WO2023231669A1 - 协同传能方法及相关装置 - Google Patents

协同传能方法及相关装置 Download PDF

Info

Publication number
WO2023231669A1
WO2023231669A1 PCT/CN2023/091363 CN2023091363W WO2023231669A1 WO 2023231669 A1 WO2023231669 A1 WO 2023231669A1 CN 2023091363 W CN2023091363 W CN 2023091363W WO 2023231669 A1 WO2023231669 A1 WO 2023231669A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
signal
energy
energy transfer
information
Prior art date
Application number
PCT/CN2023/091363
Other languages
English (en)
French (fr)
Inventor
酉春华
娄崇
唐小伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231669A1 publication Critical patent/WO2023231669A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers

Definitions

  • the present application relates to the field of communication technology, and in particular, to a collaborative energy transmission method and related devices.
  • WPT wireless power transfer
  • This application provides a collaborative energy transmission method and related devices, which can improve the efficiency of wireless energy transmission.
  • this application provides a collaborative energy transmission method, which is applied to terminal equipment.
  • the method includes:
  • the cooperative energy transfer signal is a superposition signal of energy transfer signals sent by the first network device and the second network device, and the received peak of the energy transfer signal of the first network device and the third network device
  • the receiving wave peaks of the energy transmission signals of the two network devices overlap;
  • the terminal equipment converts the superimposed signal of the energy transmission signals of each site (ie, the coordinated energy transmission signal) from RF to DC. conversion, thereby achieving a more efficient energy transfer effect.
  • the method further includes:
  • Receive a first measurement signal and a second measurement signal the first measurement signal and the second measurement signal are used to determine a first measurement result, the first measurement result is used to determine the first network device and/or The energy transmission signal of the second network device;
  • the first measurement result is determined through the first measurement signal and the second measurement signal, and then the energy transmission signal of each site is determined based on the first measurement result.
  • the energy transmission signal of different sites can be realized to reach the terminal.
  • the receiving peaks of the device are aligned.
  • the method further includes:
  • Receive a first measurement signal and a second measurement signal the first measurement signal and the second measurement signal are used to determine a first measurement result, the first measurement result is used to determine the first network device and/or The energy transmission signal of the second network device;
  • the third network device is a centralized unit CU, and the The first network device and the second network device are distributed units DU.
  • the method further includes:
  • Receive a first measurement signal and a second measurement signal the first measurement signal and the second measurement signal are used to determine a first measurement result, the first measurement result is used to determine the first network device and/or The energy transmission signal of the second network device;
  • the third network device is a CU or an access network device
  • the first network device and the second network device are a transmission reception point TRP.
  • the method further includes:
  • the receiving the first measurement signal and the second measurement signal includes:
  • the first measurement signal is received based on measurement configuration information of the first measurement signal
  • the second measurement signal is received based on measurement configuration information of the second measurement signal.
  • the method further includes:
  • a third measurement signal is sent based on the measurement configuration information, and the third measurement signal is used to determine the energy transmission signal of the first network device and/or the second network device.
  • the first measurement result includes at least one of the following information:
  • the first phase difference, the first time difference, and the first peak difference between the first measurement signal and the second measurement signal are the first phase difference, the first time difference, and the first peak difference between the first measurement signal and the second measurement signal.
  • the method further includes:
  • the method further includes:
  • the receiving cooperative energy transmission signal includes:
  • the cooperative energy transmission signal is received according to the energy transmission configuration information.
  • the energy transmission configuration information includes one or more of the following information:
  • Waveform information frequency information, time domain resource information, frequency domain resource information, first timing duration, and first energy threshold.
  • the method further includes:
  • energy status indication information is sent, and the energy status indication information is used to indicate the energy status of the terminal device.
  • the terminal device when the terminal device is charged for a certain period of time, the terminal device notifies the first network device to stop coordinated energy transmission, thereby saving unnecessary energy consumption.
  • the method further includes:
  • energy status indication information is sent, and the energy status indication information is used to indicate the energy status of the terminal device.
  • the terminal device when the terminal device is charged to a certain level, the terminal device notifies the first network device to stop coordinated energy transmission, thereby saving unnecessary energy consumption.
  • the method further includes:
  • the signal adjustment request is used to indicate adjusting the first network device and/or the third network device.
  • the energy transmission signals of the first network device and the second network device may no longer overlap. Therefore, by sending a signal adjustment request to the first network device, the first network device can control The energy transmission signals of the first network device and the second network device overlap again.
  • the signal adjustment request includes one or more of the following information:
  • this application provides a collaborative energy transfer method, which is applied to the first network device.
  • the method includes:
  • the method further includes:
  • the sending of a collaborative energy transmission request to the second network device includes:
  • a collaborative energy transfer request is sent to the second network device.
  • the method further includes:
  • the method further includes:
  • the sending of energy transfer signals to the terminal device includes:
  • the energy transmission configuration information includes one or more of the following information:
  • Waveform information frequency information, time domain resource information, frequency domain resource information, first timing duration, and first energy threshold.
  • the method further includes:
  • the first measurement signal and the second measurement signal are used to determine a first measurement result
  • the first measurement result is used to determine the first network device and /or the energy transmission signal of the second network device
  • the first measurement result is received from the terminal device.
  • the first measurement result includes at least one of the following information:
  • the first phase difference, the first time difference, and the first peak difference between the first measurement signal and the second measurement signal are the first phase difference, the first time difference, and the first peak difference between the first measurement signal and the second measurement signal.
  • the method further includes:
  • the terminal device Receives a signal adjustment request from the terminal device, where the signal adjustment request is used to indicate adjusting the energy transmission signal of the first network device and/or the second network device.
  • the signal adjustment request includes one or more of the following information:
  • the present application provides a communication device, which includes a module or unit for executing the method described in any one of the first aspect or the second aspect.
  • the application provides a communication device, including a processor, a transceiver and a memory.
  • the processor, the transceiver and the memory are coupled.
  • a computer program is stored in the memory; the processor and the transceiver are used to call the computer program in the memory. , causing the communication device to perform the method described in any one of the first aspect or the second aspect.
  • the communication device may be a chip that implements the method in the first aspect or the second aspect or a device containing the chip.
  • the present application provides a communication device, including a processor and an interface circuit.
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit them to the processor or to send signals from the processor to the processor.
  • the processor implements the method as described in any one of the first aspect or the second aspect through logic circuits or execution of code instructions.
  • the present application provides a computer-readable storage medium, which stores computer programs or instructions.
  • the computer program or instructions are executed by a computer, the implementation of any one of the first aspect or the second aspect is achieved. method described.
  • the present application provides a computer program product, which when a computer reads and executes the computer program product, causes the computer to perform the method described in any one of the first aspect or the second aspect.
  • Figure 1 is a schematic structural diagram of a 5G communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a circuit for converting radio frequency signals into direct current according to an embodiment of the present application
  • Figure 3a is a schematic diagram of a continuous waveform provided by an embodiment of the present application.
  • Figure 3b is a schematic diagram of the multi-sine waveform provided by the embodiment of the present application.
  • Figure 4 is a schematic flow chart of the collaborative energy transmission method provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • Figure 1 is a schematic structural diagram of a 5G communication system provided by an embodiment of the present application.
  • access network equipment and terminal equipment 1 to 6 form a communication system.
  • terminal equipment 1 to terminal equipment 6 can send uplink information to the access network equipment, and the access network equipment can also send downlink information to terminal equipment 1 to terminal equipment 6.
  • the terminal devices 4 to 6 may also form a communication system.
  • the access network device can send downlink information to terminal device 1, terminal device 2, terminal device 5, etc.; terminal device 5 can also send downlink information to terminal device 4, terminal device 6.
  • the terminal equipment 4 and the terminal equipment 6 can also send uplink information to the access network equipment through the terminal equipment 5.
  • the terminal device in the embodiment of the present application is a device with wireless transceiver function, wherein the terminal device can also be called user equipment (UE), access terminal (access terminal), terminal, user unit, user station, mobile station, mobile, remote station, remote terminal, mobile device, user terminal, wireless network equipment, user agent, or User devices, etc.
  • Terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the end device may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a mobile phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , which can be a handheld device with wireless communication capabilities, a computing device or other devices connected to a wireless modem, a vehicle-mounted device, a wearable device, a drone device or a terminal in the Internet of Things, the Internet of Vehicles, fifth-generation mobile communications (fifth generation) Generation, 5G) network and any form of terminals, relay user equipment in future networks, or terminals in the future evolved public land mobile communication network (public land mobile network, PLMN), etc., where the relay user equipment may be, for example 5G residential gateway (RG).
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device can be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, a smart grid ( Wireless terminals in smart grid), wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control a wireless terminal in driverless driving
  • wireless terminal in telemedicine a smart grid ( Wireless terminals in smart grid)
  • wireless terminals in transportation security wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit this.
  • the access network device in the embodiment of the present application may be a network device that communicates with the terminal device.
  • the access network device includes, for example, but is not limited to: a new generation base station (generation node B, gNB) in the 5G communication system, an evolved node B(evolved node B, eNB), next generation evolved node B (next generation eNB, ng-eNB), wireless backhaul equipment, radio network controller (RNC), node B (node B, NB), base station control Base station controller (BSC), base transceiver station (BTS), home base station ((home evolved nodeB, HeNB) or (home node B, HNB)), baseband unit (baseBand unit, BBU), transmission
  • the receiving point (transmitting and receiving point, TRP), transmitting point (TP), mobile switching center, etc. are not limited here.
  • the access network equipment can also be a base station in the 6G communication system, or an open base station (Open RAN) or a cloud base
  • the access network equipment may include one or more centralized units (centralized units, CUs) and one or more distributed units (distributed units, DUs). Multiple DUs may be composed of One CU is centrally controlled, and one DU can also be connected to multiple CUs.
  • Inter-station coordinated energy transmission in which the network equipment involved in inter-station coordinated energy transmission may include the primary base station and the secondary base station.
  • the main base station and the secondary base station can be different base stations.
  • the main base station has a data transmission function
  • the secondary base station may or may not have a data transmission function.
  • the number of primary base stations is usually one, and the number of secondary base stations can usually be multiple (that is, two or more).
  • the following embodiments of this application mainly use one primary base station and one secondary base station.
  • a secondary base station is taken as an example for schematic explanation. Among them, both the main base station and the secondary base station can generate and send energy transmission signals for cooperative energy transmission. Alternatively, the main base station does not send energy transmission signals and generates and sends energy transmission signals through multiple secondary base stations for cooperative energy transmission.
  • Scenario 2 Intra-site cross-DU collaborative energy transmission.
  • the network equipment involved in intra-site cross-DU collaborative energy transmission can include a CU and multiple DUs managed under the CU (that is, two or more DUs). Each DU is different. Among them, CU can control multiple DUs. The CU does not send energy transfer signals, but DUs generate and send energy transfer signals. That is, multiple DUs send energy transfer signals for collaborative energy transfer.
  • Scenario 3 Collaborative transmission of different TRPs or pRRUs in the same cell within the site.
  • the network equipment involved in the collaborative transmission of different TRPs in the same cell in the site may include the access network equipment (such as the base station) or CU corresponding to the cell, and the corresponding access network equipment of the cell.
  • the access network equipment and CU do not send energy transfer signals, but TRP or pRRU send energy transfer signals. That is, multiple TRPs or pRRUs generate and send energy transfer signals for collaborative energy transfer.
  • WPT Wireless power transfer
  • WPT can include a sender and a receiver, where the sender can convert the DC signal into an energy-carrying RF signal, and then send the signal to the receiver through the transmitting antenna.
  • the receiver can receive the transmitted energy signal through the receiving antenna. number, and then convert RF to DC to achieve wireless power transmission.
  • the conversion from RF to DC can be achieved through the circuit shown in Figure 2.
  • the circuit includes four modules: antenna, matching network, diode rectifier, and low-pass filter.
  • the antenna is responsible for receiving the RF signal of energy transmission
  • the matching network is responsible for solving the mismatch problem of power transmission
  • the diode rectifier is responsible for converting the RF signal into
  • the peak power of the signal is converted to the power of the DC signal, and a low-pass filter is used to reduce the passage of signals above the cutoff frequency.
  • the sender in WPT can be a network device, and the receiver can be one or more terminal devices.
  • the receiver needs to store the voltage of multiple DC power for subsequent data transmission.
  • energy transfer waveforms mainly include continuous waveforms and multi-sine waveforms.
  • the continuous waveform is typically a single cosine waveform.
  • the multi-sine waveform is composed of multiple cosine waveforms superimposed according to specific rules, thereby forming a waveform with a higher pulse peak in appearance.
  • This superimposed waveform also has a relatively long-term trough, which is a combination of multiple cosine waveforms. It is obtained by superposing cosine waveforms of different frequencies.
  • the multi-sine waveform can be as shown in Figure 3b. There are no restrictions on other types of multi-sine waveforms.
  • the multi-sine waveform can be expressed as:
  • N is the number of cosine waveforms in the superimposed waveform
  • a k represents the amplitude of the kth cosine waveform
  • ⁇ k refers to the frequency of the kth cosine waveform
  • ⁇ k represents the initial phase of the kth cosine waveform
  • ⁇ 0 represents The initial frequency point of the kth cosine waveform
  • represents the subcarrier spacing or the frequency difference between the kth cosine waveform and the k+1th cosine waveform, 1 ⁇ k ⁇ N.
  • the energy transfer signal involved in the embodiment of the present application can also be described as a radio frequency signal or a radio frequency energy transfer signal, etc., and is not limited here.
  • phase offset information of a certain network device involved in the embodiment of the present application can be understood as the phase relative value of the energy transmission signal of the network device, where the phase relative value can be a positive number or a negative number.
  • phase of the energy transmission signal of the network device at the reference time t0 is originally w0, where the phase offset information is represented as offset1.
  • offset1 is a negative number
  • the phase of the adjusted energy transmission signal of the network equipment at t0 is w0-offset1
  • offset1 is a positive number
  • the phase of the adjusted energy transmission signal of the network equipment at t0 is w0+offset1 .
  • time offset information of a certain network device involved in the embodiment of the present application can be understood as the relative time value or absolute time value of the energy transmission signal of the network device, where the relative time value can be a positive number or A negative number, where a positive number means the time is delayed, and a negative number means the time is advanced.
  • the time offset information is understood as the relative time value of the energy transmission signal, where the relative time value of the energy transmission signal is represented as offset2.
  • offset2 is a negative number
  • the time for the adjusted network device to transmit the energy signal is t0-offset2
  • the time for the adjusted network device to transmit the energy signal is t0+offset2.
  • the absolute value of time represents the time of the energy transmission signal of the network device. That is to say, the absolute value of time directly indicates the time of the energy transmission signal of the network device.
  • the peak offset information of a certain network device involved in the embodiment of the present application can be understood as the time relative value or time absolute value of the transmission peak of the energy transfer signal of the network device, where the time relative value can be positive number or A negative number, where a positive number means the time is delayed, and a negative number means the time is advanced.
  • the reference time of the transmission peak of the energy transmission signal of the network device is originally t1
  • the peak offset information is understood as the relative time value of the transmission peak of the energy transmission signal.
  • the relative time value of the transmission peak of the energy transmission signal represents is offset3.
  • offset2 is a negative number
  • the adjusted peak time of the energy transfer signal of the network device is t1-offset3
  • offset3 is a positive number
  • the adjusted peak time of the energy transfer signal of the network device is t1+offset3 .
  • the absolute value of time represents the time of the transmission peak of the energy transmission signal of the network device.
  • the reference time of the energy transfer signal or the reference time of the transmission peak of the energy transfer signal involved in the embodiment of the present application can be a certain time slot (slot) or a certain symbol (symbol), where the reference time can be specified by the protocol or
  • the network device is configured, for example, in scenario 1, it is configured by the main base station; in scenario 2, it is configured by the CU; in scenario 3, it is configured by the access network device or the CU.
  • the relative time value can be slot granularity, symbol granularity, microsecond ( ⁇ s) granularity, etc., and is not limited here.
  • the signal waveform when the network device involved in the embodiment of the present application sends an energy transfer signal may be referred to as a sending waveform for short.
  • the signal waveform when the energy transmission signal sent by the network device reaches the terminal device can be referred to as the received waveform.
  • the waveform (transmit waveform or receive waveform) includes wave peaks and wave troughs, for example, the wave peaks and wave troughs shown in Figure 3a.
  • the received peak of the energy transfer signal of the network device involved in the embodiment of the present application can be understood as the peak of the received waveform when the energy transfer signal sent by the network device reaches the terminal device.
  • the transmission peak involved in the embodiment of this application can be understood as the peak of the energy transfer signal sent by the network device.
  • the overlap of the reception peaks of the energy transmission signals of each network device involved in the embodiment of the present application can also be understood as the alignment of the reception peaks of the energy transmission signals of each network device.
  • this application proposes a collaborative energy transmission method that can improve wireless energy transmission efficiency.
  • Figure 4 is a schematic flow chart of a collaborative energy transfer method provided by an embodiment of the present application. As shown in Figure 4, the communication method includes the following steps S401 to S402:
  • the terminal device receives the collaborative energy transmission signal.
  • the cooperative energy transfer signal is a superposition signal of the energy transfer signals sent by the first network device and the second network device. That is to say, the first network device and the second network device can each send an energy transfer signal to the terminal device, where each The superimposed signal formed when the energy transfer signal sent by the network device reaches the terminal device is the coordinated energy transfer signal.
  • the waveform of the energy transmission signal of the network device includes peaks and valleys.
  • the reception peak of the energy transmission signal of the first network device overlaps with the reception peak of the energy transmission signal of the second network device.
  • the overlap of received peaks involved in the embodiments of this application can be understood as precise overlap, that is, the time of the received peaks of the energy transmission signals of each network device is the same or similar, or the time of the reception peaks of the energy transmission signals of each network device is the same or similar.
  • the phases are the same or close.
  • the time difference between the reception peaks of the energy transmission signals of each network device is between [-30 ⁇ s, 30 ⁇ s].
  • the phase difference of the reception peaks of the energy transmission signals of each network device is between [-30°, 30°]. between.
  • the receiving peak of the energy transfer signal of the first network device is the same as the energy transfer signal of the second network device.
  • the received wave peaks of the signal each have an equal number of peaks in the same time area, and these wave peaks can all overlap.
  • the receiving peak of the energy transferring signal of the first network device and the receiving peak of the energy transferring signal of the second network device all overlap, which can be understood as: the sum of the peaks of the receiving waveform when the energy transferring signal sent by the first network device reaches the terminal device.
  • the second network device sends When the transmitted energy signal reaches the terminal device, the peaks of the received waveform overlap one by one in the same time area.
  • the receiving peak of the energy transfer signal of the first network device is different from the received wave peak of the energy transfer signal of the second network device.
  • the received wave peaks of the energy transmission signal each have an unequal number of peaks in the same time area, and these wave peaks may partially overlap.
  • the first network device involved in the embodiment of this application is the primary base station, and the second network device is the secondary base station.
  • the number of second network devices may be multiple.
  • the following will mainly take one second network device as an example for schematic explanation.
  • both the first network device and the second network device may be DUs.
  • both the first network device and the second network device may be TRP.
  • the terminal device processes the collaborative energy transmission signal.
  • the terminal device processing the cooperative energy transfer signal can be understood as: the terminal device converts the received cooperative energy transfer signal into direct current for subsequent use.
  • the terminal device can use the circuit as shown in Figure 2 to convert the cooperative energy transmission signal to direct current.
  • the terminal device sends collaborative energy transmission capability indication information.
  • the cooperative energy transmission capability indication information is used to indicate that the terminal device supports cooperative energy transmission, or the cooperative energy transmission capability indication information is used to indicate that the terminal device has the capability of cooperative energy transmission.
  • the terminal device may report cooperative transmission capability indication information to the first network device.
  • the first network device is the primary base station
  • the second network device is the secondary base station.
  • the terminal device may report cooperative energy transmission capability indication information to the CU.
  • the CU in scenario 2 can be described as the third network device below.
  • the first network device and the second network device can be understood as DU.
  • the terminal device may report cooperative transmission capability indication information to the access network device or CU.
  • the access network equipment or CU in scenario 3 may be collectively referred to as the third network equipment below.
  • the first network device and the second network device can be understood as TRP.
  • step S40 is an optional step.
  • phase difference, time difference or peak difference there are two main ways to measure phase difference, time difference or peak difference: one is measured by terminal equipment, and the other is measured by network equipment. The following is a detailed description of these two measurement methods:
  • the terminal device receives the first measurement signal and the second measurement signal.
  • the first measurement signal corresponds to the first network device
  • the second measurement signal corresponds to the second network device. That is to say, the first measurement signal is sent by the first network device to the terminal device, and the second measurement signal is sent by the second network device. to the terminal device.
  • the first measurement signal may be a multi-sine signal
  • the second measurement signal may be multi-sine signal, where the first measurement signal and the second measurement signal can be the same multi-sine signal, for example, N, ⁇ k , ⁇ k , ⁇ 0 are the same, while A k , ⁇ can be the same or different .
  • N ⁇ k , ⁇ k , ⁇ k , ⁇ 0 , and ⁇
  • N for the understanding of N, A k , ⁇ k , ⁇ k , ⁇ 0 , and ⁇ , please refer to the aforementioned description of each parameter in Formula 1, and will not be described again here.
  • the first measurement signal and the second measurement signal in the embodiment of the present application can be used to determine the first measurement result, and the first measurement result is used to determine the energy transmission signal of the first network device and/or the second network device. , so that the reception peak of the energy transmission signal of the second network device overlaps with the reception peak of the energy transmission signal of the first network device.
  • the determination of the energy transfer signal of a certain network device involved in the embodiments of the present application can specifically be understood as determining the transmission waveform of the energy transfer signal of the network device, for example, determining the occurrence time of the peak of the transmission waveform, so that the transmission The appearance time of the wave peak is advanced or delayed relative to the appearance time of the sending wave peak of its corresponding measurement signal.
  • determining the energy transfer signal of the first network device can be understood as determining the occurrence time of the peak of the transmission waveform of the energy transfer signal of the first network device, so that the occurrence time of the transmission peak is relatively The occurrence time of the transmission peak of the first measurement signal is advanced or delayed.
  • determining the energy transfer signal of the second network device can be understood as determining the occurrence time of the peak of the transmission waveform of the energy transfer signal of the second network device, so that the occurrence time of the transmission peak is The appearance time of the transmission peak of the second measurement signal is advanced or delayed relative to that of the second measurement signal.
  • the terminal device may also receive the measurement configuration information of the first measurement signal and the measurement configuration information of the second measurement signal, and then based on the first measurement signal
  • the measurement configuration information receives the first measurement signal, and the second measurement signal is received based on the measurement configuration information of the second measurement signal.
  • the measurement configuration information of the first measurement signal and the measurement configuration information of the second measurement signal may be carried in the same piece of information for transmission, or may be carried in two pieces of information for transmission respectively, without limitation here.
  • the measurement configuration information of the measurement signal may include downlink time-frequency resources, downlink signal sequence and other parameters. Therefore, the terminal device can receive the measurement signal corresponding to the downlink signal sequence on the downlink time-frequency resource.
  • the downlink time-frequency resources of the first measurement signal and the downlink time-frequency resources of the second measurement signal may be the same or different, and are not limited here.
  • the downlink signal sequence of the first measurement signal and the downlink signal sequence of the second measurement signal may be the same or different, and are not limited here.
  • the first network device ie, the main base station
  • the terminal device receives the measurement configuration information from the first network device, and then the terminal device can perform the measurement configuration according to the measurement configuration.
  • the information receives a first measurement signal from a first network device and a second measurement signal from a second network device (ie, a secondary base station).
  • the first network device and the second network device can send the same measurement signal on the same or different time-frequency resources, so the terminal device can measure the phase difference of the measurement signal (for example, wave peak) reaching the terminal device or Time difference or peak difference or respective phase values.
  • the third network device (ie, CU) can send measurement configuration information to the terminal device.
  • the terminal device receives the measurement configuration information from the third network device, and then the terminal device can receive the measurement configuration information from the third network device according to the measurement configuration information.
  • the third network device i.e., CU or access network device
  • the terminal device can send measurement configuration information to the terminal device.
  • the terminal device receives the measurement configuration information from the third network device, and then the terminal device can perform the measurement according to the measurement configuration information.
  • the configuration information receives a first measurement signal from a first network device (ie TRP) and receives a second measurement signal from a second network device (ie TRP).
  • the terminal device sends the first measurement result.
  • the terminal device may send the first measurement result to the first network device.
  • the terminal device may send the first measurement result to the third network device (ie, CU).
  • the terminal device may send the first measurement result to the third network device (ie, CU or access network device). That is to say, in scenario 2 and scenario 3, the terminal device can send the first measurement result to the third network device.
  • the first measurement result may include one or more of the first phase difference between the first measurement signal and the second measurement signal, the first time difference, the first peak difference, etc.
  • the phase difference, time difference or peak difference information may be at the beam level, such as the receiving phase difference, receiving time difference or receiving peak difference between beam 1 of the first network device and beam 3 of the second network device. If the first network device or the second network device performs beam switching, for example, the first network device switches from beam 1 to beam 2, the terminal device needs to send phase difference or time difference or peak difference information again. If the terminal equipment is configured with multiple measurement signals, and one measurement signal corresponds to a measurement signal identifier to identify the measurement signal, then the terminal equipment needs to report the inter-station phase difference or time difference or peak difference of each measurement signal. The measurement signals correspond to the beams of the respective network devices, so that multiple beams can transmit energy simultaneously.
  • the terminal device receives the measurement configuration information.
  • the terminal device may receive measurement configuration information from the first network device.
  • the terminal device can receive measurement configuration information from the third network device.
  • the measurement configuration information may include uplink time-frequency resources, uplink signal sequence and other parameters.
  • the terminal device sends the third measurement signal based on the measurement configuration information.
  • the third measurement signal is used to determine the energy transfer signal of the first network device and/or the second network device, so that the receiving peak of the energy transferring signal of the second network device is consistent with the receiving peak of the energy transferring signal of the first network device.
  • the third measurement signal may be a sounding reference signal (SRS), etc.
  • the SRS may be a traditional SRS signal or a multi-sine signal, which is not limited here.
  • the terminal device can send an SRS, and both the first network device and the second network device measure it, that is, the first network device and the second network device respectively measure the arrival phase value or arrival time when they receive the SRS. Or arrive at the wave crest, and then the stations exchange their respective arrival phase values or arrival time or arrival at the wave crest, so the phase difference or time difference or the wave crest difference between the stations can be determined, so that each network can be determined based on the phase difference or time difference or the wave crest difference between the stations The peak occurrence time of the energy transfer signal sent by the device.
  • the terminal device can also send two SRSs (for example, a first SRS and a second SRS).
  • the sending time of the two SRSs is the same or aligned, and the first network device receives and measures the first SRS.
  • the arrival phase value or arrival time or arrival wave peak, the second network device receives and measures the arrival phase value or arrival time or arrival wave peak of the second SRS, and then the stations exchange their respective arrival phase values or arrival time or arrival wave peak, so it can Determine the phase difference, time difference, or peak difference between stations, so as to determine the occurrence time of the transmission peak of the energy transfer signal sent by each network device based on the phase difference, time difference, or peak difference between stations.
  • the second network device may send the arrival phase value or arrival time or arrival peak measured by the second network device to the first network device for the first network device to determine the first network device and second The phase difference or time difference or the peak difference between the arrival signals of the network device, so as to determine the occurrence time of the transmission peak of the energy transfer signal sent by the first network device and the second network device based on the phase difference or time difference or the peak difference between the stations. .
  • the first network device and the second network device may send their respective measured arrival phase values or arrival times or arrival peaks to the third network device for the third network device to determine The phase difference, time difference or peak difference between the arrival signals of the first network device and the second network device, so as to determine the transmission energy sent by the first network device and the second network device based on the phase difference, time difference or peak difference between the stations.
  • the occurrence time of the signal s transmission peak.
  • the terminal device sends an energy transfer request to the first network device.
  • the first network device receives the energy transfer request from the terminal device, and then the first network device can send a cooperative energy transfer request to the second network device according to the energy transfer request.
  • the cooperative energy transfer request is used to request the second network device to communicate with the second network device.
  • the first network device performs collaborative energy transmission. That is to say, after receiving the energy transfer request, if the first network device determines that the terminal requests more energy and requires coordinated energy transmission to meet the energy transmission demand, then the first network device can send a coordinated energy transmission request to the second network device.
  • energy transmission request correspondingly, the second network device receives the cooperative energy transmission request from the first network device.
  • the energy transfer request may include one or more of the energy information and energy transfer time information requested by the terminal device.
  • the energy information may be the receiving power of the terminal device or the transmitting power of the network device, etc., which is not limited here.
  • the cooperative energy transfer request may include the energy transfer signal or the waveform information of the cooperative energy transfer signal, the energy transfer signal or the frequency information of the cooperative energy transfer signal, the energy transfer signal or the time domain resource information of the cooperative energy transfer signal, the energy transfer signal Or one or more of the frequency domain resource information of the collaborative energy transmission signal, the second phase offset information, the second time offset information, the second peak offset information, etc.
  • the waveform information of the energy transfer signal or the cooperative energy transfer signal can be the basic waveform of the energy transfer signal or the cooperative energy transfer signal.
  • the basic waveform can be a cosine waveform, a multi-sine waveform, etc., which is not limited here.
  • the collaborative energy transmission request may also include energy transmission assistance information, for example, one or more information such as energy information (such as received power) requested by the terminal device, energy transmission time information requested by the terminal device, and cooperative energy transmission.
  • energy information such as received power
  • the waveform of the energy transfer signal or cooperative energy transfer signal is a multi-sine waveform
  • the cooperative energy transfer request also needs to carry at least one of the following information: N, A k , ⁇ k , ⁇ k , ⁇ 0 , ⁇ and other parameters.
  • N energy transmission assistance information
  • a k , ⁇ k , ⁇ k , ⁇ k , ⁇ 0 , and other parameters please refer to the aforementioned description of each parameter in Formula 1, and will not be described again here.
  • the second network device may send a cooperative energy transfer response to the first network device, and the cooperative energy transfer response is used to instruct the second network device to accept cooperative energy transfer.
  • the second network device may also refuse to accept cooperative energy transfer, and then the second network device may send a cooperative energy transfer failure message to the second network device.
  • the cooperative energy transfer failure message may include a reason value, for example, insufficient available energy.
  • the second network device determines the currently sent second phase offset information (for example, phase offset A) or second time offset information (for example, time offset B) or second peak offset information ( For example, if the peak offset C) is not acceptable, then the The simultaneous interpretation failure message may also carry phase offset information (for example, phase offset A') or time offset information (for example, time offset B') or wave peak offset information (for example, phase offset A') that is acceptable to the second network device.
  • peak offset C' where the value of phase offset A is different from the value of phase offset A', the value of time offset B is different from the value of time offset B', and the value of peak offset C is The value is different from the value of peak offset C'.
  • the cooperative energy transmission request may carry phase offset information (for example, phase offset A') or time offset information (for example, phase offset A') acceptable to the second network device.
  • phase offset information for example, phase offset A'
  • time offset B' for example, time offset B'
  • peak offset information eg, peak offset C'
  • the second network device may send an energy transfer signal according to the second phase offset information, the second time offset information or the second peak offset information in the cooperative energy transfer request. .
  • the first network device may also determine the first phase offset information or the first time offset information or the first peak offset information, and then the first network device determines the first time offset based on the first phase offset information.
  • the energy transfer signal is sent by using the information or the first peak offset information, so that the energy transfer signal of the second network device overlaps with the reception peak of the energy transfer signal of the first network device when it reaches the terminal device.
  • first phase offset information and/or second phase offset information may be determined based on the first phase difference.
  • first time offset information and/or second time offset information may be determined based on the first time difference.
  • first peak offset information and/or second peak offset information may be determined based on the first peak difference.
  • the sum of the first phase offset information and the second phase offset information is equal to the first phase difference.
  • the first phase offset information can be set to 0, which means that the waveform of the energy transfer signal of the first network device is exactly the same as the waveform of the first measurement signal, while the waveform of the energy transfer signal of the second network device is exactly the same.
  • Phase - phase of the second measurement signal first phase difference.
  • the second phase offset information can be set to 0, which means that the waveform of the energy transfer signal of the second network device is exactly the same as the waveform of the second measurement signal, while the waveform of the energy transfer signal of the first network device is exactly the same.
  • Phase - Phase of the first measurement signal first phase difference.
  • the sum of the first time offset information and the second time offset information is equal to the first time difference.
  • the first time offset information can be set to 0, which means that the waveform of the energy transmission signal of the first network device is exactly the same as the waveform of the first measurement signal, while the waveform of the energy transmission signal of the second network device is exactly the same.
  • Time - time of the second measurement signal first time difference.
  • the second time offset information can be set to 0, which means that the waveform of the energy transmission signal of the second network device is exactly the same as the waveform of the second measurement signal, while the waveform of the energy transmission signal of the first network device is exactly the same.
  • Time - time of first measurement signal first time difference.
  • the sum of the first peak offset information and the second peak offset information is equal to the first peak difference.
  • the first peak offset information can be set to 0, which means that the waveform of the energy transfer signal of the first network device is exactly the same as the waveform of the first measurement signal, while the waveform of the energy transfer signal of the second network device is exactly the same.
  • Time of transmitting the peak - time of transmitting the peak of the second measurement signal first peak difference.
  • the second peak offset information can be set to 0, which means that the waveform of the energy transfer signal of the second network device is exactly the same as the waveform of the second measurement signal, while the waveform of the energy transfer signal of the first network device is exactly the same.
  • Time of transmitting the peak - time of transmitting the peak of the first measurement signal first peak difference.
  • step S44 may also be included:
  • the first network device sends energy transmission configuration information to the terminal device.
  • the terminal device receives the energy transmission configuration information from the first network device.
  • the energy transfer configuration information is sent to the terminal device through dedicated signaling or system messages, and may include waveform information of the energy transfer signal or cooperative energy transfer signal, frequency information of the energy transfer signal or cooperative energy transfer signal, energy transfer signal Or at least one of the time domain resource information of the cooperative energy transfer signal, the frequency domain resource information of the energy transfer signal or the cooperative energy transfer signal, etc.
  • the energy transmission configuration information may also include the first timing duration, the first energy threshold, the phase difference threshold, the time difference threshold, the peak difference threshold, and the reference signal receiving power (reference signal receiving power, RSRP) threshold value, second timing duration and other information, which are determined according to the actual application scenario and are not limited here.
  • the first network device may send an energy transmission signal to the terminal device according to the energy transmission configuration information.
  • the second network device may determine the time-frequency resource for energy transmission based on the second phase offset information or the second time offset information or the second peak offset information in the collaborative energy transmission request.
  • the phase or transmission time or transmission wave peak is such that the energy transfer signal of the second network device overlaps with the reception wave peak of the energy transfer signal of the first network device when it reaches the terminal device.
  • the terminal device can receive the cooperative energy transmission signal according to the energy transmission configuration information, convert the cooperative energy transmission signal from radio frequency to DC, and then store the DC energy to complete the energy transmission.
  • the energy transmission signal of the first network device may be a multi-sine signal
  • the energy transmission signal of the second network device may be a multi-sine signal, where the energy transmission signal of the first network device and the energy transmission signal of the second network device
  • the energy signal can be the same multi-sine signal, for example, N, ⁇ k , ⁇ k , ⁇ 0 are the same, while A k , ⁇ can be the same or different.
  • N for the understanding of N, A k , ⁇ k , ⁇ k , ⁇ 0 , and ⁇ , please refer to the aforementioned description of each parameter in Formula 1, and will not be described again here.
  • the terminal device can also perform the following steps S45, S46 and S48, or perform the following steps S47 ⁇ S48:
  • the terminal device After the terminal device sends the energy transmission request or receives the energy transmission configuration information, the terminal device starts the first timer.
  • the terminal device sends energy status indication information to the first network device.
  • the first network device receives the energy status indication information from the terminal device.
  • the terminal device sends energy status indication information to the first network device.
  • the first network device receives the energy status indication information from the terminal device.
  • the energy status indication information is used to indicate the energy status of the terminal device.
  • the first network device may stop sending the energy transfer signal to the terminal device, and/or the first network device may send the energy transfer signal to the second network device.
  • the network device sends a cooperative energy transmission release message to notify the second network device to stop cooperative energy transmission.
  • the terminal device when the terminal device is fully charged, the terminal device notifies the first network device to stop cooperative energy transmission, thereby saving unnecessary energy consumption.
  • the terminal equipment may move during the energy transmission process, the performance of the terminal equipment When the energy information state does not meet the energy information requested by the terminal device, it may happen that the received peaks of the energy transfer signal sent by the first network device and the energy transfer signal sent by the second network device no longer overlap or overlap less, resulting in energy transfer The signal peak becomes shorter, which in turn causes the energy transfer efficiency to become lower. Then, the following steps S49 and S410 need to be performed to realize that the reception peaks of the energy transfer signal sent by the first network device and the energy transfer signal sent by the second network device overlap again until When the energy status of the terminal device meets the energy information requested by the terminal device, collaborative energy transmission will stop:
  • the terminal device sends a signal adjustment request to the first network device.
  • the first network device receives the signal adjustment request from the terminal device, and adjusts the energy transmission signal of the first network device and/or the second network device according to the signal adjustment request, so that the reception of the energy transmission signal of the second network device The wave peak overlaps again with the received wave peak of the energy transfer signal of the first network device.
  • the terminal device sending a signal adjustment request to the first network device can be understood as: when the terminal device determines that the second phase difference of the energy transmission signals of the first network device and the second network device is greater than or equal to the phase When the difference threshold value is exceeded, a signal adjustment request is sent to the first network device.
  • the terminal device sending a signal adjustment request to the first network device can be understood as: when the terminal device determines that the second time difference between the energy transmission signals of the first network device and the second network device is greater than or equal to the time difference threshold value when, sending a signal adjustment request to the first network device.
  • the terminal device sending a signal adjustment request to the first network device can be understood as: when the terminal device determines that the second peak difference of the energy transmission signals of the first network device and the second network device is greater than or equal to the peak difference threshold When the value reaches the limit, a signal adjustment request is sent to the first network device.
  • the terminal device sending a signal adjustment request to the first network device can be understood as: when the terminal device determines the difference between the first reference signal received power RSRP value and the second RSRP value of the first network device or the second network device. When the absolute value of the difference is greater than or equal to the RSRP threshold value, a signal adjustment request is sent to the first network device, and the second RSRP value is the previous RSRP value of the first RSRP value.
  • the terminal device may also start the second timer. When the second timer reaches the second timing duration, the terminal device sends a signal adjustment request to the first network device.
  • the signal adjustment request may include one or more of the following information: the second phase difference between the energy transmission signals of the first network device and the second network device, the second time difference, the second peak difference, and RSRP change information.
  • the first network device can estimate the phase difference information, that is, the second phase difference, based on the RSRP change information, and then adjust the energy transmission signal.
  • the first network device can adjust the energy transmission signal of the first network device and/or the second network device according to the signal adjustment request in the following three ways:
  • Implementation Mode 1 The first network device determines the third phase offset information or the third time offset according to the signal adjustment request information or the third peak offset information, and adjust the energy transmission signal of the first network device according to the third phase offset information or the third time offset information or the third peak offset information, so that the energy transmission signal of the second network device The received wave peak of the signal overlaps again with the received wave peak of the energy transfer signal of the first network device.
  • Implementation Mode 2 After receiving the signal adjustment request from the terminal device, the first network device determines the fourth phase offset information or the fourth time offset information or the fourth peak offset information, and sends the coordination to the second network device again.
  • Energy transfer request the collaborative energy transfer request may include fourth phase offset information, fourth time offset information, or fourth peak offset information. Therefore, the second network device can adjust the energy transmission signal of the second network device according to the fourth phase offset information or the fourth time offset information or the fourth peak offset information, so that the reception of the energy transmission signal of the second network device The wave peak overlaps again with the received wave peak of the energy transfer signal of the first network device.
  • Implementation manner 3 The first network device determines the third phase offset information or the third time offset information or the third peak offset information according to the signal adjustment request, and determines the fourth phase offset information or the fourth time offset information or The fourth wave peak offset information. Then, the first network device sends a cooperative energy transmission request to the second network device again, and the cooperative energy transmission request may include fourth phase offset information, fourth time offset information, or fourth peak offset information. Therefore, the first network device can adjust the energy transmission signal of the first network device according to the third phase offset information or the third time offset information or the third peak offset information, and the second network device can adjust the energy transmission signal of the first network device according to the fourth phase offset information. Or the fourth time offset information or the fourth peak offset information adjusts the energy transmission signal of the second network device so that the reception peak of the energy transmission signal of the second network device is consistent with the reception peak of the energy transmission signal of the first network device. overlapping.
  • phase offset information and/or fourth phase offset information may be determined based on the second phase difference.
  • the above-mentioned third time offset information and/or fourth time offset information may be determined based on the second time difference.
  • third peak offset information and/or fourth peak offset information may be determined based on the second peak difference.
  • the third phase offset information and/or the fourth phase offset information are determined according to the second phase difference, or the third time offset information and/or the fourth time offset information are determined according to the second time difference, or,
  • the third peak offset information and/or the fourth peak offset information based on the second peak difference please refer to the above S43 for determining the first phase offset information and/or the second phase offset based on the first phase difference. setting information, or determine the first time offset information and/or the second time offset information based on the first time difference, or determine the first peak offset information and/or the second peak offset information based on the first peak difference. The relevant description will not be repeated here.
  • the second network device may send the energy transfer signal at (t+5 ⁇ s), or the first network device may send the energy transfer signal at (t0-2.5 ⁇ s), and the second network device may send the energy transfer signal at (t+2.5 ⁇ s)
  • the energy transfer signal is transmitted so that the reception wave
  • the first network device and the second network device send the adjusted energy transmission signal to the terminal device.
  • the terminal device receives the adjusted energy transfer signals sent from the first network device and the second network device, and the received wave peaks of the adjusted energy transfer signals of each network device overlap.
  • the energy transmission signals of the first network device and the second network device no longer overlap or overlap less.
  • the first network device can control The energy transmission signals of the first network device and the second network device overlap again.
  • the terminal device sends an energy transmission request to the third network device.
  • the third network device receives the energy transfer request from the terminal device, and the third network device can control the first network device and the second network device to cooperatively transfer energy to the terminal device according to the energy transfer request.
  • the energy transfer request may include one or more of the energy information and energy transfer time information requested by the terminal device.
  • the energy information may be the receiving power of the terminal device or the transmitting power of the network device, etc., which is not limited here.
  • the third network device can control the first network device to adjust the time-frequency resources of the first network device for energy transmission according to the first phase offset information or the first time offset information or the first peak offset information. phase or transmission time or transmission peak, and controlling the second network device to adjust the time-frequency resource of the second network device on the energy transmission according to the second phase offset information or the second time offset information or the second peak offset information. Phase or transmission time or transmission peak, so that the energy transfer signal of the second network device and the reception peak of the energy transfer signal of the first network device overlap when they arrive at the terminal device.
  • first phase offset information and/or second phase offset information may be determined based on the first phase difference.
  • first time offset information and/or second time offset information may be determined based on the first time difference.
  • first peak offset information and/or second peak offset information may be determined based on the first peak difference.
  • first phase offset information and/or the second phase offset information are determined according to the first phase difference, or the first time offset information and/or the second time offset information are determined according to the first time difference, or,
  • first peak offset information and/or the second peak offset information based on the first peak difference please refer to the relevant description in S43 above, which will not be described again here.
  • step S44' may also be included:
  • the third network device sends energy transmission configuration information to the terminal device.
  • the terminal device receives the energy transmission configuration information from the third network device.
  • the energy transmission configuration information may include waveform information of the energy transmission signal or cooperative energy transmission signal, frequency information of the energy transmission signal or cooperative energy transmission signal, time domain resource information of the energy transmission signal or cooperative energy transmission signal, energy transmission signal, etc. At least one piece of information such as frequency domain resource information of the signal or cooperative energy transmission signal.
  • the energy transmission configuration information may also include the first timing duration, the first energy threshold, the phase difference threshold, the time difference threshold, the peak difference threshold, and the reference signal receiving power (reference signal receiving power, RSRP) threshold value, second timing duration and other information, which are determined according to the actual application scenario and are not limited here. Therefore, the first network device can send an energy transmission signal to the terminal device according to the energy transmission configuration information.
  • the terminal device can receive the cooperative energy transmission signal according to the energy transmission configuration information, and convert the cooperative energy transmission signal from radio frequency to DC, Then store the DC energy and complete the energy transfer.
  • the terminal device can also perform the following steps S45', S46' and S48', or perform the following Steps S47' ⁇ S48':
  • the terminal device After the terminal device sends the energy transfer request or receives the energy transfer configuration information, the terminal device starts the first timer.
  • the terminal device sends the energy status to the third network device. Instructions.
  • the third network device receives the energy status indication information from the terminal device.
  • the terminal device sends energy status indication information to the third network device.
  • the third network device receives the energy status indication information from the terminal device.
  • the energy status indication information is used to indicate the energy status of the terminal device.
  • the third network device may control the first network device and/or the second network device to stop sending energy transfer signals to the terminal device.
  • the terminal device when the terminal device is fully charged, the terminal device notifies the third network device so that the third network device controls the first network device and the second network device to stop cooperative energy transmission, thereby saving unnecessary energy consumption.
  • the terminal device may move during the energy transfer process, when the energy status of the terminal device does not meet the energy information requested by the terminal device, the energy transfer signal sent by the first network device and the second energy transfer signal may appear. If the received wave peaks of the energy transfer signal sent by the network device no longer overlap or overlap less, resulting in the energy transfer signal peak becoming shorter, and thus the energy transfer efficiency becoming lower, then the following steps S49' and S410' need to be performed to achieve the first The received wave peaks of the energy transfer signal sent by one network device and the energy transfer signal sent by the second network device overlap again. When the energy status of the terminal device meets the energy information requested by the terminal device, the coordinated energy transfer stops:
  • the terminal device sends a signal adjustment request to the third network device.
  • the third network device receives the signal adjustment request from the terminal device, and adjusts the energy transmission signal of the first network device and/or the second network device according to the signal adjustment request, so that the reception of the energy transmission signal of the second network device The wave peak overlaps again with the received wave peak of the energy transfer signal of the first network device.
  • the terminal device sending a signal adjustment request to the third network device can be understood as: when the terminal device determines that the second phase difference of the energy transmission signals of the first network device and the second network device is greater than or equal to the phase When the difference threshold value is exceeded, a signal adjustment request is sent to the third network device.
  • the terminal device sending a signal adjustment request to the third network device can be understood as: when the terminal device determines that the second time difference between the energy transmission signals of the first network device and the second network device is greater than or equal to the time difference threshold value when, sending a signal adjustment request to the third network device.
  • the terminal device sending a signal adjustment request to the third network device can be understood as: when the terminal device determines that the second peak difference of the energy transmission signals of the first network device and the second network device is greater than or equal to the peak difference threshold When the value reaches the limit, a signal adjustment request is sent to the third network device.
  • the terminal device sending a signal adjustment request to the third network device can be understood as: when the terminal device determines the difference between the first reference signal received power RSRP value and the second RSRP value of the first network device or the second network device. When the absolute value of the difference is greater than or equal to the RSRP threshold value, a signal adjustment request is sent to the third network device, and the second RSRP value is the previous RSRP value of the first RSRP value.
  • the terminal device may also start the second timer. When the second timer reaches the second timing duration, the terminal device sends a signal adjustment request to the third network device.
  • the signal adjustment request may include one or more of the following information: second phase difference, second time difference, second peak difference, and RSRP change information. It is understandable that when the signal adjustment request includes RSRP change information, The first network device can estimate the phase difference information, that is, the second phase difference, based on the RSRP change information, and then adjust the energy transmission signal.
  • the third network device can adjust the energy transmission signal of the first network device and/or the second network device according to the signal adjustment request in the following three ways:
  • Implementation method 1 The third network device determines the third phase offset information or the third time offset information or the third peak offset information according to the signal adjustment request, and determines the third phase offset information or the third time offset information according to the third phase offset information or the third time offset information or The third peak offset information controls the first network device to adjust the energy transmission signal of the first network device so that the reception peak of the energy transmission signal of the second network device overlaps with the reception peak of the energy transmission signal of the first network device again.
  • Implementation Mode 2 After receiving the signal adjustment request from the terminal device, the third network device determines the fourth phase offset information or the fourth time offset information or the fourth peak offset information, and determines the fourth phase offset information or the fourth peak offset information based on the fourth phase offset information or the fourth wave peak offset information.
  • the fourth time offset information or the fourth peak offset information controls the second network device to adjust the energy transfer signal of the second network device so that the received peak of the energy transfer signal of the second network device is consistent with the energy transfer signal of the first network device. The receiving peaks overlap again.
  • the third network device determines the third phase offset information or the third time offset information or the third peak offset information according to the signal adjustment request, and determines the fourth phase offset information or the fourth time offset information or The fourth wave peak offset information. Then, the first network device controls the first network device to adjust the energy transmission signal of the first network device according to the third phase offset information or the third time offset information or the third peak offset information, and according to the fourth phase offset information Or the fourth time offset information or the fourth peak offset information controls the second network device to adjust the energy transmission signal of the second network device, so that the receiving peak of the energy transmission signal of the second network device is consistent with the energy transmission signal of the first network device. The received peaks of the signal overlap again.
  • phase offset information and/or fourth phase offset information may be determined based on the second phase difference.
  • the above-mentioned third time offset information and/or fourth time offset information may be determined based on the second time difference.
  • third peak offset information and/or fourth peak offset information may be determined based on the second peak difference.
  • the third phase offset information and/or the fourth phase offset information are determined according to the second phase difference, or the third time offset information and/or the fourth time offset information are determined according to the second time difference, or,
  • the third peak offset information and/or the fourth peak offset information based on the second peak difference please refer to the relevant description in S49 above, which will not be described again here.
  • the first network device and the second network device send the adjusted energy transmission signal to the terminal device.
  • the terminal device receives the adjusted energy transfer signals sent from the first network device and the second network device, and the received wave peaks of the adjusted energy transfer signals of each network device overlap.
  • the energy transmission signals of the first network device and the second network device no longer overlap or overlap less.
  • the third network device can control The energy transmission signals of the first network device and the second network device overlap again.
  • each step in the embodiment of the present application does not indicate the execution order of each step. It is determined based on the actual application scenario and is not limited here.
  • Each step in the embodiment of the present application can be used as an embodiment alone, or as an optional step combined with one or more steps in the embodiment of the present application, and is not limited here.
  • steps S401 and S402 can be used as an embodiment alone, or as optional steps combined with one or more steps in the embodiments of this application, and are not limited here.
  • steps S41a and S42a can be used as an embodiment alone, or as optional steps combined with one or more steps in the embodiments of this application, and are not limited here.
  • steps S41b and S42b can be used as an embodiment alone, or as optional steps combined with one or more steps in the embodiments of this application, and are not limited here.
  • steps S43 to S48 can be used as an embodiment alone, or as optional steps combined with one or more steps in the embodiment of the present application, and are not limited here.
  • step S49 and S410 can be used as an embodiment alone, or as an optional step combined with one or more steps in the embodiments of this application, and is not limited here.
  • steps S43' to S48' can be used as an embodiment alone, or as optional steps combined with one or more steps in the embodiment of the present application, and are not limited here.
  • steps S49' and S410' can be used as an embodiment alone, or as optional steps combined with one or more steps in the embodiments of this application, and are not limited here.
  • the communication device provided by the present application will be described in detail below with reference to FIGS. 5 to 8 .
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device shown in Figure 5 can be used to perform some or all functions of the terminal device in the method embodiment described in Figure 4 above.
  • the device may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 5 may include a transceiver unit 501 and a processing unit 502. Among them, the processing unit 502 is used for data processing.
  • the transceiver unit 501 integrates a receiving unit and a sending unit.
  • the transceiver unit 501 may also be called a communication unit. Alternatively, the transceiver unit 501 may also be split into a receiving unit and a transmitting unit.
  • the following processing unit 502 and transceiver unit 501 are the same, and will not be described again below. in:
  • the transceiver unit 501 is configured to receive a cooperative energy transfer signal, where the cooperative energy transfer signal is a superimposed signal of the energy transfer signals sent by the first network device and the second network device, and the energy transfer signal of the first network device is The receiving wave peak overlaps with the receiving wave peak of the energy transmission signal of the second network device;
  • the processing unit 502 is used to process the cooperative energy transfer signal.
  • FIG. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device shown in Figure 6 can be used to perform part or all of the functions of the access network device in the method embodiment described in Figure 4 above.
  • the device may be an access network device, a device in the access network device, or a device that can be used in conjunction with the access network device.
  • the communication device may also be a chip system.
  • the communication device shown in FIG. 6 may include a transceiver unit 601 and a processing unit 602. in:
  • the transceiver unit 601 is configured to send a collaborative energy transmission request to the second network device, where the collaborative energy transmission request is used to request the second network device to perform collaborative energy transmission with the first network device;
  • the transceiver unit 601 is configured to receive a cooperative energy transfer response from the second network device, where the cooperative energy transfer response is used to instruct the second network device to accept cooperative energy transfer;
  • the processing unit 602 is used to send an energy transfer signal to the terminal device.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be the terminal device described in the embodiment of the present application, and is used to implement the functions of the terminal device in Figure 4 above.
  • FIG. 7 shows only the main components of the terminal device 700.
  • the terminal device 700 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 700, execute software programs, and process data of the software programs.
  • Memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, displays The display screen, microphone, keyboard, etc. are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data. .
  • FIG. 7 only shows one memory and processor.
  • terminal device 700 may include multiple processors and memories.
  • the memory may also be called a storage medium or a storage device, which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire terminal device 700. Execute software programs and process data from software programs.
  • the processor in Figure 7 integrates the functions of a baseband processor and a central processor. Those skilled in the art can understand that the baseband processor and the central processor can also be independent processors and are interconnected through technologies such as a bus.
  • the terminal device 700 may include multiple baseband processors to adapt to different network standards, the terminal device 700 may include multiple central processors to enhance its processing capabilities, and various components of the terminal device 700 may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data can be built into the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the transceiver unit 710 of the terminal device 700
  • the processor with the processing function can be regarded as the processing unit 720 of the terminal device 700
  • the terminal device 700 includes a transceiver unit 710 and a processing unit 720 .
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, etc.
  • the devices used to implement the receiving function in the transceiver unit 710 can be regarded as a receiving unit
  • the devices used in the transceiver unit 710 used to implement the transmitting function can be regarded as a transmitting unit.
  • the transceiver unit 710 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, a transmitting circuit, etc.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be the network device described in the embodiment of the present application, and is used to implement the functions of the network device in Figure 4 above.
  • the network equipment includes: baseband device 81 , radio frequency device 82 , and antenna 83 .
  • the radio frequency device 82 receives the information sent by the terminal device through the antenna 83, and sends the information sent by the terminal device to the baseband device 81 for processing.
  • the baseband device 81 processes the information of the terminal equipment and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the information of the terminal equipment and then sends it to the terminal equipment through the antenna 83.
  • the baseband device 81 includes one or more processing units 811, a storage unit 812 and an interface 813.
  • the processing unit 811 is used to support the network device to perform the functions of the network device in the above method embodiment.
  • the storage unit 812 is used to store software programs and/or data.
  • the interface 813 is used to exchange information with the radio frequency device 82.
  • the interface includes an interface circuit for input and output of information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the storage unit 812 and the processing unit 811 may be located in the same chip, that is, an on-chip storage element. Alternatively, the storage unit 812 and the processing unit 811 may be on different chips from the processing unit 811, that is, an off-chip storage element. Place The storage unit 812 may be one memory, or may be a collective name for
  • the network device may implement some or all of the steps in the above method embodiments in the form of one or more processing unit schedulers. For example, realize the corresponding functions of the network equipment in Figure 4.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access technologies of different standards.
  • Embodiments of the present application also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When the instruction is run on a processor, the method flow of the above method embodiment is implemented.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product is run on a processor, the method flow of the above method embodiment is implemented.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical functional division.
  • the units described as separate components may or may not be physically separated.
  • the components shown may or may not be physical units, that is, they may be located in one place, or they may be distributed over multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • computer-readable media can include random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), Erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD- ROM), universal serial bus flash disk, portable hard disk, or other optical disk storage, magnetic disk storage media, or other magnetic storage devices, or can be used to carry or store desired data in the form of instructions or data structures. program code and any other medium that can be accessed by a computer.
  • RAM random access memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable programmable read-only memory Erasable programmable read-only memory
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种协同传能方法及相关装置,该方法包括:接收协同传能信号,其中,协同传能信号为第一网络设备和第二网络设备发送的传能信号的叠加信号,第一网络设备的传能信号的接收波峰和第二网络设备的传能信号的接收波峰重叠;处理协同传能信号。采用本申请提供的方法,可提高无线电传能效率。

Description

协同传能方法及相关装置
本申请要求于2022年05月31日提交中国专利局、申请号为202210609784.2,发明名称为“协同传能方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种协同传能方法及相关装置。
背景技术
随着通信的发展,越来越多的物联网设备的出现,这些设备如果定期的更换电池,会消耗掉较多的人力和时间成本。为此,无线电能传输(wireless power transfer,WPT)在物联网中发挥重要的作用。其中,WPT是指射频传能,即一个网络设备通过无线电将射频传能信号发送给一个或者多个终端设备,终端设备再将射频传能信号转换成直流电,并进行存储,以用于后续通信使用。但是基于一个网络设备进行传能的效率是非常低的,无法满足终端设备的传能需求。
发明内容
本申请提供了一种协同传能方法及相关装置,可提高无线电传能效率。
第一方面,本申请提供了一种协同传能方法,该方法应用于终端设备,该方法包括:
接收协同传能信号,其中,所述协同传能信号为第一网络设备和第二网络设备发送的传能信号的叠加信号,所述第一网络设备的传能信号的接收波峰和所述第二网络设备的传能信号的接收波峰重叠;
处理所述协同传能信号。
在本申请中,通过确保不同站点的传能信号,到达终端设备的接收波峰是对齐的,然后终端设备再将各个站点的传能信号的叠加信号(即协同传能信号)进行射频到直流的转换,从而可以实现更高效的传能效果。
在一种可能的实现中,所述方法还包括:
接收第一测量信号和第二测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
向所述第一网络设备发送所述第一测量结果。
在该种实现方式下,通过第一测量信号和第二测量信号确定第一测量结果,进而根据第一测量结果用于确定各个站点的传能信号,可实现不同站点的传能信号,到达终端设备的接收波峰是对齐的。
在一种可能的实现中,所述方法还包括:
接收第一测量信号和第二测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
向第三网络设备发送所述第一测量结果,所述第三网络设备为集中式单元CU,所述 第一网络设备和所述第二网络设备为分布式单元DU。
在一种可能的实现中,所述方法还包括:
接收第一测量信号和第二测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
向第三网络设备发送所述第一测量结果,所述第三网络设备为CU或者接入网设备,所述第一网络设备和所述第二网络设备为传输接收点TRP。
在一种可能的实现中,所述方法还包括:
接收所述第一测量信号的测量配置信息和所述第二测量信号的测量配置信息;
所述接收第一测量信号和第二测量信号,包括:
根据所述第一测量信号的测量配置信息接收所述第一测量信号,以及根据所述第二测量信号的测量配置信息接收所述第二测量信号。
在一种可能的实现中,所述方法还包括:
接收测量配置信息;
基于所述测量配置信息发送第三测量信号,所述第三测量信号用于确定所述第一网络设备和/或所述第二网络设备的传能信号。
在一种可能的实现中,所述第一测量结果包括以下至少一项信息:
所述第一测量信号和所述第二测量信号之间的第一相位差,第一时间差,第一波峰差。
在一种可能的实现中,所述方法还包括:
发送传能请求,所述传能请求包括所述终端设备请求的能量信息和传能时间信息。
在一种可能的实现中,所述方法还包括:
接收传能配置信息;
所述接收协同传能信号,包括:
根据所述传能配置信息接收所述协同传能信号。
在一种可能的实现中,所述传能配置信息包括以下一项或多项信息:
波形信息,频率信息,时域资源信息,频域资源信息,第一定时时长,第一能量阈值。
在一种可能的实现中,所述方法还包括:
发送所述传能请求或者接收所述传能配置信息之后,启动第一定时器;
当所述第一定时器达到所述第一定时时长后,发送能量状态指示信息,所述能量状态指示信息用于指示所述终端设备的能量状态。
在该种实现方式下,当终端设备充能充到一定时间时,终端设备通知第一网络设备,以便停止协同传能,从而可以节省没必要的能量消耗。
在一种可能的实现中,所述方法还包括:
当所述终端设备中的能量大于或等于所述第一能量阈值时,发送能量状态指示信息,所述能量状态指示信息用于指示所述终端设备的能量状态。
在该种实现方式下,当终端设备充能充到一定程度时,终端设备通知第一网络设备,以便停止协同传能,从而可以节省没必要的能量消耗。
在一种可能的实现中,所述方法还包括:
发送信号调整请求,所述信号调整请求用于指示调整所述第一网络设备和/或所述第 二网络设备的传能信号。
在该种实现方式下,由于终端设备的移动,第一网络设备和第二网络设备的传能信号可能不再重叠,因此通过向第一网络设备发送信号调整请求,可以使得第一网络设备控制第一网络设备和第二网络设备的传能信号再次重叠。
在一种可能的实现中,其特征在于,所述信号调整请求包括以下信息中的一项或者多项:
所述第一网络设备的传能信号和所述第二网络设备的传能信号之间的第二相位差,第二时间差,第二波峰差,所述第一网络设备或所述第二网络设备的传能信号的参考信号接收功率RSRP变化信息。
第二方面,本申请提供了一种协同传能方法,该方法应用于第一网络设备,该方法包括:
向第二网络设备发送协同传能请求,所述协同传能请求用于请求所述第二网络设备与所述第一网络设备进行协同传能;
接收来自所述第二网络设备的协同传能响应,所述协同传能响应用于指示所述第二网络设备接受协同传能;
向终端设备发送传能信号。
在一种可能的实现中,所述方法还包括:
接收来自终端设备的传能请求,所述传能请求包括所述终端设备请求的能量信息和传能时间信息;
所述向第二网络设备发送协同传能请求,包括:
响应于所述传能请求,向所述第二网络设备发送协同传能请求。
在一种可能的实现中,所述方法还包括:
接收来自所述终端设备的能量状态指示信息,所述能量状态指示信息用于指示所述终端设备的能量状态;
当所述终端设备的能量状态满足所述终端设备请求的能量信息时,停止向所述终端设备发送传能信号和/或向所述第二网络设备发送协同传能释放消息。
在该种实现方式下,当确定终端设备的能量状态满足终端设备所需时,通过停止协同传能,从而可以节省没必要的能量消耗。
在一种可能的实现中,所述方法还包括:
向所述终端设备发送传能配置信息;
所述向所述终端设备发送传能信号,包括:
根据所述传能配置信息向所述终端设备发送传能信号。
在一种可能的实现中,所述传能配置信息包括以下一项或多项信息:
波形信息,频率信息,时域资源信息,频域资源信息,第一定时时长,第一能量阈值。
在一种可能的实现中,所述方法还包括:
向所述终端设备发送第一测量信号的测量配置信息和第二测量信号的测量配置信息;
向所述终端设备发送所述第一测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
接收来自所述终端设备的所述第一测量结果。
在一种可能的实现中,所述第一测量结果包括以下至少一项信息:
所述第一测量信号和所述第二测量信号之间的第一相位差,第一时间差,第一波峰差。
在一种可能的实现中,所述方法还包括:
接收来自所述终端设备的信号调整请求,所述信号调整请求用于指示调整所述第一网络设备和/或所述第二网络设备的传能信号。
在一种可能的实现中,所述信号调整请求包括以下信息中的一项或者多项:
所述第一网络设备的传能信号和所述第二网络设备的传能信号之间的第二相位差,第二时间差,第二波峰差,所述第一网络设备或所述第二网络设备的传能信号的参考信号接收功率RSRP变化信息。
第三方面,本申请提供了一种通信装置,该通信装置包括用于执行第一方面或第二方面中任一所述方法的模块或者单元。
第四方面,本申请提供了一种通信装置,包括处理器,收发器和存储器,处理器,收发器和存储器耦合,存储器中存储有计算机程序;处理器和收发器用于调用存储器中的计算机程序,使得通信装置执行如第一方面或第二方面任一项所述的方法。
在一种可能的设计中,该通信装置可以是实现第一方面或第二方面中方法的芯片或者包含芯片的设备。
第五方面,本申请提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第一方面或第二方面任一项所述的方法。
第六方面,本申请提供了一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被计算机执行时,实现如第一方面或第二方面任一项所述的方法。
第七方面,本申请提供了一种计算机程序产品,当计算机读取并执行计算机程序产品时,使得计算机执行第一方面或第二方面任一项所述的方法。
附图说明
图1是本申请实施例提供的5G通信系统的结构示意图;
图2是本申请实施例提供的射频信号转换为直流电的电路结构示意图;
图3a是本申请实施例提供的连续波形的示意图;
图3b是本申请实施例提供的multi-sine波形的示意图;
图4是本申请实施例提供的协同传能方法的一个流程示意图;
图5是本申请实施例提供的一种通信装置的结构示意图;
图6是本申请实施例提供的另一种通信装置的结构示意图;
图7是本申请实施例提供的另一种通信装置的结构示意图;
图8是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例的技术方案可以应用于各种通信系统,例如:通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、第六代(6th generation,6G)系统或新无线(new radio,NR)、无线局域网(Wireless Local Area Network,WALN)以及未来的通信系统等,在此不做限制。
示例性地,本申请实施例以5G通信系统为例进行说明。请参见图1,图1是本申请实施例提供的5G通信系统的结构示意图。如图1所示,接入网设备和终端设备1~终端设备6组成一个通信系统。在该通信系统中,终端设备1~终端设备6可以发送上行信息给接入网设备,接入网设备也可以发送下行信息给终端设备1~终端设备6。此外,终端设备4~终端设备6也可以组成一个通信系统。在该通信系统中,接入网设备可以发送下行信息给终端设备1、终端设备2、终端设备5等;终端设备5也可以发送下行信息给终端设备4、终端设备6。而终端设备4和终端设备6也可以通过终端设备5向接入网设备发送上行信息。
其中,本申请实施例中的终端设备是一种具有无线收发功能的设备,其中终端设备也可称为用户设备(user equipment,UE),接入终端(access terminal)、终端、用户单元、用户站、移动站(mobile station)、移动台(mobile)、远方站(remote station)、远程终端(remote terminal)、移动设备、用户终端(user terminal)、无线网络设备、用户代理(user agent)或用户装置等。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话、手机、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA),可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、第五代移动通信(fifth generation,5G)网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如终端设备可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。本申请实施例对此不做限定。
本申请实施例中的接入网设备可以为与终端设备进行通信的网络设备,接入网设备例如包括但不限于:5G通信系统中的新一代基站(generation node B,gNB)、演进型节点B(evolved  node B,eNB)、下一代演进型节点B(next generation eNB,ng-eNB)、无线回传设备、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站((home evolved nodeB,HeNB)或(home node B,HNB))、基带单元(baseBand unit,BBU)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,在此不做限制。另外,接入网设备也可以是6G通信系统中的基站,或者是开放型基站(Open RAN)或者云基站(Cloud RAN)等,在此不做限制。
需要说明的是,本申请实施例中,接入网设备可以包括一个或多个集中式单元(centralized unit,CU)和一个或多个分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制,一个DU也可以连接多个CU。
应理解,本申请实施例可以应用于5G系统下的多站点传能,例如可以包含如下三个应用场景:
场景1:站间协同传能,其中,站间协同传能涉及的网络设备可以包括主基站和辅基站。其中主基站和辅基站可以为不同的基站,一般来说,主基站具有数据传输功能,辅基站可以具有数据传输功能,也可以不具有数据传输功能。在场景1下,主基站的数量通常为1个,辅基站的数量通常可以有多个(即两个或者两个以上),为方便理解,以下本申请实施例主要以1个主基站和1个辅基站为例进行示意性说明。其中,主基站和辅基站皆可以生成和发送传能信号,进行协同传能,或者,主基站不发送传能信号,通过多个辅基站生成和发送传能信号,进行协同传能。
场景2:站内跨DU协同传能,其中,站内跨DU协同传能涉及的网络设备可以包括CU和该CU下管理的多个DU(即两个或者两个以上的DU),各个DU不同,其中,CU可以控制多个DU。其中CU不会发送传能信号,都是DU生成和发送传能信号,即多个DU发送传能信号,进行协同传能。
场景3:站内同小区不同TRP或pRRU的协同传能,其中,站内同小区不同TRP的协同传能涉及的网络设备可以包括小区对应的接入网设备(例如基站)或者CU,以及该小区对应的多个TRP或多个微远程无线电单元(pico remote radio unit,pRRU)(例如射频单元),各个TRP或各个pRRU不同。其中接入网设备和CU不发送传能信号,都是TRP或pRRU发送传能信号,即多个TRP或pRRU生成和发送传能信号,进行协同传能。
需要说明的是,本申请实施例中描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例的相关内容,下面对一些本申请方案需要用到的知识进行介绍。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
1、WPT
无线电能传输(wireless power transfer,WPT)又称无线电力传输或非接触电能传输。通常来说,WPT可以包括发送方和接收方,其中,发送方可以将直流信号转换成传能的射频信号,然后通过发送天线将信号发送给接收方。相应地,接收方可以通过接收天线接收传能信 号,然后进行射频到直流的转换,以实现无线电能传输。具体地,射频到直流的转换可以通过如图2所示的电路来实现。如图2所示,该电路包括天线,匹配网络,二极管整流,低通滤波器四个模块,天线负责接收传能的射频信号,匹配网络负责解决功率传输的不匹配问题,二极管整流负责将射频信号的波峰功率转换到直流信号的功率,低通滤波器用于减少高于截止频率的信号的通过。
需要说明的是,WPT中的发送方可以为一个网络设备,接收方可以为一个或多个终端设备,接收方需要将多次直流功率的电压进行存储,用于后续数据传输。
2、传能波形
目前,传能波形主要包括连续波形和multi-sine波形这两种波形。示例性地,如图3a所示,连续波形通常为单个余弦波形。而multi-sine波形,是由多个余弦波形按照特定规律进行叠加,从而形成一种从外观上有更高脉冲波峰的波形,该叠加波形也具有相对较长时间的波谷,其是将多个不同频率的余弦波形进行叠加得到的,示例性地,multi-sine波形可以如图3b所示,其他种类的multi-sine波形不做限制。具体地,multi-sine波形可以表示为:
其中,N是叠加波形中余弦波形的数量,Ak表示第k个余弦波形的幅度,ωk是指第k个余弦波形的频率,θk表示第k个余弦波形的初始相位,ω0表示第k个余弦波形的初始频点,Δω表示子载波间隔或第k个余弦波形与第k+1个余弦波形的频率差,1≤k<N。
需要说明的是,本申请实施例中涉及的传能信号也可以描述为射频信号或射频传能信号等,在此不做限制。
需要说明的是,本申请实施例中涉及的某个网络设备的相位偏置信息可以理解为该网络设备的传能信号的相位相对值,其中相位相对值可以为正数或负数。
示例性地,假设网络设备的传能信号在参考时间t0时的相位原本为w0,其中相位偏置信息表示为offset1。当offset1为负数时,调整后的网络设备的传能信号在该t0的相位为w0-offset1;当offset1为正数时,调整后的网络设备的传能信号在该t0的相位为w0+offset1。
需要说明的是,本申请实施例中涉及的某个网络设备的时间偏置信息可以理解为该网络设备的传能信号的时间相对值或时间绝对值,其中,时间相对值可以为正数或负数,其中正数表示时间延后,负数表示时间提前。
例如,假设网络设备的传能信号的参考时间原本为t0,其中假设时间偏置信息理解为传能信号的时间相对值,这里传能信号的时间相对值表示为offset2。当offset2为负数时,调整后的网络设备的传能信号的时间为t0-offset2;当offset2为正数时,调整后的网络设备的传能信号的时间为t0+offset2。
又例如,假设时间偏置信息理解为时间绝对值,则该时间绝对值即表示网络设备的传能信号的时间,也就是说,时间绝对值直接指示网络设备的传能信号的时间。
为方便理解,以下本申请实施例皆以时间偏置信息理解为传能信号的时间相对值为例进行的示意性说明。
需要说明的是,本申请实施例中涉及的某个网络设备的波峰偏置信息可以理解为该网络设备的传能信号的发送波峰的时间相对值或者时间绝对值,其中,时间相对值可以为正数或 负数,其中正数表示时间延后,负数表示时间提前。
例如,假设网络设备的传能信号的发送波峰的参考时间原本为t1,其中假设波峰偏置信息理解为传能信号的发送波峰的时间相对值,这里传能信号的发送波峰的时间相对值表示为offset3。当offset2为负数时,调整后的网络设备的传能信号的发送波峰的时间为t1-offset3;当offset3为正数时,调整后的网络设备的传能信号的发送波峰的时间为t1+offset3。
又例如,假设波峰偏置信息理解为时间绝对值,则该时间绝对值即表示网络设备的传能信号的发送波峰的时间。
本申请实施例中涉及的传能信号的参考时间或传能信号的发送波峰的参考时间可以为某个时隙(slot)或者某个符号(symbol),其中,参考时间可以是协议规定的或者网络设备配置的,例如在场景1中,由主基站配置;在场景2中由CU配置;在场景3中由接入网设备或者CU配置。时间相对值可以为时隙粒度,符号粒度,微秒(μs)粒度等,在此不做限制。
需要说明的是,本申请实施例中涉及的网络设备发送传能信号时的信号波形可以简称为发送波形。网络设备发送的传能信号到达终端设备时的信号波形可以简称为接收波形。其中波形(发送波形或者接收波形)包括波峰和波谷,示例性地,如图3a中所示的波峰和波谷。
需要说明的是,本申请实施例中涉及的网络设备的传能信号的接收波峰可以理解为该网络设备发送的传能信号到达终端设备时的接收波形的波峰。本申请实施例中涉及的发送波峰可以理解为网络设备发送的传能信号的波峰。
需要说明的是,本申请实施例中涉及的各个网络设备的传能信号的接收波峰重叠也可以理解为各个网络设备的传能信号的接收波峰对齐。
需要说明的是,相关技术中一个网络设备通过无线电将射频传能信号发送给一个或者多个终端设备进行传能的效率是非常低的,无法满足特定终端设备的传能需求。
基于此,本申请提出了一种协同传能方法,可提高无线传能效率。
下面对本申请提供的协同传能方法及协同传能装置进行详细介绍:
请参见图4,图4是本申请实施例提供的协同传能方法的一个流程示意图。如图4所示,该通信方法包括如下步骤S401~S402:
S401、终端设备接收协同传能信号。
其中,协同传能信号为第一网络设备和第二网络设备发送的传能信号的叠加信号,也就是说,第一网络设备和第二网络设备可以各自向终端设备发送传能信号,其中各个网络设备发送的传能信号到达终端设备时形成的叠加信号即协同传能信号。其中,网络设备(例如第一网络设备,或者第二网络设备)的传能信号的波形包括波峰和波谷。这里,第一网络设备的传能信号的接收波峰和第二网络设备的传能信号的接收波峰重叠。
需要说明的是,本申请实施例中涉及的接收波峰重叠可以理解为精准重叠,即各个网络设备的传能信号的接收波峰的时间相同或相近,或者,各个网络设备的传能信号的接收波峰的相位相同或相近。例如,各个网络设备的传能信号的接收波峰的时间差在[-30μs,30μs]之间,又例如,各个网络设备的传能信号的接收波峰的相位差在[-30°,30°]之间。
在一种实现中,当第一网络设备发送的传能信号和第二网络设备发送的传能信号的频率相同时,第一网络设备的传能信号的接收波峰和第二网络设备的传能信号的接收波峰在相同的时间区域内上各自存在数量相等的波峰,这些波峰可以全部重叠。这里,第一网络设备的传能信号的接收波峰和第二网络设备的传能信号的接收波峰全部重叠可以理解为:第一网络设备发送的传能信号到达终端设备时的接收波形的波峰和第二网络设备发 送的传能信号到达终端设备时的接收波形的波峰在相同的时间区域内一一重叠。
在另一种实现中,当第一网络设备发送的传能信号和第二网络设备发送的传能信号的频率不相同时,第一网络设备的传能信号的接收波峰和第二网络设备的传能信号的接收波峰在相同的时间区域内上各自存在数量不相等的波峰,这些波峰可以部分重叠。
需要说明的是,在场景1下,本申请实施例中涉及的第一网络设备为主基站,第二网络设备为辅基站。其中第二网络设备的数量可以为多个,为方便理解,以下主要以一个第二网络设备为例进行示意性说明。
需要说明的是,在场景2下,第一网络设备和第二网络设备均可以为DU。
需要说明的是,在场景3下,第一网络设备和第二网络设备均可以为TRP。
S402、终端设备处理协同传能信号。
在一些可行的实施方式中,终端设备处理协同传能信号可以理解为:终端设备将接收到的协同传能信号转换为直流电,以便于后续使用。例如,终端设备可以使用如图2中的电路进行协同传能信号至直流电的转换。
可理解的,通过确保不同站点的传能信号,到达终端设备的接收波峰是重叠的,从而形成更高的信号接收波峰,进而可以使得终端设备获得更高的峰值接收电压,并将峰值接收电压进行储存,从而达到更高效的传能效果。
需要说明的是,在上述步骤S401之前,还可以包括以下如下步骤S40~S44:
S40、终端设备发送协同传能能力指示信息。
其中,该协同传能能力指示信息用于指示终端设备支持协同传能,或者,该协同传能能力指示信息用于指示终端设备具备协同传能的能力。
具体地,在场景1下,终端设备可以向第一网络设备上报协同传能能力指示信息。这里,第一网络设备即主基站,第二网络设备则为辅基站。
具体地,在场景2下,终端设备可以向CU上报协同传能能力指示信息。为方便描述,以下可以将场景2下的CU描述为第三网络设备。这里,第一网络设备和第二网络设备则可以理解为DU。
具体地,在场景3下,终端设备可以向接入网设备或者CU上报协同传能能力指示信息。为方便描述,以下可以将场景3下的接入网设备或者CU统称为第三网络设备。这里,第一网络设备和第二网络设备则可以理解为TRP。
需要说明的是,这里的步骤S40是可选的步骤。
可理解的,由于终端设备与不同网络设备的距离是不一样的,因此相同的信号到达终端设备时会有相位差或者时间差或者波峰差,所以在可选步骤S40之后,以及第一网络设备和第二网络设备向终端设备发送传能信号之前,需要先测量不同网络设备的到达信号之间的相位差或时间差或波峰差。通常来说,测量相位差或时间差或波峰差的方式主要包括两种:一种为终端设备测量,另一种为网络设备测量。下面针对该两种测量方式分别进行详细说明:
方式a,终端设备测量:
S41a、终端设备接收第一测量信号和第二测量信号。
其中,第一测量信号对应第一网络设备,第二测量信号对应第二网络设备,也就是说,第一测量信号由第一网络设备发送给终端设备,第二测量信号由第二网络设备发送给终端设备。示例性地,第一测量信号可以为multi-sine信号,第二测量信号可以为 multi-sine信号,其中第一测量信号和第二测量信号可以是相同的multi-sine信号,例如N,ωk,θk,ω0是相同的,而Ak,Δω可以相同,也可以不同。其中,有关N,Ak,ωk,θk,ω0,Δω的理解可参见前述针对公式1中各个参数的描述,在此不再进行赘述。
可理解的,本申请实施例中的第一测量信号和第二测量信号可以用于确定第一测量结果,第一测量结果用于确定第一网络设备和/或第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰重叠。
需要说明的是,本申请实施例中涉及的确定某个网络设备的传能信号具体可以理解为确定该网络设备的传能信号的发送波形,例如确定发送波形的波峰的出现时间,以使得发送波峰的出现时间相对于其对应的测量信号的发送波峰的出现时间提前或者延后。
举个例子,以第一网络设备为例,确定第一网络设备的传能信号可以理解为确定第一网络设备的传能信号的发送波形的波峰的出现时间,以使得发送波峰的出现时间相对于第一测量信号的发送波峰的出现时间提前或者延后。再举个例子,以第二网络设备为例,确定第二网络设备的传能信号可以理解为确定第二网络设备的传能信号的发送波形的波峰的出现时间,以使得发送波峰的出现时间相对于第二测量信号的发送波峰的出现时间提前或者延后。
需说明的是,终端设备在接收第一测量信号和第二测量信号之前,终端设备还可以接收第一测量信号的测量配置信息和第二测量信号的测量配置信息,进而根据第一测量信号的测量配置信息接收第一测量信号,以及根据第二测量信号的测量配置信息接收第二测量信号。其中,第一测量信号的测量配置信息和第二测量信号的测量配置信息可以在携带在同一条信息中传输,也可以分别携带在两条信息中传输,在此不做限制。
通常来说,测量信号的测量配置信息中可以包括下行时频资源,下行信号序列等参数。因此,终端设备可以在该下行时频资源上接收该下行信号序列对应的测量信号。其中,第一测量信号的下行时频资源和第二测量信号的下行时频资源可以相同,也可以不同,在此不做限制。可选的,第一测量信号的下行信号序列和第二测量信号的下行信号序列可以相同,也可以不同,在此不做限制。
具体地,在场景1下,可以由第一网络设备(即主基站)向终端设备发送测量配置信息,相应地,终端设备接收来自第一网络设备的测量配置信息,进而终端设备可以根据测量配置信息接收来自第一网络设备的第一测量信号和接收来自第二网络设备(即辅基站)的第二测量信号。示例性地,第一网络设备和第二网络设备可以在相同或不同的时频资源上,发送相同的测量信号,因此终端设备可以测量该测量信号(例如,波峰)到达终端设备的相位差或时间差或波峰差或各自的相位值。
在场景2下,可以由第三网络设备(即CU)向终端设备发送测量配置信息,相应地,终端设备接收来自第三网络设备的测量配置信息,进而终端设备可以根据测量配置信息接收来自第一网络设备(即DU)的第一测量信号和接收来自第二网络设备(即DU)的第二测量信号。
在场景3下,可以由第三网络设备(即CU或接入网设备)向终端设备发送测量配置信息,相应地,终端设备接收来自第三网络设备的测量配置信息,进而终端设备可以根据测量配置信息接收来自第一网络设备(即TRP)的第一测量信号和接收来自第二网络设备(即TRP)的第二测量信号。
S42a、终端设备发送第一测量结果。
需要说明的是,场景1下,终端设备可以向第一网络设备发送第一测量结果。
需要说明的是,在场景2下,终端设备可以向第三网络设备(即CU)发送第一测量结果。在场景3下,终端设备可以向第三网络设备(即CU或接入网设备)发送第一测量结果。也就是说,在场景2和场景3下,终端设备可以向第三网络设备发送第一测量结果。
其中,第一测量结果可以包括第一测量信号和第二测量信号之间的第一相位差,第一时间差,第一波峰差等中的一项或者多项。其中,第一相位差=第一测量信号的接收相位-第二测量信号的接收相位,或者,第一相位差=第二测量信号的接收相位-第一测量信号的接收相位。第一时间差=第一测量信号的接收时间-第二测量信号的接收时间,或者,第一时间差=第二测量信号的接收时间-第一测量信号的接收时间。第一波峰差=第一测量信号的接收波峰的时间-第二测量信号的接收波峰的时间,或者,第一波峰差=第二测量信号的接收波峰的时间-第一测量信号的接收波峰的时间。
需要说明的是,相位差或时间差或波峰差信息可以是波束级别的,例如第一网络设备的波束1与第二网络设备的波束3的接收相位差或接收时间差或接收波峰差。如果第一网络设备或第二网络设备进行波束切换,例如第一网络设备从波束1切换到波束2,终端设备需要再次发送相位差或时间差或波峰差信息。如果终端设备被配置了多个测量信号,其中一个测量信号对应一个测量信号标识,以用于标识测量信号,那么终端设备需要上报每个测量信号的站间相位差或时间差或波峰差,每个测量信号对应各自网络设备的波束,这样就可以进行多个波束同时传能。
方式b,网络设备测量:
S41b、终端设备接收测量配置信息。
需要说明的是,场景1下,终端设备可以接收来自第一网络设备的测量配置信息。
需要说明的是,在场景2和场景3下,终端设备可以接收来自第三网络设备的测量配置信息。其中,测量配置信息中可以包括上行时频资源,上行信号序列等参数。
S42b、终端设备基于测量配置信息发送第三测量信号。
其中,第三测量信号用于确定第一网络设备和/或第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰重叠。其中第三测量信号可以为探测参考信号(sounding reference signals,SRS)等,该SRS可以是传统的SRS信号,也可以是multi-sine信号,在此不做限制。
在一种实现中,终端设备可以发送一个SRS,第一网络设备和第二网络设备都测量,即第一网络设备和第二网络设备分别测量各自接收到该SRS时的到达相位值或到达时间或到达波峰,然后站间交互各自的到达相位值或到达时间或到达波峰,因此可以确定站间的相位差或时间差或波峰差,以便根据站间的相位差或时间差或波峰差确定出各个网络设备发送的传能信号的发送波峰出现时间。
在另一种实现中,终端设备也可以发送两个SRS(例如第一SRS和第二SRS),这两个SRS的发送时间是一样的或者对齐的,第一网络设备接收并测量第一SRS的到达相位值或到达时间或到达波峰,第二网络设备接收并测量第二SRS的到达相位值或到达时间或到达波峰,然后站间交互各自的到达相位值或到达时间或到达波峰,因此可以确定站间的相位差或时间差或波峰差,以便根据站间的相位差或时间差或波峰差确定出各个网络设备发送的传能信号的发送波峰的出现时间。
示例性地,在场景1下,第二网络设备可以向第一网络设备发送第二网络设备测量得到的到达相位值或到达时间或到达波峰,以用于第一网络设备确定第一网络设备和第二 网络设备的到达信号之间的相位差或时间差或波峰差,以便根据站间的相位差或时间差或波峰差确定出第一网络设备和第二网络设备发送的传能信号的发送波峰的出现时间。
示例性地,在场景2和场景3下,第一网络设备和第二网络设备可以向第三网络设备发送各自测量得到的到达相位值或到达时间或到达波峰,以用于第三网络设备确定第一网络设备和第二网络设备的到达信号之间的相位差或时间差或波峰差,以便根据站间的相位差或时间差或波峰差确定出第一网络设备和第二网络设备发送的传能信号的发送波峰的出现时间。
需要说明的是,在依次执行上述步骤S41a~S42a之后,或者,执行上述S41b~S42b之后,针对场景1而言,还可以执行如下步骤S43~S410中的一个或者多个步骤。针对场景2或场景3而言,还可以执行如下步骤S44’~S410’中的一个或者多个步骤。
下面分别针对场景1,场景2和场景3的方案分别进行详细描述:
针对场景1:
S43、终端设备向第一网络设备发送传能请求。
相应地,第一网络设备接收来自终端设备的传能请求,进而第一网络设备可以根据传能请求向第二网络设备发送协同传能请求,该协同传能请求用于请求第二网络设备与第一网络设备进行协同传能。也就是说,第一网络设备在接收到传能请求后,若确定终端请求的能量较多,需要进行协同传能才能满足传能需求,那么第一网络设备可以向第二网络设备发送协同传能请求,相应地,第二网络设备接收来自第一网络设备的协同传能请求。
其中,传能请求中可以包括终端设备请求的能量信息和传能时间信息等中的一项或者多项信息。例如,能量信息可以为终端设备的接收功率或网络设备的发送功率等,在此不做限制。
其中,协同传能请求中可以包括传能信号或者协同传能信号的波形信息,传能信号或者协同传能信号的频率信息,传能信号或者协同传能信号的时域资源信息,传能信号或者协同传能信号的频域资源信息,第二相位偏置信息,第二时间偏置信息,第二波峰偏置信息等中的一项或者多项信息。其中,传能信号或者协同传能信号的波形信息可以是传能信号或者协同传能信号的基础波形,例如,基础波形可以是余弦波形,multi-sine波形等,在此不做限制。
可选地,协同传能请求中还可以包括传能辅助信息,例如,终端设备请求的能量信息(比如接收功率),终端设备请求的传能时间信息和协同传能等一项或多项信息,在此不做限制。需要说明的是,如果传能信号或者协同传能信号的波形是multi-sine波形,那么协同传能请求中还需要携带以下至少一项信息:N,Ak,ωk,θk,ω0,Δω等参数。其中,有关N,Ak,ωk,θk,ω0,Δω的理解可参见前述针对公式1中各个参数的描述,在此不再进行赘述。
可理解的,如果第二网络设备接受协同传能,那么第二网络设备可以向第一网络设备发送协同传能响应,该协同传能响应用于指示第二网络设备接受协同传能。这里第二网络设备也可以拒绝接受协同传能,那么第二网络设备可以向第二网络设备发送协同传能失败消息,该协同传能失败消息中可以包括原因值,例如,可用能量不够等。可选的,若第二网络设备确定当前发送的第二相位偏置信息(例如,相位偏置A)或第二时间偏置信息(例如,时间偏置B)或第二波峰偏置信息(例如,波峰偏置C)不可接受,那么协 同传能失败消息中还可以携带第二网络设备可以接受的相位偏置信息(例如,相位偏置A’)或时间偏置信息(例如,时间偏置B’)或波峰偏置信息(例如,波峰偏置C’),其中相位偏置A的取值与相位偏置A’的取值不同,时间偏置B的取值与时间偏置B’的取值不同,波峰偏置C的取值与波峰偏置C’的取值不同。因此,后续第一网络设备再次发起协同传能请求时,可以在该协同传能请求中携带第二网络设备可接受的相位偏置信息(例如,相位偏置A’)或时间偏置信息(例如,时间偏置B’)或波峰偏置信息(例如,波峰偏置C’)。这里,以下本申请实施例主要以第二网络设备接受协同传能为例进行示意性说明。
具体地,如果第二网络设备接受协同传能,那么第二网络设备可以根据协同传能请求中的第二相位偏置信息,第二时间偏置信息或者第二波峰偏置信息发送传能信号。
可选的,第一网络设备也可以确定第一相位偏置信息或第一时间偏置信息或第一波峰偏置信息,进而第一网络设备根据第一相位偏置信息,第一时间偏置信息或者第一波峰偏置信息发送传能信号,从而使得第二网络设备的传能信号和第一网络设备的传能信号到达终端设备时的接收波峰重叠。
需要说明的是,上述第一相位偏置信息和/或第二相位偏置信息可以基于第一相位差确定。上述第一时间偏置信息和/或第二时间偏置信息可以基于第一时间差确定。上述第一波峰偏置信息和/或第二波峰偏置信息可以基于第一波峰差确定。
示例性地,第一相位偏置信息与第二相位偏置信息之和等于第一相位差。在第一种实现中,第一相位偏置信息可以设置为0,即说明第一网络设备的传能信号的波形与第一测量信号的波形完全相同,而第二网络设备的传能信号的相位-第二测量信号的相位=第一相位差。在第二种实现中,第二相位偏置信息可以设置为0,即说明第二网络设备的传能信号的波形与第二测量信号的波形完全相同,而第一网络设备的传能信号的相位-第一测量信号的相位=第一相位差。在第三种实现中,第一相位偏置信息和第二相位偏置信息皆不为0,即说明(第一网络设备的传能信号的相位-第一测量信号的相位)+(第二网络设备的传能信号的相位-第二测量信号的相位)=第一相位差。
示例性地,第一时间偏置信息与第二时间偏置信息之和等于第一时间差。在第一种实现中,第一时间偏置信息可以设置为0,即说明第一网络设备的传能信号的波形与第一测量信号的波形完全相同,而第二网络设备的传能信号的时间-第二测量信号的时间=第一时间差。在第二种实现中,第二时间偏置信息可以设置为0,即说明第二网络设备的传能信号的波形与第二测量信号的波形完全相同,而第一网络设备的传能信号的时间-第一测量信号的时间=第一时间差。在第三种实现中,第一时间偏置信息和第二时间偏置信息皆不为0,即说明(第一网络设备的传能信号的时间-第一测量信号的时间)+(第二网络设备的传能信号的时间-第二测量信号的时间)=第一时间差。
示例性地,第一波峰偏置信息与第二波峰偏置信息之和等于第一波峰差。在第一种实现中,第一波峰偏置信息可以设置为0,即说明第一网络设备的传能信号的波形与第一测量信号的波形完全相同,而第二网络设备的传能信号的发送波峰的时间-第二测量信号的发送波峰的时间=第一波峰差。在第二种实现中,第二波峰偏置信息可以设置为0,即说明第二网络设备的传能信号的波形与第二测量信号的波形完全相同,而第一网络设备的传能信号的发送波峰的时间-第一测量信号的发送波峰的时间=第一波峰差。在第三种实现中,第一波峰偏置信息和第二波峰偏置信息皆不为0,即说明(第一网络设备的传能信号的发送波峰的时间-第一测量信号的发送波峰的时间)+(第二网络设备的传能信号的发送波峰的时间-第二测量信号的发送波峰的时间)=第一波峰差。
可选的,在第一网络设备向终端设备发送传能信号之前,还可以包括如下步骤S44:
S44、第一网络设备向终端设备发送传能配置信息,相应地,终端设备接收来自第一网络设备的传能配置信息。
其中,该传能配置信息是通过专用信令或系统消息发送给终端设备的,可以包括传能信号或者协同传能信号的波形信息,传能信号或者协同传能信号的频率信息,传能信号或者协同传能信号的时域资源信息,传能信号或者协同传能信号的频域资源信息等中的至少一项信息。除此之外,传能配置信息中还可以包括第一定时时长,第一能量阈值,相位差门限值,时间差门限值,波峰差门限值,参考信号接收功率(reference signal receiving power,RSRP)门限值,第二定时时长等信息中的一项或者多项,具体根据实际应用场景确定,在此不做限制。
需要说明的是,对于第一网络设备而言,第一网络设备可以根据传能配置信息向终端设备发送传能信号。对于第二网络设备而言,第二网络设备可以根据协同传能请求中的第二相位偏置信息或者第二时间偏置信息或者第二波峰偏置信息,确定在传能的时频资源上的相位或发送时间或发送波峰,以便第二网络设备的传能信号和第一网络设备的传能信号到达终端设备时的接收波峰是重叠的。相应地,终端设备可以根据传能配置信息接收协同传能信号,并将协同传能信号进行射频到直流的转换,然后存储直流能量,完成传能。
示例性地,第一网络设备的传能信号可以为multi-sine信号,第二网络设备的传能信号可以为multi-sine信号,其中第一网络设备的传能信号和第二网络设备的传能信号可以是相同的multi-sine信号,例如N,ωk,θk,ω0是相同的,而Ak,Δω可以相同,也可以不同。其中,有关N,Ak,ωk,θk,ω0,Δω的理解可参见前述针对公式1中各个参数的描述,在此不再进行赘述。
可选的,在上述步骤S43或者S44之后,即终端设备在发送传能请求或者接收传能配置信息之后,终端设备还可以执行以下步骤S45,S46和S48,或者,执行以下步骤S47~S48:
S45、终端设备在发送传能请求或者接收传能配置信息之后,终端设备启动第一定时器。
S46、当第一定时器达到第一定时时长后,终端设备向第一网络设备发送能量状态指示信息。
相应地,第一网络设备接收来自终端设备的能量状态指示信息。
S47、当终端设备中的能量大于或等于第一能量阈值时,终端设备向第一网络设备发送能量状态指示信息。
相应地,第一网络设备接收来自终端设备的能量状态指示信息。该能量状态指示信息用于指示终端设备的能量状态。
S48、当上述能量状态指示信息指示的终端设备的能量状态满足终端设备请求的能量信息时,第一网络设备可以停止向终端设备发送传能信号,和/或,第一网络设备可以向第二网络设备发送协同传能释放消息,以通知第二网络设备停止协同传能。
可理解的,在终端设备充能充满的情况下,终端设备通知第一网络设备,以便停止协同传能,从而可以节省没必要的能量消耗。
需要说明的是,由于终端设备在传能过程中可能是移动的,因此,在终端设备的能 量状态未满足终端设备请求的能量信息时,可能出现第一网络设备发送的传能信号和第二网络设备发送的传能信号的接收波峰不再重叠或重叠变少的情况,从而导致传能信号波峰变矮,进而导致传能效率变低,那么,需要执行以下步骤S49和S410实现第一网络设备发送的传能信号和第二网络设备发送的传能信号的接收波峰的再次重叠,直到终端设备的能量状态满足终端设备请求的能量信息时,再停止协同传能:
S49、终端设备向第一网络设备发送信号调整请求。
相应地,第一网络设备接收来自终端设备的信号调整请求,并根据信号调整请求调整第一网络设备和/或第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
具体地,在一种实现中,终端设备向第一网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备和第二网络设备的传能信号的第二相位差大于或者等于相位差门限值时,向第一网络设备发送信号调整请求。
在另一种实现中,终端设备向第一网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备和第二网络设备的传能信号的第二时间差大于或者等于时间差门限值时,向第一网络设备发送信号调整请求。
在另一种实现中,终端设备向第一网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备和第二网络设备的传能信号的第二波峰差大于或者等于波峰差门限值时,向第一网络设备发送信号调整请求。
在另一种实现中,终端设备向第一网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备或第二网络设备的第一参考信号接收功率RSRP值与第二RSRP值之间的差值绝对值大于或者等于RSRP门限值时,向第一网络设备发送信号调整请求,第二RSRP值为第一RSRP值的前一次RSRP值。
在另一种实现中,在终端设备向第一网络设备发送传能请求或者接收传能配置信息之后,且在终端设备发送信号调整请求之前,终端设备还可以启动第二定时器。当第二定时器达到第二定时时长后,终端设备向第一网络设备发送信号调整请求。
其中,信号调整请求可以包括以下信息中的一项或者多项:第一网络设备和第二网络设备的传能信号之间的第二相位差,第二时间差,第二波峰差,RSRP变化信息。其中,第二相位差=第一网络设备的传能信号的接收相位-第二网络设备的传能信号的接收相位,或者,第二相位差=第二网络设备的传能信号的接收相位-第一网络设备的传能信号的接收相位。第二时间差=第一网络设备的传能信号的接收时间-第二网络设备的传能信号的接收时间,或者,第二时间差=第二网络设备的传能信号的接收时间-第一网络设备的传能信号的接收时间。第二波峰差=第一网络设备的传能信号的接收波峰的时间-第二网络设备的传能信号的接收波峰的时间,或者,第二波峰差=第二网络设备的传能信号的接收波峰的时间-第一网络设备的传能信号的接收波峰的时间。RSRP变化信息=第一RSRP值-第二RSRP值,或者,RSRP变化信息=第二RSRP值-第一RSRP值,其中,第二RSRP值为第一RSRP值的前一次RSRP值。
可理解的,当信号调整请求中包括RSRP变化信息时,第一网络设备可以根据RSRP变化信息,估算出相位差信息,即第二相位差,然后再进行传能信号调整。
需要说明的是,第一网络设备根据信号调整请求调整第一网络设备和/或第二网络设备的传能信号可以有如下3种实现方式:
实现方式1:第一网络设备根据信号调整请求确定第三相位偏置信息或第三时间偏置 信息或第三波峰偏置信息,并根据第三相位偏置信息或第三时间偏置信息或第三波峰偏置信息调整第一网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
实现方式2:第一网络设备在接收到终端设备的信号调整请求后,确定第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息,并再次向第二网络设备发送协同传能请求,该协同传能请求中可以包括第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息。因此,第二网络设备可以根据第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息调整第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
实现方式3:第一网络设备根据信号调整请求确定第三相位偏置信息或第三时间偏置信息或第三波峰偏置信息,以及确定第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息。然后,第一网络设备再次向第二网络设备发送协同传能请求,该协同传能请求中可以包括第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息。因此,第一网络设备可以根据第三相位偏置信息或第三时间偏置信息或第三波峰偏置信息调整第一网络设备的传能信号,第二网络设备可以根据第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息调整第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
需要说明的是,上述第三相位偏置信息和/或第四相位偏置信息可以基于第二相位差确定。上述第三时间偏置信息和/或第四时间偏置信息可以基于第二时间差确定。上述第三波峰偏置信息和/或第四波峰偏置信息可以基于第二波峰差确定。
其中,针对根据第二相位差确定第三相位偏置信息和/或第四相位偏置信息,或者,根据第二时间差确定第三时间偏置信息和/或第四时间偏置信息,或者,根据第二波峰差确定第三波峰偏置信息和/或第四波峰偏置信息的更多理解可参见上述S43中针对根据第一相位差确定第一相位偏置信息和/或第二相位偏置信息,或者,根据第一时间差确定第一时间偏置信息和/或第二时间偏置信息,或者,根据第一波峰差确定第一波峰偏置信息和/或第二波峰偏置信息的相关描述,在此不再进行赘述。
示例性地,以调整时间为例,假设第一网络设备初始发送传能信号的时间为t0,第二网络设备初始发送传能信号的时间为t1时,可以使得第一网络设备发送的传能信号和第二设备发送的传能信号到达终端设备时的接收波峰对齐,但是随着终端设备的移动,第一网络设备的传能信号的接收时间-第二网络设备的传能信号的接收时间=5μs,那么后续第一网络设备可以在(t0-5μs)处发送传能信号,第二网络设备依然在时间t1发送传能信号,或者,第一网络设备可以在时间t0发送传能信号,第二网络设备可以在(t+5μs)处发送传能信号,或者,第一网络设备可以在(t0-2.5μs)处发送传能信号,第二网络设备可以(t+2.5μs)处发送传能信号,以使得第一网络设备发送的传能信号和第二设备发送的传能信号到达终端设备的接收波峰再次对齐。
S410、第一网络设备和第二网络设备向终端设备发送调整后的传能信号。
相应地,终端设备接收来自第一网络设备和第二网络设备发送的调整后的传能信号,各个网络设备调整后的传能信号的接收波峰重叠。
可理解的,由于终端设备的移动,第一网络设备和第二网络设备的传能信号不再重叠或重叠较少,通过向第一网络设备发送信号调整请求,因此,第一网络设备可以控制第一网络设备和第二网络设备的传能信号再次重叠。
针对场景2和场景3:
S43’、终端设备向第三网络设备发送传能请求。
相应地,第三网络设备接收来自终端设备的传能请求,进而第三网络设备可以根据传能请求控制第一网络设备和第二网络设备向终端设备协同传能。
其中,传能请求中可以包括终端设备请求的能量信息和传能时间信息等中的一项或者多项信息。例如,能量信息可以为终端设备的接收功率或网络设备的发送功率等,在此不做限制。
可理解的,第三网络设备可以控制第一网络设备根据第一相位偏置信息或者第一时间偏置信息或者第一波峰偏置信息,调整第一网络设备在传能的时频资源上的相位或发送时间或发送波峰,以及控制第二网络设备根据第二相位偏置信息或者第二时间偏置信息或者第二波峰偏置信息,调整第二网络设备在传能的时频资源上的相位或发送时间或发送波峰,以便第二网络设备的传能信号和第一网络设备的传能信号到达终端设备时的接收波峰是重叠的。
需要说明的是,上述第一相位偏置信息和/或第二相位偏置信息可以基于第一相位差确定。上述第一时间偏置信息和/或第二时间偏置信息可以基于第一时间差确定。上述第一波峰偏置信息和/或第二波峰偏置信息可以基于第一波峰差确定。
其中,针对根据第一相位差确定第一相位偏置信息和/或第二相位偏置信息,或者,根据第一时间差确定第一时间偏置信息和/或第二时间偏置信息,或者,根据第一波峰差确定第一波峰偏置信息和/或第二波峰偏置信息的更多理解可参见上述S43中的相关描述,在此不再进行赘述。
可选的,在场景2和场景3下,第三网络设备接收到来自终端设备的传能请求之后,还可以包括如下步骤S44’:
S44’、第三网络设备向终端设备发送传能配置信息,相应地,终端设备接收来自第三网络设备的传能配置信息。
其中,该传能配置信息中可以包括传能信号或者协同传能信号的波形信息,传能信号或者协同传能信号的频率信息,传能信号或者协同传能信号的时域资源信息,传能信号或者协同传能信号的频域资源信息等中的至少一项信息。除此之外,传能配置信息中还可以包括第一定时时长,第一能量阈值,相位差门限值,时间差门限值,波峰差门限值,参考信号接收功率(reference signal receiving power,RSRP)门限值,第二定时时长等信息中的一项或者多项,具体根据实际应用场景确定,在此不做限制。因此,第一网络设备可以根据传能配置信息向终端设备发送传能信号,相应地,终端设备可以根据传能配置信息接收协同传能信号,并将协同传能信号进行射频到直流的转换,然后存储直流能量,完成传能。
可选的,在上述步骤S43’或者S44’之后,即终端设备在发送传能请求或者接收传能配置信息之后,终端设备还可以执行以下步骤S45’,S46’和S48’,或者,执行以下步骤S47’~S48’:
S45’、终端设备在发送传能请求或者接收传能配置信息之后,终端设备启动第一定时器。
S46’、当第一定时器达到第一定时时长后,终端设备向第三网络设备发送能量状态 指示信息。
相应地,第三网络设备接收来自终端设备的能量状态指示信息。
S47’、当终端设备中的能量大于或等于第一能量阈值时,终端设备向第三网络设备发送能量状态指示信息。
相应地,第三网络设备接收来自终端设备的能量状态指示信息。该能量状态指示信息用于指示终端设备的能量状态。
S48’、当上述能量状态指示信息指示的终端设备的能量状态满足终端设备请求的能量信息时,第三网络设备可以控制第一网络设备和/或第二网络设备停止向终端设备发送传能信号。
可理解的,在终端设备充能充满的情况下,终端设备通知第三网络设备,以便第三网络设备控制第一网络设备和第二网络设备停止协同传能,从而可以节省没必要的能量消耗。
需要说明的是,由于终端设备在传能过程中可能是移动的,因此,在终端设备的能量状态未满足终端设备请求的能量信息时,可能出现第一网络设备发送的传能信号和第二网络设备发送的传能信号的接收波峰不再重叠或重叠变少的情况,从而导致传能信号波峰变矮,进而导致传能效率变低,那么,需要执行以下步骤S49’和S410’实现第一网络设备发送的传能信号和第二网络设备发送的传能信号的接收波峰的再次重叠,直到终端设备的能量状态满足终端设备请求的能量信息时,再停止协同传能:
S49’、终端设备向第三网络设备发送信号调整请求。
相应地,第三网络设备接收来自终端设备的信号调整请求,并根据信号调整请求调整第一网络设备和/或第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
具体地,在一种实现中,终端设备向第三网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备和第二网络设备的传能信号的第二相位差大于或者等于相位差门限值时,向第三网络设备发送信号调整请求。
在另一种实现中,终端设备向第三网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备和第二网络设备的传能信号的第二时间差大于或者等于时间差门限值时,向第三网络设备发送信号调整请求。
在另一种实现中,终端设备向第三网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备和第二网络设备的传能信号的第二波峰差大于或者等于波峰差门限值时,向第三网络设备发送信号调整请求。
在另一种实现中,终端设备向第三网络设备发送信号调整请求可以理解为:当终端设备确定第一网络设备或第二网络设备的第一参考信号接收功率RSRP值与第二RSRP值之间的差值绝对值大于或者等于RSRP门限值时,向第三网络设备发送信号调整请求,第二RSRP值为第一RSRP值的前一次RSRP值。
在另一种实现中,在终端设备向第三网络设备发送传能请求或者接收传能配置信息之后,且在终端设备发送信号调整请求之前,终端设备还可以启动第二定时器。当第二定时器达到第二定时时长后,终端设备向第三网络设备发送信号调整请求。
其中,信号调整请求可以包括以下信息中的一项或者多项:第二相位差,第二时间差,第二波峰差,RSRP变化信息。可理解的,当信号调整请求中包括RSRP变化信息时, 第一网络设备可以根据RSRP变化信息,估算出相位差信息,即第二相位差,然后再进行传能信号调整。
需要说明的是,第三网络设备根据信号调整请求调整第一网络设备和/或第二网络设备的传能信号可以有如下3种实现方式:
实现方式1:第三网络设备根据信号调整请求确定第三相位偏置信息或第三时间偏置信息或第三波峰偏置信息,并根据第三相位偏置信息或第三时间偏置信息或第三波峰偏置信息控制第一网络设备调整第一网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
实现方式2:第三网络设备在接收到终端设备的信号调整请求后,确定第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息,并根据第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息控制第二网络设备调整第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
实现方式3:第三网络设备根据信号调整请求确定第三相位偏置信息或第三时间偏置信息或第三波峰偏置信息,以及确定第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息。然后,第一网络设备根据第三相位偏置信息或第三时间偏置信息或第三波峰偏置信息控制第一网络设备调整第一网络设备的传能信号,以及根据第四相位偏置信息或第四时间偏置信息或第四波峰偏置信息控制第二网络设备调整第二网络设备的传能信号,以使得第二网络设备的传能信号的接收波峰与第一网络设备的传能信号的接收波峰再次重叠。
需要说明的是,上述第三相位偏置信息和/或第四相位偏置信息可以基于第二相位差确定。上述第三时间偏置信息和/或第四时间偏置信息可以基于第二时间差确定。上述第三波峰偏置信息和/或第四波峰偏置信息可以基于第二波峰差确定。
其中,针对根据第二相位差确定第三相位偏置信息和/或第四相位偏置信息,或者,根据第二时间差确定第三时间偏置信息和/或第四时间偏置信息,或者,根据第二波峰差确定第三波峰偏置信息和/或第四波峰偏置信息的更多理解可参见上述S49中的相关描述,在此不再进行赘述。
S410’、第一网络设备和第二网络设备向终端设备发送调整后的传能信号。
相应地,终端设备接收来自第一网络设备和第二网络设备发送的调整后的传能信号,各个网络设备调整后的传能信号的接收波峰重叠。
可理解的,由于终端设备的移动,第一网络设备和第二网络设备的传能信号不再重叠或重叠较少,通过向第三网络设备发送信号调整请求,因此,第三网络设备可以控制第一网络设备和第二网络设备的传能信号再次重叠。
需要说明的是,本申请实施例中的各个步骤的编号顺序并不表示各个步骤的执行顺序,具体根据实际应用场景确定,在此不做限制。本申请实施例中的各个步骤可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。例如,步骤S401和S402可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。又例如,步骤S41a和S42a可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。又例如,步骤S41b和S42b可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。又例如,步骤S43~和S48可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。又例如,步骤S49 和S410可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。又例如,步骤S43’~和S48’可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。又例如,步骤S49’和S410’可以单独作为一个实施例,或者作为可选步骤与本申请实施例中的一个或多个步骤进行结合,在此不做限制。
下面将结合图5~图8对本申请提供的通信装置进行详细说明。
请参见图5,图5是本申请实施例提供的一种通信装置的结构示意图。图5所示的通信装置可以用于执行上述图4所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图5所示的通信装置可以包括收发单元501和处理单元502。其中,处理单元502,用于进行数据处理。收发单元501集成有接收单元和发送单元。收发单元501也可以称为通信单元。或者,也可将收发单元501拆分为接收单元和发送单元。下文的处理单元502和收发单元501同理,下文不再赘述。其中:
收发单元501,用于接收协同传能信号,其中,所述协同传能信号为第一网络设备和第二网络设备发送的传能信号的叠加信号,所述第一网络设备的传能信号的接收波峰和所述第二网络设备的传能信号的接收波峰重叠;
处理单元502,用于处理所述协同传能信号。
该通信装置的其他可能的实现方式,可参见上述图4对应的方法实施例中对终端设备功能的相关描述,在此不赘述。
请参见图6,图6是本申请实施例提供的另一种通信装置的结构示意图。图6所示的通信装置可以用于执行上述图4所描述的方法实施例中接入网设备的部分或全部功能。该装置可以是接入网设备,也可以是接入网设备中的装置,或者是能够和接入网设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图6所示的通信装置可以包括收发单元601和处理单元602。其中:
收发单元601,用于向第二网络设备发送协同传能请求,所述协同传能请求用于请求所述第二网络设备与所述第一网络设备进行协同传能;
所述收发单元601,用于接收来自所述第二网络设备的协同传能响应,所述协同传能响应用于指示所述第二网络设备接受协同传能;
处理单元602,用于向终端设备发送传能信号。
该通信装置的其他可能的实现方式,可参见上述图4对应的方法实施例中对接入网设备功能的相关描述,在此不赘述。
请参见图7,图7是本申请实施例提供的另一种通信装置的结构示意图。如图7所示,该通信装置可以为本申请实施例中描述的终端设备,用于实现上述图4中终端设备的功能。为了便于说明,图7仅示出了终端设备700的主要部件。如图7所示,终端设备700包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备700进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显 示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
以终端设备700为手机为例,当终端设备700开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备700时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和处理器。在一些实施例中,终端设备700可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备700进行控制,执行软件程序,处理软件程序的数据。图7中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。终端设备700可以包括多个基带处理器以适应不同的网络制式,终端设备700可以包括多个中央处理器以增强其处理能力,终端设备700的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备700的收发单元710,将具有处理功能的处理器视为终端设备700的处理单元720。如图7所示,终端设备700包括收发单元710和处理单元720。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
请参见图8,图8是本申请实施例提供的另一种通信装置的结构示意图。如图8所示,该通信装置可以为本申请实施例中描述的网络设备,用于实现上述图4中网络设备的功能。该网络设备包括:基带装置81,射频装置82、天线83。在上行方向上,射频装置82通过天线83接收终端设备发送的信息,将终端设备发送的信息发送给基带装置81进行处理。在下行方向上,基带装置81对终端设备的信息进行处理,并发送给射频装置82,射频装置82对终端设备的信息进行处理后经过天线83发送给终端设备。
基带装置81包括一个或多个处理单元811,存储单元812和接口813。其中处理单元811用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元812用于存储软件程序和/或数据。接口813用于与射频装置82交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。存储单元812与处理单元811可以位于同一个芯片中,即片内存储元件。或者存储单元812与处理单元811也可以为与处理单元811处于不同芯片上,即片外存储元件。所 述存储单元812可以是一个存储器,也可以是多个存储器或存储元件的统称。
网络设备可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图4中网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。另外,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)或直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (27)

  1. 一种协同传能方法,其特征在于,所述方法应用于终端设备,包括:
    接收协同传能信号,其中,所述协同传能信号为第一网络设备和第二网络设备发送的传能信号的叠加信号,所述第一网络设备的传能信号的接收波峰和所述第二网络设备的传能信号的接收波峰重叠;
    处理所述协同传能信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一测量信号和第二测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
    向所述第一网络设备发送所述第一测量结果。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一测量信号和第二测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
    向第三网络设备发送所述第一测量结果,所述第三网络设备为集中式单元CU,所述第一网络设备和所述第二网络设备为分布式单元DU。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一测量信号和第二测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
    向第三网络设备发送所述第一测量结果,所述第三网络设备为CU或者接入网设备,所述第一网络设备和所述第二网络设备为传输接收点TRP。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一测量信号的测量配置信息和所述第二测量信号的测量配置信息;
    所述接收第一测量信号和第二测量信号,包括:
    根据所述第一测量信号的测量配置信息接收所述第一测量信号,以及根据所述第二测量信号的测量配置信息接收所述第二测量信号。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收测量配置信息;
    基于所述测量配置信息发送第三测量信号,所述第三测量信号用于确定所述第一网络设备和/或所述第二网络设备的传能信号。
  7. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一测量结果包括以下至少一项信息:
    所述第一测量信号和所述第二测量信号之间的第一相位差,第一时间差,第一波峰 差。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    发送传能请求,所述传能请求包括所述终端设备请求的能量信息和传能时间信息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收传能配置信息;
    所述接收协同传能信号,包括:
    根据所述传能配置信息接收所述协同传能信号。
  10. 根据权利要求9所述的方法,其特征在于,所述传能配置信息包括以下一项或多项信息:
    波形信息,频率信息,时域资源信息,频域资源信息,第一定时时长,第一能量阈值。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    发送所述传能请求或者接收所述传能配置信息之后,启动第一定时器;
    当所述第一定时器达到所述第一定时时长后,发送能量状态指示信息,所述能量状态指示信息用于指示所述终端设备的能量状态。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    当所述终端设备中的能量大于或等于所述第一能量阈值时,发送能量状态指示信息,所述能量状态指示信息用于指示所述终端设备的能量状态。
  13. 根据权利要求4-6任一项所述的方法,其特征在于,所述方法还包括:
    发送信号调整请求,所述信号调整请求用于指示调整所述第一网络设备和/或所述第二网络设备的传能信号。
  14. 根据权利要求9-11任一项所述的方法,其特征在于,所述信号调整请求包括以下信息中的一项或者多项:
    所述第一网络设备的传能信号和所述第二网络设备的传能信号之间的第二相位差,第二时间差,第二波峰差,所述第一网络设备或所述第二网络设备的传能信号的参考信号接收功率RSRP变化信息。
  15. 一种协同传能方法,其特征在于,所述方法应用于第一网络设备,包括:
    向第二网络设备发送协同传能请求,所述协同传能请求用于请求所述第二网络设备与所述第一网络设备进行协同传能;
    接收来自所述第二网络设备的协同传能响应,所述协同传能响应用于指示所述第二网络设备接受协同传能;
    向终端设备发送传能信号。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收来自终端设备的传能请求,所述传能请求包括所述终端设备请求的能量信息和传能时间信息;
    所述向第二网络设备发送协同传能请求,包括:
    响应于所述传能请求,向所述第二网络设备发送协同传能请求。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的能量状态指示信息,所述能量状态指示信息用于指示所述终端设备的能量状态;
    当所述终端设备的能量状态满足所述终端设备请求的能量信息时,停止向所述终端设备发送传能信号和/或向所述第二网络设备发送协同传能释放消息。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送传能配置信息;
    所述向所述终端设备发送传能信号,包括:
    根据所述传能配置信息向所述终端设备发送传能信号。
  19. 根据权利要求18所述的方法,其特征在于,所述传能配置信息包括以下一项或多项信息:
    波形信息,频率信息,时域资源信息,频域资源信息,第一定时时长,第一能量阈值。
  20. 根据权利要求14-19任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一测量信号的测量配置信息和第二测量信号的测量配置信息;
    向所述终端设备发送所述第一测量信号,所述第一测量信号和所述第二测量信号用于确定第一测量结果,所述第一测量结果用于确定所述第一网络设备和/或所述第二网络设备的传能信号;
    接收来自所述终端设备的所述第一测量结果。
  21. 根据权利要求20所述的方法,其特征在于,所述第一测量结果包括以下至少一项信息:
    所述第一测量信号和所述第二测量信号之间的第一相位差,第一时间差,第一波峰差。
  22. 根据权利要求15-21述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的信号调整请求,所述信号调整请求用于指示调整所述第一网络设备和/或所述第二网络设备的传能信号。
  23. 根据权利要求22所述的方法,其特征在于,所述信号调整请求包括以下信息中的一项或者多项:
    所述第一网络设备的传能信号和所述第二网络设备的传能信号之间的第二相位差,第 二时间差,第二波峰差,所述第一网络设备或所述第二网络设备的传能信号的参考信号接收功率RSRP变化信息。
  24. 一种通信装置,其特征在于,包括用于执行权利要求1-23中任一项所述方法的单元或模块。
  25. 一种通信装置,其特征在于,包括:
    一个或多个处理器,一个或多个收发器和一个或多个存储器;
    其中,所述一个或多个存储器用于存储计算机程序,所述一个或多个处理器和所述一个或多个收发器用于执行存储于所述一个或多个存储器中的计算机程序,以使得所述通信装置执行如权利要求1-23中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1-23中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以实现权利要求1-23中任一项所述的方法。
PCT/CN2023/091363 2022-05-31 2023-04-27 协同传能方法及相关装置 WO2023231669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210609784.2A CN117200830A (zh) 2022-05-31 2022-05-31 协同传能方法及相关装置
CN202210609784.2 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231669A1 true WO2023231669A1 (zh) 2023-12-07

Family

ID=89000318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091363 WO2023231669A1 (zh) 2022-05-31 2023-04-27 协同传能方法及相关装置

Country Status (2)

Country Link
CN (1) CN117200830A (zh)
WO (1) WO2023231669A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085919A (ja) * 2016-11-21 2018-05-31 エルジー イノテック カンパニー リミテッド 無線充電方法及びそのための装置及びシステム
WO2018196321A1 (zh) * 2017-04-28 2018-11-01 中惠创智无线供电技术有限公司 一种大功率无线充电系统及其控制方法
CN109672492A (zh) * 2017-10-13 2019-04-23 华为技术有限公司 一种协同传输的方法、设备及系统
CN110707828A (zh) * 2018-07-09 2020-01-17 中兴通讯股份有限公司 无线充电接收装置、无线充电的实现方法和移动终端
CN111216587A (zh) * 2018-11-23 2020-06-02 北京嘀嘀无限科技发展有限公司 一种供电方法、充电方法、供电设备、待充电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085919A (ja) * 2016-11-21 2018-05-31 エルジー イノテック カンパニー リミテッド 無線充電方法及びそのための装置及びシステム
WO2018196321A1 (zh) * 2017-04-28 2018-11-01 中惠创智无线供电技术有限公司 一种大功率无线充电系统及其控制方法
CN109672492A (zh) * 2017-10-13 2019-04-23 华为技术有限公司 一种协同传输的方法、设备及系统
CN110707828A (zh) * 2018-07-09 2020-01-17 中兴通讯股份有限公司 无线充电接收装置、无线充电的实现方法和移动终端
CN111216587A (zh) * 2018-11-23 2020-06-02 北京嘀嘀无限科技发展有限公司 一种供电方法、充电方法、供电设备、待充电设备

Also Published As

Publication number Publication date
CN117200830A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN110476364B (zh) 一种信号传输方法和装置
RU2682909C1 (ru) Выбор совокупности ресурсов для каждого пакета в системе связи lte v2x
WO2018171759A1 (zh) 一种信息传输方法和装置
EP4002899A1 (en) Multi-link device privacy and operation enhancements
WO2021000289A1 (zh) 用于传输小数据的方法及设备
CN104285475A (zh) 在无线局域网中的增强型主动扫描
EP3846532A1 (en) Power control method and device
WO2020182031A1 (zh) 一种无线通信技术领域中的通信方法和通信装置
WO2020077577A1 (zh) 数据包传输方法和设备
WO2017210907A1 (zh) 多链接配置方法、基站及用户设备
JP2023113823A (ja) ワイヤレス通信における時間マッピングのための方法、装置およびシステム
JP7441960B2 (ja) 情報伝送方法、端末機器及びネットワーク機器
WO2018127026A1 (zh) 测量配置方法、装置、网元及系统
TWI665931B (zh) 定向無線通訊系統中具有按需信令機制的基站及用戶設備
WO2022183934A1 (zh) 一种小区重选方法及设备
WO2023236518A1 (zh) 一种通信方法及终端、存储介质
WO2023231669A1 (zh) 协同传能方法及相关装置
WO2023115354A1 (zh) 通信方法及装置
WO2022028558A1 (zh) 通信的方法、通信装置及系统
WO2022141130A1 (zh) 小区测量方法及通信装置
WO2022027672A1 (zh) 通信方法和通信装置
WO2021114103A1 (zh) 建立双连接的方法和通信装置
WO2017166324A1 (zh) 一种发送通信消息的方法和装置
WO2023131156A1 (zh) 随机接入的方法和通信装置
WO2015139313A1 (zh) 一种实现基站间时钟同步的方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814855

Country of ref document: EP

Kind code of ref document: A1