WO2022206301A1 - 加热器及加热雾化装置 - Google Patents

加热器及加热雾化装置 Download PDF

Info

Publication number
WO2022206301A1
WO2022206301A1 PCT/CN2022/079637 CN2022079637W WO2022206301A1 WO 2022206301 A1 WO2022206301 A1 WO 2022206301A1 CN 2022079637 W CN2022079637 W CN 2022079637W WO 2022206301 A1 WO2022206301 A1 WO 2022206301A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating body
heater
heating
width
Prior art date
Application number
PCT/CN2022/079637
Other languages
English (en)
French (fr)
Inventor
周宏明
张蛟
范农杰
邓金兴
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2022206301A1 publication Critical patent/WO2022206301A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present disclosure relates to the technical field of atomization, and in particular, to a heater and a heating atomization device including the heater.
  • the heating and atomizing device includes a heater.
  • the heater can heat the solid aerosol-generating substrate such as tobacco by heating without burning, so as to atomize and form an aerosol that can be smoked by the user. of aerosol.
  • the harmful components in the aerosol generated by the pyrolysis of the aerosol-generating matrix can be greatly reduced, and the safety of the heating atomization device can be improved.
  • conventional heaters generally suffer from high manufacturing costs and low mechanical strength.
  • a heater including a heating body and two separated electrode bodies, wherein the heating body may be sandwiched between the two electrode bodies, the electrodes
  • the resistivity of the body may be smaller than that of the heating body, and the width of the electrode body may be non-uniformly arranged along the length direction of the heating body.
  • the heating body may include a tip portion and a body portion that are connected to each other, and the cross-sectional area of the tip portion may decrease in a direction from the body portion toward the tip portion.
  • At least one of the electrode bodies may include a first electrode portion and a second electrode portion that are connected to each other and located on the main body portion, and the first electrode portion may be opposite to the first electrode portion.
  • the second electrode portion is closer to the tip portion, and the width of the first electrode portion may be greater than the width of the second electrode portion.
  • At least one of the at least one electrode body further includes a third electrode part located on the main body part, and the second electrode part can be connected to the first electrode part and the second electrode part. Between the third electrode portions, the width of the third electrode portion may be greater than the width of the second electrode portion.
  • the heater may further include two lead wires respectively connected with the two electrode bodies, and each lead wire is connected with an end of the corresponding electrode body away from the tip portion.
  • the heating body has a sheet-like structure
  • the electrode body may further include a fourth electrode portion disposed on the tip portion, and the cross-sectional area of the fourth electrode portion may be along the The main body portion decreases toward the tip portion.
  • the heating body may have a sheet-like structure and the resistivity of the heating body may be in the range of 2 ⁇ 10 -2 ⁇ .m to 2 ⁇ 10 -1 ⁇ .m; or the The heating body may have a columnar structure and the resistivity of the heating body may be in the range of 5 ⁇ 10 ⁇ 3 ⁇ .m to 2 ⁇ 10 ⁇ 2 ⁇ .m.
  • the electrode body is embedded in the heating body, and the outer surface of the electrode body and the outer surface of the heating body may be in the same plane or the same curved surface.
  • the heater may further include a mounting seat, and the mounting seat may be sleeved outside the heating body.
  • the heater may further include a glaze layer, and the glaze layer may be attached to the surface of the electrode body and the heating body.
  • the heating body may include at least one of metal-ceramic composite materials, ceramic-ceramic composite materials, metal oxides and doped semiconductors, wherein the metal-ceramic composite material may be Ni Metal and/or Cr metal is composited with at least one of ZrO 2 ceramics, Al 2 O 3 ceramics, Cr 2 C 3 ceramics and NiFe 2 O 4 ceramics, and the ceramic-ceramic composite material is made of weakly conductive ceramic materials and It is composed of strong conductive ceramic materials, and the metal oxide includes Ni-Mn-O.
  • the metal-ceramic composite material may be Ni Metal and/or Cr metal is composited with at least one of ZrO 2 ceramics, Al 2 O 3 ceramics, Cr 2 C 3 ceramics and NiFe 2 O 4 ceramics
  • the ceramic-ceramic composite material is made of weakly conductive ceramic materials and It is composed of strong conductive ceramic materials
  • the metal oxide includes Ni-Mn-O.
  • a heated atomizing device comprising the heater described in any one of the above.
  • FIG. 1 is a perspective view of a heater according to a first embodiment of the present disclosure
  • FIG. 2 is a perspective view of a heater according to a second embodiment of the present disclosure.
  • Figure 3 is a partial side view of the heater shown in Figure 2;
  • FIG. 4 is a longitudinal cross-sectional view of a heating body and an electrode body of a heater according to a third embodiment of the present disclosure
  • FIG. 5 is a partial side view of a heater according to a fourth embodiment of the present disclosure.
  • FIG. 6 is a partial side view of a heater according to a fifth embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view of a heater according to a sixth embodiment of the present disclosure, wherein one electrode body is in a separated state;
  • FIG. 8 is a schematic cross-sectional view of a heater according to a seventh embodiment of the present disclosure, wherein one electrode body is in a separated state.
  • an electronic atomizer device provided by an embodiment of the present disclosure includes a heater 10 and a power supply assembly (not shown), and the heater 10 is inserted in a solid aerosol-generating substrate.
  • the power supply assembly supplies power to the heater 10
  • the heater 10 converts electrical energy into heat energy
  • the aerosol generating substrate absorbs the heat of the heater 10 and will be atomized to form an aerosol. Inhaled aerosol.
  • the heater 10 includes at least a heating body 100 and an electrode body 200 .
  • the heater 10 may further include lead wires 300 electrically connected to the electrode body 200 and a mount 400 supporting the heating body 100 .
  • the electrode body 200 includes two separated electrode bodies, and the heating body 100 is sandwiched between the two electrode bodies 200 .
  • the heating body 100 includes a tip portion 110 and a body portion 120, the tip portion 110 is connected to one end of the body portion 120, and the cross-sectional area of the body portion 120 can be kept constant. Taking the direction from the main body portion 120 toward the tip portion 110 as a reference direction, the cross-sectional area of the tip portion 110 gradually decreases along the reference direction.
  • the heating body 100 may have a columnar structure, for example, the main body portion 120 may be substantially cylindrical, and the tip portion 110 may be substantially conical. Specifically, the diameter of the cylindrical body portion 120 may be in the range of 1 mm to 4 mm.
  • the heating body 100 may also have a sheet-like structure, the length of the heating body 100 of the sheet-like structure may be 19mm ⁇ 3mm, the width may be 4.5mm ⁇ 1mm, and the thickness may be about 0.4mm ⁇ 0.1mm. In one embodiment, the length of the heating body 100 of the sheet-like structure may be about 19 mm, the width may be about 4.5 mm, and the thickness may be about 0.4 mm.
  • the resistivity of the heating body 100 may be in the range of 5 ⁇ 10 -3 ⁇ .m to 2 ⁇ 10 -1 ⁇ .m.
  • the resistivity of the heating body 100 may be in the range of 5 ⁇ 10 ⁇ 3 ⁇ m to 2 ⁇ 10 ⁇ 2 ⁇ m.
  • the resistivity of the heating body 100 may be in the range of 2 ⁇ 10 -2 ⁇ .m to 2 ⁇ 10 -1 ⁇ .m.
  • the heating body 100 is formed by mixing materials with higher resistivity and materials with lower resistivity.
  • the heating body 100 may be formed of a metal-ceramic composite material.
  • the cermet-ceramic composite ceramic material is composed of Ni metal and at least one of Al 2 O 3 ceramics, Cr 2 C 3 ceramics and NiFe 2 O 4 ceramics.
  • the above-mentioned metal-ceramic composite material can also make the heating body 100 have a reasonable temperature coefficient of resistivity on the basis of satisfying the resistivity requirements. In this way, it is convenient to accurately obtain the real-time temperature of the heating body itself by detecting the resistance of the heating body on the basis of the reference temperature coefficient of resistivity, so as to ensure that the temperature of the heating body 100 is always in a reasonable range.
  • the metal-ceramic composite material can also be composed of one or more metals and conductive ceramics, such as ZrO 2 /Ni-Cr and the like.
  • the heating body 100 may also be formed of a ceramic-ceramic composite material composed of a weak conductive ceramic material and a strong conductive ceramic material, such as Si 3 N 4 /SiC, Si 3 N 4 /TiN, and the like.
  • the heating body 100 can also be made of metal oxides, such as Ni-Mn-O or the like. Of course, the heating body 100 can also be made of doped semiconductor.
  • the doped semiconductor refers to a semiconductor into which other elements are doped, for example, a doped semiconductor made by doping a phosphorus (P) element in a semiconductor Si.
  • the resistance of the material can be adjusted by adjusting the ratio of the elements doped in the doped semiconductor. For this reason, the material composition ratio of the heating body can be designed according to the resistance requirements of the heating body, so as to achieve the desired heating performance of the heating body.
  • the heating body 100 may be integrally formed of not only any one of the above-listed materials, but also two or more of the above-listed materials. If necessary, the heating body 100 may be manufactured from two or more of the above-listed materials, eg in a layered manner and/or a segmented manner and/or a material mixture.
  • the powder materials for manufacturing the heating body 100 are mixed and ball-milled in a required ratio to form a mixture.
  • an appropriate amount of binder is added to the mixture and mixed uniformly, and then granulation is performed.
  • the above-mentioned mixture mixed with the binder is formed by injection molding or dry pressing to form a first blank.
  • the first blank is placed in an atmosphere furnace with a suitable temperature for debinding and sintering to form a second blank.
  • the second blank is appropriately machined to form the heating body 100 in a product state.
  • the resistivity of the electrode body 200 is smaller than that of the heating body 100 , so that the electrode body 200 has better electrical conductivity than the heating body 100 .
  • the electrode body 200 may be made of at least one metal material selected from Ag, Cu, Au, Ni, and the like.
  • the electrode body 200 can be integrally connected with the heating body 100 through a process such as silk screen printing, sintering or vapor deposition, so that the bonding process between the electrode body 200 and the heating body 100 can be omitted, the manufacturing cost of the heater 10 can be reduced and the electrode body can be improved. 200 and the strength of the connection between the heating body 100.
  • the heating body 100 Since the heating body 100 is sandwiched between the electrode bodies 200 , when a voltage is applied between the two electrode bodies 200 , current can flow from one of the electrode bodies 200 to the other electrode body in a direction perpendicular to the length direction of the heating body 100 . 200.
  • the direction indicated by the dotted arrow in FIG. 4 is the current direction.
  • the heating body 100 generates heat due to its resistance, and the aerosol generating substrate absorbs the heat to be atomized to form an aerosol.
  • the length of the electrode body 200 may be smaller than the length of the heating body 100 , so that part of the heating body 100 cannot be covered by the electrode body 200 .
  • the portion of the heating body 100 that can be covered by the electrode body 200 generates heat due to the presence of current, and the portion of the heating body 100 not covered by the electrode body 200 cannot generate heat because there is no current. Therefore, along the length direction of the heater 10, a section of the heater 10 covered with the electrode body 200 will form a heating section capable of generating heat by itself, and a section of the heater 10 not covered with the electrode body 200 is a non-heating section.
  • the heating section itself cannot generate heat and can only absorb the heat of the heating section.
  • the heating section of the heater 10 can be completely inserted in the aerosol-generating substrate, and the non-heating section of the heater 10 can be arranged outside the aerosol-generating substrate, so that the Most of the heat generated by the heating section can be directly utilized by the aerosol-generating substrate.
  • a pair of electrode bodies 200 may have the same structure and size, or may have different structures or sizes, as long as they are spaced apart from each other and sandwich the heating body between Between the pair of electrode bodies 200 is sufficient.
  • the heater 10 uses the resistance circuit to heat the ceramic substrate, it faces the following problems: on the one hand, the connection process between the resistance circuit and the ceramic substrate is complicated, and the production efficiency and yield of the heater 10 are low; on the other hand, the ceramic substrate does not conduct electricity. That is, the ceramic matrix itself cannot generate heat, and the ceramic matrix can only heat the aerosol-generating matrix by absorbing the heat generated by the resistance circuit. In this way, on the one hand, the resistance circuit causes heat loss during the heat transfer process, which affects the energy utilization rate of the heater 10; A longer waiting time is required between atomizations, that is, there is a longer delay in atomization of the aerosol-generating substrate, which affects the sensitivity of the heater 10 to the user's puff response.
  • the heating body 100 of the heater 10 itself can conduct electricity to generate heat, generally, in order to prevent the heating body 100 from short-circuiting, a through groove is formed on the heating body 100 .
  • the through groove will increase the manufacturing process of the slot, which will complicate the manufacturing process of the heater 10 and increase the manufacturing cost.
  • the through groove will reduce the structural strength of the heater 10, resulting in During the process of placing on the aerosol-generating substrate, the heater 10 may be bent or broken under the action of the insertion resistance, thereby reducing the service life of the heater 10 .
  • the manufacturing process of the heater 10 can be simplified, the production efficiency of the heater 10 can be improved, and the manufacturing cost thereof can be reduced.
  • the formation of through-grooves on the heating body 100 can be effectively avoided, thereby improving the structural strength of the heater 10 and preventing the heater 10 from being damaged during the process of inserting the heater 10 into the aerosol-generating substrate, thereby improving the performance of the heater 10 service life.
  • the heating body 100 itself can conduct electricity to generate heat without absorbing heat through conduction.
  • each electrode body 200 includes a first electrode part 210 and a second electrode part 220 connected to each other in a length direction, the first electrode part 210 and the second electrode part 220 are both located on the main body part 120 , and the first electrode part 210 The tip portion 110 is closer to the second electrode portion 220 .
  • the width of the first electrode part 210 is greater than the width of the second electrode part 220 . Since the width of the first electrode portion 210 is greater than the width of the second electrode portion 220, the portion of the heating body 100 sandwiched between the first electrode portions 210 of the two electrode portions 200 generates a larger current and has a higher temperature, while The part of the heating body 100 sandwiched between the second electrode parts 220 of the two electrode parts 200 generates a smaller current and has a lower temperature, so that the heat field and temperature field of the entire heater 10 present a distribution with a certain gradient law. In this case, the utilization rate of the energy of the heater 10 can be improved by ensuring that the higher temperature part of the heater 10 is completely inserted within the aerosol generating substrate.
  • the dimensions occupied by the electrode body 200 in the circumferential direction of the heating body 100 are non-uniformly arranged along the length direction of the heating body 100 .
  • the heating body 100 is a sheet-like structure, the dimensions occupied by the electrode body 200 in the width direction of the heating body 100 are non-uniformly arranged along the length direction of the heating body 100 .
  • the electrode body 200 further includes a third electrode part 230, the third electrode part 230 is located on the main body part 120, and the second electrode part 220 is connected between the first electrode part 210 and the third electrode part 230, such that The third electrode portion 230 is further away from the tip portion 110 than the second electrode portion 220 .
  • the width of the third electrode part 230 is greater than the width of the second electrode part 220 .
  • the number of the leads 300 is two, and each lead 300 may be connected to the corresponding third electrode part 230 . Since the width of the third electrode part 230 is greater than the width of the second electrode part 220 , the connection strength between the lead 300 and the third electrode part 230 can be improved. In the case where the electrode body 200 does not have the third electrode part 230 or also has a further electrode part connected to the third electrode part 230 further away from the tip part 110 , the lead wire 300 may be connected to the second electrode part 220 or to the further electrode part 230 . the electrode part connection. In conclusion, the lead wire 300 may be arranged to be connected with one end of the electrode body 200 away from the tip portion to simplify the connection between the lead wire 300 and the electrode portion 200 .
  • the electrode body 200 may further include a fourth electrode part 231 , the fourth electrode part 231 is disposed at the tip part 110 and is connected with the first electrode part 210 end connections. Taking the direction from the main body portion 120 to the tip portion 110 as a reference direction, the cross-sectional area of the fourth electrode portion 231 gradually decreases. In this way, the fourth electrode portion 231 can be well adapted to the shape of the tip portion 110 , so as to facilitate the smooth installation of the fourth electrode portion 231 .
  • the other end of the lead wire 300 extends for a set length along the reference direction from its connection with the electrode body 200 .
  • the two leads 300 are located at the same end (ie, the lower end) of the heating body 100 , and both extend in a direction away from the tip portion 110 .
  • the leads 300 may also be located at opposite ends of the heating body 100 .
  • the electrode body 200 is embedded in the heating body 100 , and the outer surface of the electrode body 200 and the outer surface of the heating body 100 are in the same plane or the same curved surface, so that the entire heating The surface of the heater 10 is smooth, thereby reducing the resistance of the heater 10 during insertion.
  • the heating body 100 when the heating body 100 is cylindrical, the heating body 100 has a first plane 140 and a first arc surface 150 connected to each other, and the electrode body 200 has a second plane 240 and a second arc surface 250,
  • the second arc surface 250 is connected with opposite ends of the second plane 240 , so that the second plane 240 and the second arc surface 250 are connected to form a closed-loop structure.
  • the tangent planes of the first circular arc surface 150 and the second circular arc surface 250 at the joint coincide, so that the first circular arc surface 150 and the second circular arc surface 150 can also be guaranteed.
  • the arc surface 250 is smoothly connected, which can also reduce the insertion resistance of the heater 10 .
  • the mounting seat 400 is sleeved outside the heating body 100 .
  • the cross-sectional area of the mounting seat 400 is larger than that of the heating body 100 .
  • the heater 10 may further include a glaze layer attached to the outer surface of the electrode body 200 and the outer surface of the heating body 100 .
  • the glaze layer By arranging the glaze layer, on the one hand, it can prevent the viscous substances generated by the aerosol-generating substrate from eroding the heating body 100 and the electrode body 200 during the heating and atomization process, and on the other hand, the surface of the glaze layer is smoother, which can also effectively prevent Adhesion of viscous substances, thereby improving the cleanliness of the heater 10 .

Landscapes

  • Resistance Heating (AREA)

Abstract

一种加热器和加热雾化装置,加热器(10)包括加热体(100)和分隔开的两个电极体(200),加热体(100)被夹设在两个电极体(200)之间,电极体(200)的电阻率小于加热体(100)的电阻率,电极体(200)的宽度沿加热体(100)的长度方向非均匀设置。电极体(200)在展平状态时的宽度沿加热体(100)的长度方向非均匀设置,如此可以使得夹设在两个电极体(200)的彼此相对的宽度较大的部分之间的加热体(100)部分的温度较大,而夹设在两个电极体(200)的彼此相对的宽度较小的部分之间的加热体(100)部分的温度小。

Description

加热器及加热雾化装置
相关申请的交叉引用
本申请要求于2021年3月30日提交到中国专利局、申请号为202120639999.X且实用新型名称为“加热器及加热雾化装置”的中国实用新型专利申请的优先权,在此将其全文引入作为参考。
技术领域
本公开涉及雾化技术领域,特别是涉及一种加热器及包含该加热器的加热雾化装置。
背景技术
加热雾化装置包括加热器,通过对加热器的温度进行合理控制,可以使得加热器通过加热而不燃烧的方式对烟草等固态的气溶胶生成基质进行加热,从而雾化形成可供用户抽吸的气雾。如此,可以大幅减少气雾中因气溶胶生成基质高温裂解所产生的有害成分,提高加热雾化装置使用的安全性。但是,对于传统的加热器,通常存在制造成本高和机械强度低的缺陷。
发明内容
根据本公开的一方面,提供一种加热器,其包括加热体和分隔开的两个电极体,其中,所述加热体可被夹设在两个所述电极体之间,所述电极体的电阻率可小于所述加热体的电阻率,所述电极体的宽度可沿所述加热体的长度方向非均匀地设置。
在其中一个实施例中,所述加热体可包括相互连接的尖端部和主体部,所述尖端部的横截面面积可沿从所述主体部朝向所述尖端部的方向减少。
在其中一个实施例中,所述电极体中的至少一个电极体可包括相互连接且位于所述主体部上的第一电极部和第二电极部,所述第一电极部可相对所述第二电极部更靠近所述尖端部,所述第一电极部的宽度可大于所述第二电极部的宽度。
在其中一个实施例中,所述至少一个电极体中的至少一个电极体还包括位于所述主体部上的第三电极部,所述第二电极部可连接在所述第一电极部和所述第三电极部之间,所述第三电极部的宽度可大于所述第二电极部的宽度。
在其中一个实施例中,所述加热器还可包括分别与所述两个电极体连接的两根引线,每根引线与相应的电极体远离所述尖端部的一端连接。
在其中一个实施例中,所述加热体具有片状结构,所述电极体还可包括设置在所述尖端部上的第四电极部,所述第四电极部的横截面面积可沿从所述主体部朝向所述尖端部的方向减少。
在其中一个实施例中,所述加热体可具有片状结构且所述加热体的电阻率可以在2×10 -2Ω.m至2×10 -1Ω.m的范围内;或者所述加热体可以具有柱状结构且所述加热体的电阻率可以在5×10 -3Ω.m至2×10 -2Ω.m的范围内。
在其中一个实施例中,所述电极体嵌设在所述加热体中,且所述电极体的外表面和所述加热体的外表面可在同一平面或同一曲面中。
在其中一个实施例中,所述加热器还可包括安装座,所述安装座可套设在所述加热体之外。
在其中一个实施例中,所述加热器还可包括釉层,所述釉层可附着在所述电极体和所述加热体的表面。
在其中一个实施例中,所述加热体可包括金属-陶瓷复合材料、陶瓷-陶瓷复合材料、金属氧化物和掺杂半导体中的至少一种,其中,所述金属-陶瓷复合材料可采用Ni金属和/或Cr金属与ZrO 2陶瓷、Al 2O 3陶瓷、Cr 2C 3陶瓷和NiFe 2O 4陶瓷中的至少一种复合而成,所述陶瓷-陶瓷复合材料采用弱导电陶瓷材料与强导电陶瓷材料复合而成,所述金属氧化物包括Ni-Mn-O。
根据本公开的另一方面,提供一种加热雾化装置,其包括上述中任一项所述的加热器。
附图说明
图1为根据本公开第一实施例的加热器的透视图;
图2为根据本公开第二实施例的加热器的透视图;
图3为图2中所示的加热器的局部侧视图;
图4为根据本公开的第三实施例的加热器的加热体和电极体的纵向剖视图;
图5为根据本公开第四实施例的加热器的局部侧视图;
图6为根据本公开第五实施例的加热器的局部侧视图;
图7为根据本公开第六实施例的加热器的横截面示意图,其中,一个电极体处于分离状态;和
图8为根据本公开第七实施例的加热器的横截面示意图,其中,一个电极体处于分离状态。
具体实施方式
为了便于理解本公开,下面将参照相关附图对本公开进行更全面的描述。附图中给出了本公开的较佳实施方式。但是,本公开可以以许多不同的形式来实现,并不限于本文所描述的实施方式。确切而言,提供这些实施方式的目的是使对本公开的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在中间元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在中间元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1、图2和图3,本公开的实施例提供的电子雾化装置包括加热器10和电源组件(未示出),加热器10插置在固态的气溶胶生成基质内。当电源组件对加热器10供电时,加热器10将电能转化为热能,气溶胶生成基质吸收加热器10的热量后将被雾化而形成气雾,该气雾实质为一种可供用户抽吸的气溶胶。加热器10包括至少包括加热体100和电极体200。此外,加热器10还可包括与电极体200电连接的引线300和支撑加热体100的安装座400。电极体200包括分隔开的两个电极体,加热体100被夹设在两个电极体200之间。
在一些实施例中,加热体100包括尖端部110和主体部120,尖端部110连 接在主体部120的一端,主体部120的横截面面积可以保持恒定。以从主体部120朝向尖端部110的方向为参考方向,尖端部110的横截面面积沿着该参考方向上逐渐减少。通过设置尖端部110,可以减小整个加热器10插入气溶胶生成基质内部时遇到的阻力,避免在阻力过大的情况下使得加热器10产生弯曲甚至折断,如此可以提高加热器10的使用寿命。加热体100可以具有柱状结构,例如主体部120可以大致为圆柱形,尖端部110可以大致为圆锥形。具体地,圆柱形主体部120的直径可以在1mm至4mm的范围内。加热体100还可具有片状结构,该片状结构的加热体100的长度可以为19mm±3mm,宽度可以为4.5mm±1mm,厚度可以为0.4mm±0.1mm左右。在一个实施例中,片状结构的加热体100的长度为大约19mm,宽度可以为大约4.5mm,厚度可以为大约0.4mm。
加热体100的电阻率可以在5×10 -3Ω.m至2×10 -1Ω.m的范围内。例如,当加热体100为柱状结构时,加热体100的电阻率可以在5×10 -3Ω.m至2×10 - 2Ω.m的范围内。当加热体100为片状结构时,加热体100的电阻率可以在2×10 -2Ω.m至2×10 -1Ω.m的范围内。为满足上述电阻率要求,加热体100采用电阻率较高的材料和电阻率较低的材料混合而成。例如加热体100可以由金属-陶瓷复合材料形成。例如,该金属陶-瓷复合陶瓷材料采用Ni金属与Al 2O 3陶瓷、Cr 2C 3陶瓷和NiFe 2O 4陶瓷中的至少一种陶瓷复合而成。上述金属-陶瓷复合材料在满足电阻率要求的基础上还可以使得加热体100具有合理的电阻率温度系数。如此便于在参考电阻率温度系数的基础上通过检测发热体的电阻而准确获得发热体自身的实时温度,确保加热体100的温度始终处于合理的区间。
金属-陶瓷复合材料还可以采用一种或多种金属与导电陶瓷复合而成,例如ZrO 2/Ni-Cr等。除了金属-陶瓷复合材料,加热体100也可以采用弱导电陶瓷材料与强导电陶瓷材料复合而成的陶瓷-陶瓷复合材料形成,例如Si 3N 4/SiC,Si 3N 4/TiN等。加热体100也可以采用金属氧化物制成,例如Ni-Mn-O等。当然,加热体100还可以采用掺杂半导体制成。这里,掺杂半导体是指其中掺入了其它元素的半导体,例如,通过在半导体Si中掺杂磷(P)元素制成的掺杂半导体。通过调整掺杂半导体中掺入的元素的比例可以调整该材料的电阻。为此,可 以根据加热体的电阻需求而设计加热体的材料组分比例,以实现期望的加热体发热性能。
应当注意的是,加热体100不仅可以由上述列出的任何一种材料整体地形成,还可以由上述列出的两种或更多种材料形成。如果有必要,可以以例如分层的方式和/或分段的方式和/或材料混合的方式利用两种或更多种上述列出的材料制造加热体100。
在加热体100的制作过程中,第一步,将制作加热体100的粉末材料按照所需比例进行混合和球磨处理以形成混合料。第二步,向混合料中加入适量的粘结剂并混合均匀,然后进行造粒处理。第三步,将上述掺和有粘结剂的混合料采用注塑或干压等成型方式制作形成第一毛坯。第四步,将第一毛坯放置于适当温度的气氛炉中进行排胶和烧结处理以形成第二毛坯。第五步,将第二毛坯进行适当机加工处理以形成产品状态的加热体100。
在一些实施例中,电极体200的电阻率小于加热体100的电阻率,使得电极体200具有比加热体100更优异的导电性能。电极体200可以采用Ag、Cu、Au和Ni等中的至少一种金属材料制成。电极体200可以通过丝印、烧结或气相沉积等加工工艺与加热体100一体连接,如此可以省去电极体200和加热体100之间的粘接处理,降低加热器10的制造成本并提高电极体200与加热体100之间的连接强度。由于加热体100夹设在电极体200之间,当电压加载在两个电极体200之间时,电流可以从其中一个电极体200沿垂直于加热体100的长度方向的方向流入另外一个电极体200,图4中虚线箭头所示方向即为电流方向。在电流流经夹设在两个电极体200之间的加热体100的过程中,加热体100因具有电阻而产生热量,从而气溶胶生成基质吸收该热量以被雾化而形成气雾。
电极体200的长度可以小于加热体100的长度,使得部分加热体100无法被电极体200覆盖。显然,加热体100能够被电极体200覆盖的部分因存在电流而产生热量,加热体100未被电极体200覆盖的部分因不存在电流而无法产生热量。故沿加热器10的长度方向,加热器10上覆盖有电极体200的一段将形成能够自身产生热量的加热段,加热器10上未覆盖有电极体200的一段则为 非加热段,该非加热段自身无法产生热量而只能吸收加热段的热量。因此,为了提高加热器10能量的利用率,可以将加热器10的加热段完全插置在气溶胶生成基质中,而将加热器10的非加热段设置为位于气溶胶生成基质之外,以便加热段产生的热量大部分能直接被气溶胶生成基质利用。
参照图1至图4,在本公开的实施例中,一对电极体200可以具有相同的结构和尺寸,也可以具有不同的结构或尺寸,只要它们彼此分隔开并将加热体夹设于这一对电极体200之间即可。
假如加热器10采用电阻线路加热陶瓷基体的模式,面临如下问题:一方面,电阻线路与陶瓷基体的连接工艺较为复杂,加热器10的生产效率和良率较低;另一方面,陶瓷基体不具导电性,即陶瓷基体自身无法产生热量,陶瓷基体只能依靠吸收电阻线路产生的热量而对气溶胶生成基质进行加热。如此,一方面导致电阻线路在热传递过程中产生热量损失,影响加热器10的能量利用率;另一方面陶瓷基体升温速度较慢,导致加热器10从开始工作到对气溶胶生成基质进行雾化之间需要较长的等待时间,即气溶胶生成基质的雾化存在较长的延时,从而影响加热器10对用户抽吸响应的灵敏度。
假如加热器10的加热体100自身能够导电而产生热量,通常地,为防止加热体100产生短路现象,将在加热体100上开设贯穿槽。然而,该贯穿槽的一方面会增加开槽的制造工序,使得加热器10的制造工艺复杂化而增加制造成本,另一方面贯穿槽会降低加热器10的结构强度,导致在将加热器插置于气溶胶生成基质的过程中,加热器10在插置阻力的作用下会产生弯曲或折断,从而降低加热器10的使用寿命。
而对于上述实施例中的加热器10,通过将加热体100被夹设在两个电极体200之间,可以在多方面取得积极效果。第一方面,可以简化加热器10的制造工艺,提高加热器10的生产效率并降低其制造成本。第二方面,可以有效避免在加热体100上形成贯穿槽,从而提高加热器10的结构强度,防止将加热器10插置在气溶胶生成基质的过程中产生损坏,由此提高加热器10的使用寿命。第三方面,加热体100自身能导电以产生热量,无需通过传导的方式吸收热量,这 样,不仅可以避免热量在传导过程中所产生的热损失以提高加热器10的能量利用率,而且加热器10由于自身产生热量而升温快,这样可以大幅缩短加热器10从开始工作到对气溶胶生成基质进行雾化之间所消耗的等待时间,提高了加热器10对用户抽吸响应的灵敏度。
参阅图5和图6,在一些实施例中,例如,在加热体100具有片状结构时,电极体200在展平状态下的宽度沿加热体100的长度方向非均匀地设置。所谓电极体200的“展平状态”,即电极体200被展开为平面的状态。例如,每个电极体200包括在长度方向上相互连接的第一电极部210和第二电极部220,第一电极部210和第二电极部220均位于主体部120上,第一电极部210相对于第二电极部220更靠近尖端部110。在展平状态下,第一电极部210的宽度大于第二电极部220的宽度。鉴于第一电极部210的宽度大于第二电极部220的宽度,使得加热体100夹设在两个电极部200的第一电极部210之间的部分产生较大的电流而温度较高,而加热体100夹设在两个电极部200的第二电极部220之间的部分产生较小的电流而温度较低,从而使得整个加热器10的热量场和温度场呈现出具有一定梯度的分布规律。在这种情况下,可以通过确保加热器10温度较高的部分全部插置在气溶胶生成基质之内来提高加热器10能量的利用率。
在至少一个实施例中,例如,当加热体100为柱状结构时,电极体200在加热体100周向上所占据的尺寸沿加热体100的长度方向非均匀设置。在至少一个实施例中,例如,当加热体100为片状结构时,电极体200在加热体100宽度方向上所占据的尺寸沿加热体100的长度方向非均匀设置。
在一些实施例中,电极体200还包括第三电极部230,第三电极部230位于主体部120上,第二电极部220连接在第一电极部210和第三电极部230之间,使得第三电极部230相对第二电极部220更加远离尖端部110。在展平状态下,第三电极部230的宽度大于第二电极部220的宽度。
引线300的数量为两个,每个引线300可以与对应的第三电极部230连接。鉴于第三电极部230的宽度大于第二电极部220的宽度,可以提高引线300与第三电极部230之间的连接强度。在电极体200没有第三电极部230或者还具 有与第三电极部230连接的更远离尖端部110的进一步的电极部的情况下,引线300可以与第二电极部220连接或者与所述进一步的电极部连接。总之,引线300可以被设置为与电极体200的远离尖端部的一端连接,以简化引线300与电极部200之间的连接。
在一些实施例中,参阅图2,当加热体100为片状结构时,电极体200还可以包括第四电极部231,该第四电极部231设置在尖端部110处并与第一电极部210的端部连接。以从主体部120朝向尖端部110的方向为参考方向,该第四电极部231的横截面面积逐渐减少。如此可以使得第四电极部231能够很好地适应尖端部110的形状,以便于第四电极部231的顺利安装。
以从尖端部110朝向主体部120的方向为参考方向,引线300的另一端从其与电极体200的连接处沿该参考方向延伸设定长度。一般地,两根引线300位于加热体100的同一端(即下端),且均朝远离尖端部110的方向延伸。在其他实施例中,引线300也可以位于加热体100的相对两端。
在一些实施例中,参阅图7,例如,电极体200嵌设在加热体100中,且电极体200的外表面和加热体100的外表面在同一平面或同一曲面中,如此可以使得整个加热器10的表面呈平滑状态,由此减少加热器10在插置过程中的阻力。参阅图8,又如,当加热体100为柱状时,加热体100具有相互连接的第一平面140和第一圆弧面150,电极体200具有第二平面240和第二圆弧面250,第二圆弧面250与第二平面240的相对两端连接,使得第二平面240和第二圆弧面250连接形成一个闭环结构。当第二平面240附着在第一平面140上时,第一圆弧面150和第二圆弧面250两者在连接处的切平面重合,如此也可以保证第一圆弧面150和第二圆弧面250平滑连接,同样可以减少加热器10的插置阻力。
参阅图1,在一些实施例中,安装座400套设在加热体100之外,显然,安装座400的横截面面积大于加热体100的横截面面积。通过设置安装座400,可以使得整个加热器10通过该安装座400固定在电源组件上。加热器10还可以包括釉层,釉层附着在电极体200的外表面和加热体100的外表面。通过设置 釉层,一方面可以防止气溶胶生成基质在加热雾化过程中产生的粘稠状物质对加热体100和电极体200构成侵蚀,另一方面釉层的表面更加光滑,也可以有效防止粘稠状物质的粘附,从而提高加热器10的清洁度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种加热器,包括:
    加热体;和
    分隔开的两个电极体,其中,所述加热体被夹设在两个所述电极体之间,所述电极体的电阻率小于所述加热体的电阻率,所述电极体的宽度沿所述加热体的长度方向非均匀地设置。
  2. 根据权利要求1所述的加热器,其中,所述加热体包括相互连接的尖端部和主体部,所述尖端部的横截面面积沿从所述主体部朝向所述尖端部的方向减少。
  3. 根据权利要求2所述的加热器,其中,所述电极体中的至少一个电极体包括相互连接且位于所述主体部上的第一电极部和第二电极部,所述第一电极部相对所述第二电极部更靠近所述尖端部,所述第一电极部的宽度大于所述第二电极部的宽度。
  4. 根据权利要求3所述的加热器,其中,所述至少一个电极体中的至少一个电极体还包括位于所述主体部上的第三电极部,所述第二电极部连接在所述第一电极部和所述第三电极部之间,所述第三电极部的宽度大于所述第二电极部的宽度。
  5. 根据权利要求2所述的加热器,其中,还包括分别与所述两个电极体连接的两根引线,每根引线与相应的电极体远离所述尖端部的一端连接。
  6. 根据权利要求2所述的加热器,其中,所述加热体具有片状结构,所述电极体还包括设置在所述尖端部上的第四电极部,所述第四电极部的横截面面积沿从所述主体部朝向所述尖端部的方向减少。
  7. 根据权利要求1所述的加热器,其中,所述加热体具有片状结构且所述加热体的电阻率在2×10 -2Ω.m至2×10 -1Ω.m的范围内;或者所述加热体具有柱状结构且所述加热体的电阻率在5×10 -3Ω.m至2×10 -2Ω.m的范围内。
  8. 根据权利要求1所述的加热器,其中,所述电极体嵌设在所述加热体中,且所述电极体的外表面和所述加热体的外表面在同一平面或同一曲面中。
  9. 根据权利要求1所述的加热器,其中,
    所述加热器还包括套设在所述加热体之外的安装座;和/或
    所述加热器还包括附着在所述电极体的外表面和所述加热体的外表面的釉层;和/或
    所述加热体包括金属-陶瓷复合材料、陶瓷-陶瓷复合材料、金属氧化物和掺杂半导体中的至少一种,其中,所述金属-陶瓷复合材料采用Ni金属和/或Cr金属与ZrO 2陶瓷、Al 2O 3陶瓷、Cr 2C 3陶瓷和NiFe 2O 4陶瓷中的至少一种复合而成,所述陶瓷-陶瓷复合材料采用弱导电陶瓷材料与强导电陶瓷材料复合而成,所述金属氧化物包括Ni-Mn-O。
  10. 一种加热雾化装置,包括权利要求1至9中任一项所述的加热器。
PCT/CN2022/079637 2021-03-30 2022-03-08 加热器及加热雾化装置 WO2022206301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120639999.XU CN215347058U (zh) 2021-03-30 2021-03-30 加热器及加热雾化装置
CN202120639999.X 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022206301A1 true WO2022206301A1 (zh) 2022-10-06

Family

ID=79625461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079637 WO2022206301A1 (zh) 2021-03-30 2022-03-08 加热器及加热雾化装置

Country Status (2)

Country Link
CN (1) CN215347058U (zh)
WO (1) WO2022206301A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215347058U (zh) * 2021-03-30 2021-12-31 深圳麦克韦尔科技有限公司 加热器及加热雾化装置
CN216255473U (zh) * 2021-09-02 2022-04-12 深圳麦克韦尔科技有限公司 加热器及加热雾化装置
CN217791481U (zh) * 2022-05-31 2022-11-15 海南摩尔兄弟科技有限公司 加热组件及加热雾化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665459A (zh) * 2009-11-27 2012-09-12 菲利普莫里斯生产公司 具有内部或外部加热器的电加热的发烟系统
CN109953380A (zh) * 2019-03-20 2019-07-02 河南中烟工业有限责任公司 一种加热不燃烧用加热棒和制作方法以及一种电子烟
CN210407104U (zh) * 2019-03-20 2020-04-28 河南中烟工业有限责任公司 一种加热不燃烧用加热棒
CN111096488A (zh) * 2018-10-26 2020-05-05 日本烟草产业株式会社 非燃烧式吸取器的电源单元、雾化单元以及非燃烧式吸取器
CN111631441A (zh) * 2020-06-30 2020-09-08 嘉兴微知电子有限公司 四线加热内热式电子烟加热棒
US20200359704A1 (en) * 2019-05-14 2020-11-19 Dongguang TPS Electronic Technology Co., Ltd. Microporous ceramic thick-film heating element for electronic cigarette oil atomizing core, and manufacturing method thereof
CN215347058U (zh) * 2021-03-30 2021-12-31 深圳麦克韦尔科技有限公司 加热器及加热雾化装置
CN114052300A (zh) * 2020-08-03 2022-02-18 深圳市合元科技有限公司 加热器以及含有该加热器的烟具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665459A (zh) * 2009-11-27 2012-09-12 菲利普莫里斯生产公司 具有内部或外部加热器的电加热的发烟系统
CN111096488A (zh) * 2018-10-26 2020-05-05 日本烟草产业株式会社 非燃烧式吸取器的电源单元、雾化单元以及非燃烧式吸取器
CN109953380A (zh) * 2019-03-20 2019-07-02 河南中烟工业有限责任公司 一种加热不燃烧用加热棒和制作方法以及一种电子烟
CN210407104U (zh) * 2019-03-20 2020-04-28 河南中烟工业有限责任公司 一种加热不燃烧用加热棒
US20200359704A1 (en) * 2019-05-14 2020-11-19 Dongguang TPS Electronic Technology Co., Ltd. Microporous ceramic thick-film heating element for electronic cigarette oil atomizing core, and manufacturing method thereof
CN111631441A (zh) * 2020-06-30 2020-09-08 嘉兴微知电子有限公司 四线加热内热式电子烟加热棒
CN114052300A (zh) * 2020-08-03 2022-02-18 深圳市合元科技有限公司 加热器以及含有该加热器的烟具
CN215347058U (zh) * 2021-03-30 2021-12-31 深圳麦克韦尔科技有限公司 加热器及加热雾化装置

Also Published As

Publication number Publication date
CN215347058U (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2022206301A1 (zh) 加热器及加热雾化装置
CN109222245B (zh) 雾化器发热元件和雾化器
KR100749886B1 (ko) 탄소나노튜브를 이용한 발열체
CN109123805B (zh) 烘烤烟具及其金属基电加热件
WO2020057313A1 (zh) 烘烤烟具及其加热组件
CN110959918A (zh) 一种发热组件及电子雾化装置
WO2023083016A1 (zh) 发热组件、发热组件的制备方法及电子雾化装置
CN209234991U (zh) 雾化器发热元件和雾化器
CN105979614A (zh) 一种电加热器及电子烟
CN110200331A (zh) 一种电子烟加热器
KR20110042746A (ko) 온도센서 내장형 구동형 세라믹 히터
KR200448882Y1 (ko) 페이스트 조성물을 이용한 히터
WO2023109532A1 (zh) 加热器以及包括该加热器的烟具
JP5438961B2 (ja) セラミックヒータ及びグロープラグ
WO2023168980A1 (zh) 气溶胶形成装置及其加热组件
WO2023029980A1 (zh) 加热体及加热雾化装置
CN111954320A (zh) 金属加热体的制造方法
KR100722316B1 (ko) 세라믹 히터
CN212014440U (zh) 一种发热组件及电子雾化装置
WO2020056776A1 (zh) 烘烤烟具
KR100614195B1 (ko) 초소형 백금후막 발열소자를 이용한 헤어 아이론용 히터 및그 제조방법
CN114052300A (zh) 加热器以及含有该加热器的烟具
CN220274930U (zh) 一种针式加热体及气溶胶产生装置
CN221284704U (zh) 一种加热器及电子雾化装置
JPWO2019004089A1 (ja) ヒータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778485

Country of ref document: EP

Kind code of ref document: A1