WO2023231597A1 - 液体加料装置、单晶炉及其供料方法、拉晶方法 - Google Patents

液体加料装置、单晶炉及其供料方法、拉晶方法 Download PDF

Info

Publication number
WO2023231597A1
WO2023231597A1 PCT/CN2023/088052 CN2023088052W WO2023231597A1 WO 2023231597 A1 WO2023231597 A1 WO 2023231597A1 CN 2023088052 W CN2023088052 W CN 2023088052W WO 2023231597 A1 WO2023231597 A1 WO 2023231597A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
melt
crystal furnace
feeding
melting
Prior art date
Application number
PCT/CN2023/088052
Other languages
English (en)
French (fr)
Inventor
董升
李侨
邓浩
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210612850.1A external-priority patent/CN115029776A/zh
Priority claimed from CN202210615372.XA external-priority patent/CN115012034A/zh
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2023231597A1 publication Critical patent/WO2023231597A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present application relates to the field of crystal growth technology, and in particular to a liquid feeding device, a single crystal furnace and its feeding method, and a crystal pulling method.
  • the CCZ (Continuous Czocharlski) continuous Czochralski method is used to grow single crystal silicon in industrial production.
  • silicon material needs to be continuously supplied to the crucible through a feeding device.
  • the supplied silicon material is solid silicon material.
  • the feeding device adds solid silicon material to the edge of the crucible in the single crystal furnace.
  • the solid silicon material melts into liquid silicon material in the crucible of the single crystal furnace.
  • the central area of the crucible is pulling single crystal rods. Therefore, when solid materials are added to the crucible, the falling of the solid materials caused by gravity will cause oscillations in the liquid materials in the original crucible, thus forming ripples.
  • the ripples start from the crucible.
  • the periphery extends to the center of the crucible, causing interruptions in the growth process of the single crystal rod or poor growth, and reducing the success rate of pulling the single crystal silicon rod.
  • the purpose of this application is to provide a liquid feeding device, a single crystal furnace and its feeding method, and a crystal pulling method, which are used to reduce the oscillation degree of the liquid material in the crucible during feeding.
  • a liquid feeding device used in single crystal furnaces including:
  • the melting device includes a melting chamber and a heating component; the heating component melts the solid material in the melting chamber into liquid material;
  • Feeding device the feeding device is used to transport solid materials into the melt cavity.
  • the feeding device transports solid materials into the melt cavity, and the heating component heats and melts the solid materials in the melt cavity into liquid materials, and transports the liquid materials to In the crucible of the single crystal furnace, the solid material can first be converted into liquid material in the melt cavity, and then the liquid material is added to the crucible for crystal pulling.
  • the liquid material in the melt cavity is added to the crucible of the single crystal furnace , because the degree of oscillation caused by it is small and the amplitude of the ripples generated is small, it has a small impact on the growth of single crystal silicon, thereby effectively improving the success rate of crystal pulling and growing single crystal silicon with good performance.
  • the liquid feeding device also includes:
  • Temperature detection device the temperature detection device is used to detect the temperature of the melt cavity
  • the first controller is connected to the temperature detection device, the feeding device and/or the heating component, and the first controller adjusts the feeding amount of the feeding device and/or the heating component in real time based on the temperature fed back by the temperature detection device. power;
  • the first weight detection device is used to detect the weight of the melt in the melt cavity
  • the second controller is connected to the first weight detection device and the feeding device and/or the heating component.
  • the second controller adjusts the feeding amount and the amount of the feeding device in real time according to the weight fed back by the first weight detection device. /or the power of the heating element;
  • Temperature detection device the temperature detection device is used to detect the temperature of the melt cavity
  • the first weight detection device is used to detect the weight of the melt in the melt cavity
  • the third controller is connected to the temperature detection device, the first weight detection device, the feeding device and/or the heating component, and the third controller is based on the temperature fed back by the temperature detection device and the weight fed back by the first weight detection device. , adjust the feeding amount of the feeding device and/or the power of the heating component in real time. With this arrangement, the feeding amount of the feeding device and/or the power of the heating component can be adjusted in real time according to the temperature in the melt cavity and the weight of the melt. By adjusting the feeding amount of the feeding device in the melt cavity, the amount of feeding can be adjusted. The supply amount of liquid material transported from the melt cavity to the crucible.
  • the melting rate of the solid material in the melt cavity can be adjusted, thereby adjusting the supply amount of liquid material transported from the melt cavity to the crucible. , so that the liquid level height of the liquid material in the crucible can be further adjusted to prevent the liquid in the crucible from When the liquid level of the bulk material fluctuates up and down, problems such as breakage and poor growth of single crystal silicon may occur, thereby improving the growth quality of single crystal silicon.
  • the above liquid feeding device also includes a cooling device, which is arranged on the side or bottom of the melt cavity.
  • a cooling device which is arranged on the side or bottom of the melt cavity.
  • the above liquid feeding device also includes:
  • the flow control system is used to control the flow of the cooling device
  • the fourth controller is connected to the flow control system, the feeding device and/or the heating component, and is used to adjust the temperature of the feeding device in real time according to the temperature of the melt cavity and/or the weight of the melt in the melt cavity.
  • the feed volume and/or the power of the heating component and/or the flow control system's flow rate Such an arrangement makes it easy to control the liquid material delivered from the melt chamber to the crucible by adjusting the feed amount of the feed device, the power of the heating component and/or the flow rate of the flow control system.
  • the melting device further includes a conduit connected to the melting chamber, and one end of the conduit and/or the melting chamber close to the single crystal furnace is inclined downward relative to the other end. This arrangement facilitates the liquid material in the melt cavity and conduit to flow into the crucible under the action of gravity.
  • the melt cavity and the conduit are an integral structure, including a melt section and a lead-out section.
  • the melt section includes an inlet for receiving solid materials
  • the lead-out section includes a lead-out section for extending into
  • the discharge port in the single crystal furnace is equipped with a gap to prevent the melt from flowing back along the tube wall.
  • both the molten material section and the lead-out section are in the shape of grooves; or, the melt section and/or the lead-out section are partially tubular, and the melt section includes a groove-shaped feed opening.
  • the groove-shaped melt section can be used to receive solid materials.
  • the melt section and the lead-out section are simple in structure and easy to process; when the melt section and/or The lead-out section is tubular, and when the melt section includes a groove-shaped feed port, the groove-shaped feed port can be used to receive solid materials, and the tubular structure can be used to increase the strength of the melt section or the lead-out section.
  • the melting device further includes an expansion and contraction control mechanism for controlling the expansion and contraction of the conduit and/or the melting chamber.
  • the telescopic control mechanism controls the contraction of the conduit and/or the melt cavity to prevent the conduit and the melt cavity from affecting the single crystal furnace for crystal pulling and other operations, while ensuring that the conduit can Add materials at the crucible that extends into the single crystal furnace.
  • the melting device further includes a first material guide tube, the first material guide tube is used to guide the solid material in the feeding device into the melt cavity, and the upper end of the first material guide tube It is funnel-shaped and is provided with a surrounding plate to receive the solid material transported by the feeding device and prevent the solid material from leaving the first feed pipe. This arrangement prevents the heat radiation generated by the melting device from heating the solid material in the feeding device.
  • the melting device also includes a second feeding tube with high temperature resistance, one end of the second feeding tube is connected to the first feeding tube, and the other end is connected to the melting chamber, so as to Guide the solid material in the first feed tube into the melt cavity.
  • the first feed tube and the melt chamber are connected by a high temperature resistant second feed tube, which prevents the temperature environment of the melt chamber from affecting the performance of the first feed tube.
  • This application also provides a single crystal furnace, including the liquid feeding device as described in the above solution.
  • the single crystal furnace and the melting device are integrally connected.
  • Such an arrangement ensures that the single crystal furnace and the melting device are in the same vacuum environment and has a good sealing effect.
  • the single crystal furnace also includes an isolation device.
  • the melting device includes a shell integrally formed with the single crystal furnace and a sealed cavity located in the shell.
  • the melting cavity and the heating assembly are located in the sealed cavity.
  • the shell includes a first opening connected to the single crystal furnace and a second opening connected to the feeding device.
  • the isolation device is disposed at the second opening position for closing the second opening when the feeding device is removed, so that the single crystal furnace and The melting device remains in a closed environment when the feeding device is removed.
  • the isolation device can be used to close the second opening, so that the single crystal furnace and the melting device are still in a closed environment when the feeding device is removed, preventing the external environment from affecting the growth of single crystal silicon. .
  • This application also provides a feeding method for a single crystal furnace, using the single crystal furnace as described in the above solution, including:
  • the solid material is melted by the melting device to generate liquid material, and the liquid material is transported to the crucible in the single crystal furnace to realize the supply of liquid material.
  • the feeding amount of the feeding device or the power of the heating component is adjusted in real time according to the temperature of the melting device
  • the feeding amount of the feeding device or the power of the heating component is adjusted in real time
  • the feeding amount of the feeding device or the power of the heating component is adjusted in real time.
  • Such an arrangement can control the volume of the liquid material transported from the melt chamber to the crucible, thereby controlling the liquid level height of the liquid material in the crucible, and preventing breakage and poor growth of single crystal silicon caused by fluctuations in the liquid level of the liquid material in the crucible. and other issues to improve the growth quality of single crystal silicon.
  • a cooling device is provided on the side or bottom of the melt chamber.
  • the cooling device cools the molten material cavity, thereby further accurately controlling the temperature in the molten material cavity, and thereby accurately controlling the liquid level height of the liquid material in the crucible.
  • the flow rate of the cooling device can be adjusted; according to the temperature of the melting device or the weight of the melt in the melting device, the feeding amount and heating component of the feeding device are adjusted in real time. power and/or flow rate of the cooling unit.
  • This application provides a crystal pulling production equipment and a crystal pulling method.
  • the crystal pulling production equipment has the beneficial effects of good crystal pulling quality and high production efficiency.
  • this application provides a crystal pulling production equipment.
  • the crystal pulling production equipment includes a single crystal furnace and a feeding assembly.
  • the feeding assembly is located outside the single crystal furnace and is used to add silicon material into the single crystal furnace.
  • the feeding assembly is provided with The air inlet pipe is used to introduce clean gas, and the clean gas enters the single crystal furnace through the feeding assembly.
  • the air inlet pipe can be used to continuously flow clean gas into the single crystal furnace during the feeding process of the feeding assembly into the single crystal furnace, before crystal pulling production, or during the entire crystal pulling production process.
  • the clean gas can remove the above
  • the dust and silicon vapor are carried away, reducing the dust and silicon vapor falling on the surface of the liquid silicon material in the single crystal furnace, and reducing the dust attached to the inner wall of the equipment, reducing the adverse effects of dust and silicon vapor on the quality of crystal pulling, and improving Crystal pulling success rate.
  • the feeding component includes a melting device, which is used to add liquid silicon material into the single crystal furnace;
  • the air inlet pipe includes a second air inlet pipe and/or a third air inlet pipe provided on the melting device. Intake pipe.
  • the melting device includes a sealed cavity, a melting chamber and a heating component.
  • the melting chamber is used to contain solid silicon material and/or liquid silicon material.
  • the melting material chamber has an outlet connected to the single crystal furnace.
  • the material port, the melt cavity and the heating component are all located in the sealed cavity, and the heating component is used to heat and melt the silicon material in the melt cavity.
  • the second air inlet pipe is connected to the top of the sealed cavity, and the air outlet of the second air inlet pipe corresponds to the feed opening of the melt cavity. This facilitates the clean gas passed through the second air inlet pipe to enter the feed port to carry away the dust and silicon vapor in the melting device.
  • the melt device further includes an insulation component located in the sealed cavity.
  • the insulation component has an inner cavity, in which the melt chamber and the heating component are located.
  • the insulation component has an escape hole, and the escape hole is connected with the melt chamber. Corresponding to the feed port.
  • the silicon material enters the melt cavity through the escape hole.
  • the thermal insulation component can play the role of heat preservation, which is beneficial to causing the solid silicon material in the melt chamber to be quickly and fully heated and melted into liquid silicon material by the heating component, or to keeping the liquid silicon material in the melt chamber in a liquid state.
  • the third air inlet pipe is connected to the side of the sealed cavity
  • the insulation member has a ventilation hole
  • the inner end of the ventilation hole is connected to the feed opening of the melt cavity
  • the outer end is connected to the air outlet of the third air inlet pipe.
  • the crystal pulling production equipment further includes a cooling device, and the cooling device is disposed on the side or bottom of the sealed cavity.
  • the cooling device can cool the side wall of the melt cavity in the sealed cavity.
  • the cooling capacity of the cooling device can be adjusted to keep the melt cavity within a suitable temperature range to avoid heating. Excessive temperature causes the melt cavity to soften. At the same time, it is ensured that the temperature of the silicon material in the melt cavity is higher than its own melting point and can be melted quickly.
  • the feeding assembly includes a feeding device, the feeding device is used to add solid silicon material into the single crystal furnace, and the air inlet pipe includes a first air inlet pipe located on the feeding device.
  • the clean gas introduced through the first air inlet pipe first enters the feeding device, where it can blow the solid silicon material and carry away the dust attached to the solid silicon material. After the solid silicon material is added
  • the dust generated when entering the single crystal furnace and the silicon vapor generated by the melting of solid silicon material in the single crystal furnace can also be carried away by the clean gas introduced into the first air inlet pipe and discharged from the single crystal furnace together with the clean gas. outside.
  • the feeding device includes a feeding bin and a material conveying device. Both ends of the material conveying device are connected to the feeding bin and the single crystal furnace respectively, and are used to transport solid silicon material from the feeding bin to the single crystal furnace;
  • the first air inlet pipe is connected to the side of the feeding bin, and the clean gas enters the single crystal furnace through the material conveying device.
  • the feeding assembly includes a feeding device and a melting device.
  • the feeding device transports the solid silicon material to the melting device. After the melting device melts the solid silicon material into liquid silicon material, it is Transported to the single crystal furnace;
  • the air inlet pipe includes at least one of a first air inlet pipe, a second air inlet pipe and a third air inlet pipe, the first air inlet pipe is located in the feeding device, the second air inlet pipe and the third air inlet pipe are located in the melting on the material device.
  • the clean gas introduced into any of the above three air inlet pipes can carry the dust generated when transporting solid silicon material and the silicon vapor generated when melting into liquid silicon material. Walk.
  • the melting device further includes an isolation device.
  • the melting device has an inlet.
  • the isolation device is installed at the inlet. When the isolation device is opened, the feeding device extends into the melting device through the inlet. Centered; when the feeding device exits the melting device, the isolation device is closed.
  • the feeding device can be withdrawn from the melting device after the solid silicon material is transported, thereby reducing the adverse effects of the high temperature in the melting device on the feeding device.
  • the crystal pulling production equipment also includes a vacuum generating device, and the single crystal furnace and the cooling outlet pipe are both connected to the vacuum generating device.
  • this application also provides a crystal pulling method.
  • the crystal pulling method includes:
  • the clean gas is continuously introduced until the crystal pulling is completed, which can carry away as much dust and silicon vapor generated during the crystal pulling process as possible, reduce the adverse effects on the crystal pulling, and improve the quality and success of the crystal pulling. Rate.
  • the vacuum generating device can be connected to the single crystal furnace to continuously extract gas from the crystal pulling production equipment, keep the crystal pulling production equipment in a preset low pressure state, and allow the clean gas to continue to flow under the action of the vacuum generating device. It is discharged from the single crystal furnace to carry away dust and silicon vapor to clean the inside of the crystal pulling production equipment.
  • the crystal pulling production equipment includes at least one of the first air inlet pipe, the second air inlet pipe, and the third air inlet pipe
  • all the air inlet pipes can be used to pass in the clean gas at the same time. Clean gas, a large flow of clean gas can carry away as much dust and silicon vapor as possible.
  • the communication between the feeding device and the single crystal furnace is cut off, and the clean gas introduced through the first air inlet pipe cannot enter the single crystal furnace, so the first gas needs to be closed. Intake pipe.
  • the crystal pulling production equipment includes a cooling device
  • the cooling device when the heating component is used to heat the melt cavity, the cooling device is used to cool the melt cavity so that the melt cavity is within a suitable temperature range to avoid the heating temperature. If it is too high, the melt cavity will soften.
  • Figure 1 is a schematic diagram of the single crystal furnace and liquid feeding device in the embodiment of the present application.
  • Figure 2 is a schematic diagram 2 of the single crystal furnace and liquid feeding device in the embodiment of the present application.
  • Figure 3 is a schematic diagram three of the single crystal furnace and liquid feeding device in the embodiment of the present application.
  • Figure 4 is a schematic diagram of the first feed tube in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the second feed pipe in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the baffle plate in the embodiment of the present application.
  • Figure 7 is a schematic diagram 1 of the integrated structure of the melt chamber and the conduit in the embodiment of the present application;
  • Figure 8 is a schematic diagram 2 of the integrated structure of the melt chamber and the conduit in the embodiment of the present application;
  • Figure 9 is a schematic diagram of a crystal pulling production equipment provided by an embodiment of the present application.
  • Figure 10 is a partial perspective cross-sectional view of a liquid feeding device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • Several means one or more than one, unless otherwise expressly and specifically limited.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection or a detachable connection.
  • Connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • the liquid feeding device includes a melting device 3 and a feeding device 4; the melting device 3 includes a melting chamber 31 and a heating component 32; the feeding device 4 is used for The solid material is transported into the melt cavity 31, and the heating component 32 melts the solid material in the melt cavity 31 into liquid material.
  • the feeding device 4 in this embodiment is a device that can supply materials into the melting device 3; the heating component 32 is a device for heating. In this embodiment, the heating component 32 is preferably capable of processing materials with a higher melting point.
  • the graphite heater is used to heat and melt silicon material, and is preferably a covered heating component 32.
  • the melt cavity 31 refers to a device that can accommodate the material.
  • the cavity that melts the material the cavity
  • the shape is indefinite; in this embodiment, it is preferred that both the solid material and the liquid material are silicon materials; in addition, in this embodiment, it is preferred that the outside of the heating component 32 is covered with a thermal field felt for heat insulation.
  • the feeding device 4 transports the solid material into the melt cavity 31 of the melt device 3; secondly, the heating component 32 heats and melts the solid material in the melt cavity 31 into liquid material; finally, the melt The device transports liquid materials to the crucible 2 to realize the supply of liquid materials.
  • the feeding device 4 transports solid materials into the melt cavity 31, and the heating component 32 heats and melts the solid materials in the melt cavity 31 into liquid materials, and transports the liquid materials. to the crucible 2 in the single crystal furnace, so that the solid material can first be converted into a liquid material in the melt cavity 31, and then the liquid material is added to the crucible 2 for crystal pulling.
  • the liquid material in the melt cavity 31 is added to When the liquid material in the crucible 2 is in the liquid material, the degree of oscillation caused and the amplitude of the ripples generated are small, which has a small impact on the growth of single crystal silicon, improves the success rate of crystal pulling, and enables the single crystal furnace 1 to pull crystal growth. Produce monocrystalline silicon with good performance.
  • the liquid feeding device also includes controlling the temperature and/or the temperature in the melt cavity 31 by controlling the amount of material supplied by the feeding device 4, the power of the heating component 32, and/or the flow rate of the cooling device. Or the weight of the melt in the melt cavity 31, thereby effectively controlling the temperature of the crucible in the single crystal furnace and the weight of the melt entering the crucible, so that the added material will not cause large oscillations when entering the crucible, and will not cause any damage to the single crystal furnace.
  • the growth of crystalline silicon is affected. Detailed description is provided by the following examples:
  • the liquid feeding device also includes a temperature detection device 33 and a first controller.
  • the temperature detection device 33 is used to detect the temperature of the melt cavity 31.
  • the first controller is connected to the temperature detection device 33 and the feeding device 4 and/or
  • the heating component 32 is connected and used to adjust the feeding amount of the feeding device 4 and/or the power of the heating component 32 in real time based on the temperature fed back by the temperature detection device 33 .
  • the temperature detection device 33 detects the temperature of the melt cavity 31, the first controller receives the temperature value fed back by the temperature detection device 33, and adjusts the feed amount and/or heating of the feeding device 4 in real time according to the temperature value.
  • the power of the assembly 32 can be adjusted by adjusting the amount of material supplied by the feeding device 4 to the melt cavity 31, so that the amount of liquid material delivered by the melt cavity 31 to the crucible 2 can be adjusted; or, by adjusting the power of the heating assembly 32 , adjust the melting rate of the solid material in the melt chamber 31, and then adjust the supply amount of the liquid material transported by the melt chamber 31 to the crucible 2, so that the liquid material in the crucible 2 can be controlled by controlling the volume of the liquid material in the crucible 2
  • the liquid level height of the liquid material in the crucible 2 is prevented from rising and falling. When moving, problems such as disconnection and poor growth of single crystal silicon may occur, so as to improve the growth quality of single crystal silicon.
  • the temperature detection device 33 is a temperature sensor.
  • this embodiment includes presetting a first temperature threshold for the first controller; for example, the first temperature threshold can be 1400-2000 degrees, specifically, it can be 1400 degrees, 1500 degrees, 1600 degrees, 1700 degrees, 1800 degrees , 1900 degrees, 2000 degrees; the specific value of the first temperature threshold can be set according to the experience of those skilled in the art.
  • the PC control end of the single crystal furnace can be connected to the temperature detection device 33 and the first controller, so that when After the temperature collected by the temperature detection device 33 is fed back to the PC control terminal of the single crystal furnace, the PC control terminal can issue an operation instruction to the first controller according to the preset first temperature threshold.
  • the first controller adjusts in real time to reduce the feed amount of the feed device 4 or reduce the power of the heating component 32 .
  • the temperature in the melt cavity 31 is too high at this time, the melting rate of the material in the cavity is fast, and the melt cavity 31 supplies too much liquid material to the crucible 2 , the liquid level of the liquid material in the crucible 2 rises; at this time, the first controller controls the supply amount of the feeding device 4 to decrease, which can reduce the volume of the material in the melt cavity 31, thereby reducing the flow of the melt cavity 31 to the crucible 2
  • the volume of the liquid material transported in the medium can make the volume of the liquid material in the crucible 2 decrease to a stable level, ensuring that the liquid level height of the liquid material in the crucible 2 remains stable; or by reducing the power of the heating component 32, the volume of the material in the melt cavity 31 can be reduced.
  • the melting rate thereby reducing the volume of the liquid material transported from the melt cavity 31 to the crucible 2, so that the volume of the liquid material in the crucible 2 decreases to a stable level, ensuring that the liquid level height of the liquid material in the crucible 2 remains stable, thereby preventing the liquid material in the crucible 2 from being
  • problems such as breakage and poor growth of single crystal silicon will occur, which improves the growth quality of single crystal silicon.
  • the first controller can preset multi-level temperature thresholds.
  • a first temperature threshold and a second temperature threshold can be set.
  • the first temperature threshold can be 1400-1500 degrees
  • the first temperature threshold can be 1400-1500 degrees
  • the second temperature threshold can be 1500-2000 degrees.
  • the specific values of the first temperature threshold and the second temperature threshold can be set according to the experience of those skilled in the art.
  • the PC control end of the single crystal furnace can be connected with the temperature detection device 33 and the third temperature threshold. A controller is connected, so that when the temperature collected by the temperature detection device 33 is fed back to the PC control end of the single crystal furnace, the PC control end can issue an operation to the first controller according to the preset first temperature threshold and second temperature threshold. instruction.
  • the first controller adjusts the feeding amount of the feeding device 4 and/or the power of the heating component 32 in real time according to the temperature fed back by the temperature detection device 33 .
  • the feeding amount of the feeding device 4 and the power of the heating component 32 are related to at least two temperature thresholds.
  • the temperature threshold corresponds to the feeding amount of different feeding devices 4 or the power of different heating components 32.
  • the first controller accurately adjusts the feeding device by comparing the relationship between the temperature fed back by the temperature detection device 33 and at least two temperature thresholds.
  • the quantity control accuracy enables the first controller to accurately control the liquid level height of the liquid material in the crucible 2, ensuring that the single crystal silicon has good growth quality.
  • the liquid feeding device includes a first weight detection device and a second controller.
  • the first weight detection device is used to detect the weight of the melt in the melt cavity 31 .
  • the controller is connected to the first weight detection device and the feeding device 4 and/or the heating component 32, and is used to adjust the supply amount of the feeding device 4 and/or the heating component 32 in real time according to the weight fed back by the first weight detection device. power.
  • the first weight detection device detects the weight of the melt in the melt cavity 31
  • the second controller receives the weight value fed back by the first weight detection device, and adjusts the supply of the feeding device 4 in real time according to the weight value.
  • the amount and/or the power of the heating assembly 32 can be adjusted by adjusting the amount of material supplied by the feeding device 4 to the melt cavity 31.
  • the amount of liquid material delivered by the melt cavity 31 to the crucible 2 can be adjusted.
  • the heating assembly 32 power By adjusting the heating assembly 32 power, the melting rate of the solid material in the melt chamber 31 can be adjusted, and then the supply amount of the liquid material transported by the melt chamber 31 to the crucible 2 can be adjusted, so that the crucible can be controlled by controlling the volume of the liquid material in the crucible 2 2, thereby preventing problems such as breakage and poor growth of single crystal silicon caused by fluctuations in the liquid level of the liquid material in crucible 2, and improving the growth quality of single crystal silicon.
  • this embodiment includes presetting a preset first weight threshold for the second controller;
  • the first weight threshold can be 50g-500g, specifically, it can be 50g, 60g, 70g, 80g, 90g, 100g, 200g, 300g, 400g, 500g; the specific value of the first weight threshold can be set according to the experience of those skilled in the art.
  • the first weight threshold is set at the PC control end of the single crystal furnace. It is connected to the first weight detection device and the second controller, so that when the temperature fed back by the first weight detection device reaches the PC control terminal, the PC control terminal can send a signal to the second controller according to the preset first weight threshold range. Operating instructions.
  • the second controller adjusts in real time to reduce the feed amount of the feed device 4 or increase the power of the heating component 32 .
  • the feeding device 4 supplies more materials to the melt chamber 31, or the power of the heating component 32 is low; at this time, the second controller controls the feeding device 4 Reducing the amount of material supplied can reduce the volume of material in the melt chamber 31, ensuring that the volume of material in the melt chamber 31 changes steadily, thereby ensuring that the amount of material transported by the melt chamber 31 to the crucible 2 is in a stable state; or by increasing the volume of material in the melt chamber 31
  • the power of the heating component 32 increases the melting rate of the material in the melt chamber 31 and increases the volume of the liquid material transported by the melt chamber 31 to the crucible 2, so that the volume of the liquid material in the crucible 2 is stable and ensures the stability of the liquid material in
  • the second controller can preset a multi-level weight threshold.
  • a first weight threshold and a second weight threshold can be set.
  • the first weight threshold can be 50g-200g
  • the second weight threshold can be set to 50g-200g.
  • the weight threshold can be 200g-500g.
  • the specific values of the first weight threshold and the second weight threshold can be set according to the experience of those skilled in the art.
  • the PC control end of the single crystal furnace can be connected with the first weight detection device and the second weight threshold. The controller is connected, so that when the weight collected by the weight detection device is fed back to the PC control end of the single crystal furnace, the PC control end can issue operating instructions to the second controller according to the preset first weight threshold and second weight threshold.
  • the second controller adjusts the feeding amount of the feeding device 4 and/or the power of the heating component 32 in real time based on the weight fed back by the first weight detection device.
  • the feeding amount of the feeding device 4 and the power of the heating component 32 are related to at least two weight thresholds. Different weight thresholds correspond to different feeding amounts of the feeding device 4 and the power of the heating component 32.
  • the second controller By comparing the relationship between the weight fed back by the first weight detection device and at least two weight thresholds, the feeding amount of the feeding device 4 and the power of the heating component 32 are accurately adjusted to achieve multi-level control of the power of the heating component 32 and the feeding of materials.
  • the multi-level control of the feeding amount of the device 4 improves the temperature control accuracy of the heating component 32 and the feeding amount control accuracy of the feeding device 4, so that the second controller can accurately control the liquid level height of the liquid material in the crucible 2, ensuring that the single Crystalline silicon has good growth qualities.
  • the liquid feeding device includes a temperature detection device 33, a first weight detection device and a third controller.
  • the temperature detection device 33 is used to detect the temperature of the melt cavity 31.
  • a weight detection device is used to detect the weight of the melt in the melt chamber 31, the third controller and the temperature detection device 33 and the first weight detection device and the feeding device 4 and/or the heating component 32 is connected to adjust the feeding amount of the feeding device 4 and/or the power of the heating component 32 in real time according to the temperature fed back by the temperature detection device 33 and the weight fed back by the first weight detection device.
  • the third controller can simultaneously adjust the feeding amount of the feeding device 4 and/or the power of the heating component 32 in real time based on the detection values of the temperature detection device 33 and the first weight detection device, thereby improving control accuracy. Fully ensure the stability of the liquid level of the liquid material in crucible 2.
  • this embodiment includes presetting the first temperature threshold and the first weight threshold for the third controller;
  • the first temperature threshold can be 1400-2000 degrees, specifically, it can be 1400 degrees, 1500 degrees, or 1600 degrees. , 1700 degrees, 1800 degrees, 1900 degrees, 2000 degrees;
  • the specific value of the first temperature threshold can be set according to the experience of those skilled in the art;
  • the first weight threshold can be 50g-500g, specifically, it can be 50g , 60g, 70g, 80g, 90g, 100g, 200g, 300g, 400g, 500g; the specific value of the first weight threshold can be set according to the experience of those skilled in the art;
  • the PC control end of the single crystal furnace can be connected to the temperature detection device 33, the first weight detection device and the third controller, so that when the temperature collected by the temperature detection device 33 and/or the weight collected by the first weight detection device is fed back to the unit.
  • the PC control terminal can issue an operation instruction to the third controller according to the preset first temperature threshold and/or first weight threshold.
  • the third controller adjusts in real time to reduce the feed amount of the feeding device 4; if When the weight fed back by a weight detection device is less than the first weight threshold, the third controller adjusts and reduces the power of the heating component 32 in real time.
  • the feeding amount of the feeding device 4 to the melt cavity 31 is larger.
  • the melt volume in the melt cavity 31 can be reduced, ensuring that the melt cavity 31 provides stable liquid material to the crucible 2, and ensuring that the volume of the liquid material in the crucible 2 is stable;
  • the temperature in the melt chamber 31 is too high, and the amount of material transported by the melt chamber 31 to the crucible 2
  • the power of the heating component 32 it can be ensured that the melt chamber 31 provides stable liquid material to the crucible 2, and the volume of the liquid material in the crucible 2 is stable.
  • the third controller adjusts in real time to reduce the feed amount of the feeding device 4; if the temperature When the temperature fed back by the detection device 33 is less than the first temperature threshold, the third controller adjusts and reduces the power of the heating component 32 in real time.
  • the feeding amount of the feeding device 4 to the melt cavity 31 is larger.
  • the volume of the material in the melt chamber 31 can be reduced, ensuring that the melt chamber 31 provides stable liquid material to the crucible 2, and ensuring that the volume of the liquid material in the crucible 2 is stable;
  • the amount of material transported in 2 is small. At this time, by increasing the power of the heating component 32, it can be ensured that the melt cavity 31 provides stable liquid material to the crucible 2, and the volume of the liquid material in the crucible 2 is ensured to be stable.
  • the first controller can preset multi-level temperature thresholds.
  • a first temperature threshold and a second temperature threshold can be set.
  • the first temperature threshold can be 1400-1500 degrees
  • the first temperature threshold can be 1400-1500 degrees
  • the second temperature threshold can be 1500-2000 degrees.
  • the specific values of the first temperature threshold and the second temperature threshold can be set according to the experience of those skilled in the art.
  • the PC control end of the single crystal furnace can be connected with the temperature detection device 33 and the third temperature threshold. A controller is connected, so that when the temperature collected by the temperature detection device is fed back to the PC control end of the single crystal furnace, the PC control end can issue operating instructions to the first controller according to the preset first temperature threshold and second temperature threshold.
  • the second controller can preset a multi-level weight threshold, for example, a first weight threshold and a second weight threshold can be set, the first weight threshold can be 50g-200g, the second weight threshold can be 200g-500g, the first weight threshold
  • the specific values of the weight threshold and the second weight threshold can be set by those skilled in the art based on their experience.
  • the PC control end of the single crystal furnace can be connected to the first weight detection device and the second controller, so that when the weight detection device collects After the weight is fed back to the PC control terminal of the single crystal furnace, the PC control terminal can issue operating instructions to the second controller according to the preset first weight threshold and second weight threshold.
  • the first controller adjusts the feeding amount of the feeding device 4 and/or the power of the heating component 32 in real time according to the temperature fed back by the temperature detection device 33 .
  • the feeding amount of the feeding device 4 and the power of the heating component 32 are related to at least two temperature thresholds, and different temperature thresholds correspond to different feeding devices 4
  • the feeding amount and the power of the heating component 32 are compared.
  • the first controller accurately adjusts the feeding amount and/or the heating component of the feeding device 4 by comparing the relationship between the temperature fed back by the temperature detection device 33 and at least two temperature thresholds. 32; the second controller adjusts the feeding amount of the feeding device 4 and/or the power of the heating component 32 in real time according to the weight fed back by the first weight detection device.
  • the feeding amount of the feeding device 4 and the power of the heating component 32 are related to at least two weight thresholds. Different weight thresholds correspond to different feeding amounts of the feeding device 4 and the power of the heating component 32.
  • the second controller By comparing the relationship between the weight fed back by the first weight detection device and at least two weight thresholds, the feeding amount of the feeding device 4 and the power of the heating component 32 are accurately adjusted, thereby realizing multi-level control of the power of the heating component 32 and supply.
  • the multi-level control of the feeding amount of the feeding device 4 improves the temperature control accuracy of the heating component 32 and the feeding amount control accuracy of the feeding device 4, so that the second controller can accurately control the liquid level height of the liquid material in the crucible 2 to ensure Single crystal silicon has good growth qualities.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the liquid feeding device also includes a cooling device, and the cooling device is arranged on the side or bottom of the melt cavity 31 .
  • the cooling device is a gas cooling device, which includes a gas cooling device.
  • the cooling pipe 34 circulates cooling gas.
  • the liquid feeding device further includes a flow control system and a fourth controller.
  • the flow control system is used to control the flow of the cooling device and thereby control the cooling rate of the cooling device.
  • the fourth controller and the flow control system It is connected to the feeding device 4 and/or the heating component 32, and is used to adjust the feeding amount of the feeding device 4 and/or the heating component in real time according to the temperature of the melt chamber 31 and/or the weight of the melt in the melt chamber 31. 32 power and/or flow control system flow.
  • the fourth controller can adjust the material supply amount of the feeding device 4 in real time to adjust the material volume in the melt cavity 31 according to the temperature fed back by the temperature detection device 33 and/or the weight fed back by the first weight detection device.
  • this embodiment includes presetting a first flow threshold for the fourth controller;
  • the first flow threshold can be 5L/min-80L/min, specifically, it can be 6L/min, 7L/min, or 8L/min. ,9L/min, 10L/min, 20L/min, 30L/min, 40L/min, 50L/min, 60L/min, 70L/min, 80L/min; the specific value of the first flow threshold can be set according to the experience of those skilled in the art.
  • the PC control end of the single crystal furnace can be connected to the flow control system and the fourth controller, so that when the temperature value collected by the temperature detection device 33 and/or the weight value collected by the first weight detection device is fed back to the single crystal furnace PC
  • the PC control terminal can issue operating instructions to the fourth controller according to the preset first flow threshold, and control the flow of the flow control system through the fourth controller.
  • the temperature in the melt cavity 31 is too high and the cooling rate of the cooling device is slow, resulting in the melting of the material in the cavity.
  • the speed is too fast, the melt cavity 31 supplies too much liquid material to the crucible 2, and the liquid level of the liquid material in the crucible 2 rises; at this time, by adjusting the flow rate of the flow control system in real time, the cooling rate of the cooling device can be increased. , thereby reducing the temperature of the melt cavity 31 to ensure that the temperature of the melt cavity 31 is in a stable state.
  • the temperature in the melt cavity 31 is lower and the cooling rate of the cooling device is faster, and the material in the cavity is melted.
  • the rate is slow, the melt cavity 31 supplies less liquid material to the crucible 2, and the liquid level of the liquid material in the crucible 2 drops; at this time, by adjusting and reducing the flow rate of the flow control system in real time, the cooling rate of the cooling device can be reduced. Then the temperature of the melt cavity 31 is increased to ensure that the temperature of the melt cavity 31 is in a stable state.
  • the cooling rate of the cooling device can be reduced, thereby increasing the temperature of the melt cavity 31, accelerating the melting rate of the melt in the melt cavity 31, and ensuring the volume of the melt in the melt cavity 31 in a stable state.
  • the cooling rate of the cooling device can be increased, thereby reducing the temperature of the melt cavity 31 and preventing the melt in the melt cavity 31 from flowing into the crucible 2 due to the faster melting rate. There is more liquid material, thereby ensuring that the volume of the melt in the melt cavity 31 is in a stable state.
  • the fourth controller can preset multi-level flow thresholds.
  • a first flow threshold and a second flow threshold can be set.
  • the first flow threshold can be 5-40L/min.
  • the second temperature threshold can be 40-80L/min.
  • the specific values of the first flow threshold and the second flow threshold can be set by those skilled in the art based on their experience.
  • the PC control end of the single crystal furnace can be connected with the flow control system and The fourth controller is connected, so that when the temperature value collected by the temperature detection device 33 and/or the weight value collected by the first weight detection device is fed back to the PC control end of the single crystal furnace, the PC control end can be based on the preset first The flow threshold and the second flow threshold issue operating instructions to the fourth controller, and the fourth controller controls the flow of the flow control system.
  • the melting device 3 in at least one of the above embodiments further includes a conduit 37 connected to the melting chamber 31 .
  • One end of the conduit 37 close to the single crystal furnace 1 is directed toward the other end relative to the other end of the conduit 37 .
  • the liquid material in the melt cavity 31 and the conduit 37 can flow into the crucible 2 under the action of gravity, ensuring that the liquid in the melt cavity 31
  • the material can be transported to the crucible 2; wherein, the conduit 37 and the melt cavity 31 can be an integral structure or can be arranged separately.
  • the downward inclination angle of the conduit 37 and the melt cavity 31 is greater than 0° and less than or Equal to 30°, such as 1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, 10°, 11°, 12°, 13°, 14°, 15°, 16°, 17°, 18°, 19°, 20°, 21°, 22°, 23°, 24°, 25°, 26°, 27°, 28°, 29°, 30°.
  • a baffle plate 5 may be provided in the conduit 37 and/or the melt cavity 31 .
  • the baffle plate 5 is provided with a flow hole for restricting the passage of solid materials and allowing the passage of liquid materials. 51.
  • the structure of the flow hole 51 can be a mesh shape, or it can also be a plurality of long holes arranged in parallel.
  • the flow hole 51 is preferably a long hole and the plurality of flow holes 51 are arranged in parallel.
  • the opening width of the flow hole 51 is less than The width of the solid material is to prevent the solid material from passing through.
  • the opening width of the flow hole 51 can be adjusted according to the usage requirements; the lower end of the baffle plate 5 is set to match the inside of the melt pipe or conduit 37.
  • the upper end of the baffle plate 5 is provided with a second positioning protrusion 52, and the housing is provided with a second positioning protrusion 52.
  • the matching second positioning groove enables the baffle plate 5 to be installed and positioned through the engagement of the second positioning protrusion 52 and the second positioning groove. Since the solid material is placed in the melt cavity 31 for heating and melting, the solid material still exists in the melt cavity 31 . Blocking the solid material by the baffle plate 5 can prevent the unmelted solid material in the melt cavity 31 from flowing into the crucible 2 When, the liquid material in crucible 2 is caused to oscillate and affects the growth of single crystal silicon.
  • the melt chamber 31 and the conduit 37 are of an integrated structure, including a melt section 312 and a lead-out section 313.
  • the melt section 312 includes an inlet 311 for receiving solid materials
  • the lead-out section 313 includes It is used to extend into the outlet of the single crystal furnace.
  • the outlet is provided with a gap to prevent the melt from flowing back along the outer wall of the tube.
  • the lead-out section 313 includes a groove portion for installation and matching with the baffle plate 5.
  • the outlet is concave toward the side of the melt section 312 to form a gap.
  • the gap can be a concave angle structure with a certain included angle.
  • the melt easily flows along the edge of the gap to the lower part of the discharge port under the action of gravity, thereby preventing the melt from flowing back along the outer wall of the tube; the melt section 312 is higher than the lead-out section 313, and the solid material melts in the melt section 312.
  • the liquid material flows into the crucible of the single crystal furnace through the baffle plate 5 and the lead-out section 313.
  • both the melt section 312 and the lead-out section 313 are in the shape of grooves.
  • the groove-shaped melt section 312 can be used to receive and store solid materials.
  • the melt section 312 and the lead-out section 313 have a simple structure and are easy to process.
  • the melt section 312 and/or the lead-out section 313 are partially tubular, and the melt section 312 includes a groove-shaped feed opening.
  • the groove-shaped feed inlet can be used to receive solid materials, and the tubular structure can be used to increase the strength of the melt section 312 or the lead-out section 313 .
  • the melting device 3 in at least one of the above embodiments further includes a telescopic control mechanism 7 for controlling the telescopicity of the conduit 37 and/or the melting cavity 31 .
  • the telescopic control mechanism 7 is a known mechanism that can realize telescopic control, such as an electric telescopic push rod, a pneumatic telescopic push rod, etc.
  • the telescopic control mechanism 7 controls the conduit 37 and/or the melt cavity 31 to extend into Go to the crucible 2 in the single crystal furnace 1 to add materials.
  • the telescopic control mechanism 7 controls the conduit 37 and/or the melt cavity 31 to shrink, thereby preventing the conduit 37 and the melt cavity 31 from being in the single crystal furnace 1 time, affecting the single crystal furnace 1 to perform operations such as crystal pulling, material taking, and material discharge.
  • this embodiment can also be provided with a lifting device for controlling the lifting and lowering of the single crystal furnace 1.
  • the control mechanism controls the lifting and lowering of the single crystal furnace 1 through the lifting control mechanism, which can facilitate the staff to use the single crystal furnace 1 for pulling. Crystallization, retrieval, unloading and other operations.
  • the melting device 3 also includes a first guide tube 35 for guiding the solid material in the feeding device 4 into the melt chamber 31.
  • the upper end of the first guide tube 35 is funnel-shaped and A hoarding 353 is provided to receive the solid materials transported by the feeding device 4 and prevent the solid materials from leaving the first feed pipe 35 .
  • the first material guide pipe 35 includes a pipe body 351 and a funnel part 352.
  • the opening area of the upper end of the funnel part 352 is larger than the opening area of the lower end, so that more solid materials can be received;
  • the enclosure 353 is a U-shaped enclosure 353, which It includes an opening connected to the feeding device 4 and a surround used to block solid materials to prevent splashing when the solid materials are transported.
  • the feeding device 4 transports solid materials into the first guide pipe 35 through the opening of the surrounding plate 353, using This structure can prevent the heat radiation generated by the melting device 3 from heating the solid materials in the feeding device 4; in addition, the first feed pipe 35 can be made of high-temperature resistant material to prevent the influence of heat radiation from the melting chamber 31.
  • the first material guide tube 35's own performance causes the first material guide tube 35 to soften.
  • the melting device 3 also includes a second guide tube 36 with high temperature resistance.
  • One end of the second guide tube 36 is connected to the first guide tube 35 and the other end is connected to the melt.
  • the material chambers 31 are connected to guide the solid material in the first material guide pipe 35 to the melt chamber 31 .
  • the second guide tube 36 is made of high-temperature resistant material.
  • the second guide tube 36 is provided with a first positioning protrusion 361 .
  • the sealing cavity 39 of the melting device 3 includes a sealing cavity 39 for packaging and positioning the first guide tube 35 and a third
  • the housing of the second material guide tube 36 is provided with a first positioning slot that matches the first positioning protrusion 361 so that the second material guide tube 36 can be installed and positioned on the housing.
  • the first material guide tube 35 and the melt cavity 31 are connected by a high-temperature resistant second guide pipe 36, which can prevent the thermal field of the melt cavity 31 from affecting the first guide pipe 35 and causing the first guide pipe 35 to soften.
  • the feeding device 4 in this embodiment includes a feeding bin 41, a material conveying device 42, a second weight detection device 423 and a feeding control system.
  • the feeding bin 41 is used to store solid materials. Personnel transports solid materials to the material conveying device 42 through the feeding bin 41; the material conveying device 42 is used to convey solid materials, and it includes a loading component 421 and a driving component 422.
  • the loading component 421 is used to carry solid materials, and the driving component 422 is used to transport solid materials.
  • the loading component 421 is driven to move to continuously transport solid materials; the second weight detection device 423 is used to detect the weight of the solid material on the loading component 421; the driving component 422 and the second weight detection device 423 are both connected to the feeding control system.
  • the feeding control system regulates the driving of the driving assembly 422 in real time according to the detection value of the second weight detection device 423.
  • the moving speed of the material-carrying component 421 is controlled to accurately control the supply amount of the solid material continuously transported by the feeding device 4 to the melting material device 3.
  • the material-carrying component 421 is a feeding pipe
  • the driving Component 422 is a vibration mechanism.
  • the vibration mechanism is a known mechanism that can vibrate the material in the feeding pipe to move the material in the feeding pipe forward.
  • the second weight detection device 423 is a device that can detect the weight of the material in the feeding pipe. mechanism.
  • the second weight detection device 423 and the first weight detection device can be the same weight detection device, or they can be different weight detection devices to achieve more accurate weight detection of solid materials and liquid materials.
  • the weight detection device 423 can feedback according to the weight detection device 423.
  • the weight and the conveying speed of the material conveying device 42 can be used to estimate the weight of the melt in the melt cavity 31; or, when the second weight detecting device 423 and the first weight detecting device are the same weight detecting device, and both are used to detect the melt
  • the weight of the solid material on the loading assembly 421 can be inferred based on the weight fed back by the first weight detection device and the transportation speed of the material conveying device 42; or when the second weight
  • the detection device 423 and the first weight detection device are different weight detection devices, the second weight detection device 423 is used to detect the first weight of the solid material on the loading assembly 421, and the first weight detection device is used to detect the melt in the melt chamber 31.
  • the second weight of the body can accurately measure the weight of the solid material and the liquid material respectively, and by comparing the difference between the first weight and the second weight, the material loss after the solid material changes to the liquid material can be accurately measured .
  • the liquid feeding device also includes a base 8 , which is used to support the feeding device 4 and the melting device 3 .
  • An embodiment of the present application also provides a single crystal furnace, including the liquid feeding device as described in the above embodiment.
  • the beneficial effects of the single crystal furnace provided by this embodiment are the same as the beneficial effects of the liquid feeding device for the single crystal furnace described in the above embodiments, and will not be described again here.
  • the melting device 3 is integrally connected to the single crystal furnace 1.
  • the single crystal furnace 1 also includes an isolation device 6.
  • the melting device 3 includes an isolation device 6 connected to the single crystal furnace 1.
  • the melt chamber 31 and the heating component 32 are located in the sealed cavity 39.
  • the shell 38 includes a first opening connected to the single crystal furnace 1 and a first opening connected to the feeding device 4.
  • the second opening, the isolation device 6 is disposed at the second opening position, is used to close the second opening when the feeding device 4 is removed, so that the single crystal furnace 1 and the melting device 3 are still sealed when the feeding device 4 is removed. Environment.
  • the isolation device 6 is a It is a known device that can seal the melting device 3 and the single crystal furnace 1 when the feeding device 4 is removed.
  • the isolating device 6 is preferably an isolation valve.
  • the embodiment of the present application also provides a feeding method for a single crystal furnace, using the single crystal furnace as described in the above solution, including:
  • the solid material is melted by the melting device to generate liquid material, and the liquid material is continuously transported to the crucible in the single crystal furnace to realize the supply of liquid material.
  • the feeding amount of the feeding device or the power of the heating component is adjusted in real time according to the temperature of the melting device
  • the feeding amount of the feeding device or the power of the heating component is adjusted in real time
  • the feeding amount of the feeding device or the power of the heating component is adjusted in real time.
  • the volume of the liquid material transported from the melt chamber to the crucible can be controlled, thereby controlling the liquid level height of the liquid material in the crucible, and preventing single crystal silicon from breaking and breaking when the liquid level of the liquid material in the crucible fluctuates up and down.
  • Improve the growth quality of single crystal silicon by solving problems such as poor growth.
  • a cooling device is provided on the side or bottom of the melt cavity. Using this structure, the melt cavity is cooled by the cooling device, and the temperature in the melt cavity can be further accurately controlled, thereby accurately controlling the liquid level height of the liquid material in the crucible.
  • the flow rate of the cooling device is adjustable; according to the temperature of the melting device or the weight of the melt in the melting device, the feeding amount of the feeding device, the power of the heating component and/or the cooling device are adjusted in real time. the flow rate of the device.
  • the crystal pulling production equipment includes a single crystal furnace 1 and a feeding assembly.
  • the feeding assembly is located outside the single crystal furnace 1 and is used to feed the single crystal silicon rod to the single crystal furnace. Add silicon material within 1.
  • the single crystal furnace 1 has an exhaust port, and the exhaust port is connected to a vacuum generating device 9, which is used to maintain a negative pressure sealing state in the single crystal furnace 1 during the crystal pulling production process.
  • the feeding component since the feeding component is connected to the single crystal furnace 1 and is in a negative pressure sealing state, the feeding component continuously or intermittently adds silicon material (which can be liquid or can be solid). If solid silicon material is added, a large amount of dust will be generated during the addition process. After the solid silicon material melts into liquid silicon material, the dust will adhere to the surface of the liquid silicon material or be doped in the liquid silicon material, which will affect the crystal pulling process. It will have adverse effects on the quality and will also adhere to the inner wall of the equipment, especially the inner wall of the silicon material transport channel.
  • silicon material which can be liquid or can be solid
  • the crystal pulling production equipment includes a single crystal furnace 1 and a feeding component.
  • the feeding component is located outside the single crystal furnace 1 and is used to feed the single crystal furnace to the furnace. Silicon material is added into 1, and the feeding component is provided with an air inlet pipe.
  • the gas inlet pipe is used to introduce clean gas, and the clean gas enters the single crystal furnace 1 through the feeding component.
  • the air inlet pipe can be used to continuously flow into the single crystal furnace 1 during the feeding process of the feeding assembly into the single crystal furnace 1, before crystal pulling production, or during the entire crystal pulling production process.
  • Clean gas as the clean gas is discharged from the exhaust port of the single crystal furnace 1, the clean gas can carry away the above-mentioned dust and silicon vapor, reducing the dust and silicon vapor landing on the surface of the liquid silicon material in the single crystal furnace 1, and Reduce the dust attached to the inner wall of the equipment, reduce the adverse effects of dust and silicon vapor on the quality of crystal pulling, and improve the success rate of crystal pulling.
  • silicon vapor refers to gaseous silicon and other gaseous silicon-containing compounds. Dust described in this article It is a kind of mixed dust, including silicon dust and other impurity dust.
  • the feeding assembly includes a melting device 3, which is used to add liquid silicon material into the single crystal furnace 1;
  • the air inlet pipe includes a the second air inlet pipe 62 and/or the third air inlet pipe 63.
  • the solid silicon material can be added to the melting material device 3, and the melting material device 3 melts the solid silicon material into liquid silicon material, and then adds the liquid silicon material into the single crystal furnace 1; or, the melting material device 3 only plays the role of The transfer function is to use the melting device 3 to add the melted liquid silicon material to the single crystal furnace 1.
  • the solid silicon material can be added using the clean gas introduced through the second air inlet pipe 62 and/or the third air inlet pipe 63
  • the dust generated when melting into liquid silicon material and the silicon vapor generated when melting into liquid silicon material are carried away; if the melting device 3 only plays the role of transferring liquid silicon material, then the cleaning gas can carry away the silicon vapor carried by the liquid silicon material.
  • the second air inlet pipe 62 and the third air inlet pipe 63 are fed with clean gas at the same time, the flow rate of the clean gas can be increased, which is beneficial to carrying away more silicon vapor and dust, and reducing the amount of silicon vapor falling into the single crystal furnace 1. Dust, silicon vapor, and reduce dust adhering to the inner wall of the melting device 3.
  • the melting device 3 includes a sealed cavity 39 , a melting chamber 31 and a heating component.
  • the melting chamber 31 is used to contain solid silicon material and/or liquid silicon material.
  • the melting material chamber 31 has a single The connected outlet of the crystal furnace 1 , the melt chamber 31 and the heating component are all located in the sealed chamber 39 , and the heating component is used to heat and melt the silicon material in the melt chamber 31 .
  • the heating component can melt it into a liquid state.
  • the heating component can heat it to keep it. liquid.
  • the sealed cavity 39 can not only play the role of insulation and sealing, but also can prevent burns caused by accidentally touching the heating component and the melt cavity 31 .
  • the melt chamber 31 may be tubular, including a melt section and a lead-out section.
  • the feed port 311 is located in the melt section, the melt section is located in the sealed cavity 39, and the lead-out section extends into the single crystal furnace 1.
  • the liquid state The silicon material flows from the melt section to the lead-out section, and then enters the single crystal furnace 1 from the lead-out section.
  • the connection structure between the melting device 3 and the single crystal furnace 1 can be simplified, making it easier for the liquid silicon material to enter the single crystal furnace 1 from the melting device 3 .
  • the melt cavity 31 can be slightly tilted, and the melt section is higher than the lead-out section, so as to facilitate the flow of liquid silicon material to the single crystal furnace 1 .
  • the second air inlet pipe 62 is connected to the top of the sealed cavity 39 , and the air outlet of the second air inlet pipe 62 corresponds to the inlet 311 of the melt cavity 31 . This facilitates the passage of the second air intake pipe 62 The incoming clean gas enters the feed port 311 to carry away the dust and silicon vapor in the melting device 3.
  • the melting device 3 also includes an insulation member 30 located in the sealed cavity 39.
  • the insulation member 30 has an inner cavity, and the melting chamber 31 and the heating assembly are both located in the inner cavity; the insulation member 30 has an escape hole.
  • the hole corresponds to the feed opening 311 of the melt cavity 31 .
  • the silicon material enters the melt cavity 31 through the escape hole.
  • the thermal insulation member 30 can play a role of heat preservation, which is beneficial to causing the solid silicon material in the melt chamber 31 to be quickly and fully heated and melted into liquid silicon material by the heating component, or to keeping the liquid silicon material in the melt chamber 31 in a liquid state.
  • the melting device 3 may have a first material guide tube 35 that passes through the escape hole, and the silicon material passes through the first material guide tube 35 and enters the melt chamber 31 .
  • the first material guide tube 35 can protect the thermal insulation component 30 and prevent the silicon material from contaminating and wearing the thermal insulation component 30 when passing through the escape hole, thereby extending the service life of the thermal insulation component 30 .
  • the third air inlet pipe 63 is connected to the side of the sealed cavity 39 , the insulation member 30 has a ventilation hole 301 , the inner end of the ventilation hole 301 is connected to the feed port 311 of the melt cavity 31 , and the outer end is connected to the feed port 311 of the melt cavity 31 .
  • the air outlet of the third air inlet pipe 63 corresponds.
  • the crystal pulling production equipment further includes a cooling device, and the cooling device is disposed on the side or bottom of the sealed cavity 39 .
  • the cooling device can cool the side wall of the melt cavity 31 in the sealed cavity 39.
  • the cooling capacity of the cooling device can be adjusted so that the melt cavity 31 is within a suitable temperature range to avoid melting due to excessive heating temperature.
  • the material cavity 31 is softened, and at the same time, it is ensured that the temperature of the silicon material in the melting material cavity 31 is higher than its own melting point and can be melted quickly.
  • the cooling device includes a cooling air inlet pipe 71 and a cooling air outlet pipe 72 . Both the cooling air inlet pipe 71 and the cooling air outlet pipe 72 extend into the sealed cavity 39 .
  • the air inlet pipe 71 is used to introduce cooling gas
  • the cooling air outlet pipe 72 is used to discharge the cooling gas.
  • the flow rate of the cooling gas can be controlled so that the cooling gas enters the sealed cavity 39 to cool the side walls of the melt cavity 31 so that the melt cavity 31 is within a suitable temperature range to avoid accidents. If the heating temperature is too high, the melt cavity 31 will soften.
  • the cooling air inlet pipe 71 and the cooling air outlet pipe 72 can both extend below the melt cavity 31, so that the cooling gas can be quickly discharged through the cooling outlet pipe 72, which can reduce the flow of cooling gas in the melt device 3, thereby reducing or Prevent cooling gas from entering the melt cavity 31 .
  • both the cooling air inlet pipe 71 and the cooling air outlet pipe 72 can extend from the bottom of the sealed cavity 39 , and their respective air outlets correspond to the bottom wall of the melt cavity 31 .
  • the melting temperature of solid silicon material is 1410°C
  • the maximum temperature that the melt chamber 31 can withstand is 1700°C.
  • the silicon material can be heated to 1500°C-1600°C to ensure rapid melting of the solid silicon material.
  • the cooling gas can be used to control the temperature of the lower side wall of the melt cavity 31 to between 1500°C and 1700°C, or between 1600°C and 1700°C.
  • the cooling air inlet pipe 71 and the cooling air outlet pipe 72 may both extend into the inner cavity of the thermal insulation member 30 .
  • the feeding assembly includes a feeding device, which is used to add solid silicon material into the single crystal furnace 1
  • the air inlet pipe includes a first air inlet pipe 61 located on the feeding device.
  • the clean gas introduced through the first air inlet pipe 61 first enters the feeding device, where it can blow the solid silicon material and carry away the dust attached to the solid silicon material.
  • the dust generated when entering the single crystal furnace 1 and the silicon vapor generated by the melting of the solid silicon material in the single crystal furnace 1 can also be carried away by the clean gas introduced into the first air inlet pipe 61. Along with the clean gas Discharge from the single crystal furnace 1.
  • the feeding device includes a feeding bin 41 and a material conveying device 42. Both ends of the material conveying device 42 are connected to the feeding bin 41 and the single crystal furnace 1 respectively, and are used to transfer the solid Silicon material is transported from the charging bin 41 to the single crystal furnace 1; the first air inlet pipe 61 is connected to the side of the charging bin 41, and the clean gas enters the single crystal furnace 1 through the material conveying device 42.
  • the solid silicon material is transported on the material conveying device 42 in the charging bin 41 and transported to the single crystal furnace 1 through the material conveying device 42 .
  • the clean gas introduced through the first air inlet pipe 61 first enters the feeding bin 41, and then enters the material conveying device 42 from the feeding bin 41.
  • the silicon material transport channel of the device 42 enters the single crystal furnace 1 .
  • the dust generated can be carried by the clean gas and discharged out of the single crystal furnace 1, thereby reducing the dust. Landing on the surface of the liquid silicon material in the single crystal furnace 1 reduces the adverse impact on the quality of crystal pulling; the silicon vapor generated when the solid silicon material is melted into a liquid state in the single crystal furnace 1 can also be carried away by the cleaning gas.
  • the material conveying device 42 has a charging position 401 and a blanking position 402.
  • the charging position 401 is located in the charging bin 41, and the blanking position 402 corresponds to the single crystal furnace 1.
  • the feeding device also includes a feeding container 43.
  • the feeding container 43 is arranged on the feeding bin 41, and the feeding container 43 has a feeding opening 431.
  • the feeding opening 431 is spaced above the feeding position 401 in the direction of gravity.
  • the solid silicon material falls freely from the discharge port 431 to the feeding position 401, and then is transported by the material conveying device 42 and enters the single crystal furnace 1 from the blanking position 402.
  • the air outlet of the first air inlet pipe 61 may correspond to the feeding position 401. Further, the height of the air outlet may be between the feeding position 401 and the discharging port 431, so as to maximize the solid silicon.
  • the dust generated when the material falls from the discharge port 431 of the material container 43 to the feeding position 401 is carried into the silicon material transport channel of the material conveying device 42 so as to carry as much dust as possible out of the crystal pulling production equipment.
  • the feeding assembly includes a feeding device and a melting device 3.
  • the feeding device transports the solid silicon material to the melting device 3, and the melting device 3 transfers the solid silicon material to the melting device 3.
  • the air inlet pipe includes at least one of a first air inlet pipe 61, a second air inlet pipe 62 and a third air inlet pipe 63.
  • the first air inlet pipe 61 is located at the supply side.
  • the second air inlet pipe 62 and the third air inlet pipe 63 are located on the melting material device 3 .
  • the clean gas introduced into any of the above three air inlet pipes can carry the dust generated when transporting solid silicon material and the silicon vapor generated when melting into liquid silicon material. Walk.
  • the flow rate of the clean gas is large, which can carry away more silicon vapor and dust, prevent dust from adhering to the liquid silicon material and the inner wall of the equipment, and improve the cleanliness of the crystal pulling production equipment.
  • the feeding device includes a feeding bin 41 and a material conveying device 42. Both ends of the material conveying device 42 are connected to the feeding bin 41 and the melting device 3 respectively, and are used to transfer the solid silicon material Transported to the melting device 3.
  • the solid silicon material is added
  • the warehouse 41 is placed on a material conveying device 42, and the material conveying device 42 is used to transport the solid silicon material to the melting device 3.
  • the solid silicon material can be transported to the melting device 3 in advance, heated and melted by the melting device 3 to obtain liquid silicon material, and then the melting device 3 can be used to transport the liquid silicon material to the unit at any time as needed. Crystal Furnace 1. This saves time and improves crystal pulling efficiency.
  • the first air inlet pipe 61 carries away the dust of solid silicon material
  • the second air inlet pipe 62 and the third air inlet pipe 63 carry away the dust entering the melting device 3 to prevent it from adhering to the melt.
  • the material conveying device 42 can be withdrawn from the melting device 3, disassembled to clean the conveying channel, the feeding bin 41 can be opened, and the inner wall of the feeding bin 41 can be cleaned.
  • the feeding device also includes a feeding container 43 provided on the feeding bin 41 .
  • the feeding container 43 has a feeding port 431 ; the feeding bin 41 and the material conveying device 42 , the melting device 3 and the single crystal furnace 1 are connected in sequence along the silicon material transportation direction; the material conveying device 42 has a feeding position 401 and a blanking position 402.
  • the feeding position 401 is located in the feeding bin 41 and is located at intervals in the direction of gravity.
  • the blanking position 402 is located in the melting device 3, and the material conveying device 42 is used to transport the solid silicon material obtained in the feeding bin 41 to the melting device 3; the melting device 3 heats and melts the solid silicon material It is liquid silicon material, and the single crystal furnace 1 receives the liquid silicon material.
  • the silicon material movement channel includes a solid silicon material transport channel and a liquid silicon material transport channel.
  • the material container 43 may be a funnel-shaped melt cavity 31 so that the silicon material can smoothly fall from the discharge port 431 to the feeding position 401 .
  • the first air inlet pipe 61 is connected to the side of the feeding bin 41 .
  • the clean gas introduced through the first air inlet pipe 61 first enters the feeding bin 41, and then enters the material conveying device 42 from the feeding bin 41, and enters the unit through the material conveying device 42 and the melting device 3. Crystal Furnace 1.
  • the dust generated can be carried away by the clean gas, which can reduce the dust falling on the liquid silicon in the single crystal furnace 1
  • the surface of the material reduces the adverse impact on the crystal pulling quality; the silicon vapor generated when the solid silicon material is melted into a liquid state in the single crystal furnace 1 can also be carried away by the cleaning gas.
  • the air outlet of the first air inlet pipe 61 extends into the feeding bin 41 and corresponds to the feeding position 401 , and the air outlet direction of the first air inlet pipe 61 is along the silicon material transportation direction. In this way, the clean gas passed through the first air inlet pipe 61 can enter the silicon material transport channel from the feeding position 401, so as to carry away as much dust as possible when the solid silicon material falls from the discharging port 431 to the feeding position 401. .
  • the accumulation of dust in the production equipment (especially in the silicon material transportation channel) can be reduced and the cleanliness inside the crystal pulling production equipment can be improved; on the second hand, the dust falling into the liquid state in the single crystal furnace 1 can be reduced
  • the surface of the silicon material can reduce the negative impact on the quality of crystal pulling and improve the success rate of crystal pulling; thirdly, it can also carry away the silicon vapor generated during the melting of solid silicon material into liquid silicon material, reducing or avoiding silicon vapor. Entering the liquid silicon material in the single crystal furnace 1 further reduces the adverse effects on the quality of crystal pulling and improves the success rate of crystal pulling.
  • the height of the air outlet of the first air inlet pipe 61 can be between the feeding position 401 and the discharge port 431, so as to maximize the solid silicon material from the discharge port 431 of the material container 43
  • the dust generated during the process of falling to the feeding position 401 is carried into the silicon material transport channel of the material transport device 42 so as to carry as much dust as possible out of the crystal pulling production equipment.
  • the first air inlet pipe 61 may be a straight pipe, and its extending direction is consistent with the direction of the silicon material transport channel of the material transport device 42 .
  • the melting device 3 includes a sealed cavity 39 , a melting chamber 31 and a heating component.
  • the melting chamber 31 has an inlet 311 and an outlet connected to the single crystal furnace 1 , the melt chamber 31 and the heating component are both located in the sealed chamber 39, and the heating component is used to heat and melt the silicon material in the melt chamber 31; the material conveying device 42 extends into the sealed chamber 39, and interacts with the feed of the melt chamber 31
  • the opening 311 corresponds to transport the solid silicon material into the melt cavity 31 .
  • the melt chamber 31 can receive the solid silicon material from the material conveying device 42 and then use the heating component to melt it into a liquid state; the feed port 311 of the melt chamber 31 can also directly receive liquid silicon.
  • the heating element can heat the material to keep it in a liquid state.
  • the sealed cavity 39 can not only play the role of insulation and sealing, but also can prevent burns caused by accidentally touching the heating component and the melt cavity 31 .
  • the dropping position 402 of the material conveying device 42 can be spaced above the feed port 311 of the melt chamber 31 in the direction of gravity, and the solid silicon material falls from the feed port 311 into the melt chamber 31, But dust is generated in the process.
  • the second air inlet pipe 62 is connected to the top of the sealed cavity 39 , and the second air inlet pipe 62 is connected to the top of the sealed cavity 39 .
  • the air outlet of the tube 62 is connected with the feed port 311 of the melt cavity 31 .
  • the air outlet of the second air inlet pipe 62 extends into the sealed cavity 39 and corresponds to the blanking position 402, and the air outlet direction of the second air inlet pipe 62 is along the direction of gravity.
  • the sealed cavity 39 is in a sealed state, and the clean gas introduced from the second air inlet pipe 62 will flow together with the clean gas introduced from the first air inlet pipe 61 along the silicon material transportation direction into the inlet of the melt cavity 31 .
  • the material port 311 (refer to the arrow in Figure 9).
  • the air outlet direction of the second air inlet pipe 62 is along the direction of gravity, which is more conducive to the cleaning gas introduced into the second air inlet pipe 62 entering the feed port 311, thereby facilitating the flow of the clean gas introduced into the first air inlet pipe 61.
  • both clean gases enter the single crystal furnace 1, so that the flow rate of the clean gas passing through the surface of the silicon liquid in the single crystal furnace 1 is The increase is beneficial to reducing the dust landing on the surface of the silicon liquid in the single crystal furnace 1.
  • the accumulation of dust in the material holding device and the single crystal furnace 1 can be further reduced, and the cleanliness of the material holding device and the single crystal furnace 1 can be improved.
  • dust falling into the liquid state can be further reduced.
  • the dust and silicon vapor in the silicon material further reduce the adverse effects on the quality of crystal pulling and improve the success rate of crystal pulling.
  • the third air inlet pipe 63 is connected to the side of the sealed cavity 39 , and the air outlet of the third air inlet pipe 63 is connected to the feed port 311 of the melt cavity 31 .
  • the clean gas passed through the third air inlet pipe 63 can enter the feed port 311 of the melt chamber 31, and can flush the inner wall of the melt chamber 31, improving the cleanliness of the melt chamber 31. And carry away the silicon vapor and dust in the melt cavity 31.
  • the air outlet of the third air inlet pipe 63 extends into the sealed cavity 39 and corresponds to the inlet 311 of the melt cavity 31 .
  • the third air inlet pipe 63 is used to introduce cleaning gas.
  • the clean gas introduced from the third air inlet pipe 63 enters the feed port 311 of the melt chamber 31 through the vent hole 301, and can flush the inner wall of the melt chamber 31, and remove the gas in the melt chamber 31.
  • the silicon vapor and dust are carried away to improve the cleanliness in the melt cavity 31.
  • the clean gas introduced into the first air inlet pipe 61 and/or the second air inlet pipe 62 has flowed along the silicon material transport direction into the feed port 311, the clean gas introduced into the third air inlet pipe 63 enters the melt. After entering the material device 3, it will flow along the silicon material transport direction together with the clean gas introduced from the first air inlet pipe 61 and/or the second air inlet pipe 62 and enter the feed port 311 of the melt chamber 31 (refer to Figure 9 (indicated by the middle arrow).
  • the melting device 3 also includes an insulation member 30 located in the sealed cavity 39.
  • the insulation member 30 has an inner cavity, and the melting chamber 31 and the heating component are located in in the inner cavity.
  • the thermal insulation component 30 can play a role of heat preservation, which helps the melt chamber 31 to be kept above the melting point temperature of the silicon material to ensure that the solid silicon material is quickly and fully melted into liquid silicon material in the melt chamber 31 .
  • the sealed cavity 39 can not only play the role of insulation and sealing, but also can prevent burns caused by accidentally touching the heating component and the melt cavity 31 .
  • the heating component may be a thermal radiation heating component, located below the melt chamber 31 and spaced apart from the melt chamber 31 .
  • the heating component can match the shape of the melt cavity 31 to better heat the solid silicon material in the melt cavity 31 to melt it.
  • the heat preservation member 30 has an escape hole corresponding to the feed port 311 of the melt chamber 31 , and the silicon material enters the melt chamber 31 through the escape hole.
  • the melting device 3 further includes a first guide tube 35
  • the insulation member 30 has an escape hole
  • the first guide tube 35 passes through the escape hole and has one end.
  • the feeding port 311 of the melt chamber 31 corresponds to the other end corresponding to the blanking position 402; when this technical solution is adopted, the solid silicon material falls from the blanking position 402 of the material conveying device 42 into the first feed pipe 35 , and under the guidance and limitation of the first feed tube 35 , it can accurately enter the feed port 311 of the melt cavity 31 to prevent the solid silicon material from spilling outside the melt cavity 31 .
  • the first guide tube 35 can protect the thermal insulation component 30 and prevent the solid silicon material from contaminating and wearing the thermal insulation component 30 when passing through the avoidance hole, thereby extending the service life of the thermal insulation component 30 .
  • one end of the first guide tube 35 facing the melt chamber 31 may have the same shape as the feed port 311 of the melt chamber 31 and in the width direction of the feed port 311 (this direction is consistent with the silicon material).
  • the conveying direction is vertical), and matches the size of the feed port 311 to facilitate the docking of the first feed tube 35 and the feed port 311 of the melt chamber 31, so that the solid silicon material accurately enters the melt chamber 31.
  • the size of one end of the first guide tube 35 facing the melt cavity 31 may be smaller than The size of the feed opening 311.
  • the heat preservation component 30 can be clamped with both ends of the feed port 311 , and the gas introduced through the third air inlet pipe 63 can also enter the melt cavity 31 from the end of the feed port 311 .
  • the air outlet of the third air inlet pipe 63 extends into the sealed cavity 39
  • the insulation member 30 has a ventilation hole 301
  • the inner end of the ventilation hole 301 is connected with the feed opening of the melt cavity 31 311 is connected, and the outer end corresponds to the air outlet of the third air inlet pipe 63.
  • the clean gas introduced from the third air inlet pipe 63 enters the feed port 311 of the melt chamber 31 through the vent hole 301, and can flush the inner wall of the melt chamber 31, and remove the gas in the melt chamber 31.
  • the silicon vapor and dust are carried away to improve the cleanliness in the melt cavity 31.
  • the vent hole 301 can facilitate the clean gas introduced from the third air inlet pipe 63 to enter the feed port 311 of the melt chamber 31 through the vent hole 301, which can increase the impact of the clean gas on the melt chamber 31.
  • the scouring intensity of the inner wall improves the cleanliness of the inner wall of the melt chamber 31; it can increase the scouring intensity of the cleaning gas on the silicon material surface and carry away as much silicon vapor and dust as possible.
  • the material conveying device 42 may include The material-carrying component 421 has a first notch at one end thereof that extends into the charging chamber 41 , and/or one end of the material-carrying component 421 extends into the sealed cavity 39 with a second notch.
  • the arrangement of the first notch and the second notch can reduce the weight of the loading component 421 .
  • the material conveying device 42 When the material conveying device 42 adopts a vibrating feeding method, the material conveying device 42 also includes a vibrator.
  • the vibrator is drivingly connected to the material loading component 421 and can drive the material loading component 421 to vibrate, so as to realize the feeding of the solid silicon material in the material loading component 421 movement in order to complete the transportation of solid silicon material.
  • the vibrating tube By reducing the weight of the loading assembly 421, the vibrating tube can be ensured to vibrate effectively to transport the solid silicon material from the charging position 401 to the dropping position 402.
  • the first notch can be located at the end of the material loading component 421, corresponding to the discharge port 431 of the material container 43.
  • the position of the first notch is the feeding position 401, which also facilitates the cleaning of the first air inlet pipe 61.
  • the gas enters the material-carrying component 421; the second gap can be located at the end of the material-carrying component 421, and the position of the second gap is the blanking position 402. This also facilitates the clean gas introduced by the second air inlet pipe 62 to blow the blanking material.
  • the solid silicon material at position 402 will carry away as much dust as possible.
  • one end of the material conveying device 42 extending into the sealed cavity 39 is coated with a high-temperature resistant coating. Since the solid silicon material needs to be melted in the melting device 3, the temperature in the sealed cavity 39 is very high.
  • the material conveying device 42 can be made of ordinary materials (such as quartz). In this case, the material conveying device 42 can be protected by applying a high-temperature resistant coating.
  • the material conveying device 42 can also be made of high-temperature resistant materials.
  • the melting device 3 also includes an isolation device 6.
  • the melting device 3 has an inlet.
  • the isolation device 6 is installed at the inlet. When the isolation device 6 is opened, the feeding device extends into the melt through the inlet. In device 3; when the feeding device exits the melting device 3, the isolation device 6 is closed.
  • the feeding device can be withdrawn from the melting device 3 after the solid silicon material is transported, thereby reducing the adverse effects of the high temperature in the melting device 3 on the feeding device.
  • the inlet of the melting device 3 is connected to the sealed cavity 39.
  • the material conveying device 42 of the feeding device extends into the sealed cavity 39 through the inlet, and the material conveying device 42 is in the dropping position.
  • 402 corresponds to the feed port 311 of the melt cavity 31; when the material conveying device 42 exits the sealed cavity 39, the isolation device 6 is closed.
  • the material conveying device 42 can be made to exit the sealed cavity 39 after the solid material is transported, thereby reducing the high temperature in the sealed cavity 39. Adverse effects of material conveying device 42.
  • the material conveying device 42 is telescopic, so that it can extend into or out of the sealed cavity 39. When extending into the sealed cavity 39, the material conveying device 42 extends above the melt cavity 31 and falls down. The material position 402 corresponds to the feed port 311.
  • the isolation device 6 When the isolation device 6 is opened and the material conveying device 42 extends into the sealed cavity 39 through the inlet, the first air inlet pipe 61 , the second air inlet pipe 62 and the third air inlet pipe 63 can simultaneously pass in clean gas.
  • the first air inlet pipe 61 stops flowing in clean gas, and the second air inlet pipe 62 and the third air inlet pipe 63 can continue to flow in clean gas at the same time.
  • the clean gas passed through the first air inlet pipe 61 can enter the material conveying device 42 from the feeding position 401, and then be discharged from the blanking position 402, flow toward the feeding port 311 and enter the melt cavity 31.
  • the material in the material cavity 31 flows from the melt section toward the lead-out section 313 , enters the single crystal furnace 1 , and is finally discharged from the single crystal furnace 1 .
  • the dust generated in the process of transporting solid materials and the silicon vapor generated in the process of melting solid silicon materials into liquid silicon materials can be carried away, and the liquid silicon materials in the single crystal furnace 1 can also be blown away. surface (especially in the single crystal furnace 1), which reduces dust landing on the surface of the liquid silicon material and improves the success rate of crystal pulling.
  • the clean gas passed through the second air inlet pipe 62 can flow from the blanking position 402 toward the feed port 311 and enter the melt cavity 31 .
  • the melt cavity 31 it flows from the melt section toward the lead-out section 313 and enters In the single crystal furnace 1, it is finally discharged from the single crystal furnace 1.
  • the dust generated in the process of transporting solid materials and the silicon vapor generated in the process of melting solid silicon materials into liquid silicon materials can be carried away, and the liquid silicon materials in the single crystal furnace 1 can also be blown away. surface (especially in the single crystal furnace 1), which reduces dust landing on the surface of the liquid silicon material and improves the success rate of crystal pulling.
  • the clean gas passed through the third air inlet pipe 63 can flow from the ventilation hole 301 of the insulation member 30 toward the feed port 311 and enter the melt cavity 31, and flow from the melt section toward the lead-out section 313 in the melt cavity 31. And enters the single crystal furnace 1, and is finally discharged from the single crystal furnace 1.
  • the dust generated in the process of transporting solid materials and the silicon vapor generated in the process of melting solid silicon materials into liquid silicon materials can be carried away, and the liquid silicon materials in the single crystal furnace 1 can also be blown away. surface (especially in the single crystal furnace 1), which reduces dust landing on the surface of the liquid silicon material and improves the success rate of crystal pulling.
  • the solid silicon material When the material conveying device 42 extends into the sealed cavity 39 through the inlet and continues to transport the solid silicon material, the solid silicon material enters the feeding position 401 and leaves the dropping position 402 to generate dust.
  • the amount of dust is large, and the three parts of cleaning gas are simultaneously Flow, large air flow, can carry away more dust.
  • the crystal pulling production equipment also includes a vacuum generating device 9 , and the single crystal furnace 1 and the cooling outlet pipe 72 are both connected to the vacuum generating device 9 .
  • Adopting this technical solution under the action of the vacuum generating device 9, it is beneficial for the clean gas introduced by the first air inlet pipe 61 to quickly enter the material conveying device 42, and it is beneficial for the passage of the second air inlet pipe 62 and the third air inlet pipe 63.
  • the clean gas quickly enters the melt cavity 31, and is conducive to the rapid entry of the cooling gas from the cooling inlet pipe 71 into the cooling outlet pipe 72, reducing the flow of cooling gas in the melt device 3, thereby reducing or preventing the cooling gas from entering the melt. in the material cavity 31.
  • the vacuum generating device 9 may be a vacuum pump.
  • the first air inlet pipe 61 , the second air inlet pipe 62 and the third air inlet pipe 63 may be connected to the same air source.
  • the cleaning gas can be nitrogen, hydrogen, argon or helium.
  • a crystal pulling crucible is provided in the single crystal furnace 1 for containing liquid silicon material and for crystal growth. There is a gap between the crucible and the inner wall of the single crystal furnace 1 .
  • the furnace 1 has an air outlet located on the bottom wall, and the air outlet is connected to the vacuum generating device 9 .
  • the air outlet is located at the bottom, which facilitates the air flow through the surface of the liquid silicon material and around the crucible, so as to carry away the dust and silicon vapor on the surface of the liquid silicon material, and also facilitate the removal of dust around the crucible.
  • the crystal pulling method includes:
  • the clean gas can be continuously supplied until the crystal pulling is completed. Carry away as much dust and silicon vapor generated during the crystal pulling process as possible to reduce the adverse effects on the crystal pulling and improve the quality and success rate of the crystal pulling.
  • the vacuum generating device 9 can be connected to the single crystal furnace 1 to continuously extract the gas in the crystal pulling production equipment, keep the crystal pulling production equipment in a preset low pressure state, and allow the clean gas to flow in the vacuum generating device 9 Under the action, the dust and silicon vapor are continuously discharged from the single crystal furnace 1 to carry away the dust and silicon vapor to clean the inside of the crystal pulling production equipment.
  • the crystal pulling production equipment includes at least one of the first air inlet pipe 61 , the second air inlet pipe 62 and the third air inlet pipe 63 .
  • all the air inlet pipes can be used when cleaning gas needs to be introduced.
  • clean gas is introduced. The large flow of clean gas can carry away as much dust and silicon vapor as possible.
  • the feeding device exits the melting device 3
  • the communication between the feeding device and the single crystal furnace 1 is cut off, and the clean gas introduced through the first air inlet pipe 61 cannot enter the single crystal furnace 1. Therefore, The first air intake pipe 61 needs to be closed.
  • the crystal pulling production equipment when the crystal pulling production equipment includes a cooling device, when the heating component is used to heat the melt chamber 31, the cooling device is used to cool the melt chamber 31 so that the melt chamber 31 is within a suitable temperature range to avoid The melt cavity 31 is softened due to excessive heating temperature.
  • the cooling device when the cooling device includes a cooling air inlet pipe 71 and a cooling air outlet pipe 72, when the heating assembly is used to heat the melt chamber 31, the cooling air inlet pipe 71 is used to introduce cooling gas, so that the melt chamber 31 is in a suitable temperature range. within to avoid softening of the melt cavity 31 due to excessive heating temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种液体加料装置、单晶炉及其供料方法、拉晶方法。液体加料装置包括熔料装置和供料装置,熔料装置与单晶炉的外部连接,熔料装置包括熔料腔和加热组件,加热组件将熔料腔内的固体物料熔化为液体物料,并将液体物料输送至坩埚,供料装置用于向熔料腔内输送固体物料。单晶炉包括上述液体加料装置,单晶炉的供料方法用于上述单晶炉。

Description

液体加料装置、单晶炉及其供料方法、拉晶方法
本申请要求在2022年05月31日提交中国专利局、申请号为202210612850.1、名称为“一种液体加料装置、单晶炉及其供料方法”的中国专利申请的优先权,在2022年05月31日提交中国专利局、申请号为202210615372.X、名称为“一种拉晶生产设备和拉晶方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及晶体生长技术领域,尤其涉及一种液体加料装置、单晶炉及其供料方法、拉晶方法。
背景技术
目前,单晶硅在工业生产中会采用CCZ(Continuous Czocharlski)连续直拉法生长单晶硅,采用CCZ连续直拉法生长单晶硅时,需要通过加料装置不断地向坩埚中供给硅料。
通常,供给硅料为固体硅料,加料装置向单晶炉中的坩埚边缘中加入固体硅料,固体硅料在单晶炉的坩埚内熔化成液态硅料,而此时,单晶炉中坩埚的中心区域正在进行单晶棒的拉制,因此,当固体物料加入到坩埚中时,重力导致的固体物料的下落会在原有坩埚内的液态物料中产生振荡,从而形成波纹,波纹从坩埚外围延伸至坩埚中心,导致单晶棒生长过程中断线或生长不良,降低了单晶硅棒的拉晶成功率。
申请内容
本申请的目的在于提供一种液体加料装置、单晶炉及其供料方法、拉晶方法,用于降低加料时坩埚内液体物料的振荡程度。
为了实现上述目的,本申请提供如下技术方案:
一种液体加料装置,应用于单晶炉,包括:
熔料装置;熔料装置包括熔料腔和加热组件;加热组件将熔料腔内的固体物料熔化为液体物料;
供料装置;供料装置用于向熔料腔内输送固体物料。
与现有技术相比,本申请提供的液体加料装置中,供料装置向熔料腔内输送固体物料,加热组件将熔料腔内的固体物料加热熔化为液体物料,并将液体物料输送至单晶炉的坩埚中,使得固体物料能够先在熔料腔内转化为液体物料,再将液体物料加入到坩埚中进行拉晶,当熔料腔内的液体物料加入到单晶炉的坩埚时,由于其引起的振荡程度较小且产生的波纹幅度较小,对单晶硅的生长影响较小,从而有效提高了拉晶的成功率,生长出性能良好的单晶硅。
可选的,在上述液体加料装置中,液体加料装置还包括:
温度检测装置;温度检测装置用于检测熔料腔的温度;
第一控制器,第一控制器与温度检测装置和供料装置和/或加热组件连接,第一控制器根据温度检测装置反馈的温度,实时调整供料装置的供料量和/或加热组件的功率;
或;
第一重量检测装置;第一重量检测装置用于检测熔料腔内熔体的重量;
第二控制器,第二控制器与第一重量检测装置和供料装置和/或加热组件连接,第二控制器根据第一重量检测装置反馈的重量,实时调整供料装置的供料量和/或加热组件的功率;
或;
温度检测装置;温度检测装置用于检测熔料腔的温度;
第一重量检测装置;第一重量检测装置用于检测熔料腔内熔体的重量;
第三控制器,第三控制器与温度检测装置和第一重量检测装置和供料装置和/或加热组件连接,第三控制器根据温度检测装置反馈的温度和第一重量检测装置反馈的重量,实时调整供料装置的供料量和/或加热组件的功率。如此设置,可以根据熔料腔内的温度和熔体的重量实时调整供料装置的供料量和/或加热组件的功率,通过调整供料装置对熔料腔中的供料量,可以调整熔料腔向坩埚中输送的液体物料的供料量,通过调整加热组件的功率,可以调整熔料腔内固体物料的熔化速率,进而调整熔料腔向坩埚中输送的液体物料的供料量,从而能够进一步调整坩埚中液体物料的液面高度,防止坩埚内液 体物料的液面上下波动时导致单晶硅发生断线和生长不良等问题,提高单晶硅的生长品质。
可选的,在上述液体加料装置中,还包括冷却装置,冷却装置设置在熔料腔侧部或底部。如此设置,能够通过冷却装置对熔料腔进行冷却,提高熔料腔的冷却速度。
可选的,在上述液体加料装置中,还包括:
流量控制系统,流量控制系统用于控制冷却装置的流量;
第四控制器,第四控制器与流量控制系统和供料装置和/或加热组件连接,用于根据熔料腔的温度和/或熔料腔内熔体的重量,实时调整供料装置的供料量和/或加热组件的功率和/或流量控制系统的流量。如此设置,便于通过调整供料装置的供料量、加热组件的功率和/或流量控制系统的流量来控制熔料腔向坩埚中输送的液体物料。
可选的,在上述液体加料装置中,熔料装置还包括导管,导管与熔料腔相连,且导管和/或熔料腔靠近单晶炉的一端相对于另一端向下倾斜。如此设置,便于熔料腔和导管内的液体物料在重力的作用下流入坩埚中。
可选的,在上述液体加料装置中,熔料腔与导管为一体结构,包括熔料段和导出段,熔料段包括用于接收固体物料的进料口,导出段包括用于伸入至单晶炉内的出料口,出料口设置有防止熔体沿管壁回流的缺口。如此设置,优化导管与熔料腔的结构,使得液体物料能够沿管壁流入至单晶炉内,同时能够利用缺口防止熔体沿管壁回流。
可选的,在上述液体加料装置中,熔料段和导出段均为凹槽形状;或,熔料段和/或导出段部分为管状,熔料段包括凹槽形状的进料口。如此设置,当熔料段和导出段均为凹槽形状时,能够利用凹槽形状的熔料段接收固体物料,同时熔料段和导出段结构简单,加工方便;当熔料段和/或导出段部分为管状,熔料段包括凹槽形状的进料口时,既能够利用凹槽形状的进料口接收固体物料,又能够利用管状的结构增加熔料段或导出段的强度。
可选的,在上述液体加料装置中,熔料装置还包括用于控制导管和/或熔料腔伸缩的伸缩控制机构。如此设置,通过伸缩控制机构控制导管和/或熔料腔收缩,防止导管和熔料腔影响单晶炉进行拉晶等操作,同时保证导管可 以伸入到单晶炉内的坩埚处进行加料。
可选的,在上述液体加料装置中,熔料装置还包括第一导料管,第一导料管用于将供料装置中的固体物料引导至熔料腔内,第一导料管的上端为漏斗状且设置有围板,以便于接收供料装置输送的固体物料且防止固体物料脱离第一导料管。如此设置,防止熔料装置产生的热辐射加热供料装置内的固体物料。
可选的,在上述液体加料装置中,熔料装置还包括具有耐高温性能的第二导料管,第二导料管一端与第一导料管相连,另一端与熔料腔连通,以将第一导料管中的固体物料引导至熔料腔中。如此设置,第一导料管与熔料腔之间采用耐高温的第二导料管连通,防止熔料腔的温度环境影响第一导料管的性能。
本申请还提供一种单晶炉,包括如上述方案所述的液体加料装置。
与现有技术相比,本申请提供的单晶炉的有益效果与上述技术方案所述的液体加料装置的有益效果相同,此处不做赘述。
可选的,在上述单晶炉中,单晶炉与熔料装置一体连接。如此设置,保证单晶炉与熔料装置处于同一真空环境,具有良好的密封效果。
可选的,在上述单晶炉中,单晶炉还包括隔离装置,熔料装置包括与单晶炉一体成型的外壳和位于外壳内的密封腔,熔料腔和加热组件位于密封腔内,外壳包括与单晶炉连通的第一开口和与供料装置连通的第二开口,隔离装置设置于第二开口位置,用于当供料装置移除时封闭第二开口,使单晶炉和熔料装置在供料装置移除时仍处于密闭环境中。如此设置,当供料装置移除时,能够利用隔离装置封闭第二开口,使单晶炉和熔料装置在供料装置移除时仍处于密闭环境中,防止外部环境影响单晶硅的生长。
本申请还提供一种单晶炉的供料方法,使用如上述方案所述的单晶炉,包括:
通过供料装置将固体物料输送至熔料装置内;
通过熔料装置熔化固体物料,生成液体物料,并将液体物料输送至单晶炉内的坩埚中实现液态物料的供料。
与现有技术相比,本申请提供的单晶炉的供料方法的有益效果与上述技 术方案所提的单晶炉的有益效果相同,此处不做赘述。
可选的,在上述单晶炉的供料方法中,根据熔料装置的温度,实时调控供料装置的供料量或加热组件的功率;
或者;
根据熔料装置内熔体的重量,实时调控供料装置的供料量或加热组件的功率;
或者;
根据熔料装置的温度和熔料装置内熔体的重量,实时调控供料装置的供料量或者加热组件的功率。如此设置,能够控制熔料腔向坩埚中输送的液体物料的体积,进而控制坩埚中液体物料的液面高度,防止坩埚内液体物料的液面上下波动时导致单晶硅发生断线和生长不良等问题,提高单晶硅的生长品质。
可选的,在上述单晶炉的供料方法中,熔料腔侧部或底部设置有冷却装置。如此设置,通过冷却装置对熔料腔进行冷却,可以进一步精确控制熔料腔内的温度,进而精确控制坩埚中液体物料的液面高度。
可选的,在上述单晶炉的供料方法中,冷却装置的流量可调节;根据熔料装置的温度或者熔料装置内熔体的重量,实时调控供料装置的供料量、加热组件的功率和/或冷却装置的流量。如此设置,通过控制供料装置的供料量、加热组件的功率和/或冷却装置的流量能够精确控制熔料腔向坩埚中输送的液体物料的体积,进而精确控制坩埚中液体物料的液面高度。
本申请提供一种拉晶生产设备和拉晶方法,该拉晶生产设备具有拉晶质量好,生产效率高的有益效果。
第一方面,本申请提供一种拉晶生产设备,拉晶生产设备包括单晶炉和加料组件,加料组件位于单晶炉外,用于向单晶炉内添加硅料,加料组件上设置有进气管,进气管用于通入清洁气体,清洁气体经过加料组件进入单晶炉。
采用该技术方案的情况下,可以在加料组件向单晶炉加料的过程中,或在进行拉晶生产之前,或在整个拉晶生产过程中,利用进气管持续向单晶炉通入清洁气体,随着清洁气体从单晶炉的排气口排出,清洁气体可以将上述 的粉尘和硅蒸汽携带走,减少降落在单晶炉中液态硅料表面的粉尘和硅蒸汽,以及减少在设备内壁上附着的粉尘,降低粉尘和硅蒸汽对拉晶质量产生的不良影响,提高拉晶成功率。
在一种可能的实现方式中,加料组件包括熔料装置,熔料装置用于向单晶炉内添加液态硅料;进气管包括设置于熔料装置上的第二进气管和/或第三进气管。采用该技术方案的情况下,利用第二进气管和/或第三进气管通入的清洁气体可以将添加固体硅料时产生的粉尘和熔化为液态硅料时产生的硅蒸汽携带走。
在一种可能的实施例中,熔料装置包括密封腔、熔料腔和加热组件,熔料腔用于盛装固体硅料和/或液态硅料,熔料腔具有与单晶炉连通的出料口,熔料腔和加热组件均位于密封腔中,加热组件用于加热熔化熔料腔中的硅料。采用该技术方案的情况下,当熔料腔中盛装有固体硅料时,加热组件可以将其熔化为液态,当熔料腔中盛装有液态硅料时,加热组件可以加热使其保持液态。密封腔既可以起到保温和密封的作用,还可以起到避免误触加热组件和熔料腔造成烫伤的情况。
在一种示例中,第二进气管连通设置于密封腔的顶部,第二进气管的出气口与熔料腔的进料口对应。这就利于第二进气管通入的清洁气体进入到进料口中,以将熔料装置中的粉尘、硅蒸汽携带走。
在一种示例中,熔料装置还包括位于密封腔中的保温构件,保温构件具有内腔,熔料腔和加热组件均位于内腔中;保温构件具有避让孔,避让孔与熔料腔的进料口对应。采用该技术方案的情况下,硅料从避让孔进入到熔料腔中。保温构件可以起到保温的作用,利于使得熔料腔中的固体硅料被加热组件快速充分的加热熔化为液态硅料,或利于保持熔料腔中的液态硅料保持在液态。
在一种示例中,第三进气管连通设置于密封腔的侧部,保温构件具有通气孔,通气孔的内端与熔料腔的进料口连通,外端与第三进气管的出气口对应。采用该技术方案的情况下,第三进气管通入的清洁气体经过通气孔进入到熔料腔的进料口中,可以冲刷熔料腔的内壁,将熔料腔中的硅蒸汽、粉尘携带走,提高熔料腔内的清洁度。
在一种可能的实现方式中,拉晶生产设备还包括冷却装置,冷却装置设置于密封腔的侧部或者底部。采用该技术方案的情况下,冷却装置在密封腔中可以对熔料腔的侧壁进行冷却降温,可以通过调整冷却装置的冷却能力,以使得熔料腔处于适宜的温度范围内,避免因加热温度过高导致熔料腔出现软化的情况,同时保证熔料腔中的硅料温度高于自身熔点,能够迅速熔化。
在一种可能的实现方式中,加料组件包括供料装置,供料装置用于向单晶炉内添加固体硅料,进气管包括位于供料装置上的第一进气管。采用该技术方案的情况下,第一进气管通入的清洁气体首先进入到供料装置中,可以吹拂其中的固体硅料,将固体硅料上附着的粉尘携带走,在固体硅料被添加进入单晶炉过程中产生的粉尘,以及固体硅料在单晶炉中熔化而产生的硅蒸汽,也可以被第一进气管通入的清洁气体携带走,随着清洁气体一起排出单晶炉外。
在一种可能的实施例中,供料装置包括加料仓和物料输送装置,物料输送装置的两端分别连通加料仓和单晶炉,用于将固体硅料从加料仓输送至单晶炉;第一进气管连通设置于加料仓的侧部,清洁气体通过物料输送装置进入单晶炉。采用该技术方案的情况下,在固体硅料被放置在物料输送装置中,以及从物料输送装置进入到单晶炉的过程中,产生的粉尘均可以被清洁气体携带而排出单晶炉外,从而可以减少粉尘降落在单晶炉中液态硅料的表面,降低对拉晶质量的不良影响;固体硅料在单晶炉中熔化为液态时产生的硅蒸汽也可以被清洁气体携带走。
在一种可能的实现方式中,加料组件包括供料装置和熔料装置,供料装置将固体硅料输送至熔料装置中,熔料装置将固体硅料熔化为液态硅料后,将其输送至单晶炉中;进气管包括第一进气管、第二进气管和第三进气管中的至少一者,第一进气管位于供料装置,第二进气管和第三进气管位于熔料装置上。采用该技术方案的情况下,上述三个进气管中的任一者通入的清洁气体,均可以将输送固体硅料时所产生的粉尘,以及熔化为液态硅料时所产生的硅蒸汽携带走。
在一种可能的实施例中,熔料装置还包括隔离装置,熔料装置具有进口,隔离装置安装在进口,当隔离装置打开时,供料装置通过进口伸入到熔料装 置中;当供料装置退出熔料装置时,隔离装置关闭。采用该技术方案的情况下,可以在将固体硅料运送完毕后,使供料装置退出熔料装置,降低熔料装置中的高温对供料装置的不良影响。
在一种可能的实现方式中,拉晶生产设备还包括真空发生装置,单晶炉和冷却出气管均与真空发生装置连接。
第二方面,根据上述的拉晶生产设备,本申请还提供一种拉晶方法,拉晶方法包括:
封闭拉晶生产设备,使拉晶生产设备处于预设低压状态;
利用进气管持续通入清洁气体,并使清洁气体从单晶炉持续排出,以保持预设低压状态;
利用加料组件向单晶炉添加硅料,以进行拉晶;
拉晶完成后,停止通入清洁气体。
采用上述技术方案的情况下,持续通入清洁气体直至拉晶完成,可以将拉晶过程中产生的粉尘和硅蒸汽尽量多的携带走,降低对拉晶的不良影响,提高拉晶质量和成功率。
在一种示例中,可以使真空发生装置与单晶炉连接,以持续抽取拉晶生产设备中的气体,保持拉晶生产设备处于预设低压状态,使清洁气体在真空发生装置的作用下持续从单晶炉向外排放以将粉尘和硅蒸汽携带走,以清洁拉晶生产设备的内部。
在一种示例中,当拉晶生产设备包括第一进气管、第二进气管和第三进气管中的至少一者时,在需要通入清洁气体时,可以利用所有的进气管同时通入清洁气体,大流量的清洁气体可以携带走尽量多的粉尘和硅蒸汽。
在一种示例中,当供料装置退出熔料装置时,供料装置和单晶炉之间的连通切断,第一进气管通入的清洁气体不能进入单晶炉中,因此需要关闭第一进气管。
在一种示例中,当拉晶生产设备包括冷却装置时,在利用加热组件加热熔料腔时,利用冷却装置冷却熔料腔,以使得熔料腔处于适宜的温度范围内,避免因加热温度过高导致熔料腔出现软化的情况。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例中单晶炉和液体加料装置的示意图一;
图2为本申请实施例中单晶炉和液体加料装置的示意图二;
图3为本申请实施例中单晶炉和液体加料装置的示意图三;
图4为本申请实施例中第一导料管的示意图;
图5为本申请实施例中第二导料管的示意图;
图6为本申请实施例中挡料板的示意图;
图7为本申请实施例中熔料腔和导管为一体结构的示意图一;
图8为本申请实施例中熔料腔和导管为一体结构的示意图二;
图9为本申请实施例提供的一种拉晶生产设备的示意图;
图10为本申请实施例提供的一种液体加料装置的局部立体剖视图。
附图标记:
1-单晶炉,2-坩埚,3-熔料装置,30-保温构件,301-通气孔,31-熔料腔,
311-进料口,312-熔料段,313-导出段,32-加热组件,33-温度检测装置,34-冷却管,35-第一导料管,351-管身,352-漏斗部,353-围板,36-第二导料管,361-第一定位凸起,37-导管,38-外壳,39-密封腔,4-供料装置,401-加料位置,402-落料位置,41-加料仓,42-物料输送装置,421-载料组件,422-驱动组件,423-第二重量检测装置,43-盛料器,431-放料口,5-挡料板,51-流孔,52-第二定位凸起,6-隔离装置,61-第一进气管,62-第二进气管,63-第三进气管,7-伸缩控制机构,71-冷却进气管,72-冷却出气管,8-底座,9-真空发生装置。
具体实施例
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所 描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
请参阅图1,本申请实施例提供的液体加料装置中,液体加料装置包括熔料装置3和供料装置4;熔料装置3包括熔料腔31和加热组件32;供料装置4用于向熔料腔31内输送固体物料,加热组件32将熔料腔31内的固体物料熔化为液体物料。本实施例中的供料装置4为一种能够向熔料装置3内供给物料的装置;加热组件32是一种用于加热的装置,本实施例加热组件32优选为能够对熔点较高的硅料进行加热熔化的石墨加热器,且优选为包覆式加热组件32,通过包覆在熔料腔31的周围,能够提升加热的效率和效果;熔料腔31是指一种能够容纳物料并对物料进行熔化的腔体,腔体的 形状不定;本实施例优选固体物料和液体物料均为硅料;另外,本实施例优选加热组件32外部包覆有用于隔热保温的热场毡。
具体实施时:首先,供料装置4将固体物料输送至熔料装置3的熔料腔31内,其次,加热组件32将熔料腔31内的固体物料加热熔化为液体物料,最后,熔料装置将液体物料输送至坩埚2中实现液体物料的供料。
通过上述液体加料装置的结构和具体实施过程可知,供料装置4向熔料腔31内输送固体物料,加热组件32将熔料腔31内的固体物料加热熔化为液体物料,并将液体物料输送至单晶炉内的坩埚2中,使得固体物料能够先在熔料腔31内转化为液体物料,再将液体物料加入到坩埚2中进行拉晶,由于熔料腔31内的液体物料加入到坩埚2内的液体物料中时,引起的振荡程度较小且产生的波纹幅度较小,对单晶硅的生长影响较小,提高了拉晶的成功率,使得单晶炉1能够拉晶生长出性能良好的单晶硅。
作为一种可能实现方式,本实施例中液体加料装置还包括通过控制供料装置4的供料量、加热组件32的功率和/或冷却装置的流量来控制熔料腔31内的温度和/或熔料腔31内熔体的重量,从而有效控制单晶炉内坩埚的温度和进入坩埚内的熔体重量,使得加入的物料在进入坩埚时不会引起较大的振荡,不会对单晶硅的生长造成影响。以下述实施例具体说明:
实施例一:
本实施例中液体加料装置还包括温度检测装置33和第一控制器,温度检测装置33用于检测熔料腔31的温度,第一控制器与温度检测装置33和供料装置4和/或加热组件32连接,用于根据温度检测装置33反馈的温度,实时调整供料装置4的供料量和/或加热组件32的功率。采用这种结构,温度检测装置33检测熔料腔31的温度,第一控制器接收温度检测装置33反馈的温度值,并根据该温度值实时调整供料装置4的供料量和/或加热组件32的功率,通过调整供料装置4对熔料腔31中的供料量,可以调整熔料腔31向坩埚2中输送的液体物料的供料量;或者,通过调整加热组件32的功率,调整熔料腔31内固体物料的熔化速率,进而调整熔料腔31向坩埚2中输送的液体物料的供料量,从而能够通过控制坩埚2中液体物料的体积来控制坩埚2中液体物料的液面高度,进而防止坩埚2内液体物料的液面上下波 动时导致单晶硅发生断线和生长不良等问题,提高单晶硅的生长品质,本实施例优选温度检测装置33为温度传感器。
具体的,本实施例包括对第一控制器预设第一温度阈值;例如第一温度阈值可以是1400-2000度,具体地,可以是1400度,1500度,1600度,1700度,1800度,1900度,2000度;第一温度阈值的具体数值可根据本领域技术人员根据其经验进行设定,单晶炉的PC控制端可与温度检测装置33和第一控制器相连接,从而当温度检测装置33收集的温度反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一温度阈值对第一控制器发出操作指令。当温度检测装置33反馈的温度值大于第一温度阈值时,通过第一控制器实时调整减少供料装置4的供料量或降低加热组件32的功率。当温度检测装置33反馈的温度大于第一温度阈值时,此时熔料腔31内的温度过高,腔内物料的熔化速率较快,熔料腔31向坩埚2中供给的液体物料过多,坩埚2中液体物料的液面上升;此时,通过第一控制器控制供料装置4的供料量减少,可以减少熔料腔31内的物料体积,进而减少熔料腔31向坩埚2中输送的液体物料的体积,使得坩埚2内液体物料的体积下降达到稳定,保证坩埚2内液体物料的液面高度保持稳定;或者通过降低加热组件32的功率,降低熔料腔31内物料的熔化速率,进而减少熔料腔31向坩埚2中输送的液体物料的体积,使得坩埚2内液体物料的体积下降达到稳定,保证坩埚2内液体物料的液面高度保持稳定,从而防止坩埚2内液体物料的液面上下波动时导致单晶硅发生断线和生长不良等问题,提高单晶硅的生长品质。
在一种可选的方式中,本实施例中第一控制器可预设多级温度阈值,例如可设置第一温度阈值和第二温度阈值,第一温度阈值可以是1400-1500度,第二温度阈值可以是1500-2000度,第一温度阈值和第二温度阈值的具体数值可根据本领域技术人员根据其经验进行设定,单晶炉的PC控制端可与温度检测装置33和第一控制器相连接,从而当温度检测装置33收集的温度反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一温度阈值和第二温度阈值对第一控制器发出操作指令。第一控制器根据温度检测装置33反馈的温度,实时调整供料装置4的供料量和/或加热组件32的功率。具体的,供料装置4的供料量和加热组件32的功率与至少两个温度阈值相关,不同 温度阈值对应不同的供料装置4的供料量或不同加热组件32的功率,第一控制器通过比较温度检测装置33反馈的温度与至少两个温度阈值之间的关系,精确调整供料装置4的供料量和加热组件32的功率,实现加热组件32的功率多级控制以及供料装置4的供料量多级控制,提高加热组件32的温度控制精度以及供料装置4的供料量控制精度,使得第一控制器能够精确控制坩埚2中液体物料的液面高度,保证单晶硅具有良好的生长品质。
实施例二:
本实施例与实施例一的区别在于,本实施例中液体加料装置包括第一重量检测装置和第二控制器,第一重量检测装置用于检测熔料腔31内熔体的重量,第二控制器与第一重量检测装置和供料装置4和/或加热组件32连接,用于根据第一重量检测装置反馈的重量,实时调整供料装置4的供料量和/或加热组件32的功率。采用这种结构,第一重量检测装置检测熔料腔31内熔体的重量,第二控制器接收第一重量检测装置反馈的重量值,并根据该重量值实时调整供料装置4的供料量和/或加热组件32的功率,通过调整供料装置4对熔料腔31中的供料量,可以调整熔料腔31向坩埚2中输送的液体物料的供料量,通过调整加热组件32的功率,可以调整熔料腔31内固体物料的熔化速率,进而调整熔料腔31向坩埚2中输送的液体物料的供料量,从而能够通过控制坩埚2中液体物料的体积来控制坩埚2中液体物料的液面高度,进而防止坩埚2内液体物料的液面上下波动时导致单晶硅发生断线和生长不良等问题,提高单晶硅的生长品质。
具体的,本实施例包括对第二控制器预设预设的第一重量阈值;例如第一重量阈值可以是50g-500g,具体地,可以是50g,60g,70g,80g,90g,100g,200g,300g,400g,500g;第一重量阈值的具体数值可根据本领域技术人员根据其经验进行设定,第一重量阈值设定在单晶炉的PC控制端,单晶炉的PC控制端与第一重量检测装置和第二控制器相连接,从而当第一重量检测装置反馈的温度达到PC控制端时,PC控制端可根据预设的第一重量阈值的范围对第二控制器发出操作指令。当第一重量检测装置反馈的重量大于第一重量阈值时,通过第二控制器实时调整减少供料装置4的供料量或加大加热组件32的功率。当第一重量检测装置反馈的重量大于第一重量阈值 时,熔料腔31内的熔体过多,供料装置4向熔料腔31供给的物料较多或加热组件32的功率较低;此时,通过第二控制器控制供料装置4的供料量减少,可以减少熔料腔31内的物料体积,保证熔料腔31内的物料体积稳定改变,进而保证熔料腔31向坩埚2中输送的物料量处于稳定状态;或者通过加大加热组件32的功率,提升熔料腔31内物料的熔化速率,增加熔料腔31向坩埚2中输送的液体物料的体积,使得坩埚2内液体物料的体积稳定,保证坩埚2内液体物料的液面高度保持稳定,从而防止坩埚2内液体物料的液面上下波动时导致单晶硅发生断线和生长不良等问题,提高单晶硅的生长品质。
在一种可选的方式中,本实施例中第二控制器可预设多级重量阈值,例如可设置第一重量阈值和第二重量阈值,第一重量阈值可以是50g-200g,第二重量阈值可以是200g-500g,第一重量阈值和第二重量阈值的具体数值可根据本领域技术人员根据其经验进行设定,单晶炉的PC控制端可与第一重量检测装置和第二控制器相连接,从而当重量检测装置收集的重量反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一重量阈值和第二重量阈值对第二控制器发出操作指令。第二控制器根据第一重量检测装置反馈的重量,实时调整供料装置4的供料量和/或加热组件32的功率。具体的,供料装置4的供料量和加热组件32的功率与至少两个重量阈值相关,不同重量阈值对应不同的供料装置4的供料量和加热组件32的功率,第二控制器通过比较第一重量检测装置反馈的重量与至少两个重量阈值之间的关系,精确调整供料装置4的供料量和加热组件32的功率,实现加热组件32的功率多级控制以及供料装置4的供料量多级控制,提高加热组件32的温度控制精度以及供料装置4的供料量控制精度,使得第二控制器能够精确控制坩埚2中液体物料的液面高度,保证单晶硅具有良好的生长品质。
实施例三:
本实施例与实施例一的区别在于,本实施例中液体加料装置包括温度检测装置33、第一重量检测装置和第三控制器,温度检测装置33用于检测熔料腔31的温度,第一重量检测装置用于检测熔料腔31内熔体的重量,第三控制器与温度检测装置33和第一重量检测装置和供料装置4和/或加热组件 32连接,用于根据温度检测装置33反馈的温度和第一重量检测装置反馈的重量,实时调整供料装置4的供料量和/或加热组件32的功率。采用这种结构,第三控制器可以同时根据温度检测装置33和第一重量检测装置的检测值实时调整供料装置4的供料量和/或加热组件32的功率,提高控制的精确度,充分保证坩埚2中液体物料液面的稳定性。
具体的,本实施例包括对第三控制器预设第一温度阈值和第一重量阈值;例如是第一温度阈值可以是1400-2000度,具体地,可以是1400度,1500度,1600度,1700度,1800度,1900度,2000度;第一温度阈值的具体数值可根据本领域技术人员根据其经验进行设定;例如第一重量阈值可以是50g-500g,具体地,可以是50g,60g,70g,80g,90g,100g,200g,300g,400g,500g;第一重量阈值的具体数值可根据本领域技术人员根据其经验进行设定;
单晶炉的PC控制端可与温度检测装置33、第一重量检测装置和第三控制器相连接,从而当温度检测装置33收集的温度和/或第一重量检测装置收集的重量反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一温度阈值和/或第一重量阈值对第三控制器发出操作指令。当温度检测装置33反馈的温度大于第一温度阈值时,若第一重量检测装置反馈的重量大于第一重量阈值时,通过第三控制器实时调整减少供料装置4的供料量;若第一重量检测装置反馈的重量小于第一重量阈值时,通过第三控制器实时调整降低加热组件32的功率。
其中,当温度检测装置33反馈的温度大于第一温度阈值,且第一重量检测装置反馈的重量大于第一重量阈值时,供料装置4向熔料腔31的供料量较大,此时,通过减少供料装置4的供料量可以降低熔料腔31内的熔体体积,保证熔料腔31向坩埚2中提供稳定的液体物料,保证坩埚2中的液体物料的体积稳定;当温度检测装置33反馈的温度大于第一温度阈值,且第一重量检测装置反馈的重量小于第一重量阈值时,熔料腔31内温度过高,熔料腔31向坩埚2中输送的物料量较多,此时,通过降低加热组件32的功率,可以保证熔料腔31向坩埚2中提供稳定的液体物料,保证坩埚2中的液体物料的体积稳定。
当第一重量检测装置反馈的重量大于第一重量阈值时,若温度检测装置33反馈的温度大于第一温度阈值时,通过第三控制器实时调整减少供料装置4的供料量;若温度检测装置33反馈的温度小于第一温度阈值时,通过第三控制器实时调整降低加热组件32的功率。
其中,当第一重量检测装置反馈的重量大于第一重量阈值,且温度检测装置33反馈的温度大于第一温度阈值时,供料装置4向熔料腔31的供料量较大,此时,通过减少供料装置4的供料量可以降低熔料腔31内的物料体积,保证熔料腔31向坩埚2中提供稳定的与液体物料,保证坩埚2中的液体物料的体积稳定;当第一重量检测装置反馈的重量大于第一重量阈值,且温度检测装置33反馈的温度小于第一温度阈值时,熔料腔31内物料体积较大,熔化速率较低,熔料腔31向坩埚2中输送的物料量较少,此时,通过加大加热组件32的功率,可以保证熔料腔31向坩埚2中提供稳定的与液体物料,保证坩埚2中的液体物料的体积稳定。
在一种可选的方式中,本实施例中第一控制器可预设多级温度阈值,例如可设置第一温度阈值和第二温度阈值,第一温度阈值可以是1400-1500度,第二温度阈值可以是1500-2000度,第一温度阈值和第二温度阈值的具体数值可根据本领域技术人员根据其经验进行设定,单晶炉的PC控制端可与温度检测装置33和第一控制器相连接,从而当温度检测装置收集的温度反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一温度阈值和第二温度阈值对第一控制器发出操作指令;第二控制器可预设多级重量阈值,例如可设置第一重量阈值和第二重量阈值,第一重量阈值可以是50g-200g,第二重量阈值可以是200g-500g,第一重量阈值和第二重量阈值的具体数值可根据本领域技术人员根据其经验进行设定,单晶炉的PC控制端可与第一重量检测装置和第二控制器相连接,从而当重量检测装置收集的重量反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一重量阈值和第二重量阈值对第二控制器发出操作指令。
第一控制器根据温度检测装置33反馈的温度,实时调整供料装置4的供料量和/或加热组件32的功率。具体的,供料装置4的供料量和加热组件32的功率与至少两个温度阈值相关,不同温度阈值对应不同的供料装置4 的供料量和加热组件32的功率,第一控制器通过比较温度检测装置33反馈的温度与至少两个温度阈值之间的关系,精确调整供料装置4的供料量和/或加热组件32的功率;第二控制器根据第一重量检测装置反馈的重量,实时调整供料装置4的供料量和/或加热组件32的功率。具体的,供料装置4的供料量和加热组件32的功率与至少两个重量阈值相关,不同重量阈值对应不同的供料装置4的供料量和加热组件32的功率,第二控制器通过比较第一重量检测装置反馈的重量与至少两个重量阈值之间的关系,精确调整供料装置4的供料量和加热组件32的功率,进而实现加热组件32的功率多级控制以及供料装置4的供料量多级控制,提高加热组件32的温度控制精度以及供料装置4的供料量控制精度,使得第二控制器能够精确控制坩埚2中液体物料的液面高度,保证单晶硅具有良好的生长品质。
实施例四:
本实施例与实施例一的区别在于,本实施例中液体加料装置还包括冷却装置,冷却装置设置在熔料腔31侧部或底部。采用这种结构,能够通过冷却装置对熔料腔31进行冷却,便于精准控制熔料腔31的温度,提高熔料腔31的冷却速度,本实施例优选冷却装置为气体冷却装置,其包括用于流通冷却气体的冷却管34。
在一种可选的方式中,液体加料装置还包括流量控制系统和第四控制器,流量控制系统用于控制冷却装置的流量,进而控制冷却装置的冷却速率,第四控制器与流量控制系统和供料装置4和/或加热组件32连接,用于根据熔料腔31的温度和/或熔料腔31内熔体的重量,实时调整供料装置4的供料量和/或加热组件32的功率和/或流量控制系统的流量。采用这种结构,第四控制器可以根据温度检测装置33反馈的温度和/或第一重量检测装置反馈的重量,实时调整供料装置4的供料量来调整熔料腔31内的物料体积、实时调整加热组件32的功率和/或流量控制系统的流量来调整熔料腔31的温度,进而精确控制熔料腔31向坩埚2中输送的液体物料,保证坩埚2中液体物料的体积稳定。
具体的,本实施例包括对第四控制器预设第一流量阈值;例如第一流量阈值可以是5L/min-80L/min,具体地,可以是6L/min,7L/min,8L/min,9L/min, 10L/min,20L/min,30L/min,40L/min,50L/min,60L/min,70L/min,80L/min;第一流量阈值的具体数值可根据本领域技术人员根据其经验进行设定,单晶炉的PC控制端可与流量控制系统和第四控制器相连接,从而当温度检测装置33收集的温度值和/或第一重量检测装置收集的重量值反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一流量阈值对第四控制器发出操作指令,通过第四控制器控制流量控制系统的流量。
当温度检测装置33反馈的温度大于第一温度阈值,且流量控制系统控制的流量小于第一流量阈值时,熔料腔31内温度过高且冷却装置的冷却速率较慢,腔内物料的熔化速率较快,熔料腔31向坩埚2中供给的液体物料过多,坩埚2中液体物料的液面上升;此时,通过实时调整加大流量控制系统的流量,可以提高冷却装置的冷却速率,进而降低熔料腔31的温度,保证熔料腔31的温度处于稳定状态。
当温度检测装置33反馈的温度小于第一温度阈值,且流量控制系统控制的流量大于第一流量阈值时,熔料腔31内温度较低且冷却装置的冷却速率较快,腔内物料的熔化速率较慢,熔料腔31向坩埚2中供给的液体物料较少,坩埚2中液体物料的液面下降;此时,通过实时调整降低流量控制系统的流量,可以降低冷却装置的冷却速率,进而提高熔料腔31的温度,保证熔料腔31的温度处于稳定状态。
当第一重量检测装置反馈的重量大于第一重量阈值,且流量控制系统控制的流量大于第一流量阈值时,熔料腔31内的熔体过多,冷却装置的冷却速率较快;此时,通过实时调整降低流量控制系统的流量,可以降低冷却装置的冷却速率,进而提高熔料腔31的温度,加快熔料腔31内熔体的熔化速率,保证熔料腔31内熔体的体积处于稳定状态。
当第一重量检测装置反馈的重量小于第一重量阈值,且流量控制系统控制的流量小于第一流量阈值时,熔料腔31内的熔体较少,冷却装置的冷却速率较慢;此时,通过实时调整加大流量控制系统的流量,可以提高冷却装置的冷却速率,进而降低熔料腔31的温度,防止熔料腔31内的熔体因为熔化速率较快而导致流入坩埚2中的液体物料较多,进而保证熔料腔31内熔体的体积处于稳定状态。
在一种可选的方式中,本实施例中第四控制器可预设多级流量阈值,例如可设置第一流量阈值和第二流量阈值,第一流量阈值可以是5-40L/min,第二温度阈值可以是40-80L/min,第一流量阈值和第二流量阈值的具体数值可根据本领域技术人员根据其经验进行设定,单晶炉的PC控制端可与流量控制系统和第四控制器相连接,从而当温度检测装置33收集的温度值和/或第一重量检测装置收集的重量值反馈至单晶炉PC控制端后,PC控制端可根据预先设定的第一流量阈值和第二流量阈值对第四控制器发出操作指令,通过第四控制器控制流量控制系统的流量。
作为一种可能的实现方式,上述多个实施例至少其一中的熔料装置3还包括导管37,导管37与熔料腔31相连,导管37靠近单晶炉1的一端相对于另一端向下倾斜,使得导管37内的液体物料能够在重力的作用下流入单晶炉1的坩埚2中,保证熔料腔31内的液体物料能够输送至坩埚2中;或者熔料腔31靠近坩埚2的一端相对于另一端向下倾斜,熔料腔31和导管37内的液体物料能够在重力的作用下流入坩埚2中,保证熔料腔31内的液体物料能够输送至坩埚2中;或者导管37和熔料腔31靠近坩埚2的一端均相对于另一端向下倾斜,熔料腔31和导管37内的液体物料能够在重力的作用下流入坩埚2中,保证熔料腔31内的液体物料能够输送至坩埚2中;其中,导管37与熔料腔31可以为一体结构,亦可以分体设置,本实施例优选导管37和熔料腔31向下倾斜的角度大于0°且小于或等于30°,例如1°,2°,3°,4°,5°,6°,7°,8°,9°,10°,11°,12°,13°,14°,15°,16°,17°,18°,19°,20°,21°,22°,23°,24°,25°,26°,27°,28°,29°,30°。
另外,如图6所示,本实施例中导管37和/或熔料腔31内可以设置有挡料板5,挡料板5上设置有用于限制固体物料通过且允许液体物料通过的流孔51,流孔51的结构可以为筛网状,亦可以为多个平行设置的长孔,本实施例优选流孔51为长孔且多个流孔51平行设置,流孔51的开口宽度小于固体物料的宽度,以防止固体物料通过,流孔51的开口宽度可以根据使用要求进行调整;挡料板5的下端设置为与熔料管或导管37内侧相匹配。挡料板5的上端设置有第二定位凸起52,壳体上设置有与第二定位凸起52 相匹配的第二定位凹槽,通过第二定位凸起52和第二定位凹槽卡接的方式,使挡料板5能够安装定位。由于固体物料放置于熔料腔31内进行加热熔化,使得熔料腔31内仍然存在固体物料,通过挡料板5阻挡固体物料,可以防止熔料腔31内未熔化的固体物料流入坩埚2中时,导致坩埚2中液态物料发生振荡而影响单晶硅的生长。
如图7和图8所示,熔料腔31与导管37为一体结构,包括熔料段312和导出段313,熔料段312包括用于接收固体物料的进料口311,导出段313包括用于伸入至单晶炉内的出料口,出料口设置有防止熔体沿管外壁回流的缺口。其中,导出段313包括用于与挡料板5安装配合的凹槽部,出料口朝熔料段312一侧内凹形成缺口,缺口可以为由呈一定夹角的内凹角结构,此时,熔体在重力的作用下容易沿缺口的边沿流聚至出料口的下部,从而防止熔体沿管外壁回流;熔料段312高于导出段313,固体物料在熔料段312熔化为液体物料,经过挡料板5和导出段313流至单晶炉的坩埚中。
在一些实施例中,如图8所示,熔料段312和导出段313均为凹槽形状。采用这种结构,能够利用凹槽形状的熔料段312接收并存放固体物料,同时熔料段312和导出段313结构简单,加工方便。
在另一些实施例中,如图7所示,熔料段312和/或导出段313部分为管状,熔料段312包括凹槽形状的进料口。采用这种结构,既能够利用凹槽形状的进料口接收固体物料,又能够利用管状的结构增加熔料段312或导出段313的强度。
在一种可选方式中,上述多个实施例至少其一中的熔料装置3还包括用于控制导管37和/或熔料腔31伸缩的伸缩控制机构7。伸缩控制机构7为一种已知的能够实现伸缩控制的机构,例如电动伸缩推杆、气动伸缩推杆等,当需要加料时,伸缩控制机构7控制导管37和/或熔料腔31伸入到单晶炉1内的坩埚2处进行加料,当不需要加料时,伸缩控制机构7控制导管37和/或熔料腔31收缩,从而防止导管37和熔料腔31在单晶炉1内时,影响单晶炉1进行拉晶、取料、放料等操作,此外,除了控制导管37和/或熔料腔31伸缩,本实施例还可以设置有用于控制单晶炉1升降的升降控制机构,通过升降控制机构控制单晶炉1升降,可以便于工作人员利用单晶炉1进行拉 晶、取料、放料等操作。
如图4所示,熔料装置3还包括用于将供料装置4中的固体物料引导至熔料腔31内的第一导料管35,第一导料管35的上端为漏斗状且设置有围板353,以便于接收供料装置4输送的固体物料且防止固体物料脱离第一导料管35。其中,第一导料管35包括管身351和漏斗部352,漏斗部352上端的开口面积大于下端的开口面积,使得能够接收更多的固体物料;围板353为U型围板353,其包括与供料装置4连通的开口和用于阻挡固体物料以防止固体物料输送时溅出的围边,供料装置4通过围板353的开口向第一导料管35内输送固体物料,采用这种结构,可以防止熔料装置3产生的热辐射加热供料装置4内的固体物料;此外,第一导料管35可以采用耐高温材料制成,以防止熔料腔31的热辐射影响第一导料管35的自身性能,导致第一导料管35软化。
在一些实施例中,如图5所示,熔料装置3还包括具有耐高温性能的第二导料管36,第二导料管36一端与第一导料管35相连,另一端与熔料腔31连通,以将第一导料管35中的固体物料引导至熔料腔31中。第二导料管36由耐高温材料制成,第二导料管36上设置有第一定位凸起361,熔料装置3的密封腔39包括用于封装定位第一导料管35和第二导料管36的壳体,壳体上设置有与第一定位凸起361相匹配的第一定位卡槽,使得第二导料管36能够安装定位到壳体上,第一导料管35和熔料腔31之间采用耐高温的第二导料管36连通,可以防止熔料腔31的热场影响第一导料管35而导致第一导料管35软化。
如图2和图3所示,本实施例中的供料装置4包括加料仓41、物料输送装置42、第二重量检测装置423和供料控制系统,加料仓41用于存储固体物料,工作人员通过加料仓41向物料输送装置42上输送固体物料;物料输送装置42用于输送固体物料,其包括载料组件421和驱动组件422,载料组件421用于承载固体物料,驱动组件422用于驱动载料组件421运动以连续输送固体物料;第二重量检测装置423用于检测载料组件421上固体物料的重量;驱动组件422和第二重量检测装置423均与供料控制系统相连,供料控制系统根据第二重量检测装置423的检测值实时调控驱动组件422的驱 动速度,从而通过控制载料组件421的运动速度来精确控制供料装置4向熔料装置3中连续输送的固体物料的供料量,本实施例优选载料组件421为输料管,驱动组件422为振动机构,振动机构为一种已知的能够通过振动输料管以使输料管内的物料向前运动的机构,第二重量检测装置423为一种能够检测输料管内物料重量的机构。
需要说明的是,第二重量检测装置423与第一重量检测装置可以为同一重量检测装置,也可以是不同的重量检测装置以达到更加精准的固体物料和液体物料的重量检测,例如当第二重量检测装置423与第一重量检测装置为同一重量检测装置,且均为用于检测载料组件421上固体物料的重量的第二重量检测装置423时,可以根据第二重量检测装置423反馈的重量以及物料输送装置42的输送速度推测出熔料腔31内熔体的重量;或者,当第二重量检测装置423与第一重量检测装置为同一重量检测装置,且均为用于检测熔料腔31内熔体的重量的第一重量检测装置时,可以根据第一重量检测装置反馈的重量以及物料输送装置42的输送速度推测出载料组件421上固体物料的重量;或者当第二重量检测装置423与第一重量检测装置为不同的重量检测装置时,通过第二重量检测装置423检测载料组件421上固体物料的第一重量,通过第一重量检测装置检测熔料腔31内熔体的第二重量,可以分别精确测量出固体物料和液体物料的重量,且通过比较第一重量和第二重量之间的差值,可以精确测量出固体物料变为液体物料后的物料损失量。另外,本实施例中液体加料装置还包括底座8,底座8用于支撑供料装置4和熔料装置3。
本申请实施例还提供一种单晶炉,包括如上述实施例所述的液体加料装置。
与现有技术相比,本实施例提供的单晶炉的有益效果与上述实施例所述用于单晶炉的液体加料装置的有益效果相同,此处不做赘述。
在一种可能的实现方式中,如图1和图2所示,熔料装置3与单晶炉1一体连接,单晶炉1还包括隔离装置6,熔料装置3包括与单晶炉1一体成型的外壳38和位于外壳38内的密封腔39,熔料腔31和加热组件32位于密封腔39内,外壳38包括与单晶炉1连通的第一开口和与供料装置4连通的 第二开口,隔离装置6设置于第二开口位置,用于当供料装置4移除时封闭第二开口,使单晶炉1和熔料装置3在供料装置4移除时仍处于密闭环境中。采用这种结构,能够保证单晶炉1与熔料装置3处于良好的密封环境中,防止外部环境影响单晶硅的生长,提高拉晶的成功率和硅棒的质量,隔离装置6是一种已知的能够在供料装置4移除时对熔料装置3和单晶炉1密封的装置,本实施例优选隔离装置6为隔离阀。
本申请实施例还提供一种单晶炉的供料方法,使用如上述方案所述的单晶炉,包括:
通过供料装置将固体物料输送至熔料装置内;
通过熔料装置熔化固体物料,生成液体物料,并将液体物料持续输送至单晶炉内的坩埚中实现液态物料的供料。
与现有技术相比,本实施例提供的单晶炉的供料方法的有益效果与上述实施例所述单晶炉的有益效果相同,此处不做赘述。
在一种可选方式中,根据熔料装置的温度,实时调控供料装置的供料量或加热组件的功率;
或者;
根据熔料装置内熔体的重量,实时调控供料装置的供料量或加热组件的功率;
或者;
根据熔料装置的温度和熔料装置内熔体的重量,实时调控供料装置的供料量或加热组件的功率。采用这种方法,能够控制熔料腔向坩埚中输送的液体物料的体积,进而控制坩埚中液体物料的液面高度,防止坩埚内液体物料的液面上下波动时导致单晶硅发生断线和生长不良等问题,提高单晶硅的生长品质。
在一些实施例中,熔料腔侧部或底部设置有冷却装置。采用这种结构,通过冷却装置对熔料腔进行冷却,可以进一步精确控制熔料腔内的温度,进而精确控制坩埚中液体物料的液面高度。
在一些实施例中,冷却装置的流量可调节;根据熔料装置的温度或者熔料装置内熔体的重量,实时调控供料装置的供料量、加热组件的功率和/或冷 却装置的流量。采用这种方法,通过控制供料装置的供料量、熔料装置的加热功率和/或冷却装置的流量能够精确控制熔料腔向坩埚中输送的液体物料的体积,进而精确控制坩埚中液体物料的液面高度,保证单晶硅的生长品质。
公知的,在通过拉晶获得单晶硅棒时,要用到拉晶生产设备,拉晶生产设备包括单晶炉1和加料组件,加料组件位于单晶炉1外,用于向单晶炉1内添加硅料。单晶炉1具有排气口,排气口与真空发生装置9连接,用于在拉晶生产过程中,使单晶炉1内保持负压密封状态。
但是,在进行拉晶生产过程中,由于加料组件和单晶炉1连通,并处于负压密封状态,加料组件持续或断续地向单晶炉1内添加硅料(可以是液态的,也可以是固态的)。若添加的是固体硅料,那么在添加过程中会产生大量粉尘,在固体硅料熔化为液态硅料后,这些粉尘会附着在液态硅料表面或掺杂在液态硅料中,对拉晶质量产生不良影响,还会附着在设备内壁上,尤其是附着在硅料运送通道的内壁上,上时间累积容易造成通道堵塞;且,固体硅料在单晶炉1内熔化为液态硅料的过程中会产生硅蒸汽,硅蒸汽会附着在液态硅料表面或掺杂在液态硅料中,对拉晶质量产生不良影响。若添加的是液态硅料,那么在添加过程中会产生大量硅蒸汽,硅蒸汽会附着在液态硅料表面或掺杂在液态硅料中,对拉晶质量产生不良影响。因此,需要及时地将粉尘和硅蒸汽清理出去,以降低粉尘和硅蒸汽对拉晶质量产生的不良影响。
为了解决上述技术问题,本申请提供一种拉晶生产设备,参考图9所示,拉晶生产设备包括单晶炉1和加料组件,加料组件位于单晶炉1外,用于向单晶炉1内添加硅料,加料组件上设置有进气管,进气管用于通入清洁气体,清洁气体经过加料组件进入单晶炉1。
采用该技术方案的情况下,可以在加料组件向单晶炉1加料的过程中,或在进行拉晶生产之前,或在整个拉晶生产过程中,利用进气管持续向单晶炉1通入清洁气体,随着清洁气体从单晶炉1的排气口排出,清洁气体可以将上述的粉尘和硅蒸汽携带走,减少降落在单晶炉1中液态硅料表面的粉尘和硅蒸汽,以及减少在设备内壁上附着的粉尘,降低粉尘和硅蒸汽对拉晶质量产生的不良影响,提高拉晶成功率。
这里,硅蒸汽是指气态硅和其他气态的含硅化合物。本文中记述的粉尘 是一种混合粉尘,包括硅粉尘和其他杂质粉尘。
在一种可能的实现方式中,参考图9所示,加料组件包括熔料装置3,熔料装置3用于向单晶炉1内添加液态硅料;进气管包括设置于熔料装置3上的第二进气管62和/或第三进气管63。其中,可以将固体硅料添加入熔料装置3中,熔料装置3将固体硅料熔化为液态硅料后,向单晶炉1内添加液态硅料;或,熔料装置3只起到转送的作用,即利用熔料装置3将已熔化好的液态硅料添加至单晶炉1中。采用该技术方案的情况下,若熔料装置3需要将固体硅料熔化为液态硅料,那么利用第二进气管62和/或第三进气管63通入的清洁气体可以将添加固体硅料时产生的粉尘和熔化为液态硅料时产生的硅蒸汽携带走;若熔料装置3只起到转送液态硅料的作用,那么清洁气体可以将液态硅料所携带的硅蒸汽携带走。而且,若第二进气管62和第三进气管63同时通入清洁气体,可以使得清洁气体的流量增大,利于将更多的硅蒸汽、粉尘携带走,减少降落在单晶炉1内的粉尘、硅蒸汽,以及减少附着在熔料装置3内壁上的粉尘。
在一种可能的实施例中,熔料装置3包括密封腔39、熔料腔31和加热组件,熔料腔31用于盛装固体硅料和/或液态硅料,熔料腔31具有与单晶炉1连通的出料口,熔料腔31和加热组件均位于密封腔39中,加热组件用于加热熔化熔料腔31中的硅料。采用该技术方案的情况下,当熔料腔31中盛装有固体硅料时,加热组件可以将其熔化为液态,当熔料腔31中盛装有液态硅料时,加热组件可以加热使其保持液态。密封腔39既可以起到保温和密封的作用,还可以起到避免误触加热组件和熔料腔31造成烫伤的情况。
在一种示例中,熔料腔31可以为管状,包括熔料段和导出段,进料口311位于熔料段,熔料段位于密封腔39中,导出段伸入单晶炉1,液态硅料从熔料段流动至导出段,然后从导出段进入单晶炉1中。这样,可以简化熔料装置3和单晶炉1之间的连接结构,便于液态硅料从熔料装置3进入到单晶炉1中。具体使用时,熔料腔31可以略微倾斜,熔料段高于导出段,以便于液态硅料向单晶炉1流动。
在一种示例中,第二进气管62连通设置于密封腔39的顶部,第二进气管62的出气口与熔料腔31的进料口311对应。这就利于第二进气管62通 入的清洁气体进入到进料口311中,以将熔料装置3中的粉尘、硅蒸汽携带走。
在一种示例中,熔料装置3还包括位于密封腔39中的保温构件30,保温构件30具有内腔,熔料腔31和加热组件均位于内腔中;保温构件30具有避让孔,避让孔与熔料腔31的进料口311对应。采用该技术方案的情况下,硅料从避让孔进入到熔料腔31中。保温构件30可以起到保温的作用,利于使得熔料腔31中的固体硅料被加热组件快速充分的加热熔化为液态硅料,或利于保持熔料腔31中的液态硅料保持在液态。
在一种示例中,熔料装置3可以有第一导料管35,第一导料管35穿过避让孔,硅料穿过第一导料管35进入熔料腔31中。第一导料管35可以起到保护保温构件30的作用,避免硅料经过避让孔时污染和磨损保温构件30,从而可以延长保温构件30的使用寿命。
在一种示例中,第三进气管63连通设置于密封腔39的侧部,保温构件30具有通气孔301,通气孔301的内端与熔料腔31的进料口311连通,外端与第三进气管63的出气口对应。采用该技术方案的情况下,第三进气管63通入的清洁气体经过通气孔301进入到熔料腔31的进料口311中,可以冲刷熔料腔31的内壁,将熔料腔31中的硅蒸汽、粉尘携带走,提高熔料腔31内的清洁度。
在一种可能的实现方式中,拉晶生产设备还包括冷却装置,冷却装置设置于密封腔39的侧部或者底部。采用该技术方案的情况下,由于熔料腔31靠近加热组件,熔料腔31本身的温度高于其内的硅料温度,容易出现熔料腔31本身温度过高而软化的情况,因此,冷却装置在密封腔39中可以对熔料腔31的侧壁进行冷却降温,可以通过调整冷却装置的冷却能力,以使得熔料腔31处于适宜的温度范围内,避免因加热温度过高导致熔料腔31出现软化的情况,同时保证熔料腔31中的硅料温度高于自身熔点,能够迅速熔化。
在一种可能的实施例中,参考图9和图10所示,冷却装置包括冷却进气管71和冷却出气管72,冷却进气管71和冷却出气管72均伸入到密封腔39中,冷却进气管71用于通入冷却气体,冷却出气管72用于排出冷却气体。 采用该技术方案的情况下,可以调控冷却气体的流量,使得冷却气体进入密封腔39中对熔料腔31的侧壁进行冷却降温,以使得熔料腔31处于适宜的温度范围内,避免因加热温度过高导致熔料腔31出现软化的情况,同时尽量降低对熔料腔31中硅料温度的影响,以确保熔料腔31中硅料温度高于自身熔点,能够迅速熔化。其中,冷却进气管71和冷却出气管72均可以伸入到熔料腔31下方,便于冷却气体快速的经过冷却出气管72排出,可以减少冷却气体在熔料装置3中的流动,从而减少或避免冷却气体进入熔料腔31中。在一种示例中,冷却进气管71和冷却出气管72均可以从密封腔39的底部伸入,其各自的出气口与熔料腔31的底壁对应。
例如,在该设备中,固体硅料熔化温度为1410℃,熔料腔31可承受的最高温度为1700℃,可以将硅料加热至1500℃-1600℃,以确保固体硅料快速熔化。那么,利用冷却气体可以将熔料腔31的下侧壁温度控制在1500℃至1700℃之间,或1600℃至1700℃之间。
进一步的,当熔料装置3包括上述保温构件30时,冷却进气管71和冷却出气管72可以均伸入到保温构件30的内腔中。
在一种可能的实现方式中,加料组件包括供料装置,供料装置用于向单晶炉1内添加固体硅料,进气管包括位于供料装置上的第一进气管61。采用该技术方案的情况下,第一进气管61通入的清洁气体首先进入到供料装置中,可以吹拂其中的固体硅料,将固体硅料上附着的粉尘携带走,在固体硅料被添加进入单晶炉1过程中产生的粉尘,以及固体硅料在单晶炉1中熔化而产生的硅蒸汽,也可以被第一进气管61通入的清洁气体携带走,随着清洁气体一起排出单晶炉1外。
在一种可能的实施例中,参考图9所示,供料装置包括加料仓41和物料输送装置42,物料输送装置42的两端分别连通加料仓41和单晶炉1,用于将固体硅料从加料仓41输送至单晶炉1;第一进气管61连通设置于加料仓41的侧部,清洁气体通过物料输送装置42进入单晶炉1。采用该技术方案的情况下,在加料仓41中固体硅料被转运在物料输送装置42上,经过物料输送装置42运送至单晶炉1中。第一进气管61通入的清洁气体首先进入加料仓41中,然后从加料仓41进入到物料输送装置42中,经过物料输送 装置42的硅料运送通道进入单晶炉1中。在固体硅料被放置在物料输送装置42中,以及从物料输送装置42进入到单晶炉1的过程中,产生的粉尘均可以被清洁气体携带而排出单晶炉1外,从而可以减少粉尘降落在单晶炉1中液态硅料的表面,降低对拉晶质量的不良影响;固体硅料在单晶炉1中熔化为液态时产生的硅蒸汽也可以被清洁气体携带走。
在一种示例中,物料输送装置42具有加料位置401和落料位置402,加料位置401位于加料仓41中,落料位置402与单晶炉1对应。供料装置还包括盛料器43,盛料器43设置于加料仓41上,且盛料器43具有放料口431,放料口431在重力方向上间隔地位于加料位置401上方。固体硅料从放料口431自由下落至加料位置401上,然后经过物料输送装置42的运送,从落料位置402进入到单晶炉1中。
在一种示例中,第一进气管61的出气口可以与加料位置401对应,进一步的,出气口的高度位置可以位于加料位置401和放料口431之间,以便于最大程度的将固体硅料从盛料器43的放料口431下落至加料位置401过程中所产生的粉尘携带进入到物料输送装置42的硅料运送通道中,以便携带尽量多的粉尘排出拉晶生产设备。
在一种可能的实现方式中,参考图9所示,加料组件包括供料装置和熔料装置3,供料装置将固体硅料输送至熔料装置3中,熔料装置3将固体硅料熔化为液态硅料后,将其输送至单晶炉1中;进气管包括第一进气管61、第二进气管62和第三进气管63中的至少一者,第一进气管61位于供料装置,第二进气管62和第三进气管63位于熔料装置3上。采用该技术方案的情况下,上述三个进气管中的任一者通入的清洁气体,均可以将输送固体硅料时所产生的粉尘,以及熔化为液态硅料时所产生的硅蒸汽携带走。当具有两个或三个进气管时,清洁气体的流量大,可以将更多的硅蒸汽和粉尘携带走,避免粉尘附着在液态硅料和设备的内壁上,提高拉晶生产设备内的清洁度。
在一种实施例中,参考图9所示,供料装置包括加料仓41和物料输送装置42,物料输送装置42的两端分别连通加料仓41和熔料装置3,用于将固体硅料输送至熔料装置3中。采用该技术方案的情况下,固体硅料在加料 仓41中被放置在物料输送装置42上,利用物料输送装置42运送固体硅料至熔料装置3中。在进行拉晶生产时,可以提前将固体硅料运送至熔料装置3中,利用熔料装置3加热熔化以获得液态硅料,然后根据需要随时利用熔料装置3将液态硅料输送至单晶炉1中。这样可以节省时间,提高拉晶效率。
需要明确的是,第一进气管61是将固态硅料的粉尘鞋带走,而第二进气管62和第三进气管63是将进入熔料装置3的粉尘携带走,避免其附着在熔料装置3的内壁上,在一种可选的实施例中,只设置第二进气管62和/或第三进气管63,而至于附着在供料装置内壁上的粉尘,可以通过定期清理维护的方式清除,即可以使物料输送装置42退出熔料装置3,将其拆卸下来对输送通道进行清理,可以打开加料仓41,清理加料仓41的内壁。
在一种可能的实施例中,参考图9所示,供料装置还包括设置于加料仓41上的盛料器43,盛料器43具有放料口431;加料仓41、物料输送装置42、熔料装置3和单晶炉1沿硅料运送方向依次连通;物料输送装置42具有加料位置401和落料位置402,加料位置401位于加料仓41中,并在重力方向上间隔地位于放料口431下方;落料位置402位于熔料装置3中,物料输送装置42用于将在加料仓41中获得的固体硅料输送给熔料装置3;熔料装置3将固体硅料加热熔化为液态硅料,单晶炉1接收液态硅料。在固体硅料从放料口431下落至加料位置401时,会产生粉尘,这些粉尘会随着硅料运动通道进入到单晶炉1中。这里,硅料运动通道包括固体硅料的运送通道和液态硅料的运送通道。
其中,盛料器43可以为漏斗状的熔料腔31,以便于硅料顺畅地从放料口431下落至加料位置401。
在一种示例中,第一进气管61连通设置于加料仓41的侧部。采用该技术方案的情况下,第一进气管61通入的清洁气体首先进入加料仓41中,然后从加料仓41进入到物料输送装置42中,经过物料输送装置42、熔料装置3进入单晶炉1中。在固体硅料进入到物料输送装置42,以及从物料输送装置42进入到单晶炉1的过程中,产生的粉尘均可以被清洁气体携带走,可以减少粉尘降落在单晶炉1中液态硅料表面,降低对拉晶质量的不良影响;固体硅料在单晶炉1中熔化为液态时产生的硅蒸汽也可以被清洁气体携带走。
在一种示例中,参考图9所示,第一进气管61的出气口伸入加料仓41中,并与加料位置401对应,第一进气管61的出气方向沿硅料运送方向。这样,第一进气管61通入的清洁气体可以从加料位置401进入到硅料运送通道内,以便于将固体硅料从放料口431下落至加料位置401时产生的粉尘尽量多地携带走。如此,第一方面,可以减少粉尘在生产设备中(尤其是硅料运送通道中)的积存,提高拉晶生产设备内部的清洁度;第二方面,可以减少粉尘降落在单晶炉1中液态硅料表面,降低对拉晶质量的不良影响,提高拉晶成功率;第三方面,还可以将在固体硅料熔化为液态硅料过程中所产生的硅蒸汽携带走,减少或避免硅蒸汽进入单晶炉1内的液态硅料中,进一步降低对拉晶质量的不良影响,提高拉晶成功率。
进一步的,在重力方向上,第一进气管61出气口的高度位置可以位于加料位置401和放料口431之间,以便于最大程度的将固体硅料从盛料器43的放料口431下落至加料位置401过程中所产生的粉尘携带进入到物料输送装置42的硅料运送通道中,以便携带尽量多的粉尘排出拉晶生产设备。
在一种示例中,第一进气管61可以为直管,且延伸方向与物料输送装置42的硅料运送通道方向一致。
在一种实施例中,参考图9所示,熔料装置3包括密封腔39、熔料腔31和加热组件,熔料腔31具有进料口311和与单晶炉1连通的出料口,熔料腔31和加热组件均位于密封腔39中,加热组件用于加热熔化熔料腔31中的硅料;物料输送装置42伸入密封腔39中,并与熔料腔31的进料口311对应,以将固体硅料输送至熔料腔31中。采用该技术方案的情况下,当熔料腔31可以接收来自物料输送装置42的固体硅料,再利用加热组件将其熔化为液态;熔料腔31的进料口311也可以直接接收液态硅料,加热组件可以加热使其保持液态。密封腔39既可以起到保温和密封的作用,还可以起到避免因误触加热组件和熔料腔31造成烫伤的情况。
在一种示例中,物料输送装置42的落料位置402可以在重力方向上间隔地位于熔料腔31的进料口311上方,固体硅料从进料口311降落进入熔料腔31中,但在此过程中会产生粉尘。
在一种示例中,第二进气管62连通设置于密封腔39的顶部,第二进气 管62的出气口与熔料腔31的进料口311连通。采用该技术方案的情况下,第二进气管62通入的清洁气体可以直接进入到熔料腔31中,并在熔料腔31中沿着硅料运送通道朝向单晶炉1流动,这时,可以将进入到熔料腔31中的粉尘和在熔料腔31中产生的硅蒸汽携带走,还可以减少降落在单晶炉1中的液态硅料表面的粉尘和硅蒸汽,降低对拉晶质量的不良影响,提高拉晶成功率。
在一种示例中,第二进气管62的出气口伸入到密封腔39中,并与落料位置402对应,第二进气管62的出气方向沿重力方向。采用该技术方案,密封腔39处于密封状态,第二进气管62通入的清洁气体会和第一进气管61通入的清洁气体一起沿着硅料运送方向流动进入到熔料腔31的进料口311中(参考图9中箭头所示)。其中,第二进气管62的出气方向沿重力方向,这就更利于第二进气管62通入的清洁气体进入到进料口311中,从而利于在第一进气管61所通入清洁气体的基础上,一方面,可以尽量多的将在固体硅料从落料位置402下落至进料口311中所产生的粉尘(落料位置402与进料口311在重力方向上间隔分布)和在固体硅料熔化为液态硅料过程中所产生的硅蒸汽携带走,另一方面,两份清洁气体均进入到单晶炉1中,使得经过单晶炉1内硅液表面的清洁气体的流量增大,利于减少降落在单晶炉1内的硅液表面的粉尘。
因此,采用上述技术方案,一方面,可以进一步减少粉尘在容料装置和单晶炉1中的积存,提高容料装置和单晶炉1的清洁度,另一方面,可以进一步减少落入液态硅料中的粉尘和硅蒸汽,进一步降低对拉晶质量的不良影响,提高拉晶成功率。
在一种实施例中,参考图9和10所示,第三进气管63连通设置于密封腔39的侧部,第三进气管63的出气口与熔料腔31的进料口311连通。采用该技术方案的情况下,第三进气管63通入的清洁气体可以进入到熔料腔31的进料口311中,可以冲刷熔料腔31的内壁,提高熔料腔31的清洁度,并将熔料腔31中的硅蒸汽、粉尘携带走。
在一种示例中,参考图9和10所示,第三进气管63的出气口伸入到密封腔39中,并与熔料腔31的进料口311对应,第三进气管63的出气方向 沿硅料运送方向,第三进气管63用于通入清洁气体。采用该技术方案的情况下,第三进气管63通入的清洁气体经过通气孔301进入到熔料腔31的进料口311中,可以冲刷熔料腔31的内壁,将熔料腔31中的硅蒸汽、粉尘携带走,提高熔料腔31内的清洁度。
在第一进气管61和/或第二进气管62通入清洁气体已经沿着硅料运送方向流动进入到进料口311中的基础上,第三进气管63通入的清洁气体进入到熔料装置3中后,会和第一进气管61和/或第二进气管62通入的清洁气体一起沿着硅料运送方向流动进入到熔料腔31的进料口311中(参考图9中箭头所示)。
若三份清洁气体均进入到熔料腔31和单晶炉1中,一方面,可以尽量多的将在熔料腔31至单晶炉1的出气口之间所存的粉尘和硅蒸汽携带走,另一方面,使得经过单晶炉1内液态硅料表面的清洁气体的流量增大,利于减少降落在单晶炉1内的液态硅料表面的粉尘。因此,采用该技术方案,一方面,可以进一步减少粉尘在容料装置和单晶炉1中的积存,提高容料装置和单晶炉1的清洁度,另一方面,可以进一步减少落入液态硅料中的粉尘和硅蒸汽,进一步降低对拉晶质量的不良影响,提高拉晶成功率。
在一种可能的实施例中,参考图9和图10所示,熔料装置3还包括位于密封腔39中的保温构件30,保温构件30具有内腔,熔料腔31和加热组件均位于内腔中。采用该技术方案,保温构件30可以起到保温的作用,利于熔料腔31保持在硅料的熔点温度以上,以确保固体硅料在熔料腔31中快速充分的熔化为液态硅料。密封腔39既可以起到保温和密封的作用,还可以起到避免因误触加热组件和熔料腔31造成烫伤的情况。
在一种示例中,加热组件可以为热辐射式加热组件,位于熔料腔31的下方,且与熔料腔31间隔设置。加热组件可以与熔料腔31形状匹配,以便于更好的对熔料腔31内的固体硅料加热,使其熔化。
在一种示例中,保温构件30具有避让孔,避让孔与熔料腔31的进料口311对应,硅料从避让孔进入到熔料腔31中。
在一种可能的实施例中,参考图9和图10所示,熔料装置3还包括第一导料管35,保温构件30具有避让孔,第一导料管35穿过避让孔,一端与 熔料腔31的进料口311对应,另一端与落料位置402对应;采用该技术方案的情况下,固体硅料从物料输送装置42的落料位置402下落进入到第一导料管35中,并在第一导料管35的引导和限位下,可以准确地进入到熔料腔31的进料口311中,避免固体硅料洒落在熔料腔31外侧。同时,第一导料管35可以起到保护保温构件30的作用,避免固体硅料从避让孔经过时污染和磨损保温构件30,从而可以延长保温构件30的使用寿命。
在一种示例中,参考图9和图10所示,物料输送装置42与保温构件30之间具有间隙,第一导料管35的端部伸出避让孔与落料位置402对应。这样,既有利于保证固体硅料全部进入到第一导料管35中,又可以降低高温对物料输送装置42的不良影响。
在一种示例中,第一导料管35朝向熔料腔31的一端,可以与熔料腔31的进料口311形状相同,并在进料口311的宽度方向上(该方向与硅料运送方向垂直),与进料口311大小匹配,以便于第一导料管35和熔料腔31的进料口311对接,从而使得固体硅料准确地进入到熔料腔31中。
在一种示例中,参考图9所示,在进料口311的长度方向上(该方向与硅料运送方向一致),第一导料管35的朝向熔料腔31的一端的尺寸可以小于进料口311的尺寸。这时,保温构件30可以与进料口311的两端卡接,第三进气管63通入的气体也可以从进料口311的端部进入熔料腔31中。
在一种示例中,参考图10所示,第三进气管63的出气口伸入密封腔39中,保温构件30具有通气孔301,通气孔301的内端与熔料腔31的进料口311连通,外端与第三进气管63的出气口对应。采用该技术方案的情况下,第三进气管63通入的清洁气体经过通气孔301进入到熔料腔31的进料口311中,可以冲刷熔料腔31的内壁,将熔料腔31中的硅蒸汽、粉尘携带走,提高熔料腔31内的清洁度。采用该技术方案的情况下,通气孔301可以方便第三进气管63通入的清洁气体经过通气孔301进入到熔料腔31的进料口311中,可以增大清洁气体对熔料腔31内壁的冲刷力度,提高熔料腔31内壁的清洁度;可以增大清洁气体对硅料表面的冲刷力度,将尽量多的硅蒸汽和粉尘携带走。
在一种可能的实现方式中,参考图9所示,物料输送装置42可以包括 载料组件421,载料组件421的伸入加料仓41的一端具有第一缺口,和/或,载料组件421的伸入密封腔39的一端具有第二缺口。采用该技术方案,第一缺口和第二缺口的设置可以起到减轻载料组件421重量的作用。
当物料输送装置42采用振动给料的方式时,物料输送装置42还包括振动器,振动器与载料组件421传动连接,可以带动载料组件421振动,以实现固体硅料在载料组件421中的运动,从而完成固体硅料的运送。而通过减轻载料组件421的重量,可以确保振动管有效振动,以将固体硅料从加料位置401运送至落料位置402。
其中,第一缺口可以位于载料组件421的端部,与盛料器43的放料口431对应,第一缺口所在位置即为加料位置401,这样还方便第一进气管61通入的清洁气体进入到载料组件421中;第二缺口可以位于载料组件421的端部,第二缺口所在位置即为落料位置402,这样还方便第二进气管62通入的清洁气体吹拂落料位置402处的固体硅料,将尽量多的粉尘携带走。
在一种可能的实现方式中,物料输送装置42的伸入密封腔39的一端涂覆有耐高温涂层。由于固体硅料需要在熔料装置3中熔化,因此,密封腔39内的温度很高。而为了降低成本,物料输送装置42可以采用普通材料制作(例如石英),这时,涂覆耐高温涂层可以保护物料输送装置42。
或者,在另一种可能的实现方式中,物料输送装置42也可以采用耐高温材料制作。
在一种可能的实施例中,熔料装置3还包括隔离装置6,熔料装置3具有进口,隔离装置6安装在进口,当隔离装置6打开时,供料装置通过进口伸入到熔料装置3中;当供料装置退出熔料装置3时,隔离装置6关闭。采用该技术方案的情况下,可以在将固体硅料运送完毕后,使供料装置退出熔料装置3,降低熔料装置3中的高温对供料装置的不良影响。
在一种示例中,熔料装置3进口与密封腔39连通,当隔离装置6打开时,供料装置的物料输送装置42穿过进口伸入密封腔39中,物料输送装置42的落料位置402与熔料腔31的进料口311对应;当物料输送装置42退出密封腔39时,隔离装置6关闭。采用该技术方案的情况下,可以在固体料运送完毕后,使物料输送装置42退出密封腔39,降低密封腔39中的高温对 物料输送装置42的不良影响。
在一种示例中,物料输送装置42为可伸缩的,以便于其伸入或退出密封腔39中,当伸入密封腔39中时,物料输送装置42延伸至熔料腔31的上方,落料位置402与进料口311对应。
其中,当隔离装置6打开,物料输送装置42通过进口伸入到密封腔39中时,第一进气管61、第二进气管62和第三进气管63可以同时通入清洁气体。
当物料输送装置42退出密封腔39,隔离装置6关闭时,第一进气管61停止通入清洁气体,第二进气管62和第三进气管63可以继续同时通入清洁气体。
其中,第一进气管61通入的清洁气体可以从加料位置401进入到物料输送装置42中,然后从落料位置402排出,朝向进料口311流动而进入到熔料腔31中,在熔料腔31中从熔料段朝向导出段313流动,并进入到单晶炉1中,最后从单晶炉1向外排出。在该部分气体的流经过程中,可以将运送固体料过程中产生的粉尘、固体硅料熔化为液态硅料过程中所产生的硅蒸汽携带走,还可以吹拂单晶炉1中液态硅料的表面(尤其是单晶炉1中),减少粉尘降落在液态硅料表面,提高拉晶成功率。
第二进气管62通入的清洁气体可以从落料位置402朝向进料口311流动而进入到熔料腔31中,在熔料腔31中从熔料段朝向导出段313流动,并进入到单晶炉1中,最后从单晶炉1向外排出。在该部分气体的流经过程中,可以将运送固体料过程中产生的粉尘、固体硅料熔化为液态硅料过程中所产生的硅蒸汽携带走,还可以吹拂单晶炉1中液态硅料的表面(尤其是单晶炉1中),减少粉尘降落在液态硅料表面,提高拉晶成功率。
第三进气管63通入的清洁气体可以从保温构件30的通气孔301朝向进料口311流动而进入到熔料腔31中,在熔料腔31中从熔料段朝向导出段313流动,并进入到单晶炉1中,最后从单晶炉1向外排出。在该部分气体的流经过程中,可以将运送固体料过程中产生的粉尘、固体硅料熔化为液态硅料过程中所产生的硅蒸汽携带走,还可以吹拂单晶炉1中液态硅料的表面(尤其是单晶炉1中),减少粉尘降落在液态硅料表面,提高拉晶成功率。
当物料输送装置42通过进口伸入到密封腔39中,持续运送固体硅料时,固体硅料进入到加料位置401,和离开落料位置402均产生粉尘,粉尘量大,三部分清洁气体同时流动,气流量大,可以将较多的粉尘携带走。
当物料输送装置42退出密封腔39,隔离装置6关闭时,只有物料输送装置42上已存放的固体硅料从落料位置402下落至进料口311过程中产生粉尘,粉尘量小,第二进气管62和第三进气管63通入的两部分清洁气体即可将少量粉尘携带走。
在一种可能的实现方式中,参考图9所示,拉晶生产设备还包括真空发生装置9,单晶炉1和冷却出气管72均与真空发生装置9连接。采用该技术方案,在真空发生装置9作用下,利于上述第一进气管61所通入的清洁气体快速进入到物料输送装置42中,利于第二进气管62和第三进气管63所通入的清洁气体快速进入到熔料腔31中,以及利于冷却气体快速从冷却进气管71进入到冷却出气管72中,减少冷却气体在熔料装置3中的流动,从而减少或避免冷却气体进入熔料腔31中。例如,真空发生装置9可以为真空泵。
在一种示例中,第一进气管61、第二进气管62和第三进气管63可以连接于同一气源。清洁气体可以是氮气、氢气、氩气或氦气。
在一种示例中,参考图9所示,单晶炉1内设置有拉晶坩埚,用于盛装液态硅料和用于晶体生长,坩埚与单晶炉1的内壁之间具有间隙,单晶炉1具有位于底壁的出气口,该出气口与真空发生装置9连通。出气口位于底部,利于气流经过液态硅料表面和坩埚四周,以便于将液态硅料表面的粉尘和硅蒸汽携带走,还便于将坩埚四周的粉尘携带走。
根据上述的拉晶生产设备,本申请还提供一种拉晶方法,拉晶方法包括:
封闭拉晶生产设备,使拉晶生产设备处于预设低压状态;
利用进气管持续通入清洁气体,并使清洁气体从单晶炉1持续排出,以保持预设低压状态;
利用加料组件向单晶炉1添加硅料,以进行拉晶;
拉晶完成后,停止通入清洁气体。
采用上述技术方案的情况下,持续通入清洁气体直至拉晶完成,可以将 拉晶过程中产生的粉尘和硅蒸汽尽量多的携带走,降低对拉晶的不良影响,提高拉晶质量和成功率。
在一种示例中,可以使真空发生装置9与单晶炉1连接,以持续抽取拉晶生产设备中的气体,保持拉晶生产设备处于预设低压状态,使清洁气体在真空发生装置9的作用下持续从单晶炉1向外排放以将粉尘和硅蒸汽携带走,以清洁拉晶生产设备的内部。
在一种示例中,当拉晶生产设备包括第一进气管61、第二进气管62和第三进气管63中的至少一者时,在需要通入清洁气体时,可以利用所有的进气管同时通入清洁气体,大流量的清洁气体可以携带走尽量多的粉尘和硅蒸汽。
在一种示例中,当供料装置退出熔料装置3时,供料装置和单晶炉1之间的连通切断,第一进气管61通入的清洁气体不能进入单晶炉1中,因此需要关闭第一进气管61。
在一种示例中,当拉晶生产设备包括冷却装置时,在利用加热组件加热熔料腔31时,利用冷却装置冷却熔料腔31,以使得熔料腔31处于适宜的温度范围内,避免因加热温度过高导致熔料腔31出现软化的情况。具体的,当冷却装置包括冷却进气管71和冷却出气管72时,在利用加热组件加热熔料腔31时,利用冷却进气管71通入冷却气体,以使得熔料腔31处于适宜的温度范围内,避免因加热温度过高导致熔料腔31出现软化的情况。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种液体加料装置,应用于单晶炉,其中,包括:
    熔料装置;所述熔料装置包括熔料腔和加热组件;所述加热组件将所述熔料腔内的固体物料熔化为液体物料;
    供料装置;所述供料装置用于向所述熔料腔内输送固体物料。
  2. 根据权利要求1所述的液体加料装置,其中,所述液体加料装置还包括:
    温度检测装置;所述温度检测装置用于检测所述熔料腔的温度;
    第一控制器,所述第一控制器与所述温度检测装置和所述供料装置和/或所述加热组件连接,所述第一控制器根据所述温度检测装置反馈的温度,实时调整所述供料装置的供料量和/或所述加热组件的功率;
    或;
    第一重量检测装置;所述第一重量检测装置用于检测所述熔料腔内熔体的重量;
    第二控制器,所述第二控制器与所述第一重量检测装置和所述供料装置和/或所述加热组件连接,所述第二控制器根据所述第一重量检测装置反馈的重量,实时调整所述供料装置的供料量和/或所述加热组件的功率;
    或;
    温度检测装置;所述温度检测装置用于检测所述熔料腔的温度;
    第一重量检测装置;所述第一重量检测装置用于检测所述熔料腔内熔体的重量;
    第三控制器,所述第三控制器与所述温度检测装置和所述第一重量检测装置和所述供料装置和/或所述加热组件连接,所述第三控制器根据所述温度检测装置反馈的温度和所述第一重量检测装置反馈的重量,实时调整所述供料装置的供料量和/或所述加热组件的功率。
  3. 根据权利要求1所述的液体加料装置,其中,还包括冷却装置,所述冷却装置设置在所述熔料腔侧部或底部。
  4. 根据权利要求3所述的液体加料装置,其中,还包括:
    流量控制系统,所述流量控制系统用于控制所述冷却装置的流量;
    第四控制器,所述第四控制器与所述流量控制系统和所述供料装置和/ 或所述加热组件连接,用于根据所述熔料腔的温度和/或所述熔料腔内熔体的重量,实时调整所述供料装置的供料量和/或所述加热组件的功率和/或所述流量控制系统的流量。
  5. 根据权利要求1所述的液体加料装置,其中,所述熔料装置还包括导管,所述导管与所述熔料腔相连,且所述导管和/或所述熔料腔靠近所述单晶炉的一端相对于另一端向下倾斜。
  6. 根据权利要求5所述的液体加料装置,其中,所述熔料腔与所述导管为一体结构,包括熔料段和导出段,所述熔料段包括用于接收固体物料的进料口,所述导出段包括用于伸入至单晶炉内的出料口,所述出料口设置有用于防止熔体沿管外壁回流的缺口。
  7. 根据权利要求6所述的液体加料装置,其中,所述熔料段和所述导出段均为凹槽形状;或,所述熔料段和/或所述导出段部分为管状,所述熔料段包括凹槽形状的进料口。
  8. 根据权利要求5所述的液体加料装置,其中,所述熔料装置还包括用于控制所述导管和/或所述熔料腔伸缩的伸缩控制机构。
  9. 根据权利要求1所述的液体加料装置,其中,所述熔料装置还包括第一导料管,所述第一导料管用于将所述供料装置中的固体物料引导至所述熔料腔内,所述第一导料管的上端为漏斗状且设置有围板,以便于接收所述供料装置输送的固体物料且防止固体物料脱离所述第一导料管。
  10. 根据权利要求9所述的液体加料装置,其中,所述熔料装置还包括具有耐高温性能的第二导料管,所述第二导料管一端与所述第一导料管相连,另一端与所述熔料腔连通,以将所述第一导料管中的固体物料引导至所述熔料腔中。
  11. 一种单晶炉,其中,包括如权利要求1至10任一项所述的液体加料装置。
  12. 根据权利要求11所述的单晶炉,其中,所述单晶炉与所述熔料装置一体连接。
  13. 根据权利要求12所述的单晶炉,其中,所述单晶炉还包括隔离装置,所述熔料装置包括与所述单晶炉一体成型的外壳和位于所述外壳内的密封腔,所述熔料腔和所述加热组件位于所述密封腔内,所述外壳包括与所述 单晶炉连通的第一开口和与所述供料装置连通的第二开口,所述隔离装置设置于所述第二开口位置,用于当所述供料装置移除时封闭所述第二开口,使所述单晶炉和所述熔料装置在所述供料装置移除时仍处于密闭环境中。
  14. 根据权利要求11所述的单晶炉,其中,所述液体加料装置上设置有进气管,所述进气管用于通入清洁气体,所述清洁气体经过所述液体加料装置进入单晶炉。
  15. 根据权利要求14所述的单晶炉,其中,所述进气管包括设置于所述熔料装置上的第二进气管和/或第三进气管。
  16. 根据权利要求15所述的单晶炉,其中,所述熔料装置还包括密封腔,所述熔料腔具有与所述单晶炉连通的出料口,所述熔料腔和所述加热组件均位于所述密封腔中。
  17. 根据权利要求16所述的单晶炉,其中,所述第二进气管连通设置于所述密封腔的顶部,所述第二进气管的出气口与所述熔料腔的进料口对应。
  18. 根据权利要求16所述的单晶炉,其中,所述熔料装置还包括位于所述密封腔中的保温构件,所述保温构件具有内腔,所述熔料腔和所述加热组件均位于所述内腔中;
    所述保温构件具有避让孔,所述避让孔与所述熔料腔的进料口对应。
  19. 根据权利要求18所述的单晶炉,其中,所述第三进气管连通设置于所述密封腔的侧部,所述保温构件具有通气孔,所述通气孔的内端与所述熔料腔的进料口连通,外端与所述第三进气管的出气口对应。
  20. 根据权利要求14所述的单晶炉,其中,所述进气管包括位于所述供料装置上的第一进气管。
  21. 根据权利要求20所述的单晶炉,其中,所述供料装置包括加料仓和物料输送装置,所述物料输送装置的两端分别连通所述加料仓和所述单晶炉,用于将固体硅料从所述加料仓输送至所述单晶炉;所述第一进气管连通设置于所述加料仓的侧部,所述清洁气体通过物料输送装置进入所述单晶炉。
  22. 根据权利要求14所述的单晶炉,其中,所述进气管包括第一进气管、第二进气管和第三进气管中的至少一者,所述第一进气管位于所述供料装置上,所述第二进气管和第三进气管位于所述熔料装置上。
  23. 根据权利要求14-22中任一项所述的单晶炉,其中,还包括真空发 生装置,所述单晶炉与所述真空发生装置连接。
  24. 一种单晶炉的供料方法,其中,使用如权利要求11至23任一项所述的单晶炉,包括:
    通过供料装置将固体物料输送至熔料装置内;
    通过所述熔料装置熔化所述固体物料,生成液体物料,并将所述液体物料输送至所述单晶炉内的坩埚中实现液态物料的供料。
  25. 根据权利要求24所述的单晶炉的供料方法,其中,
    根据所述熔料装置的温度,实时调控所述供料装置的供料量或所述加热组件的功率;
    或者;
    根据所述熔料装置内熔体的重量,实时调控所述供料装置的供料量或所述加热组件的功率;
    或者;
    根据所述熔料装置的温度和所述熔料装置内熔体的重量,实时调控所述供料装置的供料量或者所述加热组件的功率。
  26. 根据权利要求25所述的单晶炉的供料方法,其中,所述熔料腔侧部或底部设置有所述冷却装置。
  27. 根据权利要求26所述的单晶炉的供料方法,其中,所述冷却装置的流量可调节;根据所述熔料装置的温度或者所述熔料装置内熔体的重量,实时调控所述供料装置的供料量、所述加热组件的功率和/或所述冷却装置的流量。
  28. 一种拉晶方法,其中,使用权利要求14-23中任一项所述的单晶炉,所述拉晶方法包括:
    封闭所述单晶炉,使所述单晶炉处于预设状态;
    利用所述进气管持续通入清洁气体,并使所述清洁气体从所述单晶炉持续排出,以保持所述预设状态;
    利用所述加料组件向所述单晶炉添加硅料,以进行拉晶;
    拉晶完成后,停止通入清洁气体。
  29. 根据权利要求28所述的拉晶方法,其中,当使用上述权利要求23所述的单晶炉时,利用所述真空发生装置抽取所述单晶炉中的气体,以达到 使所述单晶炉处于预设状态的目的。
  30. 根据权利要求28所述的拉晶方法,其中,当使用上述权利要求21所述的单晶炉时,利用所述第一进气管、第二进气管和第三进气管中的至少一者通入清洁气体。
  31. 根据权利要求28所述的拉晶方法,其中,当使用上述权利要求22所述的单晶炉时,当所述供料装置退出所述熔料装置时,关闭所述第一进气管。
  32. 根据权利要求28所述的拉晶方法,其中,当使用上述权利要求3所述的液体加料装置时,在利用所述加热器加热所述熔料腔时,利用所述冷却装置冷却所述熔料腔。
PCT/CN2023/088052 2022-05-31 2023-04-13 液体加料装置、单晶炉及其供料方法、拉晶方法 WO2023231597A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210612850.1A CN115029776A (zh) 2022-05-31 2022-05-31 一种液体加料装置、单晶炉及其供料方法
CN202210615372.XA CN115012034A (zh) 2022-05-31 2022-05-31 一种拉晶生产设备和拉晶方法
CN202210612850.1 2022-05-31
CN202210615372.X 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231597A1 true WO2023231597A1 (zh) 2023-12-07

Family

ID=89026868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088052 WO2023231597A1 (zh) 2022-05-31 2023-04-13 液体加料装置、单晶炉及其供料方法、拉晶方法

Country Status (1)

Country Link
WO (1) WO2023231597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117888196A (zh) * 2023-12-29 2024-04-16 连城凯克斯科技有限公司 一种光伏单晶炉的连续加料装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170856A1 (en) * 1984-07-06 1986-02-12 General Signal Corporation Process for growing monocrystals of semiconductor materials from shallow crucibles by Czochralski technique
CN212128338U (zh) * 2020-03-09 2020-12-11 隆基绿能科技股份有限公司 一种拉晶设备
CN215800034U (zh) * 2021-07-30 2022-02-11 隆基绿能科技股份有限公司 一种单晶炉加料系统
CN216473572U (zh) * 2021-09-18 2022-05-10 徐州美芯半导体材料科技有限公司 基于液体原料的单晶炉连续加料控制装置
CN115012034A (zh) * 2022-05-31 2022-09-06 隆基绿能科技股份有限公司 一种拉晶生产设备和拉晶方法
CN115029776A (zh) * 2022-05-31 2022-09-09 隆基绿能科技股份有限公司 一种液体加料装置、单晶炉及其供料方法
CN217733347U (zh) * 2022-05-31 2022-11-04 隆基绿能科技股份有限公司 一种拉晶生产设备
CN217733348U (zh) * 2022-05-31 2022-11-04 隆基绿能科技股份有限公司 一种液体加料装置和单晶炉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170856A1 (en) * 1984-07-06 1986-02-12 General Signal Corporation Process for growing monocrystals of semiconductor materials from shallow crucibles by Czochralski technique
CN212128338U (zh) * 2020-03-09 2020-12-11 隆基绿能科技股份有限公司 一种拉晶设备
CN215800034U (zh) * 2021-07-30 2022-02-11 隆基绿能科技股份有限公司 一种单晶炉加料系统
CN216473572U (zh) * 2021-09-18 2022-05-10 徐州美芯半导体材料科技有限公司 基于液体原料的单晶炉连续加料控制装置
CN115012034A (zh) * 2022-05-31 2022-09-06 隆基绿能科技股份有限公司 一种拉晶生产设备和拉晶方法
CN115029776A (zh) * 2022-05-31 2022-09-09 隆基绿能科技股份有限公司 一种液体加料装置、单晶炉及其供料方法
CN217733347U (zh) * 2022-05-31 2022-11-04 隆基绿能科技股份有限公司 一种拉晶生产设备
CN217733348U (zh) * 2022-05-31 2022-11-04 隆基绿能科技股份有限公司 一种液体加料装置和单晶炉

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117888196A (zh) * 2023-12-29 2024-04-16 连城凯克斯科技有限公司 一种光伏单晶炉的连续加料装置

Similar Documents

Publication Publication Date Title
WO2023231597A1 (zh) 液体加料装置、单晶炉及其供料方法、拉晶方法
KR101977049B1 (ko) 실리콘 잉곳의 초크랄스키 성장을 위한 측면공급장치
JP5080971B2 (ja) 結晶製造装置に溶融ソース材料を装入する方法および溶融装置アッセンブリ
CN109306513B (zh) 物料供给装置以及晶体生长系统
CN215800034U (zh) 一种单晶炉加料系统
CN109183140B (zh) 单晶炉及其连续加料装置
JP3115335B2 (ja) 融液補給装置
KR101216521B1 (ko) 피드유닛을 구비하는 실리콘 잉곳 성장 장치
CN217733348U (zh) 一种液体加料装置和单晶炉
CN109306515A (zh) 物料供给装置和晶体生长系统
CN101952489B (zh) 通过定向凝固生产结晶体的装置和方法
CN113699584B (zh) 一种直拉单晶硅微波快速补料连续生产系统及其生产方法
CN217733347U (zh) 一种拉晶生产设备
CN113818074A (zh) 颗粒硅直接用于ccz直拉法制备单晶硅的装置及其方法
TW202317818A (zh) 加料管、單晶生長設備及其加料方法
KR20120003222A (ko) 연속 결정성장을 위한 상부 도킹식 원료 공급장치
CN115012034A (zh) 一种拉晶生产设备和拉晶方法
CN115029776A (zh) 一种液体加料装置、单晶炉及其供料方法
CN207435581U (zh) 一种物料供给装置以及晶体生长系统
CN208414633U (zh) 防溅料物料通道装置
CN115652410A (zh) 一种单晶硅拉制装置及拉制方法
KR101198854B1 (ko) 연속 결정성장을 위한 측부 도킹식 원료 공급장치
CN115679437A (zh) 一种单晶炉加料系统以及加料控制方法
CN210048876U (zh) 柴可拉斯基生长装置转换配件
CN207435580U (zh) 一种物料供给装置和晶体生长系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814790

Country of ref document: EP

Kind code of ref document: A1