WO2021233234A1 - 一种管理上行测量的方法、装置和系统 - Google Patents

一种管理上行测量的方法、装置和系统 Download PDF

Info

Publication number
WO2021233234A1
WO2021233234A1 PCT/CN2021/093967 CN2021093967W WO2021233234A1 WO 2021233234 A1 WO2021233234 A1 WO 2021233234A1 CN 2021093967 W CN2021093967 W CN 2021093967W WO 2021233234 A1 WO2021233234 A1 WO 2021233234A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
ran
ran device
uplink
uplink srs
Prior art date
Application number
PCT/CN2021/093967
Other languages
English (en)
French (fr)
Inventor
郝金平
续斌
姚婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022023577A priority Critical patent/BR112022023577A2/pt
Priority to EP21808535.5A priority patent/EP4142350A4/en
Publication of WO2021233234A1 publication Critical patent/WO2021233234A1/zh
Priority to US17/987,115 priority patent/US20230093234A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • G01S5/0063Transmission from base station to mobile station of measured values, i.e. measurement on base station and position calculation on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of wireless communication, and in particular to a method, device and system for managing uplink measurements.
  • 5G fifth generation
  • 5G will support diversified application requirements, including support for higher-rate experience and greater bandwidth access capabilities, lower latency and high-reliability information interaction, and the connection of larger-scale and low-cost machine-type communication devices. Entry and management, etc.
  • the location information of terminal devices has become an important foundation for 5G ubiquitous network applications. Based on the location information of the terminal equipment, diversified business application scenarios can be constructed.
  • 3GPP defines a variety of positioning technologies for terminal equipment, including positioning technologies based on uplink measurement.
  • the basic method of positioning technology based on uplink measurement is that a terminal device sends a reference signal. Multiple network devices measure the reference signal and report the measurement results to the positioning device. The positioning device determines the terminal based on the measurement results reported by the multiple network devices. The physical location of the device. How to ensure the normal management of these network devices by the positioning device is a problem that needs to be solved urgently.
  • the embodiment of the present application provides an uplink measurement method, which can effectively reduce network resources and signaling overhead.
  • the present application provides a method for managing uplink measurement, including: a radio access network RAN device receives a first message from a positioning device, the first message is used by the positioning device to request the RAN device to perform uplink measurement, and The first message includes the measurement period and the number of measurements; the RAN device measures the uplink channel sounding reference signal SRS of the terminal device according to the measurement period and the number of measurements; and the RAN device sends a first response to the positioning device.
  • a response contains the measurement result of the uplink SRS.
  • the method provided in the embodiments of the present application realizes that the RAN device stops the uplink SRS measurement and reports the corresponding measurement results under the condition of the number of measurements specified by the positioning device, thereby avoiding the RAN device from being unable to stop periodic measurement and periodic measurement due to the positioning device. Resource waste and signaling overhead caused by reporting.
  • the RAN device measures the uplink SRS of the terminal device according to the measurement period and the number of measurements, including: the RAN device measures the uplink SRS according to the measurement period; in the RAN device After the measurement of the uplink SRS reaches the number of measurements, the RAN device stops the measurement of the uplink SRS.
  • the RAN device sending the first response to the positioning device includes: after the RAN device measures the uplink SRS for the number of measurements, the RAN device stops sending the first response to the positioning device. response.
  • the measurement result of the uplink SRS includes at least one of the following parameters: the signal strength of the uplink SRS received by the RAN device, and the arrival time information of the uplink SRS received by the RAN device Or the angle of arrival information of the uplink SRS received by the RAN device.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU The included first CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, or the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the first message is an NR positioning protocol A NRPPa measurement request message.
  • the first response is an NRPPa measurement report message.
  • a first message sent by a positioning device to a radio access network RAN device the first message is used by the positioning device to request the RAN device to perform uplink measurement, and the first message includes the measurement period and the number of measurements; the positioning device Receive a first response from the RAN device, where the first response includes the measurement result of the uplink channel sounding reference signal SRS.
  • the method provided in the embodiment of the present application realizes that the positioning device instructs the RAN device to stop the uplink SRS measurement and the corresponding measurement result reporting under the condition of the specified number of measurements, thereby avoiding the RAN device from being unable to stop periodic measurement and reporting due to the positioning device. Resource waste and signaling overhead caused by periodic reporting.
  • the measurement result of the uplink SRS includes at least one of the following parameters: the signal strength of the uplink SRS received by the RAN device, and the arrival time information of the uplink SRS received by the RAN device Or the angle of arrival information of the uplink SRS received by the RAN device.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU The included first CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, or the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the first message is an NR positioning protocol A NRPPa measurement request message.
  • the first response is an NRPPa measurement report message
  • the present application provides a method for managing uplink measurement, including: a radio access network RAN device receives a first message from a positioning device, where the first message is used by the positioning device to request the RAN device to perform uplink measurement, and The first message includes a measurement period and a measurement duration; the RAN device measures the uplink channel sounding reference signal SRS of the terminal device according to the measurement period and the measurement duration; and the RAN device sends a first response to the positioning device, and the second A response contains the measurement result of the uplink SRS.
  • the method provided in the embodiments of the present application realizes that the RAN device stops the uplink SRS measurement and reports the corresponding measurement results under the condition of the measurement duration specified by the positioning device, thereby avoiding the RAN device from being unable to stop periodic measurement and periodic measurement due to the positioning device. Resource waste and signaling overhead caused by reporting.
  • the RAN device measures the uplink SRS of the terminal device according to the measurement period and the measurement duration, including: the RAN device measures the uplink SRS according to the measurement period; After the measurement of the uplink SRS reaches the measurement duration, the RAN device stops the measurement of the uplink SRS.
  • the RAN device sending the first response to the positioning device includes: after the RAN device measures the uplink SRS for the measurement duration, the RAN device stops sending the first response to the positioning device. response.
  • the measurement result of the uplink SRS includes at least one of the following parameters: the signal strength of the uplink SRS received by the RAN device, and the arrival time information of the uplink SRS received by the RAN device Or the angle of arrival information of the uplink SRS received by the RAN device.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU The included first CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, or the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the first message is an NR positioning protocol A NRPPa measurement request message.
  • the first response is an NRPPa measurement report message.
  • a first message sent by a positioning device to a radio access network RAN device the first message is used by the positioning device to request the RAN device to perform uplink measurement, and the first message includes a measurement period and a measurement duration; the positioning device Receive a first response from the RAN device, where the first response includes the measurement result of the uplink channel sounding reference signal SRS.
  • the method provided in the embodiments of the present application realizes that the positioning device instructs the RAN device to stop the uplink SRS measurement and the corresponding measurement result reporting under the condition of the specified measurement duration, thereby avoiding the RAN device from being unable to stop periodic measurement and reporting due to the positioning device.
  • the measurement result of the uplink SRS includes at least one of the following parameters: the signal strength of the uplink SRS received by the RAN device, and the arrival time information of the uplink SRS received by the RAN device Or the angle of arrival information of the uplink SRS received by the RAN device.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU The included first CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, or the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the first message is an NR positioning protocol A NRPPa measurement request message.
  • the first response is an NRPPa measurement report message.
  • the present application provides a method for managing uplink measurement, including: a radio access network RAN device receives a first message from a positioning device, the first message is used by the positioning device to request the RAN device to perform uplink measurement, and The first message includes the measurement period and the SRS reference signal received power RSRP threshold; the RAN device measures the uplink SRS of the terminal device according to the measurement period and the SRS-RSRP threshold; and the RAN device sends a first response to the positioning device , The first response includes the measurement result of the uplink SRS.
  • the method provided in the embodiments of the present application realizes that the RAN device stops the uplink SRS measurement and reports the corresponding measurement results under the SRS-RSRP threshold condition specified by the positioning device, thereby avoiding the RAN device from being unable to stop periodic measurement and reporting due to the positioning device. Resource waste and signaling overhead caused by periodic reporting.
  • the RAN device measures the uplink SRS of the terminal device according to the measurement period and the SRS-RSRP threshold, including: the RAN device measures the uplink SRS according to the measurement period; When the SRS-RSRP received by the RAN device is less than the SRS-RSRP threshold, the RAN device stops measuring the uplink SRS.
  • the RAN device sending the first response to the positioning device includes: when the SRS-RSRP received by the RAN device is less than the SRS-RSRP threshold, the RAN device stops sending the positioning device to the positioning device. First response.
  • the measurement result of the uplink SRS includes at least one of the following parameters: the signal strength of the uplink SRS received by the RAN device, and the arrival time information of the uplink SRS received by the RAN device Or the angle of arrival information of the uplink SRS received by the RAN device.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU The included first CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, or the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the first message is an NR positioning protocol A NRPPa measurement request message.
  • the first response is an NRPPa measurement report message.
  • the first message sent by the positioning device to the radio access network RAN device the first message is used by the positioning device to request the RAN device to perform uplink measurement, and the first message includes the measurement period and the SRS reference signal received power RSRP Threshold; the positioning device receives a first response from the RAN device, and the first response contains the measurement result of the uplink channel sounding reference signal SRS.
  • the method provided in the embodiments of the present application realizes that the positioning device instructs the RAN device to stop the uplink SRS measurement under the specified SRS-RSRP threshold condition and report the corresponding measurement result, thereby avoiding the RAN device from being unable to stop periodic measurement due to the positioning device. And the waste of resources and signaling overhead caused by periodic reporting
  • the measurement result of the uplink SRS includes at least one of the following parameters: the signal strength of the uplink SRS received by the RAN device, and the arrival time information of the uplink SRS received by the RAN device Or the angle of arrival information of the uplink SRS received by the RAN device.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU The included first CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, or the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the first message is an NR positioning protocol A NRPPa measurement request message.
  • the first response is an NRPPa measurement report message.
  • this application provides a method for managing uplink measurements, including: a radio access network RAN device receives a second message from a positioning device, the second message is used to instruct the RAN device to terminate the uplink channel sent to the terminal device Sounding reference signal SRS measurement; the RAN device sends a second response to the positioning device, and the second response is used to indicate that the RAN device successfully receives the second message.
  • the method provided by the embodiments of the present application implements the two-way interaction of the measurement termination indication information between the RAN device and the LMF, ensures that the LMF confirms that the RAN device correctly receives the measurement termination instruction, and reduces the RAN device's continued cycle because the RAN device does not correctly receive the measurement termination instruction. Resource waste and signaling overhead caused by measurement and periodic reporting.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU including The first centralized unit management plane unit CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, and the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the second message is a measurement termination message.
  • the second response is a measurement termination response message or a measurement termination response message.
  • this application provides a method for managing uplink measurements, including: a positioning device sends a second message to a radio access network RAN device, the second message is used to instruct the RAN device to terminate the uplink channel detection sent to the terminal device Reference signal SRS measurement; the positioning device receives a second response from the RAN device, and the second response is used to indicate that the RAN device successfully receives the second message.
  • the method provided by the embodiments of the present application implements the two-way interaction of the measurement termination indication information between the RAN device and the LMF, ensures that the LMF confirms that the RAN device correctly receives the measurement termination instruction, and reduces the RAN device's continued cycle because the RAN device does not correctly receive the measurement termination instruction. Resource waste and signaling overhead caused by measurement and periodic reporting.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU including The first centralized unit control plane network element CU-CP of the terminal device, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, and the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the second message is a measurement termination message.
  • the second response is a measurement termination response message or a measurement termination response message.
  • this application provides a method for managing uplink measurement, including: a radio access network RAN device determines to terminate the measurement of the uplink channel sounding reference signal SRS sent by the terminal device; the RAN device sends a third message to the positioning device, The third message is used to instruct the RAN device to terminate the measurement of the uplink SRS.
  • the method provided by the embodiment of the present application realizes that the RAN device actively stops the uplink SRS measurement and reports the corresponding measurement result according to its own state, and realizes the effective utilization of the RAN device resources.
  • the RAN device includes any one of the following devices: the serving RAN device of the terminal device, the first centralized unit CU to which the service distribution unit DU of the terminal device is connected, and the first CU including The first centralized unit management plane unit CU-CP, the neighboring cell RAN device of the terminal device, the second centralized unit CU connected to the neighboring cell DU of the terminal device, and the second CU-CP included in the second CU.
  • the positioning device is a location management function LMF.
  • the third message is a measurement termination notification message or a measurement termination instruction message.
  • a radio access network RAN device which is used to implement the first aspect or any possible implementation manner of the first aspect, or the third aspect or any possible implementation manner of the third aspect
  • the method in, or the method in any possible implementation of the fifth aspect or the fifth aspect, or the method in any possible implementation of the seventh aspect or the seventh aspect, or the ninth or the first The method in any one of the possible implementation manners of the nine aspects.
  • the RAN device may include any one of the possible implementation manners for executing the first aspect or the first aspect, or the third aspect or the third aspect. Any possible implementation manner, or any possible implementation manner of the fifth aspect or the fifth aspect, or any possible implementation manner of the seventh aspect or the seventh aspect, or the ninth or ninth aspect The unit of the method in any one of the possible implementations.
  • a positioning device for executing the method in the second aspect or any one of the possible implementation manners of the second aspect, or the fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • the method in the sixth aspect or the method in any one of the possible implementation manners of the sixth aspect, or the method in any possible implementation manner of the eighth aspect or the eighth aspect specifically, the terminal device May include any possible implementation manner for implementing the second aspect or the second aspect, or any possible implementation manner of the fourth aspect or the fourth aspect, or any one of the sixth aspect or the sixth aspect A possible implementation manner, or a unit of the method in the eighth aspect or any possible implementation manner of the eighth aspect.
  • a computer program product includes computer program code.
  • the computer program code is used by a communication unit, a processing unit, or When the transceiver and the processor are running, the communication device is caused to execute the method in any one of the first to ninth aspects or any one of the first to ninth aspects.
  • a computer-readable storage medium stores a program that enables a computer to execute any possible implementation of the first to ninth aspects or the first to ninth aspects The method in the way.
  • a chip provided by an embodiment of the present application is coupled with a memory to implement any possible design of the first aspect or the first aspect, the second aspect, or the second aspect of the embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of a gNB divided into CU and DU according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the architecture of a positioning system proposed by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for locating terminal equipment in a 5G system according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of another method for locating a terminal device in a 5G system according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of another method for locating a terminal device in a 5G system according to an embodiment of the present application
  • FIG. 7 is a schematic block diagram of a RAN device provided by an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a RAN device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of a positioning device provided by an embodiment of the present application.
  • system and "network” in this article are often used interchangeably in this article.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of this application. It should be understood that the technical solutions of the embodiments of this application can be applied to various communication systems, such as: Long Term Evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex ( time division duplex (TDD) system, Code Division Multiple Access (CDMA) system, Universal Mobile Telecommunication System (UMTS), wireless local area network (wireless local area network, WLAN), fifth generation ( 5th generation, 5G) mobile communication system, new radio (NR) communication system, communication system based on orthogonal frequency division multiplexing (OFDM) technology, or next generation (NG) communication system , Such as 6G and so on.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • CDMA Code Division Multiple Access
  • UMTS Universal Mobile Telecommunication System
  • WLAN wireless local area network
  • 5G wireless local area network
  • NR new radio
  • OFDM orthogonal frequency division multiplexing
  • the communication system shown in Figure 1 includes network equipment (for simplification, Figure 1 only shows one network equipment, in the actual system there can be one or more network equipment) and terminal equipment (for simplicity, only in Figure 1 Three terminal devices are given, and there can be one or more terminal devices in the actual system), among which network devices provide services for the terminal devices.
  • FIG. 1 is only a schematic diagram, and FIG. 1 only shows a network device as a radio access network (RAN) device.
  • the communication system may also include other network devices, such as a core network (core network).
  • core network core network
  • network, CN network management equipment
  • network controllers network controllers
  • the RAN device shown in FIG. 1 may correspond to the same or two different physical sites (such as a macro base station and a micro base station), and different sites can communicate.
  • the RAN device is a device deployed in a radio access network to provide wireless communication functions for terminal devices.
  • RAN equipment can include various forms, for example, it can be a next-generation base station, such as next-generation Node B (gNB) or next-generation evolved Node B (ng-eNB), etc. , It can also be an access point (AP) in a wireless local area network (Wireless Local Area Networks, WLAN), or an evolved base station (evolved Node B, eNB or eNodeB) in LTE, or a relay station or access point, Or in-vehicle devices and wearable devices.
  • a RAN device has one or more transmission and reception points (TRP).
  • TRP transmission and reception points
  • the terminal device communicates with the RAN device through the transmission resources used by one or more cells managed by the network device (for example, frequency domain resources, time domain resources, code domain resources, etc.), and the cell may belong to a macro cell (macro cell).
  • cell, hypercell, or small cell where the small cell may include: metro cell, micro cell, pico cell, femto cell Femto cells, etc.
  • These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the terminal equipment shown in Figure 1 may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment , User agent or user device.
  • UE user equipment
  • the terminal device can be a station (ST) in a WLAN, a cellular phone, a cordless phone, a SIP phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, Tablet computers (pads), handheld devices or computers with wireless communication capabilities, relay devices, computing devices or other processing devices coupled to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as those in 5G networks Terminal equipment or terminal equipment in the future evolved public land mobile network (PLMN) network, etc.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and wireless in industrial control (industrial control).
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Terminal equipment wireless terminal equipment in self-driving (self driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), wireless terminal in transportation safety (transportation safety) Devices, wireless terminal devices in smart cities, wireless terminal devices in smart homes, navigation devices, Internet of Things (IoT) devices, and wearable devices.
  • Wearable devices can also be called wearable smart devices. It is a general term for the use of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a RAN device such as gNB
  • a RAN device can be further divided into a centralized unit (CU) and a distributed unit (DU) according to the protocol stack, where CU and DU can be separately Deploy on different physical devices.
  • the CU is responsible for the operations of the RRC layer, the SDAP layer, and the PDCP layer
  • the DU is responsible for the operations of the RLC layer, the MAC layer, and the PHY layer.
  • Figure 2(a) shows an architecture of gNB divided into CU and DU.
  • one gNB may include one CU and one or more DUs, and the one or more DUs are controlled by the one CU.
  • a DU and CU are connected through a control plane interface (such as F1-C) for transmitting control plane data; a DU and CU are connected through a user plane interface (such as F1-U) for transmitting user plane data.
  • the CU can also be divided into a centralized unit of the control plane (that is, a centralized unit control plane CU-CP network element) and a centralized unit of the user plane (that is, a centralized unit user plane CU-UP network element), where CU-CP and CU -UP can also be separately deployed on different physical devices.
  • CU-CP is responsible for the processing of the RRC layer and the control plane of the PDCP layer
  • CU-UP is responsible for the processing of the user plane of the SDAP layer and the PDCP layer.
  • Figure 2(b) shows an architecture of gNB divided into CU-CP, CU-UP and DU.
  • one gNB may include one CU-CP, one or more CU-UPs, and one or more DUs.
  • a CP-UP is only connected to one CU-CP through a control plane interface (such as E1) for transmission of control plane data; a DU is only connected to one CU-CP through a control plane interface (such as F1-C) for transmission Control plane data; under the control of CU-CP, a DU can be connected to one or more CU-UPs, and a CU-UP can also be connected to one or more DUs.
  • CU-UP and DU are connected through a user plane interface (Such as F1-U) connection, used to transmit user plane data. It is worth noting that, in order to maintain the flexibility of the network, one DU or one CU-UP can also be connected to multiple CU-CPs.
  • the protocol stack division method by which the above-mentioned RAN device is divided into CU and DU is only exemplary, and the RAN device may also divide CU and DU according to other division methods.
  • the CU may be responsible for the operations of the RRC layer, SDAP layer, PDCP layer, and RLC layer, and the DU may be responsible for the MAC layer and PHY layer operations; or the CU may be responsible for the RRC layer and SDAP layer operations, and the DU may be responsible for the PDCP layer and RLC layer.
  • the operation of the MAC layer and the PHY layer, etc.; similarly, the protocol stack division method between the CU-CP and CU-UP in the CU is also variable; the application does not specifically limit this.
  • FIG. 3 is a schematic diagram of a positioning system architecture according to an embodiment of the application.
  • the positioning system includes a terminal device 310, a RAN device 330, and a CN device.
  • the RAN device 330 may be a gNB or an ng-eNB.
  • the CN device exemplarily includes access and mobility management functions. , AMF) unit 340 and a location management function (location management function, LMF) unit 320.
  • AMF access and mobility management functions
  • LMF location management function
  • the terminal device 310 and the gNB perform wireless communication through the NR-Uu air interface; the terminal device 310 and the ng-eNB perform wireless communication through the LTE-Uu air interface.
  • the RAN device 330 shown in FIG. 3 is exemplary.
  • the RAN may include one or more gNBs, may also include one or more ng-eNBs, and may also include one or more gNBs and The combination of ng-eNB, where different RAN devices in the RAN can communicate through the Xn interface, and the RAN device 330 (gNB or ng-eNB) communicates with the AMF unit 340 through the NG-C interface, which is equivalent to the AMF unit 340 It is a router that communicates with the LMF unit 320 in the gNB.
  • the LMF unit 320 implements the position estimation of the terminal device 310, and the AMF unit 340 and the LMF unit 320 communicate through the NLs interface.
  • the positioning of terminal equipment is one of the important functions of the 5G system.
  • the 3GPP R16 version defines a variety of positioning technologies for terminal equipment, including positioning technologies based on uplink measurement, such as reference signal received power (RSRP) based on uplink channel sounding reference signal (SRS) , Uplink-time difference of arrival (UL-TDOA), uplink-azimuth angle of arrival (UL-AoA) and other positioning technologies.
  • RSRP reference signal received power
  • SRS uplink channel sounding reference signal
  • UL-TDOA Uplink-time difference of arrival
  • U-AoA uplink-azimuth angle of arrival
  • one or more RAN devices or the TRP of the one or more RAN devices respectively receive the uplink SRS sent by the terminal device, measure the received RSRP, and report the measurement result to LMF, LMF calculates the physical location of the terminal equipment according to the SRS-RSRP reported by each cell.
  • SRS-RSRP is also referred to as the signal strength of the received SRS.
  • UL-TDOA uplink relative time of arrival
  • UL-RTOA uplink relative time of arrival
  • multiple cells of one or more RAN devices respectively receive the uplink SRS sent by the terminal device, and measure the angle of arrival (azimuth angle of arrival, AoA) and/or the elevation angle (zenith angle of arrival, ZoA), and report the measurement result to the LMF, and the LMF calculates the physical location of the terminal device according to the AoA and/or ZoA reported by each cell.
  • UL-AoA is also referred to as the angle of arrival information of the uplink SRS. It is worth noting that the above-mentioned positioning technology based on uplink measurement is described in detail in the 3GPP TS38.305 technical specification, which will not be repeated here in this application.
  • the LMF needs to first obtain the configuration of the terminal device to be positioned to transmit the uplink SRS, and send the uplink SRS configuration to one or more RAN devices used to assist in positioning the terminal device .
  • the RAN device(s) measure the uplink SRS sent by the terminal device according to the uplink SRS configuration to obtain measurement quantities, such as SRS-RSRP, UL-RTOA, or UL-AoA, etc., and report the corresponding measurement results to the LMF , LMF calculates and determines the physical location of the terminal equipment, and realizes the positioning of the terminal equipment.
  • the LMF requires the RAN device(s) to perform multiple measurements and use the multiple measurement results to achieve accurate positioning of the terminal device. It should be understood that in multiple measurement processes, due to the mobility of the terminal device and/or the time-varying nature of the wireless channel, the measurement results of the same RAN device at different times may be different.
  • the LMF can use the measurement results reported by these RAN devices multiple times to effectively locate the terminal device.
  • the LMF may instruct the RAN device(s) to periodically perform the uplink SRS measurement of the terminal device and report the measurement result, and the LMF calculates the physical location of the terminal device according to the periodically reported measurement result. After the LMF completes the positioning of the terminal device, it instructs the RAN device(s) to stop measurement.
  • the embodiment of the present application provides a technical solution for uplink measurement configuration. Further, the technical solution of the embodiment of the present application is also applied to a RAN device architecture with CU and DU, where the CU may also include the case where the CU-CP and the CU-UP are separated.
  • FIGS. 4 to 6 are schematic flowcharts of method embodiments of the present application, showing detailed communication steps or operations of the method, but these steps or operations are only examples, and the embodiments of the present application also Other operations or variations of the various operations in FIGS. 4 to 6 can be performed.
  • the steps in FIGS. 4 to 6 may be performed in a different order from that shown in FIGS. 4 to 6, and it is possible that not all operations in FIGS. 4 to 6 are to be performed.
  • FIG. 4 is a schematic flowchart of a method for locating a terminal device in a 5G system according to an embodiment of the application.
  • the method 400 is based on the uplink positioning technology and is applied to the interaction between the terminal device and one or more RAN devices and the LMF.
  • the process described in Figure 4 includes the following steps:
  • the LMF obtains the positioning capability information of the terminal device from the terminal device.
  • the LMF interacts with the terminal device to obtain the positioning capability of the terminal device.
  • the terminal device is the terminal device to be located.
  • the LMF may use the LTE positioning protocol (LTE positioning protocol, LPP) capability forwarding (LPP capability transfer) process to obtain the positioning capability information of the terminal device, such as the positioning method supported by the terminal device, or the terminal device is related to a certain positioning method Capabilities (such as supported bandwidth), etc.
  • LPP capability forwarding process can be described in the 3GPP TS37.355 technical specification, which will not be repeated in this application.
  • the LMF can obtain the positioning capability information of the terminal device from other devices before the positioning process, for example, obtain and save the positioning capability information of the terminal device from the AMF; in another possible implementation In this way, the LMF can acquire and save the positioning capability information of the terminal device in the registration process of the terminal device; in addition, the LMF can also acquire and save the positioning capability information of the terminal device in other processes, or the LMF can use the default positioning capability information , That is, the LMF defaults that each terminal device has preset positioning capability information.
  • the LMF sends the first request to the serving RAN device of the terminal device.
  • the serving RAN device of the terminal device receives the first request.
  • the first request is used to request to obtain the uplink SRS configuration of the terminal device.
  • the LMF requests the serving RAN device of the terminal device for the uplink SRS resource configured by the serving RAN device for the terminal device.
  • the uplink SRS configuration includes the SRS transmission period, the carrier interval of the SRS sequence, the type of cyclic prefix, the frequency position, the number of symbols, and so on. It should be understood that the uplink SRS configuration corresponds to the resource used by the terminal equipment to send the uplink SRSS, that is, the uplink SRS resource.
  • the serving RAN device of a terminal device is the RAN device currently serving the terminal device.
  • there are other RAN devices around the serving RAN device that provide services for other terminal devices and these other RAN devices may be referred to as neighboring cell RAN devices of the serving RAN device.
  • the 3GPP R15 version defines the use of NR positioning protocol A (NR positioning protocol A, NRPPa) for positioning-related signaling procedures between LMF and RAN equipment.
  • the first request is an NRPPa positioning information request (NRPPa positioning information request) message.
  • the serving RAN device determines the uplink SRS resource of the terminal device.
  • the serving RAN device of the terminal device determines the resource used by the terminal device to send the uplink SRS, which can also be referred to as the serving RAN device determining the uplink SRS configuration of the terminal device.
  • the serving RAN device sends the uplink SRS configuration to the terminal device.
  • the terminal device receives the uplink SRS configuration sent by the serving RAN device.
  • the serving RAN device configures the uplink SRS resource determined in step S403 to the terminal device, so that the terminal device subsequently uses the corresponding uplink SRS configuration to send the uplink SRS.
  • the serving RAN device sends a first request response to the LMF.
  • the LMF receives the first request response from the serving RAN device.
  • the first request response is the response of the serving RAN device to the first request sent by the LMF.
  • the first request response is used to provide the LMF with uplink information of the terminal device.
  • the uplink information is the uplink SRS resource configured by the serving RAN device for the terminal device, that is, the uplink SRS configuration.
  • the LMF can obtain the uplink SRS configuration used by the terminal device to subsequently send the uplink SRS.
  • the first request response is an NRPPa positioning information response (NRPPa positioning information response) message.
  • NRPPa positioning information response NRPPa positioning information response
  • the serving RAN device activates the uplink SRS transmission of the terminal device.
  • the serving RAN device activates the terminal device to send the uplink SRS on the configured uplink SRS resource. After receiving the activation message, the terminal device starts to send the uplink SRS according to the uplink SRS configuration obtained in step S403a.
  • the serving RAN device activates the uplink SRS transmission of the terminal device through a physical downlink control channel message or a MAC control element.
  • the above steps S402 to S405 are optional. In the terminal device positioning process based on the uplink positioning technology, the above steps S402 to S405 do not involve information exchange between the neighboring cell RAN device and the LMF. In addition, the above steps S402 to S405 can also be applied to other processes, such as the process of measuring the channel quality between the serving RAN device and the terminal device.
  • the LMF sends a second request to the RAN device.
  • the RAN device receives the second request sent from the LMF.
  • the second request includes the measurement period and the number of measurements.
  • the second request is used by the LMF to request the RAN device to perform uplink SRS measurement.
  • the second request includes one or more of the following measurement quantities: SRS-RSRP, UL-AoA, or UL-RTOA.
  • the second request may also include uplink SRS configuration.
  • the LMF sends the second request to the serving RAN device of the terminal device.
  • the second request is used to request multiple TRPs in the serving RAN device to perform uplink SRS measurement, and the multiple TRPs are selected by the LMF to assist in locating the terminal device.
  • the LMF respectively sends a second request to the serving RAN device of the terminal device and one or more neighboring RAN devices; optionally, the second request is used to request the serving RAN device and one or more Multiple neighboring cell RAN devices perform uplink SRS measurement, and the one or more neighboring cell RAN devices are RAN devices selected by the LMF to assist in locating terminal devices; optionally, the second request is used to request service RAN devices, and Multiple TRPs in one or more neighboring cell RAN devices perform uplink SRS measurement, and the multiple TRPs are selected by the LMF to assist in locating the terminal device.
  • the LMF may select multiple RAN devices or multiple TRPs for measuring the uplink SRS sent by the terminal device through the first strategy.
  • the first strategy can be diverse, for example, multiple RAN devices deployed around the serving RAN device, or multiple TRPs serving the RAN device, or multiple RAN devices with good radio link quality with the terminal device Or multiple TRPs, etc., which are not limited in the embodiment of the present application.
  • the LMF can learn the identity (ID) of each TRP in the serving RAN device and the neighboring RAN device.
  • the second request may include each TRP ID selected by the LMF to assist in locating the terminal device.
  • the second request includes a measurement identifier, which is used to identify the periodic measurement request of the LMF for the terminal device.
  • the second request includes a measurement period (measurement period). That is, in the second request, the LMF instructs the RAN device to perform the uplink SRS measurement period, and the period is a value greater than zero.
  • the measurement period may be 120ms, 240ms, 480ms, 640ms, etc.
  • the second request includes the measurement number. That is, in the second request, the LMF instructs the RAN device to perform the number of uplink SRS measurements, and the number of measurements is an integer greater than or equal to 1.
  • the number of measurements may be 4, 8, 16, 32, 64, and so on.
  • Table 1 shows the information element (IE) that includes the measurement period and the number of measurements in the second request.
  • IE information element
  • Report Characterisitcs is an enumerated type of IE representing report characteristics, where report characteristics can include OnDemand and Periodic types;
  • Measurement Period is a conditional enumerated type identification measurement Periodic IE, which is valid when Report Characteristics is Periodic, that is, when C-ifReportCharacteristicsPeriodic exists; similarly, Measurement Number is an IE whose value is an integer greater than or equal to 1. Characteristics is valid when the condition is Periodic, that is, when C-ifReportCharacteristicsPeriodic exists, the number of measurements can be an integer between 1 and 64 as shown in the example in Table 1.
  • the second request is an NRPPa measurement request (NRPPa measurement request) message.
  • the RAN device performs uplink SRS measurement.
  • the serving RAN device that has received the second request in step S406 instructs multiple TRPs to the terminal device according to the uplink SRS configuration, measurement period, and measurement times in the second request.
  • the sent SRS is measured periodically.
  • each of the multiple RAN devices that received the second request in step S406 sends a message to the terminal device according to the uplink SRS configuration, measurement period, and measurement times in the second request.
  • SRS performs periodic measurements.
  • each of the multiple RAN devices that received the second request in step S406 indicates the status of the RAN device according to the uplink SRS configuration, measurement period, and measurement times in the second request.
  • One or more TRPs periodically measure the SRS sent by the terminal device.
  • the neighboring cell RAN device may obtain the uplink SRS configuration of the terminal device from the serving RAN device in other ways, for example, it may be obtained through information exchange between RAN devices.
  • the second request may not include the uplink SRS configuration.
  • one or more of the following measurement quantities can be obtained by measuring the SRS sent by the terminal device: SRS-RSRP, UL-AoA, or UL-RTOA.
  • the RAN device sequentially and periodically measures the uplink SRS signal and obtains corresponding measurement information according to the measurement period and the number of measurements indicated in the second request. After the number of measurements is reached, the RAN device will no longer perform uplink SRS measurements. Exemplarily, when the measurement period is 120 ms and the number of measurements is 8 times, after receiving the second request, the RAN device measures the uplink SRS every 120 ms, and continuously performs the measurement 8 times.
  • the RAN device sends a second request response to the LMF.
  • the LMF receives the second request response from the RAN device.
  • the second request response is the response of the serving RAN device to the second request sent by the LMF.
  • the second request response is used by the RAN device to report the uplink SRS measurement result to the LMF.
  • the RAN device reports the measurement results of the uplink SRS by itself or one or more TRPs of the RAN device to the LMF.
  • the measurement result includes one or more of the following measurement quantities: SRS-RSRP, UL-AoA, or UL-RTOA. It should be understood that the RAN device periodically reports the uplink SRS measurement result to the LMF according to the measurement period and the number of measurements indicated in the second request. After the number of measurements is reached, the RAN device will no longer report measurement results to the LMF.
  • the RAN device measures the uplink SRS every 120ms to obtain the measurement information, then reports the uplink SRS measurement results to the LMF, and performs 8 consecutive times The report.
  • the second request response is an NRPPa measurement response (NRPPa measurement response) message.
  • the LMF indicates the number of measurements of the RAN device in the second request so that the RAN device can stop the measurement of the uplink SRS and report the corresponding measurement result after the measurement of the uplink SRS sent by the terminal device reaches the number of measurements.
  • the second request sent by the LMF to the RAN device includes a measurement period and a measurement interval. That is, in the second request, the LMF instructs the RAN device to periodically perform the uplink SRS measurement and the corresponding measurement result reporting duration, and the measurement duration is an integer greater than zero. Exemplarily, the measurement duration may be 1200 ms, 2400 ms, 3600 ms, and so on. Table 2 shows the IE including the measurement period and the measurement duration in the second request.
  • Measurement Interval is a conditional enumerated type of IE that identifies the measurement duration. It is valid when Report Characteristics is a Periodic condition, that is, it is valid when C-ifReportCharacteristicsPeriodic exists.
  • the measurement duration can be as shown in the example in Table 2. The value is 1200ms, 2400ms, or 4800ms, etc.
  • the RAN device will no longer perform uplink SRS measurement after the measurement duration is reached.
  • the measurement period is 120 ms and the measurement duration is 1200 ms
  • the RAN device measures the uplink SRS every 120 ms after receiving the second request, and stops the measurement after performing the measurement 10 times continuously.
  • the RAN device will no longer report the measurement result to the LMF after the measurement duration is reached.
  • the second request sent by the LMF to the RAN device includes the measurement period and the SRS-RSRP threshold (RSRP threshold).
  • the SRS-RSRP threshold is used to indicate that when the RAN device detects that the strength of the uplink SRS of the terminal device is lower than the SRS-RSRP threshold, the RAN device stops measuring the uplink SRS of the terminal device and reporting the corresponding measurement result. That is, in the second request, the LMF instructs the RAN device to periodically perform the uplink SRS measurement and the SRS-RSRP threshold for reporting the corresponding measurement result.
  • the signal strength threshold may be -80dbm, -90dbm, -100dbm, and so on. Table 3 shows the IE including the measurement period and RSRP threshold in the second request.
  • SRS-RSRP Threshold is a conditional enumerated type of SRS-RSRP threshold IE, which is valid when Report Characteristics is Periodic, that is, when C-ifReportCharacteristicsPeriodic exists, where SRS-RSRP threshold The value can be -80dbm, -90dbm or -100dbm as shown in the example in Table 3.
  • SRS-RSRP threshold IE which is valid when Report Characteristics is Periodic, that is, when C-ifReportCharacteristicsPeriodic exists, where SRS-RSRP threshold The value can be -80dbm, -90dbm or -100dbm as shown in the example in Table 3.
  • the RAN device when the RAN device measures that the uplink SRS-RSRP strength of the terminal device is lower than the threshold, it will no longer perform uplink SRS signal measurement.
  • the RAN device will no longer report the measurement result to the LMF when it measures that the uplink SRS-RS
  • the serving RAN device may instruct the terminal device to stop sending the uplink SRS after the periodic uplink SRS measurement reaches the number of measurements indicated in the second request.
  • the serving RAN device instructs the terminal device to stop sending the uplink SRS through a radio resource control (radio resource control, RRC) reconfiguration message.
  • RRC radio resource control
  • the above steps S402, S404, S406, and S408 are the information exchange between the LMF and the CU and between the CU and the DU, where the above steps
  • the CU involved in S402 is the CU to which the serving DU of the terminal device is connected; in a possible implementation, the CU executes the above step S403 and sends the uplink SRS configuration to the terminal device in the above step S403a through the serving DU, and the The CU activates the terminal device to send the uplink SRS in the above step S405 through the serving DU; in another possible implementation manner, the serving DU executes the above steps S403, S403a, and S405, and sends the uplink SRS configuration to the CU; multiple RANs
  • the DU in the device performs the uplink SRS measurement in the above step S407, and reports the measurement result to the respective connected CU through the F1-C interface, and then the
  • different DUs in the multiple RAN devices may be connected to different CUs, or different DUs may be connected to the same CU.
  • the CU includes a CU-CP and a CU-UP, the steps performed by the CU in the above steps are changed to be performed by the CU-CP included in the CU.
  • the RAN device can stop the uplink SRS measurement and the corresponding measurement result reporting under given conditions, thereby avoiding the resource waste caused by the RAN device being unable to stop periodic measurement and periodic reporting due to LMF. And signaling overhead.
  • the LMF can obtain measurement information of multiple RAN devices and/or multiple TRPs on the terminal device, and determine the location of the terminal device according to the multiple measurement information.
  • the LMF needs to instruct the aforementioned one or more RAN devices to terminate the measurement.
  • the LMF respectively sends a measurement abort message to the above-mentioned one or more RAN devices, which is used to instruct each RAN device to stop measurement.
  • each RAN device receives the measurement termination message, it no longer performs uplink SRS measurement and reports uplink SRS measurement results. In this case, if the RAN device does not successfully receive the measurement termination message from the LMF, the RAN device will continue to perform the uplink SRS measurement and report the corresponding measurement results, causing unnecessary waste of resources and system overhead.
  • FIG. 5 is a schematic flowchart of another method for locating a terminal device in a 5G system according to an embodiment of the application.
  • the method 500 is based on the uplink positioning technology and is applied to the interaction between one or more RAN devices and the LMF assisting in positioning the terminal device.
  • the process described in Figure 5 includes the following steps:
  • the LMF sends a first instruction to the RAN device.
  • the RAN device receives the first indication from the LMF.
  • the first indication is used to instruct the RAN device to terminate the measurement.
  • the LMF sends a first instruction to the RAN device to instruct the RAN device to terminate the uplink SRS measurement of the terminal device and report the corresponding SRS measurement result.
  • the RAN device is one of a plurality of RAN devices used to assist in locating a terminal device.
  • the RAN device is the RAN device that received the second request from the LMF in step S406 of the foregoing embodiment.
  • the first indication includes a measurement ID, which is used to instruct the RAN device to stop the measurement identified by the measurement ID.
  • the measurement ID is the same as the measurement ID acquired by the RAN device in step S406 of the foregoing embodiment.
  • the first indication is a measurement abort message.
  • the LMF receives the first indication response from the RAN device.
  • the first indication response is the response of the serving RAN device to the first indication sent by the LMF.
  • the RAN device sends a first indication response to the LMF to inform the LMF that the RAN device successfully received the first indication from the LMF.
  • the RAN device no longer performs uplink SRS measurement and report corresponding measurement results, or instructs one or more TRPs of the RAN device to no longer perform uplink SRS measurement and report corresponding measurement results.
  • the first indication response includes the measurement ID in the first indication, which is used to confirm that the RAN device successfully receives the first indication for the measurement identified by the measurement ID.
  • the first indication response is a measurement abort response message or a measurement abort acknowledgement message.
  • the LMF can continue to send the first indication until the LMF receives the first indication sent by the RAN device.
  • the first indication response is a preset time period, that is, the LMF does not receive the first instruction response sent by the RAN device within the preset time period, and then continues to send the first instruction to the RAN device.
  • the LMF sends the first indication to the CU, and the CU forwards the first indication to the DU; the DU sends the first indication response to the CU, and the CU sends the first indication response to the CU.
  • the LMF forwards the first indication response.
  • the CU includes a CU-CP and a CU-UP, the steps performed by the CU in the above steps are changed to be performed by the CU-CP included in the CU.
  • the two-way interaction of the measurement termination indication information between the RAN equipment and the LMF is realized, which ensures that the LMF confirms that the RAN equipment correctly receives the measurement termination indication, and reduces the RAN equipment from continuing to perform periodic measurement and measurement because it does not correctly receive the measurement termination indication. Resource waste and signaling overhead caused by periodic reporting.
  • the LMF decides when to stop the uplink SRS measurement by the RAN device and report the corresponding measurement result. For example, the LMF instructs the RAN device to perform the number of uplink SRS measurements, or the duration of the uplink SRS measurement, or terminate the uplink SRS measurement. In another possible implementation manner, the RAN device decides when to stop the uplink SRS measurement and reports the corresponding measurement results. In this implementation manner, the RAN device can decide when to no longer perform uplink SRS measurement and report the corresponding measurement result according to its own resource status.
  • FIG. 6 is a schematic flowchart of another method for locating a terminal device in a 5G system according to an embodiment of the application.
  • the method 600 is based on the uplink positioning technology, and is applied to assist in the interaction between one or more RAN devices and the LMF to locate the terminal device.
  • the process described in Figure 6 includes the following steps:
  • the RAN device determines to stop the uplink SRS measurement.
  • the RAN device decides not to perform uplink SRS measurement. Specifically, the RAN device decides not to perform uplink SRS measurement according to the second strategy.
  • the second strategy may be various. For example, the RAN device judges that the received terminal device's SRS signal strength is lower than a preset threshold, or the RAN device judges that the number or duration of uplink SRS measurement exceeds a preset threshold. Or the RAN equipment resource is overloaded and there are no longer idle resources to assist in locating the terminal equipment, etc., which is not limited in the embodiment of the present application. It should be understood that the second strategy may be generated by the RAN device itself, or may be obtained by the RAN device from other network devices.
  • the RAN device sends a second instruction to the LMF.
  • the LMF receives the second indication from the RAN device.
  • the second indication is used to instruct the RAN device to stop uplink SRS measurement.
  • the RAN device stops the measurement of the uplink SRS, and informs the LMF that it will no longer perform the measurement of the uplink SRS and report the corresponding measurement results.
  • the second indication includes a measurement ID, which is the same as the measurement ID acquired by the RAN device in step S406 of the foregoing embodiment, indicating that the RAN device stops the uplink SRS measurement indicated by the measurement ID.
  • the second indication is a measurement abort notification message or a measurement abort indication message.
  • the CU determines in the above step S601 to stop the uplink SRS measurement and instructs the DU to stop communicating to the terminal device through the F1-C interface.
  • the uplink SRS measurement; the above step S602 is the information exchange between the LMF and the CU.
  • the DU determines in step S601 to stop the uplink SRS measurement and sends a second instruction to the LMF through the CU.
  • the steps performed by the CU in the above steps are changed to be performed by the CU-CP included in the CU.
  • the RAN device actively stops the uplink SRS measurement and the corresponding measurement result report according to its own state, and realizes the effective utilization of the RAN device resources.
  • the LMF used for location management may also be other devices, and the other devices may be controllers or managers used to manage the location information of terminal devices in the network, and may also be referred to as location information.
  • the device may be located in the RAN or CN, and the name and location of the positioning device are not specifically limited in this application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • SSD solid state disk
  • FIG. 7 shows a schematic block diagram of a RAN device 700 according to an embodiment of the present application.
  • the RAN device 700 may correspond to (for example, be configured in or be itself) the RAN device described in the above method 400, or the RAN device described in the above method 500 RAN equipment, or the RAN equipment described in the above method 600, or the RAN equipment described in other embodiments.
  • the RAN device 700 may include: a processor 701 and a transceiver 702, and the processor 701 and the transceiver 702 are communicatively coupled.
  • the RAN device 700 further includes a memory 703, and the memory 703 is communicatively coupled with the processor 701.
  • the processor 701, the memory 703, and the transceiver 702 may be communicatively coupled, the memory 703 may be used to store instructions, and the processor 701 is used to execute the instructions stored in the memory 703 to control the transceiver 702 to receive and/or Send information or signals.
  • the processor 701 and the transceiver 702 are respectively configured to execute the RAN device described in the foregoing method 400, or the RAN device described in the foregoing method 500, or the RAN device described in the foregoing method 600, or the RAN described in other embodiments.
  • Equipment various actions or processes performed.
  • the RAN device 700 shown in FIG. 7 may be a CU or a CU-CP.
  • FIG. 8 shows another schematic block diagram of a RAN device 800 according to an embodiment of the present application.
  • the RAN device 800 may correspond to (for example, may be configured in or be itself) the RAN device described in the above method 400, or the above method 500
  • the RAN device 800 may include: a receiving module 801, a processing module 802, and a sending module 803, and the processing module 802 is communicatively coupled with the receiving module 801 and the sending module 803, respectively.
  • the RAN device 800 may take the form shown in FIG. 7.
  • the processing module 802 may be implemented by the processor 701 in FIG.
  • the RAN device 800 may further include a storage unit for storing programs or data to be executed by the processing module 802, or storing information received through the receiving module 801 and/or sent through the sending module 803.
  • Each module or unit in the RAN device 800 is used to execute the RAN device described in the above method 400, or the RAN device described in the above method 500, or the RAN device described in the above method 600, or the RAN described in other embodiments.
  • the RAN device 800 shown in FIG. 8 may be a CU or a CU-CP.
  • FIG. 9 shows a schematic block diagram of a positioning device 900 according to an embodiment of the present application.
  • the positioning device 900 may correspond to (for example, may be configured in or be itself) the LMF described in the above method 400, or the above method 500. LMF, or the LMF described in the above method 600, or the LMF described in other embodiments.
  • the positioning device 900 may include a processor 901 and a transceiver 902, and the processor 901 and the transceiver 902 are communicatively coupled.
  • the positioning device 900 further includes a memory 903, and the memory 903 is communicatively coupled with the processor 901.
  • the processor 901, the memory 903, and the transceiver 902 may be communicatively coupled, the memory 903 may be used to store instructions, and the processor 901 may be used to execute instructions stored in the memory 903 to control the transceiver 902 to receive and/or Send information or signals.
  • the processor 901 and the transceiver 902 are respectively configured to execute the LMF described in the above method 400, or the LMF described in the above method 500, or the LMF described in the above method 600, or the LMF described in other implementations. Each action or process.
  • detailed descriptions are omitted.
  • FIG. 10 shows another schematic block diagram of a positioning device 1000 according to an embodiment of the present application.
  • the positioning device 1000 may correspond to (for example, may be configured in or be itself) the LMF described in the above method 400, or in the above method 500 The described LMF, or the LMF described in the above method 600, or the LMF described in other embodiments.
  • the positioning device 1000 may include a receiving module 1001, a processing module 1002, and a sending module 1003, and the processing module 1002 is communicatively coupled with the receiving module 1001 and the sending module 1003, respectively.
  • the positioning device 1000 may take the form shown in FIG. 9.
  • the processing module 1002 may be implemented by the processor 901 in FIG.
  • the receiving module 1001 and/or the sending module 1003 may be implemented by the transceiver 902 in FIG. 9.
  • the RAN device 1000 may further include a storage unit for storing programs or data to be executed by the processing module 1002, or storing information received through the receiving module 1001 and/or sent through the sending module 1003.
  • the modules or units in the positioning device 1000 are respectively used to execute the LMF described in the above method 400, or the LMF described in the above method 500, or the LMF described in the above method 600, or the LMF described in other implementation manners. Each action or process.
  • detailed descriptions are omitted.
  • the processor (701, 901) in the device embodiment of the present application may be a central processing unit (CPU), a network processor (NP), a hardware chip, or any combination thereof.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory (703, 903) in the device embodiment of the present application may be a volatile memory (volatile memory), such as a random-access memory (RAM); it may also be a non-volatile memory (non-volatile memory).
  • memory such as read-only memory (ROM), flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD); it can also be of the above types The combination of memory.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication coupling may be indirect coupling or communication coupling through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of this patent application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is realized in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this patent application can be embodied in the form of a software product in essence or a part that contributes to the existing technology or a part of the technical solution, and the computer software product is stored in a storage medium. It contains several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods of the various embodiments of the patent application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请实施例提供一种管理上行测量的方法。该方法包括:无线接入网RAN设备接收来自定位设备的第一消息,第一消息用于定位设备请求RAN设备进行上行测量,其中,第一消息包含测量周期和测量次数。RAN设备根据测量周期和测量次数对终端设备的上行信道探测参考信号SRS进行测量,并向定位设备发送第一响应;其中,第一响应包含上行SRS的测量结果。

Description

一种管理上行测量的方法、装置和系统 技术领域
本发明涉及无线通信领域,尤其涉及管理上行测量的方法、装置和系统。
背景技术
随着无线通信技术的飞速发展,第五代(5th Generation,5G)无线通信技术已是目前业界的热点。5G将支持多样化的应用需求,其中包括支持更高速率体验和更大带宽的接入能力、更低时延和高可靠的信息交互、以及更大规模且低成本的机器类通信设备的接入和管理等。终端设备的位置信息成为5G泛在网络应用的重要基础。基于终端设备的位置信息,可以构筑多样化的商业应用场景。
3GPP定义了多种终端设备的定位技术,其中包括基于上行测量的定位技术。基于上行测量的定位技术的基本方式是由终端设备发送参考信号,多个网络设备测量该参考信号并将测量结果上报给定位设备,由定位设备根据该多个网络设备上报的测量结果来确定终端设备的物理位置。如何保证定位设备对这些网络设备的正常管理是目前亟待解决的问题。
发明内容
本申请实施例提供一种上行测量的方法,能有效减少网络的资源和信令开销。
以下从多个方面介绍本申请,容易理解的是,该以下多个方面的实现方式可互相参考。
第一方面,本申请提供一种管理上行测量的方法,包括:无线接入网RAN设备接收来自定位设备的第一消息,该第一消息用于该定位设备请求该RAN设备进行上行测量,该第一消息包含测量周期和测量次数;该RAN设备根据该测量周期和该测量次数对该终端设备的上行信道探测参考信号SRS进行测量;以及该RAN设备向该定位设备发送第一响应,该第一响应包含该上行SRS的测量结果。
可见,本申请实施例提供的方法实现了RAN设备在定位设备指定的测量次数的条件下停止上行SRS测量和相应的测量结果上报,从而避免因为定位设备的原因导致RAN设备无法停止周期测量和周期上报所造成的资源浪费和信令开销。
在一种可能的实现方式中,该RAN设备根据该测量周期和该测量次数对该终端设备的上行SRS进行测量,包括:该RAN设备根据该测量周期对该上行SRS进行测量;在该RAN设备对该上行SRS测量达到该测量次数后,该RAN设备停止对该上行SRS的测量。
在一种可能的实现方式中,该RAN设备向该定位设备发送第一响应,包括:在该RAN设备对该上行SRS测量达到该测量次数后,该RAN设备停止向该定位设备发送该第一响应。
在一种可能的实现方式中,该上行SRS的测量结果包括以下参数中的至少一项:该RAN设备接收到的该上行SRS的信号强度、该RAN设备接收到的该上行SRS的到达时间信息或该RAN设备接收到的该上行SRS的到达角度信息。
在一种可能的实现方式中,该RAN设备包括以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU或该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第一消息是NR定位协议A NRPPa测量请求消息。
在一种可能的实现方式中,该第一响应是NRPPa测量报告消息。
第二方面,定位设备向无线接入网RAN设备发送的第一消息,该第一消息用于该定位设备请求该RAN设备进行上行测量,该第一消息包含测量周期和测量次数;该定位设备接收来自该RAN设备的第一响应,该第一响应包含上行信道探测参考信号SRS的测量结果。
可见,本申请实施例提供的方法实现了定位设备指示RAN设备在指定的测量次数的条件下停止上行SRS测量和相应的测量结果上报,从而避免因为定位设备的原因导致RAN设备无法停止周期测量和周期上报所造成的资源浪费和信令开销。
在一种可能的实现方式中,该上行SRS的测量结果包括以下参数中的至少一项:该RAN设备接收到的该上行SRS的信号强度、该RAN设备接收到的该上行SRS的到达时间信息或该RAN设备接收到的该上行SRS的到达角度信息。
在一种可能的实现方式中,该RAN设备包括以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU或该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第一消息是NR定位协议A NRPPa测量请求消息。
在一种可能的实现方式中,该第一响应是NRPPa测量报告消息
第三方面,本申请提供一种管理上行测量的方法,包括:无线接入网RAN设备接收来自定位设备的第一消息,该第一消息用于该定位设备请求该RAN设备进行上行测量,该第一消息包含测量周期和测量时长;该RAN设备根据该测量周期和该测量时长对该终端设备的上行信道探测参考信号SRS进行测量;以及该RAN设备向该定位设备发送第一响应,该第一响应包含该上行SRS的测量结果。
可见,本申请实施例提供的方法实现了RAN设备在定位设备指定的测量时长的条件下停止上行SRS测量和相应的测量结果上报,从而避免因为定位设备的原因导致RAN设备无法停止周期测量和周期上报所造成的资源浪费和信令开销。
在一种可能的实现方式中,该RAN设备根据该测量周期和该测量时长对该终端设备的上行SRS进行测量,包括:该RAN设备根据该测量周期对该上行SRS进行测量;在该RAN设备对该上行SRS测量达到该测量时长后,该RAN设备停止对该上行SRS的测量。
在一种可能的实现方式中,该RAN设备向该定位设备发送第一响应,包括:在该RAN设备对该上行SRS测量达到该测量时长后,该RAN设备停止向该定位设备发送该第一响应。
在一种可能的实现方式中,该上行SRS的测量结果包括以下参数中的至少一项:该RAN设备接收到的该上行SRS的信号强度、该RAN设备接收到的该上行SRS的到达时间信息或该RAN设备接收到的该上行SRS的到达角度信息。
在一种可能的实现方式中,该RAN设备包括以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU或该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第一消息是NR定位协议A NRPPa测量请求消息。
在一种可能的实现方式中,该第一响应是NRPPa测量报告消息。
第四方面,定位设备向无线接入网RAN设备发送的第一消息,该第一消息用于该定位设备请求该RAN设备进行上行测量,该第一消息包含测量周期和测量时长;该定位设备接收来自该RAN设备的第一响应,该第一响应包含上行信道探测参考信号SRS的测量结果。
可见,本申请实施例提供的方法实现了定位设备指示RAN设备在指定的测量时长的条件下停止上行SRS测量和相应的测量结果上报,从而避免因为定位设备的原因导致RAN设备无法停止周期测量和周期上报所造成的资源浪费和信令开销
在一种可能的实现方式中,该上行SRS的测量结果包括以下参数中的至少一项:该RAN设备接收到的该上行SRS的信号强度、该RAN设备接收到的该上行SRS的到达时间信息或该RAN设备接收到的该上行SRS的到达角度信息。
在一种可能的实现方式中,该RAN设备包括以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU或该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第一消息是NR定位协议A NRPPa测量请求消息。
在一种可能的实现方式中,该第一响应是NRPPa测量报告消息。
第五方面,本申请提供一种管理上行测量的方法,包括:无线接入网RAN设备接收来自定位设备的第一消息,该第一消息用于该定位设备请求该RAN设备进行上行测量,该第一消息包含测量周期和SRS参考信号接收功率RSRP阈值;该RAN设备根据该测量周期和该SRS-RSRP阈值对该终端设备的上行SRS进行测量;以及该RAN设备向该定位设备发送第一响应,该第一响应包含该上行SRS的测量结果。
可见,本申请实施例提供的方法实现了RAN设备在定位设备指定的SRS-RSRP阈值条件下停止上行SRS测量和相应的测量结果上报,从而避免因为定位设备的原因导致RAN设备无法停止周期测量和周期上报所造成的资源浪费和信令开销。
在一种可能的实现方式中,该RAN设备根据该测量周期和该SRS-RSRP阈值对该终端设备的上行SRS进行测量,包括:该RAN设备根据该测量周期对该上行SRS进行测量;在该RAN设备接收的SRS-RSRP小于该SRS-RSRP阈值时,该RAN设备停止对该上行SRS的测量。
在一种可能的实现方式中,该RAN设备向该定位设备发送第一响应,包括:在该RAN设备接收的SRS-RSRP小于该SRS-RSRP阈值时,该RAN设备停止向该定位设备发送该第一响应。
在一种可能的实现方式中,该上行SRS的测量结果包括以下参数中的至少一项:该RAN设备接收到的该上行SRS的信号强度、该RAN设备接收到的该上行SRS的到达时间信息或该RAN设备接收到的该上行SRS的到达角度信息。
在一种可能的实现方式中,该RAN设备包括以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU或该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第一消息是NR定位协议A NRPPa测量请求消息。
在一种可能的实现方式中,该第一响应是NRPPa测量报告消息。
第六方面,定位设备向无线接入网RAN设备发送的第一消息,该第一消息用于该定位设备请求该RAN设备进行上行测量,该第一消息包含测量周期和SRS参考信号接收功率RSRP阈值;该定位设备接收来自该RAN设备的第一响应,该第一响应包含上行信道探测参考信号SRS的测量结果。
可见,本申请实施例提供的方法实现了定位设备指示RAN设备在指定的SRS-RSRP阈值条件下停止上行SRS测量和相应的测量结果上报,从而避免因为定位设备的原因导致RAN设备无法停止周期测量和周期上报所造成的资源浪费和信令开销
在一种可能的实现方式中,该上行SRS的测量结果包括以下参数中的至少一项:该RAN设备接收到的该上行SRS的信号强度、该RAN设备接收到的该上行SRS的到达时间信息或该RAN设备接收到的该上行SRS的到达角度信息。
在一种可能的实现方式中,该RAN设备包括以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU或该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第一消息是NR定位协议A NRPPa测量请求消息。
在一种可能的实现方式中,该第一响应是NRPPa测量报告消息。
第七方面,本申请提供一种管理上行测量的方法,包括:无线接入网RAN设备接收来自定位设备的第二消息,该第二消息用于指示该RAN设备终止对终端设备发送的上行信道探测参考信号SRS的测量;该RAN设备向该定位设备发送第二响应,该第二响应用于指示该RAN设备成功接收该第二消息。
可见,本申请实施例提供的方法实现了RAN设备与LMF的测量终止指示信息的双向交互,保证了LMF确认RAN设备正确接收测量终止指示,减少了RAN设备因为没有正确接收测量终止指示而继续周期测量和周期上报所造成的资源浪费和信令开销。
在一种可能的实现方式中,该RAN设备以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一集中单元管理面单元CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU、该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第二消息是测量终止消息。
在一种可能的实现方式中,该第二响应是测量终止响应消息或测量终止应答消息。
第八方面,本申请提供一种管理上行测量的方法,包括:定位设备向无线接入网RAN设备发送第二消息,该第二消息用于指示该RAN设备终止对终端设备发送的上行信道探测参考信号SRS的测量;该定位设备接收来自该RAN设备的第二响应,该第二响应用于指示该RAN设备成功接收该第二消息。
可见,本申请实施例提供的方法实现了RAN设备与LMF的测量终止指示信息的双向交互,保证了LMF确认RAN设备正确接收测量终止指示,减少了RAN设备因为没有正确接收测量终止指示而继续周期测量和周期上报所造成的资源浪费和信令开销。
在一种可能的实现方式中,该RAN设备以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一集中单元控制面网元CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU、该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第二消息是测量终止消息。
在一种可能的实现方式中,该第二响应是测量终止响应消息或测量终止应答消息。
第九方面,本申请提供一种管理上行测量的方法,包括:无线接入网RAN设备确定终止对终端设备发送的上行信道探测参考信号SRS的测量;该RAN设备向定位设备发送第三消息,该第三消息用于指示该RAN设备终止对该上行SRS的测量。
可见,本申请实施例提供的方法实现了RAN设备根据自身状态主动停止上行SRS测量和相应的测量结果上报,实现RAN设备资源的有效利用。
在一种可能的实现方式中,该RAN设备以下设备中的任意一个:该终端设备的服务RAN设备、该终端设备的服务分布式单元DU所连接的第一集中单元CU、该第一CU包含的第一集中单元管理面单元CU-CP、该终端设备的邻区RAN设备、该终端设备的邻区DU所连接的第二集中单元CU、该第二CU包含的第二CU-CP。
在一种可能的实现方式中,该定位设备是位置管理功能LMF。
在一种可能的实现方式中,该第三消息是测量终止通知消息或测量终止指示消息。
第十方面,提供了一种无线接入网RAN设备,用于执行第一方面或第一方面的任一种可能的实现方式、或第三方面或第三方面的任一种可能的实现方式中的方法、或第五方面或第五方面的任一种可能的实现方式中的方法、或第七方面或第七方面的任一种可能的实现方式中的方法、或第九方面或第九方面的任一种可能的实现方式中的方法,具体地,该RAN设备可以包括用于执行第一方面或第一方面的任一种可能的实现方式、或第三方面或第三方面的任一种可能的实现方式、或第五方面或第五方面的任一种可能的实现方式、或第七方面或第七方面的任一种可能的实现方式、或第九方面或第九方面的任一种可能的实现方式中的方法的单元。
第十一方面,提供了一种定位设备,用于执行第二方面或第二方面的任一种可能的实现方式中的方法、或第四方面或第四方面的任一种可能的实现方式中的方法、或第六方面或第六方面的任一种可能的实现方式中的方法、或第八方面或第八方面的任一种可能的实现方式中的方法,具体地,该终端设备可以包括用于执行第二方面或第二方面的任一种可能的实现方式、或第四方面或第四方面的任一种可能的实现方式、或第六方面或第六方面的任一种可能的实现方式、或第八方面或第八方面的任一种可能的实现方式中的方法的单元。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备(例如,无线接入网设备或定位设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行第一至第九方面或第一至第九方面的任一种可能的实现方式中的方法。
第十三方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得计算机执行第一至第九方面或第一至第九方面的任一种可能的实现方式中的方法。
第十四方面,本申请实施例提供的一种芯片,所述芯片与存储器耦合,执行本申请实施例第一方面或第一方面的任一种可能的设计、第二方面或第二方面的任一种可能的设计、第 三方面或第三方面的任一种可能的设计、第四方面或第四方面的任一种可能的设计、第五方面或第五方面的任一种可能的设计、第六方面或第六方面的任一种可能的设计、第七方面或第七方面的任一种可能的设计、第八方面或第八方面的任一种可能的设计、第九方面或第九方面的任一种可能的设计的方法。
本发明的这些和其他方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
下面对本申请实施例或现有技术描述中使用的附图作简单地介绍:
图1是本申请实施例提供的一种通信系统架构示意图;
图2是本申请实施例提供的一种划分为CU和DU的gNB的架构示意图;
图3是本申请实施例提出的一种定位系统架构示意图;
图4是本申请实施例提供的一种5G系统中的终端设备定位方法流程示意图;
图5是本申请实施例提供的另一种5G系统中的终端设备定位方法流程示意图;
图6是本申请实施例提供的又一种5G系统中的终端设备定位方法流程示意图;
图7是本申请实施例提供的RAN设备的一种示意性框图;
图8是本申请实施例提供的RAN设备的另一种示意性框图;
图9是本申请实施例提供的定位设备的一种示意性框图;
图10是本申请实施例提供的定位设备的另一种示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本发明,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本发明。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本发明的描述变得晦涩。因此,本发明并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本文中术语“系统”和“网络”在本文中常被可互换使用。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
下面结合附图,对本申请的实施例进行描述。请参阅图1,图1为本申请实施例应用的一种通信系统架构示意图。应理解,本申请实施例的技术方案可以应用于各种通信系统,例如: 长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、码分多址(Code Division Multiple Access,CDMA)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(wireless local area network,WLAN)、第五代(5th generation,5G)移动通信系统、新无线(new radio,NR)通信系统、基于正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的通信系统或者下一代(next generation,NG)通信系统,比如6G等。本申请以5G系统为例进行描述,但不限于是5G系统。本领域普通技术人员可知,随着新业务场景的出现和网络架构的演变,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1所示的通信系统中包括网络设备(为简化起见,图1只示出一个网络设备,在实际系统中可以有一个或多个网络设备)和终端设备(为简化起见,图1中只给出了三个终端设备,在实际系统中可以有一个或多个终端设备),其中网络设备为终端设备提供服务。应理解,图1只是示意图,图1仅示出了作为无线接入网(radio access network,RAN)设备的网络设备,该通信系统中还可以包括其它网络设备,比如还可以包括核心网(core network,CN)设备、网络管理设备、网络控制器、中继设备等。图1所示的RAN设备可以对应于同一个或者两个不同的物理站点(如宏基站和微基站),不同的站点可以进行通信。
在本申请实施例中,RAN设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。RAN设备可以包括各种形式,例如,可以是下一代基站,如下一代节点B(next-generation Node B,gNB)或下一代演进型节点B(next-generation evolved Node B,ng-eNB)等,还可以是无线局域网(Wireless Local Area Networks,WLAN)中的接入点(access point,AP)、或者LTE中的演进型基站(evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备以及可穿戴设备等。其中,一个RAN设备具有一个或多个传输与接收点(transmission and reception point,TRP)。应理解,终端设备通过网络设备所管理的一个或多个小区使用的传输资源(例如,频域资源、时域资源、码域资源等)与RAN设备进行通信,该小区可以属于宏小区(macro cell),超级小区(hyper cell),也可以属于小小区(small cell),这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。图1所示的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(station,ST),可以是蜂窝电话、无绳电话、SIP电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、平板电脑(pad)、具有无线通信功能的手持设备或电脑、中继设备,计算设备或耦合到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。作为示例而非限定,在本申请实施例中,该终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备,无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、导航装置、物联网(Internet of Things,IoT)装置、可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进 行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
可选地,在5G系统中,一个RAN设备(如gNB)按协议栈还可进一步地划分为集中单元(central unit,CU)和分布式单元(distributed unit,DU),其中CU和DU可以分别部署在不同的物理设备上。CU负责RRC层、SDAP层以及PDCP层的操作,DU负责RLC层、MAC层以及PHY层的操作。图2(a)示出了一种划分为CU和DU的gNB的架构。其中,一个gNB可包含一个CU以及一个或多个DU,该一个或多个DU由该一个CU所控制。一个DU与CU通过控制面接口(如F1-C)连接,用于传输控制面数据;一个DU与CU通过用户面接口(如F1-U)连接,用于传输用户面数据。进一步地,CU还可划分为控制面的集中单元(即集中单元控制面CU-CP网元)和用户面的集中单元(即集中单元用户面CU-UP网元),其中CU-CP和CU-UP也可以分别部署在不同的物理设备上,CU-CP负责RRC层和PDCP层控制面的处理,CU-UP负责SDAP层和PDCP层用户面的处理。图2(b)示出了一种划分为CU-CP、CU-UP和DU的gNB的架构。其中,一个gNB可包含一个CU-CP、一个或多个CU-UP以及一个或多个DU。一个CP-UP仅与一个CU-CP通过控制面接口(如E1)连接,用于传输控制面数据;一个DU仅与一个CU-CP通过控制面接口(如F1-C)连接,用于传输控制面数据;在CU-CP的控制下,一个DU可以与一个或多个CU-UP连接,一个CU-UP也可以与一个或多个DU连接,CU-UP与DU之间通过用户面接口(如F1-U)连接,用于传输用户面数据。值得说明的是,为了保持网络的弹性,一个DU或一个CU-UP也可以和多个CU-CP连接。此时,多个CU-CP彼此作为备份;在实际应用中,同一时刻只有一个CU-CP在运行。应理解,对于划分为CU和DU的RAN设备架构而言,上述RAN设备划分为CU和DU所根据的协议栈划分方式仅是示例性的,RAN设备也可以根据其他划分方式划分CU和DU,例如可以由CU负责RRC层、SDAP层、PDCP层以及RLC层的操作,由DU负责MAC层以及PHY层的操作;或者由CU负责RRC层以及SDAP层的操作,由DU负责PDCP层、RLC层、MAC层以及PHY层的操作等;类似地,CU中的CU-CP和CU-UP之间的协议栈划分方式也是可变的;申请对此不作具体限定。
示例性的,本申请实施例提出的通信系统可以使用5G技术。如图3所示,图3为本申请实施例提出的一种定位系统架构示意图。该定位系统包括终端设备310、RAN设备330和CN设备,其中,RAN设备330示例性地可以是gNB或ng-eNB,CN设备示例性地包含接入与移动性管理功能(access and mobility management function,AMF)单元340和定位管理功能(location management function,LMF)单元320。终端设备310与RAN设备330之间存在通信连接,具体的,终端设备310与gNB之间通过NR-Uu空口进行无线通信;终端设备310与ng-eNB之间通过LTE-Uu空口进行无线通信。应理解,图3所示的RAN设备330是示例性的,在实际网络中,RAN可以包含一个或多个gNB,也可以包含一个或多个ng-eNB,还可以包含一个或多个gNB与ng-eNB的组合,其中,RAN中不同的RAN设备之间可以通过Xn接口通信,RAN设备330(gNB或ng-eNB)与AMF单元340之间通过NG-C接口进行通信,AMF单元340相当于gNB与LMF单元320通信的路由器。LMF单元320实现终端 设备310的位置估计,AMF单元340与LMF单元320间通过NLs接口进行通信。
终端设备的定位是5G系统的重要功能之一。3GPP R16版本中定义了多种终端设备的定位技术,其中包括基于上行测量的定位技术,如基于上行信道探测参考信号(sounding reference signal,SRS)的参考信号接收功率(reference signal received power,RSRP)、上行到达时间差(uplink-time difference of arrival,UL-TDOA)、上行到达角(uplink-azimuth angle of arrival,UL-AoA)等的定位技术。在基于上行SRS-RSRP技术中,示例性地,一个或多个RAN设备或该一个或多个RAN设备的TRP分别接收终端设备发送的上行SRS,测量接收到的RSRP,并将测量结果上报给LMF,LMF根据每个小区上报的SRS-RSRP来计算终端设备的物理位置。在本文中,SRS-RSRP也称为接收到的SRS的信号强度。在UL-TDOA技术中,示例性地,一个或多个RAN设备的多个小区分别接收终端设备发送的上行SRS,测量上行链路相对到达时间(plink-relative time of arrival,UL-RTOA),并将测量结果上报给LMF,LMF根据每个小区上报的UL-RTOA来计算终端设备的物理位置。在本文中,UL-RTOA也称为上行SRS的到达时间信息。在UL-AoA技术中,示例性地,一个或多个RAN设备的多个小区分别接收终端设备发送的上行SRS,测量到达角(azimuth angle of arrival,AoA)和/或俯仰角(zenith angle of arrival,ZoA),并将测量结果上报给LMF,LMF根据每个小区上报的AoA和/或ZoA来计算终端设备的物理位置。在本文中,UL-AoA也称为上行SRS的到达角度信息。值得说明的是,上述基于上行测量的定位技术在3GPP TS38.305技术规范中有详细的描述,本申请在此不再赘述。
在上述基于上行测量的定位方法中,一般地,LMF需要首先获取待定位的终端设备发送上行SRS的配置,并将该上行SRS配置发送给用于协助定位该终端设备的一个或多个RAN设备,由这个(些)RAN设备根据该上行SRS配置测量该终端设备发送的上行SRS以获得测量量,例如SRS-RSRP、UL-RTOA、或UL-AoA等,并将相应的测量结果上报给LMF,由LMF计算确定终端设备的物理位置,实现对终端设备的定位。通常地,LMF需要这个(些)RAN设备进行多次测量,并使用多次测量结果以对终端设备实现准确的定位。应理解,在多次测量过程中,由于终端设备的移动性和/或无线信道的时变性,同一个RAN设备在不同时间的测量结果是可以不同的。LMF可以利用这些RAN设备多次上报的测量结果有效实现终端设备的定位。为此,LMF可以指示这个(些)RAN设备周期性地进行终端设备的上行SRS测量和上报测量结果,LMF根据周期上报的测量结果计算终端设备的物理位置。在LMF完成终端设备的定位后,指示这个(些)RAN设备停止测量。发明人发现,对于周期性测量的方式,LMF指示这个(些)RAN设备进行周期性测量和上报后,有可能存在LMF因故障或其他原因而需要重启或LMF发生数据丢失等问题,导致LMF丢失了先前指示RAN设备周期测量的信息,从而失去对这个(些)RAN设备的正常管理。在这种情况下,这个(些)RAN设备会根据LMF先前指示的周期不停地进行周期性的测量和相应的测量结果的上报,导致无线资源的浪费和大量的信令开销。为此,本申请实施例提供了一种上行测量配置的技术方案。进一步地,本申请实施例的技术方案还应用于具有CU和DU的RAN设备架构,其中CU还可包括CU-CP和CU-UP分离的情况。
本文具体提供了如下几种实施例,下面结合图4至图6,以具体的方法实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。需要说明的是,图4至图6是本申请的方法实施例的示意性流程图,示出了该方法的详细的通信步骤或操作,但这些步骤或操作仅是示例,本申请 实施例还可以执行其它操作或者图4至图6中的各种操作的变形。此外,图4至图6中的各个步骤可以分别按照与图4至图6所呈现的不同的顺序来执行,并且有可能并非要执行图4至图6中的全部操作。
图4为本申请实施例提供的一种5G系统中的终端设备定位方法流程示意图。该方法400基于上行定位技术,应用于终端设备与一个或多个RAN设备以及LMF之间的交互。图4所述流程包含如下步骤:
S401、LMF从终端设备获取该终端设备的定位能力信息。
在该步骤中,LMF与终端设备交互以获取终端设备的定位能力。应理解,该终端设备是待定位的终端设备。示例性地,LMF可以使用LTE定位协议(LTE positioning protocol,LPP)能力转发(LPP capability transfer)流程获取终端设备的定位能力信息,例如终端设备支持的定位方法,或者终端设备针对某种定位方法相关的能力(如支持的带宽)等。具体地,LPP能力转发流程可参考3GPP TS37.355技术规范中描述,本申请在此不做赘述。
值得说明的是,上述步骤S401是可选的。在一种可能的实现方式中,LMF可以在该定位流程之前从其他设备上获取终端设备的定位能力信息,如从AMF上获取并保存该终端设备的定位能力信息;在另一种可能的实现方式中,LMF可以在终端设备的注册流程中获取并保存该终端设备的定位能力信息;此外,LMF还可以在其他流程中获取并保存终端设备的定位能力信息,或者LMF采用默认的定位能力信息,即LMF默认各个终端设备具有预先设置的定位能力信息。
S402、LMF向终端设备的服务RAN设备发送第一请求。相应地,该终端设备的服务RAN设备接收第一请求。
其中,第一请求用于请求获取终端设备的上行SRS配置。
在该步骤中,LMF向终端设备的服务RAN设备请求该服务RAN设备为该终端设备配置的上行SRS资源。示例性地,上行SRS配置包括SRS发送周期、SRS序列的载波间隔、循环前缀类型、频率位置以及符号数目等。应理解,上行SRS配置对应终端设备发送上行SRSS所使用的资源,也即上行SRS资源。值得说明的是,一个终端设备的服务RAN设备是当前为该终端设备提供服务的RAN设备。此外,服务RAN设备周围还存在其他的RAN设备为其他终端设备提供服务,这些其他的RAN设备可称为服务RAN设备的邻区RAN设备。
值得说明的是,3GPP R15版本中定义LMF与RAN设备之间使用NR定位协议A(NR positioning protocol A,NRPPa)进行定位相关的信令流程。可选地,第一请求是NRPPa定位信息请求(NRPPa positioning information request)消息。
S403、服务RAN设备确定终端设备的上行SRS资源。
在该步骤中,终端设备的服务RAN设备确定该终端设备用于发送上行SRS的资源,也可称为服务RAN设备确定终端设备的上行SRS配置。
S403a、服务RAN设备向终端设备发送上行SRS配置。相应地,终端设备接收服务RAN设备发送的上行SRS配置。
在该步骤中,服务RAN设备将在步骤S403中确定的上行SRS资源配置给终端设备,以使终端设备后续使用相应的上行SRS配置发送上行SRS。
S404、服务RAN设备向LMF发送第一请求响应。相应地,LMF接收来自服务RAN设备的第一请求响应。第一请求响应是服务RAN设备对LMF发送的第一请求的响应。
其中,第一请求响应用于向LMF提供终端设备的上行信息。示例性地,该上行信息是服 务RAN设备为终端设备配置的上行SRS资源,即上行SRS配置。通过第一请求响应,LMF可以获取终端设备后续发送上行SRS所使用的上行SRS配置。
可选地,第一请求响应是NRPPa定位信息响应(NRPPa positioning information response)消息。
S405、服务RAN设备激活终端设备的上行SRS传输。
在该步骤中,服务RAN设备激活终端设备在配置的上行SRS资源上发送上行SRS。终端设备收到该激活消息后,开始根据在步骤S403a中获得的上行SRS配置发送上行SRS。
可选地,服务RAN设备通过物理下行控制信道消息或MAC控制元素激活终端设备的上行SRS传输。
值得说明的是,上述步骤S402至S405是可选的。在基于上行定位技术的终端设备定位流程中,上述步骤S402至S405不涉及邻区RAN设备与LMF之间的信息交互。此外,由于上述步骤S402至S405也可应用在其他流程,例如服务RAN设备测量与终端设备之间的信道质量的流程等。
S406、LMF向RAN设备发送第二请求。相应地,RAN设备中接收来自LMF发送的第二请求。
其中,第二请求包含测量周期和测量次数。第二请求用于LMF请求RAN设备进行上行SRS测量。可选地,第二请求包含以下一项或多项测量量:SRS-RSRP、UL-AoA或UL-RTOA。进一步地,第二请求还可以包含上行SRS配置。
在该步骤中,在一种可能的实现方式中,LMF向终端设备的服务RAN设备发送第二请求。可选地,该第二请求用于请求服务RAN设备中的多个TRP进行上行SRS测量,该多个TRP是LMF所选择的用于协助定位终端设备的TRP。在另一种可能的实现方式中,LMF分别向终端设备的服务RAN设备以及一个或多个邻区RAN设备发送第二请求;可选地,该第二请求用于请求服务RAN设备以及一个或多个邻区RAN设备进行上行SRS测量,该一个或多个邻区RAN设备是LMF所选择的用于协助定位终端设备的RAN设备;可选地,该第二请求用于请求服务RAN设备以及一个或多个邻区RAN设备中的多个TRP进行上行SRS测量,该多个TRP是LMF所选择的用于协助定位终端设备的TRP。具体地,LMF可以通过第一策略选择用于测量终端设备发送上行SRS的多个RAN设备或多个TRP。其中,第一策略可以是多样的,例如,部署在服务RAN设备周围的多个RAN设备,或服务RAN设备的多个TRP,或与终端设备之间无线链路质量较好的多个RAN设备或多个TRP等,本申请实施例对此不作限定。应理解,在该步骤前,LMF可以获知服务RAN设备以及邻区RAN设备中的各个TRP的标识(identity,ID)。第二请求可以包括LMF选择的用于协助定位终端设备的各个TRP ID。
可选地,第二请求包含测量标识,用以标识LMF针对该终端设备的该周期测量的请求。
第二请求中包含测量周期(measurement periodicity)。即,在第二请求中,LMF指示RAN设备进行上行SRS测量的周期,该周期是一个大于0的数值。示例性地,测量周期可以是120ms、240ms、480ms、640ms等。第二请求中包含测量次数(measurement number)。即,在第二请求中,LMF指示RAN设备进行上行SRS测量的次数,该测量次数是大于或等于1的整数。示例性地,测量次数可以是4次、8次、16次、32次、64次等。表1给出在第二请求中包含测量周期和测量次数的信息元素(information element,IE)。
表1 第二请求包含的一种IE
Figure PCTCN2021093967-appb-000001
在表1中,Report Characterisitcs是一个枚举类型的表示报告特性的IE,其中报告特性可以包含按需(OnDemand)和周期性(Periodic)类型;Measurement Periodicity是一个条件型的枚举类型的标识测量周期的IE,其在Report Characteristics为Periodic的条件时有效,即在C-ifReportCharacteristicsPeriodic存在时有效;类似地,Measurement Number是一个取值为大于或等于1的整数的标识测量次数的IE,其在Report Characteristics为Periodic的条件时有效,即在C-ifReportCharacteristicsPeriodic存在时有效,其中测量次数可以如表1示例中取值为1到64之间的整数。
可选地,第二请求是NRPPa测量请求(NRPPa measurement request)消息。
S407、RAN设备进行上行SRS测量。
在该步骤中,在一种可能的实现方式中,在上述步骤S406中收到第二请求的服务RAN设备根据第二请求中的上行SRS配置、测量周期和测量次数指示多个TRP对终端设备发送的SRS进行周期性的测量。在另一种可能的实现方式中,在上述步骤S406中收到第二请求的多个RAN设备中的各个RAN设备根据第二请求中的上行SRS配置、测量周期和测量次数对终端设备发送的SRS进行周期性的测量。在又一种可能的实现方式中,在上述步骤S406中收到第二请求的多个RAN设备中的各个RAN设备根据第二请求中的上行SRS配置、测量周期和测量次数指示该RAN设备的一个或多个TRP对终端设备发送的SRS进行周期性的测量。值得说明的是,邻区RAN设备可以通过其他方式从服务RAN设备获取该终端设备的上行SRS配置,例如,可通过RAN设备之间的信息交互来获取。在这种情况下,第二请求可以不包含上行SRS配置。示例性地,通过对终端设备发送的SRS进行测量可以获取以下一项或多项测量量:SRS-RSRP、UL-AoA或UL-RTOA。应理解,RAN设备根据第二请求中指示的测量周期和测量次数,依次周期性地测量上行SRS信号并获取相应的测量信息。在达到测量次数后,RAN设备将不再进行上行SRS的测量。示例性地,当测量周期为120ms、测量次数为8次时,RAN设备在收到第二请求后,每隔120ms测量一次上行SRS,并连续进行8次该测量。
S408、RAN设备向LMF发送第二请求响应。相应地,LMF接收来自RAN设备的第二请求响应。第二请求响应是服务RAN设备对LMF发送的第二请求的响应。
其中,第二请求响应用于RAN设备向LMF报告上行SRS测量结果。
在该步骤中,RAN设备将自身或该RAN设备的一个或多个TRP对上行SRS的测量结果报告给LMF。示例性地,测量结果包括以下一项或多项测量量:SRS-RSRP、UL-AoA或 UL-RTOA。应理解,RAN设备根据第二请求中指示的测量周期和测量次数,依次周期性地向LMF报告上行SRS测量结果。在达到测量次数后,RAN设备将不再向LMF报告测量结果。示例性地,当测量周期为120ms、测量次数为8次时,RAN设备在收到第二请求后,每隔120ms测量上行SRS获取测量信息后向LMF报告上行SRS测量结果,并连续进行8次该报告。
可选地,第二请求响应是NRPPa测量响应(NRPPa measurement response)消息。
在上述步骤S406中,LMF通过在第二请求中指示RAN设备的测量次数使得RAN设备可以在对终端设备发送的上行SRS测量达到测量次数后停止对上行SRS的测量以及相应的测量结果的上报。在另一种可能的实现方式中,在上述步骤S406中,LMF向RAN设备发送的第二请求包含测量周期和测量时长(measurement interval)。即,在第二请求中,LMF指示RAN设备周期地进行上行SRS测量和相应的测量结果上报的时长,该测量时长是大于0的整数。示例性地,测量时长可以是1200ms、2400ms、3600ms等。表2给出在第二请求中包含测量周期和测量时长的IE。
表2 第二请求包含的另一种IE
Figure PCTCN2021093967-appb-000002
在表2中,Measurement Interval是一个条件型的枚举类型的标识测量时长的IE,其在Report Characteristics为Periodic的条件时有效,即在C-ifReportCharacteristicsPeriodic存在时有效,其中测量时长可以如表2示例中取值为1200ms、2400ms或4800ms等。在这种情况下,在上述步骤S407中,RAN设备在达到测量时长后,将不再进行上行SRS测量。示例性地,当测量周期为120ms、测量时长为1200ms时,RAN设备在收到第二请求后,每隔120ms测量一次上行SRS,并连续进行10次该测量后停止测量。类似地,在上述步骤S408中,RAN设备在达到测量时长后将不再向LMF报告测量结果。
在又一种可能的实现方式中,在上述步骤S406中,LMF向RAN设备发送的第二请求包含测量周期和SRS-RSRP阈值(RSRP threshold)。该SRS-RSRP阈值用于指示RAN设备在检测到终端设备的上行SRS的强度低于SRS-RSRP阈值时,RAN设备停止对该终端设备的上行SRS的测量和相应的测量结果的上报。即,在第二请求中,LMF指示RAN设备周期地进行上行SRS测量和相应测量结果上报的SRS-RSRP阈值。示例性地,信号强度阈值可以是-80dbm、-90dbm、-100dbm等。表3给出在第二请求中包含测量周期和RSRP阈值的IE。
表3 第二请求包含的又一种IE
Figure PCTCN2021093967-appb-000003
在表3中,SRS-RSRP Threshold是一个条件型的枚举类型的SRS-RSRP阈值的IE,其在Report Characteristics为Periodic的条件时有效,即在C-ifReportCharacteristicsPeriodic存在时有效,其中SRS-RSRP阈值可以如表3示例中取值为-80dbm、-90dbm或-100dbm等。在这种情况下,在上述步骤S407中,RAN设备在测量到终端设备的上行SRS-RSRP强度低于该阈值时,将不再进行上行SRS信号的测量。类似地,在上述步骤S408中,RAN设备在测量到终端设备的上行SRS-RSRP强度低于该阈值时将不再向LMF报告测量结果。
可选地,服务RAN设备在周期性上行SRS测量达到第二请求中指示的测量次数后,服务RAN设备可以指示终端设备停止发送上行SRS。示例性地,服务RAN设备通过无线资源控制(radio resource control,RRC)重配置消息指示终端设备停止发送上行SRS。
值得说明的是,在RAN设备是CU-DU分离架构的情况下,示例性地,上述步骤S402、S404、S406和S408是LMF与CU之间以及CU与DU之间的信息交互,其中上述步骤S402涉及的CU是终端设备的服务DU所连接的CU;在一种可能的实现方式中,该CU执行上述步骤S403并将上行SRS配置通过服务DU在上述步骤S403a中发送给终端设备,并且该CU通过服务DU在上述步骤S405中激活终端设备发送上行SRS;在另一种可能的实现方式中,服务DU执行上述步骤S403、S403a和S405,并将上行SRS配置发送给该CU;多个RAN设备中的DU执行上述步骤S407中的上行SRS测量,通过F1-C接口将测量结果上报给各自所连接的CU,再由CU在上述步骤S408中上报给LMF。应理解,该多个RAN设备中的不同的DU可能分别连接不同的CU,也可能存在不同的DU连接同一个CU。进一步地,在CU包含CU-CP和CU-UP的情况下,上述步骤中由CU执行的步骤改为由该CU包含的CU-CP执行。
通过本实施例上述步骤,实现了RAN设备可以在给定的条件下停止上行SRS测量和相应的测量结果上报,从而避免因为LMF的原因导致RAN设备无法停止周期测量和周期上报所造成的资源浪费和信令开销。
通过前述实施例步骤S401-S408,LMF可以获取多个RAN设备和/或多个TRP对终端设备的测量信息,并根据该多个测量信息确定终端设备的位置。通常地,在RAN设备周期性向LMF报告上行SRS测量结果的方式中,在LMF确定终端设备的物理位置后,LMF需要指示上述一个或多个RAN设备终止测量。可选地,LMF向上述一个或多个RAN设备分别发送测量终止(emasurement abort)消息,用于指示各个RAN设备停止测量。各个RAN设备收到 该测量终止消息后,不再进行上行SRS测量以及报告上行SRS测量结果。在这种情况下,如果RAN设备未成功接收来自LMF的测量终止消息,则RAN设备会继续进行上行SRS的测量以及相应的测量结果上报,造成不必要的资源浪费和系统开销。
图5为本申请实施例提供的另一种5G系统中的终端设备定位方法流程示意图。该方法500基于上行定位技术,应用于协助定位终端设备的一个或多个RAN设备和LMF之间的交互。图5所述流程包含如下步骤:
S501、LMF向RAN设备发送第一指示。相应地,RAN设备接收来自LMF的第一指示。
其中,第一指示用于指示RAN设备终止测量。
在该步骤中,LMF向RAN设备发送第一指示,以指示该RAN设备终止对终端设备的上行SRS测量以及相应的SRS测量结果上报。
应理解,该RAN设备是用于协助定位终端设备的多个RAN设备中的一个RAN设备。示例性地,该RAN设备是在前述实施例步骤S406中收到来自LMF的第二请求的RAN设备。
在一种可能的实现方式中,第一指示包含测量ID,用于指示RAN设备停止该测量ID所标识的测量。示例性地,该测量ID与前述实施例步骤S406中RAN设备获取的测量ID相同。
可选地,第一指示是测量终止(measurement abort)消息。
S502、RAN设备向LMF发送的第一指示响应。相应地,LMF接收来自RAN设备的第一指示响应。第一指示响应是服务RAN设备对LMF发送的第一指示的响应。
在该步骤中,RAN设备向LMF发送第一指示响应,以告知LMF该RAN设备成功接收到来自LMF的第一指示。RAN设备在发送第一指示响应后,不再进行上行SRS测量和相应的测量结果的上报,或指示该RAN设备的一个或多个TRP不再进行上行SRS测量和相应的测量结果的上报。
在一种可能的实现方式中,第一指示响应包含第一指示中的测量ID,用于确认RAN设备成功接收针对该测量ID所标识的测量的第一指示。
可选地,第一指示响应是测量终止响应(measurement abort response)消息或测量终止应答(measurement abort acknowledgement)消息。
值得说明的是,在LMF发送第一指示后,在预设的条件内,如果LMF没有收到RAN设备发送的第一指示响应,LMF可以继续发送第一指示,直到LMF收到RAN设备发送的第一指示响应。可选地,该预设的条件是预设的时间段,即LMF在预设的时间段内没有收到RAN设备发送的第一指示响应,则继续向该RAN设备发送第一指示。
值得说明的是,在RAN设备是CU-DU分离架构的情况下,LMF向CU发送第一指示,并由CU向DU转发该第一指示;DU向CU发送第一指示响应,并由CU向LMF转发该第一指示响应。进一步地,在CU包含CU-CP和CU-UP的情况下,上述步骤中由CU执行的步骤改为由该CU包含的CU-CP执行。
通过本实施例上述步骤,实现了RAN设备与LMF的测量终止指示信息的双向交互,保证了LMF确认RAN设备正确接收测量终止指示,减少了RAN设备因为没有正确接收测量终止指示而继续周期测量和周期上报所造成的资源浪费和信令开销。
在上述实施例中,由LMF决策RAN设备何时停止上行SRS测量以及相应的测量结果上报。例如,LMF指示RAN设备进行上行SRS测量的次数、或进行上行SRS测量的时长、或 终止上行SRS测量等。在另一种可能的实现方式中,RAN设备决策何时停止上行SRS测量以及相应的测量结果上报。在这种实现方式中,RAN设备可以根据自身的资源状态决策何时不再进行上行SRS测量以及相应的测量结果上报。
图6为本申请实施例提供的又一种5G系统中的终端设备定位方法流程示意图。该方法600基于上行定位技术,应用于协助定位终端设备的一个或多个RAN设备和LMF之间的交互。图6所述流程包含如下步骤:
S601、RAN设备确定停止上行SRS测量。
在该步骤中,RAN设备决策不再进行上行SRS测量。具体地,RAN设备根据第二策略来决定不再进行上行SRS测量。其中,第二策略可以是多样的,例如,RAN设备判断接收到的终端设备的SRS信号强度低于一个预设的阈值,或者RAN设备判断测量上行SRS的次数或时长超过一个预设的阈值,或者RAN设备资源过载不再有空闲资源用于协助定位终端设备等,本申请实施例对此不作限定。应理解,第二策略可以是RAN设备自身生成的,也可以是RAN设备从其他网络设备获取的。
S602、RAN设备向LMF发送第二指示。相应地,LMF接收来自RAN设备的第二指示。
其中,第二指示用于指示RAN设备停止上行SRS测量。
在该步骤中,RAN设备停止对上行SRS的测量,并通知LMF其不再进行上行SRS的测量以及相应的测量结果的上报。
在一种可能的实现方式中,第二指示包含测量ID,该测量ID与前述实施例步骤S406中RAN设备获取的测量ID相同,表明RAN设备停止该测量ID所指示的上行SRS测量。
可选地,第二指示是测量终止通知(measurement abort notification)消息或测量终止指示(measurement abort indication)消息。
值得说明的是,在RAN设备是CU-DU分离架构的情况下,在一种可能的实现方式中,CU在上述步骤S601中确定停止上行SRS测量并通过F1-C接口指示DU停止对终端设备的上行SRS的测量;上述步骤S602是LMF与CU之间的信息交互。在另一种可能的实现方式中,DU在上述步骤S601中确定停止上行SRS测量并通过CU向LMF发送第二指示。进一步地,在CU包含CU-CP和CU-UP的情况下,上述步骤中由CU执行的步骤改为由该CU包含的CU-CP执行。
通过本实施例上述步骤,实现了RAN设备根据自身状态主动停止上行SRS测量和相应的测量结果上报,实现RAN设备资源的有效利用。
值得说明的是,在本申请实施例中,用于位置管理的LMF还可以是其他设备,该其他设备可以是网络中用于管理终端设备位置信息的控制器或管理器,也可称为定位设备,其可以位于RAN也可以位于CN,本申请对该定位设备的名称和位置不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进 行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本专利申请的范围。
上文结合图4至图6详细描述了本申请的方法实施例,下文结合图7至图10,详细描述本申请的装置实施例。应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。值得注意的是,装置实施例可以与上述方法配合使用,也可以单独使用。
图7示出了本申请实施例的RAN设备700的示意性框图,该RAN设备700可以对应(例如,可以配置于或本身即为)上述方法400中描述的RAN设备,或上述方法500中描述的RAN设备,或上述方法600中描述的RAN设备,或其他实施方式中描述的RAN设备。该RAN设备700可以包括:处理器701和收发器702,处理器701和收发器702通信耦合。可选地,该RAN设备700还包括存储器703,存储器703与处理器701通信耦合。可选地,处理器701、存储器703和收发器702可以通信耦合,该存储器703可以用于存储指令,该处理器701用于执行该存储器703存储的指令,以控制收发器702接收和/或发送信息或信号。其中,处理器701和收发器702分别用于执行上述方法400中描述的RAN设备,或上述方法500中描述的RAN设备,或上述方法600中描述的RAN设备,或其他实施方式中描述的RAN设备,所执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。在RAN设备700是CU-DU分离的架构的情况下,图7所示的RAN设备700可以是CU,或者CU-CP。
图8示出了本申请实施例的RAN设备800的另一示意性框图,该RAN设备800可以对应(例如,可以配置于或本身即为)上述方法400中描述的RAN设备,或上述方法500中描述的RAN设备,或上述方法600中描述的RAN设备,或其他实施方式中描述的RAN设备。该RAN设备800可以包括:接收模块801、处理模块802和发送模块803,处理模块802分别和接收模块801和发送模块803通信耦合。RAN设备800可以采用图7所示的形式。其中,处理模块802可以通过图7中的处理器701来实现,接收模块801和/或发送模块803可以通过图7中的收发器702来实现。RAN设备800可还可包括存储单元,用于存储处理模块802要执行的程序或数据、或存储通过接收模块801接收和/或通过发送模块803发送的信息。该RAN设备800中各模块或单元分别用于执行上述方法400中描述的RAN设备,或上述方法500中描述的RAN设备,或上述方法600中描述的RAN设备,或其他实施方式中描述的RAN设备,所执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。在RAN设备800是CU-DU分离的架构的情况下,图8所示的RAN设备800可以是CU,或者CU-CP。
图9示出了本申请实施例的定位设备900的示意性框图,该定位设备900可以对应(例如,可以配置于或本身即为)上述方法400中描述的LMF,或上述方法500中描述的LMF,或上述方法600中描述的LMF,或其他实施方式中描述的LMF。该定位设备900可以包括:处理器901和收发器902,处理器901和收发器902通信耦合。可选地,该定位设备900还包括存储器903,存储器903与处理器901通信耦合。可选地,处理器901、存储器903和收发器902可以通信耦合,该存储器903可以用于存储指令,该处理器901用于执行该存储器903存储的指令,以控制收发器902接收和/或发送信息或信号。其中,处理器901和收发器902分别用于执行上述方法400中描述的LMF,或上述方法500中描述的LMF,或上述方法 600中描述的LMF,或其他实施方式中描述的LMF,所执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
图10示出了本申请实施例的定位设备1000的另一示意性框图,该定位设备1000可以对应(例如,可以配置于或本身即为)上述方法400中描述的LMF,或上述方法500中描述的LMF,或上述方法600中描述的LMF,或其他实施方式中描述的LMF。该定位设备1000可以包括:接收模块1001、处理模块1002和发送模块1003,处理模块1002分别和接收模块1001和发送模块1003通信耦合。定位设备1000可以采用图9所示的形式。其中,处理模块1002可以通过图9中的处理器901来实现,接收模块1001和/或发送模块1003可以通过图9中的收发器902来实现。RAN设备1000可还可包括存储单元,用于存储处理模块1002要执行的程序或数据、或存储通过接收模块1001接收和/或通过发送模块1003发送的信息。该定位设备1000中各模块或单元分别用于执行上述方法400中描述的LMF,或上述方法500中描述的LMF,或上述方法600中描述的LMF,或其他实施方式中描述的LMF,所执行的各动作或处理过程。这里,为了避免赘述,省略其详细说明。
应理解,本申请的装置实施例中的处理器(701、901)可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
本申请的装置实施例中的存储器(703、903)可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);也可以是非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);还可以是上述种类的存储器的组合。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信耦合可以是通过一些接口,装置或单元的间接耦合或通信耦合,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本专利申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本专利申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包含若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本专利申请各个实施例方法的全部或部分步骤。而前述的存储介质包含:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random  access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本专利申请的具体实施方式,但本专利申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本专利申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本专利申请的保护范围之内。因此,本专利申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种管理上行测量的方法,其特征在于,包括:
    无线接入网RAN设备接收来自定位设备的第一消息,所述第一消息用于所述定位设备请求所述RAN设备进行上行测量,所述第一消息包含测量周期和测量次数;
    所述RAN设备根据所述测量周期和所述测量次数对终端设备的上行信道探测参考信号SRS进行测量;以及
    所述RAN设备向所述定位设备发送第一响应,所述第一响应包含所述上行SRS的测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述RAN设备根据所述测量周期和所述测量次数对终端设备的上行SRS进行测量,包括:
    所述RAN设备根据所述测量周期对所述上行SRS进行测量;
    在所述RAN设备对所述上行SRS测量达到所述测量次数后,所述RAN设备停止对所述上行SRS的测量。
  3. 根据权利要求1所述的方法,其特征在于,所述上行SRS的测量结果包括以下参数中的至少一项:所述RAN设备接收到的所述上行SRS的信号强度、所述RAN设备接收到的所述上行SRS的到达时间信息或所述RAN设备接收到的所述上行SRS的到达角度信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述RAN设备包括以下设备中的任意一个:所述终端设备的服务RAN设备、所述终端设备的服务分布式单元DU所连接的第一集中单元CU、所述第一CU包含的第一CU-CP、所述终端设备的邻区RAN设备、所述终端设备的邻区DU所连接的第二集中单元CU或所述第二CU包含的第二CU-CP。
  5. 根据权利要求1所述的方法,其特征在于,所述定位设备是位置管理功能LMF。
  6. 根据权利要求1所述的方法,其特征在于,所述第一消息是NR定位协议A NRPPa测量请求消息。
  7. 根据权利要求1所述的方法,其特征在于,所述第一响应是NRPPa测量报告消息。
  8. 一种管理上行测量的方法,其特征在于,包括:
    定位设备向无线接入网RAN设备发送的第一消息,所述第一消息用于所述定位设备请求所述RAN设备进行上行测量,所述第一消息包含测量周期和测量次数;
    所述定位设备接收来自所述RAN设备的第一响应,所述第一响应包含上行信道探测参考信号SRS的测量结果。
  9. 根据权利要求8所述的方法,其特征在于,所述上行SRS的测量结果包括以下参数中的至少一项:所述RAN设备接收到的所述上行SRS的信号强度、所述RAN设备接收到的所述上行SRS的到达时间信息或所述RAN设备接收到的所述上行SRS的到达角度信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述RAN设备包括以下设备中的任意一个:所述终端设备的服务RAN设备、所述终端设备的服务分布式单元DU所连接的第一集中单元CU、所述第一CU包含的第一CU-CP、所述终端设备的邻区RAN设备、所述终端设备的邻区DU所连接的第二集中单元CU或所述第二CU包含的第二CU-CP。
  11. 根据权利要求8所述的方法,其特征在于,所述定位设备是位置管理功能LMF。
  12. 根据权利要求8所述的方法,其特征在于,所述第一消息是NR定位协议A NRPPa测量请求消息。
  13. 根据权利要求8所述的方法,其特征在于,所述第一响应是NRPPa测量报告消息。
  14. 一种无线接入网RAN设备,其特征在于,包括收发单元和处理单元,
    所述收发单元,用于收发信号;
    所述处理单元,用于通过所述收发单元执行:接收来自定位设备的第一消息,所述第一消息用于所述定位设备请求所述RAN设备进行上行测量,所述第一消息包含测量周期和测量次数;
    根据所述测量周期和所述测量次数对终端设备的上行信道探测参考信号SRS进行测量;以及
    向所述定位设备发送第一响应,所述第一响应包含所述上行SRS的测量结果。
  15. 根据权利要求14所述的RAN设备,其特征在于,所述根据所述测量周期和所述测量次数对终端设备的上行SRS进行测量,包括:
    根据所述测量周期对所述上行SRS进行测量;
    在对所述上行SRS测量达到所述测量次数后,停止对所述上行SRS的测量。
  16. 根据权利要求14所述的RAN设备,其特征在于,所述上行SRS的测量结果包括以下参数中的至少一项:所述RAN设备接收到的所述上行SRS的信号强度、所述RAN设备接收到的所述上行SRS的到达时间信息或所述RAN设备接收到的所述上行SRS的到达角度信息。
  17. 根据权利要求14至16中任一项所述RAN设备,其特征在于,所述RAN设备包括以下设备中的任意一个:所述终端设备的服务RAN设备、所述终端设备的服务分布式单元DU所连接的第一集中单元CU、所述第一CU包含的第一CU-CP、所述终端设备的邻区RAN设备、所述终端设备的邻区DU所连接的第二集中单元CU或所述第二CU包含的第二CU-CP。
  18. 根据权利要求14所述的RAN设备,其特征在于,所述第一消息是NR定位协议ANRPPa测量请求消息。
  19. 根据权利要求14所述的RAN设备,其特征在于,所述第一响应是NRPPa测量报告消息。
  20. 一种定位设备,其特征在于,包括收发单元和处理单元,
    所述收发单元,用于收发信号;
    所述处理单元,用于通过所述收发单元执行:向无线接入网RAN设备发送的第一消息,所述第一消息用于所述定位设备请求所述RAN设备进行上行测量,所述第一消息包含测量周期和测量次数;
    接收来自所述RAN设备的第一响应,所述第一响应包含上行信道探测参考信号SRS的测量结果。
  21. 根据权利要求20所述的定位设备,其特征在于,所述上行SRS的测量结果包括以下参数中的至少一项:所述RAN设备接收到的所述上行SRS的信号强度、所述RAN设备接收到的所述上行SRS的到达时间信息或所述RAN设备接收到的所述上行SRS的到达角度信息。
  22. 根据权利要求20或21所述的定位设备,其特征在于,所述定位设备是位置管理功能LMF。
  23. 根据权利要求20所述的定位设备,其特征在于,所述第一消息是NR定位协议A NRPPa测量请求消息。
  24. 根据权利要求20所述的定位设备,其特征在于,所述第一响应是NRPPa测量报告消息。
  25. 一种无线接入网RAN设备,其特征在于,所述RAN设备包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器、通信接口;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令,执行如权利要求1-7中任一项所述的方法。
  26. 一种定位设备,其特征在于,所述定位设备包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器、通信接口;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述至少一个处理器通过执行所述存储器存储的指令,执行如权利要求8-13中任一项所述的方法。
  27. 一种计算机可读存储介质,其上存储有计算机程序(指令),其特征在于,该程序(指令)被处理器执行时实现如权利要求1至7中任一项所述的方法。
  28. 一种计算机可读存储介质,其上存储有计算机程序(指令),其特征在于,该程序(指令)被处理器执行时实现如权利要求8至13中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得权利要求1至7中任一项所述的方法被执行。
  30. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得权利要求8至13中任一项所述的方法被执行。
PCT/CN2021/093967 2020-05-20 2021-05-15 一种管理上行测量的方法、装置和系统 WO2021233234A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112022023577A BR112022023577A2 (pt) 2020-05-20 2021-05-15 Método de gerenciamento de medição de enlace ascendente, aparelho e sistema
EP21808535.5A EP4142350A4 (en) 2020-05-20 2021-05-15 METHOD, APPARATUS AND SYSTEM FOR UPLINK MEASUREMENT MANAGEMENT
US17/987,115 US20230093234A1 (en) 2020-05-20 2022-11-15 Uplink measurement management method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010432168.5A CN113709787A (zh) 2020-05-20 2020-05-20 一种管理上行测量的方法、装置和系统
CN202010432168.5 2020-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/987,115 Continuation US20230093234A1 (en) 2020-05-20 2022-11-15 Uplink measurement management method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021233234A1 true WO2021233234A1 (zh) 2021-11-25

Family

ID=78645660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093967 WO2021233234A1 (zh) 2020-05-20 2021-05-15 一种管理上行测量的方法、装置和系统

Country Status (5)

Country Link
US (1) US20230093234A1 (zh)
EP (1) EP4142350A4 (zh)
CN (1) CN113709787A (zh)
BR (1) BR112022023577A2 (zh)
WO (1) WO2021233234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046169A1 (zh) * 2022-08-30 2024-03-07 中兴通讯股份有限公司 定位方法、设备和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11678279B2 (en) * 2020-06-04 2023-06-13 Qualcomm Incorporated Timing accuracy for reference signal transmission during user equipment (UE) power saving state
US11630181B2 (en) 2021-04-05 2023-04-18 Qualcomm Incorporated Systems and methods for storage of UE positioning capabilities in a network
WO2024092799A1 (en) * 2022-11-04 2024-05-10 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses and computer readable medium for communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330732A (zh) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 一种周期位置定位的优化处理方法
CN110913472A (zh) * 2018-09-18 2020-03-24 电信科学技术研究院有限公司 定位管理方法、装置、5g无线接入网节点及核心网节点
WO2020064120A1 (en) * 2018-09-28 2020-04-02 Huawei Technologies Co., Ltd. Positioning device and method for calculating a position of a mobile device
WO2020073644A1 (en) * 2018-10-11 2020-04-16 Huawei Technologies Co., Ltd. Method and device for user equipment positioning

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137715A1 (en) * 2018-10-31 2020-04-30 Qualcomm Incorporated System and methods for supporting uplink and downlink positioning procedures in a wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330732A (zh) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 一种周期位置定位的优化处理方法
CN110913472A (zh) * 2018-09-18 2020-03-24 电信科学技术研究院有限公司 定位管理方法、装置、5g无线接入网节点及核心网节点
WO2020064120A1 (en) * 2018-09-28 2020-04-02 Huawei Technologies Co., Ltd. Positioning device and method for calculating a position of a mobile device
WO2020073644A1 (en) * 2018-10-11 2020-04-16 Huawei Technologies Co., Ltd. Method and device for user equipment positioning

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP R15
3GPP TS37.355
INTEL CORPORATION ET AL.: "Running CR for the introduction of NR positioning", 3GPP TSG-RAN WG2 MEETING #109 ELECTRONIC R2-2002241, 6 March 2020 (2020-03-06), XP051864774 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046169A1 (zh) * 2022-08-30 2024-03-07 中兴通讯股份有限公司 定位方法、设备和存储介质

Also Published As

Publication number Publication date
CN113709787A (zh) 2021-11-26
BR112022023577A2 (pt) 2022-12-20
EP4142350A1 (en) 2023-03-01
EP4142350A4 (en) 2023-09-27
US20230093234A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP7048733B2 (ja) Rat間tdoaにおける参照決定のための方法
JP7026705B2 (ja) 通信方法、ネットワークノード、無線アクセスネットワークシステム
WO2021233234A1 (zh) 一种管理上行测量的方法、装置和系统
US10313890B2 (en) Method and device for receiving service through different wireless communication systems
TWI568283B (zh) 管理共存干擾之方法和裝置、來源無線電接取節點、目標無線電接取節點、以及包含程式碼手段之電腦程式
WO2018227494A1 (zh) 测量间隔配置方法、装置、设备、终端及系统
JP7004799B2 (ja) セルのセット上での測定をハンドリングするための、無線デバイス、ネットワークノード、および無線デバイス、ネットワークノードによって実施される方法
CN111836220B (zh) 一种通信方法及设备
JP2022185152A (ja) Etsi mecのためのieee802.11ベースの無線ネットワーク情報サービスを提供するための方法およびプロシージャ
JP2023158130A (ja) サイドリンク伝送におけるユーザ装置能力の標識方法及び装置
US20230139345A1 (en) Computing service implementation method and apparatus
US20230413096A1 (en) Methods for Positioning Reference Signal (PRS) Activity Reporting
WO2022142238A1 (zh) 一种上行定位方法及通信装置
WO2021027660A1 (zh) 无线通信的方法和通信装置
WO2022040873A1 (zh) 一种通信方法、设备和装置
JP2019522388A (ja) 通信方法と通信装置
WO2021174555A1 (zh) 一种信息处理方法及通信装置
WO2021026929A1 (zh) 一种通信方法及装置
RU2741328C1 (ru) Способ произвольного доступа, оконечное устройство и сетевое устройство
WO2021063175A1 (zh) 一种波束切换的方法、装置及通信设备
WO2022077399A1 (zh) 一种下行定位方法及通信装置
US20160029424A1 (en) Direct device-to-device communications radio technology selection
WO2018032411A1 (zh) 资源分配的方法和装置
WO2021088054A1 (zh) 一种通信方法及装置
CN112770366B (zh) 一种通信方法与通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808535

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023577

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021808535

Country of ref document: EP

Effective date: 20221122

ENP Entry into the national phase

Ref document number: 112022023577

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221118

NENP Non-entry into the national phase

Ref country code: DE