WO2023231534A1 - 加热组件及加热雾化装置 - Google Patents

加热组件及加热雾化装置 Download PDF

Info

Publication number
WO2023231534A1
WO2023231534A1 PCT/CN2023/084238 CN2023084238W WO2023231534A1 WO 2023231534 A1 WO2023231534 A1 WO 2023231534A1 CN 2023084238 W CN2023084238 W CN 2023084238W WO 2023231534 A1 WO2023231534 A1 WO 2023231534A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating part
conductive layer
conductive
assembly according
Prior art date
Application number
PCT/CN2023/084238
Other languages
English (en)
French (fr)
Inventor
张蛟
韩达
范农杰
周宏明
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023231534A1 publication Critical patent/WO2023231534A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present application relates to the field of atomization technology, and in particular to a heating component and a heating atomization device including the heating component.
  • Heated atomization devices usually atomize the atomizing medium in a non-burning manner, which can significantly reduce the content of harmful substances in the aerosol formed after atomization and improve the safety of the heated atomizing device.
  • the heated atomization device includes a heating component that generates heat.
  • traditional heating components usually have the defect of uneven temperature field distribution, making it impossible to uniformly heat the atomizing medium.
  • One technical problem solved by this application is how to improve the uniformity of the temperature field distribution of the heating component.
  • a heating component including:
  • the first heating part
  • a third heating part connected between one end of the first heating part and the second heating part;
  • a conductive layer is provided on at least one of the first heating part and the second heating part, the resistivity of the conductive layer is lower than the resistivity of the first heating part and the second heating part, and The conductive layer maintains a set distance from an end of the spacing gap close to the third heating part.
  • a heating atomization device includes a host machine and a heating component as described in any one of the above, and the heating component is provided on the host machine.
  • Figure 1 is a schematic three-dimensional structural view of the heating assembly provided in the first embodiment
  • Figure 2 is a three-dimensional exploded structural diagram of the heating assembly shown in Figure 1;
  • Figure 3 is a graph of temperature and length changes of the heating component shown in Figure 1;
  • Figure 4 is a schematic plan view of the heating assembly provided in the second embodiment.
  • a heating atomization device provided by an embodiment of the present application includes a host and a heating assembly 10.
  • the heating assembly 10 is provided on the host.
  • the host includes a battery and a controller.
  • the battery, controller and heating assembly 10 is electrically connected, and the controller is used to control the battery to power the heating component 10 .
  • the heating component 10 can be inserted into the atomization medium.
  • the heating component 10 can convert electrical energy into heat.
  • the atomization medium will absorb the heat on the heating component 10 and atomize it to form a liquid that can be smoked by the user. Inhaled aerosols.
  • the heating assembly 10 includes a first heating part 110 , a second heating part 120 , a third heating part 130 and a conductive layer 200 .
  • the first heating part 110 , the second heating part 120 , the third heating part 130 and the conductive layer 200 are all conductors, and the resistivity of the first heating part 110 , the second heating part 120 and the third heating part 130 may be 5 ⁇ 10 -5 ⁇ m to 1 ⁇ 10 -4 ⁇ m; the resistivity of the conductive layer 200 is 1.5 ⁇ 10 -8 ⁇ m to 1 ⁇ 10 -6 ⁇ m, so that the resistivity of the conductive layer 200 is low The resistivity of the first heating part 110 , the second heating part 120 and the third heating part 130 .
  • the first heating part 110 and the second heating part 120 are spaced apart, so there is a gap 113 between the first heating part 110 and the second heating part 120.
  • the third heating part 130 is connected between the first heating part 110 and the second heating part 120. between one end of the heating part 120 .
  • the third heating part 130 may be a cone with a tip, for example, the cross-sectional size of the third heating part 130 decreases along the direction in which the first heating part 110 points toward the third heating part 130 .
  • the third heating part 130 with a tip can be quickly inserted into the atomized medium, which also enables the heating component 10 to be quickly inserted into the atomized medium.
  • the conductive layer 200 is disposed on at least one of the first heating part 110 and the second heating part 120. Along the length direction of the entire heating component 10, the conductive layer 200 and the end of the spacing gap 113 close to the third heating part 130 are maintained. Fixed spacing.
  • the conductive layer 200 can be made of pure metal materials such as gold or silver, or can also be made of silver paste or silver-platinum mixed paste.
  • the length of the conductive layer 200 may be 2 mm to 6 mm, for example, 3 mm to 4 mm.
  • the specific length of the conductive layer 200 may be 2 mm, 3 mm, 4 mm or 6 mm.
  • the thickness of the conductive layer may range from 5 ⁇ m to 50 ⁇ m, and the specific value of the thickness may be 5 ⁇ m, 10 ⁇ m, or 50 ⁇ m.
  • the conductive layer 200 can be prepared by physical vapor deposition, dipping or spraying.
  • the number of electrode bodies 300 is two. One of the electrode bodies 300 is disposed in the first heating part 110.
  • the electrode body 300 can be connected to the positive electrode of the battery.
  • the other electrode body 300 is disposed in the second heating part 120.
  • the electrode body 300 Can be connected to the negative terminal of the battery.
  • current may flow through the first electrode body 300, the first heating part 110, the third heating part 130, the second heating part 120 and the second electrode body 300 in sequence. Therefore, the first heating part 110, the third heating part 130, and the second heating part 120 form a series circuit.
  • the electrode body 300 includes an electrode part 310 and a lead wire 320.
  • the electrode part 310 is provided on the first heating part 110 and the second heating part 120. One end of the lead wire 320 is connected to the electrode. 310 is connected, and the other end of the lead 320 is connected to the battery.
  • the electrode part 310 and the lead wire 320 may both be located outside the spacing gap 113 .
  • the heating assembly 10 may further include a bearing base 410 , which is fixed on an end of the first heating part 110 and the second heating part 120 away from the third heating part 130 .
  • the lead wires 320 can be passed through the bearing seat 410, and the bearing seat 410 can be directly fixed on the host, so that the entire heating assembly 10 is fixed on the host through the bearing seat 410.
  • the cross-section of the spacing gap 113 is generally rectangular, the first heating part 110 has a first plane 111, and the second heating part 120 has a second plane 121.
  • the first plane 111 and the second plane 121 are spaced apart along the direction perpendicular to the length of the heating component 10 , and the spacing gap 113 is located between the first plane 111 and the second plane 121 , so that the first plane 111 and the second plane 121 define the spacing gap. 113 part of the border.
  • a green body can be formed first.
  • the green body includes a cylindrical section and a conical section.
  • the conical section is connected to one end of the cylindrical section.
  • a slit is formed at one end of the cylindrical section away from the conical section.
  • the slit passes through The central axis of the cylindrical section extends to the vicinity of the cone section.
  • the slit will form the above-mentioned spacing slit 113.
  • the slit will bisect the cylindrical section.
  • the two halves of the cylindrical section bisected by the slit will be the first heating part 110 and the second heating part 110.
  • heating part 120, and the cone section is the third heating part 130.
  • the heating element can also be in the form of a sheet.
  • the conductive layer 200 includes a first conductive part 210 and a second conductive part 220.
  • the length, width and thickness of the first conductive part 210 and the second conductive part 220 may be equal.
  • the first conductive part 210 is attached to the first heating part 110
  • the second conductive part 220 is attached to the second heating part 120
  • the ends of both the first conductive part 210 and the second conductive part 220 reach the third heating part 130
  • the distances from the ends of the first conductive part 210 and the second conductive part 220 to the end of the spacing gap 113 close to the third heating part 130 are also equal.
  • the first conductive part 210 and the second conductive part 220 are at the same position in the length direction of the entire heating component 10 , so that they are aligned with each other in the length direction of the entire heating component 10 .
  • Both the first conductive part 210 and the second conductive part 220 are arc-shaped.
  • the shape of the first conductive part 210 matches the shape of the outer surface of the first heating part 110 so that the first conductive part 210 is attached to the first heating part.
  • the outside surface of 110 is located outside the spacing gap 113 .
  • the shape of the second conductive part 220 matches the shape of the outer surface of the second heating part 120 so that the second conductive part 220
  • the electrical part 220 is attached to the outer surface of the second heating part 120 and is located outside the spacing gap 113 .
  • the first conductive part 210 may also be attached to the first plane 111
  • the second conductive part 220 may be attached to the second plane 121 , so that both the first conductive part 210 and the second conductive part 220 are located between the spacing gaps 113 Inside.
  • the distance between the two electrode parts 310 located on the first heating part 110 and the second heating part 120 and the third heating part 130 is equal. Obviously, the distance between the two electrode parts 310 and the carrying seat 410 is also equal.
  • the two electrode parts 310 The distance to the end of the spacing gap 113 close to the third heating part 130 is also equal. Generally speaking, the two electrode portions 310 are at the same position along the entire length direction of the heating component 10 , so that the two electrode portions 310 are aligned with each other along the entire length direction of the heating component 10 .
  • Both the first conductive part 210 and the second conductive part 220 have a first end and a second end, the first end is disposed close to the third heating part 130 , and the second end is disposed away from the third heating part 130 .
  • the first end is separated from the end of the spacing gap 113 close to the third heating part 130 by a first spacing L 1
  • the second end is separated from the electrode part 310 by a second spacing L 2 .
  • the second spacing L 2 is greater than the first distance L 1 .
  • the current on the first heating part 110 reaches the position of the first conductive part 210, since the resistivity of the first conductive part 210 is significantly lower than the resistivity of the first heating part 110, the current mainly passes through the first conductive part. 210 flow.
  • the current on the second heating part 120 reaches the position of the second conductive part 220, since the resistivity of the second conductive part 220 is significantly lower than the resistivity of the second heating part 120, the current mainly passes through the second conductive part 220.
  • the two conductive parts 220 flow.
  • the heating component 10 can be divided into three regions along its length direction.
  • the first region 141 is located between the conductive layer 200 and the third heating part 130 .
  • the length of the first region 141 is approximately equal to the first spacing L 1 ;
  • the second region 142 Located between the conductive layer 200 and the electrode part 310 , the length of the second region 142 is approximately equal to the second spacing L 2 ;
  • the third region 143 is located in the area covered by the conductive layer 200 , and the length of the third region 143 is approximately equal to the length of the conductive layer 200 length, the first area 141, the second area 142 and the third area 143 are working areas for heating the atomization medium.
  • the current when the current flows through the first heating part 110, the third heating part 130 and the second heating part 120 in sequence, the current first flows through a section of the first heating part 110 located in the second area 142, and then flows through The first conductive part 210, Then it flows through a section of the first heating part 110 located in the first region 141, then flows through the second heating part 120, then flows through a section of the second heating part 120 located in the first region 141, and then flows through the second conductive part 220, Then it flows through a section of the second heating part 120 located in the second area 142 .
  • the current when the current flows through the third region 143, the current mainly flows through the first conductive part 210 and the second conductive part 220, and the current will be difficult or even impossible to pass through the first heating part 110 and the second heating part 120 located in the third region. A section of flow in three areas 143. Therefore, the currents flowing through the first heating part 110, the second heating part 120, the first conductive part 210 and the second conductive part 220 are substantially the same.
  • a first high temperature area will be formed in the first area 141, and the second area will The resistivity of the first heating part 110 and the second heating part 120 in the second area 142 is relatively high, and a second high temperature area will be formed in the second area 142 .
  • the resistivity of the first conductive part 210 and the second conductive part 220 in the third region 143 is low, and the third region 143 will form a sub-high temperature zone.
  • the temperature in the first high temperature zone has a first peak value 11, and a second high temperature zone.
  • the temperature in the peak zone has a second peak value 12, and the sub-high temperature zone has a temperature valley value 13.
  • the first peak value 11 and the second peak value 12 are approximately the same, and the difference between the temperature valley value 13 and the first peak value 11 and the second peak value 12 can be Less than 20°C, for example, the difference between the temperature valley value 13 and the first peak value 11 and the second peak value 12 is less than 10°C. Therefore, when the length and temperature variation curve of the heating component 10 is formed, the first region 141 is closest to the circular point, the third region 143 is the second, and the second region 142 is the farthest from the circular point. In view of the existence of the first peak 11 and the second peak 12, the curve is roughly a bimodal curve with two peaks.
  • the difference between the temperature valley 13 and the first peak 11 and the second peak 12 is small, so that the first The temperatures in the area 141, the second area 142 and the third area 143 are approximately the same, thereby improving the uniformity of the temperature field distribution of the heating component 10 in the working area and ensuring that the heating component 10 heats the atomized medium evenly.
  • the length and temperature variation curve of the heating component 10 will be a single-peak curve with only one peak.
  • This single-peak curve is similar to a parabola.
  • the temperature changes with the length. Gradually increasing or decreasing causes a large temperature gradient in the working area of the heating component 10 , thereby affecting the uniformity of the temperature distribution of the heating component 10 .
  • the heating component 10 may also include a protective layer, which may be made of enamel material to protect the The surface of the protective layer is smooth.
  • the protective layer is attached to the first heating part 110 and the second heating part 120, and the protective layer covers the conductive layer 200.
  • the protective layer will protect the conductive layer 200 and prevent condensation of the atomized medium from adhering to the first heating part 110, the second heating part 120 and the conductive part.
  • the cross-section of the spacing gap 113 is generally annular.
  • the heating component 10 has a rod-shaped structure, and the second heating part 120 is sleeved outside the first heating part 110.
  • the first heating part 110 may be a cylindrical rod, and the second heating part 120 may be a cylindrical sleeve.
  • the first heating part 110 has a first annular surface 112, which is actually the outer peripheral surface of the first heating part 110; the second heating part 120 has a second annular surface 122, which is actually the first annular surface.
  • the inner peripheral surface of the heating part 110 is not limited to the first annular surface.
  • the spacing gap 113 is located between the first annular surface 112 and the second annular surface 122 such that the first annular surface 112 and the second annular surface 122 define part of the boundary of the spacing gap 113 .
  • the third heating part 130 will close one end of the gap 113 .
  • the second heating part 120 and the third heating part 130 can be integrally formed.
  • the third heating part 130 will be connected with the end of the first heating part 110. Electrical connection. In this way, the first heating part 110 , the second heating part 120 and the third heating part 130 can also form a series circuit.
  • the conductive layer 200 may be in the shape of a cylindrical sleeve, the conductive layer 200 may be located within the spacing gap 113 , and the conductive layer 200 may be directly sleeved on the first annular surface 112 of the first heating part 110 .
  • the conductive layer 200 can also be placed on the second heating part 120 , in which case the conductive layer 200 is located outside the spacing gap 113 .
  • the number of conductive layers 200 may be two, and the conductive layers 200 may be placed on both the first heating part 110 and the second heating part 120 .
  • One of the electrode parts 310 is located on an end of the first heating part 110 close to the bearing seat 410, and the other electrode part 310 is located on an end of the second heating part 120 close to the bearing seat 410.
  • the electrode part 310 located on the first heating part 110 is also It is not covered by the second heating part 120 , so the electrode part 310 on the first heating part 110 is closer to the carrier 410 than the electrode part 310 on the second heating part 120 .
  • the two electrode portions 310 are located at different positions in the length direction of the heating component 10 , so that the two electrode portions 310 are offset in the length direction of the heating component 10 .
  • the first end of the conductive layer 200 and the end of the spacing gap 113 close to the third heating part 130 are separated by a first distance L 1
  • the second end of the conductive layer 200 is separated from the electrode on the first heating part 110
  • the portions 310 are spaced apart by a second distance L 2 that is greater than the first distance L 1 .
  • the first region 141 is located between the conductive layer 200 and the third heating part 130 .
  • the length of the first region 141 is approximately equal to the first distance L 1 .
  • the second region 142 is located between the conductive layer 200 and the electrode part 310 of the first heating part 110 .
  • the length of the second region 142 is approximately equal to the second spacing L 2 ; the third region 143 is located in the area covered by the conductive layer 200 , and the length of the third region 143 is approximately equal to the length of the conductive layer 200 .
  • the length and temperature change curve of the heating component 10 is roughly a bimodal curve, so that the temperatures in the first region 141, the second region 142 and the third region 143 are approximately the same, which improves the temperature field of the heating component 10 in the working area.
  • the uniformity of distribution ensures that the heating component 10 evenly heats the atomized medium.
  • the heating component 10 may further include an insulating layer 420 , which may be filled in the gap 113 between the first plane 111 and the second plane 121 , and the insulating layer 420 may be in a sheet shape.
  • the insulating layer 420 may also be filled in the gap 113 between the first annular surface 112 and the second annular surface 122 , and the insulating layer 420 is in the shape of a cylindrical sleeve.
  • the rigidity and bending strength of the heating component 10 can be enhanced, and the heating component 10 can be prevented from bending or breaking during the process of being inserted into the atomizing medium.
  • the insulation performance between the first heating part 110 and the second heating part 120 can be enhanced to prevent the first heating part 110 and the second heating part 120 from contacting each other and causing a short circuit under the action of external impact force.

Landscapes

  • Resistance Heating (AREA)

Abstract

一种加热组件(10),包括:第一加热部(110);第二加热部(120),与所述第一加热部(110)之间存在间隔缝隙(113);第三加热部(130),连接在所述第一加热部(110)和所述第二加热部(120)的一端之间;及导电层(200),设置在所述第一加热部(110)和所述第二加热部(120)的至少一个上,所述导电层(200)的电阻率低于所述第一加热部(110)和所述第二加热部(120)的电阻率,且所述导电层(200)与所述间隔缝隙(113)靠近所述第三加热部(130)的一端保持设定间距。

Description

加热组件及加热雾化装置 技术领域
本申请涉及雾化技术领域,特别是涉及一种加热组件及包含该加热组件的加热雾化装置。
背景技术
加热雾化装置通常采用加热不燃烧的方式对雾化介质进行雾化,如此可以大幅减少雾化后所形成气溶胶中有害物质的含量,提高加热雾化装置使用的安全性。加热雾化装置包括产生热量的加热组件,但是,对于传统的加热组件,通常存在温度场分布不均匀的缺陷,从而无法对雾化介质进行均匀加热。
发明内容
本申请解决的一个技术问题是如何提高加热组件温度场分布的均匀性。
一种加热组件,包括:
第一加热部;
第二加热部,与所述第一加热部之间存在间隔缝隙;
第三加热部,连接在所述第一加热部和所述第二加热部的一端之间;及
导电层,设置在所述第一加热部和所述第二加热部的至少一个上,所述导电层的电阻率低于所述第一加热部和所述第二加热部的电阻率,且所述导电层与所述间隔缝隙靠近所述第三加热部的一端保持设定间距。
一种加热雾化装置,包括主机和上述中任一项所述的加热组件,所述加热组件设置在所述主机上。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为第一实施例提供的加热组件的立体结构示意图;
图2为图1所示加热组件的立体分解结构示意图;
图3为图1所示加热组件的温度与长度变化曲线图;
图4为第二实施例提供的加热组件的平面剖视结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1、图2和图3,本申请一实施例提供的加热雾化装置包括主机和加热组件10,加热组件10设置在主机上,主机包括电池和控制器,电池跟控制器和加热组件10电性连接,控制器用于控制电池对加热组件10供电。加热组件10可以插置在雾化介质中,当电池对加热组件10供电后,加热组件10能够将电能转化为热量,雾化介质将吸收加热组件10上的热量并雾化形成可供用户抽吸的气溶胶。
参阅图1、图2和图3,在一些实施例中,加热组件10包括第一加热部110、第二加热部120、第三加热部130和导电层200。第一加热部110、第二加热部120、第三加热部130和导电层200四者均为导体,第一加热部110、第二加热部120和第三加热部130的电阻率可以为5×10-5Ω·m到1×10-4Ω·m;导电层200的电阻率为1.5×10-8Ω·m到1×10-6Ω·m,使得导电层200的电阻率低于第一加热部110、第二加热部120和第三加热部130的电阻率。第一加热部110和第二加热部120两者间隔设置,故第一加热部110和第二加热部120之间存在间隔缝隙113,第三加热部130连接在第一加热部110和第二加热部120的一端之间。第三加热部130可以为具有尖端的锥形体,例如,沿第一加热部110指向第三加热部130的方向,第三加热部130的横截面尺寸减少。具有尖端的第三加热部130能够快速插入至雾化介质中,也使得加热组件10能够快速插入至雾化介质中。
导电层200设置在第一加热部110和第二加热部120两者中的至少一个上,沿整个加热组件10的长度方向,导电层200与间隔缝隙113靠近第三加热部130的一端保持设定间距。导电层200可以采用金或银等纯金属材料制成,还可以采用银浆或银铂混合浆制成。导电层200的长度可以为2mm至6mm,例如为3mm至4mm,导电层200长度的具体取值可以为2mm、3mm、4mm或6mm等。导电呈厚度的取值范围可以为5μm至50μm,该厚度的具体取值可以为5μm、10μm或50μm等。导电层200可以通过物理气相沉积浸涂或喷涂等方式制备。
电极体300的数量为两个,其中一个电极体300设置在第一加热部110,该电极体300可以与电池的正极连接;另外一个电极体300设置在第二加热部120,该电极体300可以与电池的负极连接。当电池对加热组件10供电时,电流可以依次流经第一电极体300、第一加热部110、第三加热部130、第二加热部120和第二电极体300。故第一加热部110、第三加热部130、第二加热部120三者形成串联电路。电极体300包括电极部310和引线320,电极部310设置在第一加热部110和第二加热部120上,引线320的一端与电极 部310连接,引线320的另一端与电池连接。电极部310和引线320可以均位于间隔缝隙113之外。
加热组件10还可以包括承载座410,该承载座410固定在第一加热部110和第二加热部120远离第三加热部130的一端。引线320可以穿设在该承载座410中,承载座410可以直接固定在主机上,使得整个加热组件10通过承载座410固定在主机上。
参阅图1、图2和图3,在第一实施例中,该间隔缝隙113的横截面大致为矩形,第一加热部110具有第一平面111,第二加热部120具有第二平面121,第一平面111和第二平面121沿垂直于加热组件10长度方向间隔设置,该间隔缝隙113位于第一平面111和第二平面121之间,使得第一平面111和第二平面121界定间隔缝隙113的部分边界。当加热体为杆状时,可以首先形成坯体,该坯体包括圆柱段和圆锥段,圆锥段与圆柱段的一端连接,在圆柱段远离圆锥段的一端一端形成切缝,该切缝经过圆柱段的中心轴线延伸至圆锥段附近,该切缝将形成上述间隔缝隙113,该切缝将圆柱段进行平分,圆柱段被该切缝平分的两半即为第一加热部110和第二加热部120,而圆锥段即为第三加热部130。当然,加热体也可以为片状。
导电层200包括第一导电部210和第二导电部220,在展平状态下,第一导电部210和第二导电部220的长度、宽度和厚度均可以相等。第一导电部210附着在第一加热部110上,第二导电部220附着在第二加热部120上,第一导电部210和第二导电部220两者的端部到第三加热部130的距离相等,第一导电部210和第二导电部220两者的端部到间隔缝隙113靠近第三加热部130的一端的距离也相等。通俗而言,第一导电部210和第二导电部220两者在整个加热组件10的长度方向所处的位置相同,使得两者在整个加热组件10的长度方向相互对齐。第一导电部210和第二导电部220两者均为弧状,第一导电部210的形状跟第一加热部110的外侧面的形状相匹配,使得第一导电部210附着在第一加热部110的外侧面上而位于间隔缝隙113之外。第二导电部220的形状跟第二加热部120的外侧面的形状相匹配,使得第二导 电部220附着在第二加热部120的外侧面上而位于间隔缝隙113之外。当然,第一导电部210也可以附着在第一平面111上,第二导电部220附着在第二平面121上,使得第一导电部210和第二导电部220两者均位于间隔缝隙113之内。
位于第一加热部110和第二加热部120上的两个电极部310到第三加热部130的距离相等,显然,两个电极部310到承载座410的距离也相等,两个电极部310到间隔缝隙113靠近第三加热部130的一端的距离也相等。通俗而言,两个电极部310在整个加热组件10的长度方向所处的位置相同,使得两个电极部310在整个加热组件10的长度方向相互对齐。
第一导电部210和第二导电部220两者均具有第一端和第二端,第一端靠近第三加热部130设置,第二端远离第三加热部130设置。沿整个加热组件10的长度方向,第一端与间隔缝隙113靠近第三加热部130的一端间隔第一间距L1,第二端与电极部310间隔第二间距L2,该第二间距L2大于第一间距L1
当第一加热部110上的电流抵达至第一导电部210所处位置时,由于第一导电部210的电阻率明显低于第一加热部110的电阻率,使得电流主要通过第一导电部210流动。同样地,当第二加热部120上的电流抵达至第二导电部220所处位置时,由于第二导电部220的电阻率明显低于第二加热部120的电阻率,使得电流主要通过第二导电部220流动。
可以将加热组件10沿自身长度方向划分为三个区域,第一区域141位于导电层200和第三加热部130之间,第一区域141的长度大致等于第一间距L1;第二区域142位于导电层200和电极部310之间,第二区域142的长度大致等于第二间距L2;第三区域143位于导电层200所覆盖的区域,第三区域143的长度大致等于导电层200的长度,第一区域141、第二区域142和第三区域143为对雾化介质进行加热的工作区域。例如,在电流先后依次流经第一加热部110、第三加热部130和第二加热部120的情况下,电流首先流经第一加热部110上位于第二区域142的一段,然后流经第一导电部210, 接着流经第一加热部110位于第一区域141的一段,接着流经第二加热部120,接着流经第二加热部120位于第一区域141的一段,接着流经第二导电部220,接着流经第二加热部120位于第二区域142内的一段。需要说明的是,当电流流经第三区域143时,电流主要通过第一导电部210和第二导电部220流动,电流将难以甚至无法通过第一加热部110和第二加热部120位于第三区域143的一段流动。故流经第一加热部110、第二加热部120、第一导电部210和第二导电部220上的电流大致相同。
根据焦耳定律P=I2·R,鉴于第一区域141内的第一加热部110和第二加热部120的电阻率较高,该第一区域141内将形成第一高温区,第二区域142内的第一加热部110和第二加热部120的电阻率较高,该第二区域142内将形成第二高温区。而第三区域143内的第一导电部210和第二导电部220的电阻率较低,该第三区域143将形成亚高温区,第一高温区内的温度具有第一峰值11,第二高峰区内的温度具有第二峰值12,亚高温区内具有温度谷值13,第一峰值11和第二峰值12大致相同,温度谷值13跟第一峰值11和第二峰值12之差可以小于20℃,例如温度谷值13跟第一峰值11和第二峰值12之差小于10℃。因此,当形成加热组件10的长度与温度的变化曲线时,第一区域141距离圆点的最近,第三区域143次之,第二区域142距离圆点最远。鉴于第一峰值11和第二峰值12的存在,该曲线大致为具有两个峰值的双峰曲线,同时温度谷值13跟第一峰值11和第二峰值12之差较小,如此使得第一区域141、第二区域142和第三区域143内的温度大致相同,由此提高加热组件10在工作区域上温度场分布的均匀性,确保加热组件10对雾化介质进行均匀加热。
事实上,假如不设置该导电层200,将使得加热组件10的长度与温度变化曲线为只具有一个峰值的单峰曲线,该单峰曲线类似于抛物线,在峰值点的两侧,温度随长度逐渐增大或逐渐减少,如此使得温度在加热组件10的工作区域内存在较大的温度梯度,从而影响加热组件10温度分布的均匀性。
加热组件10还可以包括保护层,保护层可以采用釉质材料制成,使得保 护层表面光滑。保护层附着在第一加热部110和第二加热部120上,保护层覆盖导电层200。保护层将对导电层200起到保护作用,同时防止雾化介质的冷凝物附着在第一加热部110、第二加热部120和导电部上。
参阅图4,在第二实施例中,该间隔缝隙113的横截面大致为圆环形。加热组件10为杆状结构,第二加热部120套设在第一加热部110之外,第一加热部110可以为圆柱棒,第二加热部120可以为圆柱套筒。第一加热部110具有第一环形面112,第一环形面112实际为第一加热部110的外侧周面;第二加热部120具有第二环形面122,第二环形面122实际为第一加热部110的内侧周面。该间隔缝隙113位于第一环形面112和第二环形面122之间,使得第一环形面112和第二环形面122界定间隔缝隙113的部分边界。当第二加热部120套设在第一加热部110之外时,第三加热部130将封闭间隔缝隙113的一端。第二加热部120和第三加热部130两者可以一体成型,当第二加热部120套设在第一加热部110之外时,第三加热部130将与第一加热部110的端部电性连接。如此同样可以使得第一加热部110、第二加热部120和第三加热部130三者形成串联电路。
导电层200可以为圆柱套筒状,导电层200可以位于间隔缝隙113之内,导电层200可以直接套设在第一加热部110的第一环形面112上。当然,在其他实施例中,例如导电层200也可以套设在第二加热部120上,此时导电层200位于间隔缝隙113之外。又如导电层200的数量可以为两个,第一加热部110和第二加热部120上均可以套设有导电层200。
其中一个电极部310位于第一加热部110靠近承载座410的一端上,另外一个电极部310位于第二加热部120靠近承载座410的一端上,位于第一加热部110上的电极部310并未被第二加热部120覆盖,故第一加热部110上的电极部310相对第二加热部120上的电极部310跟靠近承载座410。该两个电极部310位于加热组件10长度方向上的不同位置,使得两个电极部310在加热组件10长度方向上错位设置。
跟第一实施例比较类似,相同之处请参考第一实施例中的相关描述,沿 整个加热组件10的长度方向,导电层200的第一端与间隔缝隙113靠近第三加热部130的一端间隔第一间距L1,导电层200的第二端与第一加热部110上的电极部310间隔第二间距L2,该第二间距L2大于第一间距L1。第一区域141位于导电层200和第三加热部130之间,第一区域141的长度大致等于第一间距L1,第二区域142位于导电层200和第一加热部110的电极部310之间,第二区域142的长度大致等于第二间距L2;第三区域143位于导电层200所覆盖的区域,第三区域143的长度大致等于导电层200的长度。同样地,加热组件10的长度与温度变化曲线大致为双峰曲线,如此使得第一区域141、第二区域142和第三区域143内的温度大致相同,提高加热组件10在工作区域上温度场分布的均匀性,确保加热组件10对雾化介质进行均匀加热。
参阅图4,加热组件10还可以包括绝缘层420,绝缘层420可以填充在第一平面111和第二平面121之间的间隔缝隙113中,该绝缘层420呈片状。绝缘层420也可以填充在第一环形面112和第二环形面122之间的间隔缝隙113中,该绝缘层420呈圆柱套筒状。通过设置绝缘层420,一方面可以加强加热组件10的刚度和抗弯强度,防止加热组件10在插置在雾化介质的过程中产生弯曲或折断。另一方面可以加强第一加热部110和第二加热部120之间的绝缘性能,防止第一加热部110第二加热部120在外界冲击力作用下相互接触而产生短路。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种加热组件,其特征在于,包括:
    第一加热部;
    第二加热部,与所述第一加热部之间存在间隔缝隙;
    第三加热部,连接在所述第一加热部和所述第二加热部的一端之间;及
    导电层,设置在所述第一加热部和所述第二加热部的至少一个上,所述导电层的电阻率低于所述第一加热部和所述第二加热部的电阻率,且所述导电层与所述间隔缝隙靠近所述第三加热部的一端保持设定间距。
  2. 根据权利要求1所述的加热组件,其特征在于,所述第一加热部具有第一平面,所述第二加热部具有第二平面,所述第一平面和所述第二平面间隔设置,所述第一平面和所述第二平面之间形成所述间隔缝隙。
  3. 根据权利要求2所述的加热组件,其特征在于,所述导电层位于所述间隔缝隙之外,且所述导电层包括在展平状态下长度和宽度相等的第一导电部和第二导电部,所述第一导电部附着在所述第一加热部上,所述第二导电部附着在所述第二加热部上,所述第一导电部和所述第二导电部两者的端部到所述第三加热部的距离相等。
  4. 根据权利要求3所述的加热组件,其特征在于,还包括保护层,所述保护层附着在所述第一加热部和所述第二加热部,所述保护层覆盖所述导电层。
  5. 根据权利要求4所述的加热组件,其特征在于,所述保护层采用釉质材料制成。
  6. 根据权利要求1所述的加热组件,其特征在于,所述第二加热部套设在所述第一加热部之外,所述第一加热部具有第一环形面,所述第二加热部具有第二环形面,所述第一环形面和所述第二环形面间隔设置,所述第一环形面和所述第二环形面之间形成所述间隔缝隙,所述导电层套设在所述第一环形面上。
  7. 根据权利要求1所述的加热组件,其特征在于,还包括电极体,所述 第一加热部和所述第二加热部均设置有所述电极体,所述导电层具有靠近所述第三加热部设置的第一端和远离所述第三加热部设置的第二端,所述第一端与所述间隔缝隙靠近所述第三加热部的一端间隔第一间距,所述第二端与最远离所述第三加热部的所述电极体间隔第二间距,所述第二间距大于所述第一间距。
  8. 根据权利要求7所述的加热组件,其特征在于,所述电极体包括电极部和引线,所述电极部设置在第一加热部和所述第二加热部上,所述引线的一端与所述电极部连接。
  9. 根据权利要求8所述的加热组件,其特征在于,所述电极部和所述引线均位于所述间隔缝隙之外。
  10. 根据权利要求7所述的加热组件,其特征在于,所述加热组件沿长度方向具有第一区域、第二区域和第三区域,所述第一区域位于所述导电层和所述第三加热部之间,所述第二区域位于所述导电层和所述电极部之间,所述第三区域位于所述导电层所覆盖的区域,所述第一区域内形成温度具有第一峰值的第一高温区,所述第二区域内形成温度具有第二峰值的第二高温区,所述第三区域内形成具有温度谷值的亚高温区,所述第一峰值和所述第二峰值相等,所述温度谷值小于所述第一峰值。
  11. 根据权利要求10所述的加热组件,其特征在于,所述温度谷值与所述第一峰值之差小于20℃。
  12. 根据权利要求11所述的加热组件,其特征在于,所述温度谷值与所述第一峰值之差小于10℃。
  13. 根据权利要求11所述的加热组件,其特征在于,所述第一区域的长度等于所述第一间距的长度,所述第二区域等于所述第二间距的长度,所述第三区域等于所述导电层的长度。
  14. 根据权利要求1所述的加热组件,其特征在于,所述第三加热部为锥形体,沿所述第一加热部指向所述第三加热部的方向,所述第三加热部的横截面尺寸减少。
  15. 根据权利要求1所述的加热组件,其特征在于,还包括承载座,所述承载座固定在所述第一加热部和所述第二加热部远离所述第三加热部的一端。
  16. 根据权利要求1所述的加热组件,其特征在于,所述导电层的长度为2mm至6mm,所述导电层的厚度为5μm至50μm,所述导电层采用金或银材料制成。
  17. 根据权利要求1所述的加热组件,其特征在于,所述导电层通过物理气相沉积或喷涂方式制备。
  18. 根据权利要求1所述的加热组件,其特征在于,还包括绝缘层,所述绝缘层填充在所述间隔缝隙中。
  19. 根据权利要求1所述的加热组件,其特征在于,所述第一加热部、所述第二加热部和所述第三加热部的电阻率为5×10-5Ω·m到1×10-4Ω·m;所述导电层的电阻率为1.5×10-8Ω·m到1×10-6Ω·m。
  20. 一种加热雾化装置,其特征在于,包括主机和权利要求1至19中任一项所述的加热组件,所述加热组件设置在所述主机上。
PCT/CN2023/084238 2022-05-31 2023-03-28 加热组件及加热雾化装置 WO2023231534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221332954.9 2022-05-31
CN202221332954.9U CN217791481U (zh) 2022-05-31 2022-05-31 加热组件及加热雾化装置

Publications (1)

Publication Number Publication Date
WO2023231534A1 true WO2023231534A1 (zh) 2023-12-07

Family

ID=83987251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084238 WO2023231534A1 (zh) 2022-05-31 2023-03-28 加热组件及加热雾化装置

Country Status (2)

Country Link
CN (1) CN217791481U (zh)
WO (1) WO2023231534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217791481U (zh) * 2022-05-31 2022-11-15 海南摩尔兄弟科技有限公司 加热组件及加热雾化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111035070A (zh) * 2020-01-08 2020-04-21 深圳麦时科技有限公司 气溶胶产生装置及其发热组件
CN212488472U (zh) * 2020-01-22 2021-02-09 筑思有限公司 加热组件、雾化控制组件、烟具以及电子烟
CN113142675A (zh) * 2020-01-22 2021-07-23 筑思有限公司 加热组件、雾化控制组件、烟具以及电子烟
CN215347058U (zh) * 2021-03-30 2021-12-31 深圳麦克韦尔科技有限公司 加热器及加热雾化装置
CN217791481U (zh) * 2022-05-31 2022-11-15 海南摩尔兄弟科技有限公司 加热组件及加热雾化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111035070A (zh) * 2020-01-08 2020-04-21 深圳麦时科技有限公司 气溶胶产生装置及其发热组件
CN212488472U (zh) * 2020-01-22 2021-02-09 筑思有限公司 加热组件、雾化控制组件、烟具以及电子烟
CN113142675A (zh) * 2020-01-22 2021-07-23 筑思有限公司 加热组件、雾化控制组件、烟具以及电子烟
CN215347058U (zh) * 2021-03-30 2021-12-31 深圳麦克韦尔科技有限公司 加热器及加热雾化装置
CN217791481U (zh) * 2022-05-31 2022-11-15 海南摩尔兄弟科技有限公司 加热组件及加热雾化装置

Also Published As

Publication number Publication date
CN217791481U (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US20210162149A1 (en) Electronic cigarette with coil-less atomizer
WO2023231534A1 (zh) 加热组件及加热雾化装置
EP2724630B1 (en) Atomizing device and electronic cigarette having same
KR102533347B1 (ko) 전자 베이핑 장치의 기화기 및 기화기의 형성 방법
KR20230092955A (ko) 니들 형상 발열체 및 에어로졸 발생장치
JP2022501008A (ja) 加熱式喫煙具及びその加熱ユニット
KR102417444B1 (ko) 궐련형 전자담배용 원통형 발열히터 및 이를 포함하는 궐련형 전자담배
US20240016217A1 (en) Vapor generation device
WO2022206301A1 (zh) 加热器及加热雾化装置
WO2024055731A1 (zh) 加热组件及气溶胶生成装置
WO2023109532A1 (zh) 加热器以及包括该加热器的烟具
CN217117529U (zh) 雾化器及电子雾化装置
WO2023221653A1 (zh) 加热体及加热雾化装置
US20200229498A1 (en) Heating wire and electronic atomizing device having the same
CN112841741B (zh) 加热器以及包含该加热器的烟具
CN110839965A (zh) 一种电子烟发热组件
CN102403076B (zh) 抗雷击及过短路型的熔断电阻器
WO2022062342A1 (zh) 发热组件及气溶胶形成装置
CN112261739A (zh) 一种发热体及发热体的制作方法
WO2022062354A1 (zh) 发热组件及气溶胶形成装置
WO2023000858A1 (zh) 加热组件和气溶胶产生装置
KR20210006399A (ko) 가열 코팅을 갖는 에어로졸 발생 장치
CN218921702U (zh) 一种加热装置及电子烟具
JP4807681B2 (ja) 低温用の溶射発熱体及びその製造方法並びにそれを用いた加熱装置
JP7189086B2 (ja) プラズマ発生装置用部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814731

Country of ref document: EP

Kind code of ref document: A1