WO2023231529A1 - 发色团化合物、其制备方法、及发色团化合物的应用 - Google Patents

发色团化合物、其制备方法、及发色团化合物的应用 Download PDF

Info

Publication number
WO2023231529A1
WO2023231529A1 PCT/CN2023/083207 CN2023083207W WO2023231529A1 WO 2023231529 A1 WO2023231529 A1 WO 2023231529A1 CN 2023083207 W CN2023083207 W CN 2023083207W WO 2023231529 A1 WO2023231529 A1 WO 2023231529A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
chromophore
electro
cross
Prior art date
Application number
PCT/CN2023/083207
Other languages
English (en)
French (fr)
Inventor
刘锋钢
刘建华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231529A1 publication Critical patent/WO2023231529A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/08Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • C09K11/07Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials having chemically interreactive components, e.g. reactive chemiluminescent compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices

Definitions

  • This application relates to the field of organic optical materials, specifically to a chromophore compound and its preparation method, electro-optical materials containing the chromophore compound, films and electro-optical glasses containing the electro-optical material, and electro-optical materials using the film or the electro-optical glass.
  • Device and electronic equipment applying the electro-optical device.
  • Electro-optic modulator is the core device for realizing photoelectric information conversion, and it is also a key link in breaking through the two major technical challenges of bandwidth and signal transmission rate.
  • Electro-optic materials are key components of electro-optic modulators. Early research on electro-optical materials mainly focused on inorganic crystals and semiconductor materials, such as lithium niobate and gallium arsenide. However, the electro-optical coefficients (r33 values) of these materials are usually not high, limiting the minimum driving voltage of electro-optical modulators. Organic/polymer nonlinear electro-optical materials are another widely studied electro-optical material. Organic/polymer nonlinear electro-optical materials have many advantages, such as high electro-optical coefficients and high bandwidth, which are useful for research on large bandwidth, small size, and low power.
  • Electro-optic modulators with high consumption and low driving voltage are very meaningful, and organic/polymer nonlinear electro-optic materials also have huge applications in the fields of optical information storage and terahertz.
  • organic nonlinear electro-optical materials still face many challenges in their commercial application.
  • organic electro-optical chromophores have a larger electro-optical coefficient than inorganic optoelectronic materials, there is still a lot of room for improvement in the electro-optical coefficient; moreover, the glass transition temperature (Tg) of organic chromophore molecules is low, resulting in electro-optical
  • Tg glass transition temperature
  • the photothermal stability and polarization orientation stability of the material are poor, and the polarization orientation is prone to attenuation (ie, electro-optical coefficient attenuation) at high temperatures. Therefore, how to obtain organic nonlinear electro-optical materials with large electro-optical coefficients, photothermal stability and polarization orientation stability has always been a technical bottleneck in this field.
  • the first aspect of the embodiments of the present application provides a chromophore compound, which has the structure of the following formula (I):
  • D is an atom that can donate electrons
  • A is the electron acceptor group
  • B is an electronic bridge group
  • Z is an atom or organic group that can form at least two chemical bonds
  • L 1 and L 2 are each independently selected from atoms or organic groups capable of forming at least two chemical bonds;
  • X 1 is the first crosslinkable group
  • X 2 is the second cross-linkable group
  • n and m are respectively integers greater than or equal to 1;
  • p and q are respectively integers greater than or equal to 1.
  • This application introduces a single electron donor group with a tetrahydroquinoline-like structure composed of a benzene ring and a heterocyclic ring into the molecule of the chromophore compound. Since the electron donor group with this type of structure has a higher power-donating capacity than most electron donor groups, The electron must be stronger, and the first-order hyperpolarizability and electro-optical coefficient of the chromophore compound are greatly improved compared to the traditional chromophore containing aniline donor; moreover, due to the electron donor group of the present application It contains a rigid benzene ring structure, which can increase the glass transition temperature (Tg) of the chromophore compound itself.
  • Tg glass transition temperature
  • This application can improve the macroscopic view of the chromophore compound by connecting the first cross-linkable group and the second cross-linkable group with cross-linking function to the electron donor group and the electron bridge group of the chromophore compound respectively.
  • the electro-optical activity of the chromophore compound can be increased, and the introduction of the first cross-linkable group and the second cross-linkable group can increase the distance between the molecules of the chromophore compound, weaken the electrostatic interaction between the molecules, and help improve the performance of the chromophore compound.
  • the introduction of the first cross-linkable group and the second cross-linkable group makes the chromophore compound have multiple cross-linking sites, and cross-linking easily occurs between the chromophore compounds.
  • the cross-linking process There is no need to introduce a separate cross-linking agent, which increases the content of the chromophore compound in the electro-optical material and further improves the electro-optical coefficient of the electro-optical material.
  • cross-linking can further increase the glass transition temperature (Tg) of the electro-optical material, thereby improving the electro-optical material's Photothermal stability and polarization orientation stability.
  • D in formula (I) is an oxygen atom, a nitrogen atom or a sulfur atom.
  • Oxygen atoms, nitrogen atoms or sulfur atoms have strong electron-donating ability and can enhance the power-donating ability of the electron donor group.
  • Z in formula (I) is a sulfur atom, an oxygen atom or an alkyl group.
  • the stability of the molecular structure of the chromophore compound can be improved.
  • L 1 and L 2 in formula (I) are each independently selected from at least one of alkyl, ester, aryl and heteroaryl.
  • the length of the side chain of the chromophore compound can be adjusted, which is beneficial to the subsequent cross-linking reaction between the chromophore compounds or between the chromophore compound and the polymer. It can also be achieved by introducing different types of groups. The group changes the flexibility of the chromophore compound.
  • n and m in the formula (I) are 1, 2 or 3; p and q in the formula (I) are 1 or 2 respectively.
  • the conjugation effect between the electron donor group, the electron bridge group and the electron acceptor group can be improved.
  • the first cross-linkable group and the second cross-linkable group can each be connected to one or two, thereby controlling the subsequent chromophores.
  • both the first crosslinkable group and the second crosslinkable group are groups that can undergo click chemical reactions, thermal crosslinking reactions, photocrosslinking reactions, coupling reactions or polymerization reactions. group.
  • the first crosslinkable group and the second crosslinkable group are each independently selected from an anthracenyl group, an acrylate group, an azide group, an alkynyl group, a hydroxyl group, an isocyanate group, Any one of maleimide group, furan group, mercapto group, olefin group, coumarin group, difluoroalkene group, styryl group and derivatives of these groups.
  • the first cross-linkable group and the second cross-linkable group are the same.
  • the first crosslinkable group and the second crosslinkable group can be introduced simultaneously in one step reaction,
  • the reaction process is easier to implement and the reaction conditions are easier to control. can simplify the synthesis steps.
  • the chromophore compound has the structure of Formula (II) or Formula (III):
  • the second aspect of this application also provides a preparation method of a chromophore compound, which preparation method includes the following steps:
  • At least one first crosslinkable group and at least one second crosslinkable group are respectively connected to the first reactive group and the second reactive group of the electron donor group-electron bridge group compound. group, and connect an electron acceptor group to the electron bridge group of the electron donor group-electron bridge group compound, thereby obtaining the chromophore compound,
  • the chromophore compound has the structure of the following formula (I):
  • D is an atom that can donate electrons
  • A is the electron acceptor group
  • B is the electronic bridge group
  • Z is an atom or organic group that can form at least two chemical bonds
  • L 1 and L 2 are each independently selected from atoms or organic groups capable of forming at least two chemical bonds;
  • X 1 is the first crosslinkable group
  • X 2 is the second cross-linkable group
  • n and m are respectively integers greater than or equal to 1;
  • p and q are respectively integers greater than or equal to 1.
  • the electron donor molecule and the electron bridge molecule of the present application respectively contain a first reactive group and a second reactive group, which can provide active connection sites and facilitate the introduction of the first cross-linkable group and the second cross-linkable group.
  • a first reactive group and a second reactive group which can provide active connection sites and facilitate the introduction of the first cross-linkable group and the second cross-linkable group.
  • the electron donor molecule has the structure of the following formula (IV):
  • R is the first reactive group.
  • the first reactive group and the second reactive group are each independently selected from any group consisting of a hydroxyl group, an azide group, an alkynyl group, a mercapto group, an isocyanate group and an amino group. A sort of.
  • the preparation method before connecting the electron bridge molecule to the electron donor molecule, the preparation method further includes the steps:
  • the preparation method further includes the steps:
  • the preparation method further includes the steps:
  • the first protecting group and the second protecting group are removed.
  • the reaction process can be
  • the first reactive group and the second reactive group are not affected by medium protection.
  • the electron bridge molecule includes any one of isophorone, thiophene bridge, and pyrrole bridge.
  • the first protecting group and the second protecting group are respectively derived from tert-butyldimethylchlorosilane and its derivatives, tert-butyldiphenylchlorosilane and its derivatives, and Any of the dihydropyran derivatives.
  • the electron donor molecule has a structure of The first compound, the electron bridge molecule is isophorone, and the electron acceptor molecule is 2-(3-cyano-4-methyl-5-phenyl-5-(trifluoromethyl)furan -2(5H)-ethylene)malononitrile, the preparation method includes the following steps:
  • a tert-butyldimethylsilyl group is generated on the hydroxyl group of the first compound to obtain the structure: the second compound;
  • the second compound is subjected to knoevenagel condensation reaction with isophorone in sodium ethoxide and 2-mercaptoethanol to obtain the structure:
  • the third compound
  • a tert-butyldimethylsilyl group is generated on the hydroxyl group of the third compound to obtain the structure:
  • the fourth compound
  • the fourth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the fifth compound is reacted with diethyl phosphate through Wittig-Hornor reaction to obtain the structure:
  • the nitrile group in the fifth compound is reduced by diisobutylaluminum hydride to obtain the structure:
  • the sixth compound is reduced by diisobutylaluminum hydride to obtain the structure:
  • the sixth compound is acid hydrolyzed to remove the tert-butyldimethylsilyl group to obtain the structure:
  • the seventh compound is acid hydrolyzed to remove the tert-butyldimethylsilyl group to obtain the structure:
  • the seventh compound is acid hydrolyzed to remove the tert-butyldimethylsilyl group to obtain the structure:
  • the seventh compound is acid hydrolyzed to remove the tert-butyldimethylsilyl group to obtain the structure:
  • the seventh compound is acid hydrolyzed to remove the tert-butyldimethylsilyl group
  • the structures connected to the hydroxyl groups of the seventh compound through nucleophilic substitution or Steglich esterification are respectively
  • the first cross-linkable group and structure are The second cross-linkable group, the obtained structure is
  • the eighth compound or structure is The ninth compound.
  • the structure obtained after the eighth compound or the ninth compound is condensed with the electron acceptor molecule is: of the chromophore compound.
  • a third aspect of the present application provides an electro-optical material, which includes at least two chromophore compounds as described above, and at least two of the chromophore compounds are used for cross-linking reactions.
  • the electro-optical material provided by this application has a single-electron donor group containing a tetrahydroquinoline-like structure composed of a benzene ring and a heterocyclic ring introduced into the molecule of each chromophore compound in the electro-optic material.
  • the power-donating ability of the group is stronger than that of most donors, and the first-order hyperpolarizability and electro-optical coefficient of the chromophore compound are greatly improved compared to traditional chromophores containing aniline donors; and , since the electron donor structure of the present application contains a rigid benzene ring structure, it can increase the glass transition temperature (Tg) of the chromophore compound itself.
  • At least two chromophore compounds are mixed to form a multi-component cross-linked chromophore system (for example, a binary cross-linked chromophore system), because the molecular chain of the chromophore compound contains a first cross-linkable group and a third
  • the two cross-linkable groups can improve the macroscopic electro-optical activity of the chromophore compound, and the first cross-linkable group and the second cross-linkable group
  • the introduction of cross-linking groups can increase the distance between the molecules of the chromophore compound, weaken the electrostatic interaction between the molecules, and help improve the polarization efficiency of the chromophore compound; in addition, since the first cross-linkable group and the third
  • the introduction of two cross-linkable groups does not require the introduction of a separate cross-linking agent during the cross-linking process, which increases the content of the chromophore compound in the electro-optical material and can further improve the electro-optical coefficient
  • the electro-optical material includes two of the chromophore compounds, and the first cross-linkable group and the second cross-linkable group on any of the chromophore compounds are in phase with each other.
  • the first crosslinkable group on one of the chromophore compounds and the first crosslinkable group on the other of the chromophore compounds are selected from any one of the following group combinations Species: azide group and alkynyl group, hydroxyl group and isocyanate group, anthracene group and acrylate group, anthracenyl group and maleimide group, furan group and maleimide group, sulfhydryl group and olefin, aromatic group Peranin group and coumarin group, difluoroalkene group and difluoroalkene group, and styryl group and styryl group.
  • This application introduces a single-electron donor group with a tetrahydroquinoline-like structure into each chromophore compound, and connects the first cross-linkable crosslinking group with a cross-linking function to the electron donor group and the electron bridge group respectively.
  • the linking group and the second cross-linkable group can significantly increase the first-order hyperpolarizability of the chromophore compound, and the cross-linked chromophore system formed by the cross-linking of the two chromophore compounds has high electro-optical properties.
  • the polarization efficiency is at least 2.67 ⁇ 0.10nm 2 /V 2
  • the electro-optical coefficient is at least 300m/V
  • the glass transition temperature (Tg) of the electro-optical material is at least 180°C, which is currently the One of the electro-optical materials with the best comprehensive performance.
  • the fourth aspect of the present application provides another electro-optical material, which includes a chromophore compound and a polymer as described above, and the chromophore compound is used to undergo a cross-linking reaction with the polymer.
  • the chromophore compound of the present application contains a first cross-linkable group and a second cross-linkable group.
  • the chromophore compound and the polymer can undergo a cross-linking reaction under certain conditions, thereby forming an electro-optical polymer.
  • Chromophore compounds have high electro-optical coefficients and glass transition temperatures, which are beneficial to improving the electro-optical coefficients and glass transition temperatures of electro-optical polymers.
  • a fifth aspect of the present application provides a thin film made of the electro-optical material as described above.
  • a sixth aspect of the present application provides an electro-optical glass, which includes a glass substrate and a thin film as described above located on the glass substrate.
  • a seventh aspect of the present application provides an electro-optical device, which includes the film as described above, or the electro-optical glass as described above.
  • the polarized electro-optical film provided by this application has a high electro-optical coefficient (at least 300pv/m), which is beneficial to improving the performance of electro-optical devices (such as photoelectric modulators); in addition, because the polarized electro-optical film has cross-linking network structure, thereby increasing the glass transition temperature of the electro-optical film (at least 180°C), thereby increasing the operating temperature of the electro-optical device.
  • An eighth aspect of the present application provides an electronic device, which includes the electro-optical device as described above.
  • Figure 1 is a schematic diagram of the polarization process of devices prepared using traditional organic electro-optical materials.
  • Figure 2 is a schematic diagram of the polarization process of a device prepared using the binary cross-linked chromophore system (QLD1+QLD2) provided in the embodiment of the present application.
  • Figure 3 is a schematic diagram of a film provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of electro-optical glass provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an electro-optical device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 7 is a thermal weight loss curve diagram of QLD1 and QLD2 provided by the embodiment of the present application.
  • Figure 8 is a DSC curve diagram of QLD1 and QLD2 provided by the embodiment of the present application.
  • Figure 9 is the ultraviolet-visible spectroscopic spectrum of QLD1 and QLD2 in chloroform provided by the embodiment of the present application.
  • Figures 10a and 10b are UV-visible spectroscopic spectra of QLD1 and QLD2 in different solvents provided by the embodiments of the present application.
  • Figure 11 is the ultraviolet-visible spectroscopic spectrum of the QLD1 film, QLD2 film, 2:1 QLD1:QLD2 (CN) film and 2:1 QLD1:QLD2 (X-link) film provided by the embodiment of the present application.
  • Figures 12a to 12d are polarization efficiency curves after the QLD1 film, QLD2 film, 2:1QLD1:QLD2(CN) film and 2:1QLD1:QLD2(X-link) film provided by the embodiment of the present application are assembled into electro-optical devices. .
  • the conversion efficiency of the microscopic first-order hyperpolarizability ( ⁇ value) of the chromophore molecules of commonly used organic electro-optical materials into the macroscopic electro-optical coefficient (r33 value) is low and has a low electro-optical coefficient.
  • the glass transition temperature (Tg) of the chromophore compound molecules is low.
  • the chromophore compound molecules are polarized and oriented.
  • Tg glass transition temperature
  • the present application provides a chromophore compound that has both a large electro-optical coefficient (r33 value) and good photothermal stability and polarization orientation stability.
  • the chromophore compound can be used in electro-optical devices, such as electro-optical modulators, but is not limited to this.
  • the chromophore compound is synthesized through optimization and selection, so that the chromophore compound has a large electro-optical coefficient ( r33 value) and higher glass transition temperature (Tg).
  • the chromophore compound includes an electron donor group, an electron bridge group and an electron acceptor group, and the electron donor group is electronically conjugated with the electron acceptor group through the electron bridge group.
  • the chromophore compound has the structure of the following formula (I):
  • D is an atom that can donate electrons
  • A is an electron acceptor group
  • B is an electron bridge group
  • Z is an atom or organic group that can form at least two chemical bonds
  • L 1 and L 2 are independently selected from Atoms or organic groups that can form at least two chemical bonds
  • X 1 is the first cross-linkable group
  • X 2 is the second cross-linkable group
  • n and m are integers greater than or equal to 1 respectively
  • p and q are respectively integers greater than or equal to 1.
  • the structure of the electron donor group is
  • the electron donor group is derived from an electron donor molecule, and the electron donor molecule adopts a single electron donor with a tetrahydroquinoline-like structure containing a first reactive group (such as an alcoholic hydroxyl group).
  • the first crosslinkable group (such as anthracene group or acrylate group, etc.) can be conveniently introduced through the first reactive group of the electron donor group.
  • D in the electron donor group can be an oxygen atom, a nitrogen atom or a sulfur atom.
  • the oxygen atom, nitrogen atom or sulfur atom has a strong electron donating ability and can enhance the electron donating ability of the electron donor group. .
  • other atoms capable of donating electrons such as ⁇ electrons
  • the electron donor group may be derived from tetrahydroquinoline containing an alcoholic hydroxyl group.
  • Z in the electronic bridge group is a sulfur atom, an oxygen atom or an alkyl group.
  • the stability of the molecular structure of the chromophore compound can be improved.
  • Z is a sulfur atom or oxygen atom
  • the stability of the chromophore compound is significantly improved.
  • the electron bridge group can be derived from an electron bridge molecule, and the electron bridge molecule can be one of such high-performance electron bridges such as isophorone, thiophene bridge, and pyrrole bridge.
  • the electron bridge group is derived from isophorone, which contains alcoholic hydroxyl groups to facilitate the introduction of the second cross-linkable group.
  • Both the first crosslinkable group and the second crosslinkable group are capable of click chemistry (such as cycloaddition reaction), thermal crosslinking reaction, photocrosslinking reaction, coupling reaction or polymerization reaction.
  • the functional groups, ie, the first crosslinkable group and the second crosslinkable group are capable of reacting with each other to link the two chromophore compound molecules together.
  • first cross-linkable group and the second cross-linkable group are independently selected from anthracene group, acrylate group, azide group, alkynyl group, hydroxyl group, isocyanate group, maleimide group Any one of an amine group, a furan group, a mercapto group, an olefin group, a coumarin group, a difluoroolefin group, a styryl group, and derivatives of these groups.
  • Some typical crosslinking reactions using the above first crosslinkable group and second crosslinkable group are listed below.
  • group combinations that can undergo click chemical reactions include Husigen cycloaddition of azide-alkynyl groups.
  • group combinations that can undergo thermal cross-linking reactions include: hydroxyl and isocyanate groups, anthracenyl and acrylate groups, anthracenyl and maleimide groups, furan groups and maleimide groups; can Group combinations that undergo photocrosslinking reactions include: thiol groups and olefins, coumarin and coumarin; coupling reactions between difluoroalkene groups and difluoroalkene groups, and between styryl groups and styryl groups polymerization reaction, etc.
  • the first crosslinkable group and the second crosslinkable group in the same chromophore compound molecule may be the same or different.
  • the first crosslinkable group and the second crosslinkable group are the same.
  • the first crosslinkable group and the second crosslinkable group in the same chromophore compound molecule can be simultaneously
  • the anthracene group can also be an acrylate group at the same time.
  • the first crosslinkable group and the second crosslinkable group in the same chromophore compound are designed to be the same, and the first crosslinkable group and the second crosslinkable group can be introduced simultaneously in a one-step reaction. group, the reaction process is easier to implement, the reaction conditions are easy to control, and the synthesis steps can be simplified.
  • n and m in formula (I) are 1, 2 or 3; p and q in formula (I) are 1 or 2 respectively.
  • n and m in formula (I) are 1, 2 or 3; p and q in formula (I) are 1 or 2 respectively.
  • n and m in formula (I) are 1, 2 or 3; the conjugation effect between the electron donor group, the electron bridge group and the electron acceptor group can be improved.
  • p and q in formula (I) to 1 or 2 respectively, that is, the first cross-linkable group and the second cross-linkable group can each be connected to one or two, thereby controlling the relationship between subsequent chromophore compounds.
  • the degree of cross-linking reaction occurs between the two.
  • the electron acceptor group can be derived from 2-(3-cyano-4-methyl-5-phenyl-5-(trifluoromethyl)furan-2(5H)-ethylene) Malononitrile, or electron-withdrawing groups such as 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ethylene)malononitrile, specifically, the one used in this embodiment
  • the electron acceptor molecule is 2-(3-cyano-4-methyl-5-phenyl-5-(trifluoromethyl)furan-2(5H)-ethylene)malononitrile. It will be appreciated that the electron acceptor group may also be derived from other existing conventional electron acceptor molecules.
  • This application introduces a tetrahydroquinoline-like single electron donor containing a benzene ring and a heterocyclic ring into the molecule of the chromophore compound.
  • group Since the power-donating ability of this type of electron donor structure is stronger than that of most donors, the first-order hyperpolarizability and electro-optical coefficient of the chromophore compound are much higher than those of traditional aniline-containing chromophores.
  • a big improvement moreover, because the electron donor group of the present application contains a rigid benzene ring structure, it can increase the glass transition temperature (Tg) of the chromophore compound itself.
  • the chromophore compound connects the first crosslinkable group (X 1 ) and the second crosslinkable group (X 2 ) with crosslinking function to the electron donor group and the electron bridge group respectively,
  • the geometry and delocalization of the electrons of the chromophore compounds can be controlled, minimizing interactions between the chromophore compounds and, therefore, better converting first-order hyperpolarizability ( ⁇ ) values into electro-optical coefficient (r33) value, thereby improving the macroscopic electro-optical activity of the chromophore compound, and the introduction of the first cross-linkable group and the second cross-linkable group can increase the distance between the molecules of the chromophore compound and weaken the intermolecular interaction.
  • Electrostatic interaction helps to improve the polarization efficiency of the chromophore compound; in addition, the introduction of the first cross-linkable group (X 1 ) and the second cross-linkable group (X 2 ) makes the chromophore compound With multiple cross-linking sites, cross-linking occurs easily between chromophore compounds or between chromophore compounds and polymers.
  • the cross-linking process does not require the introduction of a separate cross-linking agent, which increases the content of chromophore compounds in electro-optical materials and further improves the The electro-optical coefficient of the electro-optical material is increased.
  • the cross-linking of the chromophore compound can further increase the glass transition temperature (Tg) of the electro-optical material, thereby improving the photothermal stability and polarization orientation stability of the electro-optical material.
  • first cross-linkable group and the second cross-linkable group connected in the chromophore compound two types of chromophore compounds were synthesized in the embodiments of this application, wherein the first cross-linkable group group and the second crosslinkable group are the same.
  • An anthracene group is connected to both the electron donor group and the electron bridge group of one chromophore compound, and the chromophore compound has the structure of the following formula (II); the electron donor group of another chromophore compound
  • the acrylate group is connected to the electronic bridge group, and the chromophore compound has the structure of formula (III):
  • the chromophore compound of formula (II) uses an anthracene group as the first cross-linkable group and the second cross-linkable group, named tetrahydroquinoline donor Anthracene-containing chromophore (abbreviated as QLD1); the chromophore compound of formula (III) uses an acrylate group as the first cross-linkable group and the second cross-linkable group, named tetrahydroquine
  • the pholine donor contains an acrylate chromophore (abbreviated as QLD2).
  • the organic optical nonlinear chromophore compounds (QLD1 and QLD2) based on the tetrahydroquinoline single-donor structure provided in this embodiment introduce a tetrahydroquinoline-like single-donor structure into the molecular formula of the chromophore compound. Since the power-donating ability of tetrahydroquinoline single donors is much stronger than that of most conventional donors, the first-order hyperpolarizability and electro-optical coefficient of chromophore compounds are compared with those of traditional aniline-containing donors. The groups are greatly improved, and the tetrahydroquinoline structure can increase the glass transition temperature (Tg) of the chromophore compound.
  • Tg glass transition temperature
  • tetrahydroquinoline donors contain alcoholic hydroxyl groups, which can provide connection sites for further modification of the donor end, making it easier to introduce the required first cross-linkable group, so that the first cross-linkable group can be directly connected to covalent bond square
  • the formula is connected to the electron donor group of the chromophore compound.
  • the electron bridge molecule also contains alcoholic hydroxyl groups, a second crosslinkable group can be introduced on the electron bridge group, thereby designing a structure with multiple The dendritic chromophore compound at the cross-linking point facilitates the cross-linking between chromophore compounds or between the chromophore compound and the polymer.
  • the cross-linking process does not require the introduction of a separate cross-linking agent, which increases the content of the chromophore compound in the electro-optical material.
  • a separate cross-linking agent which increases the content of the chromophore compound in the electro-optical material.
  • the first cross-linkable group and the second cross-linkable group are connected to the electron donor group and the electron bridge group respectively. After the cross-linking reaction occurs between the chromophore compounds, the performance of the electro-optical material can be further significantly improved. Glass transition temperature (Tg), thereby improving the photothermal stability and polarization orientation stability of the electro-optical material system.
  • the embodiments of the present application also provide a method for preparing the chromophore compound (Formula I), which specifically includes the following steps.
  • Step S10 Connect an electron bridge molecule containing a second reactive group to an electron donor molecule containing a first reactive group to obtain an electron donor group containing the first reactive group and the second reactive group.
  • Group-electron bridge group compound
  • the structure of the electron donor molecule is Among them, please refer to the aforementioned description of formula (I) for the specific structural types of D and L 1 , and R is the first reactive group.
  • D in the electron donor molecule structure is a nitrogen atom, that is, the electron donor molecule is a tetrahydroquinoline single donor. Since the power-donating ability of the tetrahydroquinoline single donor is stronger than that of most existing electron donors, the benzene ring in the tetrahydroquinoline further increases the power-donating ability. In addition, the tetrahydroquinoline structure can increase the glass transition temperature (Tg) of the chromophore compound due to its own structural characteristics.
  • Tg glass transition temperature
  • the first reactive group and the second reactive group are independently selected from any one of hydroxyl, azide, alkynyl, mercapto, isocyanate, amino and other groups.
  • both the first reactive group and the second reactive group are hydroxyl groups.
  • the electron donor molecule is tetrahydroquinoline containing alcoholic hydroxyl groups
  • the electron bridge molecule is isophorone containing alcoholic hydroxyl groups.
  • step S10 in the process of obtaining the electron donor group-electron bridge group compound in step S10, before connecting the electron bridge molecule to the electron donor molecule, it is also necessary to connect a first protecting group to the first reactive group. . After connecting the electron bridge molecule to the electron donor molecule, a second protecting group needs to be connected to the second reactive group.
  • the first protecting group and the third reactive group are respectively generated on the first reactive group of the electron donor molecule and the second reactive group of the electron bridge molecule.
  • Two protecting groups, the first protecting group and the second protecting group are removed after the corresponding reaction is completed, which can protect the first reactive group and the second reactive group from being affected during the reaction.
  • the first protecting group and the second protecting group are respectively derived from tert-butyldimethylchlorosilane and its derivatives, tert-butyldiphenylchlorosilane and its derivatives, and dihydropyrans. Any of the derivatives, etc. It is understood that other groups capable of protecting the first reactive group and the second reactive group may also be used.
  • Step S20 connect at least one first crosslinkable group and at least one second reactive group to the first reactive group and the second reactive group of the electron donor group-electron bridge group compound respectively.
  • a crosslinkable group, and an electron acceptor group is connected to the electron bridge group of the electron donor group-electron bridge group compound, thereby obtaining the chromophore represented by the aforementioned formula (I) compound.
  • the first protecting group and the second protecting group need to be removed before introducing the first crosslinkable group and the second crosslinkable group into the electron donor group-electron bridge group compound.
  • the first reactive group and the second reactive group are both hydroxyl groups, and the introduced first crosslinkable group and the second crosslinkable group are the same, therefore, the first protective group and the second crosslinkable group are both hydroxyl groups.
  • the two groups can adopt the same structure and can be removed at the same time, simplifying the reaction steps.
  • the structure of this application is
  • the electron donor molecule has a structure similar to tetrahydroquinoline, which can improve the power supply capacity and glass transition temperature (Tg) of the chromophore compound.
  • the electron donor molecule itself contains a first reactive group, which can provide active connections site to facilitate the introduction of the first cross-linkable group.
  • the electron bridge molecule contains a second reactive group to facilitate the introduction of the second cross-linkable group without adding additional elements to the electron donor molecule and electron bridge molecule.
  • the step of introducing active linking sites makes the synthesis of chromophore compounds easier. Therefore, the preparation method is easy to implement, the reaction conditions are mild, the yields of intermediate products and final products are high, and the chromophore compounds can be dissolved in most organic solvents, which is beneficial to large-scale production and commercial application.
  • the specific preparation method of the chromophore compounds includes the following steps:
  • Step S1 generate tert-butyldimethylsilyl group on the alcoholic hydroxyl group of the first compound to obtain the structure: of the second compound.
  • the alcoholic hydroxyl group on the tetrahydroquinoline is protected by connecting a protecting group to prevent subsequent reactions from destroying the alcoholic hydroxyl group.
  • Step S2 perform a knoevenagel condensation reaction on the second compound and isophorone in sodium ethoxide and 2-mercaptoethanol to obtain the structure: of the third compound.
  • a tert-butyldimethylsilyl group is generated on the alcoholic hydroxyl group of the third compound to obtain the structure:
  • the fourth compound Since the introduced electron bridge molecules also contain alcoholic hydroxyl groups, they also need to be protected.
  • Step S3 the fourth compound reacts with diethyl phosphate through Wittig-Hornor reaction to obtain the structure: The fifth compound.
  • Step S4 reduce the nitrile group in the fifth compound with diisobutylaluminum hydride to obtain the structure: The sixth compound.
  • Step S5 the sixth compound is acid hydrolyzed to remove the tert-butyldimethylsilyl group to obtain the structure: The seventh compound. Since the ketone group of the electron bridge molecule achieves chain extension after reacting in steps S4 and S5, it is necessary to connect the first crosslinkable group and the second crosslinkable group subsequently. Therefore, it is necessary to connect the electron donor group and the electron bridge The protecting group attached to the alcoholic hydroxyl group on the group is removed to reduce the alcoholic hydroxyl group.
  • Step S6 connect the alcoholic hydroxyl groups of the seventh compound through nucleophilic substitution or Steglich esterification to form a structure:
  • the first cross-linkable group and structure are The second cross-linkable group, the obtained structure is The eighth compound or structure is The ninth compound.
  • Step S7 the eighth compound or the ninth compound is condensed with the electron acceptor molecule to prepare the chromophore compound (QLD1) of the formula (II) or the chromophore compound (QLD2) of the formula (III). ).
  • the above synthesis method avoids the introduction of a tetrahydroquinoline single donor structure containing an alcoholic hydroxyl group and an electron bridge structure containing an alcoholic hydroxyl group, and by connecting and removing protective groups on the two alcoholic hydroxyl groups.
  • the reaction conditions are easy to control, making the reaction easier occurs and simplifies the synthesis steps. Therefore, the preparation method is easy to implement, the reaction conditions are mild, the yields of intermediate products and final products are high, and the chromophore compounds can be dissolved in most organic solvents, which is beneficial to large-scale production and commercial application.
  • Embodiments of the present application also provide an electro-optical material, which includes at least two chromophore compounds as described above, and at least two of the chromophore compounds are used for cross-linking reactions.
  • the electro-optical material includes two chromophore compounds, and the first crosslinkable group and the second crosslinkable group in each chromophore compound are the same, and the two chromophore compounds Cross-linking reactions can occur to form cross-linked macromolecules. It can be understood that when the first crosslinkable group introduced in one chromophore compound is the same as the first crosslinkable group introduced in another chromophore compound, the electro-optical material formed is a one-dimensional chromophore system. ; When the first crosslinkable group introduced into one chromophore compound is different from the first crosslinkable group introduced into another chromophore compound, the electro-optical material formed is a binary chromophore system.
  • the electro-optical material includes two of the chromophore compounds, and the first cross-linkable group and the second cross-linkable group on any of the chromophore compounds are the same.
  • the first crosslinkable group on one of the chromophore compounds and the first crosslinkable group on the other of the chromophore compounds are selected from any one of the following group combinations : Azide group and alkynyl group, hydroxyl group and isocyanate group, anthracenyl group and acrylate group, anthracenyl group and maleimide group, furan pranyl group and maleimide group, thiol group and olefin, coumarin group and coumarin group, difluoroalkene group and difluoroalkene group, and styryl group and styryl group.
  • the first cross-linkable group and the second cross-linkable group connected to one of the chromophore compounds are both anthracene groups, and all the connecting groups of the other chromophore compound are
  • the first cross-linkable group and the second cross-linkable group are both acrylate groups, that is, in this embodiment, the electro-optical material is a binary cross-linked chromophore system.
  • the two chromophore compounds are chromophore compound QLD1 and chromophore compound QLD2 respectively. Chromophore compound QLD1 and chromophore compound QLD2 can undergo a cross-linking reaction to form a cross-linked structure.
  • the binary cross-linked chromophore system composed of chromophore compounds QLD1 and QLD2 undergoes a polarization process.
  • QLD1 and QLD2 can undergo a cross-linking reaction to form a cross-linked structure.
  • the glass transition temperature of the electro-optical material After forming the cross-linked structure, the glass transition temperature of the electro-optical material further increases.
  • the cross-linked structure will not relax and unwind during the heating process, thus improving the electro-optical properties.
  • the photothermal stability and polarization orientation stability of the material increase the electro-optical coefficient, which is beneficial to increasing the polarization temperature and operating temperature of the device.
  • the chromophore compound QLD1 and the chromophore compound QLD2 can be mixed in any ratio, for example, they can be mixed in 1:1, 1:2, 1:3, 2: 1 and 3:1 are mixed in equal proportions.
  • the cross-linking degree of the binary chromophore system can be controlled, thereby regulating the comprehensive performance of the electro-optical material. It can be understood that in a binary or higher multi-component chromophore system, multiple chromophore compounds can also be mixed in any proportion.
  • the structure introduced in the molecular formula of the chromophore compound in the electro-optical material provided by this application is Single-donor structure. Since this type of structure contains benzene ring and heterocyclic structure, the power-donating ability is much stronger than that of most conventional power donors.
  • the first-order hyperpolarizability and electro-optical coefficient of chromophore compounds are compared with traditional The chromophores containing aniline donors have been greatly improved, and the glass transition temperature (Tg) of the chromophore compounds can also be increased.
  • At least two chromophore compounds are mixed to form a multi-component chromophore system (such as the aforementioned binary chromophore system), and at least two chromophore compounds undergo a cross-linking reaction at a certain temperature.
  • the molecular chain of the compound contains a first cross-linkable group and a second cross-linkable group, which can increase the distance between the molecules of the chromophore compound, weaken the electrostatic interaction between the molecules, and help improve the performance of the chromophore compound.
  • Polarization efficiency in addition, the introduction of the first cross-linkable group and the second cross-linkable group also provides multiple cross-linking sites for the chromophore compound.
  • the cross-linking process does not require the introduction of a separate cross-linking agent, improving The content of the chromophore compound in the electro-optical material is reduced (more than 95 wt% of pure chromophore electro-optical films can be formed by using the chromophore compounds QLD1 and QLD2 of the present application), which can further improve the electro-optical coefficient of the electro-optic material.
  • cross-linking occurs between at least two chromophore compounds at a certain temperature, which can further significantly increase the glass transition temperature (Tg) of the electro-optical material, thereby improving the photothermal stability and polarization orientation stability of the electro-optical material. .
  • the binary chromophore system provided in the embodiments of the present application has both a high electro-optical coefficient and a high glass transition temperature, the polarization efficiency is at least 2.67 ⁇ 0.10nm 2 /V 2 , and the electro-optical coefficient is at least 300m/ V, and the glass transition temperature (Tg) of the electro-optical material is at least 180°C. It is one of the electro-optical materials with the best comprehensive performance at present.
  • Embodiments of the present application also provide another electro-optical material.
  • the electro-optical material includes the chromophore compound and the polymer as described above, and the chromophore compound is used to undergo a cross-linking reaction with the polymer. Specifically, when the chromophore compound undergoes a cross-linking reaction with the main chain of the polymer, a main chain type electro-optical polymer can be formed, and when the chromophore compound undergoes a cross-linking reaction with the side chain of the polymer, a side chain can be formed type electro-optical polymer.
  • the polymer can be a commonly used type of main chain electro-optical polymer or side chain electro-optical polymer.
  • the chromophore compound of the present application contains a first cross-linkable group and a second cross-linkable group respectively on the electron donor group and the electron bridge group.
  • the chromophore compound and the polymer can cross-link under certain conditions.
  • the chromophore compound has a high electro-optical coefficient and glass transition temperature, which is beneficial to improving the electro-optical coefficient and glass transition temperature of the electro-optical polymer.
  • an embodiment of the present application also provides an electro-optical film 100 , where the electro-optical film 100 is made of any of the above electro-optical materials. Since the chromophore compound is soluble in organic solvents, the electro-optical material has better film-forming properties.
  • An embodiment of the present application also provides an electro-optical glass 200.
  • the electro-optical glass 200 includes a glass substrate 210. and the above-mentioned electro-optical film 100 located on the surface of the glass substrate 210.
  • the glass substrate 210 may be indium oxide (ITO) glass.
  • the specific preparation method of electro-optical glass is: dissolve the aforementioned electro-optical material in an organic solvent (such as methylene bromide), filter it through a 0.2mm PTFE filter, and spin-coat the filtered solution on the surface of an indium oxide (ITO) glass substrate , and heated under vacuum conditions at 50° C. overnight to remove the solvent, and obtain the electro-optical film 100 attached to the glass substrate 210 .
  • organic solvent such as methylene bromide
  • ITO indium oxide
  • the electro-optical material solution can also be coated on the glass substrate 210 by spraying or other coating methods.
  • an embodiment of the present application further provides an electro-optical device 300 .
  • the electro-optical device 300 includes a housing 310 and the above-mentioned film 100 or the above-mentioned electro-optical glass 200 located on the housing 310 .
  • the electro-optical device 300 can be an optoelectronic modulator, such as a Mach-Zehnder Modulator (MZM), an optoelectronic modulator micro-ring; it can also be packaged into an optical module, such as co-packaged optics (CPO)
  • MZM Mach-Zehnder Modulator
  • CPO co-packaged optics
  • the electro-optical film 100 provided by the present application has a high electro-optical coefficient (at least 300 pv/m), which is conducive to improving the performance of the electro-optical device 300; in addition, since the polarized electro-optical film 100 has a cross-linked network structure, thereby improving
  • the glass transition temperature of the electro-optical film 100 (at least 180° C.) further increases the operating temperature of the electro-optical device 300 .
  • an embodiment of the present application further provides an electronic device 400 .
  • the electronic device 400 includes a housing 410 and the above-mentioned electro-optical device 300 located on the housing 410 .
  • the chromophore compound QLD1 has the structure of the above formula (II).
  • the chromophore compound QLD1 shows good solubility in common organic solvents (such as trichloroethane, etc.). Its synthesis method includes the following steps:
  • the chromophore compound QLD2 has the structure of the above formula (III).
  • the chromophore compound QLD1 shows good solubility in common organic solvents (such as trichloroethane, etc.). Its synthesis method includes the following steps:
  • steps S21 to S26 refer to steps S11 to S16 in Example 1 to synthesize compound (7).
  • the chromophore compound QLD1 obtained in Synthesis Example 1 and the chromophore compound QLD2 obtained in Synthesis Example 2 are mixed at a molar ratio of 2:1 and dissolved in an organic solvent (such as trichloroethane, etc.) to obtain QLD1+QLD2 Mix the solutions, and then form a film from the mixed solution of QLD1 and QLD2 to obtain an electro-optical film of uncrosslinked QLD1+QLD2 (named 2:1QLD1:QLD2(NC)).
  • an organic solvent such as trichloroethane, etc.
  • the uncrosslinked QLD1+QLD2 electro-optical film obtained in Example 3 was cross-linked at 100-160°C for 5-10 minutes to obtain a cross-linked QLD1+QLD2 electro-optical film (named 2:1QLD1:QLD2 (X-link )).
  • the uncrosslinked QLD1+QLD2 electro-optical film was heated to 110°C and kept for 5 minutes, to 120°C for 5 minutes, to 130°C for 5 minutes, to 140°C for 5 minutes, and to 150°C for 5 minutes. 10 min, and finally the temperature was raised to 160°C and kept for 10 min to obtain cross-linked QLD1+QLD2 electro-optical films with different cross-linking degrees.
  • Glass transition temperature (Tg) is an important indicator to characterize the thermal stability of chromophore compounds.
  • the glass transition temperature (Tg) of chromophore compounds directly affects the polarization orientation stability of organic electro-optical materials.
  • Figure 1 is a schematic diagram of the polarization process of traditional electro-optical materials, in which traditional chromophore compounds are dispersed in the polymer matrix. During the polarization process, the molecules of traditional chromophore compounds are polarized and oriented, but, When the temperature exceeds the glass transition temperature (Tg) of the electro-optical material, the thermal motion of the traditional chromophore compound molecules becomes violent.
  • the chromophore compound molecules that were originally polarized in the electric field are due to thermal motion and intermolecular interactions Electrostatic interaction and antiparallel stacking are destroyed. Therefore, the electro-optical coefficient is prone to attenuation, and the polarization temperature and operating temperature of the device are lower.
  • FIG 8 it is a differential scanning calorimeter (DSC) curve chart of the chromophore compounds QLD1 and QLD2.
  • DSC differential scanning calorimeter
  • the glass transition temperatures (Tg) of QLD1 and QLD2 are 93°C and 75°C respectively, and the uncross-linked QLD1+QLD2 film mixed at a molar ratio of 2:1 (expressed as:
  • the glass transition temperature (Tg) of 2:1QLD1:QLD2(NC) is 126°C.
  • the glass transition temperature (Tg) of the cross-linked QLD1+QLD2 film (expressed as: 2:1 QLD1:QLD2 (X-link)) is increased to 185°C after cross-linking.
  • the glass transition temperature (Tg) of the electro-optical material has been significantly increased, and the cross-linked structure will not unwind during the heating process, thereby improving the photothermal stability and polarization orientation stability of the electro-optical material, and improving the electro-optical coefficient , which in turn helps to increase the polarization temperature and operating temperature of the device.
  • the absorption spectrum of a chromophore compound characterizes the electron donor's ability to transfer chromophore charges.
  • this application tested the UV-visible absorption spectra of chromophore compounds QLD1 and QLD2 in chloroform.
  • the ring structure can also enhance the electron-donating ability, causing the ground state energy level of the chromophore compound to rise, making it easier for the charge to transition, thereby causing a red shift.
  • the larger UV absorption wavelength also means that the chromophore compound may have a larger first-order hyperpolarizability.
  • this application also combined the solvation effect to study the polarity of the chromophore compounds, and tested two chromophore compounds QLD1 and QLD2 in acetone, Maximum absorption wavelength in six solvents of different polarities, including dichloromethane, 1,4-dioxane, tetrahydrofuran, acetonitrile and chloroform. , the absorption spectra are shown in Figure 10a and Figure 10b.
  • the chromophore compounds QLD1 and QLD2 are in 1,4-dioxane (1,4-dioxane), tetrahydrofuran (tetrahydrofuran), acetonitrile (acetonitrile) and chloroform (chloroform). ) respectively show red shifts of 50 to 80 nm.
  • the shoulder peak here indicates that the chromophore content is high.
  • a shoulder peak of about 1000 nm will appear.
  • the UV absorption range of 320nm to 400nm in the spectrum is enlarged. This area is mainly the range where the absorption peak of the anthracene group is located.
  • the polarization efficiency is the efficiency of converting the microscopic hyperpolarizability of the chromophore compound into the macroscopic electro-optical coefficient.
  • the contact polarization process is carried out above the glass transition temperature (Tg) of the electro-optical material, specifically at 5 performed at a temperature of ⁇ 10°C.
  • the electro-optical coefficient (r33) of the polarized film at a wavelength of 1310 nm was calculated using the Teng-Man simple reflection method, which uses thin ITO glass with low reflectivity and good transparency as the electrode to minimize multiple reflections.
  • the introduction of the first cross-linkable group and the second cross-linkable group into the chromophore compound can also control the geometry and delocalization of the electrons, enabling interactions between the chromophore compounds. Minimization, therefore, can better convert the first-order hyperpolarizability ( ⁇ ) value into the electro-optical coefficient (r33) value, thereby improving the macroscopic electro-optical activity of the chromophore compound. If the electrostatic interaction between molecules is ignored, the electro-optical coefficient (r33) increases with the increase of chromophore compound number density (N), first-order hyperpolarizability ( ⁇ ) and polarization electric field strength (Ep).
  • N chromophore compound number density
  • first-order hyperpolarizability
  • Ep polarization electric field strength
  • the strong dipole-dipole interaction between the molecules of the chromophore compounds will hinder the polarization process of the chromophore compounds and reduce the polarization efficiency.
  • the introduction of the first crosslinkable group and the second crosslinkable group can increase the distance between molecules of the chromophore compound, weaken the electrostatic interaction between the molecules, and help improve the polarization efficiency of the chromophore compound.
  • this application also tested the electro-optical coefficient of the binary chromophore system formed by mixing QLD1 and QLD2 after film formation.
  • QLD1 and QLD2 were doped together at a molar ratio of 2:1 to form a binary electro-optical film.
  • the electro-optical coefficient also increased to 386m/V.
  • Use a stepwise heating and polarization method for example, 110°C for 5 minutes, 120°C for 5 minutes, 130°C for 5 minutes, 140°C for 5 minutes, 150°C for 10 minutes, and finally 160°C for 10 minutes).
  • Cross-linking can improve the polarization orientation stability of the electro-optical film, but it does inhibit the improvement of polarization efficiency to a certain extent due to the formation of a polymer network structure.
  • the polarization efficiency of 2:1QLD1:QLD2(X-link) is lower than that of uncross-linked 2:1QLD1:QLD2(NC).
  • the polarization efficiency is 2.67 ⁇ 0.10nm 2 /V 2 and the electro-optical coefficient is still as high as 327m/V, which is about 10 times that of the inorganic lithium niobate (30pm/V).
  • the cross-linked 2:1 QLD1:QLD2 (X-link) electro-optical film has an electro-optical coefficient of 327pm/V and a glass transition temperature (Tg) of 185°C. It has both a high electro-optical coefficient and a high
  • the electro-optical material with a glass transition temperature (Tg) is one of the electro-optical materials with the best comprehensive performance in the world.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本申请提供一种发色团化合物,该发色团化合物的结构为式(I),其中,D为可提供电子的原子;A为电子受体基团;B为电子桥基团;Z、L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;X1为第一可交联基团;X2为第二可交联基团;n、m、p及q分别为大于或等于1的整数。本申请还提供一种发色团化合物的制备方法、应用该发色团化合物的电光材料、薄膜、电光玻璃、电光器件及电子设备。发色团化合物通过引入供电能力强的类似四氢喹啉结构的电子给体基团,同时还引入了第一可交联基团和第二可交联基团,提高了发色团化合物的一阶超极化率、电光系数及玻璃化转变温度。

Description

发色团化合物、其制备方法、及发色团化合物的应用
相关申请的交叉引用
本申请要求在2022年5月30日提交中国专利局、申请号为202210605696.5、申请名称为“发色团化合物、其制备方法、及发色团化合物的应用”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及有机光学材料领域,具体涉及一种发色团化合物及其制备方法、含有该发色团化合物的电光材料、含有该电光材料的薄膜和电光玻璃、应用该薄膜或该电光玻璃的电光器件及应用该电光器件的电子设备。
背景技术
随着云计算、5G通讯、高清网络视频、物联网等技术的迅猛发展以及信息需求的快速增长,数据中心网络等中短距离通信系统对超大容量的光纤通信需求越来越大。对于中短距离光通信系统,如何在光电子器件带宽受限的情况下实现超高速率(单波长400Gb/s以上)信号传输将面临巨大的挑战。电光调制器是实现光电信息转换的核心器件,也是突破带宽和信号传输速率这两个重大技术挑战的关键环节。
电光材料是电光调制器的关键组成部分。早期对电光材料的研究主要集中在无机晶体和半导体材料,如铌酸锂和砷化镓,然而,这些材料的电光系数(r33值)通常不高,限制了电光调制器的最小驱动电压。有机/聚合物非线性电光材料是另一种被广泛研究的电光材料,有机/聚合物非线性电光材料具有许多优点,例如高电光系数和高带宽,这对研究大带宽、小尺寸、低功耗及低驱动压的电光调制器(例如有机物混合MZM电光调制器)非常有意义,而且有机/聚合物非线性电光材料还在光信息储存以及太赫兹等领域有巨大应用。
然而,现有的有机非线性电光材料在商业化应用过程中仍面临着许多挑战。虽然有机电光发色团相较于无机光电材料具有较大的电光系数,但电光系数仍有很大的提升空间;而且,有机发色团分子的玻璃化转变温度(Tg)较低,导致电光材料的光热稳定性和极化取向稳定性较差,在高温下极化取向容易发生衰减(即电光系数衰减)。因此,如何获得兼具大的电光系数、光热稳定性和极化取向稳定性的有机非线性电光材料一直是该领域的技术瓶颈。
发明内容
本申请实施例第一方面提供了一种发色团化合物,所述发色团化合物具有如下式(I)的结构:
其中,D为可提供电子的原子;
A为电子受体基团;
B为电子桥基团;
Z为至少能形成两个化学键的原子或有机基团;
L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;
X1为第一可交联基团;
X2为第二可交联基团;
n和m分别为大于或等于1的整数;
p和q分别为大于或等于1的整数。
本申请在发色团化合物的分子中引入含有苯环和杂环组成的类似四氢喹啉结构的单电子给体基团,由于这类结构电子给体基团的给电能力较大多数给电体要强,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升;而且,由于本申请的电子给体基团中含有刚性的苯环结构,能够提高发色团化合物自身的玻璃化转变温度(Tg)。本申请通过在发色团化合物的电子给体基团和电子桥基团上分别连接具有交联功能的第一可交联基团和第二可交联基团,可以提高发色团化合物宏观的电光活性,且第一可交联基团和第二可交联基团的引入可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率;另外,第一可交联基团和第二可交联基团的引入使发色团化合物具有多个交联位点,发色团化合物之间易发生交联,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量,进一步提高了电光材料的电光系数,同时交联能进一步提高电光材料的玻璃化转变温度(Tg),进而提高电光材料的光热稳定性和极化取向稳定性。
在一些实施例中,所述式(I)中的D为氧原子、氮原子或硫原子。
氧原子、氮原子或硫原子的给电子能力较强,能增强电子给体基团的给电能力。
在一些实施例中,所述式(I)中的Z为硫原子、氧原子或烷基。
通过在电子桥基团上引入硫原子、氧原子或烷基,可以提高发色团化合物分子结构的稳定性。
在一些实施例中,所述式(I)中的L1和L2分别独立地选自烷基、酯基、芳基以及杂芳基中的至少一种。
通过引入L1和L2可以调整发色团化合物侧链的长度,有利于后续发色团化合物之间或发色团化合物与聚合物之间发生交联反应,同时还可以通过引入不同类型的基团改变发色团化合物的柔顺性。
在一些实施例中,所述式(I)中的n和m为1,2或3;所述式(I)中的p和q分别为1或2。
通过限定所述式(I)中的n和m为1,2或3,可以提高电子给体基团、电子桥基团以及电子受体基团之间的共轭效应。通过限定所述式(I)中的p和q分别为1或2,即第一可交联基团和第二可交联基团分别可以接入一个或两个,从而控制后续发色团化合物之间发生交联反应的程度,另外,第一可交联基团和第二可交联基团不能太多,太多会增加反应位阻。
在一些实施例中,所述第一可交联基团和所述第二可交联基团均为可发生点击化学反应、热交联反应、光交联反应、耦合反应或聚合反应的基团。
在一些实施例中,所述第一可交联基团和所述第二可交联基团分别独立地选自蒽基、丙烯酸酯基、叠氮基团、炔基、羟基、异氰酸酯基、马来酰亚胺基团、呋喃基团、巯基、烯烃基,香豆素基团、二氟烯烃基团、苯乙烯基团以及这些基团的衍生物中的任意一种。
在一些实施例中,所述第一可交联基团和所述第二可交联基团相同。
通过在同一发色团化合物中引入相同的第一可交联基团和第二可交联基团,可以在一步反应中同时引入第一可交联基团和第二可交联基团,反应过程更容易实现,反应条件易于控 制,能简化合成步骤。
在一些实施例中,所述发色团化合物具有如下式(II)或式(III)的结构:
本申请第二方面还提供了一种发色团化合物的制备方法,该制备方法包括以下步骤:
在含有第一反应基团的电子给体分子上连接含有第二反应基团的电子桥分子,得到含有所述第一反应基团和所述第二反应基团的电子给体基团-电子桥基团化合物;以及
在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个第一可交联基团和至少一个第二可交联基团,并在所述电子给体基团-电子桥基团化合物的所述电子桥基团上连接电子受体基团,从而获得所述发色团化合物,
其中,所述发色团化合物具有如下式(I)的结构:
其中,D为可提供电子的原子;
A为所述电子受体基团;
B为所述电子桥基团;
Z为至少能形成两个化学键的原子或有机基团;
L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;
X1为所述第一可交联基团;
X2为所述第二可交联基团;
n和m分别为大于或等于1的整数;
p和q分别为大于或等于1的整数。
本申请电子给体分子和电子桥分子上分别含有第一反应基团和第二反应基团,能提供活性连接位点,便于第一可交联基团和第二可交联基团的引入,无需增加在电子给体分子和电子桥分子上引入活性连接位点的步骤,使发色团化合物的合成更容易。因此,该制备方法易于实现,简化了合成步骤,中间产物和最终产物的产率高,且发色团化合物能够溶解于大多数有机溶剂中,有利于大规模生产和商业化应用。
在一些实施例中,所述电子给体分子具有如下式(IV)的结构:
其中,R为所述第一反应基团。
在一些实施例中,所述第一反应基团和所述第二反应基团分别独立地选自分别独立地选自羟基、叠氮基团、炔基、巯基、异氰酸酯基以及氨基中的任一种。
在一些实施例中,在所述电子给体分子上连接所述电子桥分子之前,所述制备方法还包括步骤:
在所述第一反应基团上连接第一保护基团;
在所述电子给体分子上连接所述电子桥分子之后,所述制备方法还包括步骤:
在所述第二反应基团上连接第二保护基团;
在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个所述第一可交联基团和至少一个所述第二可交联基团之前,所述制备方法还包括步骤:
去除所述第一保护基团和所述第二保护基团。
通过在第一反应基团和第二反应基团上分别生成第一保护基团和第二保护基团,相应反应完成后再去除第一保护基团和第二保护基团,可以在反应过程中保护第一反应基团和第二反应基团不受影响。
在一些实施例中,所述电子桥分子包括异佛尔酮、噻吩桥以及吡咯桥中的任一种。
在一些实施例中,所述第一保护基团和所述第二保护基团分别衍生自叔丁基二甲基氯硅烷及其衍生物、叔丁基二苯基氯硅烷及其衍生物以及二氢吡喃类衍生物中的任意一种。
在一些实施例中,所述电子给体分子为结构为的第一化合物,所述电子桥分子为异佛尔酮,所述电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈,所述制备方法包括以下步骤:
在所述第一化合物的羟基上生成叔丁基二甲基硅基,得到结构为的第二化合物;
将所述第二化合物与异佛尔酮在乙醇钠和2-巯基乙醇中进行knoevenagel缩合反应得到结构为的第三化合物;
在所述第三化合物的羟基上生成叔丁基二甲基硅基,得到结构为的第四化合物;
所述第四化合物与磷酸二乙酯通过Wittig-Hornor反应,得到结构为的第五化合物;
通过二异丁基氢化铝将所述第五化合物中的腈基还原,得到结构为的第六化合物;
所述第六化合物经酸水解后去除所述叔丁基二甲基硅基,得到结构为的第七化合物;
通过亲核取代或Steglich酯化作用在所述第七化合物的羟基上分别连接结构为的第一可交联基团和结构为的第二可交联基团,得到结构为的第八化合物或结构为的第九化合物;以及
所述第八化合物或所述第九化合物与所述电子受体分子缩合后制得结构为的所述发色团化合物。
通过引入含有羟基的四氢喹啉单给体结构以及含有羟基的异佛尔酮电子桥,并通过在两个羟基上分别连接第一保护基团和第二保护基团并去除的方式,避免在引入第一可交联基团和第二可交联基团之前,两个羟基受影响;引入的第一可交联基团和第二可交联基团相同,可以同时引入,反应条件易于控制、使反应更容易发生,且简化了合成步骤。
本申请第三方面提供了一种电光材料,该电光材料包括至少两个如上所述的发色团化合物,至少两个所述发色团化合物用于发生交联反应。
本申请提供的电光材料,由于电光材料中每个发色团化合物的分子中引入含有苯环和杂环组成的类似四氢喹啉结构的单电子给体基团,由于这类结构电子给体基团的给电能力较大多数给电体要强,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升;而且,由于本申请的电子给体结构中含有刚性的苯环结构,能够提高发色团化合物自身的玻璃化转变温度(Tg)。再通过将至少两个发色团化合物混合形成多元交联发色团体系(例如二元交联发色团体系),由于发色团化合物的分子链中含有第一可交联基团和第二可交联基团,可以提高发色团化合物宏观的电光活性,且第一可交联基团和第二可 交联基团的引入可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率;另外,由于第一可交联基团和第二可交联基团的引入,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量,能进一步提高电光材料的电光系数;同时,至少两个发色团化合物之间在一定温度下发生交联反应,能进一步显著提高电光材料的玻璃化转变温度(Tg),进而能提高电光材料的光热稳定性和极化取向稳定性。
在一些实施例中,所述电光材料包括两个所述发色团化合物,任一所述发色团化合物上的所述第一可交联基团和所述第二可交联基团相同时,一个所述发色团化合物上的所述第一可交联基团和另一个所述发色团化合物中的所述第一可交联基团选自以下基团组合中的任意一种:叠氮基团和炔基、羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋喃基团和马来酰亚胺基团、巯基和烯烃、香豆素基团和香豆素基团、二氟烯烃基团和二氟烯烃基团、以及苯乙烯基团和苯乙烯基团。
本申请通过在每个发色团化合物中引入类似四氢喹啉结构的单电子给体基团,并在电子给体基团和电子桥基团上分别连接具有交联功能的第一可交联基团和第二可交联基团,能够显著提高发色团化合物的一阶超极化率,且通过两个发色团化合物交联形成的交联发色团体系兼具高的电光系数和高的玻璃化转变温度,极化效率至少为2.67±0.10nm2/V2,电光系数至少为300m/V,且,电光材料的玻璃化转变温度(Tg)至少为180℃,是目前综合性能最好的电光材料之一。
本申请第四方面提供了另一种电光材料,该电光材料包括如上所述的发色团化合物和聚合物,所述发色团化合物用于与所述聚合物发生交联反应。
本申请的发色团化合物上含有第一可交联基团和第二可交联基团,发色团化合物与聚合物能够在一定条件下发生交联反应,进而形成电光聚合物,而且发色团化合物具有较高的电光系数和玻璃化转变温度,有利于提升电光聚合物的电光系数和玻璃化转变温度。
本申请第五方面提供了一种薄膜,该薄膜是由如上所述的电光材料制成。
本申请第六方面提供了一种电光玻璃,该电光玻璃包括玻璃基板和位于玻璃基板上的如上所述的薄膜。
本申请第七方面提供了一种电光器件,该电光器件包含如上所述的薄膜,或包含如上所述的电光玻璃。
本申请提供的极化后的电光薄膜具有较高的电光系数(至少为300pv/m),有利于提高电光器件(例如光电调制器)的性能;另外,由于极化后的电光薄膜具有交联的网络结构,从而提高了电光薄膜的玻璃化转变温度(至少为180℃),进而提高了电光器件的工作温度。
本申请第八方面提供了一种电子设备,该电子设备包含如上所述的电光器件。
附图说明
图1是采用传统有机电光材料制备的器件的极化过程示意图。
图2是采用本申请实施例提供的二元交联发色团体系(QLD1+QLD2)制备的器件的极化过程示意图。
图3是本申请一实施例提供的薄膜的示意图。
图4是本申请一实施例提供的电光玻璃的示意图。
图5是本申请一实施例提供的电光器件的示意图。
图6是本申请一实施例提供的电子设备的示意图。
图7是本申请实施例提供的QLD1和QLD2的热失重曲线图。
图8是本申请实施例提供的QLD1和QLD2的DSC曲线图。
图9是本申请实施例提供的QLD1和QLD2在氯仿中的紫外-可见分光光谱。
图10a与图10b是本申请实施例提供的QLD1和QLD2在不同溶剂中的紫外可见分光光谱。
图11是本申请实施例提供的QLD1膜、QLD2膜、2:1QLD1:QLD2(CN)膜以及2:1QLD1:QLD2(X-link)膜的紫外-可见分光光谱。
图12a至图12d是本申请实施例提供的QLD1膜、QLD2膜、2:1QLD1:QLD2(CN)膜以及2:1QLD1:QLD2(X-link)膜组装成电光器件后的极化效率曲线图。
主要元件符号说明
薄膜              100
电光玻璃          200
玻璃基板          210
电光器件          300
电子设备          400
壳体              310,410
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请中涉及的数据范围如无特别说明均应包括端值。
常用的有机电光材料的发色团分子的微观一阶超极化率(β值)转换为宏观电光系数(r33值)的效率较低,具有较低的电光系数。另外,发色团化合物分子的玻璃化转变温度(Tg)较低,在极化过程中,发色团化合物分子被极化取向,但,当温度超过发色团分子的玻璃化转变温度(Tg)后,发色团化合物分子的热运动变得剧烈,原本在电场中被极化取向的发色团化合物分子因为热运动和分子间的静电相互作用,反平行堆积被破坏,发生驰豫,如图1所示,导致有机电光材料的光热稳定性以及极化取向稳定性较差,电光系数易发生衰减,进而降低器件的极化温度和工作温度。
本申请提供一种兼具大的电光系数(r33值)及良好的光热稳定性和极化取向稳定性的发色团化合物。该发色团化合物可应用于电光器件中,例如电光调制器,但不以此为限,合成该发色团化合物经过优化选型,使所述发色团化合物在兼具大的电光系数(r33值)和较高的玻璃化转变温度(Tg)。
所述发色团化合物包含电子给体基团、电子桥基团和电子受体基团,电子给体基团通过电子桥基团与电子受体基团电子共轭。所述发色团化合物具有如下式(I)的结构:
其中,D为可提供电子的原子,A为电子受体基团,B为电子桥基团,Z为至少能形成两个化学键的原子或有机基团,L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团,X1为第一可交联基团,X2为第二可交联基团,n和m分别为大于或等于1的整数,p和q分别为大于或等于1的整数。
上述式(I)中,所述电子给体基团的结构为电子给体基团衍生自电子给体分子,电子给体分子采用的是含有第一反应基团(例如醇羟基)的类似四氢喹啉结构的单电子给体。通过电子给体基团自带的第一反应基团可方便引入第一可交联基团(例如蒽基团或丙烯酸酯基团等)。一些实施例中,电子给体基团中的D可以是氧原子、氮原子或硫原子,氧原子、氮原子或硫原子的给电子能力较强,能增强电子给体基团的给电能力。可以理解的,还可以是其他能够提供电子(例如π电子)的原子。具体地,电子给体基团可衍生自含醇羟基的四氢喹啉。
电子桥基团中的Z为硫原子、氧原子或烷基。通过在电子桥基团上引入硫原子、氧原子或烷基,可以提高发色团化合物分子结构的稳定性,尤其是当Z为硫原子或氧原子时,发色团化合物的稳定性显著提高。一些实施例中,电子桥基团可衍生自电子桥分子,电子桥分子可以是异佛尔酮、噻吩桥以及吡咯桥等这类高性能电子桥中的一种。具体地,电子桥基团衍生自异氟尔酮,异氟尔酮含有醇羟基,方便第二可交联基团的引入。
第一可交联基团和第二可交联基团均是能够发生点击化学反应(Click chemistry)(例如环加成反应)、热交联反应、光交联反应、耦合反应或聚合反应的官能团,即第一可交联基团和第二可交联基团能够相互反应使两个发色团化合物分子连接在一起。其中,所述第一可交联基团和所述第二可交联基团分别独立地选自蒽基、丙烯酸酯基、叠氮基团、炔基、羟基、异氰酸酯基、马来酰亚胺基团、呋喃基团、巯基、烯烃基,香豆素基团、二氟烯烃基团、苯乙烯基团以及前述这些基团的衍生物等中的任意一种。以下列举了采用以上第一可交联基团和第二可交联基团的一些典型的交联反应,例如,能发生点击化学反应的基团组合包括叠氮-炔基的Husigen环加成反应;能发生热交联反应的基团组合包括:羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋喃基团和马来酰亚胺基团;能发生光交联反应的基团组合包括:巯基和烯烃,香豆素和香豆素;二氟烯烃基团和二氟烯烃基团之间的耦合反应以及苯乙烯基团和苯乙烯基团之间的聚合反应等。
同一个发色团化合物分子中第一可交联基团和第二可交联基团可以相同也可以不同。本实施例中,第一可交联基团和第二可交联基团相同,例如,同一个发色团化合物分子中第一可交联基团和第二可交联基团可以同时为蒽基团,也可以同时为丙烯酸酯基团。将同一个发色团化合物中的第一可交联基团和第二可交联基团设计成相同的,可以在一步反应中同时引第一入可交联基团和第二可交联基团,反应过程更容易实现,反应条件易于控制,能简化合成步骤。
一些实施例中,式(I)中的n和m为1,2或3;式(I)中的p和q分别为1或2。通过限定式(I)中的n和m为1,2或3,可以提高电子给体基团、电子桥基团以及电子受体基团之间的共轭效应。通过限定式(I)中的p和q分别为1或2,即第一可交联基团和第二可交联基团分别可以接入一个或两个,从而控制后续发色团化合物之间发生交联反应的程度,另外,第一可交联基团和第二可交联基团不能太多,太多会增加反应位阻。
一些实施例中,电子受体基团可以衍生自2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈,或2-(3-氰基-4,5,5-三甲基呋喃-2(5H)-亚乙基)丙二腈等吸电子基团,具体地,本实施例采用的电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈。可以理解的,电子受体基团还可以衍生自其他现有的常规电子受体分子。
本申请在发色团化合物的分子中引入含有苯环和杂环组成的类似四氢喹啉的单电子给体 基团由于这类电子给体结构的给电能力较大多数给电体要强,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升;而且,由于本申请的电子给体基团中含有刚性的苯环结构,能够提高发色团化合物自身的玻璃化转变温度(Tg)。另外,发色团化合物通过在电子给体基团和电子桥基团上分别连接具有交联功能的第一可交联基团(X1)和第二可交联基团(X2),可以控制发色团化合物的电子的几何结构和离域化,能够使发色团化合物之间的相互作用最小化,因此,可以更好地将一阶超极化率(β)值转化为电光系数(r33)值,从而提高发色团化合物宏观的电光活性,且第一可交联基团和第二可交联基团的引入可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率;另外,第一可交联基团(X1)和第二可交联基团(X2)的引入,使发色团化合物具有多个交联位点,发色团化合物之间或发色团化合物与聚合物易于发生交联,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量,进一步提高了电光材料的电光系数,同时发色团化合物交联后能进一步提高电光材料的玻璃化转变温度(Tg),进而提高电光材料的光热稳定性和极化取向稳定性。
根据发色团化合物中连接的第一可交联基团和第二可交联基团类型的不同,本申请实施例合成了两种类型的发色团化合物,其中,第一可交联基团和第二可交联基团相同。一种发色团化合物的电子给体基团和电子桥基团上均连接蒽基团,该发色团化合物具有如下式(II)的结构;另一发色团化合物的电子给体基团和电子桥基团上均连接丙烯酸酯基团,该发色团化合物具有式(III)的结构:
以上两种发色团化合物中,式(II)的发色团化合物中采用的是蒽基团作为第一可交联基团和第二可交联基团,命名为四氢喹啉给体含蒽发色团(缩写为QLD1);式(III)的发色团化合物中采用的是丙烯酸酯基团作为第一可交联基团和第二可交联基团,命名为四氢喹啉给体含丙烯酸酯发色团(缩写为QLD2)。
本实施例提供的基于四氢喹啉类单给体结构的有机光学非线性发色团化合物(QLD1和QLD2),在发色团化合物的分子式中引入类似四氢喹啉的单给体结构,由于四氢喹啉类单给体的给电能力较大多数常规给电体要强很多,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升,且四氢喹啉类结构能提高发色团化合物的玻璃化转变温度(Tg)。另外,四氢喹啉类给体含有醇羟基,能够为给体端的进一步修饰提供连接位点,更容易引入所需要的第一可交联基团,使第一可交联基团能够直接以共价键的方 式连接在发色团化合物的电子给体基团上,而且,由于电子桥分子中也含有醇羟基,能够在电子桥基团上引入第二可交联基团,从而设计出自身具有多个交联点的树枝状发色团化合物,便于发色团化合物之间或发色团化合物与聚合物的交联,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量(采用本申请的发色团化合物(QLD1和QLD2)可以形成95wt%以上的纯发色团电光薄膜),因此,进一步提高了电光材料的电光系数,而且,第一可交联基团和第二可交联基团的引入,还可以提高发色团化合物宏观的电光活性,同时还可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率。另外,给电体基团和电子桥基团上分别连接第一可交联基团和第二可交联基团,发色团化合物之间发生交联反应后,能进一步显著提高电光材料的玻璃化转变温度(Tg),进而提高了电光材料体系的光热稳定性和极化取向稳定性。
本申请实施例还提供了所述发色团化合物(式I)的制备方法,具体包括以下步骤。
步骤S10,在含有第一反应基团的电子给体分子上连接含有第二反应基团的电子桥分子,得到含有所述第一反应基团和所述第二反应基团的电子给体基团-电子桥基团化合物。
具体地,该电子给体分子的结构为其中,D和L1具体结构类型请参见前述式(I)的描述,R为第一反应基团。
一些实施例中,电子给体分子结构中的D为氮原子,即电子给体分子为四氢喹啉单给体。由于四氢喹啉单给体的给电能力强于大多现有的电子给体,且四氢喹啉中的苯环进一步增加了给电能力。另外,四氢喹啉结构由于其自身的结构特征,能够提高发色团化合物的玻璃化转变温度(Tg)。
一些实施例中,所述第一反应基团和第二反应基团分别独立地选自羟基、叠氮基团、炔基、巯基、异氰酸酯基以及氨基等基团中的任一种。本实施例中,第一反应基团和第二反应基团均为羟基,具体地,电子给体分子为含有醇羟基的四氢喹啉,电子桥分子为含有醇羟基的异氟尔酮。
具体地,在实现步骤S10得到电子给体基团-电子桥基团化合物的过程中,在电子给体分子上连接电子桥分子之前,还需要在第一反应基团上连接第一保护基团。在电子给体分子上连接电子桥分子之后,还需要在第二反应基团上连接第二保护基团。
由于第一反应基团和第二反应基团的反应活性较大,通过在电子给体分子的第一反应基团以及电子桥分子的第二反应基团上分别生成第一保护基团和第二保护基团,相应反应完成后再去除第一保护基团和第二保护基团,可以在反应过程中保护第一反应基团和第二反应基团不受影响。
一些实施例中,第一保护基团和第二保护基团分别衍生自叔丁基二甲基氯硅烷及其衍生物、叔丁基二苯基氯硅烷及其衍生物以及二氢吡喃类衍生物等中的任一种。可以理解的,还可以采用其他能够实现保护第一反应基团和第二反应基团的基团。
步骤S20,在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个第一可交联基团和至少一个第二可交联基团,并在所述电子给体基团-电子桥基团化合物的所述电子桥基团上连接电子受体基团,从而获得如前述式(I)所示的发色团化合物。
一些实施例中,在电子给体基团-电子桥基团化合物中引入第一可交联基团和第二可交联基团之前,还需要去除第一保护基团和第二保护基团。由于本实施例中,第一反应基团和第二反应基团均为羟基,且引入的第一可交联基团和第二可交联基团相同,因此,第一保护基团和第二基团可以采用相同的结构,且可以同时去除,简化了反应步骤。
本申请结构为的电子给体分子具有类似四氢喹啉的结构,能够提高发色团化合物的供电能力和玻璃化转变温度(Tg),同时,电子给体分子自身含有第一反应基团,能提供活性连接位点,便于第一可交联基团的引入,另外,电子桥分子上含有第二反应基团,便于第二可交联基团的引入,无需增加在电子给体分子和电子桥分子上引入活性连接位点的步骤,使发色团化合物的合成更容易。因此,该制备方法易于实现,反应条件温和,中间产物和最终产物的产率高,且发色团化合物能够溶解于大多数有机溶剂中,有利于大规模生产和商业化应用。
以下给出了前述式(II)的发色团化合物(QLD1)和式(III)的发色团化合物(QLD2)的具体合成方法,其中,所述电子给体分子为结构为的第一化合物,所述电子桥分子为异佛尔酮,所述电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈或其他常规受体分子。
发色团化合物(QLD1和QLD2)的具体制备方法包括以下步骤:
步骤S1,在所述第一化合物的醇羟基上生成叔丁基二甲基硅基,得到结构为的第二化合物。首先将四氢喹啉上的醇羟基通过连接保护基团进行保护,以免后续反应破坏醇羟基。
步骤S2,将所述第二化合物与异佛尔酮在乙醇钠和2-巯基乙醇中进行knoevenagel缩合反应得到结构为的第三化合物。
在所述第三化合物的醇羟基上生成叔丁基二甲基硅基,得到结构为的第四化合物。由于引入的电子桥分子同样含有醇羟基,也需要对其进行保护。
步骤S3,所述第四化合物与磷酸二乙酯通过Wittig-Hornor反应,得到结构为的第五化合物。
步骤S4,通过二异丁基氢化铝将所述第五化合物中的腈基还原,得到结构为的第六化合物。
步骤S5,所述第六化合物经酸水解后去除所述叔丁基二甲基硅基,得到结构为第七化合物。由于电子桥分子的酮基经由步骤S4和步骤S5反应后实现扩链,后续需要连接第一可交联基团和第二可交联基团,因此,需要将电子给体基团和电子桥基团上的醇羟基连接的保护基团去除,以还原醇羟基。
步骤S6,通过亲核取代或Steglich酯化作用在所述第七化合物的醇羟基上分别连接结构为的第一可交联基团和结构为的第二可交联基团,得到结构为的第八化合物或结构为的第九化合物。
步骤S7,所述第八化合物或所述第九化合物与所述电子受体分子缩合后制得前述式(II)的发色团化合物(QLD1)或式(III)的发色团化合物(QLD2)。
上述合成方法,通过引入含有醇羟基的四氢喹啉单给体结构以及含有醇羟基的电子桥结构,并通过在两个醇羟基上连接保护基团和去除保护基团的方式,避免在引入第一可交联基团和第二可交联基团之前,醇羟基受影响;引入的第一可交联基团和第二可交联基团相同,反应条件易于控制、使反应更容易发生,且简化了合成步骤。因此,该制备方法易于实现,反应条件温和,中间产物和最终产物的产率高,且发色团化合物能够溶解于大多数有机溶剂中,有利于大规模生产和商业化应用。
本申请实施例还提供一种电光材料,该电光材料包括至少两个如上所述的发色团化合物,至少两个所述发色团化合物用于发生交联反应。
一些实施例中,该电光材料为包含两个发色团化合物,且每个发色团化合物中的第一可交联基团和第二可交联基团相同,这两个发色团化合物可发生交联反应形成交联大分子。可以理解的,当一个发色团化合物中引入的第一可交联基团与另一个发色团化合物中引入的第一可交联基团相同时,组成的电光材料为一元发色团体系;当一个发色团化合物中引入的第一可交联基团与另一个发色团化合物中引入的第一可交联基团不相同时,组成的电光材料为二元发色团体系。
一些实施例中,所述电光材料包括两个所述发色团化合物,任一所述发色团化合物上的所述第一可交联基团和所述第二可交联基团相同时,一个所述发色团化合物上的所述第一可交联基团与另一个所述发色团化合物上的所述第一可交联基团选自以下基团组合中的任意一种:叠氮基团和炔基、羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋 喃基团和马来酰亚胺基团、巯基和烯烃、香豆素基团和香豆素基团、二氟烯烃基团和二氟烯烃基团、以及苯乙烯基团和苯乙烯基团。
一些实施例中,一所述发色团化合物连接的所述第一可交联基团和所述第二可交联基团均为蒽基团,另一所述发色团化合物连接的所述第一可交联基团和所述第二可交联基团均为丙烯酸酯基团,即本实施例中,组成的电光材料为二元交联发色团体系。具体地,两种发色团化合物分别为发色团化合物QLD1和发色团化合物QLD2。发色团化合物QLD1和发色团化合物QLD2可发生交联反应生成交联结构,结合图2所示,发色团化合物QLD1和QLD2组成的二元交联发色团体系在极化过程中,QLD1和QLD2可以发交联反应,形成交联结构,形成交联结构后的电光材料的玻璃化转变温度进一步升高,交联结构在升温过程中不会发生驰豫解链,从而提高了电光材料的光热稳定性以及极化取向稳定性,提高了电光系数,进而有利于提高形成器件的极化温度和工作温度。
一些实施例中,前述二元交联发色团体系中,发色团化合物QLD1和发色团化合物QLD2可以以任意比例混合,例如可以以1:1、1:2、1:3、2:1、3:1等比例混合,通过调整二者的混合比例,可以控制二元发色团体系的交联程度,进而调控电光材料的综合性能。可以理解的,二元以上的多元发色团体系中,多种发色团化合物同样可以以任意比例混合。
本申请提供的电光材料中的发色团化合物的分子式中引入结构为的单给体结构,由于这类结构中包含苯环和杂环结构,给电能力较大多数常规给电体要强很多,发色团化合物的一阶超极化率和电光系数相较于传统的含苯胺给电体的发色团都有很大的提升,而且还能提升发色团化合物的玻璃化转变温度(Tg)。再通过将至少两个发色团化合物混合形成多元发色团体系(例如前述二元发色团体系),并使至少两个发色团化合物在一定温度下发生交联反应,由于发色团化合物的分子链中含有第一可交联基团和第二可交联基团,可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率;另外,第一可交联基团和第二可交联基团的引入,还为发色团化合物提供了多个交联位点,交联过程无需单独引入交联剂,提高了电光材料中发色团化合物的含量(采用本申请的发色团化合物QLD1和QLD2可以形成95wt%以上的纯发色团电光薄膜),能进一步提高电光材料的电光系数。同时,至少两个发色团化合物之间在一定温度下发生交联,能进一步显著提高电光材料的玻璃化转变温度(Tg),进而能提高电光材料的光热稳定性和极化取向稳定性。尤其是,本申请实施例中提供的二元发色团体系兼具高的电光系数和高的玻璃化转变温度,极化效率至少为2.67±0.10nm2/V2,电光系数至少为300m/V,且,电光材料的玻璃化转变温度(Tg)至少为180℃,是目前综合性能最好的电光材料之一。
本申请实施例还提供了另一种电光材料,该电光材料包括如上所述的发色团化合物和聚合物,所述发色团化合物用于与所述聚合物发生交联反应。具体地,当发色团化合物与聚合物的主链进行交联反应时,可以形成主链型电光聚合物,当发色团化合物与聚合物的侧链进行交联反应时,可以形成侧链型电光聚合物。该聚合物可以采用主链型电光聚合物或侧链型电光聚合物常用的聚合物类型。本申请的发色团化合物在电子给体基团和电子桥集团上分别含有第一可交联基团和第二可交联基团,发色团化合物与聚合物能够在一定条件下发生交联反应,进而形成电光聚合物,而且发色团化合物具有较高的电光系数和玻璃化转变温度,有利于提升电光聚合物的电光系数和玻璃化转变温度。
请参阅图3,本申请实施例还提供一种电光薄膜100,所述电光薄膜100是由如上任一种电光材料制成。由于该发色团化合物溶于有机溶剂,因此,电光材料的成膜性较好。
请参阅图4,本申请实施例还提供一种电光玻璃200,该电光玻璃200包括玻璃基板210 和位于玻璃基板210表面的上述电光薄膜100。该玻璃基板210可以是氧化铟(ITO)玻璃。
电光玻璃的具体制备方法为:将前述电光材料溶解在有机溶剂(例如二溴甲烷)中,在通过0.2mm的PTFE过滤器过滤后,将过滤溶液旋转涂覆于氧化铟(ITO)玻璃基板的表面,并在50℃真空条件下加热过夜,以去除溶剂,得到附着在玻璃基板210上的电光薄膜100。可以理解的,还可以通过喷涂或其他涂覆方式将电光材料溶液涂覆于玻璃基板210上。
请参阅图5,本申请实施例还提供一种电光器件300,该电光器件300包含一壳体310和位于该壳体310上的如上所述的薄膜100或如上所述的电光玻璃200。
该电光器件300可以是光电调制器,例如马赫曾德尔调制器(Mach-Zehnder Modulator,MZM),光电调制器微环;还可以封装成光模块,例如光电合封(co-packaged optics,CPO)的光收发单元的光电调制器,板载光学(on board optics,OBO)的光收发单元的光电调制器;还可以是相控激光雷达的相控模块等。
本申请提供的电光薄膜100具有较高的电光系数(至少为300pv/m),有利于提高电光器件300的性能;另外,由于极化后的电光薄膜100具有交联的网络结构,从而提高了电光薄膜100的玻璃化转变温度(至少为180℃),进而提高了电光器件300的工作温度。
请参阅图6,本申请实施例还提供一种电子设备400,该电子设备400包含一壳体410和位于该壳体410上的如上所述的电光器件300。
下面通过具体实施例对本申请实施例进行进一步的说明。
合成例1
一种基于单给体结构的有机光学非线性发色团化合物QLD1,该发色团化合物QLD1具有上述式(II)的结构。
发色团化合物QLD1在普通有机溶剂(如三氯乙烷等)中表现出良好的溶解性,其合成方法包括以下步骤:
S11、在氮气环境中,将咪唑(2.35g,34.57mmol)、叔丁基二甲基氯硅烷(5.19g,34.57mmol)和化合物(1)(7.53g,28.81mmol)溶解于25mL的二甲基甲酰胺(DMF)中。于室温下搅拌3h,经旋转蒸发除去溶剂后,以石油醚和乙酸乙酯(50:1~50:3)为洗脱液,用柱层析法纯化粗品,得到黄色油状化合物(2),产率99.6%(10.78g,28.70mmol)。
产物表征:
MS(MALDI)(M+,C22H37NO2Si):calcd:375.63;found:375.69。
1H NMR(600MHz,CDCl3)δ9.93(s,1H,CHO),7.52(s,1H,ArH),6.36(s,1H,ArH),3.76–3.65(m,2H,OCH2),3.59–3.46(m,2H,NCH2),2.53(s,3H,CH3),1.80–1.44(m,2H,CH2),1.30(s,6H,CH3),1.17(s,3H,CH3),0.88(s,9H,CH3),0.05(s,6H,CH3)。
S12、在氮气环境中,将金属钠(1.32g,57.29mmol)溶解于0℃的70mL乙醇中,再向溶液中加入2-巯基乙醇(4.0mL,57.29mmol)。室温搅拌20min后,加入化合物(a)(8.82g,57.29mmol)。室温搅拌1h后,加入化合物(2)(21.52g,57.29mmol)。然后在65℃搅拌过夜。然后,用乙酸乙酯萃取混合物,并在真空中浓缩有机层。以石油醚和乙酸乙酯(50:1~2:1)为洗脱液,采用柱层析法对粗品进行纯化,得到化合物(3)为红色油状液体,产率79.7%(26.11g,45.66mmol)。
产物表征:
MS(MALDI)(M+,C33H53NO3SSi):calcd:571.94;found:572.02。
1H NMR(600MHz,CDCl3)δ7.90(d,J=16.0Hz,1H,CH),7.52(s,1H,ArH),7.33(d,J=16.0Hz,1H,CH),6.44(s,1H,ArH),3.77–3.65(m,2H,NCH2),3.60–3.46(m,4H,OCH2),2.97–2.87(m,1H,CH),2.85–2.80(m,2H,SCH2),2.66(s,2H,CH2),2.45(s,2H,CH2),2.40(s,3H,CH3),1.82–1.71(m,2H,CH2),1.37(d,J=6.6Hz,3H,CH3),1.33(s,3H,CH3),1.19(s,3H,CH3),1.10(s,6H,CH3),0.93(s,9H,CH3),0.10(s,6H,CH3)。
13C NMR(151MHz,CDCl3)δ197.35(s),160.79(s),146.56(s),136.87(s),136.10(s),126.57(s),126.06(s),124.49(s),123.54(s),122.29(s),113.12(s),61.11(s),60.17(s),54.62(s), 51.51(s),47.02(s),46.24(s),41.32(s),38.83(s),32.31(s),29.70(s),28.34(s),26.80(s),25.94(s),24.92(s),20.12(s),18.37(s),-5.26(s)。
S13、在氮气环境中,将咪唑(2.00g,29.38mmol)、叔丁基二甲基氯硅烷(4.41g,29.38mmol)和化合物(3)(14.00g,24.48mmol)溶解于35mL DMF中。室温下搅拌3h后,经旋转蒸发除去溶剂,然后以石油醚和乙酸乙酯(50:1~10:1)为洗脱液,用柱层析法纯化粗品,得化合物(4)为红色油状液体,产率91.2%(15.32g,22.32mmol)。
产物表征:
MS(MALDI)(M+,C39H67NO3SSi2):calcd:686.20;found:686.31。
1H NMR(600MHz,CDCl3)δ7.85(d,J=16.1Hz,1H,CH),7.53(s,1H,ArH),7.24(d,J=16.1Hz,1H,CH),6.41(s,1H,ArH),3.74–3.67(m,2H,NCH2),3.61–3.50(m,4H,OCH2),2.86–2.84(m,1H,CH),2.83–2.77(m,2H,SCH2),2.59(s,2H,CH2),2.34(s,2H,CH2),2.31(s,3H,CH3),1.75–1.72(m,2H,CH2),1.27(d,J=6.6Hz,3H,CH3),1.23(s,3H,CH3),1.19(s,3H,CH3),1.15(s,6H,CH3),0.90(s,18H,CH3),0.09(s,12H,CH3)。
13C NMR(151MHz,CDCl3)δ195.40(s),163.69(s),146.22(s),136.50(s),134.65(s),129.23(s),128.00(s),124.43(s),124.28(s),122.94(s),113.37(s),62.86(s),60.99(s),55.11(s),51.83(s),47.04(s),46.46(s),41.33(s),36.30(s),32.63(s),32.29(s),29.70(s),28.11(s),26.87(s),25.88(s),24.88(s),24.50(s),20.18(d,J=15.5Hz),18.29(s),-5.25(s)。
S14、在氮气环境中,将60%的NaH(3.18g,79.51mmol)和50mL THF的溶液添加到双颈烧瓶中。然后在0℃下将氰甲基膦酸二乙酯(12.85mL,79.51mmol)缓慢添加到上述混合物中。逐渐澄清后加入化合物(4)(13.64g,19.88mmol)。混合物在68℃回流过夜。用乙酸乙酯萃取后,在真空中浓缩。粗品以石油醚和乙酸乙酯(50:1~10:1)为洗脱液,经柱层析法纯化,得化合物(5)为红色油状液体,产率72.7%(10.25g,14.45mmol)。
产物表征:
MS(MALDI)(M+,C41H68N2O2SSi2):calcd:709.24;found:709.32。
1H NMR(600MHz,CDCl3)δ7.79(d,J=16.0Hz,1H,CH),7.44(s,1H,ArH),7.08(d,J=16.0Hz,1H,CH),6.43(s,1H,ArH),6.22(s,1H,CH),3.76–3.68(m,2H,NCH2),3.63–3.61(m,4H,OCH2),2.75–2.67(m,1H,CH),2.62–2.60(m,2H,SCH2),2.50(s,2H,CH2),2.36(s,2H,CH2),2.19(s,3H,CH3),1.75–1.73(m,2H,CH2),1.28(d,J=6.6Hz,3H,CH3),1.24(s,3H,CH3),1.17(s,3H,CH3),1.14(s,6H,CH3),0.94(s,18H,CH3),0.09(s,12H,CH3)。
13C NMR(151MHz,CDCl3)δ158.65(s),149.24(s),145.73(s),135.99(s),132.38(s),128.36(s),125.98(s),125.04(s),124.09(s),123.10(s),119.37(s),113.13(s),62.59(s),61.34(s),54.49(s),54.13(s),47.12(s),46.53(s),43.49(s),41.66(s),37.64(s),30.21(s),29.80(s),28.10(s),26.87(s),25.97(s),24.84(s),20.14(s),18.43(s),-5.18,-5.28。
S15、在氮气环境中,将化合物(5)(9.13g,12.87mmol)溶解于40mL二氯甲烷,然后在-78℃下缓慢加入1.5M二异丁基氢化铝(己烷)(17.2mL,25.75mmol)。-78℃下搅拌3h后,加入20mL乙酸乙酯和水的混合物,在0℃反应1h,用二氯甲烷萃取,有机层在真空中浓缩。以石油醚和乙酸乙酯(50:3~10:1)为洗脱液,采用柱层析法纯化粗品,得化合物(6)为红色油状液体,产率71.1%(6.52g,9.15mmol)。
产物表征:
MS(MALDI)(M+,C41H69NO3SSi2):calcd:712.24;found:712.16。
1H NMR(600MHz,CDCl3)δ10.13(d,J=8.1Hz,1H,CHO),7.90(d,J=16.1Hz,1H,CH),7.46(s,1H,ArH),7.10(d,J=16.1Hz,1H,CH),7.00(d,J=8.1Hz,1H,ArH),6.42(s,1H,CH),3.76–3.72(m,2H,NCH2),3.71–3.66(m,2H,SCH2),2.92–2.86(m,1H,CH),2.63–2.60(m,4H,OCH2),2.50(s,3H,CH3),2.37(s,2H,CH2),2.19(s,2H,CH2),1.55-1.51(m,2H,CH2),1.36(d,J=6.6Hz,3H,CH3),1.24(s,3H,CH3),1.17(s,3H,CH3),1.05(s,6H,CH3),0.92(s,18H,CH3),0.10(s,12H,CH3)。
13C NMR(151MHz,CDCl3)δ191.79(s),156.70(s),150.22(s),145.70(s),135.92(s),132.18(s),128.20(s),126.70(s),125.67(s),124.05(s),123.13(s),113.06(s),62.81(s),62.44(s), 61.27(s),54.42(s),48.13(s),46.46(s),41.61(s),39.71(s),37.29(s),36.42(s),30.48(s),30.02(s),29.72(s),28.30(s),27.99(s),26.83(s),25.81(s),24.78(s),20.07(s),18.24(s),-5.29(d,J=10.6Hz)。
S16、将化合物(6)(3.87g,5.43mmol)溶解于20mL丙酮中,然后向溶液中加入22mL1M HCl。然后将混合物在室温下搅拌3h,用二氯甲烷萃取。粗品经真空浓缩后,以石油醚和乙酸乙酯(25:1~2:3)为洗脱液,经柱层析法纯化,得到红色固体化合物(7),产率91.9%(2.41g,4.99mmol)。
产物表征:
MS(MALDI)(M+,C29H41NO3S):calcd:483.71;found:483.62。
1H NMR(600MHz,CDCl3)δ10.14(d,J=7.4Hz,1H,CHO),7.92(d,J=16.0Hz,1H,CH),7.49(s,1H,ArH),7.14(d,J=16.0Hz,1H,CH),7.00(d,J=8.0Hz,1H,ArH),6.47(s,1H,CH),3.87–3.73(m,2H,NCH2),3.68–3.59(m,2H,SCH2),2.96–2.84(m,1H,CH),2.80–2.73(m,4H,OCH2),2.53(s,3H,CH3),2.38(s,2H,CH2),2.04(s,2H,CH2),1.61-1.54(m,2H,CH2),1.38(d,J=6.6Hz,3H,CH3),1.32(s,3H,CH3),1.21(s,3H,CH3),1.05(s,6H,CH3)。
13C NMR(151MHz,CDCl3)δ191.57(s),156.66(s),150.95(s),145.95(s),136.06(s),132.71(s),127.36(s),126.85(s),126.69(s),125.41(s),123.89(s),123.50(s),113.47(s),61.23(s),60.74(s),54.83(s),46.63(s),41.72(s),39.93(s),38.16(s),30.11(s),29.65(s),28.31(s),27.01(s),24.88(s),20.15(s),14.17(s)。
S17、在氮气环境中,将化合物(b)(0.55g,2.10mmol)、二甲基氨基吡啶(DMAP,0.03g,0.21mmol)、碳二亚胺(EDCI,0.40g,2.10mmol)于0℃下溶于15mL的二氯甲烷中。溶液变浑浊,搅拌45min后澄清,澄清后加入化合物(7)(0.45g,0.93mmol)和20mL二氯甲烷。在0℃下搅拌2h后,将其移至室温,并使溶液再回流15h。用二氯甲烷萃取。粗品经真空浓缩后,以石油醚和乙酸乙酯(25:1~2:1)为洗脱液,经柱层析法纯化,制备得红色固体化合物(8a),产率81.6%(0.72g,0.75mmol)。
产物表征:
MS(MALDI)(M+,C63H65NO5S):calcd:948.28;found:948.36。
1H NMR(600MHz,CDCl3)δ10.20(d,J=8.1Hz,1H,CHO),8.41(s,1H,ArH),8.36(s,1H,ArH),8.30(d,J=8.8Hz,2H,ArH),8.24(d,J=8.8Hz,2H,ArH),8.05(d,J=8.4Hz,2H,ArH),8.01(d,J=8.3Hz,2H,ArH),7.97(d,J=16.0Hz,1H,CH),7.59–7.55(m,2H,ArH),7.54–7.42(m,7H,ArH),7.16(d,J=16.0Hz,1H,CH),7.03(d,J=8.0Hz,1H,ArH),6.48(d,J=14.0Hz,1H,CH),4.23–4.13(m,4H,OCH2),4.06–4.01(m,2H,NCH2),3.94–3.90(m,2H,SCH2),3.41–3.18(m,1H,CH),2.89–2.85(m,2H,CH2),2.81-2.76(m,4H,CH2),2.76–2.72(m,2H,CH2),2.56(s,2H,CH2),2.41(s,3H,CH3),2.08(s,2H,CH2),1.66–1.62(m,2H,CH2),1.29(d,J=5.9Hz,3H,CH3),1.28(s,3H,CH3),1.09(s,6H,CH3)。
13C NMR(151MHz,CDCl3)δ191.51(s),172.99(s),172.66(s),156.38(s),151.10(s),145.42(s),136.20(s),132.57(s),132.20(d,J=19.4Hz),131.54(d,J=7.7Hz),129.37(dd,J=23.5,13.4Hz),127.21(s),126.83(s),126.46(s),126.31(s),125.92(d,J=11.2Hz),125.53(s),124.92(d,J=7.5Hz),123.91(t,J=12.0Hz),123.47(s),113.14(s),218.30–19.96(m),63.20(s),62.24(s),60.37(s),54.59(s),46.28(s),43.07(s),41.69(s),39.90(s),35.22(s),33.18(s),30.09(s),29.82(d,J=82.3Hz),31.59–26.85(m),28.69(dd,J=342.2,161.7Hz),31.59–23.35(m),31.59–21.09(m),25.85(ddd,J=540.3,299.6,201.0Hz),14.17(s)。
S18、发色团QLD1的合成:在氮气环境下将化合物(8a)(0.37g,0.39mmol)和化合物(d)(0.11g,0.34mmol)溶于6mL无水乙醇中。然后在65℃回流3h,有机相经真空浓缩后,以石油醚和乙酸乙酯(10:1~2:1)为洗脱液,经柱层析纯化,制备得绿色固体发色团QLD1,产率69.4%(0.34g,0.27mmol)。
产物表征:
HRMS(ESI)(M+,C79H71F3N4O5S):calcd:1245.5176;found:1245.5189。
1H NMR(600MHz,CDCl3)δ8.41(s,1H,ArH),8.37(s,1H,ArH,8.29(d,J=8.6Hz,2H, ArH),8.19(d,J=8.8Hz,2H,ArH),8.07–7.97(m,6H,ArH),7.58–7.54(m,2H,CH),7.53–7.42(m,12H,ArH,CH),7.29(d,J=7.8Hz,2H,ArH),6.50(d,J=14.6Hz,2H,CH),4.30–4.23(m,2H,NCH2),4.22–4.10(m,4H,OCH2),4.05–4.01(m,2H,SCH2),3.92–3.88(m,2H,CH2),3.41-3.38(m,2H,CH2),2.90–2.84(m,2H,CH2),2.80(t,J=6.8Hz,2H,CH2),2.78-2.75(m,1H,CH),2.73–2.69(m,2H,CH2),2.57(s,2H,CH2),2.42(s,3H,CH3),2.07(s,2H,CH2),1.70–1.61(m,2H,CH2),1.31(s,3H,CH3),1.28(s,3H,CH3),1.10(s,3H,CH3),1.03(s,3H,CH3),0.95(s,3H,CH3)。
13C NMR(151MHz,CDCl3)δ175.61(s),172.97(s),172.59(s),171.13(s),162.49(s),157.62(s),154.89(s),147.14(s),146.57(s),137.76(s),135.55(s),132.05(s),131.56(s),131.22(s),129.95(s),129.67–129.27(m),129.16(s),128.21(s),126.67(s),126.46(d,J=11.8Hz),125.96(s),125.15(s),124.92(d,J=5.5Hz),124.44(s),123.80(s),123.44(s),116.91(s),113.39(s),111.27(s),110.78(s),95.76(s),63.09(s),62.00(s),60.36(s),57.72(s),55.00(s),46.02(s),43.03(s),41.74(s),41.15(s),35.07(s),33.92(s),30.39(s),29.48(s),28.55(s),27.87(s),26.68(s),24.87(s),23.23(s),21.02(s),20.22(s),19.94(s),14.17(s)。
合成例2
另一种基于单给体结构的有机光学非线性发色团化合物QLD2,该发色团化合物QLD2具有上述式(III)的结构。
发色团化合物QLD1在普通有机溶剂(如三氯乙烷等)中表现出良好的溶解性,其合成方法包括以下步骤:
步骤S21-S26参见实施例1中的步骤S11-步骤S16,合成出化合物(7)。
S27、在氮气环境中,将化合物(c)(0.55g,2.10mmol)、二甲基氨基吡啶(DMAP,0.03g,0.21mmol)、碳二亚胺(EDCI,0.40g,2.10mmol)于0℃下溶于15mL的二氯甲烷中。溶液变浑浊,搅拌45min后澄清,澄清后加入化合物(7)(0.26g,0.53mmol)和20mL二氯甲烷。在0℃下搅拌2h后,将其移至室温,并使溶液再回流15h。用二氯甲烷萃取。粗品经真空浓缩后,以石油醚和乙酸乙酯(25:1~2:1)为洗脱液,经柱层析法纯化,得到红色固体化合物(8b),产率74.7%(0.38g,0.39mmol)。
产物表征:
MS(MALDI)(M+,C55H57NO13S):calcd:972.12;found:972.19。
1H NMR(600MHz,)δ10.14(d,J=8.0Hz,1H,CHO),7.91(d,J=16.0Hz,1H,CH),7.77(d,J=2.2Hz,2H,ArH),7.64(d,J=2.2Hz,2H,ArH),7.46(s,1H,ArH),7.27(d,J=2.2Hz,1H,ArH),7.22(t,J=2.2Hz,1H,ArH),7.10(d,J=16.0Hz,1H,CH),6.99(d,J=8.0Hz,1H,ArH),6.67–6.56(m,5H,CH),6.36–6.25(m,4H,CH),6.07-6.02(m,4H,CH),4.55–4.34(m,4H,OCH2),3.82–3.44(m,2H,NCH2),2.94(t,J=7.0Hz,2H,SCH2),2.88-2.83(m,1H,CH),2.75(s,2H,CH2),2.48(s,2H,CH2),2.39(s,3H,CH3),1.65–1.51(m,2H,CH2),1.37(s,3H,CH3),1.35(d,J=6.6Hz,3H,CH3),1.21(s,3H,CH3),1.05(s,3H,CH3),1.04(s,3H,CH3)。
13C NMR(151MHz,CDCl3)δ191.52(s),164.87(s),164.44(s),163.82(d,J=14.7Hz),156.36(s),150.97(s),150.81(s),145.52(s),136.33(s),133.54(s),132.74(s),132.09(d,J=12.6Hz),127.36(s),126.89(s),125.51(s),124.14(s),123.66(s),120.44(s),120.31(s),120.16(s),113.23(s),64.53(s),63.17(s),54.86(s),46.48(s),43.24(s),41.68(s),39.93(s),33.14(s),30.13(s),29.71(s),28.32(s),26.88(s),24.81(s),20.20(s)。
S28、发色团QLD2的合成:在氮气环境下将化合物(8b)(0.28g,0.29mmol)和化合物(d)(0.11g,0.34mmol)溶于6mL无水乙醇中。然后在65℃回流3h,有机相经真空浓缩后,以石油醚和乙酸乙酯(10:1~2:1)为洗脱液,经柱层析纯化,得到绿色固体发色团QLD2,产率71.6%(0.26g,0.21mmol)。
产物表征:
HRMS(ESI)(M+,C71H63F3N4O13S):calcd:1269.4143;found:1269.4131。
1H NMR(600MHz,CDCl3)δ8.01(d,J=15.7Hz,2H,CH),7.79(d,J=2.2Hz,2H,ArH), 7.64(d,J=2.2Hz,2H,ArH),7.60–7.50(m,6H,ArH),7.44(d,J=12.4Hz,1H,CH),7.29(dt,J=6.6,4.8Hz,2H,ArH),7.25(t,J=2.2Hz,1H,ArH),6.70–6.61(m,5H,CH),6.47(d,J=14.5Hz,1H,CH),6.36(d,J=10.5Hz,1H,CH),6.34(d,J=4.1Hz,1H),6.32(d,J=4.0Hz,1H,ArH),6.30(d,J=10.5Hz,1H,CH),6.13–6.02(m,4H,ArH),4.61–4.33(m,4H,OCH2),3.69-3.53(m,2H,NCH2),2.96(t,J=6.7Hz,2H,SCH2),2.94–2.83(m,1H,CH),2.54(s,2H,CH2),2.43(s,3H,CH3),2.22(s,2H,CH2),1.67-1.62(m,2H,CH2),1.42(s,3H,CH3),1.38(d,J=6.6Hz,3H,CH3),1.26(s,3H,CH3),1.02(s,3H,CH3),0.92(s,3H,CH3)。
13C NMR(151MHz,CDCl3)δ175.65(s),171.08(s),164.78(s),164.31(s),163.78(s),162.49(s),157.60(s),154.58(s),150.92(s),147.18(s),146.60(s),137.82(s),135.61(s),133.50(s),131.91(s),131.75(s),131.23(s),130.01(s),129.58(s),129.20(s),128.16(s),127.21(s),126.73(s),125.10(s),124.49(s),123.57(s),120.37(s),120.17(s),116.95(s),113.42(s),111.36(d,J=17.0Hz),110.78(s),95.73(s),64.15(s),62.85(s),60.32(s),57.57(s),55.20(s),46.15(s),43.14(s),41.67(s),41.08(s),33.88(s),30.36(s),29.58(s),28.57(s),27.78(s),26.74(s),25.02(s),20.99(s),20.13(s),19.91(s),14.14(s)。
结合具体的化合物结构式,以下给出了发色团化合物QLD1和发色团化合物QLD2的合成过程:
实施例1
将合成例1得到的100wt%的QLD1溶于有机溶剂(例如三氯乙烷等)中,得到QLD1溶液,再将QLD1溶液成膜,得到QLD1电光薄膜。
实施例2
将合成例2得到的100wt%的QLD2溶于有机溶剂(例如三氯乙烷)中,得到QLD2溶液,再将QLD2溶液成膜,得到QLD2电光薄膜。
实施例3
将合成例1得到的发色团化合物QLD1和合成例2得到的发色团化合物QLD2按2:1的摩尔比混合,并溶于有机溶剂(例如三氯乙烷等)中,得到QLD1+QLD2混合溶液,再将QLD1和QLD2混合溶液成膜,得到未交联QLD1+QLD2的电光薄膜(命名为2:1QLD1:QLD2(NC))。
实施例4
将实施例3得到未交联的QLD1+QLD2的电光薄膜,于100~160℃进行5~10min的交联处理得到交联QLD1+QLD2的电光薄膜(命名为2:1QLD1:QLD2(X-link))。
本实施例中,分别将未交联的QLD1+QLD2的电光薄膜升温至110℃保温5min,升温至120℃保温5min,升温至130℃保温5min,升温至140℃保温5min,升温至150℃保温10min,最后升温至160℃保温10min,得到不同交联程度的交联QLD1+QLD2的电光薄膜。
以上实施例1至实施例4中得到的电光薄膜的厚度保持一致。
下面对以上实施例1至实施例4进行了表征说明。
(1)热稳定性分析
为了了解发色团化合物QLD1和QLD2在高温下的分解情况,我们在氮气环境下,以10℃/min的加热速率,运用热重分析仪(TGA)对发色团化合物QLD1和QLD2进行了测试,所得的结果如图7所示。QLD1和QLD2都展现了良好的热稳定性,分解温度(Td,5%失重)均高于270℃,完全符合探索极化工艺和双块晶体电光(electro-optic,EO)器件制造的条件。在QLD1和QLD2中,QLD2的分解温度较高(Td,317℃),其次是QLD1(Td,273℃)。
玻璃化转变温度(Tg)是表征发色团化合物热稳定性的重要指标,发色团化合物的玻璃化转变温度(Tg)的高低直接影响了有机电光材料的极化取向稳定性。结合参阅图1,为传统的电光材料的极化过程示意图,其中传统的发色团化合物分散在聚合物基质中,在极化过程中,传统的发色团化合物分子被极化取向,但,当温度超过电光材料的玻璃化转变温度(Tg)后,传统的发色团化合物分子的热运动变得剧烈,原本在电场中被极化取向的发色团化合物分子因为热运动和分子间的静电相互作用,反平行堆积被破坏,因此,电光系数容易发生衰减,进而器件的极化温度和工作温度均较低。如图8所示,为发色团化合物QLD1和QLD2的差示扫描量热仪(DSC)曲线图,通过DSC对发色团化合物QLD1和QLD2的玻璃化转变温度(Tg)进行了测试。如图8所示,结合参阅图2,QLD1和QLD2的玻璃化转变温度(Tg)分别为93℃和75℃,按2:1摩尔比混合的未交联的QLD1+QLD2薄膜(表示为:2:1QLD1:QLD2(NC))的玻璃化转变温度(Tg)为126℃,加热的过程中,QLD1的蒽基团和QLD2的丙烯酸酯会发生交联反应,小分子从而变成大的交联聚合物,按2:1摩尔比混合后交联的QLD1+QLD2薄膜(表示为:2:1QLD1:QLD2(X-link))的玻璃化转变温度(Tg)提升至185℃,交联后的电光材料玻璃化转变温度(Tg)得到了显著的提高,交联结构在升温过程中不会发生解链,从而提高了电光材料的光热稳定性以及极化取向稳定性,提高了电光系数,进而有利于提高形成器件的极化温度和工作温度。
(2)光谱数据分析
发色团化合物的吸收光谱表征了电子给体对发色团化电荷转移能力大小。为了了解四氢喹啉单给体对发色团化合物电荷转移能力的影响,本申请测试了发色团化合物QLD1和QLD2在氯仿中的紫外-可见吸收光谱。
发色团化合物QLD1和QLD2的光谱吸收参数如表1所示。
表1
如图9所示,为发色团化合物QLD1和QLD2的紫外-可见分光光谱。结合图9和表1可以看出,发色团化合物QLD1和QLD2在氯仿中的最大吸收波长分别为800nm和790nm,相对于以传统苯胺衍生物为电子给体的发色团(一般为740nm左右),发色团化合物QLD1和QLD2的最大吸收波长红移了约50nm,这说明了四氢喹啉单给体有着比传统的苯胺给体更强的给电子能力,此外四氢喹啉的六元环结构也能增强给电子能力,使发色团化合物的基态能级上升,导致电荷更容易跃迁,从而导致红移,而更大的紫外吸收波长也意味着发色团化合物可能有更大的一阶超极化率。
为了进一步比较不同的溶剂对发色团电荷转移能力的影响,本申请还结合溶剂化效应以研究发色团化合物的极性,测试了两种发色团化合物QLD1和QLD2在丙酮(acetone)、二氯甲烷(dichloromethane)、1,4-二氧六环(1,4-dioxane)、四氢呋喃(tetrahydrofuran)、乙腈(acetonitrile)及氯仿(chloroform)等六种不同极性的溶剂中的最大吸收波长,吸收谱图如图10a和图10b所示。结合图10a、图10b和表1可以看出,发色团化合物QLD1和QLD2在1,4-二氧六环(1,4-dioxane)、四氢呋喃(tetrahydrofuran)、乙腈(acetonitrile)及氯仿(chloroform)中分别显示出50~80nm的红移。
如图11所示,为发色团化合物QLD1和QLD2在成膜后的紫外-可见分光光谱。为了确定QLD1和QLD2交联的效果,我们测试了QLD1薄膜、QLD2薄膜、2:1QLD1:QLD2(NC)薄膜、以及2:1QLD1:QLD2(X-link)薄膜中的紫外吸收谱图。如图11所示,可以看到发色团QLD1和QLD2在薄膜中的最大吸收波长在800nm左右,与前述纯QLD1和QLD2的紫外-可见分光光谱结果一致,同时在1000nm左右出现了肩峰,此处的肩峰表明发色团的含量较高,当发色团含量较高且发生聚集的时候就会出现1000nm左右的肩峰。特别的,图11中,将图谱中320nm~400nm的紫外吸收区间进行放大,这一区域主要是蒽基团的吸收峰所在的区间,我们看到相较于未交联2:1QLD1+QLD2(NC)薄膜,交联2:1QLD1+QLD2(X-link)薄膜中蒽基团的吸收峰出现了明显的下降,这证明了蒽基团和丙烯酸酯基团的交联反应确实发生了。
(3)将实施例1至实施例4的电光薄膜组装成电光器件后,测试了发色团化合物的极化效率及电光系数(r33)。
其中,极化效率是发色团化合物微观超极化率转换为宏观电光系数的效率。
先得到实施例1至实施例4的电光薄膜,并将实施例1至实施例4的电光薄膜组装成电光器件,接触极化过程在电光材料玻璃化转变温度(Tg)以上进行,具体在5~10℃的温度下进行。采用Teng-Man简单反射法计算了极化薄膜在1310nm波长下的电光系数(r33),该方法使用低反射率和良好透明度的薄ITO玻璃作为电极,以最小化多次反射。
不同电光薄膜的极化效率和电光系数的性能指标如表2所示。
表2
如前所述,在发色团化合物中引入第一可交联基团和第二可交联基团还可以控制电子的几何结构和离域化,能够使发色团化合物之间的相互作用最小化,因此,可以更好地将一阶超极化率(β)值转化为电光系数(r33)值,从而提高发色团化合物宏观的电光活性。如果忽略分子间的静电相互作用,则电光系数(r33)随发色团化合物数密度(N)、一阶超极化率(β)和极化电场强度(Ep)的增加而增加。然而,随着发色团化合物数密度的增加,发色团化合物分子间强烈的偶极-偶极相互作用会阻碍发色团化合物的极化过程,降低极化效率。第一可交联基团和第二可交联基团的引入可以增加发色团化合物分子间的距离,减弱分子间的静电相互作用,有助于提高发色团化合物的极化效率。
如图12a至图12d和表2所示,结合参阅图2,本申请测试了QLD1和QLD2单独成膜时的电光系数,因QLD1和QLD2具有较大的一阶超极化率,100wt%的QLD1薄膜和100wt%的QLD2薄膜的极化效率高达3.03±0.09nm2/V2和2.79±0.10nm2/V2,在100V/μm作用的极化场下,二者的电光系数达到了252pm/V和233pm/V。另外,本申请还测试了将QLD1和QLD2混合形成的二元发色团体系成膜后的电光系数,将QLD1和QLD2以2:1的摩尔比掺杂在一起,形成二元电光薄膜,在95℃极化时,未交联的2:1QLD1:QLD2(NC)的极化效率提高到了3.89±0.10nm2/V2,电光系数也提升到了386m/V。采用阶梯升温极化的方式(例如110℃保温5min,升温至120℃保温5min,升温至130℃保温5min,升温至140℃保温5min,升温至150℃保温10min,最后升温至160℃保温10min),使QLD1和QLD2发生交联反应,交联可以提高电光薄膜的极化取向稳定性,但是确实也会因为形成了聚合物网络结构在一定程度上抑制了极化效率的提升,交联后的2:1QLD1:QLD2(X-link)的极化效率相较于未交联的2:1QLD1:QLD2(NC)有所下降,极化效率为2.67±0.10nm2/V2,电光系数还是高达327m/V,是无机物铌酸锂(30pm/V)的10倍左右。
值得指出的是交联的2:1 QLD1:QLD2(X-link)电光薄膜具有327pm/V的电光系数和185℃的玻璃化转变温度(Tg),是兼具较高的电光系数和较高的玻璃化转变温度(Tg)的电光材料,是目前世界上综合性能最好的电光材料之一。
需要说明的是,以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种发色团化合物,其特征在于,所述发色团化合物具有如下式(I)的结构:
    其中,D为可提供电子的原子;
    A为电子受体基团;
    B为电子桥基团;
    Z为至少能形成两个化学键的原子或有机基团;
    L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;
    X1为第一可交联基团;
    X2为第二可交联基团;
    n和m分别为大于或等于1的整数;
    p和q分别为大于或等于1的整数。
  2. 如权利要求1所述的发色团化合物,其特征在于,所述式(I)中的D为氧原子、氮原子或硫原子。
  3. 如权利要求1所述的发色团化合物,其特征在于,所述式(I)中的Z为硫原子、氧原子或烷基。
  4. 如权利要求1所述的发色团化合物,其特征在于,所述式(I)中的L1和L2分别独立地选自烷基、酯基、芳基以及杂芳基中的至少一种。
  5. 如权利要求4所述的发色团化合物,其特征在于,所述式(I)中的n和m分别为1,2或3;所述式(I)中的p和q分别为1,2,3或4。
  6. 如权利要求4所述的发色团化合物,其特征在于,所述第一可交联基团和所述第二可交联基团均为可发生点击化学反应、热交联反应、光交联反应、耦合反应或聚合反应的基团。
  7. 如权利要求6所述的发色团化合物,其特征在于,所述第一可交联基团和所述第二可交联基团分别独立地选自蒽基、丙烯酸酯基、叠氮基团、炔基、羟基、异氰酸酯基、马来酰亚胺基团、呋喃基团、巯基、烯烃基,香豆素基团、二氟烯烃基团、苯乙烯基团以及这些基团的衍生物中的任意一种。
  8. 如权利要求7所述的发色团化合物,其特征在于,所述第一可交联基团和所述第二可交联基团相同。
  9. 如权利要求8所述的发色团化合物,其特征在于,所述发色团化合物具有如下式(II)或式(III)的结构:
  10. 一种发色团化合物的制备方法,其特征在于,包括以下步骤:
    在含有第一反应基团的电子给体分子上连接含有第二反应基团的电子桥分子,得到含有所述第一反应基团和所述第二反应基团的电子给体基团-电子桥基团化合物;以及
    在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个第一可交联基团和至少一个第二可交联基团,并在所述电子给体基团-电子桥基团化合物的所述电子桥基团上连接电子受体基团,从而获得所述发色团化合物,
    其中,所述发色团化合物具有如下式(I)的结构:
    其中,D为可提供电子的原子;
    A为所述电子受体基团;
    B为所述电子桥基团;
    Z为至少能形成两个化学键的原子或有机基团;
    L1和L2分别独立地选自至少能形成两个化学键的原子或有机基团;
    X1为所述第一可交联基团;
    X2为所述第二可交联基团;
    n和m分别为大于或等于1的整数;
    p和q分别为大于或等于1的整数。
  11. 如权利要求10所述的制备方法,其特征在于,所述电子给体分子具有如下式(IV)的结构:
    其中,R为所述第一反应基团。
  12. 如权利要求10所述的制备方法,其特征在于,所述第一反应基团和所述第二反应基团分别独立地选自羟基、叠氮基团、炔基、巯基、异氰酸酯基以及氨基中的任一种。
  13. 如权利要求10所述的制备方法,其特征在于,在所述电子给体分子上连接所述电子桥分子之前,所述制备方法还包括步骤:
    在所述第一反应基团上连接第一保护基团;
    在所述电子给体分子上连接所述电子桥分子之后,所述制备方法还包括步骤:
    在所述第二反应基团上连接第二保护基团;
    在所述电子给体基团-电子桥基团化合物的所述第一反应基团和所述第二反应基团上分别连接至少一个所述第一可交联基团和至少一个所述第二可交联基团之前,所述制备方法还包括步骤:
    去除所述第一保护基团和所述第二保护基团。
  14. 如权利要求13所述的制备方法,其特征在于,所述电子桥分子包括异佛尔酮、噻吩桥以及吡咯桥中的任意一种。
  15. 如权利要求14所述的制备方法,其特征在于,所述第一保护基团和所述第二保护基团分别衍生自叔丁基二甲基氯硅烷及其衍生物、叔丁基二苯基氯硅烷及其衍生物以及二氢吡喃类衍生物中的任意一种。
  16. 如权利要求15所述的制备方法,其特征在于,所述电子给体分子为结构为的第一化合物,所述电子桥分子为异佛尔酮,所述电子受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈,所述制备方法包括以下步骤:
    在所述第一化合物的羟基上生成叔丁基二甲基硅基,得到结构为的第二化合物;
    将所述第二化合物与异佛尔酮在乙醇钠和2-巯基乙醇中进行knoevenagel缩合反应得到结构为的第三化合物;
    在所述第三化合物的羟基上生成叔丁基二甲基硅基,得到结构为的第四化合物;
    所述第四化合物与磷酸二乙酯通过Wittig-Hornor反应,得到结构为的第五化合物;
    通过二异丁基氢化铝将所述第五化合物中的腈基还原,得到结构为的第六化 合物;
    所述第六化合物经酸水解后去除所述叔丁基二甲基硅基,得到结构为的第七化合物;
    通过亲核取代或Steglich酯化作用在所述第七化合物的羟基上分别连接结构为的第一可交联基团和结构为的第二可交联基团,得到结构为的第八化合物或结构为的第九化合物;以及
    所述第八化合物或所述第九化合物与所述电子受体分子缩合后制得结构为的所述发色团化合物。
  17. 一种电光材料,其特征在于,包括至少两个如权利要求1至9中任意一项所述的发色团化合物,至少两个所述发色团化合物用于发生交联反应。
  18. 如权利要求17所述的电光材料,其特征在于,包括两个所述发色团化合物,任一所述发色团化合物上的所述第一可交联基团和所述第二可交联基团相同时,一个所述发色团化合物上的所述第一可交联基团与另一个所述发色团化合物上的所述第一可交联基团选自以下基团组合中的任意一种:叠氮基团和炔基、羟基和异氰酸酯基、蒽基和丙烯酸酯基、蒽基和马来酰亚胺基团、呋喃基团和马来酰亚胺基团、巯基和烯烃基团、香豆素基团和香豆素基团、二氟烯烃基团和二氟烯烃基团、以及苯乙烯基团和苯乙烯基团。
  19. 一种电光材料,其特征在于,包括如权利要求1至9中任意一项所述的发色团化合物和聚合物,所述发色团化合物用于与所述聚合物发生交联反应。
  20. 一种薄膜,其特征在于,所述薄膜是由如权利要求17至19中任意一项所述的电光材料制成。
  21. 一种电光玻璃,其特征在于,包括玻璃基板和位于所述玻璃基板上的薄膜,所述薄膜为如权利要求20所述的薄膜。
  22. 一种电光器件,其特征在于,包含如权利要求20所述的薄膜,或包含如权利要求21所述的电光玻璃。
  23. 一种电子设备,其特征在于,包含如权利要求22所述的电光器件。
PCT/CN2023/083207 2022-05-30 2023-03-22 发色团化合物、其制备方法、及发色团化合物的应用 WO2023231529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210605696.5A CN117186079A (zh) 2022-05-30 2022-05-30 发色团化合物、其制备方法、及发色团化合物的应用
CN202210605696.5 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231529A1 true WO2023231529A1 (zh) 2023-12-07

Family

ID=89003936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083207 WO2023231529A1 (zh) 2022-05-30 2023-03-22 发色团化合物、其制备方法、及发色团化合物的应用

Country Status (2)

Country Link
CN (1) CN117186079A (zh)
WO (1) WO2023231529A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210405504A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear Optical Chromophores Having a Diamondoid Group Attached Thereto, Methods of Preparing the Same, and Uses Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210405504A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear Optical Chromophores Having a Diamondoid Group Attached Thereto, Methods of Preparing the Same, and Uses Thereof
WO2021263164A1 (en) * 2020-06-25 2021-12-30 Lightwave Logic, Inc. Nonlinear optical chromophores comprising a diamondoid group

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIU, TAILI: "Record-high near-band-edge optical nonlinearities and two-level model correction of poled polymers by spectroscopic electromodulation and ellipsometry", SCIENCE CHINA : CHEMISTRY, vol. 65, no. 3, 31 March 2022 (2022-03-31), pages 584 - 593, XP037704321, DOI: 10.1007/s11426-021-1164-4 *
SHI, ZHENGWEI: "Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. 3, 31 December 2012 (2012-12-31), pages 951 - 959, XP055659129, DOI: 10.1039/C1JM14254B *
SHI, ZHENGWEI: "Dipolar Chromophore Facilitated Huisgen Cross-Linking Reactions for Highly Efficient and Thermally Stable Electrooptic Polymers", ACS MACRO LETTERS, vol. 1, no. 7, 31 December 2012 (2012-12-31), pages 793 - 796, XP093116223, DOI: 10.1021/mz300189p *
ZHOU, XINGHUA: "Push-pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. 32, 31 December 2012 (2012-12-31), pages 16390 - 16398, XP093116220, DOI: 10.1039/c2jm32848h *

Also Published As

Publication number Publication date
CN117186079A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US20060114552A1 (en) Fluorinated crosslinked electro-optic materials and electro-optic devices therefrom
US7425643B1 (en) Electron acceptors for nonlinear optical chromophores
US8394499B2 (en) Crosslinkable polymer host having pendant nonlinear optical chromophores and containing a nonlinear optical chromophore guest
US7307173B1 (en) Pyrroline chromophores
US6393190B1 (en) Chromophores for polymeric thin films and optical waveguides and devices comprising the same
WO2001079750A1 (en) Sterically stabilized polyene-bridged second-order nonlinear optical chromophores and devices incorporating the same
US7749408B2 (en) Electro-optic dendrimer-based glass composites
Zeng et al. A modifiable double donor based on bis (N-ethyl-N-hydroxyethyl) aniline for organic optical nonlinear chromophores
US7019453B2 (en) Polymers having pendant nonlinear optical chromophores and electro-optic devices therefrom
Liu et al. Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures
US9023248B2 (en) Diels-Alder crosslinkable dendritic nonlinear optic chromophores and polymer composites
WO2009102359A2 (en) Nonlinear optical chromophores with stabilizing substituent and electro-optic devices
Liu et al. Design and synthesis of various double donors for nonlinear optical chromophores with enhanced electro-optic activity
US20100152338A1 (en) Nonlinear optical material composition and method of manufacture
WO2023231529A1 (zh) 发色团化合物、其制备方法、及发色团化合物的应用
US7601849B1 (en) Nonlinear optical compounds and related macrostructures
US7109355B2 (en) Fluorinated π-bridge second order nonlinear optical chromophores and electro-optic devices therefrom
WO2023231528A1 (zh) 发色团化合物、其制备方法、及发色团化合物的应用
Liang et al. Synthesis of phenyltetraene chromophores-based hybrid materials for large nonlinear optical activity
US20090118521A1 (en) Nanoengineered organic nonlinear optical glasses
US8648332B2 (en) Phenyltetraene-based nonlinear optical chromophores
CA2411963A1 (en) Novel chromophores for polymeric thin films and optical waveguides and devices comprising the same
CN118063447A (zh) 有机化合物及其应用
CN118724849A (zh) 发色团化合物、其制备方法、及发色团化合物的应用
Zhang et al. Study on the structure–performance relationship of nonlinear optical chromophores with different donors, bridges, and acceptors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814726

Country of ref document: EP

Kind code of ref document: A1