WO2023231528A1 - 发色团化合物、其制备方法、及发色团化合物的应用 - Google Patents

发色团化合物、其制备方法、及发色团化合物的应用 Download PDF

Info

Publication number
WO2023231528A1
WO2023231528A1 PCT/CN2023/083201 CN2023083201W WO2023231528A1 WO 2023231528 A1 WO2023231528 A1 WO 2023231528A1 CN 2023083201 W CN2023083201 W CN 2023083201W WO 2023231528 A1 WO2023231528 A1 WO 2023231528A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
chromophore
electro
cross
Prior art date
Application number
PCT/CN2023/083201
Other languages
English (en)
French (fr)
Inventor
刘建华
刘锋钢
陈红宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231528A1 publication Critical patent/WO2023231528A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/08Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices

Definitions

  • This application relates to the field of organic optical materials, specifically to a chromophore compound and its preparation method, electro-optical materials containing the chromophore compound, films and electro-optical glasses containing the electro-optical material, and electro-optical materials using the film or the electro-optical glass.
  • Device and electronic equipment applying the electro-optical device.
  • Electro-optic modulator is the core device for realizing photoelectric information conversion, and it is also a key link in breaking through the two major technical challenges of bandwidth and signal transmission rate.
  • Electro-optic materials are key components of electro-optic modulators. Early research on electro-optical materials mainly focused on inorganic crystals and semiconductor materials, such as lithium niobate and gallium arsenide. However, the electro-optical coefficients (r33 values) of these materials are usually not high, limiting the minimum driving voltage of electro-optical modulators. Organic/polymer nonlinear electro-optical materials are another widely studied electro-optical material. Organic/polymer nonlinear electro-optical materials have many advantages, such as high electro-optical coefficients and high bandwidth, which are useful for research on large bandwidth, small size, and low power.
  • Electro-optic modulators with high consumption and low driving voltage are very meaningful, and organic/polymer nonlinear electro-optic materials also have huge applications in the fields of optical information storage and terahertz.
  • organic nonlinear electro-optical materials still face many challenges in their commercial application.
  • organic electro-optical chromophores have a larger electro-optical coefficient than inorganic optoelectronic materials, there is still a lot of room for improvement in the electro-optical coefficient; moreover, the glass transition temperature (Tg) of organic chromophore molecules is low, resulting in electro-optical
  • Tg glass transition temperature
  • the photothermal stability and polarization orientation stability of the material are poor, and the polarization orientation is prone to attenuation (ie, electro-optical coefficient attenuation) at high temperatures. Therefore, how to obtain organic nonlinear electro-optical materials with large electro-optical coefficients, photothermal stability and polarization orientation stability has always been a technical bottleneck in this field.
  • the first aspect of the embodiments of the present application provides a chromophore compound, which has the structure of the following formula (I):
  • D is an atom that can donate electrons
  • A is the electron acceptor group
  • B is an electronic bridge group
  • Z is an atom or organic group that can form at least two chemical bonds
  • L 1 and L 2 are each independently selected from atoms or organic groups capable of forming at least two chemical bonds;
  • X 1 is the first crosslinkable group
  • X 2 is a second cross-linkable group that can undergo a cross-linking reaction with the first cross-linkable group
  • n and m are respectively integers greater than or equal to 1;
  • p and q are respectively integers greater than or equal to 1.
  • This application introduces a single electron donor group with a tetrahydroquinoline-like structure composed of a benzene ring and a heterocyclic ring into the molecule of the chromophore compound. Since the electron donor group with this type of structure has a higher power-donating capacity than most electron donor groups, The electron is stronger, and the first-order hyperpolarizability and electro-optical coefficient of the chromophore compound are greatly improved compared with the traditional chromophore containing aniline donor; because the electron donor group of the present application contains The rigid benzene ring structure can increase the glass transition temperature (Tg) of the chromophore compound itself.
  • Tg glass transition temperature
  • the macroscopic electro-optical properties of the chromophore compound can be improved.
  • Activity, and the introduction of the first cross-linkable group and the second cross-linkable group can increase the distance between the molecules of the chromophore compound, weaken the electrostatic interaction between the molecules, and help improve the polarity of the chromophore compound.
  • the first cross-linkable group and the second cross-linkable group provide multiple cross-linking sites for the chromophore compound, and cross-linking can occur between the chromophore compounds, and the cross-linking process does not require separate
  • the introduction of a cross-linking agent increases the content of the chromophore compound in the electro-optical material, further increasing the electro-optical coefficient of the electro-optical material.
  • cross-linking can further increase the glass transition temperature (Tg) of the electro-optical material, thereby increasing the photothermal energy of the electro-optical material.
  • the first cross-linkable group and the second cross-linkable group can undergo cross-linking reactions to facilitate the formation of a cross-linked chromophore system with a one-membered self-reactive single-molecule structure, that is, Electro-optical materials containing a chromophore compound can achieve self-crosslinking reactions between molecules. Therefore, it is more conducive to the large-scale industrial production and application of chromophore compounds.
  • D in formula (I) is an oxygen atom, a nitrogen atom or a sulfur atom.
  • Oxygen atoms, nitrogen atoms or sulfur atoms have strong electron-donating ability and can enhance the power-donating ability of the electron donor group.
  • Z in formula (I) is a sulfur atom, an oxygen atom or an alkyl group.
  • the stability of the molecular structure of the chromophore compound can be improved.
  • L 1 and L 2 in formula (I) are each independently selected from at least one of alkyl, ester, aryl and heteroaryl.
  • the length of the side chain of the chromophore compound can be adjusted, which is beneficial to the subsequent cross-linking reaction between the chromophore compounds or between the chromophore compound and the polymer. It can also be achieved by introducing different types of groups. The group changes the flexibility of the chromophore compound.
  • n and m in the formula (I) are 1, 2 or 3; p and q in the formula (I) are 1 or 2 respectively.
  • the conjugation effect between the electron donor group, the electron bridge group and the electron acceptor group can be improved.
  • the first cross-linkable group and the second cross-linkable group can each be connected to one or two, thereby controlling the subsequent chromophores.
  • both the first crosslinkable group and the second crosslinkable group are groups that can undergo click chemical reaction, thermal crosslinking reaction, photocrosslinking reaction, coupling reaction or polymerization reaction.
  • the first crosslinkable group and the second crosslinkable group are selected from any one of the following group combinations: azide group and alkynyl group, hydroxyl group and isocyanate group, anthracenyl group and acrylic acid Ester group, anthracenyl and maleimide group, furan group and maleimide group, mercapto group and olefin, coumarin group and coumarin group, difluoroalkene group and difluoroalkene groups, as well as styryl groups and styryl groups, etc.
  • the first cross-linkable group and the second cross-linkable group are different, the first cross-linkable group can be any group in a group combination, then the second cross-linkable group A group is another group that is a combination of this group.
  • Some typical cross-linking reactions of the first cross-linkable group and the second cross-linkable group are listed below.
  • click chemical reactions include Husigen cycloaddition reaction of azide-alkynyl groups
  • thermal cross-linking reactions include: Hydroxyl and isocyanate groups, anthracenyl and acrylate groups, anthracenyl and maleimide groups, furan groups and maleimide groups
  • photo-crosslinking reactions include: sulfhydryl groups and olefins, coumarin and coumarin element; the coupling reaction of difluoroolefin groups and the polymerization reaction of styrene groups, etc.
  • the chromophore compound has the structure of Formula (II) or Formula (III):
  • the second aspect of this application also provides a preparation method of a chromophore compound, which preparation method includes the following steps:
  • At least one first crosslinkable group and at least one second crosslinkable group are respectively connected to the first reactive group and the second reactive group of the electron donor group-electron bridge group compound. group, and connect an electron acceptor group to the electron bridge group of the electron donor group-electron bridge group compound, thereby obtaining the chromophore compound,
  • the chromophore compound has the structure of the following formula (I):
  • D is an atom that can donate electrons
  • A is the electron acceptor group
  • B is the electronic bridge group
  • Z is an atom or organic group that can form at least two chemical bonds
  • L 1 and L 2 are each independently selected from atoms or organic groups capable of forming at least two chemical bonds;
  • X 1 is the first crosslinkable group
  • X 2 is the second cross-linkable group, and the second cross-linkable group can undergo a cross-linking reaction with the first cross-linkable group;
  • n and m are respectively integers greater than or equal to 1;
  • p and q are respectively integers greater than or equal to 1.
  • the electron donor molecule and the electron bridge molecule of the present application respectively contain a first reactive group and a second reactive group, which can provide active connection sites and facilitate the introduction of the first cross-linkable group and the second cross-linkable group.
  • a first reactive group and a second reactive group which can provide active connection sites and facilitate the introduction of the first cross-linkable group and the second cross-linkable group.
  • the electron donor molecule has the structure of the following formula (IV):
  • R is the first reactive group.
  • the first reactive group and the second reactive group are independently selected from any one of hydroxyl, azide, alkynyl, mercapto, isocyanate, amino and other groups. .
  • the preparation method before connecting the electron bridge molecule to the electron donor molecule, the preparation method further includes the steps:
  • the preparation method further includes the steps:
  • the preparation method further includes the steps:
  • the first protecting group and the second protecting group are removed separately.
  • the reaction can be carried out.
  • the first reactive group and the second reactive group are protected from being affected, and two different crosslinkable groups can be introduced step by step into the same molecule.
  • the electron bridge molecule includes any one of isophorone, thiophene bridge, and pyrrole bridge.
  • the first protecting group is derived from tert-butyldimethylchlorosilane or a derivative thereof, or a dihydropyran derivative
  • the second protecting group is derived from tert-butyldimethylsilyl chloride. Phenylchlorosilane or its derivatives.
  • the first protecting group is derived from tert-butyldiphenylchlorosilane or a derivative thereof
  • the second protecting group is derived from tert-butyldimethylsilyl chloride or a derivative thereof, or dihydropyridine Phenyl derivatives.
  • the electron donor molecule has a structure of The first compound, the electron bridge molecule is isophorone, and the electron acceptor molecule is 2-(3-cyano-4-methyl-5-phenyl-5-(trifluoromethyl)furan -2(5H)-ethylene)malononitrile, the preparation method includes the following steps:
  • the second compound is subjected to knoevenagel condensation reaction with isophorone in sodium ethoxide and 2-mercaptoethanol to obtain the structure:
  • the third compound
  • the fourth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the nitrile group in the fifth compound is reduced by diisobutylaluminum hydride to obtain the structure:
  • the sixth compound is reduced by diisobutylaluminum hydride to obtain the structure:
  • the structures connected to the hydroxyl groups of the seventh compound through nucleophilic substitution or Steglich esterification are respectively The second cross-linkable group, the obtained structure is The eighth compound or structure is The ninth compound;
  • the tenth compound or structure is The eleventh compound
  • connection structure on the tenth compound through nucleophilic substitution or Steglich esterification is The first crosslinkable group, or the connecting structure on the hydroxyl group of the eleventh compound is The first cross-linkable group, the obtained structure is The twelfth compound or structure is The thirteenth compound;
  • the structure obtained after the twelfth compound or the thirteenth compound is condensed with the electron acceptor molecule is: of the chromophore compound.
  • chromophore compound Only a single molecule of chromophore compound can be synthesized to form a one-way self-reactive cross-linked chromophore system, without the need to synthesize multiple chromophores.
  • the compound reduces the difficulty of synthesis, simplifies the synthesis steps, and reduces the workload of testing and characterization of related molecules.
  • the chromophore compound can be dissolved in most organic solvents, which is conducive to large-scale industrial production and commercial applications.
  • a third aspect of the present application provides an electro-optical material, which includes the chromophore compound as described above.
  • the chromophore compound in the electro-optical material provided by this application has a single electron donor group containing a tetrahydroquinoline-like structure composed of a benzene ring and a heterocyclic ring introduced into the molecule. Due to the power supply of the electron donor group of this type of structure, The ability is stronger than that of most donors, and the first-order hyperpolarizability and electro-optical coefficient of the chromophore compound are greatly improved compared to the traditional chromophore containing aniline donor; moreover, due to the application of The electron donor group contains a rigid benzene ring structure, which can increase the glass transition temperature (Tg) of the chromophore compound itself.
  • Tg glass transition temperature
  • the macroscopic electro-optical activity of the chromophore compound can be improved, and the distance between the chromophore compound molecules can also be increased.
  • the introduction of the first cross-linkable group and the second cross-linkable group makes the chromophore compound have multiple Cross-linking sites, the cross-linking process of electro-optical materials does not require the introduction of a separate cross-linking agent, which increases the content of the chromophore compound in the electro-optic material, which can further improve the electro-optical coefficient of the electro-optic material; in addition, due to the first cross-linkable group and the second Cross-linkable groups can undergo cross-linking reactions with each other.
  • the electro-optical material formed can only contain at least one single-molecule chromophore compound to undergo a self-cross-linking reaction to form a one-unit self-reactive single-molecule structure.
  • the cross-linked chromophore system has a single molecular structure. Electro-optical materials do not need to introduce multiple chromophore compounds. The synthesis difficulty is reduced, the workload of testing and characterization of related molecules is reduced, and there is no need to study a variety of electro-optical materials.
  • the mixing ratio between chromophore compounds reduces the difficulty of preparing electro-optical materials, and also reduces the difficulty of temperature control of electro-optical materials in the cross-linking and polarization processes.
  • cross-linking occurs between chromophore compounds at a certain temperature, which can further significantly increase the glass transition temperature (Tg) of electro-optical materials, thereby improving the photothermal stability and polarization orientation stability of electro-optical materials.
  • the cross-linked chromophore system formed by the chromophore compound of the present application has a single self-reactive single-molecule structure and has both a high electro-optical coefficient and a high glass transition temperature, and the polarization efficiency is at least 2.42 ⁇ 0.10nm 2 /V 2 .
  • the electro-optical coefficient is at least 300m/V
  • the glass transition temperature (Tg) of the electro-optical material is at least 180°C. It is one of the electro-optical materials with the best comprehensive performance at present.
  • the fourth aspect of the present application provides another electro-optical material, which includes a chromophore compound and a polymer as described above, and the chromophore compound is used to undergo a cross-linking reaction with the polymer.
  • the chromophore compound of the present application contains a first cross-linkable group and a second cross-linkable group.
  • the chromophore compound and the polymer can undergo a cross-linking reaction under certain conditions, thereby forming an electro-optical polymer.
  • Chromophore compounds have high electro-optical coefficients and glass transition temperatures, which are beneficial to improving the electro-optical coefficients and glass transition temperatures of electro-optical polymers.
  • a fifth aspect of the present application provides a thin film made of the electro-optical material as described above.
  • a sixth aspect of the present application provides an electro-optical glass, which includes a glass substrate and a thin film as described above located on the glass substrate.
  • a seventh aspect of the present application provides an electro-optical device, which includes the film as described above, or the electro-optical glass as described above.
  • the polarized electro-optical film provided by this application has a high electro-optical coefficient (at least 300pv/m), which is beneficial to improving the performance of electro-optical devices (such as photoelectric modulators); in addition, because the polarized electro-optical film has cross-linking structure, thereby increasing the glass transition temperature of the electro-optical film (at least 180°C), thereby increasing the operating temperature of the electro-optical device.
  • An eighth aspect of the present application provides an electronic device, which includes the electro-optical device as described above.
  • Figure 1 is a schematic diagram of the polarization process of devices prepared using traditional organic electro-optical materials.
  • Figure 2 is a schematic diagram of the polarization process of a device prepared using the cross-linked chromophore system QLD3 with a one-membered self-reactive single molecule structure provided in an embodiment of the present application.
  • Figure 3 is a schematic diagram of a film provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of electro-optical glass provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an electro-optical device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 7 is a thermal weight loss curve of QLD3 provided by the embodiment of the present application.
  • Figure 8 is a DSC curve of QLD3 provided by the embodiment of the present application.
  • Figure 9 is the UV-visible spectroscopic spectrum of QLD3 in chloroform provided by the embodiment of the present application.
  • Figure 10 is the UV-visible spectroscopic spectrum of QLD3 in different solvents provided by the embodiment of the present application.
  • Figure 11 is the ultraviolet-visible spectroscopic spectrum of the QLD3 (CN) film and QLD3 (X-link) film provided in the embodiment of the present application.
  • Figures 12a and 12b are polarization efficiency curves after the QLD3 (CN) film and QLD3 (X-link) film provided by the embodiment of the present application are assembled into electro-optical devices.
  • the efficiency of converting the microscopic first-order hyperpolarizability ( ⁇ value) of the chromophore compound molecules of commonly used organic electro-optical materials into the macroscopic electro-optical coefficient (r33 value) is low and has a low electro-optical coefficient.
  • the glass transition temperature (Tg) of the chromophore compound molecules is low.
  • the chromophore compound molecules are polarized and oriented.
  • Tg glass transition temperature
  • the present application provides a chromophore compound that has both a large electro-optical coefficient (r33 value) and good photothermal stability and polarization orientation stability.
  • the chromophore compound can be used in electro-optical devices, such as electro-optical modulators, but is not limited to this.
  • the chromophore compound is synthesized through optimization and selection, so that the chromophore compound has a large electro-optical coefficient ( r33 value) and higher glass transition temperature (Tg).
  • the chromophore compound provided in the embodiments of the present application includes an electron donor group, an electron bridge group and an electron acceptor group.
  • the electron donor group is electronically conjugated with the electron acceptor group through the electron bridge group.
  • the chromophore compound has the structure of the following formula (I):
  • D is an atom that can donate electrons
  • A is an electron acceptor group
  • B is an electron bridge group
  • Z is an atom or organic group that can form at least two chemical bonds
  • L 1 and L 2 are independently selected from An atom or organic group that can form at least two chemical bonds
  • X 1 is the first cross-linkable group
  • X 2 is the second cross-linkable group that can undergo a cross-linking reaction with the first cross-linkable group
  • n and m is an integer greater than or equal to 1 respectively
  • p and q are integers greater than or equal to 1 respectively.
  • the structure of the electron donor group is
  • the electron donor group is derived from an electron donor molecule, and the electron donor molecule adopts a single electron donor with a tetrahydroquinoline-like structure containing a first reactive group (such as an alcoholic hydroxyl group).
  • the first crosslinkable group (such as anthracene group or acrylate group, etc.) can be conveniently introduced through the first reactive group of the electron donor group.
  • D in the electron donor group can be an oxygen atom, a nitrogen atom or a sulfur atom.
  • the oxygen atom, nitrogen atom or sulfur atom has a strong electron donating ability and can enhance the electron donating ability of the electron donor group. .
  • other atoms capable of donating electrons such as ⁇ electrons
  • the electron donor group may be derived from tetrahydroquinoline containing an alcoholic hydroxyl group.
  • Z in the electronic bridge group is a sulfur atom, an oxygen atom or an alkyl group.
  • the stability of the molecular structure of the chromophore compound can be improved.
  • Z is a sulfur atom or oxygen atom
  • the stability of the chromophore compound is significantly improved.
  • the electron bridge group can be derived from an electron bridge molecule, and the electron bridge molecule can be one of such high-performance electron bridges such as isophorone, thiophene bridge, and pyrrole bridge.
  • the electron bridge group is derived from isophorone, which contains alcoholic hydroxyl groups to facilitate the introduction of the second cross-linkable group.
  • Both the first crosslinkable group and the second crosslinkable group are capable of click chemistry (such as cycloaddition reaction), thermal crosslinking reaction, photocrosslinking reaction, coupling reaction or polymerization reaction.
  • the functional groups, ie, the first crosslinkable group and the second crosslinkable group are capable of reacting with each other to link the two chromophore compound molecules together.
  • the first crosslinkable group and the second crosslinkable group can undergo crosslinking reactions with each other
  • the first crosslinkable group and the second crosslinkable group may be selected from the following group combinations: Any of: azide group and alkynyl group, hydroxyl group and isocyanate group, anthracenyl group and acrylate group, anthracenyl group and maleimide group, furan group and maleimide group, mercapto group and alkene , coumarin group and coumarin group, difluoroalkene group and difluoroalkene group, as well as styryl group and styryl group, etc.
  • the first cross-linkable group and the second cross-linkable group are different, the first cross-linkable group can be any one of the above group combinations, and the second cross-linkable group can be A group is another group in the group combination.
  • a first crosslinkable group and a second crosslinkable group that can undergo crosslinking reactions into the molecules of the chromophore compound, it is possible to synthesize a chromophore compound with a single molecular structure. It can form a cross-linked chromophore system with a one-dimensional self-reactive single-molecule structure. That is, the electro-optical material only contains a chromophore compound with a single molecular structure to achieve cross-linking between molecules. Therefore, it is more conducive to color development. Large-scale industrial production and application of group compounds.
  • n and m in formula (I) are 1, 2 or 3; p and q in formula (I) are 1 or 2 respectively.
  • n and m in formula (I) are 1, 2 or 3; p and q in formula (I) are 1 or 2 respectively.
  • n and m in formula (I) are 1, 2 or 3; the conjugation effect between the electron donor group, the electron bridge group and the electron acceptor group can be improved.
  • p and q in formula (I) to 1 or 2 respectively, that is, the first cross-linkable group and the second cross-linkable group can each be connected to one or two, thereby controlling the relationship between subsequent chromophore compounds.
  • the degree of cross-linking reaction occurs between the two.
  • the electron acceptor group can be derived from 2-(3-cyano-4-methyl-5-phenyl-5-(trifluoromethyl)furan-2(5H)-ethylene) Malononitrile, or electron-withdrawing groups such as 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ethylene)malononitrile, specifically, the one used in this embodiment
  • the electron acceptor molecule is 2-(3-cyano-4-methyl-5-phenyl-5-(trifluoromethyl)furan-2(5H)-ethylene)malononitrile. It will be appreciated that the electron acceptor group may also be derived from other existing conventional electron acceptor molecules.
  • This application introduces a tetrahydroquinoline-like single donor structure containing a benzene ring and a heterocyclic ring into the molecule of the chromophore compound. Since the electron donor group of this type of structure has stronger power-donating ability than most donors, the first-order hyperpolarizability and electro-optical coefficient of the chromophore compound are better than those of traditional aniline-containing chromophores. There is a great improvement; moreover, because the electron donor group of the present application contains a rigid benzene ring structure, it can increase the glass transition temperature (Tg) of the chromophore compound itself.
  • Tg glass transition temperature
  • the chromophore compound can be controlled by connecting the first crosslinkable group (X 1 ) and the second crosslinkable group (X 2 ) with crosslinking function to the electron donor group and the electron bridge group respectively.
  • the geometry and delocalization of the electrons of the chromophore compounds minimizes interactions between the chromophore compounds and, therefore, allows for a better conversion of first-order hyperpolarizability ( ⁇ ) values into electro-optical coefficients ( r33) value, thereby improving the macroscopic electro-optical activity of the chromophore compound; moreover, the introduction of the first cross-linkable group and the second cross-linkable group can increase the distance between the molecules of the chromophore compound and weaken the static electricity between the molecules.
  • the interaction helps to improve the polarization efficiency of the chromophore compound; in addition, the first cross-linkable group (X 1 ) and the second cross-linkable group (X 2 ) have cross-linkable functions, making the chromophore compounds Chromophore compounds have multiple cross-linking sites, and cross-linking occurs easily between chromophore compounds or between chromophore compounds and polymers.
  • the cross-linking process does not require the introduction of a separate cross-linking agent, which increases the content of chromophore compounds in electro-optical materials.
  • the electro-optical coefficient of the electro-optical material is further improved.
  • the cross-linking of the chromophore compound can further increase the glass transition temperature (Tg) of the electro-optical material, thereby improving the photothermal stability and polarization orientation stability of the electro-optical material.
  • Tg glass transition temperature
  • the first cross-linkable group and the second cross-linkable group can undergo cross-linking reactions with each other, which facilitates the formation of a cross-linked chromophoric group system with a one-unit self-reactive single molecule structure, that is, the electro-optical material contains a chromophoric Chromophore compounds can achieve self-crosslinking reactions between molecules, which is more conducive to the large-scale industrial production and application of chromophore compounds.
  • the application embodiments provide two chromophore compounds with a single molecular structure.
  • the electron donor group of one chromophore compound is connected to an anthracene group, and the electron bridge group is connected to an acrylate group.
  • the chromophore compound It has the structure of the following formula (II); the electron donor group of another chromophore compound is connected to an acrylate group, and the electron bridge group is connected to an anthracene group.
  • the chromophore compound has the structure of formula (III) :
  • the chromophore compounds of formula (II) and formula (III) both use anthracene group and acrylate group, but the positions where the anthracene group and acrylate group are connected are different.
  • the chromophore compounds of formula (II) and formula (III) are represented by QLD3 and QLD4 respectively.
  • the electron bridge molecule is a thiophene bridge or a pyrrole bridge
  • the structure of the obtained chromophore compound is:
  • the organic optical nonlinear chromophore compound (QLD3 or QLD4) based on the tetrahydroquinoline single-donor structure provided in this embodiment introduces a tetrahydroquinoline-like single-donor structure into the molecular formula of the chromophore compound. Since the power-donating ability of tetrahydroquinoline single donors is much stronger than that of most conventional donors, the first-order hyperpolarizability and electro-optical coefficient of chromophore compounds are compared with those of traditional aniline-containing donors. The groups are greatly improved, and the tetrahydroquinoline structure can increase the glass transition temperature (Tg) of the chromophore compound.
  • Tg glass transition temperature
  • tetrahydroquinoline donors contain alcoholic hydroxyl groups, which can provide connection sites for further modification of the donor end, making it easier to introduce the required first cross-linkable group, so that the first cross-linkable group can be directly connected to Covalently bonded to the electron donor group of the chromophore compound, and because the electron bridge molecule also contains alcoholic hydroxyl groups, a second crosslinkable group can be introduced on the electron bridge group, thereby designing
  • the dendritic chromophore compound itself has multiple cross-linking points, which facilitates cross-linking between chromophore compounds or between chromophore compounds and polymers.
  • the cross-linking process does not require the introduction of a separate cross-linking agent, which improves the color development in electro-optical materials.
  • the content of the chromophore compound (using the chromophore compound (QLD3 or QLD4) of the present application can form a pure chromophore electro-optical film of more than 95 wt%), therefore, the electro-optic coefficient of the electro-optic material can be further improved.
  • the donor group and the electron bridge group are respectively connected with a first cross-linkable group and a second cross-linkable group that can undergo cross-linking reactions, which can form a cross-linked hairpin with a one-membered self-reactive single-molecule structure.
  • the chromophore system that is, when the electro-optical material only contains a chromophore compound with a single molecular structure, cross-linking between molecules can be achieved. After the cross-linking reaction occurs in the chromophore system, the glass transition temperature of the electro-optic material can be further significantly increased. (Tg), thereby improving the photothermal stability and polarization orientation stability of the electro-optical material system.
  • Tg glass transition temperature of the electro-optic material
  • This application uses an electron donor structure similar to tetrahydroquinoline as the electron donor group of the second-order nonlinear optical chromophore, and at the same time introduces two different available groups into the electron donor group and the electron bridge group.
  • the cross-linking group can then form a cross-linked electro-optical material system with a self-reactive single-molecule structure with its own cross-linking group, thereby obtaining light with a large electro-optical coefficient, high photothermal stability and high polarization orientation stability. Material system.
  • the embodiments of the present application also provide a method for preparing the chromophore compound (Formula I), which specifically includes the following steps.
  • Step S10 Connect an electron bridge molecule containing a second reactive group to an electron donor molecule containing a first reactive group to obtain an electron donor group containing the first reactive group and the second reactive group.
  • Group-electron bridge group compound
  • the structure of the electron donor molecule is Among them, please refer to the aforementioned description of formula (I) for the specific structural types of D and L 1 , and R is the first reactive group.
  • D in the electron donor molecule structure is a nitrogen atom, that is, the electron donor molecule is a tetrahydroquinoline single donor. Since the power-donating ability of the tetrahydroquinoline single donor is stronger than that of most existing electron donors, the benzene ring in the tetrahydroquinoline further increases the power-donating ability. In addition, the tetrahydroquinoline structure can increase the glass transition temperature (Tg) of the chromophore compound due to its own structural characteristics.
  • Tg glass transition temperature
  • the first reactive group and the second reactive group are independently selected from any one of hydroxyl, azide, alkynyl, mercapto, isocyanate, amino and other groups.
  • both the first reactive group and the second reactive group are hydroxyl groups.
  • the electron donor molecule is tetrahydroquinoline containing alcoholic hydroxyl groups
  • the electron bridge molecule is isophorone containing alcoholic hydroxyl groups.
  • step S10 in the process of obtaining the electron donor group-electron bridge group compound in step S10, before connecting the electron bridge molecule to the electron donor molecule, it is also necessary to connect a first protecting group to the first reactive group. . After connecting the electron bridge molecule to the electron donor molecule, a second protecting group needs to be connected to the second reactive group.
  • the first protective group and the third reactive group are respectively connected to the first reactive group of the electron donor molecule and the second reactive group of the electron bridge molecule.
  • Two protecting groups, after the corresponding reaction is completed, the first protecting group and the second protecting group are removed step by step according to the order in which the first crosslinkable group and the second crosslinkable group are introduced, which can protect during the reaction process. The first reactive group and the second reactive group are not affected.
  • the first protecting group is derived from tert-butyldimethylchlorosilane or its derivatives, or dihydropyran derivatives
  • the second protecting group is derived from tert-butyldiphenylchlorosilane or its derivatives.
  • the first protecting group is derived from tert-butyldiphenylchlorosilane or its derivatives
  • the second protecting group is derived from tert-butyldimethylsilyl chloride or its derivatives, or dihydropyran derivatives .
  • substances capable of protecting and deprotecting hydroxyl groups can be used to form the first protecting group and the second protecting group.
  • Step S20 connect at least one first crosslinkable group and at least one second reactive group to the first reactive group and the second reactive group of the electron donor group-electron bridge group compound respectively.
  • a crosslinkable group, and an electron acceptor group is connected to the electron bridge group of the electron donor group-electron bridge group compound, thereby obtaining the chromophore represented by the aforementioned formula (I) compound.
  • first protecting group and the second protecting group need to be removed step by step. It can be understood that when the introduced first crosslinkable group and the second crosslinkable group are different, the first protecting group and the second protecting group need to be removed step by step. When the introduced first crosslinkable group When the group and the second crosslinkable group are the same, the first protecting group and the second protecting group can be removed simultaneously.
  • the structure of this application is
  • the electron donor molecule has a structure similar to tetrahydroquinoline, which can improve the power supply capacity and glass transition temperature (Tg) of the chromophore compound.
  • the electron donor molecule itself contains a first reactive group, which can provide active connections site to facilitate the introduction of the first cross-linkable group.
  • the electron bridge molecule contains a second reactive group to facilitate the introduction of the second cross-linkable group without adding additional elements to the electron donor molecule and electron bridge molecule.
  • the step of introducing active linking sites makes the synthesis of chromophore compounds easier.
  • a one-way cross-linked chromophore system can be directly formed.
  • this application can achieve chromophore cross-linking reaction by synthesizing a chromophore compound with a molecular structure.
  • the preparation method is easy to implement, simplifies the synthesis steps, has high yields of intermediate products and final products, and the chromophore compound can be dissolved in most organic solvents, which is beneficial to large-scale production and commercial application.
  • the specific preparation method of chromophore compounds includes the following steps:
  • Step S1 connect a tetrahydropyranyl group to the alcoholic hydroxyl group of the first compound to obtain the structure: of the second compound.
  • the alcoholic hydroxyl group on the tetrahydroquinoline is protected by connecting a protecting group to prevent subsequent reactions from destroying the alcoholic hydroxyl group.
  • Step S2 perform a knoevenagel condensation reaction on the second compound and isophorone in sodium ethoxide and 2-mercaptoethanol to obtain the structure: of the third compound.
  • Step S3 the fourth compound reacts with diethyl phosphate through Wittig-Hornor reaction to obtain the structure: The fifth compound.
  • Step S4 reduce the nitrile group in the fifth compound with diisobutylaluminum hydride to obtain the structure: The sixth compound.
  • Step S5 remove the tert-butyldiphenylsilyl group on the sixth compound to obtain the structure: The seventh compound. Since the ketone group of the electron bridge molecule achieves chain extension after reacting in steps S4 and S5, it is necessary to connect the first cross-linkable group and the second cross-linkable group respectively. According to actual needs, the electron donor groups are selected separately. Or the protective group connected to the alcoholic hydroxyl group on the electron bridge group is removed to reduce the alcoholic hydroxyl group one by one. In this embodiment, the second crosslinkable group is first introduced on the electron bridge group. Therefore, the second protecting group connected to the electron bridge group is preferentially removed.
  • Step S6 connect the alcoholic hydroxyl groups of the seventh compound through nucleophilic substitution or Steglich esterification to form a structure:
  • the second cross-linkable group the obtained structure is
  • the eighth compound or structure is The ninth compound.
  • Step S7 remove the tetrahydropyranyl group on the eighth compound or the ninth compound to obtain the structure:
  • the tenth compound or structure is The eleventh compound.
  • Step S8 the connecting structure on the tenth compound through nucleophilic substitution or Steglich esterification is The first crosslinkable group, or the connecting structure on the alcoholic hydroxyl group of the eleventh compound is The first cross-linkable group, the obtained structure is The twelfth compound or structure is The thirteenth compound.
  • Step S9 the twelfth compound or the thirteenth compound is condensed with the electron acceptor molecule to prepare the chromophore compound (QLD3) of the formula (II) or the chromophore compound of the formula (III) (QLD4).
  • the above synthesis method introduces a tetrahydroquinoline single donor structure containing an alcoholic hydroxyl group and an electron bridge structure containing an alcoholic hydroxyl group, and connects different first protective groups and second protective groups to the two alcoholic hydroxyl groups respectively. , and then remove the first protecting group and the second protecting group step by step to introduce the first crosslinkable group and the second crosslinkable group with different structures respectively, to avoid introducing the first crosslinkable group and the second crosslinkable group.
  • the alcoholic hydroxyl group is affected, and the step-by-step removal of the corresponding protecting group can realize the step-by-step introduction of two different cross-linkable groups.
  • the introduced first cross-linkable group and the second cross-linkable group can undergo cross-linking reactions, and a one-dimensional self-reactive cross-linked chromophore system can be formed by simply synthesizing a chromophore compound with a single molecular structure.
  • a one-dimensional self-reactive cross-linked chromophore system can be formed by simply synthesizing a chromophore compound with a single molecular structure.
  • the difficulty of synthesis is reduced, the synthesis steps are simplified, the workload of testing and characterization of related molecules is reduced, and the chromophore
  • the compound can be dissolved in most organic solvents, which is beneficial to large-scale industrial production and commercial application.
  • Embodiments of the present application also provide an electro-optical material, which includes the chromophore compound as described above.
  • the electro-optical material is a cross-linked chromophore system containing a one-membered self-reactive single-molecule structure of a chromophore compound.
  • the first crosslinkable group and the second crosslinkable group connected to the chromophore compound can be selected from the above group combinations.
  • the first crosslinkable group and the second crosslinkable group are respectively An anthracene group and an acrylate group
  • the chromophore compound is the chromophore compound QLD3 as described above.
  • the chromophore compound QLD3 can undergo a self-crosslinking reaction during the polarization process, that is, the anthracene group and the acrylate group between multiple QLD3 molecules undergo a cross-linking reaction to form a cross-linked structure, forming
  • the glass transition temperature of the electro-optical material after the cross-linked structure increases, and the cross-linked structure does not relax and unwind during the heating process, thereby improving the photothermal stability and polarization orientation stability of the electro-optic material, and improving The electro-optical coefficient is improved, which is beneficial to increasing the polarization temperature and operating temperature of the formed device.
  • first cross-linkable group and the second cross-linkable group connected to the chromophore compound can also be an acrylate group and an anthracene group respectively, that is, the color development as described above Group compound QLD4.
  • the structure introduced in the molecular formula of the chromophore compound in the electro-optical material provided by this application is Single-donor structure. Since this type of structure contains benzene ring and heterocyclic structure, the power-donating ability is much stronger than that of most conventional power donors.
  • the first-order hyperpolarizability and electro-optical coefficient of chromophore compounds are compared with traditional The chromophores containing aniline donors have been greatly improved, and the glass transition temperature (Tg) of the chromophore compounds can also be increased.
  • the chromophore compound of the present application is connected with a first cross-linkable group and a second cross-linkable group, the macroscopic electro-optical activity of the chromophore compound can be further improved, and at the same time, the intermolecular strength of the chromophore compound can be increased.
  • the distance weakens the electrostatic interaction between molecules and helps to improve the polarization efficiency of chromophore compounds.
  • the electro-optical material formed can at least contain only one single molecular structure.
  • the chromophore compound can undergo a self-crosslinking reaction to form a cross-linked chromophore system with a one-membered self-reactive single-molecule structure.
  • this one-unit system only contains a single molecular structure chromophore compound, and there is no need to synthesize multiple chromophore compounds, which reduces the difficulty of synthesizing multiple chromophore compounds and reduces the cost.
  • the workload of testing and characterization of related molecules is reduced, and there is no need to study the mixing ratio between multiple chromophore compounds, which reduces the difficulty of preparing electro-optical materials; in addition, the electro-optical material of this application only has one glass transition temperature, and the electro-optical material has The increase in glass transition temperature is easy to achieve, and it also reduces the difficulty of temperature control of the electro-optical material in the cross-linking and polarization processes, which is more conducive to the large-scale industrial production and commercial application of the electro-optical material of the present application.
  • the electro-optical material of the present application can undergo a self-crosslinking reaction, and the cross-linking process does not require the introduction of a separate cross-linking agent, thereby increasing the content of the chromophore compound in the electro-optical material (using the single-molecule structure system of the chromophore compound QLD3 or QLD4 of the present application can Forming more than 95wt% pure chromophore electro-optical film) can further improve the electro-optical coefficient of electro-optical materials.
  • the cross-linked chromophore system of one-unit self-reactive single-molecule structure provided in the embodiments of the present application has both a high electro-optical coefficient and a high glass transition temperature, and the polarization efficiency is at least 2.42 ⁇ 0.10nm 2 /V 2 , the electro-optical coefficient is at least 300m/V, and the glass transition temperature (Tg) of the electro-optical material is at least 180°C. It is one of the electro-optical materials with the best comprehensive performance at present.
  • Embodiments of the present application also provide another electro-optical material.
  • the electro-optical material includes the chromophore compound and the polymer as described above, and the chromophore compound is used to undergo a cross-linking reaction with the polymer. Specifically, when the chromophore compound undergoes a cross-linking reaction with the main chain of the polymer, a main chain type electro-optical polymer can be formed, and when the chromophore compound undergoes a cross-linking reaction with the side chain of the polymer, a side chain can be formed type electro-optical polymer.
  • the polymer can be a commonly used type of main chain electro-optical polymer or side chain electro-optical polymer.
  • the chromophore compound of the present application contains a first cross-linkable group and a second cross-linkable group respectively on the electron donor group and the electron bridge group.
  • the chromophore compound and the polymer can cross-link under certain conditions.
  • the chromophore compound has a high electro-optical coefficient and glass transition temperature, which is beneficial to improving the electro-optical coefficient and glass transition temperature of the electro-optical polymer.
  • an embodiment of the present application also provides an electro-optical film 100 , where the electro-optical film 100 is made of any of the above electro-optical materials. Since the chromophore compound is soluble in organic solvents, the electro-optical material has better film-forming properties.
  • an embodiment of the present application also provides an electro-optical glass 200 .
  • the electro-optical glass 200 includes a glass substrate 210 and the above-mentioned electro-optical film 100 located on the surface of the glass substrate 210 .
  • the glass substrate 210 may be indium oxide (ITO) glass.
  • the specific preparation method of electro-optical glass is: dissolve the aforementioned electro-optical material in an organic solvent (such as methylene bromide), filter it through a 0.2mm PTFE filter, and spin-coat the filtered solution on the surface of an indium oxide (ITO) glass substrate , and heated under vacuum conditions at 50° C. overnight to remove the solvent, and obtain the electro-optical film 100 attached to the glass substrate 210 .
  • organic solvent such as methylene bromide
  • ITO indium oxide
  • the electro-optical material solution can also be coated on the glass substrate 210 by spraying or other coating methods.
  • an embodiment of the present application further provides an electro-optical device 300 .
  • the electro-optical device 300 includes a housing 310 and the above-mentioned film 100 or the above-mentioned electro-optical glass 200 located on the housing 310 .
  • the electro-optical device 300 can be an optoelectronic modulator, such as a Mach-Zehnder Modulator (MZM), an optoelectronic modulator micro-ring; it can also be packaged into an optical module, such as co-packaged optics (CPO)
  • MZM Mach-Zehnder Modulator
  • CPO co-packaged optics
  • the polarized electro-optical film 100 provided by the present application has a high electro-optical coefficient (at least 300 pv/m), which is beneficial to improving the performance of the electro-optical device 300; in addition, because the polarized electro-optical film 100 has a cross-linked network structure , thereby increasing the glass transition temperature of the electro-optical film 100 (at least 180° C.), thereby increasing the operating temperature of the electro-optical device 300 .
  • an embodiment of the present application further provides an electronic device 400 .
  • the electronic device 400 includes a housing 410 and the above-mentioned electro-optical device 300 located on the housing 410 .
  • the chromophore compound QLD3 has the structure of the above formula (II).
  • the chromophore compound QLD3 shows good solubility in common organic solvents (such as trichloroethane, etc.). Its synthesis method includes the following steps:
  • Step S9 Dissolve compound K8 (2.89g, 3.56mmol) in 35mL acetone, and then add 7.2mL 1M HCl to the solution. The mixture was then stirred at room temperature for 2 h and extracted with dichloromethane. After the crude product was concentrated in vacuum, it was purified by column chromatography using petroleum ether and ethyl acetate (8:1 ⁇ 1:1) as eluents to obtain red solid compound K9, with a yield of 52.9% (1.35g, 1.85mmol ).
  • Step S10 In a nitrogen environment, compound b (0.36g, 1.45mmol), DMAP (0.029g, 0.24mmol), and EDCI (0.46g, 2.42mmol) were dissolved in 10 mL of methylene chloride at 0°C. The solution became turbid and became clarified after stirring for 45 minutes. After clarification, compound K9 (0.88g, 1.21mmol) and 15mL of methylene chloride were added. After stirring at 0 °C for 2 h, it was moved to room temperature and the solution was refluxed for a further 15 h. Extract with dichloromethane.
  • Step S11 Dissolve compound K10 (0.38g, 0.40mmol) and compound d (0.14g, 0.44mmol) in 6 mL of absolute ethanol under nitrogen atmosphere. Then it was refluxed at 65°C for 6 hours. After the organic phase was concentrated in vacuum, it was purified by column chromatography using dichloromethane and ethyl acetate (80:1 ⁇ 40:1) as the eluent to obtain the green solid chromophore QLD3. The yield was 59.6% (0.30g, 0.24mmol).
  • the uncrosslinked QLD3 (NC) electro-optical film obtained in Example 1 was cross-linked at 100 to 160° C. for 5 to 10 minutes to obtain a cross-linked QLD3 electro-optical film (expressed as QLD3 (X-link)).
  • the electro-optical film of uncrosslinked QLD3 (NC) was heated to 110°C and kept for 5 minutes, to 120°C for 5 minutes, to 130°C for 5 minutes, to 140°C for 5 minutes, and to 150°C. Keep the temperature for 10 minutes, and finally raise the temperature to 160°C and keep it for 10 minutes to obtain cross-linked QLD3 (X-link) electro-optical films with different cross-linking degrees.
  • Example 1 The above Example 1 and Example 2 are characterized below.
  • Glass transition temperature (Tg) is an important indicator to characterize the thermal stability of chromophore compounds.
  • the glass transition temperature (Tg) of chromophore compounds directly affects the polarization orientation stability of organic electro-optical materials.
  • Figure 1 is a schematic diagram of the polarization process of traditional electro-optical materials, in which traditional chromophore compounds are dispersed in a polymer matrix. During the polarization process, the molecules of the chromophore compound are polarized and oriented, but when the temperature After exceeding the glass transition temperature (Tg) of the electro-optical material, the thermal motion of the chromophore compound molecules becomes violent.
  • the chromophore compound molecules that were originally polarized in the electric field become oriented due to thermal motion and electrostatic interactions between molecules.
  • the antiparallel stacking is destroyed, and the electro-optical coefficient is attenuated, thereby reducing the polarization temperature and operating temperature of the device.
  • FIG 8 it is a differential scanning calorimeter (DSC) curve chart of the chromophore compound QLD3.
  • the glass transition temperature (Tg) of the chromophore compound QLD3 was tested by DSC.
  • the glass transition temperature (Tg) of QLD3 is 77°C.
  • the anthracene groups and acrylate groups on different QLD3 molecules will undergo cross-linking reactions.
  • the small molecules thus become large cross-linked polymers.
  • the glass transition temperature (Tg) of the cross-linked QLD3 (X-link) is increased to 184°C, and the glass transition temperature (Tg) of the cross-linked electro-optical material is obtained.
  • Tg glass transition temperature
  • the cross-linked structure will not unlink during the heating process, thereby improving the photothermal stability and polarization orientation stability of the electro-optical material, increasing the electro-optical coefficient, which is beneficial to increasing the polarization temperature and polarization temperature of the device. Operating temperature.
  • the absorption spectrum of a chromophore compound characterizes the electron donor's ability to transfer chromophore charges.
  • this application tested the UV-visible absorption spectrum of the chromophore compound QLD3 in chloroform.
  • the electronic ability increases the ground state energy level of the chromophore compound, causing the charge to transition more easily, thereby causing a red shift.
  • the larger ultraviolet absorption wavelength also means that the chromophore compound may have a greater first-order hyperpolarizability. .
  • the invention also combined the solvation effect to study the polarity of the chromophore, and tested the chromophore compound QLD3 in acetone and dichloromethane. , 1,4-dioxane (1,4-dioxane), tetrahydrofuran (tetrahydrofuran), acetonitrile (acetonitrile) and chloroform (chloroform) and other six solvents of maximum absorption wavelength, the absorption spectrum is as shown in the figure Shown in 10.
  • the polarization efficiency is the efficiency of converting the microscopic hyperpolarizability of the chromophore compound into the macroscopic electro-optical coefficient.
  • the electro-optical films of Example 1 and Example 2 are first obtained, and the electro-optical films of Example 1 and Example 2 are assembled into electro-optical devices.
  • Benzocyclobutene is usually used during polarization of electro-optical materials to reduce leakage current.
  • the contact polarization process is carried out above the glass transition temperature (Tg) of the electro-optical material, specifically at a temperature of 5 to 10°C.
  • the electro-optical coefficient (r33) of the polarized film at a wavelength of 1310 nm was calculated using the Teng-Man simple reflection method, which uses a thin ITO glass substrate with low reflectivity and good transparency as the electrode to minimize multiple reflections.
  • the introduction of the first cross-linkable group and the second cross-linkable group into the chromophore compound can also control the geometry and delocalization of the electrons, enabling interactions between the chromophore compounds. Minimization, therefore, can better convert the first-order hyperpolarizability ( ⁇ ) value into the electro-optical coefficient (r33) value, thereby improving the macroscopic electro-optical activity of the chromophore compound. If the electrostatic interaction between molecules is ignored, the electro-optical coefficient (r33) increases with the increase of chromophore compound number density (N), first-order hyperpolarizability ( ⁇ ) and polarization electric field strength (Ep).
  • N chromophore compound number density
  • first-order hyperpolarizability
  • Ep polarization electric field strength
  • the strong dipole-dipole interaction between the molecules of the chromophore compounds will hinder the polarization process of the chromophore compounds and reduce the polarization efficiency.
  • the introduction of the first crosslinkable group and the second crosslinkable group can increase the distance between molecules of the chromophore compound, weaken the electrostatic interaction between the molecules, and help improve the polarization efficiency of the chromophore compound.
  • this application also tested the electro-optical coefficient of the QLD3 film after self-crosslinking, using a stepped temperature rise and polarization method (for example, 110°C for 5 minutes, 120°C for 5 minutes, 130°C for 5 minutes, and 140°C for 5 minutes. °C and keep for 5 minutes, then raise the temperature to 150°C and keep for 10 minutes, and finally raise the temperature to 160°C and keep for 10 minutes), so that QLD3 undergoes a self-crosslinking reaction.
  • Cross-linking can improve the polarization orientation stability of the electro-optical film, but it will also cause the formation of polymers.
  • the network structure inhibits the improvement of polarization efficiency to a certain extent.
  • the polarization efficiency of cross-linked QLD3 is lower than that of uncross-linked QLD3 (NC), and the polarization efficiency is 2.42 ⁇ 0.10 nm 2 /V 2 , but the electro-optical coefficient is still as high as 311m/V, which is about 10 times that of the inorganic lithium niobate (30pm/V).
  • the cross-linked QLD3 (X-link) electro-optical film has an electro-optical coefficient of 311pm/V and a glass transition temperature (Tg) of 184°C, which has both a high electro-optical coefficient and a high glass transition.
  • Temperature (Tg) electro-optical materials are currently one of the best electro-optical materials in the world.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本申请提供一种发色团化合物,发色团化合物的结构为其中,D为可提供电子的原子;A为电子受体基团;B为电子桥基团;Z、L1及L2分别为至少能形成两个化学键的原子或有机基团;X1为第一可交联基团;X2为可与第一可交联基团发生交联的第二可交联基团;n、m、p及q分别为大于或等于1的整数。本申请还提供该发色团化合物的制备方法、应用该发色团化合物的电光材料、薄膜、电光玻璃、电光器件及电子设备。发色团化合物通过引入供电能力强的类似四氢喹啉结构的单给体基团,同时引入了相互之间能发生交联的第一可交联基团和第二可交联基团,形成的一元自反应型发色团体系兼具较高的一阶超极化率、电光系数及玻璃化转变温度。

Description

发色团化合物、其制备方法、及发色团化合物的应用
相关申请的交叉引用
本申请要求在2022年5月30日提交中国专利局、申请号为202210605698.4、申请名称为“发色团化合物、其制备方法、及发色团化合物的应用”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及有机光学材料领域,具体涉及一种发色团化合物及其制备方法、含有该发色团化合物的电光材料、含有该电光材料的薄膜和电光玻璃、应用该薄膜或该电光玻璃的电光器件及应用该电光器件的电子设备。
背景技术
随着云计算、5G通讯、高清网络视频、物联网等技术的迅猛发展以及信息需求的快速增长,数据中心网络等中短距离通信系统对超大容量的光纤通信需求越来越大。对于中短距离光通信系统,如何在光电子器件带宽受限的情况下实现超高速率(单波长400Gb/s以上)信号传输将面临巨大的挑战。电光调制器是实现光电信息转换的核心器件,也是突破带宽和信号传输速率这两个重大技术挑战的关键环节。
电光材料是电光调制器的关键组成部分。早期对电光材料的研究主要集中在无机晶体和半导体材料,如铌酸锂和砷化镓,然而,这些材料的电光系数(r33值)通常不高,限制了电光调制器的最小驱动电压。有机/聚合物非线性电光材料是另一种被广泛研究的电光材料,有机/聚合物非线性电光材料具有许多优点,例如高电光系数和高带宽,这对研究大带宽、小尺寸、低功耗及低驱动压的电光调制器(例如有机物混合MZM电光调制器)非常有意义,而且有机/聚合物非线性电光材料还在光信息储存以及太赫兹等领域有巨大应用。
然而,现有的有机非线性电光材料在商业化应用过程中仍面临着许多挑战。虽然有机电光发色团相较于无机光电材料具有较大的电光系数,但电光系数仍有很大的提升空间;而且,有机发色团分子的玻璃化转变温度(Tg)较低,导致电光材料的光热稳定性和极化取向稳定性较差,在高温下极化取向容易发生衰减(即电光系数衰减)。因此,如何获得兼具大的电光系数、光热稳定性和极化取向稳定性的有机非线性电光材料一直是该领域的技术瓶颈。
发明内容
本申请实施例第一方面提供了一种发色团化合物,所述发色团化合物具有如下式(I)的结构:
其中,D为可提供电子的原子;
A为电子受体基团;
B为电子桥基团;
Z为至少能形成两个化学键的原子或有机基团;
L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;
X1为第一可交联基团;
X2为可与所述第一可交联基团发生交联反应的第二可交联基团;
n和m分别为大于或等于1的整数;
p和q分别为大于或等于1的整数。
本申请在发色团化合物的分子中引入含有苯环和杂环组成的类似四氢喹啉结构的单电子给体基团,由于这类结构电子给体基团的给电能力较大多数给电体要强,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升;由于本申请的电子给体基团中含有刚性的苯环结构,能够提高发色团化合物自身的玻璃化转变温度(Tg)。通过在发色团化合物的电子给体基团和电子桥基团上分别连接具有交联功能的第一可交联基团和第二可交联基团,可以提高发色团化合物宏观的电光活性,而且,第一可交联基团和第二可交联基团的引入可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率;另外,第一可交联基团和第二可交联基团为发色团化合物提供多个交联位点,发色团化合物之间便可发生交联,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量,进一步提高了电光材料的电光系数,同时交联能进一步提高电光材料的玻璃化转变温度(Tg),进而提高电光材料的光热稳定性和极化取向稳定性;另外,第一可交联基团和第二可交联基团能发生交联反应,便于形成一元自反应型单分子结构的交联发色团体系,即电光材料中含有一种发色团化合物便可以实现分子之间的自交联反应,因此,更有利于发色团化合物的大规模工业化生产及应用。
在一些实施例中,所述式(I)中的D为氧原子、氮原子或硫原子。
氧原子、氮原子或硫原子的给电子能力较强,能增强电子给体基团的给电能力。
在一些实施例中,所述式(I)中的Z为硫原子、氧原子或烷基。
通过在电子桥基团上引入硫原子、氧原子或烷基,可以提高发色团化合物分子结构的稳定性。
在一些实施例中,所述式(I)中的L1和L2分别独立地选自烷基、酯基、芳基以及杂芳基中的至少一种。
通过引入L1和L2可以调整发色团化合物侧链的长度,有利于后续发色团化合物之间或发色团化合物与聚合物之间发生交联反应,同时还可以通过引入不同类型的基团改变发色团化合物的柔顺性。
在一些实施例中,所述式(I)中的n和m为1,2或3;所述式(I)中的p和q分别为1或2。
通过限定所述式(I)中的n和m为1,2或3,可以提高电子给体基团、电子桥基团以及电子受体基团之间的共轭效应。通过限定所述式(I)中的p和q分别为1或2,即第一可交联基团和第二可交联基团分别可以接入一个或两个,从而控制后续发色团化合物之间发生交联反应的程度,另外,第一可交联基团和第二可交联基团不能太多,太多会增加反应位阻。
在一些实施例中,第一可交联基团和第二可交联基团均为可发生点击化学成反应、热交联反应、光交联反应、耦合反应或聚合反应的基团。
在一些实施例中,第一可交联基团和第二可交联基团选自以下基团组合中的任意一种:叠氮基团和炔基、羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋喃基团和马来酰亚胺基团、巯基和烯烃、香豆素基团和香豆素基团、二氟烯烃基团和二氟烯烃基团、以及苯乙烯基团和苯乙烯基团等。可以理解的,当第一可交联基团和第二可交联基团不同时,第一可交联基团可以是一基团组合中的任意一个基团,则第二可交联基团为该基团组合的另一个基团。以下列举了第一可交联基团和第二可交联基团的一些典型的交联反应,例如,点击化学反应包括叠氮-炔基的Husigen环加成反应;热交联反应包括:羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋喃基团和马来酰亚胺基团;光交联反应包括:巯基和烯烃,香豆素和香豆素;二氟烯烃基团的耦合反应以及苯乙烯基团的聚合反应等。
在一些实施例中,所述发色团化合物具有如下式(II)或式(III)的结构:
本申请第二方面还提供了一种发色团化合物的制备方法,该制备方法包括以下步骤:
在含有第一反应基团的电子给体分子上连接含有第二反应基团的电子桥分子,得到含有所述第一反应基团和所述第二反应基团的电子给体基团-电子桥基团化合物;以及
在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个第一可交联基团和至少一个第二可交联基团,并在所述电子给体基团-电子桥基团化合物的所述电子桥基团上连接电子受体基团,从而获得所述发色团化合物,
其中,所述发色团化合物具有如下式(I)的结构:
其中,D为可提供电子的原子;
A为所述电子受体基团;
B为所述电子桥基团;
Z为至少能形成两个化学键的原子或有机基团;
L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;
X1为所述第一可交联基团;
X2为所述第二可交联基团,所述第二可交联基团可与所述第一可交联基团发生交联反应;
n和m分别为大于或等于1的整数;
p和q分别为大于或等于1的整数。
本申请电子给体分子和电子桥分子上分别含有第一反应基团和第二反应基团,能提供活性连接位点,便于第一可交联基团和第二可交联基团的引入,无需增加在电子给体分子和电子桥分子上引入活性连接位点的步骤,使发色团化合物的合成更容易;而且,在同一个发色团化合物分子中引入的第一可交联基团和第二可交联基团之间可发生交联反应,能直接形成一元自反应型单分子结构的交联发色团体系,相较于传统的多元交联发色团体系,本申请只需要合成一种分子结构的发色团化合物,便可实现发色团之间的交联反应,无需合成多种发色团化合物,合成难度降低,减小了相关分子的测试和表征工作量。因此,该制备方法易于实现,降低了合成难度,且发色团化合物能够溶解于大多数有机溶剂中,有利于大规模工业化生产和商业化应用。
在一些实施例中,所述电子给体分子具有如下式(IV)的结构:
其中,R为所述第一反应基团。
在一些实施例中,所述第一反应基团和所述第二反应基团分别独立地选自羟基、叠氮基团、炔基、巯基、异氰酸酯基以及氨基等基团中的任一种。
在一些实施例中,在所述电子给体分子上连接所述电子桥分子之前,所述制备方法还包括步骤:
在所述第一反应基团上连接第一保护基团;
在所述电子给体分子上连接所述电子桥分子之后,所述制备方法还包括步骤:
在所述第二反应基团上连接第二保护基团;
在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个所述第一可交联基团和至少一个所述第二可交联基团之前,所述制备方法还包括步骤:
分别去除所述第一保护基团和所述第二保护基团。
通过在第一反应基团和第二反应基团上分别连接第一保护基团和第二保护基团,相应反应完成后再分别去除第一保护基团和第二保护基团,可以在反应过程中保护第一反应基团和第二反应基团不受影响,且可以实现在同一个分子中分步引入两种不同的可交联基团。
在一些实施例中,所述电子桥分子包括异佛尔酮、噻吩桥以及吡咯桥中的任一种。
在一些实施例中,所述第一保护基团衍生自叔丁基二甲基氯硅烷或其衍生物、或二氢吡喃类衍生物,所述第二保护基团衍生自叔丁基二苯基氯硅烷或其衍生物。或者,所述第一保护基团衍生自叔丁基二苯基氯硅烷或其衍生物,所述第二保护基团衍生自叔丁基二甲基氯硅烷或其衍生物、或二氢吡喃类衍生物。
在一些实施例中,所述电子给体分子为结构为的第一化合物,所述电子桥分子为异佛尔酮,所述电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈,所述制备方法包括以下步骤:
在所述第一化合物的羟基上连接四氢吡喃基,得到结构为的第二化合物;
将所述第二化合物与异佛尔酮在乙醇钠和2-巯基乙醇中进行knoevenagel缩合反应得到结构为的第三化合物;
在所述第三化合物的羟基上连接叔丁基二苯基硅基,得到结构为的第四化合物;
所述第四化合物与磷酸二乙酯通过Wittig-Hornor反应,得到结构为的第五化合物;
通过二异丁基氢化铝将所述第五化合物中的腈基还原,得到结构为的第六化合物;
去除所述第六化合物上的所述叔丁基二苯基硅基,得到结构为第七化合物;
通过亲核取代或Steglich酯化作用在所述第七化合物的羟基上分别连接结构为的第二可交联基团,得到结构为的第八化合物或结构为的第九化合物;
去除所述第八化合物或所述第九化合物上的所述第一保护基团,得到结构为的第十化合物或结构为的第十一化合物;
通过亲核取代或Steglich酯化作用在所述第十化合物上连接结构为的第一可交联基团,或在所述第十一化合物的羟基上连接结构为的第一可交联基团,得到结构为的第十二化合物或结构为的第十三化合物;
所述第十二化合物或所述第十三化合物与所述电子受体分子缩合后制得结构为的所述发色团化合物。
通过引入含有羟基的四氢喹啉单电子给体基团以及含有羟基的电子桥结构,并通过在两个羟基上分别连接相应的保护基团并分步去除的方式,避免在引入第一可交联基团和第二可交联基团之前,两个羟基受影响,且分步去除相应保护基团可实现两种不同的可交联基团的分步引入;引入的第一可交联基团和第二可交联基团可以发生交联反应,仅需合成一种单分子的发色团化合物便可以形成一元自反应型交联发色团体系,无需合成多种发色团化合物,合成难度降低,简化了合成步骤,减小了相关分子的测试和表征工作量,且发色团化合物能够溶解于大多数有机溶剂中,有利于大规模工业化生产和商业化应用。
本申请第三方面提供了一种电光材料,该电光材料包括如上所述的发色团化合物。
本申请提供的电光材料中的发色团化合物的分子中引入含有苯环和杂环组成的类似四氢喹啉结构的单电子给体基团,由于这类结构电子给体基团的给电能力较大多数给电体要强,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升;而且,由于本申请的电子给体基团中含有刚性的苯环结构,能够提高发色团化合物自身的玻璃化转变温度(Tg)。通过在同一个发色团化合物分子上引入第一可交联基团和第二可交联基团,可以提高发色团化合物宏观的电光活性,同时还可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率;而且,第一可交联基团和第二可交联基团的引入,使发色团化合物具有多个交联位点,电光材料交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量,能进一步提高电光材料的电光系数;另外由于第一可交联基团和第二可交联基团可以相互发生交联反应,因此,形成的电光材料中最少可以仅含有一种单分子的发色团化合物便可以发生自交联反应,以形成一元自反应型单分子结构的交联发色团体系,该一元体系中分子结构单一,电光材料无需引入多种发色团化合物,合成难度降低,减小了相关分子的测试和表征工作量,也无需研究电光材料中多种发色团化合物之间的混合比例,降低了电光材料的制备难度,同时也降低了电光材料在交联和极化过程的温度控制难度。另外,发色团化合物之间在一定温度下发生交联,能进一步显著提高电光材料的玻璃化转变温度(Tg),进而能提高电光材料的光热稳定性和极化取向稳定性。本申请发色团化合物形成的一元自反应型单分子结构的交联发色团体系兼具高的电光系数和高的玻璃化转变温度,极化效率至少为2.42±0.10nm2/V2,电光系数至少为300m/V,且,电光材料的玻璃化转变温度(Tg)至少为180℃,是目前综合性能最好的电光材料之一。
本申请第四方面提供了另一种电光材料,该电光材料包括如上所述的发色团化合物和聚合物,所述发色团化合物用于与所述聚合物发生交联反应。
本申请的发色团化合物上含有第一可交联基团和第二可交联基团,发色团化合物与聚合物能够在一定条件下发生交联反应,进而形成电光聚合物,而且发色团化合物具有较高的电光系数和玻璃化转变温度,有利于提升电光聚合物的电光系数和玻璃化转变温度。
本申请第五方面提供了一种薄膜,该薄膜是由如上所述的电光材料制成。
本申请第六方面提供了一种电光玻璃,该电光玻璃包括玻璃基板和位于玻璃基板上的如上所述的薄膜。
本申请第七方面提供了一种电光器件,该电光器件包含如上所述的薄膜,或包含如上所述的电光玻璃。
本申请提供的极化后的电光薄膜具有较高的电光系数(至少为300pv/m),有利于提高电光器件(例如光电调制器)的性能;另外,由于极化后的电光薄膜具有交联结构,从而提高了电光薄膜的玻璃化转变温度(至少为180℃),进而提高了电光器件的工作温度。
本申请第八方面提供了一种电子设备,该电子设备包含如上所述的电光器件。
附图说明
图1是采用传统有机电光材料制备的器件的极化过程示意图。
图2是采用本申请一实施例提供的一元自反应单分子结构的交联发色团体系QLD3制备的器件的极化过程示意图。
图3是本申请一实施例提供的薄膜的示意图。
图4是本申请一实施例提供的电光玻璃的示意图。
图5是本申请一实施例提供的电光器件的示意图。
图6是本申请一实施例提供的电子设备的示意图。
图7是本申请实施例提供的QLD3的热失重曲线图。
图8是本申请实施例提供的QLD3的DSC曲线图。
图9是本申请实施例提供的QLD3在氯仿中的紫外-可见分光光谱。
图10是本申请实施例提供的QLD3在不同溶剂中的紫外可见分光光谱。
图11是本申请实施例提供的QLD3(CN)膜以及QLD3(X-link)膜的紫外-可见分光光谱。
图12a与图12b是本申请实施例提供的QLD3(CN)膜以及QLD3(X-link)膜组装成电光器件后的极化效率曲线图。
主要元件符号说明
薄膜               100
电光玻璃           200
玻璃基板           210
电光器件           300
电子设备           400
壳体               310,410
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请中涉及的数据范围如无特别说明均应包括端值。
常用的有机电光材料的发色团化合物分子的微观一阶超极化率(β值)转换为宏观电光系数(r33值)的效率较低,具有较低的电光系数。另外,发色团化合物分子的玻璃化转变温度(Tg)较低,在极化过程中,发色团化合物分子被极化取向,但,当温度超过发色团分子的玻璃化转变温度(Tg)后,发色团化合物分子的热运动变得剧烈,原本在电场中被极化取向的发色团化合物分子因为热运动和分子间的静电相互作用,反平行堆积被破坏,发生驰豫,如图1所示,导致有机电光材料的光热稳定性以及极化取向稳定性较差,电光系数易发生衰减,进而降低器件的极化温度和工作温度。
本申请提供一种兼具大的电光系数(r33值)及良好的光热稳定性和极化取向稳定性的发色团化合物。该发色团化合物可应用于电光器件中,例如电光调制器,但不以此为限,合成该发色团化合物经过优化选型,使所述发色团化合物在兼具大的电光系数(r33值)和较高的玻璃化转变温度(Tg)。
本申请实施例提供的所述发色团化合物包含电子给体基团、电子桥基团和电子受体基团,电子给体基团通过电子桥基团与电子受体基团电子共轭。所述发色团化合物具有如下式(I)的结构:
其中,D为可提供电子的原子,A为电子受体基团,B为电子桥基团,Z为至少能形成两个化学键的原子或有机基团,L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团,X1为第一可交联基团,X2为可第一可交联基团发生交联反应的第二可交联基团,n和m分别为大于或等于1的整数,p和q分别为大于或等于1的整数。
上述式(I)中,所述电子给体基团的结构为电子给体基团衍生自电子给体分子,电子给体分子采用的是含有第一反应基团(例如醇羟基)的类似四氢喹啉结构的单电子给体。通过电子给体基团自带的第一反应基团可方便引入第一可交联基团(例如蒽基团或丙烯酸酯基团等)。一些实施例中,电子给体基团中的D可以是氧原子、氮原子或硫原子,氧原子、氮原子或硫原子的给电子能力较强,能增强电子给体基团的给电能力。可以理解的,还可以是其他能够提供电子(例如π电子)的原子。具体地,电子给体基团可衍生自含醇羟基的四氢喹啉。
电子桥基团中的Z为硫原子、氧原子或烷基。通过在电子桥基团上引入硫原子、氧原子或烷基,可以提高发色团化合物分子结构的稳定性,尤其是当Z为硫原子或氧原子时,发色团化合物的稳定性显著提高。一些实施例中,电子桥基团可衍生自电子桥分子,电子桥分子可以是异佛尔酮、噻吩桥以及吡咯桥等这类高性能电子桥中的一种。具体地,电子桥基团衍生自异氟尔酮,异氟尔酮含有醇羟基,方便第二可交联基团的引入。
第一可交联基团和第二可交联基团均是能够发生点击化学反应(Click chemistry)(例如环加成反应)、热交联反应、光交联反应、耦合反应或聚合反应的官能团,即第一可交联基团和第二可交联基团能够相互反应使两个发色团化合物分子连接在一起。由于第一可交联基团和第二可交联基团相互之间可发生交联反应,则第一可交联基团和第二可交联基团可以选自以下基团组合中的任意一种:叠氮基团和炔基、羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋喃基团和马来酰亚胺基团、巯基和烯烃、香豆素基团和香豆素基团、二氟烯烃基团和二氟烯烃基团、以及苯乙烯基团和苯乙烯基团等。可以理解的,当第一可交联基团和第二可交联基团不同时,第一可交联基团可以是以上一基团组合中的任意一个基团,第二可交联基团则为该基团组合中的另一个基团。通过在发色团化合物的分子中引入相互间能发生交联反应的第一可交联基团和第二可交联基团,可以仅通过合成一种单一分子结构的发色团化合物,便可以形成一元自反应型单分子结构的交联发色团体系,即电光材料中只含有一种单一分子结构的发色团化合物便可以实现分子之间的交联,因此,更有利于发色团化合物的大规模工业化生产及应用。
一些实施例中,式(I)中的n和m为1,2或3;式(I)中的p和q分别为1或2。通过限定式(I)中的n和m为1,2或3,可以提高电子给体基团、电子桥基团以及电子受体基团之间的共轭效应。通过限定式(I)中的p和q分别为1或2,即第一可交联基团和第二可交联基团分别可以接入一个或两个,从而控制后续发色团化合物之间发生交联反应的程度,另外,第一可交联基团和第二可交联基团不能太多,太多会增加反应位阻。
一些实施例中,电子受体基团可以衍生自2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈,或2-(3-氰基-4,5,5-三甲基呋喃-2(5H)-亚乙基)丙二腈等吸电子基团,具体地,本实施例采用的电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈。可以理解的,电子受体基团还可以衍生自其他现有的常规电子受体分子。
本申请在发色团化合物的分子中引入含有苯环和杂环组成的类似四氢喹啉的单给体结构由于这类结构电子给体基团的给电能力较大多数给电体要强,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升;而且,由于本申请的电子给体基团中含有刚性的苯环结构,能够提高发色团化合物自身的玻璃化转变温度(Tg)。发色团化合物通过在电子给体基团和电子桥基团上分别连接具有交联功能的第一可交联基团(X1)和第二可交联基团(X2),可以控制发色团化合物的电子的几何结构和离域化,能够使发色团化合物之间的相互作用最小化,因此,可以更好地将一阶超极化率(β)值转化为电光系数(r33)值,从而提高发色团化合物宏观的电光活性;而且,第一可交联基团和第二可交联基团的引入可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率;另外,第一可交联基团(X1)和第二可交联基团(X2)具有可交联功能,使发色团化合物具有多个交联位点,发色团化合物之间或发色团化合物与聚合物易于发生交联,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量,进一步提高了电光材料的电光系数,同时发色团化合物交联后能进一步提高电光材料的玻璃化转变温度(Tg),进而提高电光材料的光热稳定性和极化取向稳定性。另外,第一可交联基团和第二可交联基团相互之间能发生交联反应,便于形成一元自反应单分子结构的交联发色团体系,即电光材料中含有一种发色团化合物便可以实现分子之间的自交联反应,因此,更有利于发色团化合物的大规模工业化生产及应用。
根据发色团化合物中连接的第一可交联基团和第二可交联基团类型的不同,且第一可交联基团和第二可交联基团可发生交联反应,本申请实施例提供了两种单一分子结构的发色团化合物,一种发色团化合物的电子给体基团上连接蒽基团,电子桥基团上连接丙烯酸酯基团,该发色团化合物具有如下式(II)的结构;另一发色团化合物的电子给体基团上连接丙烯酸酯基团,电子桥基团上连接蒽基团,该发色团化合物具有式(III)的结构:
以上两种发色团化合物中,式(II)和式(III)的发色团化合物均采用的是蒽基团和丙烯酸酯基团,只是蒽基团和丙烯酸酯基团连接的位置不同,为便于后续描述,将式(II)和式(III)的发色团化合物分别以QLD3和QLD4代表。
可以理解的,在其他实施例中,当电子桥分子为噻吩桥或吡咯桥时,得到的发色团化合物的结构为
本实施例提供的基于四氢喹啉类单给体结构的有机光学非线性发色团化合物(QLD3或QLD4),在发色团化合物的分子式中引入类似四氢喹啉的单给体结构,由于四氢喹啉类单给体的给电能力较大多数常规给电体要强很多,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升,且四氢喹啉类结构能提高发色团化合物的玻璃化转变温度(Tg)。另外,四氢喹啉类给体含有醇羟基,能够为给体端的进一步修饰提供连接位点,更容易引入所需要的第一可交联基团,使第一可交联基团能够直接以共价键的方式连接在发色团化合物的电子给体基团上,而且,由于电子桥分子中也含有醇羟基,能够在电子桥基团上引入第二可交联基团,从而设计出自身具有多个交联点的树枝状发色团化合物,便于发色团化合物之间或发色团化合物与聚合物的交联,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量(采用本申请的发色团化合物(QLD3或QLD4)可以形成95wt%以上的纯发色团电光薄膜),因此,能进一步提高了电光材料的电光系数。同时,给电体基团和电子桥基团上分别连接能够发生交联反应的第一可交联基团和第二可交联基团,能够形成一元自反应型单分子结构的交联发色团体系,即电光材料中仅含有单一分子结构的发色团化合物时便可以实现分子之间的交联,发色团体系发生交联反应后,能进一步显著提高电光材料的玻璃化转变温度(Tg),进而提高了电光材料体系的光热稳定性和极化取向稳定性。本申请通过采用类似四氢喹啉的电子给体结构作为二阶非线性光学发色团的电子给体基团,同时在电子给体基团和电子桥基团中分别引入两种不同的可交联基团,继而可以形成自带交联基团的一元自反应单分子结构的交联电光材料体系,从而获得兼具大电光系数、高光热稳定性和高极化取向稳定性的光材料体系。
本申请实施例还提供了所述发色团化合物(式I)的制备方法,具体包括以下步骤。
步骤S10,在含有第一反应基团的电子给体分子上连接含有第二反应基团的电子桥分子,得到含有所述第一反应基团和所述第二反应基团的电子给体基团-电子桥基团化合物。
具体地,该电子给体分子的结构为其中,D和L1具体结构类型请参见前述式(I)的描述,R为第一反应基团。
一些实施例中,电子给体分子结构中的D为氮原子,即电子给体分子为四氢喹啉单给体。由于四氢喹啉单给体的给电能力强于大多现有的电子给体,且四氢喹啉中的苯环进一步增加了给电能力。另外,四氢喹啉结构由于其自身的结构特征,能够提高发色团化合物的玻璃化转变温度(Tg)。
一些实施例中,所述第一反应基团和第二反应基团分别独立地选自羟基、叠氮基团、炔基、巯基、异氰酸酯基以及氨基等基团中的任一种。本实施例中,第一反应基团和第二反应基团均为羟基,具体地,电子给体分子为含有醇羟基的四氢喹啉,电子桥分子为含有醇羟基的异氟尔酮。
具体地,在实现步骤S10得到电子给体基团-电子桥基团化合物的过程中,在电子给体分子上连接电子桥分子之前,还需要在第一反应基团上连接第一保护基团。在电子给体分子上连接电子桥分子之后,还需要在第二反应基团上连接第二保护基团。
由于第一反应基团和第二反应基团的反应活性较大,通过在电子给体分子的第一反应基团以及电子桥分子的第二反应基团上分别连接第一保护基团和第二保护基团,相应反应完成后再根据引入第一可交联基团和第二可交联基团的顺序分步去除第一保护基团和第二保护基团,可以在反应过程中保护第一反应基团和第二反应基团不受影响。
一些实施例中,第一保护基团衍生自叔丁基二甲基氯硅烷或其衍生物、或二氢吡喃类衍生物,第二保护基团衍生自叔丁基二苯基氯硅烷或其衍生物。或者,第一保护基团衍生自叔丁基二苯基氯硅烷或其衍生物,第二保护基团衍生自叔丁基二甲基氯硅烷或其衍生物、或二氢吡喃类衍生物。可以理解的,能够实现羟基的保护和去保护的物质均可以用于形成第一保护基团和第二保护基团,另外,根据第一保护基团和第二包括基团去除顺序的不同,可以选择不同的保护基团,进而采取不同的条件去除,避免将两种保护基团同时去除。
步骤S20,在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个第一可交联基团和至少一个第二可交联基团,并在所述电子给体基团-电子桥基团化合物的所述电子桥基团上连接电子受体基团,从而获得如前述式(I)所示的发色团化合物。
一些实施例中,在电子给体基团-电子桥基团化合物中的电子给体基团和电子桥基团上分别连接第一可交联基团和第二可交联基团之前,还需要分步去除第一保护基团和第二保护基团。可以理解的,当引入的第一可交联基团和第二可交联基团不同时,需要分步去除第一保护基团和第二保护基团,当引入的第一可交联基团和第二可交联基团相同时,可以同时去除第一保护基团和第二保护基团。
本申请结构为的电子给体分子具有类似四氢喹啉的结构,能够提高发色团化合物的供电能力和玻璃化转变温度(Tg),同时,电子给体分子自身含有第一反应基团,能提供活性连接位点,便于第一可交联基团的引入,另外,电子桥分子上含有第二反应基团,便于第二可交联基团的引入,无需增加在电子给体分子和电子桥分子上引入活性连接位点的步骤,使发色团化合物的合成更容易。另外,由于发色团化合物分子同时引入可发生交联的第一可交联基团和第二可交联基团,能直接形成一元交联发色团体系,相较于传统的二元或多元交联发色团体系,本申请合成一种分子结构的发色团化合物便可实现发色团交联反应,无需合成多种发色团化合物,合成难度降低,减小了相关分子的测试和表征工作量。因此,该制备方法易于实现,简化了合成步骤,中间产物和最终产物的产率高,且发色团化合物能够溶解于大多数有机溶剂中,有利于大规模生产和商业化应用。
以下给出了前述式(II)的发色团化合物(QLD3)和式(III)的发色团化合物(QLD4)的具体合成方法,其中,所述电子给体分子为结构为的第一化合物,所述电子桥分子为异佛尔酮,所述电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈或其他常规受体分子。
发色团化合物(QLD3和QLD4)的具体制备方法包括以下步骤:
步骤S1,在所述第一化合物的醇羟基上连接四氢吡喃基,得到结构为的第二化合物。首先将四氢喹啉上的醇羟基通过连接保护基团进行保护,以免后续反应破坏醇羟基。
步骤S2,将所述第二化合物与异佛尔酮在乙醇钠和2-巯基乙醇中进行knoevenagel缩合反应得到结构为的第三化合物。
在所述第三化合物的羟基上连接叔丁基二苯基硅基,得到结构为的第四化合物。由于引入的电子桥分子同样含有醇羟基,也需要对其进行保护。
步骤S3,所述第四化合物与磷酸二乙酯通过Wittig-Hornor反应,得到结构为的第五化合物。
步骤S4,通过二异丁基氢化铝将所述第五化合物中的腈基还原,得到结构为的第六化合物。
步骤S5,去除所述第六化合物上的所述叔丁基二苯基硅基,得到结构为第七化合物。由于电子桥分子的酮基经由步骤S4和步骤S5反应后实现扩链,后续需要分别连接第一可交联基团和第二可交联基团,根据实际需要选择分别将电子给体基团或电子桥基团上的醇羟基连接的保护基团去除,以逐一还原醇羟基。本实施例中,先在电子桥基团上的引入第二可交联基团,因此,优先去除电子桥基团上连接的第二保护基团。
步骤S6,通过亲核取代或Steglich酯化作用在所述第七化合物的醇羟基上分别连接结构为的第二可交联基团,得到结构为的第八化合物或结构为的第九化合物。
步骤S7,去除所述第八化合物或所述第九化合物上的四氢吡喃基,得到结构为的第十化合物或结构为的第十一化合物。
步骤S8,通过亲核取代或Steglich酯化作用在所述第十化合物上连接结构为的第一可交联基团,或在所述第十一化合物的醇羟基上连接结构为的第一可交联基团,得到结构为的第十二化合物或结构为的第十三化合物。
步骤S9,所述第十二化合物或所述第十三化合物与所述电子受体分子缩合后制得前述式(II)的发色团化合物(QLD3)或式(III)的发色团化合物(QLD4)。
上述合成方法,通过引入含有醇羟基的四氢喹啉单给体结构以及含有醇羟基的电子桥结构,并通过在两个醇羟基上分别连接不同的第一保护基团和第二保护基团,再分步去除第一保护基团和第二保护基团,以分别引入不同结构的第一可交联基团和第二可交联基团,避免在引入第一可交联基团和第二可交联基团之前,醇羟基受影响,且分步去除相应保护基团可实现两种不同的可交联基团的分步引入。引入的第一可交联基团和第二可交联基团可以发生交联反应,仅需合成一种单一分子结构的发色团化合物便可以形成一元自反应型交联发色团体系,相较于传统的二元或多元交联发色团体系,无需合成多种发色团化合物,合成难度降低,简化了合成步骤,减小了相关分子的测试和表征工作量,且发色团化合物能够溶解于大多数有机溶剂中,有利于大规模工业化生产和商业化应用。
本申请实施例还提供一种电光材料,该电光材料包括如上所述的发色团化合物。
一些实施例中,该电光材料为包含一种发色团化合物的一元自反应型单分子结构的交联发色团体系。该发色团化合物连接的第一可交联基团和第二可交联基团可以选自以上基团组合,具体地,第一可交联基团和第二可交联基团分别为蒽基团和丙烯酸酯基团,该发色团化合物为如上所述的发色团化合物QLD3。结合图2所示,发色团化合物QLD3在极化过程中可以发生自交联反应,即多个QLD3分子之间的蒽基团和丙烯酸酯基团发生交联反应,形成交联结构,形成交联结构后的电光材料玻璃化转变温度升高,交联结构在升温过程中不会发生弛豫现象进而发生解链,从而提高了电光材料的光热稳定性以及极化取向稳定性,提高了电光系数,进而有利于提高形成器件的极化温度和工作温度。
值得注意的是,由于位阻等的影响,同一个QLD3分子上的第一可交联基团和第二可交联基团几乎是无法发生交联反应的。
可以理解的,该发色团化合物连接的所述第一可交联基团和所述第二可交联基团还可以分别为丙烯酸酯基团和蒽基团,即如上所述的发色团化合物QLD4。
本申请提供的电光材料中的发色团化合物的分子式中引入结构为的单给体结构,由于这类结构中包含苯环和杂环结构,给电能力较大多数常规给电体要强很多,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升,而且还能提升发色团化合物的玻璃化转变温度(Tg)。由于本申请的发色团化合物中连接有第一可交联基团和第二可交联基团,可以进一步提高发色团化合物宏观的电光活性,同时还可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率。
由于本申请的发色团化合物中的第一可交联基团和第二可交联基团相互之间可以发生交联反应,因此,形成的电光材料中最少可以仅含有一种单一分子结构的发色团化合物便可以发生自交联反应,形成一种一元自反应单分子结构的交联发色团体系。相较于传统的二元发色团体系,该一元体系中仅含有单一分子结构发色团化合物,无需合成多种发色团化合物,降低了合成多种发色团化合物的难度,减小了相关分子的测试和表征工作量,而且也无需研究多种发色团化合物之间的混合比例,降低了电光材料的制备难度;另外,本申请的电光材料只存在一个玻璃化温度,电光材料的玻璃化转变温度的提升易于实现,同时也降低了电光材料在交联和极化过程的温度控制难度,更有利于本申请电光材料的大规模工业化生产及商业化应用。
本申请的电光材料可发生自交联反应,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量(采用本申请的发色团化合物QLD3或QLD4单分子结构体系可以形成95wt%以上的纯发色团电光薄膜),能进一步提高电光材料的电光系数。同时,体系中发色团化合物之间在一定温度下发生交联,能进一步显著提高电光材料的玻璃化转变温度(Tg),进而能提高电光材料的光热稳定性和极化取向稳定性。尤其是,本申请实施例中提供的一元自反应单分子结构的交联发色团体系兼具高的电光系数和高的玻璃化转变温度,极化效率至少为2.42±0.10nm2/V2,电光系数至少为300m/V,且,电光材料的玻璃化转变温度(Tg)至少为180℃,是目前综合性能最好的电光材料之一。
本申请实施例还提供了另一种电光材料,该电光材料包括如上所述的发色团化合物和聚合物,所述发色团化合物用于与所述聚合物发生交联反应。具体地,当发色团化合物与聚合物的主链进行交联反应时,可以形成主链型电光聚合物,当发色团化合物与聚合物的侧链进行交联反应时,可以形成侧链型电光聚合物。该聚合物可以采用主链型电光聚合物或侧链型电光聚合物常用的聚合物类型。本申请的发色团化合物在电子给体基团和电子桥集团上分别含有第一可交联基团和第二可交联基团,发色团化合物与聚合物能够在一定条件下发生交联反应,进而形成电光聚合物,而且发色团化合物具有较高的电光系数和玻璃化转变温度,有利于提升电光聚合物的电光系数和玻璃化转变温度。
请参阅图3,本申请实施例还提供一种电光薄膜100,所述电光薄膜100是由如上任一种电光材料制成。由于该发色团化合物溶于有机溶剂,因此,电光材料的成膜性较好。
请参阅图4,本申请实施例还提供一种电光玻璃200,该电光玻璃200包括玻璃基板210和位于玻璃基板210表面的上述电光薄膜100。该玻璃基板210可以是氧化铟(ITO)玻璃。
电光玻璃的具体制备方法为:将前述电光材料溶解在有机溶剂(例如二溴甲烷)中,在通过0.2mm的PTFE过滤器过滤后,将过滤溶液旋转涂覆于氧化铟(ITO)玻璃基板的表面,并在50℃真空条件下加热过夜,以去除溶剂,得到附着在玻璃基板210上的电光薄膜100。可以理解的,还可以通过喷涂或其他涂覆方式将电光材料溶液涂覆于玻璃基板210上。
请参阅图5,本申请实施例还提供一种电光器件300,该电光器件300包含一壳体310和位于该壳体310上的如上所述的薄膜100或如上所述的电光玻璃200。
该电光器件300可以是光电调制器,例如马赫曾德尔调制器(Mach-Zehnder Modulator,MZM),光电调制器微环;还可以封装成光模块,例如光电合封(co-packaged optics,CPO)的光收发单元的光电调制器,板载光学(on board optics,OBO)的光收发单元的光电调制器;还可以是相控激光雷达的相控模块等。
本申请提供的极化后的电光薄膜100具有较高的电光系数(至少为300pv/m),有利于提高电光器件300的性能;另外,由于极化后的电光薄膜100具有交联的网络结构,从而提高了电光薄膜100的玻璃化转变温度(至少为180℃),进而提高了电光器件300的工作温度。
请参阅图6,本申请实施例还提供一种电子设备400,该电子设备400包含一壳体410和位于该壳体410上的如上所述的电光器件300。
下面通过具体合成例和实施例对本申请实施例进行进一步的说明。
下面以QLD3为例具体说明发色团化合物的合成过程。
合成例1
一种基于单给体结构的有机光学非线性发色团化合物QLD3,该发色团化合物QLD3具有上述式(II)的结构。
发色团化合物QLD3在普通有机溶剂(如三氯乙烷等)中表现出良好的溶解性,其合成方法包括以下步骤:
S1、在氮气环境中,将4-甲基苯磺酸吡啶(0.73g,2.90mmol)、对甲基苯磺酸一水合物(0.55g,2.90mmol)和化合物1(15.15g,58.00mmol)溶解于23mL四氢呋喃中,然后向混合溶液中添加3,4-二氢-2H-吡喃(5.85g,69.60mmol),于室温下搅拌3h。经旋转蒸发除去溶剂后,以石油醚和乙酸乙酯(8:1~3:1)为洗脱液,用硅胶柱层析法纯化粗品,得到黄色油状化合物K2,得率96.6%(19.35g,56.00mmol)。
产物表征:
MS(MALDI)(M+,C21H31NO3):calcd:345.48;found:345.51。
1H NMR(600MHz,CDCl3)δ9.98(s,1H,CHO),7.57(d,J=1.4Hz,1H,ArH),6.48(d,J=14.2Hz,1H,ArH),4.64–4.62(m,1H,OCH),3.95–3.80(m,2H,OCH2),3.73–3.58(m, 2H,NCH2),3.57–3.45(m,2H,OCH2),2.95–2.81(m,1H,CH),2.58(s,3H,CH3),1.87–1.84(m,1H,CH2),1.80–1.72(m,2H,CH2),1.63–1.60(m,2H,CH2),1.58–1.54(m,2H,CH2),1.52(d,J=13.0Hz,1H,CH2),1.39–1.32(m,6H,CH3),1.23(s,3H,CH3)。
13C NMR(151MHz,CDCl3)δ190.13,149.49,140.91,130.23,125.02,122.97,113.53,99.36,65.60,62.46,55.26,46.05,44.62,30.61,29.73,26.64,25.38,19.76。
S2、在氮气环境中,将金属钠(1.75g,75.92mmol)溶解于0℃的140mL乙醇中,再向溶液中加入2-巯基乙醇(5.3mL,75.92mmol)。室温搅拌20min后,加入化合物a(17.54g,113.88mmol)。室温搅拌1h后,加入化合物K2(26.23g,75.92mmol)。然后在65℃搅拌过夜。然后,用乙酸乙酯萃取混合物,并在真空中浓缩有机层。以石油醚和乙酸乙酯(10:1~1:1)为洗脱液,采用柱层析法对粗品进行纯化,得到化合物K3为红色油状液体,得率80.0%(32.90g,60.72mmol)。
产物表征:
MS(MALDI)(M+,C32H47NO4S):calcd:541.79;found:541.76。
1H NMR(600MHz,CDCl3)δ7.85(d,J=15.9Hz,1H,CH),7.47(d,J=1.4Hz,1H,ArH),7.28(d,J=16.0Hz,1H,ArH),6.45(d,J=12.8Hz,1H,CH),4.59–4.57(m,1H,OCH),3.85–3.76(m,2H,OCH2),3.63–3.54(m,2H,NCH2),3.52–3.48(m,4H,OCH2),2.79–2.74(m,2H,SCH2),2.72(t,J=5.9Hz,1H,CH),2.60(s,2H,CH2),2.36(d,J=10.0Hz,6H,CH2),2.26(d,J=45.3Hz,2H,CH2),1.72–1.68(m,2H,CH2),1.30(d,J=13.0Hz,6H,CH3),1.15(d,J=1.6Hz,3H,CH3),1.03(s,6H,CH3),0.96(s,3H,CH3)。
13C NMR(151MHz,CDCl3)δ197.16,160.65,146.51,136.89,136.06,126.58,124.51,123.55,122.34,113.29,99.24,62.32,60.35,54.73,51.63,47.98,41.25,38.48,32.28,30.58,28.38,28.04,25.38,20.20,19.49。
S3、在氮气环境中,将咪唑(8.26g,121.45mmol)、叔丁基二苯基氯硅烷(31.6mL,121.45mmol)和化合物K3(32.90g,60.72mmol)溶解于60mL DMF中。室温下搅拌3h后,经旋转蒸发除去溶剂,然后以石油醚和乙酸乙酯(50:1~4:1)为洗脱液,用硅胶柱层析法纯化粗品,得化合物K4为红色油状液体,得率75.3%(35.67g,45.72mmol)。
产物表征:
MS(MALDI)(M+,C48H65NO4SSi):calcd:780.20;found:780.23。
1H NMR(600MHz,CDCl3)δ7.87(d,J=16.0Hz,1H,CH),7.64–7.63(m,4H,ArH),7.49(t,J=1.4Hz,1H,ArH),7.42–7.37(m,2H,ArH),7.35–7.33(m,4H,ArH),7.26(d,J=16.1Hz,1H,ArH),6.53(d,J=12.4Hz,1H,CH),4.68–4.66(m,1H,OCH),3.98–3.84(m,2H,OCH2),3.81–3.75(m,2H,OCH2),3.68(d,J=2.6Hz,2H,OCH2),3.60–3.43(m,2H,NCH2),2.99–2.97(m,2H,SCH2),2.91–2.86(m,1H,CH),2.58(s,2H,CH2),2.42(s,3H,CH3),2.37(s,2H,CH2),1.93–1.76(m,4H,CH2),1.65–1.54(m,4H,CH2),1.39–1.30(m,6H,CH3),1.22(d,J=1.6Hz,3H,CH3),1.05(d,J=12.2Hz,15H,CH3)。
13C NMR(151MHz,CDCl3)δ195.69,157.95,135.52,134.66,133.67,129.56,127.88,127.64,124.26,113.29,99.36,65.92,63.85,62.46,54.63,51.97,41.28,36.09,32.26,30.67,29.86,28.38,26.85,25.45,20.26,19.65,19.17。
S4、在氮气环境中,将60%的NaH(3.18g,79.51mmol)和50mL THF的溶液添加到双颈烧瓶中。然后在0℃下将氰甲基膦酸二乙酯(12.85mL,79.51mmol)缓慢添加到上述混合物中。逐渐澄清后加入化合物(4)(13.64g,19.88mmol)。混合物在68℃回流过夜。用乙酸乙酯萃取后,在真空中浓缩。粗品以石油醚和乙酸乙酯(50:1~10:1)为洗脱液,经柱层析法纯化,得化合物(5)为红色油状液体,产率72.7%(10.25g,14.45mmol)。
产物表征:
MS(MALDI)(M+,C41H68N2O2SSi2):calcd:709.24;found:709.32。
1H NMR(600MHz,CDCl3)δ7.79(d,J=16.0Hz,1H,CH),7.44(s,1H,ArH),7.08(d,J=16.0Hz,1H,CH),6.43(s,1H,ArH),6.22(s,1H,CH),3.76–3.68(m,2H,NCH2),3.63–3.61(m, 4H,OCH2),2.75–2.67(m,1H,CH),2.62–2.60(m,2H,SCH2),2.50(s,2H,CH2),2.36(s,2H,CH2),2.19(s,3H,CH3),1.75–1.73(m,2H,CH2),1.28(d,J=6.6Hz,3H,CH3),1.24(s,3H,CH3),1.17(s,3H,CH3),1.14(s,6H,CH3),0.94(s,18H,CH3),0.09(s,12H,CH3)。
13C NMR(151MHz,CDCl3)δ158.65(s),149.24(s),145.73(s),135.99(s),132.38(s),128.36(s),125.98(s),125.04(s),124.09(s),123.10(s),119.37(s),113.13(s),62.59(s),61.34(s),54.49(s),54.13(s),47.12(s),46.53(s),43.49(s),41.66(s),37.64(s),30.21(s),29.80(s),28.10(s),26.87(s),25.97(s),24.84(s),20.14(s),18.43(s),-5.18,-5.28。
S5、在氮气环境中,将60%的NaH(5.40g,134.97mmol)和110mL THF的溶液添加到双颈烧瓶中。然后在0℃下将氰甲基膦酸二乙酯(21.8mL,134.97mmol)缓慢添加到上述混合物中。逐渐澄清后加入化合物K4(17.55g,24.49mmol)。混合物在68℃回流过夜。用乙酸乙酯萃取后,在真空中浓缩。粗品以石油醚和乙酸乙酯(50:1~10:1)为洗脱液,经柱层析法纯化,得化合物K5为红色油状液体,得率64.7%(12.72g,15.84mmol)。
产物表征:
MS(MALDI)(M+,C50H66N2O3SSi):calcd:803.23;found:803.20。
1H NMR(600MHz,CDCl3)δ7.83(d,J=16.1Hz,1H,CH),7.67–7.66(m,4H,ArH),7.46(d,J=7.7Hz,1H,ArH),7.45–7.42(m,2H,ArH),7.40–7.37(m,4H,ArH),7.12(d,J=16.0Hz,1H,ArH),6.56(d,J=12.2Hz,1H,CH),6.25(s,1H,CH),4.71–4.69(m,1H,OCH),4.01–3.86(m,2H,OCH2),3.78(t,J=7.1Hz,2H,OCH2),3.73–3.64(m,2H,OCH2),3.62–3.43(m,2H,NCH2),2.91(d,J=6.5Hz,1H,CH),2.77(t,J=7.0Hz,2H,SCH2),2.53(s,2H,CH2),2.46(s,2H,CH2),2.43(s,3H,CH3),1.99–1.70(m,4H,CH2),1.66–1.55(m,4H,CH2),1.35(d,J=6.6Hz,6H,CH3),1.24(d,J=1.8Hz,3H,CH3),1.09(s,9H,CH3),1.02(d,J=1.8Hz,6H,CH3)。
13C NMR(151MHz,CDCl3)δ158.61,149.32,135.53,133.44,129.79,127.77,125.75,124.93,99.35,94.45,63.36,62.45,54.65,43.46,41.59,37.38,30.71,30.17,28.13,26.89,25.50,20.30,19.64,19.20。
S6、在氮气环境中,将化合物K5(12.72g,15.84mmol)溶解于35mL二氯甲烷,然后在-78℃下缓慢加入1M二异丁基氢化铝(己烷)(17.2mL,25.75mmol)。-78℃下搅拌3h后,加入70mL二氯甲烷和水的混合物,在0℃反应1h,用二氯甲烷萃取,有机层在真空中浓缩。以石油醚和乙酸乙酯(50:3~10:1)为洗脱液,采用柱层析法纯化粗品,得化合物K6为红色油状液体,得率76.04%(9.49g,11.77mmol)。
产物表征:
MS(MALDI)(M+,C50H67NO4SSi):calcd:806.23;found:806.25。
1H NMR(600MHz,CDCl3)δ10.14(d,J=8.0Hz,1H,CHO),7.92(d,J=16.0Hz,1H,CH),7.63(t,J=1.5Hz,4H,ArH),7.47(d,J=1.3Hz,1H,ArH),7.43–7.39(m,2H,ArH),7.36–7.32(m,4H,ArH),7.12(d,J=16.0Hz,1H,ArH),7.00(d,J=8.0Hz,1H,CH),6.55(d,J=12.3Hz,1H,CH),4.69(d,J=3.8Hz,1H,OCH),3.99–3.85(m,2H,OCH2),3.82–3.76(m,2H,OCH2),3.73–3.63(m,2H,OCH2),3.60–3.44(m,2H,NCH2),2.92–2.85(m,1H,CH),2.81–2.78(m,2H,SCH2),2.70–2.64(m,2H,CH2),2.47(s,2H,CH2),2.42(s,3H,CH3),1.98–1.75(m,4H,CH2),1.65–1.54(m,4H,CH2),1.38(d,J=3.1Hz,6H,CH3),1.23(d,J=1.8Hz,3H,CH3),1.08–1.00(m,15H,CH3)。
13C NMR(151MHz,CDCl3)δ191.52,150.35,135.51,133.55,129.66,127.70,126.75,125.64,99.35,63.63,62.45,54.65,41.60,39.89,37.05,30.70,30.06,28.32,26.87,25.48,20.30,19.66,19.19。
S7、在氮气环境下,将化合物K6(22.80g,28.28mmol)溶解于60mL四氢呋喃中,然后向溶液中加入四丁基氟化铵(28.3mL,28.28mmol)。然后将混合物在室温下搅拌2h,用二氯甲烷萃取。粗品经真空浓缩后,以石油醚和乙酸乙酯(8:1~1:4)为洗脱液,经柱层析法纯化,得到红色固体化合物K7,得率90.7%(14.56g,25.64mmol)。
产物表征:
MS(MALDI)(M+,C34H49NO4S):calcd:567.83;found:567.84。
1H NMR(600MHz,CDCl3)δ10.13(d,J=8.1Hz,1H,CHO),7.94(d,J=16.0Hz,1H,ArH),7.51(d,J=1.5Hz,1H,CH),7.16(d,J=16.0Hz,1H,ArH),7.01(d,J=8.1Hz,1H,CH),6.50(d,J=12.0Hz,1H,CH),4.65(d,J=4.6Hz,1H,OCH),3.95–3.80(m,2H,OCH2),3.69–3.60(m,4H,OCH2),3.56–3.39(m,2H,NCH2),2.92(d,J=6.8Hz,1H,CH),2.79(d,J=1.4Hz,2H,SCH2),2.76–2.75(m,2H,CH2),2.54(s,2H,CH2),2.39(s,3H,CH3),1.90–1.63(m,4H,CH2),1.55(s,4H,CH2),1.38(d,J=6.6Hz,3H,CH3),1.35(d,J=2.6Hz,3H,CH3),1.20(d,J=1.8Hz,3H,CH3),1.06(s,6H,CH3)。
13C NMR(151MHz,CDCl3)δ191.61,151.12,132.87,126.56,125.13,99.31,65.92,62.42,61.32,54.59,41.71,39.96,38.08,30.64,30.12,28.34,26.92,25.43,20.21,19.57。
S8、在氮气环境中,将化合物c(3.32g,12.68mmol)、DMAP(0.26g,2.11mmol)、EDCI(4.05g,21.14mmol)于0℃下溶于40mL二氯甲烷中。溶液变浑浊,搅拌45min后澄清,澄清后加入化合物K7(6.00g,10.57mmol)和60mL二氯甲烷。在0℃下搅拌2h后,将其移至室温,并使溶液再回流15h。用二氯甲烷萃取。粗品经真空浓缩后,以石油醚和乙酸乙酯(25:1~2:1)为洗脱液,经柱层析法纯化,得到红色油状化合物K8,得率39.9%(3.44g,4.22mmol)。
产物表征:
MS(MALDI)(M+,C47H57NO9S):calcd:812.03;found:812.07。
1H NMR(600MHz,CDCl3)δ10.16(d,J=8.0Hz,1H,CHO),7.92(d,J=16.0Hz,1H,ArH),7.66(d,J=2.2Hz,2H,ArH),7.47(d,J=1.4Hz,1H,ArH),7.29–7.23(m,1H,ArH),7.12(d,J=16.0Hz,1H,CH),7.01(s,1H,CH),6.64(d,J=1.1Hz,2H,CH2),6.49(d,J=12.0Hz,1H,CH),6.31(d,J=6.8Hz,2H,CH),6.07(d,J=1.1Hz,2H,CH2),4.66–4.64(m,1H,OCH),4.46–4.39(m,2H,OCH2),3.96–3.81(m,2H,OCH2),3.70–3.59(m,2H,OCH2),3.57–3.39(m,2H,NCH2),2.96(t,J=7.0Hz,2H,SCH2),2.92–2.85(m,1H,CH),2.76(s,2H,CH2),2.50(s,2H,CH2),2.38(s,3H,CH3),1.91–1.75(m,4H,CH2),1.61–1.52(m,4H,CH2),1.38–1.33(m,6H,CH3),1.21(d,J=1.6Hz,3H,CH3),1.06(d,J=3.1Hz,6H,CH3)。
13C NMR(151MHz,CDCl3)δ191.49,164.44,163.77,151.08,150.82,133.38,132.90,132.06,127.38,127.08,126.75,125.11,120.31,120.16,99.35,65.93,64.57,62.46,54.59,41.66,39.93,33.15,30.66,30.12,28.32,26.88,25.44,20.21,19.60。
步骤S9、将化合物K8(2.89g,3.56mmol)溶解于35mL丙酮中,然后向溶液中加入7.2mL 1M HCl。然后将混合物在室温下搅拌2h,用二氯甲烷萃取。粗品经真空浓缩后,以石油醚和乙酸乙酯(8:1~1:1)为洗脱液,经柱层析法纯化,得到红色固体化合物K9,得率52.9%(1.35g,1.85mmol)。
产物表征:
MS(MALDI)(M+,C42H49NO8S):calcd:727.91;found:727.88。
1H NMR(600MHz,CDCl3)δ10.15(d,J=8.1Hz,1H,CHO),7.92(d,J=16.0Hz,1H,ArH),7.66(d,J=2.2Hz,2H,ArH),7.45(d,J=1.1Hz,1H,ArH),7.25(t,J=2.2Hz,1H,ArH),7.11(d,J=16.0Hz,1H,CH),7.01(d,J=8.0Hz,1H,CH),6.64(d,J=1.1Hz,1H,CH2),6.46(s,1H,CH),6.31(d,J=6.8Hz,1H,CH),6.07(d,J=1.1Hz,1H,CH2),4.42–4.40(m,2H,OCH2),3.81–3.76(m,2H,OCH2),3.61–3.58(m,1H,NCH2),3.39–3.35(m,1H,OCH2),2.96(t,J=7.0Hz,2H,SCH2),2.88(d,J=6.5Hz,1H,CH),2.76(s,2H,CH2),2.50(s,2H,CH2),2.37(s,3H,CH3),1.80–1.77(m,1H,CH2),1.54(t,J=12.9Hz,1H,CH2),1.37–1.32(m,6H,CH3),1.21(s,3H,CH3),1.06(d,J=3.3Hz,6H,CH3)。
13C NMR(151MHz,CDCl3)δ191.60,163.81,150.81,133.45,127.35,120.30,113.48,64.53,60.69,54.82,46.69,41.65,39.93,33.16,30.13,29.68,28.39,26.98,24.93,20.26,20.04。
步骤S10、在氮气环境中,将化合物b(0.36g,1.45mmol)、DMAP(0.029g,0.24mmol)、EDCI(0.46g,2.42mmol)于0℃下溶于10mL二氯甲烷中。溶液变浑浊,搅拌45min后澄清,澄清后加入化合物K9(0.88g,1.21mmol)和15mL二氯甲烷。在0℃下搅拌2h后,将其移至室温,并使溶液再回流15h。用二氯甲烷萃取。粗品经真空浓缩后,以石油醚和乙酸乙酯(8:1~2:1)为洗脱液,经柱层析法纯化,得到红色油状化合物K10,得率58.5%(0.68g,0.71mmol)。
产物表征:
MS(MALDI)(M+,C59H61NO9S):calcd:960.20;found:960.24。
1H NMR(600MHz,CDCl3)δ10.17(d,J=8.0Hz,1H,CHO),8.41(s,1H,ArH),8.33–8.26(m,2H,ArH),8.04(d,J=1.2Hz,2H,ArH),7.94(d,J=16.0Hz,1H,ArH),7.67(d,J=2.2Hz,2H,ArH),7.57–7.55(m,2H,ArH),7.51–7.48(m,3H,ArH),7.25(t,J=2.2Hz,1H,ArH),7.13(d,J=16.1Hz,1H,CH),7.02(d,J=8.1Hz,1H,CH),6.64–6.61(m,2H,CH2),6.51(s,1H,CH),6.31(d,J=6.9Hz,2H,CH),6.06(d,J=1.1Hz,2H,CH2),4.42–4.40(m,2H,OCH2),4.33–4.20(m,2H,OCH2),4.05–4.00(m,2H,NCH2),3.56(t,J=6.1Hz,1H,SCH2),3.35–3.30(m,1H,SCH2),2.96(t,J=7.1Hz,2H,CH2),2.89(d,J=13.1Hz,1H,CH),2.87–2.83(m,2H,CH2),2.77(s,2H,CH2),2.51(s,2H,CH2),2.41(s,3H,CH3),1.78(d,J=8.3Hz,1H,CH2),1.57(t,J=12.9Hz,1H,CH2),1.39–1.32(m,6H,CH3),1.20(s,3H,CH3),1.07(d,J=3.0Hz,6H,CH3)。
13C NMR(151MHz,CDCl3)δ191.53,173.05,164.45,163.78,150.82,133.39,131.62,129.52,127.38,126.51,126.01,124.99,123.89,120.32,64.55,54.75,35.27,33.15,30.14,29.66,26.89,23.30,20.26。
步骤S11、在氮气环境下将化合物K10(0.38g,0.40mmol)和化合物d(0.14g,0.44mmol)溶于6mL无水乙醇中。然后在65℃回流6h,有机相经真空浓缩后,以二氯甲烷和乙酸乙酯(80:1~40:1)为洗脱液,经柱层析纯化,得绿色固体发色团QLD3,得率为59.6%(0.30g,0.24mmol)。
产物表征:
HRMS(ESI)(M+,C75H67F3N4O9S):calcd:1257.4659;found:1257.4655。
1H NMR(600MHz,CDCl3)δ8.41(s,1H,ArH),8.29(d,J=8.9Hz,2H,ArH),8.05(d,J=8.4Hz,2H,ArH),7.65(d,J=2.2Hz,2H,ArH),7.58–7.44(m,12H,ArH),7.32–7.24(m,3H,CH),6.63(d,J=17.3Hz,2H,CH),6.54(s,1H,CH),6.47(d,J=14.6Hz,1H,CH),6.33–6.29(m,2H,CH),6.08(d,J=10.5Hz,2H,CH),4.39(d,J=6.6Hz,2H,OCH2),4.32–4.20(m,2H,OCH2),4.07–3.99(m,2H,NCH2),3.60–3.33(m,2H,SCH2),2.96(t,J=6.9Hz,2H,CH2),2.91(s,1H,CH),2.88(s,2H,CH2),2.58–2.50(m,2H,CH2),2.43(s,3H,CH3),2.37–2.24(m,2H,CH2),1.81–1.78(m,1H,CH2),1.66(s,3H,CH3),1.57(t,J=13.0Hz,1H,CH2),1.38(d,J=6.6Hz,3H,CH3),1.36(s,3H,CH3),1.21(s,3H,CH3),1.02(d,J=2.0Hz,3H,CH3)。
13C NMR(151MHz,CDCl3)δ175.75,173.04,164.10,150.88,146.66,137.82,135.68,133.58,132.11,131.85,131.62,131.31,130.10,129.66,129.47,128.25,127.29,126.82,126.55,126.02,125.14,125.00,123.86,123.54,120.37,120.27,117.04,113.45,111.39,110.88,64.25,62.10,55.18,46.22,43.11,41.76,41.16,35.25,33.96,30.45,29.60,28.60,27.87,26.82,25.08,23.28,20.28,20.00,14.22,1.05。
结合具体的化合物结构式,以下给出了发色团化合物QLD3的合成过程:
实施例1
将合成例1得到的100wt%的QLD3溶于有机溶剂(例如三氯乙烷等)中,得到QLD3溶液,再将QLD3溶液成膜,得到QLD3未交联的电光薄膜(表示为QLD3(NC))。
实施例2
将实施例1得到未交联的QLD3(NC)的电光薄膜,于100~160℃进行5~10min的交联处理得到交联QLD3的电光薄膜(表示为QLD3(X-link))。
本实施例中,分别将未交联的QLD3(NC)的电光薄膜升温至110℃保温5min,升温至120℃保温5min,升温至130℃保温5min,升温至140℃保温5min,升温至150℃保温10min,最后升温至160℃保温10min,得到不同交联程度的交联QLD3(X-link)的电光薄膜。
以上实施例1和实施例2中得到的电光薄膜的厚度保持一致。
下面对以上实施例1和实施例2进行了表征说明。
(1)热稳定性分析
为了了解发色团化合物QLD3在高温下的分解情况,我们在氮气环境下,以10℃/min的加热速率,运用热重分析仪(TGA)对发色团化合物QLD3进行了测试,所得的结果如图7所示。QLD3展现了良好的热稳定性,分解温度(Td,5%失重)高于270℃,完全符合探索极化工艺和双块晶体电光(electro-optic,EO)器件制造的条件。
玻璃化转变温度(Tg)是表征发色团化合物热稳定性的重要指标,发色团化合物的玻璃化转变温度(Tg)的高低直接影响了有机电光材料的极化取向稳定性。结合参阅图1,为传统的电光材料的极化过程示意图,其中传统的发色团化合物分散在聚合物基质中,在极化过程中,发色团化合物分子被极化取向,但,当温度超过电光材料的玻璃化转变温度(Tg)后,发色团化合物分子的热运动变得剧烈,原本在电场中被极化取向的发色团化合物分子因为热运动和分子间的静电相互作用,反平行堆积被破坏,电光系数因此而衰减,进而降低器件的极化温度和工作温度。如图8所示,为发色团化合物QLD3的差示扫描量热仪(DSC)曲线图,通过DSC对发色团化合物QLD3的玻璃化转变温度(Tg)进行了测试。如图8所示,结合参阅图2,QLD3的玻璃化转变温度(Tg)为77℃,加热极化的过程中,不同QLD3分子上的蒽基团和丙烯酸酯基团会发生交联反应,小分子从而变成大的交联聚合物,交联后的QLD3(X-link)的玻璃化转变温度(Tg)提升至184℃,交联后的电光材料玻璃化转变温度(Tg)得到了显著的提高,交联结构在升温过程中不会发生解链,从而提高了电光材料的光热稳定性以及极化取向稳定性,提高了电光系数,进而有利于提高形成器件的极化温度和工作温度。
(2)光谱数据分析
发色团化合物的吸收光谱表征了电子给体对发色团化电荷转移能力大小。为了了解四氢喹啉单给体对发色团化合物电荷转移能力的影响,本申请测试了发色团化合物QLD3在氯仿中的紫外-可见吸收光谱。
发色团化合物QLD3的光谱吸收参数如表1所示。
表1
如图9所示,为发色团化合物QLD3的紫外-可见分光光谱。结合图9和表1可以看出,发色团化合物QLD3在氯仿中的最大吸收波长为798nm,相对于以传统苯胺衍生物为电子给体的发色团(一般为740nm左右),发色团化合物QLD3的最大吸收波长红移了约50nm,这说明了四氢喹啉单给体有着比传统的苯胺给体更强的给电子能力,此外四氢喹啉的六元环结构也能增强给电子能力,使发色团化合物的基态能级上升,导致电荷更容易跃迁,从而导致红移,而更大的紫外吸收波长也意味着发色团化合物可能有更大的一阶超极化率。
为了进一步比较不同的溶剂对发色团电荷转移能力的影响,发明还结合溶剂化效应以研究发色团的极性,测试了发色团化合物QLD3在丙酮(acetone)、二氯甲烷(dichloromethane)、1,4-二氧六环(1,4-dioxane)、四氢呋喃(tetrahydrofuran)、乙腈(acetonitrile)及氯仿(chloroform)等六种不同极性的溶剂中的最大吸收波长,吸收谱图如图10所示。结合图10和表1可以看出,发色团化合物QLD3在1,4-二氧六环(1,4-dioxane)、四氢呋喃(tetrahydrofuran)、乙腈(acetonitrile)及氯仿(chloroform)中分别显示出74nm的红移。
如图11所示,为发色团化合物QLD3在成膜后的紫外-可见分光光谱。为了确定QLD3交联的效果,我们测试了QLD3在QLD3(NC)薄膜以及QLD3(X-link)薄膜中的紫外吸收谱图。如图11所示,可以看到发色团QLD3在薄膜中的最大吸收波长在800nm左右,与前述纯QLD3的紫外-可见分光光谱结果一致,同时在1000nm左右出现了肩峰,此处的肩峰表明发色团的含量较高,当发色团含量较高且发生聚集的时候就会出现1000nm左右的肩峰。特别的,图11中,将图谱中320nm~400nm的紫外吸收区间进行放大,这一区域主要是蒽基团的吸收峰所在的区间,我们看到相较于未交联QLD3(NC)薄膜,交联QLD3(X-link)薄膜中蒽基团的吸收峰出现了明显的下降,这证明了蒽基团和丙烯酸酯基团的交联反应确实发生了。
(3)将实施例1和实施例2的电光薄膜组装成电光器件后,测试了发色团化合物的极化效率及电光系数(r33)。
其中,极化效率是发色团化合物微观超极化率转换为宏观电光系数的效率。
先得到实施例1和实施例2的电光薄膜,并将实施例1和实施例2的电光薄膜组装成电光器件,苯并环丁烯通常在电光材料极化期间使用,以减少泄漏电流。接触极化过程在电光材料玻璃化转变温度(Tg)以上进行,具体在5~10℃的温度下进行。采用Teng-Man简单反射法计算了极化薄膜在1310nm波长下的电光系数(r33),该方法使用低反射率和良好透明度的薄ITO玻璃基板作为电极,以最小化多次反射。
不同电光薄膜的极化效率和电光系数的性能指标如表2所示。
表2
如前所述,在发色团化合物中引入第一可交联基团和第二可交联基团还可以控制电子的几何结构和离域化,能够使发色团化合物之间的相互作用最小化,因此,可以更好地将一阶超极化率(β)值转化为电光系数(r33)值,从而提高发色团化合物宏观的电光活性。如果忽略分子间的静电相互作用,则电光系数(r33)随发色团化合物数密度(N)、一阶超极化率(β)和极化电场强度(Ep)的增加而增加。然而,随着发色团化合物数密度的增加,发色团化合物分子间强烈的偶极-偶极相互作用会阻碍发色团化合物的极化过程,降低极化效率。第一可交联基团和第二可交联基团的引入可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率。
如图12a与图12b和表2所示,结合参阅图2,本申请测试了QLD3组成的一元体系成膜后组装成器件的电光系数,因QLD3具有较大的一阶超极化率,100wt%的QLD3(NC)薄膜的极化效率高达2.92±0.10nm2/V2,在100V/μm作用的极化场下,QLD3(NC)薄膜的电光系数达到了242pm/V。另外,本申请还测试了QLD3发生自交联后的薄膜的电光系数,采用阶梯升温极化的方式(例如110℃保温5min,升温至120℃保温5min,升温至130℃保温5min,升温至140℃保温5min,升温至150℃保温10min,最后升温至160℃保温10min),使QLD3发生自交联反应,交联可以提高电光薄膜的极化取向稳定性,但是确实也会因为形成了聚合物网络结构在一定程度上抑制了极化效率的提升,交联后的QLD3(X-link)的极化效率相较于未交联的QLD3(NC)有所下降,极化效率为2.42±0.10nm2/V2,不过电光系数还是高达311m/V,是无机物铌酸锂(30pm/V)的10倍左右。
值得指出的是交自联的QLD3(X-link)电光薄膜具有311pm/V的电光系数和184℃的玻璃化转变温度(Tg),是兼具较高的电光系数和较高的玻璃化转变温度(Tg)的电光材料,是目前世界上综合性能最好的电光材料之一。
需要说明的是,以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种发色团化合物,其特征在于,所述发色团化合物具有如下式(I)的结构:
    其中,D为可提供电子的原子;
    A为电子受体基团;
    B为电子桥基团;
    Z为至少能形成两个化学键的原子或有机基团;
    L1和L2分别独立地选自至少能够形成两个化学键的原子或有机基团;
    X1为第一可交联基团;
    X2为第二可交联基团,所述第二可交联基团可与所述第一可交联基团发生交联反应;
    n和m分别为大于或等于1的整数;
    p和q分别为大于或等于1的整数。
  2. 如权利要求1所述的发色团化合物,其特征在于,所述式(I)中的D为氧原子、氮原子或硫原子。
  3. 如权利要求1所述的发色团化合物,其特征在于,所述式(I)中的Z为硫原子、氧原子或烷基。
  4. 如权利要求1所述的发色团化合物,其特征在于,所述式(I)中的L1和L2分别独立地选自烷基、酯基、芳基以及杂芳基中的至少一种。
  5. 如权利要求4所述的发色团化合物,其特征在于,所述式(I)中的n和m分别为1,2或3;所述式(I)中的p和q分别为1,2,3或4。
  6. 如权利要求4所述的发色团化合物,其特征在于,所述第一可交联基团和所述第二可交联基团均为可发生点击化学反应、热交联反应、光交联反应、耦合反应或聚合反应的基团。
  7. 如权利要求6所述的发色团化合物,其特征在于,所述第一可交联基团和所述第二可交联基团选自以下基团组合中的任意一种:叠氮基团和炔基、羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋喃基团和马来酰亚胺基团、巯基和烯烃、香豆素基团和香豆素基团、二氟烯烃基团和二氟烯烃基团、以及苯乙烯基团和苯乙烯基团。
  8. 如权利要求7所述的发色团化合物,其特征在于,所述发色团化合物具有如下式(II)或时(III)的结构:
  9. 一种发色团化合物的制备方法,其特征在于,包括以下步骤:
    在含有第一反应基团的电子给体分子上连接含有第二反应基团的电子桥分子,得到含有所述第一反应基团和所述第二反应基团的电子给体基团-电子桥基团化合物;以及
    在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个第一可交联基团和至少一个第二可交联基团,并在所述电子给体基团-电子桥基团化合物的所述电子桥基团上连接电子受体基团,从而获得所述发色团化合物,
    其中,所述发色团化合物具有如下式(I)的结构:
    其中,D为可提供电子的原子;
    A为所述电子受体基团;
    B为所述电子桥基团;
    Z为至少能形成两个化学键的原子或有机基团;
    L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;
    X1为所述第一可交联基团;
    X2为所述第二可交联基团,所述第二可交联基团可与所述第一可交联基团发生交联反应;
    n和m分别为大于或等于1的整数;
    p和q分别为大于或等于1的整数。
  10. 如权利要求9所述的制备方法,其特征在于,所述电子给体分子具有如下式(IV)的结构:
    其中,R为所述第一反应基团。
  11. 如权利要求9所述的制备方法,其特征在于,所述第一反应基团和所述第二反应基团分别独立地选自羟基、叠氮基团、炔基、巯基、异氰酸酯基以及氨基中的任一种。
  12. 如权利要求9所述的制备方法,其特征在于,在所述电子给体分子上连接所述电子桥分子之前,所述制备方法还包括步骤:
    在所述第一反应基团上连接第一保护基团;
    在所述电子给体分子上连接所述电子桥分子之后,所述制备方法还包括步骤:
    在所述第二反应基团上连接第二保护基团;
    在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个所述第一可交联基团和至少一个所述第二可交联基团之前,所述制备方法还包括步骤:
    分步去除所述第一保护基团和所述第二保护基团。
  13. 如权利要求12所述的制备方法,其特征在于,所述电子桥分子包括异佛尔酮、噻吩桥以及吡咯桥中的任意一种。
  14. 如权利要求13所述的制备方法,其特征在于,所述第一保护基团衍生自叔丁基二甲基氯硅烷或其衍生物、或二氢吡喃类衍生物,所述第二保护基团衍生自叔丁基二苯基氯硅烷或其衍生物;
    或者,所述第一保护基团衍生自叔丁基二苯基氯硅烷或其衍生物,所述第二保护基团衍生自叔丁基二甲基氯硅烷或其衍生物、或二氢吡喃类衍生物。
  15. 如权利要求14所述的制备方法,其特征在于,所述电子给体分子为结构为的第一化合物,所述电子桥分子为异佛尔酮,所述电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈,所述制备方法包括以下步骤:
    在所述第一化合物的羟基上连接四氢吡喃基,得到结构为的第二化合物;
    将所述第二化合物与异佛尔酮在乙醇钠和2-巯基乙醇中进行knoevenagel缩合反应得到结构为的第三化合物;
    在所述第三化合物的羟基上连接叔丁基二苯基硅基,得到结构为的第四化合物;
    所述第四化合物与磷酸二乙酯通过Wittig-Hornor反应,得到结构为的第五化合物;
    通过二异丁基氢化铝将所述第五化合物中的腈基还原,得到结构为的第六化合物;
    去除所述第六化合物上的所述叔丁基二苯基硅基,得到结构为第七化 合物;
    通过亲核取代或Steglich酯化作用在所述第七化合物的羟基上分别连接结构为的第二可交联基团,得到结构为的第八化合物或结构为的第九化合物;
    去除所述第八化合物或所述第九化合物上的所述第一保护基团,得到结构为的第十化合物或结构为的第十一化合物;
    通过亲核取代或Steglich酯化作用在所述第十化合物上连接结构为的第一可交联基团,或在所述第十一化合物的羟基上连接结构为的第一可交联基团,得到结构为的第十二化合物或结构为的第十三化合物;
    所述第十二化合物或所述第十三化合物与所述电子受体分子缩合后制得结构为 的所述发色团化合物。
  16. 一种电光材料,其特征在于,包括如权利要求1至8中任意一项所述的发色团化合物。
  17. 一种电光材料,其特征在于,包括如权利要求1至8中任意一项所述的发色团化合物和聚合物,所述发色团化合物用于与所述聚合物发生交联反应。
  18. 一种薄膜,其特征在于,所述薄膜是由如权利要求16或17所述的电光材料制成。
  19. 一种电光玻璃,其特征在于,包括玻璃基板和位于所述玻璃基板上的薄膜,所述薄膜为如权利要求18所述的薄膜。
  20. 一种电光器件,其特征在于,包含如权利要求18所述的薄膜,或包含如权利要求19所述的电光玻璃。
  21. 一种电子设备,其特征在于,包含如权利要求20所述的电光器件。
PCT/CN2023/083201 2022-05-30 2023-03-22 发色团化合物、其制备方法、及发色团化合物的应用 WO2023231528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210605698.4 2022-05-30
CN202210605698.4A CN117186080A (zh) 2022-05-30 2022-05-30 发色团化合物、其制备方法、及发色团化合物的应用

Publications (1)

Publication Number Publication Date
WO2023231528A1 true WO2023231528A1 (zh) 2023-12-07

Family

ID=88992908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083201 WO2023231528A1 (zh) 2022-05-30 2023-03-22 发色团化合物、其制备方法、及发色团化合物的应用

Country Status (2)

Country Link
CN (1) CN117186080A (zh)
WO (1) WO2023231528A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1858117A (zh) * 2006-04-04 2006-11-08 大连理工大学 一类含有噻吩桥链的四氢喹啉功能染料
US7425643B1 (en) * 2004-01-26 2008-09-16 University Of Washington Electron acceptors for nonlinear optical chromophores
CN101845040A (zh) * 2009-03-23 2010-09-29 中国科学院理化技术研究所 树枝状基团修饰的具有D-π-A结构的有机二阶非线性光学发色团及其合成方法和用途
WO2015171125A1 (en) * 2014-05-07 2015-11-12 Hewlett-Packard Development Company, L.P. Polymer-clad optical modulators
CN106279133A (zh) * 2015-06-11 2017-01-04 中国科学院理化技术研究所 有机二阶非线性光学发色团及合成方法和应用
US20210405504A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear Optical Chromophores Having a Diamondoid Group Attached Thereto, Methods of Preparing the Same, and Uses Thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425643B1 (en) * 2004-01-26 2008-09-16 University Of Washington Electron acceptors for nonlinear optical chromophores
CN1858117A (zh) * 2006-04-04 2006-11-08 大连理工大学 一类含有噻吩桥链的四氢喹啉功能染料
CN101845040A (zh) * 2009-03-23 2010-09-29 中国科学院理化技术研究所 树枝状基团修饰的具有D-π-A结构的有机二阶非线性光学发色团及其合成方法和用途
WO2015171125A1 (en) * 2014-05-07 2015-11-12 Hewlett-Packard Development Company, L.P. Polymer-clad optical modulators
CN106279133A (zh) * 2015-06-11 2017-01-04 中国科学院理化技术研究所 有机二阶非线性光学发色团及合成方法和应用
US20210405504A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear Optical Chromophores Having a Diamondoid Group Attached Thereto, Methods of Preparing the Same, and Uses Thereof
WO2021263164A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear optical chromophores comprising a diamondoid group

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIU TAILI; ZHANG DI; HUQE MD RASHEDUL; WANG WEN; ZAPIEN JUAN ANTONIO; TSANG SAI-WING; LUO JINGDONG: "Record-high near-band-edge optical nonlinearities and two-level model correction of poled polymers by spectroscopic electromodulation and ellipsometry", SCIENCE CHINA CHEMISTRY; THE FRONTIERS OF CHEMICAL BIOLOGY AND SYNTHESIS, SCIENCE CHINA PRESS, SIENCE CHINA PRESS, vol. 65, no. 3, 21 December 2021 (2021-12-21), Sience China Press , pages 584 - 593, XP037704321, ISSN: 1674-7291, DOI: 10.1007/s11426-021-1164-4 *
SHI ZHENGWEI, CUI YUE-ZHI, HUANG SU, LI ZHONG’AN, LUO JINGDONG, JEN ALEX K.-Y.: "Dipolar Chromophore Facilitated Huisgen Cross-Linking Reactions for Highly Efficient and Thermally Stable Electrooptic Polymers", ACS MACRO LETTERS, vol. 1, no. 7, 17 July 2012 (2012-07-17), pages 793 - 796, XP093116223, ISSN: 2161-1653, DOI: 10.1021/mz300189p *
ZHENGWEI SHI, JINGDONG LUO, SU HUANG, BRENT M. POLISHAK, XING-HUA ZHOU, SHAWNA LIFF, TODD R. YOUNKIN, BRUCE A. BLOCK, ALEX K.-Y. J: "Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process", JOURNAL OF MATERIALS CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 22, no. 3, 1 January 2012 (2012-01-01), GB , pages 951 - 959, XP055659129, ISSN: 0959-9428, DOI: 10.1039/C1JM14254B *
ZHOU XING-HUA, LUO JINGDONG, DAVIES JOSHUA A., HUANG SU, JEN ALEX K. Y.: "Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups", JOURNAL OF MATERIALS CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 22, no. 32, 1 January 2012 (2012-01-01), GB , pages 16390 - 16398, XP093116220, ISSN: 0959-9428, DOI: 10.1039/c2jm32848h *

Also Published As

Publication number Publication date
CN117186080A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US20030183812A1 (en) Fluorinated crosslinked electro-optic materials and electro-optic devices therefrom
Xu et al. Molecular engineering of structurally diverse dendrimers with large electro-optic activities
US7425643B1 (en) Electron acceptors for nonlinear optical chromophores
US7749408B2 (en) Electro-optic dendrimer-based glass composites
Zeng et al. A modifiable double donor based on bis (N-ethyl-N-hydroxyethyl) aniline for organic optical nonlinear chromophores
Xu et al. Design and synthesis of novel H-Shaped chromophore for enhanced nonlinear optical properties
Liu et al. Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures
Liu et al. Design and synthesis of various double donors for nonlinear optical chromophores with enhanced electro-optic activity
WO2021003296A1 (en) Crosslinkable nonlinear-optical chromophore system
US7019453B2 (en) Polymers having pendant nonlinear optical chromophores and electro-optic devices therefrom
Gu et al. Supramolecular self-assembled nonlinear optical molecular glasses with enhanced electro-optic activity and alignment stability
WO2009102359A2 (en) Nonlinear optical chromophores with stabilizing substituent and electro-optic devices
US20100152338A1 (en) Nonlinear optical material composition and method of manufacture
WO2023231528A1 (zh) 发色团化合物、其制备方法、及发色团化合物的应用
Zhang et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity
US7601849B1 (en) Nonlinear optical compounds and related macrostructures
WO2023231529A1 (zh) 发色团化合物、其制备方法、及发色团化合物的应用
CN114656432B (zh) 一种自组装有机光学非线性发色团及其合成方法和应用
Liang et al. Synthesis of phenyltetraene chromophores-based hybrid materials for large nonlinear optical activity
WO2023107680A1 (en) Nonlinear optical chromophores having tetrahydrocarbazole donor groups, lyotropic compositions containing the same, and methods of poling such compositions
CN118063447A (zh) 有机化合物及其应用
CN114369112B (zh) 一种基于双给体结构的有机光学非线性发色团及其合成方法和应用
TWI796272B (zh) 電致變色組成物及電致變色裝置
CN115677678A (zh) 推拉型双(二烷氧基噻吩基)乙烯生色团化合物及含其的复合材料、薄膜和光电集成器件
CN114195660B (zh) 一种光学发色团化合物及含其的复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814725

Country of ref document: EP

Kind code of ref document: A1