WO2023231624A1 - 一种太阳能耐腐蚀铝边框的制备工艺 - Google Patents

一种太阳能耐腐蚀铝边框的制备工艺 Download PDF

Info

Publication number
WO2023231624A1
WO2023231624A1 PCT/CN2023/089147 CN2023089147W WO2023231624A1 WO 2023231624 A1 WO2023231624 A1 WO 2023231624A1 CN 2023089147 W CN2023089147 W CN 2023089147W WO 2023231624 A1 WO2023231624 A1 WO 2023231624A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum frame
tank
solar
corrosion
concentration
Prior art date
Application number
PCT/CN2023/089147
Other languages
English (en)
French (fr)
Inventor
王启
李小敬
生经纬
朱珠
Original Assignee
永臻科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永臻科技股份有限公司 filed Critical 永臻科技股份有限公司
Publication of WO2023231624A1 publication Critical patent/WO2023231624A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of solar aluminum frames, in particular to a preparation process for solar corrosion-resistant aluminum frames.
  • Aluminum alloys are widely used in light industry, building materials, aerospace, electronics and other fields due to their small specific gravity, good processing performance, excellent electrical and thermal conductivity, good plasticity, strong resistance to atmospheric corrosion, easy forming, and low price. .
  • anodized films can also be used as good functional materials. Research and applications in this area have also achieved considerable results.
  • the commonly used anodizing methods include boric acid for aluminum alloys.
  • sulfuric acid anodizing process oxalic acid anodizing, sulfuric acid anodizing, alternating current anodizing, etc.
  • solar aluminum frames mostly use sulfuric acid anodizing + room temperature sealing process.
  • the aluminum alloy sulfuric acid anodized film has higher hardness and better corrosion protection and decorative effect.
  • the Chinese invention patent with patent number CN202011468311.2 discloses a method for treating a long-lasting corrosion-resistant coating on the surface of the aluminum frame of a solar module, which specifically includes the following steps: S1: Prepare electrolyte: Configure the electrolyte in proportion, add KOH, NaAlO 2 , Na4P 2 O 7 , and MoS 2 to deionized water or distilled water to dissolve .
  • the concentration of KOH is ⁇ 4g/L
  • the concentration of NaAlO2 is ⁇ 4g/L
  • the concentration of Na4P 2 O 7 is ⁇ 4g/L.
  • the concentration of MoS 2 is 4-8g/L
  • the concentration of MoS 2 is ⁇ 5g/L.
  • micro-arc oxidation electrolyte After stirring evenly, the micro-arc oxidation electrolyte is obtained;
  • a stainless steel plate is used as the cathode, and the micro-arc oxidation power supply is connected.
  • the control power supply outputs a positive-phase pulse current of 5-10A/dm 2 and a negative-phase pulse current of 2-5A/dm 2 .
  • the output frequency is 500-1000HZ
  • the duty cycle is 5-10%
  • the oxidation time is 10-30min
  • the electrolyte temperature is maintained at 10-30°C
  • S3 Wash the aluminum frame of the solar module after the micro-arc oxidation treatment in step S2 with ultrasonic water.
  • the technical problem to be solved by the present invention is to provide a long-term corrosion-resistant treatment process for solar aluminum frames.
  • This treatment process can effectively solve problems such as the compactness of the oxide film of the profile and the quality of the hole sealing.
  • the technical solution adopted by the present invention is: a preparation process of a solar corrosion-resistant aluminum frame. The specific steps are as follows:
  • Step 1 Arrange and sandblast the aluminum frame, then immerse the aluminum frame in a degreasing tank for degreasing, then take it out and wash it with pure water;
  • Step 2 Immerse the aluminum frame into a NaOH alkaline washing tank with a concentration of 35-45g/L, clean it, and then take it out;
  • Step 3 Immerse the aluminum frame into a neutralization tank with a concentration of 180-210g/L H 2 SO 4 for cleaning, then take it out and clean it with pure water;
  • Step 4 Dip the aluminum frame into a 180-200g/L H 2 SO 4 oxidation tank and oxidize it at an anode current of 10-16A/dm 2 , then take it out and rinse it with pure water;
  • Step 5 Dip the aluminum frame into the sealing tank with a concentration of 1.2-1.6g/LNi 2+ to seal the holes, then take it out and immerse it Wash with pure water in the water washing tank;
  • Step 6 Place the aluminum frame in the oven to dry and age, then lower it into rows.
  • the temperature in the alkali washing tank in step two is 35-45°C
  • the cleaning is 1-5 minutes
  • the Al 3+ concentration in the alkali washing tank is ⁇ 60g/L.
  • reaction time in the neutralization tank in step three is 1-5 minutes.
  • the temperature of the oxidation tank in step 4 is 12-20°C
  • the Al 3+ concentration is ⁇ 16g/L
  • the oxidation time is 30-45 minutes.
  • the temperature of the sealing tank in step 5 is 50-56°C
  • the sealing time is 10-24 minutes
  • the pH is 6.0-6.6.
  • the pure water cleaning temperature in the water washing tank in step five is 45-65°C.
  • the oven temperature is 170-180°C
  • the aging time is 10-14 hours.
  • the solar aluminum frame profile is heated and dried after oxidation to shorten the natural aging time, improve the sealing and aging efficiency of the aluminum profile, and facilitate subsequent post-process production arrangements;
  • the aluminum frame profile is anodized and sealed at medium temperature under the treatment process conditions. After oxidation, the film thickness of the profile is uniform, and there are no oxidation defects such as corrosion on the surface of the profile. After sealing, there is no color difference or dusting surface defects on the surface of the profile after sealing. .
  • Step 1 Arrange and sandblast the aluminum frame, then immerse the aluminum frame in a degreasing tank for degreasing, then take it out and wash it with pure water;
  • Step 2 Immerse the aluminum frame into a NaOH alkaline washing tank with a concentration of 35g/L and clean it.
  • the temperature in the alkali washing tank is 35°C. Clean for 1 minute.
  • the Al 3+ concentration in the alkali washing tank is 40g/L and then take it out;
  • Step 3 Immerse the aluminum frame into a neutralization tank with a concentration of 180g/L H 2 SO 4 for 1 minute, then take it out and wash it with pure water;
  • Step 4 Immerse the aluminum frame into a 180g/L H 2 SO 4 oxidation tank and oxidize it at an anode current of 10A/dm 2.
  • the temperature of the oxidation tank is 12°C and the Al 3+ concentration is 8g/L. Oxide for 30 minutes, then take it out and use pure water rinse;
  • Step 5 Dip the aluminum frame into a sealing tank with a concentration of 1.2g/L Ni 2+ and seal the holes.
  • the temperature of the sealing tank is 50°C, seal the holes for 10 minutes, and the pH is 6.0. Then take it out and immerse it in a water washing tank with a water temperature of 45°C. Pure water cleaning;
  • Step 6 Put the aluminum frame into an oven at a temperature of 170°C to dry and age for 14 hours, and then lower it.
  • a preparation process for a solar corrosion-resistant aluminum frame of the present invention the specific steps are as follows:
  • Step 1 Arrange and sandblast the aluminum frame, then immerse the aluminum frame in a degreasing tank for degreasing, then take it out and wash it with pure water;
  • Step 2 Immerse the aluminum frame into a NaOH alkaline washing tank with a concentration of 40g/L for cleaning.
  • the temperature in the alkali washing tank is 40°C. Clean for 3 minutes.
  • the Al 3+ concentration in the alkali washing tank is 50g/L, and then take it out;
  • Step 3 Immerse the aluminum frame into a neutralization tank with a concentration of 200g/L H 2 SO 4 for 3 minutes, then take it out and clean it with pure water;
  • Step 4 Immerse the aluminum frame into a 190g/L H 2 SO 4 oxidation tank and oxidize it at an anode current of 14A/dm 2.
  • the oxidation tank temperature is 16°C and the Al 3+ concentration is 12g/L. Oxidize for 40 minutes, then take it out and use pure water. rinse;
  • Step 5 Dip the aluminum frame into a sealing tank with a concentration of 1.4g/LNi 2+ and seal the holes.
  • the temperature of the sealing tank is 53°C, the holes are sealed for 17 minutes, and the pH is 6.3. Then take it out and immerse it in a water washing tank and clean it with 55°C pure water. ;
  • Step 6 Put the aluminum frame into an oven at 173°C to dry and age for 12 hours, then lower it.
  • a preparation process for a solar corrosion-resistant aluminum frame of the present invention the specific steps are as follows:
  • Step 1 Arrange and sandblast the aluminum frame, then immerse the aluminum frame in a degreasing tank for degreasing, then take it out and wash it with pure water;
  • Step 2 Immerse the aluminum frame into a NaOH alkaline washing tank with a concentration of 45g/L for cleaning.
  • the temperature in the alkali washing tank is 45°C. Clean for 5 minutes.
  • the Al 3+ concentration in the alkali washing tank is 60g/L, and then take it out;
  • Step 3 Immerse the aluminum frame into a neutralization tank with a concentration of 210g/L H 2 SO 4 for 5 minutes, then take it out and wash it with pure water;
  • Step 4 Immerse the aluminum frame into a 200g/L H 2 SO 4 oxidation tank and oxidize it at an anode current of 16A/dm 2.
  • the oxidation tank temperature is 20°C and the Al 3+ concentration is 16g/L. Oxidize for 45 minutes, then take it out and use pure water. rinse;
  • Step 5 Dip the aluminum frame into a sealing tank with a concentration of 1.6g/L Ni 2+ and seal the holes.
  • the temperature of the sealing tank is 56°C, the holes are sealed for 24 minutes, and the pH is 6.6. Then take it out and immerse it in a water washing tank and use 65°C pure water. cleaning;
  • Step 6 Put the aluminum frame into an oven at 180°C to dry and age for 10 hours, then lower it.
  • Example 1 selects two aluminum frames, namely Example 1a and Example 1b, both with a length of 49.98mm and a circumference of 159.96mm.
  • Example 2 selects two aluminum frames, namely Example 2a and Example 2b, both with a length of 49.96mm and a circumference of 145.95mm.
  • Example 3 two aluminum frames are selected, namely Example 3a and Example 3b, both with a length of 49.92mm and a circumference of 136.98mm.
  • Table 1 shows the test data of 6 aluminum frames using the above treatment process.
  • the weight loss values in the experiment were all less than 30, which greatly shortened the aging time and further shortened the waiting time for oxidation.
  • the aluminum frame was subjected to anodizing + medium temperature hole sealing on the profile under the processing conditions of the present invention. After oxidation The film thickness of the profile is uniform, and there are no oxidation defects such as corrosion on the surface of the profile. After sealing, there is no color difference or dusting surface defects on the surface of the profile after sealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

本发明涉及太阳能铝边框技术领域,特别是一种太阳能铝边框的长效耐腐蚀的处理工艺,具体步骤如下:步骤一,将铝边框上排并喷砂,然后将铝边框浸入脱脂槽中进行脱脂,然后取出纯水洗;步骤二,将铝边框浸入浓度为35-45g/L的NaOH碱洗槽内清洗;步骤三,将铝边框浸入H 2SO 4中和槽内清洗;步骤四,将铝边框浸入H 2SO 4氧化槽内阳极电流氧化;步骤五,将铝边框浸入浓度为1.2-1.6g/L Ni 2+封孔槽内封孔,然后取出浸入水洗槽中用纯水清洗;步骤六,将铝边框放入烘箱中烘干并陈化,然后下排。本发明可以有效解决型材氧化膜致密性及封孔质量等问题。

Description

一种太阳能耐腐蚀铝边框的制备工艺 技术领域
本发明涉及太阳能铝边框技术领域,特别是一种太阳能耐腐蚀铝边框的制备工艺。
背景技术
铝合金由于其比重小,加工性能好,导电、导热性能优良,塑性好,抗大气腐蚀能力强,易于成形,价格便宜等优点而在轻工、建材、航天、电子等领域得到非常广泛的应用。阳极氧化膜除了提高铝及其合金的耐蚀及硬度性能外,还可以作为很好的功能材料,有关这方面的研究及应用也已获得相当的成效,目前常用的阳极氧化方法有铝合金硼酸-硫酸阳极氧化工艺研究、草酸阳极氧化、硫酸阳极氧化、交流电阳极氧化等,现太阳能铝边框多用硫酸阳极氧化+常温封孔工艺。铝合金硫酸阳极氧化膜有较高的硬度和较好的抗蚀防护装饰效果。
新能源发电一直是国家非常重视的领域,这几年太阳能发电产业发展迅速,太阳能是清洁能源,太阳能转换为电能的过程中不会对环境造成污染。所以各地大量建设光伏发电站。光伏组件产品也需求量倍增,其中太阳能电池板的铝合金边框也是组件的一部分。太阳能边框采用挤压铝型材,再对其表面处理、深加工制得。光伏太阳能组件边框要求比一般的铝合金型材要高,普通铝合金型材氧化膜平均厚度在10μm,而光伏组件边框要达到15μm。因为光伏组件边框长期处于室外环境、恶劣的天气下容易造成边框腐蚀,因此需要对太阳能组件铝边框表面进行耐腐蚀处理。
例如,专利号为CN202011468311.2的中国发明专利所公开的一种太阳能组件铝边框表面长效耐蚀涂层的处理方法,具体包括以下步骤:S1:配置电解液: 按比例配置电解液,将KOH、NaAlO2、Na4P2O7、MoS2,加入去离子水或蒸馏水溶解,其中KOH的浓度≤4g/L、NaAlO2的浓度≤4g/L、Na4P2O7的浓度为4-8g/L、MoS2的浓度≤5g/L,搅拌均匀后即得到微弧氧化电解液;S2:微弧氧化:将太阳能组件铝边框置于微弧氧化系统中电解槽的阳极,采用不锈钢板作为阴极,接通微弧氧化电源,整个微弧氧化过程中控制电源输出正相脉冲电流为5-10A/dm2,负向脉冲电流2-5A/dm2,输出频率为500-1000HZ,占空比为5-10%,氧化时间10-30min,维持电解液温度为10-30℃;S3:将步骤S2中微弧氧化处理后的太阳能组件铝边框经过超声波水洗。
使用这种处理方法不能有效解决型材氧化膜致密性及封孔质量等问题。
发明内容
本发明需要解决的技术问题是提供一种太阳能铝边框的长效耐腐蚀的处理工艺,使用这种处理工艺可以有效解决型材氧化膜致密性及封孔质量等问题。
为解决上述技术问题,本发明所采取的技术方案是:一种太阳能耐腐蚀铝边框的制备工艺,具体步骤如下:
步骤一,将铝边框上排并喷砂,然后将铝边框浸入脱脂槽中进行脱脂,然后取出纯水洗;
步骤二,将铝边框浸入浓度为35-45g/L的NaOH碱洗槽内清洗,然后取出;
步骤三,将铝边框浸入浓度为180-210g/L H2SO4中和槽内清洗,然后取出用纯水清洗;
步骤四,将铝边框浸入180-200g/L H2SO4氧化槽内以10-16A/dm2的阳极电流氧化,然后取出用纯水冲洗;
步骤五,将铝边框浸入浓度为1.2-1.6g/LNi2+封孔槽内封孔,然后取出浸入 水洗槽中用纯水清洗;
步骤六,将铝边框放入烘箱中烘干并陈化,然后下排。
作为本发明进一步的方案,所述步骤二碱洗槽内温度为35-45℃,清洗1-5min,碱洗槽内Al3+浓度≤60g/L。
作为本发明进一步的方案,所述步骤三中和槽内反应时间为1-5min。
作为本发明进一步的方案,所述步骤四氧化槽温度为12-20℃,Al3+浓度≤16g/L,氧化时间30-45min。
作为本发明进一步的方案,所述步骤五封孔槽温度为50-56℃,封孔时间10-24min,PH为6.0-6.6。
作为本发明进一步的方案,所述步骤五水洗槽中纯水清洗温度为45-65℃。
作为本发明进一步的方案,所述烘箱温度为170-180℃,陈化时间为10-14h。
由于本发明采用如上技术方案,本发明具有的优点和积极效果是:
1、优化氧化槽工艺参数,提高阳极氧化成膜致密性,同时通过常温封孔改善为中温封孔,在封孔过程中水合反应和金属离子的沉积反应同时进行,提高封孔质量;
2、太阳能铝边框型材氧化后加热烘干,缩短自然陈化时间,提高铝型材封孔陈化效率,便于后续后工序生产安排;
3、在处理工艺条件下对铝边框型材进行阳极氧化+中温封孔,氧化后型材膜厚均匀,且型材表面没有腐蚀等氧化缺陷,封孔后型材表面没有出现色差、封孔起灰表面缺陷。
具体实施方式
实施例1
本发明的一种太阳能耐腐蚀铝边框的制备工艺,具体步骤如下:
步骤一,将铝边框上排并喷砂,然后将铝边框浸入脱脂槽中进行脱脂,然后取出纯水洗;
步骤二,将铝边框浸入浓度为35g/L的NaOH碱洗槽内清洗,碱洗槽内温度为35℃,清洗1min,碱洗槽内Al3+浓度为40g/L然后取出;
步骤三,将铝边框浸入浓度为180g/L H2SO4中和槽内反应1min,然后取出用纯水清洗;
步骤四,将铝边框浸入180g/L H2SO4氧化槽内以10A/dm2的阳极电流氧化,四氧化槽温度为12℃,Al3+浓度为8g/L,氧化30min,然后取出用纯水冲洗;
步骤五,将铝边框浸入浓度为1.2g/L Ni2+封孔槽内封孔,封孔槽温度为50℃,封孔10min,PH为6.0,然后取出浸入水洗槽中用水温为45℃的纯水清洗;
步骤六,将铝边框放入温度为170℃的烘箱中烘干并陈化14h,然后下排。
实施例2
本发明一种太阳能耐腐蚀铝边框的制备工艺,具体步骤如下:
步骤一,将铝边框上排并喷砂,然后将铝边框浸入脱脂槽中进行脱脂,然后取出纯水洗;
步骤二,将铝边框浸入浓度为40g/L的NaOH碱洗槽内清洗,碱洗槽内温度为40℃,清洗3min,碱洗槽内Al3+浓度50g/L,然后取出;
步骤三,将铝边框浸入浓度为200g/L H2SO4中和槽内反应3min,然后取出用纯水清洗;
步骤四,将铝边框浸入190g/L H2SO4氧化槽内以14A/dm2的阳极电流氧化,氧化槽温度为16℃,Al3+浓度为12g/L,氧化40min,然后取出用纯水冲洗;
步骤五,将铝边框浸入浓度为1.4g/LNi2+封孔槽内封孔,封孔槽温度为53℃,封孔17min,PH为6.3,然后取出浸入水洗槽中用55℃纯水清洗;
步骤六,将铝边框放入173℃的烘箱中烘干并陈化12h,然后下排。
实施例3
本发明一种太阳能耐腐蚀铝边框的制备工艺,具体步骤如下:
步骤一,将铝边框上排并喷砂,然后将铝边框浸入脱脂槽中进行脱脂,然后取出纯水洗;
步骤二,将铝边框浸入浓度为45g/L的NaOH碱洗槽内清洗,碱洗槽内温度为45℃,清洗5min,碱洗槽内Al3+浓度为60g/L,然后取出;
步骤三,将铝边框浸入浓度为210g/L H2SO4中和槽内反应5min,然后取出用纯水清洗;
步骤四,将铝边框浸入200g/L H2SO4氧化槽内以16A/dm2的阳极电流氧化,氧化槽温度为20℃,Al3+浓度为16g/L,氧化45min,然后取出用纯水冲洗;
步骤五,将铝边框浸入浓度为1.6g/L Ni2+封孔槽内封孔,封孔槽温度为56℃,封孔24min,PH为6.6,然后取出浸入水洗槽中用65℃纯水清洗;
步骤六,将铝边框放入180℃的烘箱中烘干并陈化10h,然后下排。
实施例1选取2根铝边框,分别为实施例1a和实施例1b,长度均为49.98mm,周长均为159.96mm。
实施例2选取2根铝边框,分别为实施例2a和实施例2b,长度均为49.96mm,周长均为145.95mm。
实施例3选取2根铝边框,分别为实施例3a和实施例3b,长度均为49.92mm,周长均为136.98mm。
表1为6根铝边框分别以上述处理工艺进行试验数据
由表1可知,实验中失重值均小于30,大大缩短陈化时间,也进一步缩短了氧化下排等待时间;铝边框在本发明处理工艺条件下对型材进行阳极氧化+中温封孔,氧化后型材膜厚均匀,且型材表面没有腐蚀等氧化缺陷,封孔后型材表面没有出现色差、封孔起灰表面缺陷。
虽然以上描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式作出多种变更或修改,而不背离本发明的原理和实质,本发明的保护范围仅由所附权利要求书限定。

Claims (7)

  1. 一种太阳能耐腐蚀铝边框的制备工艺,其特征在于:具体步骤如下:
    步骤一,将铝边框上排并喷砂,然后将铝边框浸入脱脂槽中进行脱脂,然后取出纯水洗;
    步骤二,将铝边框浸入浓度为35-45g/L的NaOH碱洗槽内清洗,然后取出;
    步骤三,将铝边框浸入浓度为180-210g/LH2SO4中和槽内清洗,然后取出用纯水清洗;
    步骤四,将铝边框浸入180-200g/LH2SO4氧化槽内以10-16A/dm2的阳极电流氧化,然后取出用纯水冲洗;
    步骤五,将铝边框浸入浓度为1.2-1.6g/LNi2+封孔槽内封孔,然后取出浸入水洗槽中用纯水清洗;
    步骤六,将铝边框放入烘箱中烘干并陈化,然后下排。
  2. 根据权利要求1所述的一种太阳能耐腐蚀铝边框的制备工艺,其特征是:所述步骤二碱洗槽内温度为35-45℃,清洗1-5min,碱洗槽内Al3+浓度≤60g/L。
  3. 根据权利要求1所述的一种太阳能耐腐蚀铝边框的制备工艺,其特征是:所述步骤三中和槽内反应时间为1-5min。
  4. 根据权利要求1所述的一种太阳能耐腐蚀铝边框的制备工艺,其特征是:所述步骤四氧化槽温度为12-20℃,Al3+浓度≤16g/L,氧化时间30-45min。
  5. 根据权利要求1所述的一种太阳能耐腐蚀铝边框的制备工艺,其特征是:所述步骤五封孔槽温度为50-56℃,封孔时间10-24min,PH为6.0-6.6。
  6. 根据权利要求1所述的一种太阳能耐腐蚀铝边框的制备工艺,其特征是:所述步骤五水洗槽中纯水清洗温度为45-65℃。
  7. 根据权利要求1所述的一种太阳能耐腐蚀铝边框的制备工艺,其特征是:所述烘箱温度为170-180℃,陈化时间为10-14h。
PCT/CN2023/089147 2022-05-30 2023-04-19 一种太阳能耐腐蚀铝边框的制备工艺 WO2023231624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210598901.XA CN114990662A (zh) 2022-05-30 2022-05-30 一种太阳能耐腐蚀铝边框的制备工艺
CN202210598901.X 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231624A1 true WO2023231624A1 (zh) 2023-12-07

Family

ID=83030023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089147 WO2023231624A1 (zh) 2022-05-30 2023-04-19 一种太阳能耐腐蚀铝边框的制备工艺

Country Status (2)

Country Link
CN (1) CN114990662A (zh)
WO (1) WO2023231624A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990661A (zh) * 2022-05-30 2022-09-02 永臻科技股份有限公司 一种太阳能铝边框的长效耐腐蚀的处理工艺
CN114990662A (zh) * 2022-05-30 2022-09-02 永臻科技股份有限公司 一种太阳能耐腐蚀铝边框的制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634042A (zh) * 2009-07-24 2010-01-27 江苏锦绣铝业有限公司 一种超硬铝合金氧化膜的处理方法
JP2016145383A (ja) * 2015-02-06 2016-08-12 栗田工業株式会社 アルミニウムまたはアルミニウム合金の表面処理方法、及び表面処理装置
CN106835236A (zh) * 2017-01-04 2017-06-13 广东坚美铝型材厂(集团)有限公司 一种提高型材耐腐蚀性的生产方法
CN107829002A (zh) * 2017-11-14 2018-03-23 辽宁忠旺集团有限公司 一种太阳能铝合金光伏支架的生产工艺
CN107916444A (zh) * 2017-11-14 2018-04-17 广西吉宽太阳能设备有限公司 一种太阳能板铝边框的阳极氧化方法
CN114990662A (zh) * 2022-05-30 2022-09-02 永臻科技股份有限公司 一种太阳能耐腐蚀铝边框的制备工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304743B (zh) * 2011-09-16 2014-04-02 南南铝业股份有限公司 一种铝及铝合金表面电化学氧化膜封孔方法
CN108796580A (zh) * 2018-08-20 2018-11-13 永臻科技(常州)有限公司 一种铝合金光伏型材阳极氧化膜新型封孔工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634042A (zh) * 2009-07-24 2010-01-27 江苏锦绣铝业有限公司 一种超硬铝合金氧化膜的处理方法
JP2016145383A (ja) * 2015-02-06 2016-08-12 栗田工業株式会社 アルミニウムまたはアルミニウム合金の表面処理方法、及び表面処理装置
CN106835236A (zh) * 2017-01-04 2017-06-13 广东坚美铝型材厂(集团)有限公司 一种提高型材耐腐蚀性的生产方法
CN107829002A (zh) * 2017-11-14 2018-03-23 辽宁忠旺集团有限公司 一种太阳能铝合金光伏支架的生产工艺
CN107916444A (zh) * 2017-11-14 2018-04-17 广西吉宽太阳能设备有限公司 一种太阳能板铝边框的阳极氧化方法
CN114990662A (zh) * 2022-05-30 2022-09-02 永臻科技股份有限公司 一种太阳能耐腐蚀铝边框的制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Examination Questions and Solutions that Electroplaters Should Know About", 30 June 1996, MACHINERY INDUSTRY PRESS, CN, ISBN: 7-111-03893-2, article CHEN, JINGTIAN ET AL.: "What is the Effect of Current Density on the Quality of Sulfuric Acid Anodic Oxide Film of Aluminum and Its Alloys?", pages: 139, XP009551392 *
"Metal Anti-corrosion Technology", 30 September 1998, METALLURGICAL INDUSTRY PRESS,, CN, ISBN: 9787502421892, article WU, JIXUN: "Aluminum Anodizing Process", pages: 196 - 199, XP009550787 *

Also Published As

Publication number Publication date
CN114990662A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023231624A1 (zh) 一种太阳能耐腐蚀铝边框的制备工艺
WO2023231623A1 (zh) 一种太阳能铝边框的长效耐腐蚀的处理工艺
CN105256342B (zh) 一种基于铜的超疏水表面及其制备方法
CN103590043B (zh) 铝合金表面预处理的方法
CN110055572B (zh) 一种铝合金表面处理的方法
CN105239133A (zh) 一种钛及钛合金表面阳极氧化着色方法
CN103556205A (zh) 一种镁合金微弧氧化复合膜着色的方法
CN106835228A (zh) 一种表面浸润性可控的超疏水铜及其合金的制备方法
CN106350849A (zh) 铝表面高吸收与低发射太阳光谱的氧化膜电沉积制备方法
CN110129858B (zh) 一种离子液体辅助镁锂合金阳极氧化成膜方法
CN105040043A (zh) 一种电沉积镀镍工艺
CN85103365A (zh) 铝或铝合金表面乳白色薄膜生成法
CN101698955A (zh) 不锈钢、钛及钛合金电化学发黑方法
CN109234757A (zh) 一种均匀稳定的钌铱双金属掺杂钛电极的制备方法及应用
CN203007452U (zh) 一种表面具有军绿色微弧氧化陶瓷膜的铝合金
CN102312265B (zh) 一种铝或铝合金阳极氧化膜的制备方法
CN111074323A (zh) 一种铝及铝合金阳极氧化常温无镍封闭液及封闭方法
WO2023226631A1 (zh) 铝合金阳极氧化成膜方法
CN113832518B (zh) 一种铝合金工件胶接前处理方法
CN108486527A (zh) 一种钼合金基板的镀镍工艺
CN101435081B (zh) 镁合金表面无电压化学制膜和低电压下电化学制膜的方法
CN104218245B (zh) 一种钛/亚氧化钛/铅复合基板的制备方法
CN113403654A (zh) 一种绿色环保电沉积镍涂层的方法
CN112342587A (zh) 一种铝板阳极氧化方法
CN104846414B (zh) 一种TiO2半导体光阳极的微弧氧化制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814810

Country of ref document: EP

Kind code of ref document: A1