CN114369112B - 一种基于双给体结构的有机光学非线性发色团及其合成方法和应用 - Google Patents

一种基于双给体结构的有机光学非线性发色团及其合成方法和应用 Download PDF

Info

Publication number
CN114369112B
CN114369112B CN202111422472.2A CN202111422472A CN114369112B CN 114369112 B CN114369112 B CN 114369112B CN 202111422472 A CN202111422472 A CN 202111422472A CN 114369112 B CN114369112 B CN 114369112B
Authority
CN
China
Prior art keywords
compound
ethyl acetate
reaction
chromophore
hexane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111422472.2A
Other languages
English (en)
Other versions
CN114369112A (zh
Inventor
王家海
刘锋钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202111422472.2A priority Critical patent/CN114369112B/zh
Publication of CN114369112A publication Critical patent/CN114369112A/zh
Application granted granted Critical
Publication of CN114369112B publication Critical patent/CN114369112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/188Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-O linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种基于双给体结构的有机光学非线性发色团,属于光学材料领域,所述发色团具有如摘要附图所示的结构式,本发明通过亲核反应在二阶非线性光学发色团的双给体中引入OH基团,在给体端连接的两个OH基团为双给体的进一步修饰提供了连接位点,同时紫外吸收λmax红移和较小的带隙验证了相对于大多数发色团的给体,两个OH基团修饰的双给体基团,具有更强的给电子体强度。

Description

一种基于双给体结构的有机光学非线性发色团及其合成方法 和应用
技术领域
本发明涉及有机光学材料领域,具体涉及一种基于双给体结构的有机光学非线性发色团及其合成方法和应用。
背景技术
在5G、物联网、虚拟现实和人工智能等新一代信息技术的推动下,宽带浪潮席卷全球。在过去十年中,信息容量呈指数级增长,光通信网络的带宽和能耗面临巨大压力。电光调制器是实现光电信息转换的核心器件,也是突破带宽和能耗这两个重大技术挑战的关键环节。
电光材料是电光调制器的组成部分。早期对非线性光学材料的研究主要集中在无机晶体和半导体材料,如铌酸锂和砷化镓;然而,这些材料的电光系数通常不高,这限制了最小驱动电压;有机/聚合物非线性光学材料是另一种被广泛研究的非线性光学材料。有机非线性光学材料具有许多优点,例如高电光系数和高带宽。一些研究小组使用CLD型有机二阶非线性发色团来制备500GHz电光调制器、太赫兹场探测器和其它光电器件,有机二阶非线性发色团具有广阔的应用前景。
发色团是一种由电子给体(D)、电子受体(A)和电子桥(π)组成的结构(D-π-A结构),现有技术中已有多种类型的给体、桥和受体被开发,以增强发色团的一阶超极化率,如苯胺基给体(三芳基氨基、烷基苯胺等),杂环或多烯桥,TCF或CF3-TCF衍生物受体是最常见的发色团结构,强给体、受体和合适的电子桥的合理组合将产生大的一阶超极化率。
为了获得大的电光系数,除了大的一阶超极化率外,通常还需要在给体、桥或受体上引入一些空间基团来削弱分子间的静电相互作用,从而提高极化效率。空间基团通常是刚性基团,如苯衍生物。现有技术中已有许多优秀的间隔基被设计出来,并且获得了显著的电光系数。然而,一般来说,空间基团的存在会在一定程度上增加发色团的分子量,从而降低电光膜中发色团的含量。因此,功能性隔离基团更有利于提高发色团的电光系数,在此基础上,已开发了许多优良的发色团;其中,基于流行的CLD型发色团结构的YLD-124(Sullivan PA,2010)、JRD1(JinW,2016)和HLD(Xu H,2020)是最高效的发色团。尽管成功优化了CLD型发色团,EO性能仍达到极限。因此,发展具有更高一级超极化率的发色团是非常有希望的。
双(N,N-二乙基)苯胺给体基团被开发为双给体结构以提高电子供体能力和超极化率,其另一个给体可以增加给体的给电子能力,并作为空间基团削弱分子间的静电相互作用。然而,基于双(N,N-二乙基)苯胺的给体存在一些缺点,例如无法进一步修饰和引入其他官能团。
发明内容
针对上述问题,本发明提供一种新的、可修改的双给体结构,通过亲核反应在二阶非线性光学发色团的双给体中引入OH基团,在给体端连接的两个OH基团为给体的进一步修饰提供了连接位点,例如立体基团或可交联/自组装官能团。
本发明的目的采用以下技术方案来实现:
一种基于双给体结构的有机光学非线性发色团,所述发色团具有如下结构:
其中,Rd为叔丁基二甲基硅基或叔丁基二苯基硅基;Ra为烷基或苯基,Rb为甲基或三氟甲基。
进一步的,本发明还提供了一种所述基于双给体结构的有机光学非线性发色团的合成方法,包括以下步骤:
S1、米氏酮与2-(乙氨基)乙醇进行亲核取代反应得到化合物(2);
S2、在所述化合物(2)的醇羟基上生成叔丁基二甲基硅基保护基团,得到化合物(3);
S3、所述化合物(3)与磷酸二乙酯通过Wittig-Hornor反应得到化合物(4);
S4、通过二异丁基氢化铝将所述化合物(4)中的腈基还原得到化合物(5);
S5、所述化合物(5)与异佛尔酮在乙醇钠和2-巯基乙醇中通过knoevenagel缩合反应得到化合物(6);
S6、在所述化合物(6)的醇羟基上生成叔丁基二甲基硅基保护基团,得到化合物(7);
S7、所述化合物(7)与磷酸二乙酯通过Wittig-Hornor反应得到化合物(8);
S8、通过二异丁基氢化铝将所述化合物(8)中的腈基还原得到化合物(9);
S9、所述化合物(9)经酸水解后得到化合物(10);
S10、通过亲核取代或Steglich酯化作用在所述化合物(10)的醇羟基上连接隔离基团后得到化合物(11);
S11、所述化合物(9)或所述化合物(11)与给体分子缩合后制得所述发色团;
其中,所述化合物(1)-(11)具有如下的结构:
优选的,所述合成方法包括以下步骤:
S1、将化合物(1)和2-(乙氨基)乙醇混合后在保护气氛下进行回流反应,反应完成后用乙酸乙酯与水萃取水层,除去水后,以乙酸乙酯与乙醇的混合溶剂为展开剂进行柱层析纯化,蒸馏去除过量的2-(乙氨基)乙醇,得到化合物(2);
S2、将咪唑、叔丁基二甲基氯硅烷缓慢添加到所述化合物(2)的溶液中,在室温和保护气氛下进行反应,加入去离子水洗涤,有机相用乙酸乙酯萃取,以盐水洗涤,再干燥除水,蒸除溶剂后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(3);
S3、将二乙基(氰基甲基)-膦酸盐缓慢加入到氢化钠的四氢呋喃溶液中,加入所述化合物(3),在保护气氛下进行回流反应,反应完成后蒸除溶剂,通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(4);
S4、将二异丁基氢化铝的己烷溶液缓慢加入到所述化合物(4)的甲苯溶液中,在-78℃和保护气氛下反应一段时间后,加入含水湿硅胶,在0℃下继续进行反应,反应完成后将产物加入到水中,用乙酸乙酯萃取,浓缩后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(5);
S5、将金属钠缓慢溶解在乙醇中,在保护气氛下,加入2-巯基乙醇,充分混合搅拌后依次加入4,4,6-三甲基-7-氧杂双环[4.1.0]庚烷-2-酮和所述化合物(5)进行保温反应,反应完成后浓缩,通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(6);
S6、将咪唑、叔丁基二甲基氯硅烷缓慢添加到所述化合物(6)的溶液中,在室温和保护气氛下进行反应,加入去离子水洗涤,有机相用乙酸乙酯萃取,以盐水洗涤,再干燥除水,蒸除溶剂后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(7);
S7、将二乙基(氰基甲基)-膦酸盐缓慢加入到氢化钠的四氢呋喃溶液中,加入所述化合物(7),在保护气氛下进行回流反应,反应完成后蒸除溶剂,通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(8);
S8、将二异丁基氢化铝的己烷溶液缓慢加入到所述化合物(8)的甲苯溶液中,在-78℃和保护气氛下反应一段时间后,加入含水湿硅胶,在0℃下继续进行反应,反应完成后将产物加入到水中,用乙酸乙酯萃取,浓缩后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(9);
S9、所述化合物(9)经酸水解处理脱去二甲基叔丁基硅基后制得化合物(10);
S10、将咪唑、叔丁基二甲基氯硅烷缓慢添加到所述化合物(10)的溶液中,在室温和保护气氛下进行反应,加入去离子水洗涤,有机相用乙酸乙酯萃取,以盐水洗涤,再干燥除水,蒸除溶剂后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(11);
S11、所述化合物(9)或所述化合物(11)的溶液与受体分子在保护气氛下进行反应,产物浓缩后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到所述发色团;
其中,所述受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈或2-(3-氰基-4,5,5-三甲基呋喃-2(5H)-亚乙基)丙二腈。
进一步的,本发明还提供了一种所述基于双给体结构的有机光学非线性发色团的应用,具体是作为电光材料及在电光调制解调器中的应用。
优选的,将所述发色团制备为电光膜的应用,具体是,将所述发色团溶解在新蒸的二溴甲烷中,掺杂聚合物溶液后再通过0.2mm的PTFE过滤器过滤掺杂聚合物溶液,将过滤溶液旋转涂覆在ITO玻璃基板上,除去溶剂后制得。
本发明的有益效果为:
本发明提供了一种基于双(N,N-二乙基)苯胺基的新的、可修改的双给体结构,通过亲核反应,设计了用两个OH基团修饰的苯胺基基团,首次在二阶非线性光学发色团的双给体中引入OH基团,在给体端连接的两个OH基团为给体的进一步修饰提供了连接位点;同时紫外λmax红移和较小的带隙验证了相对于大多数发色团,两个OH基团修饰的苯胺基团,具有更强的给电子体强度。
本发明还提供了一系列新的发色团结构,发色团BLD1和发色团BLD3具有超高的电光系数(超过350pm/V),对于含有发色团BLD3的纯薄膜,在1310nm处获得了超高的R33(351pm/V)和极化效率(3.50±0.10nm2/V2),是已报道的最高值之一,由于发色团含量高,发色团BLD2和BLD4的电光系数也接近200pm/V。而且,由于硅烷的引入,以TCF为受体的发色团BLD2和BLD4显示出优异的成膜性能。
DFT理论计算表明,强电子给体能力导致超极化率显著增加,含有CF3-TCF受体的发色团BLD3的一阶超极化率比JRD和YLD高60%。除了大的一阶超极化率外,双给体的特殊结构还具有大的空间效应,这导致了更高的极化效率。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明所述发色团的结构式;
图2-5分别是实施例所述发色团BLD1-4的结构式;
图6是实施例所述发色团BLD1-4的制备方法流程图;
图7是所述发色团BLD1-4的热重曲线图;
图8是所述发色团BLD1-4的紫外可见分光光谱图;
图9是所述发色团BLD1-4在电光薄膜中的紫外可见分光光谱图;
图10是所述发色团BLD1-4在不同溶剂中紫外分光光谱图;
图11是所述发色团BLD1-4的理论计算能级结果;
图12是所述发色团BLD1-4的超极化率与JRD、YLD发色团的对比结果;
图13是所述发色团BLD1-4随着电场变化的极化效率曲线(R33值)。
具体实施方式
结合以下实施例对本发明作进一步描述。
本发明的实施例涉及四种基于双给体结构的有机光学非线性发色团BLD1-4,其结构参见附图2-5,所述发色团BLD1-4在普通有机溶剂中表现出良好的溶解性,如乙酸乙酯、乙醇和丙酮等,其合成方法包括以下步骤:
S1、将4,4-二氟二苯甲酮(化合物(1))(10.0g,46.8mol)和2-(乙氨基)乙醇(20.4g,229mmol)添加到装有回流冷凝器的500mL圆底烧瓶中,并在180℃和氮气气氛中反应2d,反应完成后,冷却混合物,用乙酸乙酯和水萃取水层,然后除去水,使用乙酸乙酯/乙醇作为展开溶剂,通过柱层析纯化,再通过蒸馏去除残余的2-(乙氨基)乙醇,得到化合物(2)(13.06g,产率80%);
MS(MALDI)(M+,C21H28N2O3):calcd:356.21;found:356.50.1H NMR(600MHz,CDCl3)δ7.65(d,J=9.0Hz,4H),6.65(d,J=9.0Hz,4H),4.11(q,J=7.1Hz,4H),3.77(d,J=3.8Hz,2H),3.50(t,J=6.3Hz,4H),3.44(q,J=7.0Hz,4H),1.15(t,J=7.1Hz,6H).13C NMR(151MHz,CDCl3)δ194.23,194.17,171.30,150.97,132.58,125.50,125.42,110.40,60.45,59.70,59.63,52.20,45.50,21.03,14.17,11.98.
S2、将咪唑(4.77g,70.2mmol)和叔丁基二甲基氯硅烷(10.5g,70.2mmol)缓慢添加到化合物(2)(10.0g,28.0mmol)的DMF溶液(50mL)中,在室温下和氮气气氛中继续反应3h,然后倒入100mL水中,有机相用乙酸乙酯萃取,用盐水洗涤,无水硫酸镁干燥,在真空中去除溶剂后,通过硅胶色谱纯化粗产物,用乙酸乙酯/己烷(1:15至1:10)洗脱,得到化合物(3)(15.5g,19.6mmol,产率95%);
MS(MALDI)(M+,C33H56N2O3Si2):calcd:584.38;found:584.90.1H NMR(600MHz,CDCl3)δ7.76(d,J=9.0Hz,4H),6.69(d,J=9.0Hz,4H),3.82(t,J=6.3Hz,4H),3.51(dt,J=14.2,6.7Hz,8H),1.22(t,J=7.1Hz,6H),0.92(s,18H),0.06(s,12H).13C NMR(151MHz,CDCl3)δ193.63,150.59,132.46,125.82,110.15,60.55,52.37,45.62,25.91,18.27,12.14,-3.53,-5.36.
S3、在氮气气氛中,将二乙基(氰基甲基)-膦酸盐(16.12mL,18.22g,102.7mmol)缓慢添加到装有氢化钠(4.08g,102.7mmol)和40mL干燥四氢呋喃的烧瓶中,然后添加所述化合物(3)(15g,25.6mmol)的THF溶液(90mL),并将混合物回流过夜,在真空中去除THF后,通过硅胶柱层析直接纯化残余物,用乙酸乙酯/己烷(1:15至1:10)洗脱,得到化合物(4)(10.91g,17.9mmol,产率70%);
MS(MALDI)(M+,C35H57N3O2Si2):calcd:607.39;found 607.52.1H NMR(600MHz,CDCl3)δ7.39(d,J=8.9Hz,2H),7.23(d,J=9.0Hz,2H),6.71(d,J=9.0Hz,2H),6.65(d,J=9.0Hz,2H),5.34(s,1H),3.81(ddd,J=13.7,8.5,4.2Hz,4H),3.58–3.41(m,8H),1.26–1.14(m,6H),0.93(d,J=7.4Hz,18H),0.08(d,J=10.9Hz,12H).13C NMR(151MHz,CDCl3)δ163.09,149.43,149.12,131.60,130.45,129.89,126.47,124.17,120.43,110.89,110.61,86.20,60.62,60.57,52.38,45.53,45.50,25.95,25.93,18.30,18.28,14.24,12.25,12.17,-5.30,-5.33.
S4、将二异丁基氢化铝的己烷溶液(1.0M,32.94mL,32.94mmol)缓慢添加到所述化合物(4)(10.0g,16.4mmol)的甲苯溶液(60.0mL,新鲜干燥)中,在-78℃和氮气气氛中,保温反应2h后,添加含80.0mLH2O的湿硅胶(8.0g),在0℃下继续反应2h,将混合物倒入水中,用乙酸乙酯萃取,然后在真空中浓缩,残留物通过硅胶柱层析纯化,用乙酸乙酯/己烷(1:15至1:10)洗脱,得到化合物(5)(7.03g,11.5mmol,产率70.1%);
MS(MALDI)(M+,C35H58N2O3Si2):calcd:610.39;found:610.20.1H NMR(600MHz,CDCl3)δ9.49(d,J=8.2Hz,1H),7.32(d,J=8.9Hz,2H),7.20(d,J=8.7Hz,2H),6.71(d,J=8.8Hz,2H),6.66(d,J=9.0Hz,2H),6.42(d,J=8.2Hz,1H),3.83(t,J=6.3Hz,2H),3.80(t,J=6.3Hz,2H),3.55–3.45(m,8H),1.27–1.17(m,6H),0.92(d,J=5.7Hz,18H),0.07(d,J=8.0Hz,12H).13C NMR(151MHz,CDCl3)δ193.92,163.87,149.76,149.06,133.05,131.06,126.98,124.08,122.35,110.94,110.57,60.63,60.56,52.38,52.36,45.57,45.50,25.92,18.30,18.27,12.21,12.18,-5.33,-5.35.
S5、将金属钠(0.33g,13.7mmol)缓慢溶解在乙醇(30mL)中,并添加到在氮气气氛中的烧瓶中,然后向上述溶液中添加2-巯基乙醇(1.07g,1.72mL,13.7mmol),在室温下反应20min后,添加4,4,6-三甲基-7-氧杂双环[4.1.0]庚烷-2-酮(2.12g,13.7mmol),在室温下将混合物搅拌1h后,添加化合物(5)(7.0g,11.4mol),在65℃下反应过夜后,在真空中浓缩,使用乙酸乙酯和己烷(1:10至1:4)作为洗脱液,通过柱层析纯化粗产物,得到化合物(6)(7.39g,9.18mmol,产率80%);
MS(MALDI)(M+,C46H74N2O4SSi2):calcd:806.49;found:806.50.1H NMR(600MHz,CDCl3)δ7.60(d,J=15.2Hz,1H),7.26(d,J=9.0Hz,2H),7.15(d,J=8.9Hz,2H),7.13(d,J=11.3Hz,1H),6.78(d,J=11.2Hz,1H),6.74(d,J=8.9Hz,2H),6.64(d,J=9.0Hz,2H),3.85(t,J=6.4Hz,2H),3.79(t,J=6.5Hz,2H),3.64(s,1H),3.58(s,2H),3.56–3.43(m,8H),2.86–2.83(m,2H),2.46(s,2H),2.42(s,2H),1.25(t,J=7.0Hz,3H),1.20(t,J=7.0Hz,3H),1.03(s,6H),0.92(d,J=6.0Hz,18H),0.07(d,J=8.0Hz,12H).13C NMR(151MHz,CDCl3)δ197.35,160.81,150.77,148.31,147.95,139.16,132.30,130.05,129.31,126.36,126.29,123.32,110.97,110.81,60.68,60.58,60.19,52.43,52.41,51.70,45.53,45.51,41.27,39.03,32.29,28.31,25.93,18.34,18.31,12.26,-5.29,-5.32.
S6、将咪唑(0.88g,13.0mmol)和叔丁基二甲基氯硅烷(1.95g,13.0mmol)缓慢添加到化合物(6)(7.0g,8.68mmol)的DMF溶液(20mL)中,在室温下和氮气气氛中继续反应3h,然后倒入100mL水中,有机相用乙酸乙酯萃取,用盐水洗涤,无水硫酸镁干燥,在真空中去除溶剂后,通过硅胶色谱纯化粗产物,用乙酸乙酯/己烷(1:15至1:10)洗脱,得到化合物(7)(7.19g,7.81mmol,产率90%);
MS(MALDI)(M+,C52H88N2O4SSi3):calcd:920.57;found:920.60.1H NMR(600MHz,CDCl3)δ7.53(d,J=15.2Hz,1H),7.17(d,J=8.9Hz,2H),7.07(d,J=8.8Hz,2H),7.01(dt,J=22.1,7.7Hz,1H),6.70–6.65(m,3H),6.56(d,J=9.1Hz,2H),4.04(q,J=7.1Hz,2H),3.78(t,J=6.2Hz,2H),3.72(t,J=6.4Hz,2H),3.64(t,J=7.1Hz,2H),3.60(t,J=7.0Hz,2H),3.49–3.35(m,8H),2.82(t,J=7.1Hz,2H),2.76(t,J=7.0Hz,2H),2.35(s,2H),2.30(d,J=5.6Hz,4H),2.28(s,2H),1.96(s,2H),1.18(dd,J=14.7,7.4Hz,3H),1.12(t,J=7.0Hz,3H),0.85(dd,J=14.5,8.9Hz,27H),-0.01(dd,J=7.9,5.8Hz,12H).13C NMR(151MHz,CDCl3)δ195.32,195.01,170.72,163.21,157.74,149.45,148.03,147.73,137.42,132.13,129.98,129.79,129.46,129.19,127.70,126.38,110.96,110.80,62.83,62.81,60.68,60.59,60.18,52.40,52.36,51.98,51.79,47.95,45.45,41.14,36.35,35.66,32.53,32.11,28.26,28.22,28.06,25.94,25.91,25.87,25.76,24.39,20.91,18.25,18.24,18.21,18.20,14.19,12.26,-3.47,-5.22,-5.27,-5.33,-5.35.
S7、在氮气气氛中,将二乙基(氰基甲基)-膦酸盐(4.77mL,5.39g,30.4mol)缓慢添加到装有氢化钠(1.21g,30.4mol)和20mL干燥四氢呋喃的烧瓶中,然后添加所述化合物(7)(7.0g,7.60mmol)的THF溶液(40mL),并将混合物回流过夜,在真空中去除THF后,通过硅胶柱层析直接纯化残余物,用乙酸乙酯/己烷(1:15至1:10)洗脱,得到化合物(8)(4.66g,4.94mmol,产率65%);
MS(MALDI)(M+,C54H89N3O3SSi3):calcd:943.59;found:943.80.1H NMR(600MHz,CDCl3)δ7.51(d,J=15.1Hz,1H),7.18(d,J=8.8Hz,2H),7.09(d,J=8.6Hz,2H),6.97–6.86(m,1H),6.69(d,J=8.9Hz,3H),6.57(d,J=8.9Hz,1H),6.21(s,2H),6.10(s,2H),4.07(q,J=7.1Hz,2H),3.80(t,J=6.2Hz,2H),3.75(t,J=6.3Hz,2H),3.64(dt,J=19.6,6.8Hz,2H),3.52–3.37(m,8H),2.66(t,J=6.7Hz,2H),2.59(t,J=6.8Hz,2H),2.49(d,J=6.7Hz,2H),2.24(s,4H),2.17(d,J=16.3Hz,2H),1.98(s,2H),1.20(dt,J=11.3,7.1Hz,3H),1.15(t,J=7.0Hz,3H),0.93(d,J=5.0Hz,27H),0.91–0.85(m,12H).13C NMR(151MHz,CDCl3)δ170.57,158.21,157.62,153.57,149.25,148.01,147.86,147.61,135.24,132.08,130.55,129.71,129.66,128.96,126.54,125.80,125.04,123.70,119.06,118.36,111.01,110.87,95.08,94.50,62.17,62.15,60.73,60.65,60.15,52.47,52.40,48.08,45.47,43.41,41.44,37.86,36.85,30.52,30.00,27.97,27.77,25.97,25.91,24.29,20.95,18.29,18.27,18.25,18.24,14.27,12.33,-5.20,-5.25,-5.27,-5.29.
S8、将二异丁基氢化铝的己烷溶液(1.0M,8.48mL,8.48mmol)缓慢添加到所述化合物(8)(4.0g,4.24mmol)的甲苯溶液(40.0mL,新鲜干燥)中,在-78℃和氮气气氛中,保温反应2h后,添加含40.0mLH2O的湿硅胶(4.0g),在0℃下继续反应2h,将混合物倒入水中,用乙酸乙酯萃取,然后在真空中浓缩,残渣通过硅胶柱层析纯化,用乙酸乙酯/己烷(1:15至1:10)洗脱,得到化合物(9)(2.80g,2.96mmol,产率70.1%);
MS(MALDI)(M+,C54H90N2O4SSi3):calcd:946.59;found:947.10.1H NMR(600MHz,CDCl3)δ10.14(dd,J=8.0,4.6Hz,1H),7.64(d,J=15.2Hz,1H),7.25(d,J=8.9Hz,2H),7.15(d,J=8.8Hz,2H),7.00(d,J=8.0Hz,1H),6.94(dd,J=15.3,11.3Hz,1H),6.74(t,J=9.6Hz,3H),6.63(d,J=9.0Hz,2H),3.85(t,J=6.5Hz,2H),3.79(t,J=6.6Hz,2H),3.69(dt,J=20.5,7.2Hz,2H),3.55–3.43(m,6H),2.75–2.68(m,4H),2.32(s,2H),2.23(s,1H),1.70(s,1H),1.25(t,J=7.0Hz,3H),1.20(t,J=7.0Hz,3H),1.01–0.97(m,6H),0.92(dd,J=11.5,5.6Hz,27H),0.07(dd,J=8.5,6.6Hz,18H).13C NMR(151MHz,CDCl3)δ191.89,191.54,156.66,155.80,154.47,150.49,147.90,147.88,147.63,135.11,132.16,131.46,129.84,129.70,128.24,126.80,126.70,124.10,110.98,110.83,62.57,62.53,60.70,60.60,52.45,52.43,48.21,45.51,41.55,39.96,39.79,37.50,36.50,30.56,29.99,28.26,28.07,25.95,25.94,25.89,24.86,18.35,18.31,12.30,12.28,-5.19,-5.25,-5.28,-5.31.
S9、所述化合物(9)经酸水解处理脱去二甲基叔丁基硅基后制得化合物(10);
MS(MALDI)(M+,C36H48N2O4S):calcd:604.33;found:604.78.1H NMR(600MHz,CDCl3)δ10.11(d,J=8.1Hz,1H),7.62(d,J=15.2Hz,1H),7.24(d,J=8.9Hz,2H),7.15(d,J=8.7Hz,2H),6.99(d,J=8.1Hz,1H),6.94(dd,J=15.2,11.3Hz,1H),6.80(d,J=8.8Hz,2H),6.75(d,J=11.2Hz,1H),6.69(d,J=8.9Hz,2H),3.88(t,J=5.8Hz,2H),3.82(t,J=5.8Hz,2H),3.66(t,J=6.0Hz,2H),3.56(t,J=5.9Hz,2H),3.54–3.49(m,4H),3.46(q,J=7.0Hz,2H),2.78(t,J=6.0Hz,2H),2.71(s,2H),2.32(s,2H),2.18(s,1H),1.80(s,2H),1.24(t,J=7.0Hz,3H),1.19(t,J=7.0Hz,3H),0.98(s,6H).13C NMR(151MHz,CDCl3)δ191.68,156.85,151.02,148.27,148.03,147.98,135.49,132.16,131.19,130.44,129.72,127.59,127.45,126.65,124.36,111.83,111.80,61.26,60.27,60.22,52.45,52.37,45.61,45.58,41.60,39.95,38.21,30.05,28.22,12.02,12.00.
S10、将咪唑(0.25g,3.72mmol)和叔丁基二甲基氯硅烷(1.02g,3.72mmol)缓慢添加到化合物(10)(0.5g,0.827mmol)的DMF溶液(10mL)中,在室温下和氮气气氛中继续反应3h,然后倒入100mL水中,有机相用乙酸乙酯萃取,用盐水洗涤,无水硫酸镁干燥,在真空中去除溶剂后,通过硅胶色谱纯化粗产物,用乙酸乙酯/己烷(1:15至1:10)洗脱,得到化合物(11)(0.98g,0.74mmol,产率90%);
MS(MALDI)(M+,C84H102N2O4SSi3):calcd:1318.6;found:1318.80.1H NMR(600MHz,CDCl3)δ10.04(d,J=8.0Hz,1H),7.73–7.70(m,5H),7.69–7.62(m,9H),7.58(d,J=15.2Hz,1H),7.43–7.31(m,15H),7.09(d,J=8.9Hz,2H),7.03(d,J=8.7Hz,2H),6.92(d,J=8.1Hz,1H),6.85(dd,J=15.3,11.3Hz,1H),6.63(d,J=11.2Hz,1H),6.55(d,J=8.8Hz,2H),6.43(d,J=9.0Hz,2H),5.26(s,1H),3.85(t,J=6.6Hz,2H),3.79(t,J=6.6Hz,2H),3.72(t,J=7.0Hz,2H),3.50(t,J=6.6Hz,2H),3.45(t,J=6.6Hz,2H),3.40(q,J=7.0Hz,2H),3.35(q,J=7.0Hz,2H),2.71(t,J=7.0Hz,2H),2.55(s,2H),2.18(s,2H),1.16(t,J=7.0Hz,3H),1.11(t,J=7.0Hz,3H),1.06(dd,J=9.7,4.4Hz,33H).13C NMR(151MHz,CDCl3)δ191.60,171.25,156.73,150.68,147.87,147.81,147.54,135.65,135.64,135.57,135.29,135.14,134.85,133.62,133.49,133.47,132.16,131.42,129.80,129.78,129.70,129.67,128.02,127.78,127.78,127.75,127.74,126.71,126.65,124.05,110.95,110.75,63.24,61.31,61.25,52.01,51.96,45.42,45.35,41.47,39.90,37.23,35.47,31.93,29.93,28.19,26.96,26.90,26.61,26.48,22.74,19.26,19.16,19.06,14.24,14.17,12.26.
发色团BLD1的合成:
在氮气气氛中,将所述化合物(9)(0.5g,0.52mmol)的乙醇溶液(10mL)和2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈(0.18g,0.58mmol)添加到双颈烧瓶中,在65℃下反应6h后,用旋转蒸发器浓缩溶液,粗产物通过柱层析纯化,使用乙酸乙酯和己烷(v/v,1:8至1:1)作为洗脱液,去除溶剂后得到绿色固体发色团BLD1(0.52g,0.42mmol,产率80%);
HRMS(ESI)(M+,C70H96F3N5O4SSi3):calcd:1243.6443;found:1243.6464.1H NMR(600MHz,CDCl3)δ8.09(s,1H),7.75(d,J=14.6Hz,1H),7.59–7.47(m,6H),7.24(dt,J=22.1,11.4Hz,5H),6.90(d,J=11.6Hz,1H),6.73(s,4H),6.45(d,J=14.1Hz,1H),3.85(s,4H),3.72(t,J=6.8Hz,2H),3.59–3.46(m,8H),2.74(t,J=6.8Hz,2H),2.39(s,2H),1.24(tt,J=26.2,7.1Hz,8H),0.99–0.86(m,33H),0.12–0.03(m,18H).13C NMR(151MHz,CDCl3)δ175.97,171.07,160.70,158.93,156.08,154.29,149.02,146.51,141.38,131.57,131.12,130.68,130.55,129.55,128.86,126.75,125.06,123.26,121.37,116.05,112.49,112.17,111.66,111.13,95.67,95.46,95.25,95.04,62.23,60.69,60.37,55.20,52.45,45.64,41.66,41.29,38.54,30.34,28.45,27.85,25.96,21.06,18.39,18.32,14.25,12.29,-5.17,-5.28.
发色团BLD2的合成:
在氮气气氛中,将所述化合物(9)(0.5g,0.52mmol)的乙醇溶液(10mL)和2-(3-氰基-4,5,5-三甲基呋喃-2(5H)-亚乙基)丙二腈(0.10g,0.52mmol)添加到双颈烧瓶中,在65℃下反应6h后,用旋转蒸发器浓缩溶液,粗产物通过柱层析纯化,使用乙酸乙酯和己烷(v/v,1:8至1:1)作为洗脱液,去除溶剂后得到绿色固体发色团BLD2(0.54g,0.48mmol,产率91%);
HRMS(ESI)(M+,C65H97N5O4SSi3):calcd:1127.6569;found:1127.6562.1H NMR(600MHz,CDCl3)δ8.15(dd,J=26.8,13.4Hz,1H),7.68(d,J=15.0Hz,1H),7.53(d,J=12.1Hz,1H),7.32–7.24(m,3H),7.16(d,J=8.2Hz,2H),7.09–7.00(m,1H),6.80(d,J=11.3Hz,1H),6.74(d,J=8.3Hz,2H),6.64(d,J=8.5Hz,2H),6.36(d,J=14.7Hz,1H),3.92–3.68(m,7H),3.58–3.35(m,9H),2.75(t,J=6.6Hz,2H),2.47(s,2H),2.36(s,2H),1.70(s,10H),1.23(ddd,J=20.3,15.5,8.6Hz,12H),0.97(s,7H),0.92(d,J=3.9Hz,31H).13C NMR(151MHz,CDCl3)δ176.35,173.13,154.92,152.42,150.01,148.30,147.98,144.84,137.36,132.40,131.60,130.11,129.84,129.57,127.97,126.46,124.42,116.31,112.70,112.19,111.81,111.02,110.82,96.83,62.34,60.68,60.59,55.00,52.41,45.55,45.52,41.63,41.21,38.27,31.94,30.25,29.71,28.26,26.37,25.96,25.94,25.93,22.71,22.65,21.03,18.40,18.34,18.31,14.14,12.28,1.03,0.02,-5.15,-5.29,-5.32.
发色团BLD3的合成:
在氮气气氛中,将所述化合物(11)(0.5g,0.37mmol)的乙醇溶液(10mL)和2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈(0.11g,0.37mmol)添加到双颈烧瓶中,在65℃下反应6h后,用旋转蒸发器浓缩溶液,粗产物通过柱层析纯化,使用乙酸乙酯和己烷(v/v,1:8至1:1)作为洗脱液,去除溶剂后得到绿色固体发色团BLD3(0.55g,0.34mmol,产率90%);
HRMS(ESI)(M+,C100H108F3N5O4SSi3):calcd:1615.7460;found:1615.7445.1H NMR(600MHz,CDCl3)δ8.13(s,1H),7.72–7.61(m,13H),7.57–7.49(m,5H),7.48–7.41(m,5H),7.41–7.37(m,10H),7.34(t,J=7.2Hz,4H),7.20–7.02(m,5H),6.76(d,J=11.5Hz,1H),6.59(d,J=7.1Hz,2H),6.49(d,J=7.6Hz,2H),6.38(d,J=14.3Hz,1H),3.86(d,J=27.7Hz,4H),3.74(t,J=6.7Hz,2H),3.61–3.34(m,8H),2.74(t,J=6.7Hz,2H),2.38–2.15(m,3H),1.18(d,J=25.2Hz,6H),1.07(d,J=13.5Hz,27H),0.84(s,3H),0.78(s,3H).13CNMR(151MHz,CDCl3)δ175.95,161.55,158.70,155.58,152.74,146.88,40.19,135.61,135.50,133.42,133.37,132.72,131.75,131.57,131.12,130.67,130.40,130.27,129.80,129.77,129.56,128.60,127.77,127.73,126.71,124.72,116.30,112.27,111.79,111.28,111.04,110.74,62.86,61.20,56.39,51.92,45.41,41.60,41.20,38.23,30.25,28.28,27.83,26.85,26.83,19.25,19.13,12.21.
发色团BLD4的合成:
在氮气气氛中,将所述化合物(11)(0.5g,0.37mmol)的乙醇溶液(10mL)和2-(3-氰基-4,5,5-三甲基呋喃-2(5H)-亚乙基)丙二腈(0.075g,0.37mmol)添加到双颈烧瓶中,在65℃下反应6h后,用旋转蒸发器浓缩溶液,粗产物通过柱层析纯化,使用乙酸乙酯和己烷(v/v,1:8至1:1)作为洗脱液,去除溶剂后得到绿色固体发色团BLD4(0.51g,0.34mmol,产率91%);
HRMS(ESI)(M+,C95H109F3N5O4SSi3):calcd:1500.7586;found:1500.7560.1H NMR(600MHz,CDCl3)δ8.21(t,J=13.4Hz,1H),7.70(dddd,J=14.1,12.8,7.1,5.5Hz,13H),7.54(d,J=12.2Hz,1H),7.49–7.33(m,18H),7.15(d,J=8.5Hz,2H),7.07(t,J=13.5Hz,2H),7.02(t,J=13.3Hz,1H),6.73(d,J=11.3Hz,1H),6.60(d,J=8.3Hz,2H),6.49(d,J=8.5Hz,2H),6.23(d,J=14.6Hz,1H),3.83(dd,J=38.6,18.6Hz,6H),3.53(d,J=26.5Hz,4H),3.48–3.35(m,4H),2.80(d,J=6.2Hz,2H),2.41(s,2H),2.28(s,2H),1.63(s,6H),1.21(t,J=6.9Hz,3H),1.16(t,J=6.9Hz,3H),1.11–1.01(m,27H),0.89(s,6H).13C NMR(151MHz,CDCl3)δ176.43,173.12,155.27,152.59,150.07,148.21,147.90,145.00,137.46,135.63,135.62,135.51,133.56,133.44,133.42,132.39,131.54,130.10,129.79,129.69,129.50,127.94,127.77,126.42,124.36,116.13,112.77,112.38,111.88,110.97,110.73,96.83,93.19,62.90,61.27,61.22,54.90,51.98,51.92,45.44,45.36,41.58,41.17,38.27,30.19,28.19,26.92,26.87,26.25,19.35,19.14,12.24.
表征实验
(1)光谱吸收特征和热稳定性
所述发色团BLD1-4的热稳定性由热重曲线表征,热重曲线图参见附图7;
所述发色团BLD1-4的紫外可见分光光谱参见附图8;
所述发色团BLD1-4在高分子膜中的紫外可见分光光谱参见附图9;
四个发色团分子的光谱吸收特征和热稳定性中的主要参数见表1;
表1四个发色团分子的光谱吸收、热稳定性参数
Cmpd Td(℃) λmax a λmax b Δλc λmax d Tg(℃)
BLD1 207 891 789 102 1105 70
BLD2 250 754 691 63 733 72
BLD3 225 905 807 98 1099 66
BLD4 275 767 704 63 748 68
其中,λmax a、λmax b、λmax d是所述发色团分子分别在氯仿、二氧六环和电光薄膜中的测量结果,Δλc是λmax a、λmax b间的差值;
与相应的类似物BLD1和BLD3相比,发色团BLD2和BLD4的吸收最大值(λmax)都发生了蓝移(约137-138nm),这可能是由于比CF3-TCF相对较弱的受体TCF。吸收光谱的显著差异归因于三氟甲基-苯基-三氰基呋喃具有不同的吸电子能力。隔离基团对发色团中的电荷转移也有一定的影响。发色团BLD1-BLD3和BL2-BLD4具有相同的受体,但具有不同的隔离基团,吸收最大值(λmax)也有一些差异,与具有隔离基团的发色团(TBDMS)相比,具有更多立体隔离基团(TBDPS)的发色团分别发生了红移(约14-13nm)。
发色团BLD1-BLD4在薄膜中的吸收最大值(λmax)分别为(λmax)1105nm、733nm、1099nm和748nm,这与溶液中的吸收不同,这可能是因为发色团在溶剂和薄膜中的相互作用不同。
(2)能级计算
发色团内的电荷转移相互作用可以通过HOMO-LUMO分子轨道之间的能隙差来计算。为了深入分析HOMO-LUMO的组成和前沿轨道的深入信息,发明人使用Ros-Schuit(SCPA)分区和DFT计算运行了Multiwfn程序;
发色团分为三部分:给体、π桥和受体,并计算贡献百分比:对于四个发色团BLD1–BLD4,HOMO主要由给体(42.42–44.43%)和p-桥(37.86–40.14%)的贡献稳定,而LUMO主要由受体(37.28–39.35%)和p-桥(46.17–47.31%)的贡献稳定。
DFT计算用于计算HOMO-LUMO能隙(ΔE),计算结果参见附图11,发色团BLD1-4的ΔE分别为1.746eV、1.821eV、1.750eV和1.822eV。能极差(ΔE)随着发色团及其类似物系列的增加,观察到紫外吸收的红移,这与从紫外-可见光谱分析中观察到的结论相对应。
发明人还计算了经典发色团JRD1和YLD 124的一阶超极化率作为比较(参见附图12)。发色团BLD3的一阶超极化率分别是JRD1和YLD124的1.68倍和3.72倍。由于HOMO和LUMO之间的窄能隙,发色团BLD3的β值大于发色团J RD1和YLD124的β值。
(3)电光系数
本发明比较具有不同隔离基团和受体的四个发色团的微观超极化率转换为宏观R33值的效率。首先将发色团制备成电光膜:将不同的发色团溶解在新鲜蒸馏的二溴甲烷中。在通过0.2mm的PTFE过滤器过滤掺杂聚合物溶液后,用过滤溶液旋转涂覆氧化铟(ITO)玻璃基板。发色团复合材料的合成膜在真空中在50℃下加热过夜,以确保去除残余溶剂。接触极化过程在电光材料玻璃化转变温度(Tg)以上进行,在5-10℃的温度下进行。采用Teng-Man简单反射法计算了极化薄膜在1310nm波长下的电光系数R33,该方法使用低反射率和良好透明度的薄ITO电极,以最小化多次反射。如前所述,通过在发色团中引入空间隔离基团来控制分子的几何结构和离域化可能是最小化发色团之间相互作用的有效方法,因此,这些方法可能具有明显的优势,可以将β值最好地转化为R33值,从而提高宏观电光活性。
(4)组装器件性能
对比JRD1、YLD124,测定四种小分子发色团组装成器件后的各个性能指标,结果见表2;
表2几种小分子发色团组装器件的性能指标
BLD-1、BLD-2、BLD-3和BLD-4的极化效率分别为2.68±0.08、1.92±0.06、3.50±0.10和2.30±0.07nm2/V2,BLD-3的R33值(351pm/V)是报告的最高值之一,甚至高于纯JRD1,其在类似器件结构下的极化效率为3.50±0.10nm2/V2,如附图12所示,根据DFT计算,发色团BLD3的一阶超极化率分别是JRD1和YLD124的1.68倍和3.72倍。尽管发色团BLD3的发色团数密度(ρN)远小于发色团JRD1(3.728vs 5.332x 1020molecles/cm3),但其极化效率较高,这可能是由于发色团BLD3具有较大的一阶超极化率和较大的空间位阻基团。由于双给体结构具有更强的给电子能力,发色团BLD3的一阶超极化比JRD高60%,甚至比大多数报道的发色团都高。此外,双给体上的两个刚性苯环结构可以作为隔离基团,有效地削弱分子间的偶极-偶极相互作用,提高极化效率。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (5)

1.一种基于双给体结构的有机光学非线性发色团,其特征在于,所述发色团具有如下结构:
其中,Rd为叔丁基二甲基硅基或叔丁基二苯基硅基;Ra为苯基,Rb为三氟甲基。
2.根据权利要求1所述的一种基于双给体结构的有机光学非线性发色团的合成方法,其特征在于,包括以下步骤:
S1、米氏酮与2-(乙氨基)乙醇进行亲核取代反应得到化合物(2);
S2、在所述化合物(2)的醇羟基上生成叔丁基二甲基硅基保护基团,得到化合物(3);
S3、所述化合物(3)与磷酸二乙酯通过Wittig-Hornor反应得到化合物(4);
S4、通过二异丁基氢化铝将所述化合物(4)中的腈基还原得到化合物(5);
S5、所述化合物(5)与异佛尔酮在乙醇钠和2-巯基乙醇中通过knoevenagel缩合反应得到化合物(6);
S6、在所述化合物(6)的醇羟基上生成叔丁基二甲基硅基保护基团,得到化合物(7);
S7、所述化合物(7)与磷酸二乙酯通过Wittig-Hornor反应得到化合物(8);
S8、通过二异丁基氢化铝将所述化合物(8)中的腈基还原得到化合物(9);
S9、所述化合物(9)经酸水解后得到化合物(10);
S10、通过亲核取代或Steglich酯化作用在所述化合物(10)的醇羟基上连接隔离基团后得到化合物(11);
S11、所述化合物(9)或所述化合物(11)与给体分子缩合后制得所述发色团;
其中,所述化合物(1)-(11)具有如下的结构:
3.根据权利要求2所述的一种基于双给体结构的有机光学非线性发色团的合成方法,其特征在于,包括以下步骤:
S1、将化合物(1)和2-(乙氨基)乙醇混合后在保护气氛下进行回流反应,反应完成后用乙酸乙酯与水萃取水层,除去水后,以乙酸乙酯与乙醇的混合溶剂为展开剂进行柱层析纯化,蒸馏去除过量的2-(乙氨基)乙醇,得到化合物(2);
S2、将咪唑、叔丁基二甲基氯硅烷缓慢添加到所述化合物(2)的溶液中,在室温和保护气氛下进行反应,加入去离子水洗涤,有机相用乙酸乙酯萃取,以盐水洗涤,再干燥除水,蒸除溶剂后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(3);
S3、将二乙基(氰基甲基)-膦酸盐缓慢加入到氢化钠的四氢呋喃溶液中,加入所述化合物(3),在保护气氛下进行回流反应,反应完成后蒸除溶剂,通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(4);
S4、将二异丁基氢化铝的己烷溶液缓慢加入到所述化合物(4)的甲苯溶液中,在-78℃和保护气氛下反应一段时间后,加入含水湿硅胶,在0℃下继续进行反应,反应完成后将产物加入到水中,用乙酸乙酯萃取,浓缩后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(5);
S5、将金属钠缓慢溶解在乙醇中,在保护气氛下,加入2-巯基乙醇,充分混合搅拌后依次加入4,4,6-三甲基-7-氧杂双环[4.1.0]庚烷-2-酮和所述化合物(5)进行保温反应,反应完成后浓缩,通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(6);
S6、将咪唑、叔丁基二甲基氯硅烷缓慢添加到所述化合物(6)的溶液中,在室温和保护气氛下进行反应,加入去离子水洗涤,有机相用乙酸乙酯萃取,以盐水洗涤,再干燥除水,蒸除溶剂后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(7);
S7、将二乙基(氰基甲基)-膦酸盐缓慢加入到氢化钠的四氢呋喃溶液中,加入所述化合物(7),在保护气氛下进行回流反应,反应完成后蒸除溶剂,通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(8);
S8、将二异丁基氢化铝的己烷溶液缓慢加入到所述化合物(8)的甲苯溶液中,在-78℃和保护气氛下反应一段时间后,加入含水湿硅胶,在0℃下继续进行反应,反应完成后将产物加入到水中,用乙酸乙酯萃取,浓缩后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(9);
S9、所述化合物(9)经酸水解处理脱去二甲基叔丁基硅基后制得化合物(10);
S10、将咪唑、叔丁基二甲基氯硅烷缓慢添加到所述化合物(10)的溶液中,在室温和保护气氛下进行反应,加入去离子水洗涤,有机相用乙酸乙酯萃取,以盐水洗涤,再干燥除水,蒸除溶剂后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到化合物(11);
S11、所述化合物(9)或所述化合物(11)的溶液与受体分子在保护气氛下进行反应,产物浓缩后通过硅胶色谱纯化,以乙酸乙酯与己烷的混合溶剂洗脱,得到所述发色团;其中,所述受体分子为2-(3-氰基-4-甲基-5-苯基-5-(三氟甲基)呋喃-2(5H)-亚乙基)丙二腈。
4.根据权利要求1所述的一种基于双给体结构的有机光学非线性发色团作为电光材料在电光调制解调器中的应用。
5.根据权利要求4所述的应用,其特征在于,将所述发色团制备为电光膜的应用,具体是,将所述发色团溶解在新蒸的二溴甲烷中,掺杂聚合物溶液后再通过0.2mm的PTFE过滤器过滤掺杂聚合物溶液,将过滤溶液旋转涂覆在ITO玻璃基板上,除去溶剂后制得。
CN202111422472.2A 2021-11-26 2021-11-26 一种基于双给体结构的有机光学非线性发色团及其合成方法和应用 Active CN114369112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111422472.2A CN114369112B (zh) 2021-11-26 2021-11-26 一种基于双给体结构的有机光学非线性发色团及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111422472.2A CN114369112B (zh) 2021-11-26 2021-11-26 一种基于双给体结构的有机光学非线性发色团及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN114369112A CN114369112A (zh) 2022-04-19
CN114369112B true CN114369112B (zh) 2024-04-09

Family

ID=81138698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111422472.2A Active CN114369112B (zh) 2021-11-26 2021-11-26 一种基于双给体结构的有机光学非线性发色团及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN114369112B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260171A (zh) * 2022-07-15 2022-11-01 山东大学 一种具有D-π-A结构的化合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558005A (zh) * 2013-10-11 2015-04-29 中国科学院理化技术研究所 微波合成具有D-π-A结构的二阶非线性光学发色团的方法
CN104558004A (zh) * 2013-10-11 2015-04-29 中国科学院理化技术研究所 具有D-π-A结构的有机二阶非线性光学发色团及合成方法和用途
CN107033077A (zh) * 2016-01-08 2017-08-11 株式会社Lg化学 化合物、包含其的着色剂组合物和包含其的树脂组合物
CN109438459A (zh) * 2018-11-26 2019-03-08 成都师范学院 一种有机二阶非线性光学发色团及其合成方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558005A (zh) * 2013-10-11 2015-04-29 中国科学院理化技术研究所 微波合成具有D-π-A结构的二阶非线性光学发色团的方法
CN104558004A (zh) * 2013-10-11 2015-04-29 中国科学院理化技术研究所 具有D-π-A结构的有机二阶非线性光学发色团及合成方法和用途
CN107033077A (zh) * 2016-01-08 2017-08-11 株式会社Lg化学 化合物、包含其的着色剂组合物和包含其的树脂组合物
CN109438459A (zh) * 2018-11-26 2019-03-08 成都师范学院 一种有机二阶非线性光学发色团及其合成方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fenggang Liu et al..Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures.《 Mater. Chem. Front.》.2021,第5卷图1-图2、摘要、chart 1、8024页结论部分、8347-8348页合成部分、8345页左栏第2段. *
Fenggang Liu et al..Synthesis of novel nonlinear optical chromophores with enhanced electro-optic activity by introducing suitable isolation groups into the donor and bridge.《J. Mater. Chem. C》.2019,第7卷Scheme 1,4.2节合成部分. *
M. Gonzalez-Lainez et al..Using functionalized nonlinear optical chromophores to prepare NLO-active polycarbonate films.《Dyes and Pigments》.2015,第119卷Scheme 1. *

Also Published As

Publication number Publication date
CN114369112A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity
Yang et al. The important role of the isolation group (TBDPS) in designing efficient organic nonlinear optical FTC type chromophores
Yang et al. Synthesis and characterization of a novel second-order nonlinear optical chromophore based on a new julolidine donor
Liu et al. Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors
Liu et al. Comparison of second-order nonlinear optical chromophores with D–π–A, D–A–π–A and D–D–π–A architectures: diverse NLO effects and interesting optical behavior
CN114656433A (zh) 一种硫代异佛尔酮桥修饰的双给体有机光学非线性发色团及其合成方法和应用
CN114369112B (zh) 一种基于双给体结构的有机光学非线性发色团及其合成方法和应用
Xu et al. Nonlinear optical chromophores based on Dewar's rules: enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge
Yang et al. Novel chromophores with excellent electro-optic activity based on double-donor chromophores by optimizing thiophene bridges
Sun et al. Design, synthesis, and properties of nonlinear optical chromophores based on a verbenone bridge with a novel dendritic acceptor
Traskovskis et al. Modular approach to obtaining organic glasses from low-molecular weight dyes using 1, 1, 1-triphenylpentane auxiliary groups: Nonlinear optical properties
Zeng et al. A modifiable double donor based on bis (N-ethyl-N-hydroxyethyl) aniline for organic optical nonlinear chromophores
Yang et al. The influence on properties with different conjugated direction of phenoxazine and phenothiazine-based chromophores for organic nonlinear optical materials
Xu et al. Design and synthesis of novel H-Shaped chromophore for enhanced nonlinear optical properties
Yang et al. The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores
Liu et al. Synthesis of chromophores with ultrahigh electro-optic activity: Rational combination of the bridge, donor and acceptor groups
Zhang et al. A study on regulating the conjugate position of NLO chromophores for reducing the dipole moment and enhancing the electro-optic activities of organic materials
Deng et al. Monolithic nonlinear optical chromophores with extended conjugate bridge: Large refractive index, high thermal and electro-optic stability
Si et al. Novel electro-optic chromophores based on substituted benzo [1, 2-b: 4, 5-b′] dithiophene π-conjugated bridges
Lei et al. Enhancement of electro-optic properties of nonlinear optical chromophores by introducing pentafluorobenzene group into the donor and π-bridge
Liu et al. Design and synthesis of various double donors for nonlinear optical chromophores with enhanced electro-optic activity
Gu et al. Supramolecular self-assembled nonlinear optical molecular glasses with enhanced electro-optic activity and alignment stability
Liu et al. Copper-catalyzed Huisgen cycloaddition reactions used to incorporate NLO chromophores into high Tg side-chain polymers for electro-optics
Zhang et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity
Yang et al. Achieving excellent electro-optic activity of chromophores by introducing a stronger electron donor and modifying the π-bridge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant