MGs (referred to as configuration 0) supports two per-FR1 MGs and one per-FR2 MG.
  • configuration 0 combined with the number of NCSGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 1 (referred to as configuration 1) supports one per-FR1 MG and two per-FR2 MG.
  • configuration 1 combined with the number of NCSGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 2 (referred to as configuration 2) supports two per-UE MGs.
  • configuration 2 combined with the number of NCSGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 3 (referred to as configuration 3) supports one per-FR1 MG and one per-UE MG.
  • configuration 3 combined with the number of NCSGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 4 (referred to as configuration 4) supports one per-FR2 MG and one per-UE MG.
  • configuration 4 combined with the number of pre-MGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the gap combination configuration 5 of concurrent MG (referred to as configuration 5) supports one per-FR1 MG, one per-FR2 MG, and one per-UE MG.
  • configuration 5 combined with the number of NCSGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • the concurrent MG gap combination configuration 6 (referred to as configuration 6) supports two per-FR1 MGs.
  • configuration 6 combined with the number of NCSGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the concurrent MG gap combination configuration 7 (referred to as configuration 7) supports two per-FR2 MGs.
  • configuration 7 combined with the number of NCSGs supported by the UE, the ability to support the following joint configuration can be introduced to the first UE:
  • one or more of the above-mentioned joint configurations may be indicated to the network device through the aforementioned fourth information.
  • the first information includes fifth information, which is used to indicate or determine whether to support configuring the per-FR first type MG as the Information about Type II MG
  • the fifth information may be used to indicate or determine whether to support configuring the per-FR NCSG as a concurrent MG.
  • pre-MG supports multiple activation/deactivation mechanisms.
  • the following describes in detail how the first UE should perform activation/deactivation operations for the multiple pre-MGs when there are multiple pre-MGs in conjunction with FIG. 5 .
  • the UE when the UE supports both the activation/deactivation mechanism controlled by the network device and the UE autonomous activation/deactivation mechanism, if the network device indicates the activation/deactivation status of the pre-MG in the BWP through signaling, then The activation/deactivation status of the pre-MG is preferably determined based on instructions from the network device, without the UE being required to determine the activation/deactivation status of the pre-MG based on conditions.
  • network equipment generally indicates the activation status of pre-MG through the deactivation MG list carried in the BWP configuration. Pre-MGs included in the list are considered to be in the deactivation status, while pre-MGs not included in the list are considered to be in the deactivation status.
  • the -MG is activated by default.
  • the signaling provided by the related technology does not explicitly indicate which activation mechanism the pre-MG should use for activation/deactivation. Instead, it implicitly indicates the activation/deactivation of the pre-MG based on whether the network device is configured with a deactivation MG list. mechanism. This means that as long as any BWP configuration carries a certain pre-MG, the activation/deactivation mechanism of the pre-MG is considered to be the activation/deactivation mechanism controlled by the network device.
  • FIG. 5 is a schematic flowchart of a wireless communication method provided by another embodiment of the present application. The method in Figure 5 is described from the perspective of interaction between the first UE and the network device.
  • the first UE and network device may be any type of UE and network device mentioned above.
  • the first UE receives first information.
  • the first UE may have (or be configured with) multiple pre-MGs. This first information can be used to determine activation mechanisms of multiple pre-MGs.
  • the pre-MG activation/deactivation mechanism mentioned here may include the following activation: UE autonomous activation/deactivation mechanism and network device controlled activation/deactivation mechanism.
  • step S510 may be when the first UE supports multiple activation/deactivation mechanisms of pre-MG at the same time (such as simultaneously supporting the UE autonomous activation/deactivation mechanism and the activation/deactivation mechanism controlled by the network device). execution under the circumstances. If the first UE only supports one activation/deactivation mechanism, step S510 may not be performed, and the plurality of pre-MGs may be directly activated/deactivated according to the activation/deactivation mechanism.
  • the activation/deactivation mechanisms of the multiple pre-MGs may be the same activation/deactivation mechanism.
  • the activation mechanisms of the multiple pre-MGs are all activation/deactivation mechanisms controlled by network equipment.
  • the activation mechanisms of the multiple pre-MGs are all UE autonomous activation/deactivation mechanisms.
  • the activation/deactivation mechanisms of the plurality of pre-MGs are different activation/deactivation mechanisms.
  • the multiple pre-MGs have respective corresponding activation/deactivation mechanisms.
  • the plurality of pre-MGs include a first pre-MG and a second pre-MG.
  • the activation/deactivation mechanism of the first pre-MG is an activation/deactivation mechanism controlled by the network device; the activation/deactivation mechanism of the second pre-MG is a UE autonomous activation/deactivation mechanism.
  • the first information mentioned above may include configuration information of the BWP.
  • the BWP may refer to any BWP used by the first UE (such as the currently activated BWP).
  • the BWP may refer to part or all of the BWP configured by the network device for the first UE.
  • the configuration information of the BWP may include a first deactivated MG set (such as a first deactivated MG list).
  • the MGs in the first deactivated MG set are the MGs that need to be deactivated when switching to the BWP (or when the BWP is in an activated state). If the first MG set includes one or more MGs among the plurality of pre-MGs, the activation/deactivation mechanisms of the plurality of pre-MGs may all be activation/deactivation mechanisms controlled by the network device.
  • the first UE when the first UE supports two pre-MG activation/deactivation mechanisms, as long as the deactivation MG list in any BWP configuration of the first UE contains the pre-MG of any one of the multiple pre-MGs. ID, it can be considered that the multiple pre-MGs all adopt the activation/deactivation mechanism controlled by the network device. Pre-MGs that are not included in the deactivation list are activated by default.
  • the first UE has pre-MG 0 and pre-MG 1, and the first UE is configured with 4 BWPs, which are BWP-1, BWP-2, BWP-3 and BWP-4.
  • the deactivation MG list configured by BWP-1 and BWP-2 contains pre-MG 0, while other BWP configurations do not configure a deactivation MG list, or the deactivation MG list is empty. It can be considered that both pre-MG 0 and pre-MG 1 adopt the activation/deactivation mechanism controlled by the network device (even if pre-MG 1 does not appear in any BWP deactivation MG list). Therefore, pre-MG 0 is deactivated when BWP-1 and BWP-2 are activated and active when other BWPs are activated; whereas pre-MG 1 is activated when all BWPs are activated.
  • the configuration information of the BWP may include the first set of deactivated MGs.
  • the MGs in the first deactivated MG set are when switching to the BWP (or when the BWP is in an activated state).
  • the activation/deactivation mechanism of the one or more MGs is an activation/deactivation mechanism controlled by the network device (and not affected by other MGs). Influence), the activation/deactivation mechanism of the remaining MGs in the plurality of pre-MGs except the one or more MGs may be a UE autonomous activation/deactivation mechanism.
  • the first UE when the first UE supports two pre-MG activation/deactivation mechanisms, as long as the deactivation MG list in any BWP configuration of the first UE contains one of the pre-MGs among multiple pre-MGs, ID, it can be considered that the pre-MG adopts the activation/deactivation mechanism controlled by the network device.
  • the UE autonomous activation/deactivation mechanism can be used.
  • the first UE has pre-MG 0 and pre-MG 1, and the first UE is configured with 4 BWPs, which are BWP-1, BWP-2, BWP-3 and BWP-4.
  • the deactivation MG list configured by BWP-1 and BWP-2 contains pre-MG 0, while other BWP configurations do not configure a deactivation MG list, or the deactivation MG list is empty.
  • pre-MG 0 uses an activation/deactivation mechanism controlled by network devices.
  • the activation/deactivation mechanism of pre-MG 1 is the UE autonomous activation/deactivation mechanism (because pre-MG 1 does not appear in any BWP deactivation list).
  • pre-MG 0 is in the deactivated state when BWP-1 and BWP-2 are activated, and is in the activated state when other BWPs are activated; and pre-MG 1 can be used by the UE according to the measurement objects associated with pre-MG 1 and each BWP relationship and other information to determine whether to activate.
  • the above-mentioned first information may include indication information sent by the network device to indicate activation/deactivation mechanisms of multiple pre-MGs.
  • the indication information may be, for example, indication signaling specifically used to indicate activation/deactivation mechanisms of multiple pre-MGs.
  • the multiple pre-MGs correspond to indication information of the same activation/deactivation mechanism.
  • the indication information may be signaling specifically used to indicate the multiple pre-MGs.
  • This signaling may be configured via RRC, for example.
  • the signaling can be NetworkControlPreGap.
  • the value of NetworkControlPreGap is True/False, or the value of NetworkControlPreGap is 1/0. If the value of NetworkControlPreGap is True (or 1), it can mean that the multiple pre-MGs all adopt the activation/deactivation mechanism controlled by the network device.
  • the signaling can be PreGapActivationMechanism.
  • the value of PreGapActivationMechanism is selected from ⁇ NetworkControl,UEAutonomous ⁇ .
  • the network device can indicate the activation/deactivation mechanism of multiple pre-MGs by configuring the value of PreGapActivationMechanism.
  • the plurality of pre-MGs may have indication information of respective activation/deactivation mechanisms.
  • the network device can configure multiple pre-MG activation/deactivation mechanisms through a set of signaling.
  • This set of signaling can be in the form of a bitmap or sequence.
  • This set of signaling may be carried, for example, through RRC signaling.
  • the set of signaling may be a sequence whose length is equal to the number of configured pre-MGs.
  • Each element in this sequence is PreGapActivationMechanism, and the value of PreGapActivationMechanism is selected from ⁇ NetworkControl,UEAutonomous ⁇ .
  • the solution of FIG. 5 can be combined with the solution of FIG. 4 .
  • the solution shown in Figure 5 can be used to perform activation/deactivation operations on the multiple pre-MGs.
  • the first information in the embodiment of FIG. 5 is different from the first information in the embodiment of FIG. 4 . If the corresponding embodiments of FIG. 4 and FIG. 5 are combined with each other, the first information in FIG. 5 may be called sixth information.
  • FIG. 6 is a schematic structural diagram of a UE provided by an embodiment of the present application.
  • UE 600 of FIG. 6 includes communication module 610.
  • the communication module 610 may be used to send first information to a network device.
  • the first information is used to indicate a first capability of the UE, and the first capability is associated with a joint configuration of a first type of measurement gap and a second type of measurement gap.
  • the first type of measurement gap includes a preconfigured measurement gap and/or a network-controlled small gap
  • the second type of measurement gap includes a concurrent measurement gap; or, the first type of measurement gap and the One of the measurement gaps of the second type includes a preconfigured measurement gap, and another measurement gap of the first type of measurement gap and the second type of measurement gap includes a network-controlled small gap.
  • the first information includes one or more of the following: second information, used to determine whether the joint configuration can be performed for the UE; third information, used to determine whether the joint configuration can be performed for the UE.
  • the number of the first type of measurement gaps configured by the UE is configured as the second type measurement gap.
  • the second information indicates one or more of the following information: the UE supports preconfigured measurement gaps; the UE supports network-controlled small gaps; the UE supports concurrent measurement gaps; The UE supports preconfigured measurement gaps and concurrent measurement gaps at the same time; the UE supports network-controlled small gaps and concurrent measurement gaps at the same time; and the UE supports preconfigured measurement gaps, network-controlled small gaps, and concurrent measurement gaps at the same time.
  • the joint configuration is a joint configuration of preconfigured measurement gaps, network-controlled small gaps, and concurrent measurement gaps
  • the second information is used to indicate one or more of the following: the UE supports A plurality of measurement gaps, the plurality of measurement gaps include a first measurement gap and a second measurement gap, the first measurement gap is a preconfigured measurement gap, the second measurement gap is a small gap controlled by the network; and the The UE supports one or more measurement gaps, the one or more measurement gaps include a first measurement gap, the first measurement gap is a preconfigured measurement gap, and the first measurement gap is a small gap controlled by the network.
  • the third information indicates a maximum number of the first type of measurement gaps supported by the UE; wherein the maximum number is a maximum number per-UE; or, the maximum number is per -Maximum number of FRs.
  • the second type of measurement gap includes one or more configurations
  • the fourth information is used to indicate a target configuration in the one or more configurations; wherein the target configuration is the The UE supports a configuration that introduces the first type of measurement gap; or the target configuration is a joint configuration of the first type of measurement gap and the second type of measurement gap.
  • the fourth information is also used to indicate one or more of the following information: the number of the first type of measurement gaps; and the first type of measurement gap is a per-FR measurement gap. and/or per-UE measurement gaps.
  • the measurement gaps in the target configuration are all per-UE measurement gaps.
  • the target configuration includes a plurality of measurement gaps
  • the fourth information indicates that some or all of the plurality of measurement gaps are the first type of measurement gaps.
  • the fourth information includes a plurality of indication information, the plurality of indication information corresponds to the multiple configurations one-to-one, and each of the plurality of indication information is used to indicate the Whether the configuration corresponding to each indication information belongs to the target configuration.
  • the first type of measurement gap includes a network-controlled small gap
  • the second type of measurement gap includes a concurrent measurement gap
  • the fifth information is used to determine whether per-FR network-controlled Small gaps are configured as concurrent measurement gaps.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Network device 700 of FIG. 7 includes communication module 710.
  • the communication module 710 may be used to receive the first information sent by the first UE.
  • the first information is used to indicate a first capability of the first UE, where the first capability is associated with a joint configuration of a first type of measurement gap and a second type of measurement gap.
  • the first type of measurement gap includes a preconfigured measurement gap and/or a network-controlled small gap
  • the second type of measurement gap includes a concurrent measurement gap; or, the first type of measurement gap and the One of the measurement gaps of the second type includes a preconfigured measurement gap, and another measurement gap of the first type of measurement gap and the second type of measurement gap includes a network-controlled small gap.
  • the first information includes one or more of the following: second information, used to determine whether the joint configuration can be performed for the first UE; third information, used to determine whether The number of the first type measurement gaps configured by the first UE; fourth information, used to determine the joint configuration of the first type measurement gaps and the second type measurement gaps; and fifth information, used to determine the joint configuration of the first type measurement gaps and the second type measurement gaps; Determine whether configuring the per-FR first type measurement gap as the second type measurement gap is supported.
  • the second information indicates one or more of the following information: the first UE supports preconfigured measurement gaps; the first UE supports network-controlled small gaps; the first UE Support concurrent measurement gaps; the first UE supports both preconfigured measurement gaps and concurrent measurement gaps; the first UE supports both network-controlled small gaps and concurrent measurement gaps; and the first UE supports both preconfigured measurement gaps , small gaps in network control, and concurrent measurement gaps.
  • the joint configuration is a joint configuration of preconfigured measurement gaps, network-controlled small gaps, and concurrent measurement gaps
  • the second information is used to indicate one or more of the following: the first The UE supports multiple measurement gaps, the plurality of measurement gaps include a first measurement gap and a second measurement gap, the first measurement gap is a preconfigured measurement gap, and the second measurement gap is a small gap controlled by the network; and The first UE supports one or more measurement gaps, the one or more measurement gaps include a first measurement gap, the first measurement gap is a preconfigured measurement gap, and the first measurement gap is network controlled. Small gaps.
  • the third information indicates a maximum number of the first type of measurement gaps supported by the first UE; wherein the maximum number is a maximum number per-UE; or, the maximum number is the maximum number per-FR.
  • the second type of measurement gap includes one or more configurations
  • the fourth information is used to indicate a target configuration in the one or more configurations; wherein the target configuration is the The first UE supports a configuration that introduces the first type of measurement gap; or the target configuration is a joint configuration of the first type of measurement gap and the second type of measurement gap.
  • the fourth information is also used to indicate one or more of the following information: the number of the first type of measurement gaps; and the first type of measurement gap is a per-FR measurement gap. and/or per-UE measurement gaps.
  • the measurement gaps in the target configuration are all per-UE measurement gaps.
  • the target configuration includes a plurality of measurement gaps
  • the fourth information indicates that some or all of the plurality of measurement gaps are the first type of measurement gaps.
  • the fourth information includes a plurality of indication information, the plurality of indication information corresponds to the multiple configurations one-to-one, and each of the plurality of indication information is used to indicate the Whether the configuration corresponding to each indication information belongs to the target configuration.
  • the first type of measurement gap includes a network-controlled small gap
  • the second type of measurement gap includes a concurrent measurement gap
  • the fifth information is used to determine whether per-FR network-controlled Small gaps are configured as concurrent measurement gaps.
  • FIG. 8 is a schematic structural diagram of a UE provided by another embodiment of the present application.
  • UE 800 of FIG. 8 includes communication module 810.
  • the communication module 810 may be used to receive first information.
  • the first UE has multiple preconfigured measurement gaps, and the first information is used to determine the activation/deactivation mechanism of the multiple preconfigured measurement gaps; wherein the activation/deactivation of the multiple preconfigured measurement gaps is The activation mechanism is the same activation/deactivation mechanism; or the activation/deactivation mechanisms of the plurality of preconfigured measurement gaps are different activation/deactivation mechanisms.
  • the first information includes one or more of the following: configuration information of the BWP; and an indication sent by the network device to indicate an activation/deactivation mechanism of the plurality of preconfigured measurement gaps. information.
  • the configuration information of the BWP includes a first deactivated measurement gap set; if the first measurement gap set includes one or more measurement gaps among the plurality of preconfigured measurement gaps, then the The activation/deactivation mechanisms of the plurality of preconfigured measurement gaps are all activation/deactivation mechanisms controlled by the network device; or if the first measurement gap set includes one or more measurement gaps among the plurality of preconfigured measurement gaps , then the activation/deactivation mechanism of the one or more measurement gaps is an activation/deactivation mechanism controlled by the network device, and the remaining preconfigured measurement gaps other than the one or more measurement gaps are The activation/deactivation mechanism of the measurement gap is a UE autonomous activation/deactivation mechanism.
  • the plurality of preconfigured measurement gaps correspond to indication information of the same activation/deactivation mechanism; or, the plurality of preconfigured measurement gaps have indication information of respective activation/deactivation mechanisms.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Network device 900 of FIG. 9 includes communication module 910.
  • the communication module 910 may be used to send first information to the first UE.
  • the first UE has multiple preconfigured measurement gaps, and the first information is used to determine activation/deactivation mechanisms of the multiple preconfigured measurement gaps.
  • the activation/deactivation mechanisms of the multiple preconfigured measurement gaps are the same activation/deactivation mechanism; or the activation/deactivation mechanisms of the multiple preconfigured measurement gaps are different activation/deactivation mechanisms.
  • the first information includes one or more of the following: configuration information of the BWP; and an indication sent by the network device to indicate an activation/deactivation mechanism of the plurality of preconfigured measurement gaps. information.
  • the configuration information of the BWP includes a first deactivated measurement gap set; if the first measurement gap set includes one or more measurement gaps among the plurality of preconfigured measurement gaps, then the The activation/deactivation mechanisms of the plurality of preconfigured measurement gaps are all activation/deactivation mechanisms controlled by the network device; or if the first measurement gap set includes one or more measurement gaps among the plurality of preconfigured measurement gaps , then the activation/deactivation mechanism of the one or more measurement gaps is an activation/deactivation mechanism controlled by the network device, and the remaining preconfigured measurement gaps other than the one or more measurement gaps are The activation/deactivation mechanism of the measurement gap is a UE autonomous activation/deactivation mechanism.
  • the multiple preconfigured measurement gaps correspond to indication information of the same activation/deactivation mechanism; or, the multiple preconfigured measurement gaps have indication information of respective activation/deactivation mechanisms.
  • Figure 10 is a schematic structural diagram of the device according to the embodiment of the present application.
  • the dashed line in Figure 10 indicates that the unit or module is optional.
  • the device 1000 can be used to implement the method described in the above method embodiment.
  • the device 1000 may be a chip, a UE or a network device.
  • the UE and the network device may be the aforementioned first UE and the network device interacting with the first UE respectively.
  • Apparatus 1000 may include one or more processors 1010.
  • the processor 1010 can support the device 1000 to implement the method described in the foregoing method embodiments.
  • the processor 1010 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor 1010 can also be other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) ) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 1000 may also include one or more memories 1020.
  • the memory 1020 stores a program, which can be executed by the processor 1010, so that the processor 1010 executes the method described in the foregoing method embodiment.
  • the memory 1020 may be independent of the processor 1010 or integrated in the processor 1010.
  • Apparatus 1000 may also include a transceiver 1030.
  • Processor 1010 may communicate with other devices or chips through transceiver 1030.
  • the processor 1010 can transmit and receive data with other devices or chips through the transceiver 1030.
  • apparatus 1000 may be located in a UE in Figure 6 or Figure 8.
  • the communication module in the UE may correspond to the transceiver 1030 in the device 1000.
  • the function of the communication module may be implemented by the transceiver 1030 in the device 1000 under the control of the processor 1010.
  • the apparatus 1000 may be located in the network device in Figure 7 or Figure 9.
  • the communication module in the network device may correspond to the transceiver 1030 in the device 1000.
  • the function of the communication module may be implemented by the transceiver 1030 in the device 1000 under the control of the processor 1010.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the UE or network equipment provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the UE or the network equipment in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the UE or network equipment provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the UE or the network equipment in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the UE or network equipment provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the UE or the network equipment in various embodiments of the present application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • Configuration in the embodiment of this application may include configuring through at least one of system messages, radio resource control (radio resource control, RRC) signaling, and media access control element (MAC CE) .
  • RRC radio resource control
  • MAC CE media access control element
  • predefined or “preset” can be obtained by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including UEs and network devices).
  • devices for example, including UEs and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Abstract

一种无线通信方法、用户设备和网络设备。所述方法包括:第一用户设备向网络设备发送第一信息,所述第一信息用于指示所述第一用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。上述技术方案为用户设备引入了与多种类型的测量间隙的联合配置关联的能力,有助于网络设备对多种类型的测量间隙进行联合配置。

Description

无线通信方法、用户设备和网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种无线通信方法、用户设备和网络设备。
背景技术
相关技术提出了多种类型的测量间隙(measurement gap,MG,也可称为测量间隔),如预配置测量间隙(pre-configured measurement gap,pre-MG)、网络控制的小间隙(Network controlled small gap,NCSG)、多并发测量间隙(multiple concurrent MGs)。但是,应当如何对多种类型的测量间隙进行联合配置,目前还没有合适的解决方案。
发明内容
本申请提供一种无线通信的方法、用户设备和网络设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供一种无线通信的方法,包括:第一用户设备向网络设备发送第一信息,所述第一信息用于指示所述第一用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
第二方面,提供一种无线通信的方法,包括:网络设备接收第一用户设备发送的第一信息,所述第一信息用于指示所述第一用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
第三方面,提供一种无线通信的方法,包括:第一用户设备接收第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
第四方面,提供一种无线通信的方法,包括:网络设备向第一用户设备发送第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
第五方面,提供一种用户设备,包括:通信模块,用于向网络设备发送第一信息,所述第一信息用于指示所述用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
第六方面,提供一种网络设备,包括:通信模块,用于接收第一用户设备发送的第一信息,所述第一信息用于指示所述第一用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
第七方面,提供一种用户设备,包括:通信模块,用于接收第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
第八方面,提供一种网络设备,包括:通信模块,用于向第一用户设备发送第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
第九方面,提供一种用户设备,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,使得所述用户设备执行如第一方面或第三方面所述的方法。
第十方面,提供一种网络设备,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,使得所述网络设备执行第二方面或第四方面所述的方法。
第十一方面,提供一种装置,包括处理器,用于从存储器中调用程序,使得所述装置执行如第一方面至第四方面中的任一方面所述的方法。
第十二方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如第一方面至第四方面中的任一方面所述的方法。
第十三方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行如第一方面至第四方面中的任一方面所述的方法。
第十四方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行如第一方面至第四 方面中的任一方面所述的方法。
第十五方面,提供一种计算机程序,所述计算机程序使得计算机执行如第一方面至第四方面中的任一方面所述的方法。
本申请实施例为用户设备引入了与多种类型的测量间隙的联合配置关联的能力,有助于网络设备对多种类型的测量间隙进行联合配置。
附图说明
图1是可应用本申请实施例的通信系统的系统架构图。
图2是同步信号块(synchronization signal and PBCH block,SSB)测量方式的示例图。
图3是基于NCSG的测量方式示例图。
图4是本申请一个实施例提供的无线通信的方法的流程示意图。
图5是本申请另一实施例提供的无线通信的方法的流程示意图。
图6是本申请一个实施例提供的UE的结构示意图。
图7是本申请一个实施例提供的网络设备的结构示意图。
图8是本申请另一实施例提供的UE的结构示意图。
图9是本申请另一实施例提供的网络设备的结构示意图。
图10是本申请实施例提供的装置的结构示意图。
具体实施方式
本申请实施例可以应用于各种通信系统。例如,本申请实施例可应用于全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、第五代通信(5th-generation,5G)系统。本申请实施例还可应用于其他通信系统,例如未来的通信系统。该未来的通信系统例如可以是第六代(6th-generation,6G)移动通信系统,或者卫星通信系统等。
传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,通信系统不仅可以支持传统的蜂窝通信,还可以支持其他类型的一种或多种通信。例如,通信系统可以支持以下通信中的一种或多种:设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车辆间(vehicle to vehicle,V2V)通信,以及车联网(vehicle to everything,V2X)通信等。本申请实施例也可以应用于支持上述通信方式的通信系统中。
本申请实施例中的通信系统可以应用于载波聚合(carrier aggregation,CA)场景,也可以应用于双连接(dual connectivity,DC)场景,还可以应用于独立(standalone,SA)布网场景。
本申请实施例中的通信系统可以应用于非授权频谱。该非授权频谱也可以认为是共享频谱。或者,本申请实施例中的通信系统也可以应用于授权频谱。该授权频谱也可以认为是专用频谱。
本申请实施例可应用于地面通信网络(terrestrial networks,TN)系统,也可以应用于非地面网络(non-terrestrial network,NTN)系统。作为示例,该NTN系统可以包括基于NR的NTN系统和基于物联网(internet of things,IoT)的NTN系统。
通信系统可以包括一个或多个用户设备(user equipment,UE)。本申请实施例提及的UE也可以称为终端设备、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在一些实施例中,UE可以是WLAN中的站点(STATION,ST)。在一些实施例中,UE也可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统(例如NR系统)中的UE,或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的UE等。
在一些实施例中,UE可以指向用户提供语音和/或数据连通性的设备。例如,UE可以是具有无线 连接功能的手持式设备、车载设备等。作为一些具体的示例,该UE可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在一些实施例中,UE可以部署在陆地上。例如,UE可以部署在室内或室外。在一些实施例中,UE可以部署在水面上,如部署在轮船上。在一些实施例中,UE可以部署在空中,如部署在飞机、气球和卫星上。
除了UE之外,通信系统还可以包括一个或多个网络设备。本申请实施例中的网络设备可以是用于与UE通信的设备,该网络设备也可以称为接入网设备或无线接入网设备。该网络设备例如可以是基站。本申请实施例中的网络设备可以是指将UE接入到无线网络的接入网(radio access network,RAN)节点(或设备)。接入网设备可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在本申请一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在本申请一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,UE通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性地,图1为本申请实施例提供的一种通信系统的架构示意图。如图1所示,通信系统100可以包括网络设备110,网络设备110可以是与UE 120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。
图1示例性地示出了一个网络设备和两个UE,在本申请一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的UE,本申请实施例对此不做限定。
在本申请一些实施例中,图1所示的无线通信系统还可以包括移动性管理实体(mobility management entity,MME)、接入与移动性管理功能(access and mobility management function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和UE 120,网络设备110和UE 120可以为上文所述的具体设备,此处不再赘述。通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
在通信系统中,UE通常需要执行一种或多种测量工作。例如,UE需要执行SSB测量、信道状态 信息参考信号(channel state information reference signal,CSI-RS)测量、定位参考信号(positioning reference signal,PRS)测量等测量工作中的一种或多种。为了能够支持UE的测量工作,某些通信系统引入了MG。进一步地,随着通信技术的进一步发展,为了使得MG能够更好地支持UE的测量工作,某些通信系统对MG进行了各种形式的增强。下文介绍与MG有关的几种增强技术。
预配置MG(pre-configured MG,pre-MG)
某些通信系统(如NR)引入了pre-MG。引入pre-MG的主要原因在于:当UE工作在不同的带宽部分(bandwidth part,BWP)时,UE对SSB的测量(即使是同一个测量对象)可能存在不同的测量需求。如图2所示,当UE工作在BWP1(对应于频段1)时,由于SSB的频域位置位于BWP1内,且子载波间隔(sub-carrier space,SCS)/循环前缀(cyclic prefix,CP)相同,因此,UE无需MG即可进行SSB测量。而当UE从BWP1切换到BWP2(对应于频段2)时,由于SSB的频域位置不在BWP2内,因此UE需要在MG内才能进行针对SSB测量。BWP的切换有多种方式。例如,UE可以基于定时器(timer)或基于下行控制信息(downlink control information,DCI)快速完成BWP的切换。在较早版本的协议(如Release 16)中,MG的配置和释放需要通过RRC信令完成,时延比较大。为了使得MG的配置能随着BWP的切换而自适应地快速调整,某些版本的协议(如Release 17)对MG进行了增强,引入了pre-MG,并引入了随着BWP切换对pre-MG进行激活/去激活的机制。
上文主要以SSB测量为例进行说明,是因为在相关协议中,SSB测量(无论是同频测量,还是异频测量)是否需要MG的一个判断条件是该SSB的频域位置是否位于UE当前激活的BWP内。因此,针对SSB测量,随着BWP的切换,UE对MG的需求也可能有所变化。CSI-RS测量和PRS测量并不具备SSB测量的上述特点。例如,针对CSI-RS测量,如果UE执行的是同频测量,则无需为UE配置MG;如果UE执行的是异频测量,则需要为UE配置MG。又如,针对PRS测量,始终需要为UE配置MG。由此可见,当UE需要进行PRS测量和/或异频CSI-RS测量时,pre-MG始终需要被激活,并不能随着BWP切换而动态改变。在这种情况下,网络设备可以选择为UE配置普通的MG,或者,也可以为UE配置总是处于激活状态的pre-MG。
pre-MG的激活/去激活机制主要包括两种:一种是网络控制的激活/去激活机制,另一种是UE自主激活/去激活机制。上述两种激活/去激活机制对应UE的两种不同的能力,这两种能力的详细介绍可以参见相关提案或文档。例如,提案R4-2210436对UE的上述两种能力进行了介绍。第一种能力在R4-2210436中通过“19-3-1”标识,即具有网络设备控制的激活/去激活机制的pre-MG(pre-configured measurement gap with network-controlled activation and deactivation mechanism)。第二种能力在R4-2210436中通过“19-3-2”标识,即具有UE自主激活/去激活机制的pre-MG(pre-configured measurement gap with UE autonomous activation and deactivation mechanism)。如果UE支持这两种能力中的至少一种,则网络设备可以为UE配置pre-MG。如果UE同时支持上述两种能力,即UE同时支持pre-MG的两种激活机制,当网络配置了pre-MG的激活/去激活指示信息时,则可以优先使用网络控制的激活/去激活机制。
对于网络控制的激活/去激活机制,网络设备目前是基于BWP配置实现的。具体而言,网络设备会在BWP配置中增加了去激活MG集合,以向UE指示该去激活MG集合中的MG可以在切换至该BWP时去激活,不属于该去激活MG集合的MG则可以处于默认激活状态。该去激活MG集合通常以列表的形式呈现,因此,该去激活MG集合也可称为去激活MG列表。Release 17给出的去激活MG列表的形式如下:
deactivatedMeasGapList-r17 SEQUENCE(SIZE(1..maxNrofGapId-r17))OF MeasGapId-r17 OPTIONAL,--Cond PreConfigMG
除了上文提到的pre-MG,还存在其他类型的pre-MG,如增强定位pre-MG(enhanced positioning pre-MG,ePOS pre-MG)。增强定位pre-MG与前文提到的pre-MG类似,均是网络设备预先配置一个或一些MG,然后在某些条件或信令的触发下,可以快速激活/去激活该预配置MG。与前文提到的pre-MG不同的是,增强定位pre-MG是专门为了PRS测量而引入的MG,该增强定位pre-MG的激活/去激活方式与上文提到的pre-MG也有所不同。例如,增强定位pre-MG可以通过媒体接入控制控制元素(medium access control control element,MAC CE)进行激活/去激活。
多并发MG(multiple concurrent MGs)
在较早版本的通信协议(如Release 16)中,UE在执行无线资源管理(radio resource management,RRM)/定位测量时仅可以采用一个或两个MG。UE究竟采用一个MG还是两个MG,取决于UE的能力。例如,如果UE支持针对频率范围(per frequency range,per-FR)的MG(per-FR MG,也可称为per-FR gap),则在FR1和FR2上可以各自配置一个MG图案(MG pattern,MGP)。又如,如果UE支持per-UE的MG(per-UE MG,也可称为per-UE gap),则只能为UE配置一个MG图案。
当UE需要在多个频点进行SSB测量(不同的频点上对应不同的SSB测量时间配置(SSB  measurement timing configuration,SMTC)窗口)时,或者,当UE需要对多种不同的信号(如SSB,CSI-RS,PRS)进行测量时,仅为UE配置一个MG图案(或者针对一个FR配置一个MG图案)可能无法将所有的信号都包含在MG中,从而可能造成有些信号无法准确测量或者造成MG的浪费。
为了解决上述问题,某些版本的通信协议(如Release 17)引入了多个同时且独立的MG图案。该多个同时且独立的MG图案可以称为多并发MG,简称并发MG。并发MG的引入有助于UE在不同的SMTC配置下,和/或,在多种不同的信号(如SSB,CSI-RS,PRS)的测量场景下,和/或,对不同的无线接入技术(radio access technology,RAT)进行测量的场景下能够较好地完成测量工作。上述无线接入技术例如可以包括演进的通用陆面无线接入(evolved universal terrestrial radio access,E-UTRA)和NR。
为了更好地将不同的测量任务/对象分配在不同的MG中,某些版本的通信协议(如Release 17)支持在测量配置中指示该测量配置所关联的MG。此外,为了解决多个MG在时间上可能出现重叠(或冲突)的情况,还可以引入优先级(该优先级例如可以包含在MG的配置中)的概念,以将存在冲突的MG中的优先级较低的MG丢弃。
UE是否支持并发MG也属于UE的一种能力。该能力的详细介绍可以参见相关提案或文档。例如,提案R4-2210436对UE的该能力进行了介绍。该能力在R4-2210436中通过“19-2”标识。此外,UE支持并发MG并不意味着可以为UE配置任意多个MG。并发MG对配置的MG的数量存在一定的限制。例如,对于不支持per-FR MG的UE,目前最多只能配置2个per-UE MG;而对于支持per-FR MG能力的UE,其能够支持的并发MG的配置可以参见下表一。
表一:同时支持并发MG图案和独立MG图案的UE的间隙组合配置的数量
Figure PCTCN2022111575-appb-000001
应注意,表一中的间隙组合配置标识3、4、5仅在当per-UEMG与TS38.215定义的用于RSTD,PRS-RSRP以及UE接收和发射时间差测量中的任意一个的PRS测量关联时适用(Gap Combination Configuration Id 3,#4,#5 will be only applied when the per-UE measurement gap is associated to measure PRS for any RSTD,PRS-RSRP,and UE Rx-Tx time difference measurement defined in TS 38.215)。
NCSG
相比于MG,NCSG可以减小测量所需的中断时间。一种典型的NCSG场景如图3所示。如图3所示,在NCSG场景中,UE可以利用空闲的射频链路(radio frequency chain,RF chain)资源来做邻小区测量,使用测量长度(measurement length,ML)不会造成较长的中断时间。此外,基于NCSG可以同时保持测量和服务小区的数据收发,而只需要在测量之前和之后进行较短的可见中断长度(Visible Interruption Length,VIL)即可。由于NCSG图案(NCSG pattern)与普通MG的图案有一定区别,因此在某些协议(如TS 38.133的表格9.1.9.3-1)定义了NCSG pattern,其中包含重复周期可见中断的重复周期(visible interruption repetition period,VIRP)和ML。
NCSG对测量对象有一定限制。例如,基于NCSG可以进行以下测量中的一种或多种:同频/异频SSB测量,去激活或休眠态的辅小区测量,跨系统的E-UTRAN测量。但是,某些测量不支持NCSG的使用,此类测量例如可以包括PRS测量、异频CSI-RS测量。
另外,针对NCSG,需要UE支持一些新的能力。相关能力的介绍可以参见相关提案或文档。例如,提案R4-2210436对UE使用NCSG时需要支持的能力进行了介绍,详细参见R4-2210436的19-1部分。例如,R4-2210436中的“19-1”引入了是否支持网络控制的NCSG(Network controlled NCSG) 的能力。R4-2210436中的“19-1-1”引入了是否支持per-FR NCSG(Support of per-FR NCSG)。如果UE不支持per-FR NCSG,则默认只能为UE配置per-UE NCSG。除了上述两种能力之外,R4-2210436中的“19-1-2”用于UE上报其所支持的NCSG pattern,“19-1-3”用于UE上报其对NR-only测量所支持的NCSG pattern。
MG增强组合
前文提到了MG的多种增强方案,这些方案从多个方向对MG进行了增强。考虑到标准化的复杂度,在Release 17之前,仅针对MG的多个增强方向进行了单独增强,并没有考虑将该多个增强方案相结合的场景。例如,当使用并发MG时,会默认并发MG中的每个MG都是普通的MG,而不是预配置MG或NCSG。在Release 18中,将进一步考虑如何将不同MG增强方案进行组合(或称联合(combination),本申请中的组合和联合含义类似,可以互换使用)。下面是Release 18的相关项目的项目描述。从下文的项目描述可以看出,MG增强组合的两个典型的场景是将并发MG中的一个或多个MG配置为预配置MG/NCSG。
对预配置MG、多并发MG和NCSG增强。
1、为配置有预配置MG和/或多并发MG和/或NCSG组合的UE定义RRM需求[RAN4]。
2、优化具有case 1的配置和case 2的配置的UE的联合需求:
case 1:预配置MG和多并发MG(即并发MG中的至少一个MG为预配置MG);
case 2:NCSG和多并发MG(即并发MG中的至少一个MG为NCSG)。
注意:预配置MG、并发MG以及NCSG的其他可能组合的优化方案可以在WI阶段讨论。
(Enhancements of pre-configured MGs,multiple concurrent MGs and NCSG
Define RRM requirements for UEs configured with a combination of pre-configured MGs,and/or multiple concurrent MGs and/or NCSG[RAN4]
Prioritize at least joint requirements for UE configured with
Case 1:Pre-configured MGs and multiple concurrent MGs(i.e.,concurrent MGs where at least one of the gaps is a pre-configured gap)
Case 2:NCSG and multiple concurrent MGs(i.e.,concurrent MGs where at least one of the gaps is NCSG)
Note:Prioritization among other possible combinations of pre-configured MG,concurrent MG and NCSG can be discussed in WI phase)。
虽然目前协议提出要对多种MG增强特性进行组合,但是,应当如何对多种MG增强特性进行组合,目前还没有合适的方案。
仔细研究预配置MG、多并发MG以及NCSG等MG增强方案可以看出,每种增强方案均需要UE有相应的能力支持。因此,在对多种MG增强特性进行组合时,也应该确定UE是否具有相应的能力。否则,如果网络设备对多种MG增强特性进行联合配置,但UE无法使用该联合配置,就会造成配置资源浪费的问题。
下文结合附图,详细描述本申请实施例。
图4是本申请实施例提供的一种无线通信的方法的流程示意图。图4的方法是站在第一UE和网络设备交互的角度进行描述的。该第一UE和网络设备可以是前文提到的任意类型的UE和网络设备。
参见图4,在步骤S410,第一UE向网络设备发送第一信息。该第一信息可用于指示第一UE的第一能力(或者,该第一信息可以是与该第一能力关联的信息)。该第一能力可以与第一类型MG和第二类型MG的联合关联。或者,该第一能力可以与第一类型MG和第二类型MG的联合配置关联。
在一些实施例中,可以将第一信息称为第一UE的能力信息。第一UE向网络设备发送第一信息,可以包括:第一UE向网络设备发送能力上报消息,该能力上报消息中携带有该能力信息。
在一些实施例中,第一类型MG和第二类型MG可以理解为配置方式不同的MG。因此,在该实施例中,第一类型MG和第二类型MG也可以分别称为第一类型MG配置和第二类型MG配置。
在一些实施例中,第一类型MG可以对应MG的一种增强特性。第二类型MG可以对应MG的另一种增强特性。
在一些实施例中,第一类型MG或基于第一类型MG配置得到的间隙可以为per-UE MG,也可以为per-FR MG(如per-FR1 MG或per-FR2 MG)。
在一些实施例中,第二类型MG或基于第二类型MG配置得到的间隙可以为per-UE MG,也可以为per-FR MG(如per-FR1 MG或per-FR2 MG)。
在一些实施例中,第一类型MG包括pre-MG和/或NCSG,第二类型MG包括并发MG。例如,第一类型MG为pre-MG,第二类型MG为并发MG。又如,第一类型MG为NCSG,第二类型MG为并发MG。又如,第一类型MG包括pre-MG和NCSG,第二类型MG为并发MG。
在一些实施例中,第一类型MG包括pre-MG,第二类型MG包括NCSG。
在一些实施例中,第一类型MG包括NCSG,第二类型MG包括pre-MG。
在一些实施例中,第一类型MG包括用于定位的pre-MG(通过MAC CE来激活/去激活),第二类型MG包括NCSG。
在一些实施例中,第一类型MG和/或第二类型MG还可以是其他增强的MG类型或协议的后续版本引入的新的MG。
本申请实施例为第一UE引入了与多种类型MG的联合或联合配置关联的能力(即上文提到的第一能力)。在此基础上,第一UE通过第一信息向网络设备指示该第一能力,有助于网络设备对第一UE的测量时隙进行合理配置。
前文提到,第一能力是与第一类型MG和第二类型MG的联合(或联合配置)关联的能力。本申请实施例对第一能力的具体内容不作限定,可以是有助于该联合(或联合配置)的任意类型的能力。例如,该第一能力可用于向网络设备上报第一UE所支持配置的第一类型MG的数量、类型、组合等中的一种或多种。网络设备在获知第一UE的第一能力之后,可以结合该第一能力,为第一UE配置合理的MG。作为例子,该第一能力可以是指示UE是否支持联合配置的能力。或者,该第一能力可以是指示UE可以支持哪些种类的测量时隙进行联合的能力。或者,该第一能力可以是指示UE支持联合配置中的哪些具体配置的能力。或者,联合配置可以具有多种配置参数,该第一能力可以是指示UE支持哪个或哪些参数,或者指示UE支持某个参数的某种取值的能力。
第一信息可用于指示第一能力。第一能力的定义不同,则第一信息的内容可能也会有所不同,本申请实施例对此不作具体限定。可替换地,第一信息可用于网络设备确定第一终端设备所支持的联合配置。例如,第一信息可用于网络设备确定与联合配置关联的以下信息中的一种或多种:第一类型MG的数量,第二类型MG的数量,per-FR的能力,联合配置的类型(具体是哪些类型的测量时隙进行联合),联合配置中的pre-MG(在联合配置中包含pre-MG的情况下)的激活/去激活机制等。
在一些实施例中,第一信息可以包括下文提到的第二信息至第五信息中的一种或多种。下面以第二信息至第五信息为例,对第一信息的内容进行详细地举例说明。应理解,本申请实施例提及的第一信息至第五信息,均可以替换为信令或消息。或者,本申请实施例提及的第一信息至第五信息均可以承载在相同或不同的信令或消息中。
示例1:第一信息包含第二信息,即用于指示或确定是否能够为第一UE进行联合配置的信息
在一些实施例中,第二信息可以直接指示第一UE支持或不支持第一类型MG和第二类型MG的联合配置。
作为一个示例,第一类型MG为预配置间隙,第二类型MG为并发MG。可以设置一种新的能力,如simPreGapAndConcurrentGap。第二信息可以指示simPreGapAndConcurrentGap的取值为真或假。当simPreGapAndConcurrentGap的取值为真时,代表第一UE支持第一类型MG和第二类型MG的联合配置;当simPreGapAndConcurrentGap的取值为假时,代表第一UE不支持第一类型MG和第二类型MG的联合配置。
作为另一示例,第一类型MG为NCSG,第二类型MG为并发MG。可以设置一种新的能力,如simNCSGAndConcurrentGap。第二信息可以指示simNCSGAndConcurrentGap的取值为真或假。当simNCSGAndConcurrentGap的取值为真时,代表第一UE支持第一类型MG和第二类型MG的联合配置;当simNCSGAndConcurrentGap的取值为假时,代表第一UE不支持第一类型MG和第二类型MG的联合配置。
作为又一示例,第一类型MG包括预配置间隙和NCSG,第二类型MG为并发MG。可以设置一种新的能力,如simPreGapAndNCSGAndConcurrentGap。第二信息可以指示simPreGapAndNCSGAndConcurrentGap的取值为真或假。当simPreGapAndNCSGAndConcurrentGap的取值为真时,代表第一UE支持第一类型MG和第二类型MG的联合配置;当simPreGapAndNCSGAndConcurrentGap的取值为假时,代表第一UE不支持第一类型MG和第二类型MG的联合配置。
在一些实施例中,第二信息可以间接或隐含指示第一UE支持或不支持第一类型MG和第二类型MG的联合配置。例如,第二信息可以分别指示第一UE支持第一类型MG和第二类型MG(应理解,该示例中,第二信息可以包括多种信息,该多种信息可以一次性上报至网络设备,也可以分开上报至网络设备)。如果第一UE分别支持第一类型MG和第二类型MG,则可以认为第一UE支持第一类型MG和第二类型MG的联合配置;如果第一UE不支持第一类型MG或第二类型MG,则可以认为第一UE不支持第一类型MG和第二类型MG的联合配置。该实施例提供的第二信息的实现方式无需为UE设置新的信令以支持第二信息的上报,可以节省空口开销。
作为一个示例,第一类型MG为预配置间隙,第二类型MG为并发MG。如果第二信息指示第一 UE支持预配置间隙,且第二信息指示第一UE支持并发MG,则可以认为第一UE支持第一类型MG和第二类型MG的联合配置。如果第二信息指示第一UE不支持预配置间隙,或者第二信息指示第一UE不支持并发MG,则可以认为第一UE不支持第一类型MG和第二类型MG的联合配置。
作为另一示例,第一类型MG为NCSG,第二类型MG为并发MG。如果第二信息指示第一UE支持NCSG,且第二信息指示第一UE支持并发MG,则可以认为第一UE支持第一类型MG和第二类型MG的联合配置。如果第二信息指示第一UE不支持NCSG,或者第二信息指示第一UE不支持并发MG,则可以认为第一UE不支持第一类型MG和第二类型MG的联合配置。
作为又一示例,第一类型MG包括pre-MG和NCSG,第二类型MG为并发MG。如果第二信息指示第一UE分别支持pre-MG、NCSG以及并发MG,则可以认为第一UE支持第一类型MG和第二类型MG的联合配置。如果第二信息指示第一UE不支持pre-MG,或者第二信息指示第一UE不支持并发MG,或者第二信息指示第一UE不支持NCSG,则可以认为第一UE不支持第一类型MG和第二类型MG的联合配置。
作为又一示例,第一类型MG包括pre-MG和NCSG,第二类型MG为并发MG。如果第二信息直接指示第一UE同时支持pre-MG和并发MG(例如可以参见前文中的simPreGapAndConcurrentGap),且第二信息直接指示第一UE同时支持NCSG和并发MG(例如可以参见前文中的simNCSGAndConcurrentGap),则可以认为第一UE支持第一类型MG和第二类型MG的联合配置。如果第二信息指示第一UE不同时支持pre-MG和并发MG,或者第二信息指示第一UE不同时支持NCSG和并发MG,则可以认为第一UE不支持第一类型MG和第二类型MG的联合配置。
在一些实施例中,第二信息可以是上文列举的任意信息的组合。例如,第二信息可以包括以下信息中的一种或多种:第一UE支持pre-MG;第一UE支持NCSG;第一UE支持并发MG;第一UE同时支持支持pre-MG和并发MG;第一UE同时支持NCSG和并发MG;以及第一UE同时支持pre-MG、NCSG、并发MG。
在一些实施例中,如果第一类型MG包括多种MG,则第二信息可以指示第一UE可以支持多个MG,且该多个MG中的部分或全部MG与该多种MG一一对应。例如,第一类型MG包括pre-MG和NCSG,则第二信息可以指示第一UE支持多个MG,多个MG包括第一MG和第二MG,第一MG为pre-MG,第二MG为NCSG。
在一些实施例中,如果第一类型MG包括多种MG,则第二信息可以指示第一UE可以支持一个或多个MG,且该一个或多个MG中的某个MG同时为该多种MG。例如,第一类型MG包括pre-MG和NCSG,则第二信息可以指示第一UE支持多个MG,多个MG包括第一MG,第一MG为pre-MG,且第一MG为NCSG。
网络设备接收到第二信息之后,即可确定是否能够针对第一UE进行第一类型MG和第二类型MG的联合配置。然后,网络设备可以为第一UE同时配置第一类型MG和第二类型MG。同时配置第一类型MG和第二类型MG的方式可以有多种,下面给出几个示例。
以第一类型测量配置包括预配置测量配置,第二类型测量配置包括并发测量配置为例,则网络设备可以将如表一所示的配置中的一个或多个MG配置为预配置测量配置。例如,参见表一,配置0包含两个per-FR1 MG和一个per-FR2 MG,则网络设备可以将其中一个MG配置为预配置测量配置。
以第一类型测量配置包括预配置测量配置,第二类型测量配置包括并发测量配置为例,则网络设备可以在表一所示的配置的基础上新增pre-MG。例如,参见表一,配置0包含两个per-FR1 MG和一个per-FR2 MG,则网络设备可以在per-FR2 MG基础上新增一个per-FR2 pre-MG。
以第一类型测量配置包括NCSG,第二类型测量配置包括并发测量配置为例,则网络设备可以将如表一所示的配置中的一个或多个MG配置为NCSG。例如,参见表一,配置0包含两个per-FR1 MG和一个per-FR2 MG,则网络设备可以将其中一个MG配置为NCSG。
以第一类型测量配置包括NCSG,第二类型测量配置包括并发测量配置为例,则网络设备可以在表一所示的配置的基础上新增NCSG。例如,参见表一,配置0包含两个per-FR1 MG和一个per-FR2MG,则网络设备可以在per-FR2 MG基础上新增一个NCSG。
示例2:第一信息包含第三信息,即用于指示或确定为第一UE配置的第一类型MG的数量的信息
在一些实施例中,第三信息可用于确定为第一UE配置的第一类型MG的最大数量。也就是说,该第三信息可用于确定最多可以为第一UE配置几个第一类型MG。以第一类型MG为pre-MG为例,根据第三信息可以确定最多可以为第一UE配置几个预配置间隙。以第一类型MG为NCSG为例,根据第三信息可以确定最多可以为第一UE配置几个NCSG。
在一些实施例中,第三信息可用于指示第一UE支持的第一类型MG的数量。该第一类型MG的数量可以是per-UE的数量。换句话说,该第一类型MG的数量可以是以per-UE的粒度来统计。该第 一类型MG的数量也可以是per-FR的数量。换句话说,该第一类型MG的数量可以以per-FR的粒度来统计。
在一些实施例中,第三信息可用于指示第一UE支持的第一类型MG的最大数量。这里提到的最大数量可以为per-UE的最大数量。换句话说,最大数量可以是以per-UE的粒度来统计。
在一些实施例中,第三信息可用于指示第一UE支持的第一类型MG的最大数量。这里提到的最大数量可以为per-FR的最大数量。换句话说,最大数量可以以per-FR的粒度来统计。比如,第三信息可以指示以下中的一种或多种:针对FR1,最多可以为UE配置几个第一类型MG;针对FR2,最多可以为UE配置几个第一类型MG。如果以per-FR的粒度来统计,需要第一UE支持per-FR能力。第一UE的per-FR能力是明确指示的能力,也可以是默认的能力。以第一类型MG为pre-MG为例,Release17并未引入per-FR pre-MG的能力,默认当UE支持per-FR的能力和pre-MG的能力时,也就支持per-FR pre-MG的能力。
在一些实施例中,第一UE支持的第一类型MG的最大数量还可以包括上述两种情况的组合。例如,第三信息可以同时包括per-UE的最大数量和per-FR的最大数量。
在一些实施例中,若第一类型MG是pre-MG,则上述数量还可以指同时激活的数量(预配置但没有激活的可以不算)。
示例3:第一信息包含第四信息,即用于指示或确定第一类型MG和第二类型MG的联合配置的 信息
在一些实施例中,第二类型MG可以包括一种或多种配置。第四信息可用于指示该一种或多种配置中的目标配置。以第二类型MG为并发MG为例,从前文中的表一可以看出,第二类型MG包括8种配置。该第四信息可以指示并发MG的配置中的一种或多种配置,作为目标配置。
在一些实施例中,目标配置可以理解为第一UE支持引入第一类型MG的配置。以第一类型MG为pre-MG和/或NCSG,第二类型MG为并发MG为例,假设第四信息指示表一中的配置0,则可以表示第一UE支持在配置0中引入pre-MG和/或NCSG。在接收到该第四信息之后,网络设备可以将配置0中的部分或全部MG配置为pre-MG和/或NCSG,也可以在配置0中添加新的MG,作为pre-MG和/或NCSG。
在一些实施例中,第二类型MG可以包括一种或多种配置,且该一种或多种配置中的部分或全部配置为第一类型MG和第二类型MG的联合配置。进一步地,第四信息可以直接指示该联合配置中的一个或多个联合配置,作为目标配置。以第一类型MG为pre-MG和/或NCSG,第二类型MG为并发MG为例,可以对表一进行扩展,在表一的某些配置中添加第一类型MG,或者,也可以增加新的配置选项,该新的配置选项为支持联合配置的选项。然后,第一UE可以支持联合配置的配置选项中选择目标配置,然后通过第四信息向网络设备指示该目标配置。
在一些实施例中,第四信息还可用于指示第一类型MG的数量。以目标配置为第一UE支持引入第一类型MG的配置为例,则“第一类型MG的数量”可以指在目标配置中需要引入的第一类型MG的数量。
在一些实施例中,第四信息还可用于指示第一类型MG为per-FR的MG和/或per-UE的MG。以目标配置为第一UE支持引入第一类型MG的配置为例,则“第一类型MG为per-FR的MG和/或per-UE的MG”可以指在目标配置中引入的第一类型MG为per-FR的MG,还是per-UE的MG。
在一些实施例中,如果第一UE不支持per-FR的MG(如不具有per-FR的MG的能力),则目标配置中的MG均为per-UE的MG。该MG可以包括多个MG,所述第四信息指示所述多个MG中的部分或全部MG为所述第一类型MG。以第二类型MG为并发MG为例,如果第一UE不支持per-FR的MG,则并发MG的配置为两个per-UE的MG的组合。在这种情况下,第四信息可以指示第一类型MG的数量为1或2。如果第一类型MG的数量为1,则表示第一UE支持一个第一类型MG和一个普通的MG的组合。如果第一类型MG的数量为2,则表示第一UE支持两个第一类型MG的组合。
在一些实施例中,可以对第四信息指示的目标配置进行回退。以第一类型MG为pre-MG/NCSG,第二类型MG为并发MG为例,如果第四信息指示第一UE支持将并发MG中的两个MG配置为pre-MG/NCSG,则在一些情况下,可以仅将并发MG中的一个MG配置为pre-MG/NCSG。作为一个具体的例子,假设第一UE不支持per-FR的MG(如不具有per-FR的MG的能力),且第四信息指示第一UE支持将并发MG中的两个per-UE的MG均配置为pre-MG,则在一些情况下,可以仅将并发MG中的一个MG配置为pre-MG。
在一些实施例中,第四信息可以包括多个指示信息。该多个指示信息与第二类型测量配置包含的多种配置一一对应。该多个指示信息中的每个指示信息可用于指示该每个指示信息对应的配置是否属于目标配置。进一步地,在一些实施例中,该第四信息可以为位图(bitmap),相应地,第四信息中的 每个指示信息可以为1比特。
以第一类型MG为pre-MG,第二类型MG为并发MG为例,第二类型MG可以包括如前文中的表一所示的8种配置。第四信息可以为长度为8的位图,位图中的8个比特与表一中的8种配置一一对应。如果某个比特取值为1,则可以表示第一UE支持在该比特对应的配置中引入pre-MG。
以第一类型MG为NCSG,第二类型MG为并发MG为例,第二类型MG可以包括如前文中的表一所示的8种配置。第四信息可以为长度为8的位图,位图中的8个比特与表一中的8种配置一一对应。如果某个比特取值为1,则可以表示第一UE支持在该比特对应的配置中引入NCSG。
为了便于理解,下文结合两个更为具体的示例,对第一UE的能力以及第四信息指示联合配置的方式进行更为详细地举例说明。
示例3.1:第一类型MG为pre-MG,第二类型MG为并发MG
从表一可以看出,并发MG的间隙组合配置0(简称配置0)支持两个per-FR1 MG和一个per-FR2MG。针对该配置0,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 pre-MG+per-FR1 MG+per-FR2 MG(一个pre-MG);
(2)per-FR1 MG+per-FR1 MG+per-FR2 pre-MG(一个pre-MG);
(3)per-FR1 pre-MG+per-FR1 MG+per-FR2 pre-MG(两个pre-MG);
(4)per-FR1 pre-MG+per-FR1 pre-MG+per-FR2 MG(两个pre-MG);以及
(5)per-FR1 pre-MG+per-FR1 pre-MG+per-FR2 pre-MG(三个pre-MG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置1(简称配置1)支持一个per-FR1 MG和两个per-FR2MG。针对该配置1,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 pre-MG+per-FR2 MG+per-FR2 MG(一个pre-MG);
(2)per-FR1 MG+per-FR2 MG+per-FR2 pre-MG(一个pre-MG);
(3)per-FR1 pre-MG+per-FR2 MG+per-FR2 pre-MG(两个pre-MG);
(4)per-FR1 MG+per-FR2 pre-MG+per-FR2 pre-MG(两个pre-MG);以及
(5)per-FR1 pre-MG+per-FR2 pre-MG+per-FR2 pre-MG(三个pre-MG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置2(简称配置2)支持两个per-UE MG。针对该配置2,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-UE pre-MG+per-UE MG(一个pre-MG);以及
(2)per-UE pre-MG+per-UE pre-MG(两个pre-MG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置3(简称配置3)支持一个per-FR1 MG和一个per-UE MG。针对该配置3,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 pre-MG+per-UE MG(一个pre-MG);
(2)per-FR1 MG+per-UE pre-MG(一个pre-MG);以及
(3)per-FR1 pre-MG+per-UE pre-MG(两个pre-MG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置4(简称配置4)支持一个per-FR2 MG和一个per-UE MG。针对该配置4,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR2 pre-MG+per-UE MG(一个pre-MG);
(2)per-FR2 MG+per-UE pre-MG(一个pre-MG);以及
(3)per-FR2 pre-MG+per-UE pre-MG(两个pre-MG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置5(简称配置5)支持一个per-FR1 MG、一个per-FR2MG、一个per-UE MG。针对该配置5,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 pre-MG+per-FR2 MG+per-UE MG(一个pre-MG);
(2)per-FR1 MG+per-FR2 pre-MG+per-UE MG(一个pre-MG);
(3)per-FR1 MG+per-FR2 MG+per-UE pre-MG(一个pre-MG);
(4)per-FR1 pre-MG+per-FR2 pre-MG+per-UE MG(两个pre-MG);
(5)per-FR1 MG+per-FR2 pre-MG+per-UE pre-MG(两个pre-MG);
(6)per-FR1 pre-MG+per-FR2 MG+per-UE pre-MG(两个pre-MG);以及
(7)per-FR1 pre-MG+per-FR2 pre-MG+per-UE pre-MG(三个pre-MG)。
从表一可以看出,并发MG的间隙组合配置6(简称配置6)支持两个per-FR1 MG。针对该配置6,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 pre-MG+per-FR1 MG(一个pre-MG);以及
(2)per-FR1 pre-MG+per-FR1 pre-MG(两个pre-MG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置7(简称配置7)支持两个per-FR2 MG。针对该配置7,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR2 pre-MG+per-FR2 MG(一个pre-MG);以及
(2)per-FR2 pre-MG+per-FR2 pre-MG(两个pre-MG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
示例3.2:第一类型MG为NCSG,第二类型MG为并发MG
在一些实施例,示例3.2可以提供与示例3.1类似的联合配置方式,只需要将示例3.1中的pre-MG均替换成NCSG即可。
在一些实施例中,考虑到NCSG目前还不能不支持PRS测量,而并发MG的配置3/4/5中的per-UE MG是为针对PRS测量而引入的配置,因此,可以不将并发MG的配置3/4/5中的per-UE MG替换为NCSG。下面给出该实施例对应的具体联合配置。
从表一可以看出,并发MG的间隙组合配置0(简称配置0)支持两个per-FR1 MG和一个per-FR2 MG。针对该配置0,结合UE支持的NCSG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 NCSG+per-FR1 MG+per-FR2 MG(一个NCSG);
(2)per-FR1 MG+per-FR1 MG+per-FR2 NCSG(一个NCSG);
(3)per-FR1 NCSG+per-FR1 MG+per-FR2 NCSG(两个NCSG);
(4)per-FR1 NCSG+per-FR1 NCSG+per-FR2 MG(两个NCSG);以及
(5)per-FR1 NCSG+per-FR1 NCSG+per-FR2 NCSG(三个NCSG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置1(简称配置1)支持一个per-FR1 MG和两个per-FR2 MG。针对该配置1,结合UE支持的NCSG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 NCSG+per-FR2 MG+per-FR2 MG(一个NCSG);
(2)per-FR1 MG+per-FR2 MG+per-FR2 NCSG(一个NCSG);
(3)per-FR1 NCSG+per-FR2 MG+per-FR2 NCSG(两个NCSG);
(4)per-FR1 MG+per-FR2 NCSG+per-FR2 NCSG(两个NCSG);以及
(5)per-FR1 NCSG+per-FR2 NCSG+per-FR2 NCSG(三个NCSG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置2(简称配置2)支持两个per-UE MG。针对该配置2,结合UE支持的NCSG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-UE NCSG+per-UE MG(一个NCSG);以及
(2)per-UE NCSG+per-UE NCSG(两个NCSG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置3(简称配置3)支持一个per-FR1 MG和一个per-UE MG。针对该配置3,结合UE支持的NCSG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 NCSG+per-UE MG(一个NCSG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设 备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置4(简称配置4)支持一个per-FR2 MG和一个per-UE MG。针对该配置4,结合UE支持的pre-MG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR2 NCSG+per-UE MG(一个NCSG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置5(简称配置5)支持一个per-FR1 MG、一个per-FR2 MG、一个per-UE MG。针对该配置5,结合UE支持的NCSG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 NCSG+per-FR2 MG+per-UE MG(一个NCSG);
(2)per-FR1 MG+per-FR2 NCSG+per-UE MG(一个NCSG);以及
(3)per-FR1 NCSG+per-FR2 NCSG+per-UE MG(两个NCSG)。
从表一可以看出,并发MG的间隙组合配置6(简称配置6)支持两个per-FR1 MG。针对该配置6,结合UE支持的NCSG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR1 NCSG+per-FR1 MG(一个NCSG);以及
(2)per-FR1 NCSG+per-FR1 NCSG(两个NCSG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
从表一可以看出,并发MG的间隙组合配置7(简称配置7)支持两个per-FR2 MG。针对该配置7,结合UE支持的NCSG的数量,可以为第一UE引入支持如下联合配置的能力:
(1)per-FR2 NCSG+per-FR2 MG(一个NCSG);以及
(2)per-FR2 NCSG+per-FR2 NCSG(两个NCSG)。
相应地,如果第一UE具有支持上述联合配置的能力,则可以通过前文提到的第四信息向网络设备指示上述联合配置中的一种或多种。
示例4:第一信息包含第五信息,即用于指示或确定是否支持将per-FR的第一类型MG配置为第 二类型MG的信息
也就是说,可以将“是否支持将per-FR的第一类型MG配置为第二类型MG”作为单独的UE能力。以第一类型MG包括NCSG,第二类型MG包括并发MG为例,该第五信息可用于指示或确定是否支持将per-FR的NCSG配置为并发MG。
前文在介绍pre-MG时,描述了pre-MG支持多种激活/去激活机制。下文结合图5,详细描述当存在多个pre-MG,针对该多个pre-MG,第一UE应当如何进行激活/去激活操作。
如前文所述,当UE同时支持网络设备控制的激活/去激活机制以及UE自主激活/去激活机制时,如果网络设备通过信令来指示pre-MG在BWP内的激活/去激活状态,则优先采用基于网络设备的指示的方式确定pre-MG的激活/去激活状态,而不需要UE根据条件判断pre-MG的激活/去激活状态。目前,网络设备一般是通过在BWP配置中携带的去激活MG列表来指示pre-MG的激活状态,包含在该列表中的pre-MG认为是去激活状态,而没有包含在该列表中的pre-MG则默认为激活状态。相关技术提供的信令中并没有显示指示pre-MG应当采用哪种激活机制进行激活/去激活,而是根据网络设备是否配置去激活MG列表来隐式的指示pre-MG的激活/去激活机制。这意味着,只要任何一个BWP配置中携带了某个pre-MG,则认为该pre-MG的激活/去激活机制为网络设备控制的激活/去激活机制。
但是,当只配置了多个pre-MG时,每个pre-MG的激活和去激活机制应当如何确定。例如,多个pre-MG的激活机制是否要相同,目前还没有明确的规定。
针对上述问题,下面结合图5,对本申请实施例进行详细介绍。
图5是本申请另一实施例提供的无线通信的方法的流程示意图。图5的方法是站在第一UE和网络设备交互的角度进行描述的。该第一UE和网络设备可以是前文提到的任意类型的UE和网络设备。
参见图5,在步骤S510,第一UE接收第一信息。该第一UE可以具有(或被配置了)多个pre-MG。该第一信息可用于确定多个pre-MG的激活机制。这里提到的pre-MG的激活/去激活机制可以包括以下激活:UE自主激活/去激活机制和网络设备控制的激活/去激活机制。
在一些实施例中,步骤S510可以是在第一UE同时支持pre-MG的多种激活/去激活机制(如同时支持UE自主激活/去激活机制和网络设备控制的激活/去激活机制)的情况下执行。如果第一UE仅支持一种激活/去激活机制,则可以不执行步骤S510,直接按照该激活/去激活机制对该多个pre-MG进行激活/去激活即可。
在一些实施例中,该多个pre-MG的激活/去激活机制可以为相同的激活/去激活机制。例如,该多 个pre-MG的激活机制均为网络设备控制的激活/去激活机制。又如,该多个pre-MG的激活机制均为UE自主激活/去激活机制。
在一些实施例中,该多个pre-MG的激活/去激活机制为不同的激活/去激活机制。或者,该多个pre-MG具有各自对应的激活/去激活机制。例如,该多个pre-MG包括第一pre-MG和第二pre-MG。第一pre-MG的激活/去激活机制为网络设备控制的激活/去激活机制;第二pre-MG的激活/去激活机制为UE自主激活/去激活机制。
上文提到的第一信息可以包括BWP的配置信息。该BWP可以指第一UE使用的任意一个BWP(如当前处于激活状态的BWP)。或者,该BWP可以指网络设备为第一UE配置的部分或全部BWP。
在一些实施例中,BWP的配置信息可以包括第一去激活MG集合(如第一去激活MG列表)。该第一去激活MG集合中的MG为在切换至该BWP时(或BWP处于激活状态时)需要去激活的MG。如果第一MG集合包括该多个pre-MG中的一个或多个MG,则该多个pre-MG的激活/去激活机制可以均为网络设备控制的激活/去激活机制。例如,当第一UE支持两种pre-MG激活/去激活机制时,则只要第一UE的任何一个BWP配置中的去激活MG列表中包含多个pre-MG中的任何一个pre-MG的ID时,则可以认为该多个pre-MG均采用网路设备控制的激活/去激活机制。对于没有包含在去激活列表中的pre-MG,均默认处于激活状态。
作为一个更为具体的示例,第一UE具有pre-MG 0和pre-MG 1,且第一UE配置了4个BWP,分别是BWP-1、BWP-2、BWP-3以及BWP-4。在上述4个BWP中,BWP-1和BWP-2配置的去激活MG列表中包含pre-MG 0,而其他BWP配置没有配置去激活MG列表,或去激活MG列表为空。则可以认为是pre-MG 0和pre-MG 1都是采用网络设备控制的激活/去激活机制(即使pre-MG 1没有出现在任何一个BWP的去激活MG列表中)。因此,pre-MG 0在BWP-1和BWP-2激活时处于去激活状态,在其他BWP激活时处于激活状态;而pre-MG 1在所有BWP激活时都处于激活状态。
在一些实施例中,BWP的配置信息可以包括第一去激活MG集合。该第一去激活MG集合中的MG为在切换至该BWP时(或BWP处于激活状态时)。如果第一MG集合包括该多个pre-MG中的一个或多个MG,则该一个或多个MG的激活/去激活机制为网络设备控制的激活/去激活机制(而不受其他MG的影响),该多个pre-MG中的除该一个或多个MG之外的剩余MG的激活/去激活机制可以为UE自主激活/去激活机制。例如,当第一UE支持两种pre-MG激活/去激活机制时,则只要第一UE的任何一个BWP配置中的去激活MG列表中包含多个pre-MG中的某个pre-MG的ID时,则可以认为该pre-MG采用网路设备控制的激活/去激活机制。对于没有包含在去激活列表中的pre-MG,可以采用UE自主激活/去激活机制。
作为一个更为具体的示例,第一UE具有pre-MG 0和pre-MG 1,且第一UE配置了4个BWP,分别是BWP-1、BWP-2、BWP-3以及BWP-4。在上述4个BWP中,BWP-1和BWP-2配置的去激活MG列表中包含pre-MG 0,而其他BWP配置没有配置去激活MG列表,或去激活MG列表为空。则可以认为是pre-MG 0采用网络设备控制的激活/去激活机制。而pre-MG 1的激活/去激活机制为UE自主激活/去激活机制(因为pre-MG 1没有出现在任何一个BWP的去激活列表中)。因此,pre-MG 0在BWP-1和BWP-2激活时处于去激活状态,在其他BWP激活时处于激活状态;而pre-MG 1可以由UE根据pre-MG 1所关联的测量对象和各个BWP的关系等信息来判断是否激活。
在一些实施例中,上文提到的第一信息可以包括网络设备发送的用于指示多个pre-MG的激活/去激活机制的指示信息。该指示信息例如可以是专门用于指示多个pre-MG的激活/去激活机制的指示信令。
在一些实施例中,该多个pre-MG对应同一激活/去激活机制的指示信息。该指示信息可以是一个专门用于指示该多个pre-MG的信令。该信令例如可以通过RRC配置。例如,该信令可以是NetworkControlPreGap。NetworkControlPreGap的取值为True/False,或者NetworkControlPreGap的取值为1/0。如果NetworkControlPreGap的取值为True(或1),则可以表示该多个pre-MG均采用网络设备控制的激活/去激活机制。或者,该信令可以是PreGapActivationMechanism。PreGapActivationMechanism的取值从{NetworkControl,UEAutonomous}中选择。网络设备可以通过配置PreGapActivationMechanism的取值,来指示该多个pre-MG的激活/去激活机制。
在一些实施例中,该多个pre-MG可以具有各自对应的激活/去激活机制的指示信息。例如,网络设备可以通过一组信令来配置多个pre-MG的激活/去激活机制。该一组信令可以采用bitmap或序列的形式。该一组信令例如可以通过RRC信令来承载。作为一个具体的例子,该一组信令可以是长度与所配置的pre-MG的数量相等的序列。该序列中的每个元素为PreGapActivationMechanism,且PreGapActivationMechanism的取值从{NetworkControl,UEAutonomous}中选择。
应理解,图5的方案可以与图4的方案进行组合。例如,当第一类型MG为pre-MG,且联合配置 中的pre-MG包括多个pre-MG时,可以采用图5所示的方案对该多个pre-MG进行激活/去激活操作。还应理解,图5实施例中的第一信息不同于图4实施例中的第一信息。如果图4和图5对应的实施例相互结合,则可以将图5中的第一信息称为第六信息。
上文结合图1至图5,详细描述了本申请的方法实施例,下面结合图6至图10,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图6是本申请一个实施例提供的UE的结构示意图。图6的UE600包括通信模块610。所述通信模块610可用于向网络设备发送第一信息。所述第一信息用于指示所述UE的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
在一些实施例中,所述第一类型测量间隙包括预配置测量间隙和/或网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙;或者,所述第一类型测量间隙和所述第二类型测量间隙中的一种测量间隙包括预配置测量间隙,所述第一类型测量间隙和所述第二类型测量间隙中的另一种测量间隙包括网络控制的小间隙。
在一些实施例中,所述第一信息包含以下中的一种或多种:第二信息,用于确定是否能够为所述UE进行所述联合配置;第三信息,用于确定为所述UE配置的所述第一类型测量间隙的数量;第四信息,用于确定所述第一类型测量间隙和所述第二类型测量间隙的联合配置;以及第五信息,用于确定是否支持将per-FR的所述第一类型测量间隙配置为所述第二类型测量间隙。
在一些实施例中,所述第二信息指示以下信息中的一种或多种:所述UE支持预配置测量间隙;所述UE支持网络控制的小间隙;所述UE支持并发测量间隙;所述UE同时支持预配置测量间隙和并发测量间隙;所述UE同时支持网络控制的小间隙和并发测量间隙;以及所述UE同时支持预配置测量间隙、网络控制的小间隙、并发测量间隙。
在一些实施例中,所述联合配置为预配置测量间隙、网络控制的小间隙以及并发测量间隙的联合配置,所述第二信息用于指示以下中的一种或多种:所述UE支持多个测量间隙,所述多个测量间隙包括第一测量间隙和第二测量间隙,所述第一测量间隙为预配置测量间隙,所述第二测量间隙为网络控制的小间隙;以及所述UE支持一个或多个测量间隙,所述一个或多个测量间隙包括第一测量间隙,所述第一测量间隙为预配置测量间隙,且所述第一测量间隙为网络控制的小间隙。
在一些实施例中,所述第三信息指示所述UE支持的所述第一类型测量间隙的最大数量;其中,所述最大数量为per-UE的最大数量;或者,所述最大数量为per-FR的最大数量。
在一些实施例中,所述第二类型测量间隙包括一种或多种配置,所述第四信息用于指示所述一种或多种配置中的目标配置;其中,所述目标配置为所述UE支持引入所述第一类型测量间隙的配置;或者,所述目标配置为所述第一类型测量间隙和所述第二类型测量间隙的联合配置。
在一些实施例中,所述第四信息还用于指示以下信息中的一种或多种:所述第一类型测量间隙的数量;以及所述第一类型测量间隙为per-FR的测量间隙和/或per-UE的测量间隙。
在一些实施例中,如果所述UE不支持per-FR的测量间隙,则所述目标配置中的测量间隙均为per-UE的测量间隙。
在一些实施例中,所述目标配置包括多个测量间隙,所述第四信息指示所述多个测量间隙中的部分或全部测量间隙为所述第一类型测量间隙。
在一些实施例中,所述第四信息包括多个指示信息,所述多个指示信息与所述多种配置一一对应,所述多个指示信息中的每个指示信息用于指示所述每个指示信息对应的配置是否属于所述目标配置。
在一些实施例中,所述第一类型测量间隙包括网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙,所述第五信息用于确定是否支持将per-FR的网络控制的小间隙配置为并发测量间隙。
图7是本申请一个实施例提供的网络设备的结构示意图。图7的网络设备700包括通信模块710。所述通信模块710可用于接收第一UE发送的第一信息。所述第一信息用于指示所述第一UE的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
在一些实施例中,所述第一类型测量间隙包括预配置测量间隙和/或网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙;或者,所述第一类型测量间隙和所述第二类型测量间隙中的一种测量间隙包括预配置测量间隙,所述第一类型测量间隙和所述第二类型测量间隙中的另一种测量间隙包括网络控制的小间隙。
在一些实施例中,所述第一信息包含以下中的一种或多种:第二信息,用于确定是否能够为所述第一UE进行所述联合配置;第三信息,用于确定为所述第一UE配置的所述第一类型测量间隙的数量;第四信息,用于确定所述第一类型测量间隙和所述第二类型测量间隙的联合配置;以及第五信息,用于确定是否支持将per-FR的所述第一类型测量间隙配置为所述第二类型测量间隙。
在一些实施例中,所述第二信息指示以下信息中的一种或多种:所述第一UE支持预配置测量间隙;所述第一UE支持网络控制的小间隙;所述第一UE支持并发测量间隙;所述第一UE同时支持预配置测量间隙和并发测量间隙;所述第一UE同时支持网络控制的小间隙和并发测量间隙;以及所述第一UE同时支持预配置测量间隙、网络控制的小间隙、并发测量间隙。
在一些实施例中,所述联合配置为预配置测量间隙、网络控制的小间隙以及并发测量间隙的联合配置,所述第二信息用于指示以下中的一种或多种:所述第一UE支持多个测量间隙,所述多个测量间隙包括第一测量间隙和第二测量间隙,所述第一测量间隙为预配置测量间隙,所述第二测量间隙为网络控制的小间隙;以及所述第一UE支持一个或多个测量间隙,所述一个或多个测量间隙包括第一测量间隙,所述第一测量间隙为预配置测量间隙,且所述第一测量间隙为网络控制的小间隙。
在一些实施例中,所述第三信息指示所述第一UE支持的所述第一类型测量间隙的最大数量;其中,所述最大数量为per-UE的最大数量;或者,所述最大数量为per-FR的最大数量。
在一些实施例中,所述第二类型测量间隙包括一种或多种配置,所述第四信息用于指示所述一种或多种配置中的目标配置;其中,所述目标配置为所述第一UE支持引入所述第一类型测量间隙的配置;或者,所述目标配置为所述第一类型测量间隙和所述第二类型测量间隙的联合配置。
在一些实施例中,所述第四信息还用于指示以下信息中的一种或多种:所述第一类型测量间隙的数量;以及所述第一类型测量间隙为per-FR的测量间隙和/或per-UE的测量间隙。
在一些实施例中,如果所述第一UE不支持per-FR的测量间隙,则所述目标配置中的测量间隙均为per-UE的测量间隙。
在一些实施例中,所述目标配置包括多个测量间隙,所述第四信息指示所述多个测量间隙中的部分或全部测量间隙为所述第一类型测量间隙。
在一些实施例中,所述第四信息包括多个指示信息,所述多个指示信息与所述多种配置一一对应,所述多个指示信息中的每个指示信息用于指示所述每个指示信息对应的配置是否属于所述目标配置。
在一些实施例中,所述第一类型测量间隙包括网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙,所述第五信息用于确定是否支持将per-FR的网络控制的小间隙配置为并发测量间隙。
图8是本申请另一实施例提供的UE的结构示意图。图8的UE800包括通信模块810。所述通信模块810可用于用于接收第一信息。所述第一UE具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
在一些实施例中,所述第一信息包括以下中的一种或多种:BWP的配置信息;以及网络设备发送的用于指示所述多个预配置测量间隙的激活/去激活机制的指示信息。
在一些实施例中,所述BWP的配置信息包括第一去激活测量间隙集合;如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述多个预配置测量间隙的激活/去激活机制均为网络设备控制的激活/去激活机制;或者如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述一个或多个测量间隙的激活/去激活机制为网络设备控制的激活/去激活机制,所述多个预配置测量间隙中的除所述一个或多个测量间隙之外的剩余测量间隙的激活/去激活机制为UE自主激活/去激活机制。
在一些实施例中,所述多个预配置测量间隙对应同一激活/去激活机制的指示信息;或者,所述多个预配置测量间隙具有各自对应的激活/去激活机制的指示信息。
图9是本申请一个实施例提供的网络设备的结构示意图。图9的网络设备900包括通信模块910。所述通信模块910可用于向第一UE发送第一信息。所述第一UE具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制。所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
在一些实施例中,所述第一信息包括以下中的一种或多种:BWP的配置信息;以及网络设备发送的用于指示所述多个预配置测量间隙的激活/去激活机制的指示信息。
在一些实施例中,所述BWP的配置信息包括第一去激活测量间隙集合;如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述多个预配置测量间隙的激活/去激活机制均为网络设备控制的激活/去激活机制;或者如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述一个或多个测量间隙的激活/去激活机制为网络设备控制的激活/去激活机制,所述多个预配置测量间隙中的除所述一个或多个测量间隙之外的剩余测量间隙的激活/去激活机制为UE自主激活/去激活机制。
在一些实施例中,所述多个预配置测量间隙对应同一激活/去激活机制的指示信息;或者,所述多 个预配置测量间隙具有各自对应的激活/去激活机制的指示信息。
图10是本申请实施例的装置的示意性结构图。图10中的虚线表示该单元或模块为可选的。该装置1000可用于实现上述方法实施例中描述的方法。装置1000可以是芯片、UE或网络设备。该UE和网络设备可以分别是前文提到的第一UE以及与该第一UE交互的网络设备。
装置1000可以包括一个或多个处理器1010。该处理器1010可支持装置1000实现前文方法实施例所描述的方法。该处理器1010可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器1010还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1000还可以包括一个或多个存储器1020。存储器1020上存储有程序,该程序可以被处理器1010执行,使得处理器1010执行前文方法实施例所描述的方法。存储器1020可以独立于处理器1010也可以集成在处理器1010中。
装置1000还可以包括收发器1030。处理器1010可以通过收发器1030与其他设备或芯片进行通信。例如,处理器1010可以通过收发器1030与其他设备或芯片进行数据收发。
在一些实施例中,装置1000可位于图6或图8中的UE中。UE中的通信模块可以对应于装置1000中的收发器1030。或者,通信模块的功能可以由装置1000中的收发器1030在处理器1010的控制下实现。
在一些实施例中,装置1000可位于图7或图9中的网络设备中。网络设备中的通信模块可以对应于装置1000中的收发器1030。或者,通信模块的功能可以由装置1000中的收发器1030在处理器1010的控制下实现。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的UE或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由UE或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的UE或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由UE或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的UE或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由UE或网络设备执行的方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中的“配置”可以包括通过系统消息、无线资源控制(radio resource control,RRC)信令和媒体接入控制单元(media access control control element,MAC CE)中的至少一种来配置。
在本申请一些实施例中,"预定义的"或"预设的"可以通过在设备(例如,包括UE和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义的可以是指协议中定义的。
在本申请一些实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是 或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (71)

  1. 一种无线通信的方法,其特征在于,包括:
    第一用户设备向网络设备发送第一信息,所述第一信息用于指示所述第一用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
  2. 根据权利要求1所述的方法,其特征在于:
    所述第一类型测量间隙包括预配置测量间隙和/或网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙;或者,
    所述第一类型测量间隙和所述第二类型测量间隙中的一种测量间隙包括预配置测量间隙,所述第一类型测量间隙和所述第二类型测量间隙中的另一种测量间隙包括网络控制的小间隙。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包含以下中的一种或多种:
    第二信息,用于确定是否能够为所述第一用户设备进行所述联合配置;
    第三信息,用于确定为所述第一用户设备配置的所述第一类型测量间隙的数量;
    第四信息,用于确定所述第一类型测量间隙和所述第二类型测量间隙的联合配置;以及
    第五信息,用于确定是否支持将针对频率范围的所述第一类型测量间隙配置为所述第二类型测量间隙。
  4. 根据权利要求3所述的方法,其特征在于,所述第二信息指示以下信息中的一种或多种:
    所述第一用户设备支持预配置测量间隙;
    所述第一用户设备支持网络控制的小间隙;
    所述第一用户设备支持并发测量间隙;
    所述第一用户设备同时支持预配置测量间隙和并发测量间隙;
    所述第一用户设备同时支持网络控制的小间隙和并发测量间隙;以及
    所述第一用户设备同时支持预配置测量间隙、网络控制的小间隙、并发测量间隙。
  5. 根据权利要求3或4所述的方法,其特征在于,所述联合配置为预配置测量间隙、网络控制的小间隙以及并发测量间隙的联合配置,所述第二信息用于指示以下中的一种或多种:
    所述第一用户设备支持多个测量间隙,所述多个测量间隙包括第一测量间隙和第二测量间隙,所述第一测量间隙为预配置测量间隙,所述第二测量间隙为网络控制的小间隙;以及
    所述第一用户设备支持一个或多个测量间隙,所述一个或多个测量间隙包括第一测量间隙,所述第一测量间隙为预配置测量间隙,且所述第一测量间隙为网络控制的小间隙。
  6. 根据权利要求3-5中任一项所述的方法,其特征在于,所述第三信息指示所述第一用户设备支持的所述第一类型测量间隙的最大数量;
    其中,所述最大数量为针对用户设备的最大数量;或者,所述最大数量为针对频率范围的最大数量。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于,所述第二类型测量间隙包括一种或多种配置,所述第四信息用于指示所述一种或多种配置中的目标配置;
    其中,所述目标配置为所述第一用户设备支持引入所述第一类型测量间隙的配置;或者,所述目标配置为所述第一类型测量间隙和所述第二类型测量间隙的联合配置。
  8. 根据权利要求7所述的方法,其特征在于,所述第四信息还用于指示以下信息中的一种或多种:
    所述第一类型测量间隙的数量;以及
    所述第一类型测量间隙为针对频率范围的测量间隙和/或针对用户设备的测量间隙。
  9. 根据权利要求7或8所述的方法,其特征在于,如果所述第一用户设备不支持针对频率范围的测量间隙,则所述目标配置中的测量间隙均为针对用户设备的测量间隙。
  10. 根据权利要求9所述的方法,其特征在于,所述目标配置包括多个测量间隙,所述第四信息指示所述多个测量间隙中的部分或全部测量间隙为所述第一类型测量间隙。
  11. 根据权利要求7或8所述的方法,其特征在于,所述第四信息包括多个指示信息,所述多个指示信息与所述多种配置一一对应,所述多个指示信息中的每个指示信息用于指示所述每个指示信息对应的配置是否属于所述目标配置。
  12. 根据权利要求3-11中任一项所述的方法,其特征在于,所述第一类型测量间隙包括网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙,所述第五信息用于确定是否支持将per-FR的网络控制的小间隙配置为并发测量间隙。
  13. 一种无线通信的方法,其特征在于,包括:
    网络设备接收第一用户设备发送的第一信息,所述第一信息用于指示所述第一用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
  14. 根据权利要求13所述的方法,其特征在于:
    所述第一类型测量间隙包括预配置测量间隙和/或网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙;或者,
    所述第一类型测量间隙和所述第二类型测量间隙中的一种测量间隙包括预配置测量间隙,所述第一类型测量间隙和所述第二类型测量间隙中的另一种测量间隙包括网络控制的小间隙。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一信息包含以下中的一种或多种:
    第二信息,用于确定是否能够为所述第一用户设备进行所述联合配置;
    第三信息,用于确定为所述第一用户设备配置的所述第一类型测量间隙的数量;
    第四信息,用于确定所述第一类型测量间隙和所述第二类型测量间隙的联合配置;以及
    第五信息,用于确定是否支持将针对频率范围的所述第一类型测量间隙配置为所述第二类型测量间隙。
  16. 根据权利要求15所述的方法,其特征在于,所述第二信息指示以下信息中的一种或多种:
    所述第一用户设备支持预配置测量间隙;
    所述第一用户设备支持网络控制的小间隙;
    所述第一用户设备支持并发测量间隙;
    所述第一用户设备同时支持预配置测量间隙和并发测量间隙;
    所述第一用户设备同时支持网络控制的小间隙和并发测量间隙;以及
    所述第一用户设备同时支持预配置测量间隙、网络控制的小间隙、并发测量间隙。
  17. 根据权利要求15或16所述的方法,其特征在于,所述联合配置为预配置测量间隙、网络控制的小间隙以及并发测量间隙的联合配置,所述第二信息用于指示以下中的一种或多种:
    所述第一用户设备支持多个测量间隙,所述多个测量间隙包括第一测量间隙和第二测量间隙,所述第一测量间隙为预配置测量间隙,所述第二测量间隙为网络控制的小间隙;以及
    所述第一用户设备支持一个或多个测量间隙,所述一个或多个测量间隙包括第一测量间隙,所述第一测量间隙为预配置测量间隙,且所述第一测量间隙为网络控制的小间隙。
  18. 根据权利要求15-17中任一项所述的方法,其特征在于,所述第三信息指示所述第一用户设备支持的所述第一类型测量间隙的最大数量;
    其中,所述最大数量为针对用户设备的最大数量;或者,所述最大数量为针对频率范围的最大数量。
  19. 根据权利要求15-18中任一项所述的方法,其特征在于,所述第二类型测量间隙包括一种或多种配置,所述第四信息用于指示所述一种或多种配置中的目标配置;
    其中,所述目标配置为所述第一用户设备支持引入所述第一类型测量间隙的配置;或者,所述目标配置为所述第一类型测量间隙和所述第二类型测量间隙的联合配置。
  20. 根据权利要求19所述的方法,其特征在于,所述第四信息还用于指示以下信息中的一种或多种:
    所述第一类型测量间隙的数量;以及
    所述第一类型测量间隙为针对频率范围的测量间隙和/或针对用户设备的测量间隙。
  21. 根据权利要求19或20所述的方法,其特征在于,如果所述第一用户设备不支持针对频率范围的测量间隙,则所述目标配置中的测量间隙均为针对用户设备的测量间隙。
  22. 根据权利要求21所述的方法,其特征在于,所述目标配置包括多个测量间隙,所述第四信息指示所述多个测量间隙中的部分或全部测量间隙为所述第一类型测量间隙。
  23. 根据权利要求19或20所述的方法,其特征在于,所述第四信息包括多个指示信息,所述多个指示信息与所述多种配置一一对应,所述多个指示信息中的每个指示信息用于指示所述每个指示信息对应的配置是否属于所述目标配置。
  24. 根据权利要求15-23中任一项所述的方法,其特征在于,所述第一类型测量间隙包括网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙,所述第五信息用于确定是否支持将针对频率范围的网络控制的小间隙配置为并发测量间隙。
  25. 一种无线通信的方法,其特征在于,包括:
    第一用户设备接收第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;
    其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
  26. 根据权利要求25所述的方法,其特征在于,所述第一信息包括以下中的一种或多种:
    带宽部分的配置信息;以及
    网络设备发送的用于指示所述多个预配置测量间隙的激活/去激活机制的指示信息。
  27. 根据权利要求26所述的方法,其特征在于,所述带宽部分的配置信息包括第一去激活测量间隙集合;
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述多个预配置测量间隙的激活/去激活机制均为网络设备控制的激活/去激活机制;或者
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述一个或多个测量间隙的激活/去激活机制为网络设备控制的激活/去激活机制,所述多个预配置测量间隙中的除所述一个或多个测量间隙之外的剩余测量间隙的激活/去激活机制为用户设备自主激活/去激活机制。
  28. 根据权利要求26所述的方法,其特征在于,所述多个预配置测量间隙对应同一激活/去激活机制的指示信息;或者,所述多个预配置测量间隙具有各自对应的激活/去激活机制的指示信息。
  29. 一种无线通信的方法,其特征在于,包括:
    网络设备向第一用户设备发送第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;
    其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
  30. 根据权利要求29所述的方法,其特征在于,所述第一信息包括以下中的一种或多种:
    带宽部分的配置信息;以及
    网络设备发送的用于指示所述多个预配置测量间隙的激活/去激活机制的指示信息。
  31. 根据权利要求30所述的方法,其特征在于,所述带宽部分的配置信息包括第一去激活测量间隙集合;
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述多个预配置测量间隙的激活/去激活机制均为网络设备控制的激活/去激活机制;或者
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述一个或多个测量间隙的激活/去激活机制为网络设备控制的激活/去激活机制,所述多个预配置测量间隙中的除所述一个或多个测量间隙之外的剩余测量间隙的激活/去激活机制为用户设备自主激活/去激活机制。
  32. 根据权利要求30所述的方法,其特征在于,所述多个预配置测量间隙对应同一激活/去激活机制的指示信息;或者,所述多个预配置测量间隙具有各自对应的激活/去激活机制的指示信息。
  33. 一种用户设备,其特征在于,包括:
    通信模块,用于向网络设备发送第一信息,所述第一信息用于指示所述用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
  34. 根据权利要求33所述的用户设备,其特征在于:
    所述第一类型测量间隙包括预配置测量间隙和/或网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙;或者,
    所述第一类型测量间隙和所述第二类型测量间隙中的一种测量间隙包括预配置测量间隙,所述第一类型测量间隙和所述第二类型测量间隙中的另一种测量间隙包括网络控制的小间隙。
  35. 根据权利要求33或34所述的用户设备,其特征在于,所述第一信息包含以下中的一种或多种:
    第二信息,用于确定是否能够为所述用户设备进行所述联合配置;
    第三信息,用于确定为所述用户设备配置的所述第一类型测量间隙的数量;
    第四信息,用于确定所述第一类型测量间隙和所述第二类型测量间隙的联合配置;以及
    第五信息,用于确定是否支持将针对频率范围的所述第一类型测量间隙配置为所述第二类型测量间隙。
  36. 根据权利要求35所述的用户设备,其特征在于,所述第二信息指示以下信息中的一种或多种:
    所述用户设备支持预配置测量间隙;
    所述用户设备支持网络控制的小间隙;
    所述用户设备支持并发测量间隙;
    所述用户设备同时支持预配置测量间隙和并发测量间隙;
    所述用户设备同时支持网络控制的小间隙和并发测量间隙;以及
    所述用户设备同时支持预配置测量间隙、网络控制的小间隙、并发测量间隙。
  37. 根据权利要求35或36所述的用户设备,其特征在于,所述联合配置为预配置测量间隙、网络控制的小间隙以及并发测量间隙的联合配置,所述第二信息用于指示以下中的一种或多种:
    所述用户设备支持多个测量间隙,所述多个测量间隙包括第一测量间隙和第二测量间隙,所述第一测量间隙为预配置测量间隙,所述第二测量间隙为网络控制的小间隙;以及
    所述用户设备支持一个或多个测量间隙,所述一个或多个测量间隙包括第一测量间隙,所述第一测量间隙为预配置测量间隙,且所述第一测量间隙为网络控制的小间隙。
  38. 根据权利要求35-37中任一项所述的用户设备,其特征在于,所述第三信息指示所述用户设备支持的所述第一类型测量间隙的最大数量;
    其中,所述最大数量为针对用户设备的最大数量;或者,所述最大数量为针对频率范围的最大数量。
  39. 根据权利要求35-38中任一项所述的用户设备,其特征在于,所述第二类型测量间隙包括一种或多种配置,所述第四信息用于指示所述一种或多种配置中的目标配置;
    其中,所述目标配置为所述用户设备支持引入所述第一类型测量间隙的配置;或者,所述目标配置为所述第一类型测量间隙和所述第二类型测量间隙的联合配置。
  40. 根据权利要求39所述的用户设备,其特征在于,所述第四信息还用于指示以下信息中的一种或多种:
    所述第一类型测量间隙的数量;以及
    所述第一类型测量间隙为针对频率范围的测量间隙和/或针对用户设备的测量间隙。
  41. 根据权利要求39或40所述的用户设备,其特征在于,如果所述用户设备不支持针对频率范围的测量间隙,则所述目标配置中的测量间隙均为针对用户设备的测量间隙。
  42. 根据权利要求41所述的用户设备,其特征在于,所述目标配置包括多个测量间隙,所述第四信息指示所述多个测量间隙中的部分或全部测量间隙为所述第一类型测量间隙。
  43. 根据权利要求39或40所述的用户设备,其特征在于,所述第四信息包括多个指示信息,所述多个指示信息与所述多种配置一一对应,所述多个指示信息中的每个指示信息用于指示所述每个指示信息对应的配置是否属于所述目标配置。
  44. 根据权利要求35-43中任一项所述的用户设备,其特征在于,所述第一类型测量间隙包括网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙,所述第五信息用于确定是否支持将针对频率范围的网络控制的小间隙配置为并发测量间隙。
  45. 一种网络设备,其特征在于,包括:
    通信模块,用于接收第一用户设备发送的第一信息,所述第一信息用于指示所述第一用户设备的第一能力,所述第一能力与第一类型测量间隙和第二类型测量间隙的联合配置关联。
  46. 根据权利要求45所述的网络设备,其特征在于:
    所述第一类型测量间隙包括预配置测量间隙和/或网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙;或者,
    所述第一类型测量间隙和所述第二类型测量间隙中的一种测量间隙包括预配置测量间隙,所述第一类型测量间隙和所述第二类型测量间隙中的另一种测量间隙包括网络控制的小间隙。
  47. 根据权利要求45或46所述的网络设备,其特征在于,所述第一信息包含以下中的一种或多种:
    第二信息,用于确定是否能够为所述第一用户设备进行所述联合配置;
    第三信息,用于确定为所述第一用户设备配置的所述第一类型测量间隙的数量;
    第四信息,用于确定所述第一类型测量间隙和所述第二类型测量间隙的联合配置;以及
    第五信息,用于确定是否支持将针对频率范围的所述第一类型测量间隙配置为所述第二类型测量间隙。
  48. 根据权利要求47所述的网络设备,其特征在于,所述第二信息指示以下信息中的一种或多种:
    所述第一用户设备支持预配置测量间隙;
    所述第一用户设备支持网络控制的小间隙;
    所述第一用户设备支持并发测量间隙;
    所述第一用户设备同时支持预配置测量间隙和并发测量间隙;
    所述第一用户设备同时支持网络控制的小间隙和并发测量间隙;以及
    所述第一用户设备同时支持预配置测量间隙、网络控制的小间隙、并发测量间隙。
  49. 根据权利要求47或48所述的网络设备,其特征在于,所述联合配置为预配置测量间隙、网络控制的小间隙以及并发测量间隙的联合配置,所述第二信息用于指示以下中的一种或多种:
    所述第一用户设备支持多个测量间隙,所述多个测量间隙包括第一测量间隙和第二测量间隙,所述第一测量间隙为预配置测量间隙,所述第二测量间隙为网络控制的小间隙;以及
    所述第一用户设备支持一个或多个测量间隙,所述一个或多个测量间隙包括第一测量间隙,所述第一测量间隙为预配置测量间隙,且所述第一测量间隙为网络控制的小间隙。
  50. 根据权利要求47-49中任一项所述的网络设备,其特征在于,所述第三信息指示所述第一用户设备支持的所述第一类型测量间隙的最大数量;
    其中,所述最大数量为针对用户设备的最大数量;或者,所述最大数量为针对频率范围的最大数量。
  51. 根据权利要求47-50中任一项所述的网络设备,其特征在于,所述第二类型测量间隙包括一种或多种配置,所述第四信息用于指示所述一种或多种配置中的目标配置;
    其中,所述目标配置为所述第一用户设备支持引入所述第一类型测量间隙的配置;或者,所述目标配置为所述第一类型测量间隙和所述第二类型测量间隙的联合配置。
  52. 根据权利要求51所述的网络设备,其特征在于,所述第四信息还用于指示以下信息中的一种或多种:
    所述第一类型测量间隙的数量;以及
    所述第一类型测量间隙为针对频率范围的测量间隙和/或针对用户设备的测量间隙。
  53. 根据权利要求51或52所述的网络设备,其特征在于,如果所述第一用户设备不支持针对频率范围的测量间隙,则所述目标配置中的测量间隙均为针对用户设备的测量间隙。
  54. 根据权利要求53所述的网络设备,其特征在于,所述目标配置包括多个测量间隙,所述第四信息指示所述多个测量间隙中的部分或全部测量间隙为所述第一类型测量间隙。
  55. 根据权利要求51或52所述的网络设备,其特征在于,所述第四信息包括多个指示信息,所述多个指示信息与所述多种配置一一对应,所述多个指示信息中的每个指示信息用于指示所述每个指示信息对应的配置是否属于所述目标配置。
  56. 根据权利要求47-55中任一项所述的网络设备,其特征在于,所述第一类型测量间隙包括网络控制的小间隙,所述第二类型测量间隙包括并发测量间隙,所述第五信息用于确定是否支持将针对频率范围的网络控制的小间隙配置为并发测量间隙。
  57. 一种用户设备,其特征在于,包括:
    通信模块,用于接收第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;
    其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
  58. 根据权利要求57所述的用户设备,其特征在于,所述第一信息包括以下中的一种或多种:
    带宽部分的配置信息;以及
    网络设备发送的用于指示所述多个预配置测量间隙的激活/去激活机制的指示信息。
  59. 根据权利要求58所述的用户设备,其特征在于,所述带宽部分的配置信息包括第一去激活测量间隙集合;
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述多个预配置测量间隙的激活/去激活机制均为网络设备控制的激活/去激活机制;或者
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述一个或多个测量间隙的激活/去激活机制为网络设备控制的激活/去激活机制,所述多个预配置测量间隙中的除所述一个或多个测量间隙之外的剩余测量间隙的激活/去激活机制为用户设备自主激活/去激活机制。
  60. 根据权利要求58所述的用户设备,其特征在于,所述多个预配置测量间隙对应同一激活/去激活机制的指示信息;或者,所述多个预配置测量间隙具有各自对应的激活/去激活机制的指示信息。
  61. 一种网络设备,其特征在于,包括:
    通信模块,用于向第一用户设备发送第一信息,所述第一用户设备具有多个预配置测量间隙,所述第一信息用于确定所述多个预配置测量间隙的激活/去激活机制;
    其中,所述多个预配置测量间隙的激活/去激活机制为相同的激活/去激活机制;或者,所述多个预配置测量间隙的激活/去激活机制为不同的激活/去激活机制。
  62. 根据权利要求61所述的网络设备,其特征在于,所述第一信息包括以下中的一种或多种:
    带宽部分的配置信息;以及
    网络设备发送的用于指示所述多个预配置测量间隙的激活/去激活机制的指示信息。
  63. 根据权利要求62所述的网络设备,其特征在于,所述带宽部分的配置信息包括第一去激活测量间隙集合;
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述多个 预配置测量间隙的激活/去激活机制均为网络设备控制的激活/去激活机制;或者
    如果所述第一测量间隙集合包括所述多个预配置测量间隙中的一个或多个测量间隙,则所述一个或多个测量间隙的激活/去激活机制为网络设备控制的激活/去激活机制,所述多个预配置测量间隙中的除所述一个或多个测量间隙之外的剩余测量间隙的激活/去激活机制为用户设备自主激活/去激活机制。
  64. 根据权利要求62所述的网络设备,其特征在于,所述多个预配置测量间隙对应同一激活/去激活机制的指示信息;或者,所述多个预配置测量间隙具有各自对应的激活/去激活机制的指示信息。
  65. 一种用户设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,使得所述用户设备执行如权利要求1-12中任一项所述的方法,或使得所述通信设备执行如权利要求25-28中任一项所述的方法。
  66. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,使得所述网络设备执行如权利要求13-24中任一项所述的方法,或使得所述通信设备执行如权利要求29-32中任一项所述的方法。
  67. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,使得所述装置执行如权利要求1-32中任一项所述的方法。
  68. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-32中任一项所述的方法。
  69. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-32中任一项所述的方法。
  70. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-32中任一项所述的方法。
  71. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-32中任一项所述的方法。
PCT/CN2022/111575 2022-08-10 2022-08-10 无线通信方法、用户设备和网络设备 WO2024031479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111575 WO2024031479A1 (zh) 2022-08-10 2022-08-10 无线通信方法、用户设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111575 WO2024031479A1 (zh) 2022-08-10 2022-08-10 无线通信方法、用户设备和网络设备

Publications (1)

Publication Number Publication Date
WO2024031479A1 true WO2024031479A1 (zh) 2024-02-15

Family

ID=89850194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111575 WO2024031479A1 (zh) 2022-08-10 2022-08-10 无线通信方法、用户设备和网络设备

Country Status (1)

Country Link
WO (1) WO2024031479A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740050A (zh) * 2018-07-19 2020-01-31 维沃移动通信有限公司 用于测量配置的方法、用户设备、网络设备、及存储介质
CN114727315A (zh) * 2021-01-04 2022-07-08 联发科技(新加坡)私人有限公司 并发间隙配置方法和用户设备
WO2022150197A1 (en) * 2021-01-05 2022-07-14 Intel Corporation Ue capacity for measurements with preconfigured gap
WO2022149087A1 (en) * 2021-01-08 2022-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Activation/deactivation of preconfigured measurement gaps
WO2022151314A1 (en) * 2021-01-15 2022-07-21 Apple Inc. Hybrid measurement gap operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740050A (zh) * 2018-07-19 2020-01-31 维沃移动通信有限公司 用于测量配置的方法、用户设备、网络设备、及存储介质
CN114727315A (zh) * 2021-01-04 2022-07-08 联发科技(新加坡)私人有限公司 并发间隙配置方法和用户设备
WO2022150197A1 (en) * 2021-01-05 2022-07-14 Intel Corporation Ue capacity for measurements with preconfigured gap
WO2022149087A1 (en) * 2021-01-08 2022-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Activation/deactivation of preconfigured measurement gaps
WO2022151314A1 (en) * 2021-01-15 2022-07-21 Apple Inc. Hybrid measurement gap operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Views on pre-configured MG pattern(s) for NR_MG_enh", 3GPP DRAFT; R4-2101537, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052180041 *

Similar Documents

Publication Publication Date Title
CA2880448C (en) Method for component carrier configuration, base station and user equipment
JP2021503845A (ja) 通信方法および通信デバイス
WO2021249487A1 (zh) 一种通信方法及装置
US20230179374A1 (en) Channel transmission method, terminal device, and network device
JP2024502369A (ja) Ue能力情報処理方法、装置、機器、及び記憶媒体
WO2023011188A1 (zh) 一种通信方法及装置
CN115776728A (zh) 无线通信方法和通信装置
WO2022027811A1 (zh) 无线通信的方法、终端设备和网络设备
JPWO2020031358A1 (ja) ユーザ装置及び送信方法
WO2023011195A1 (zh) 一种通信方法及通信装置
WO2024031479A1 (zh) 无线通信方法、用户设备和网络设备
WO2022057520A1 (zh) 一种配置载波的方法和装置
US11956668B2 (en) Duplicated data-based transmission method and related devices
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
WO2022198545A1 (zh) 无线通信的方法、终端设备和网络设备
CN113498136B (zh) 测量方法及装置
WO2019192451A1 (zh) 通信方法和通信装置
WO2023201489A1 (zh) 通信方法、终端设备和网络设备
WO2023130245A1 (zh) 通信方法、终端设备及网络设备
WO2024032208A1 (zh) 一种通信的方法和装置
WO2024065806A1 (zh) 无线通信的方法、终端设备及网络设备
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2023206331A1 (zh) 通信方法及通信装置
CN115835397B (zh) 用于无线通信的方法及装置
WO2024065436A1 (zh) 用于无线通信的方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954451

Country of ref document: EP

Kind code of ref document: A1