WO2023231358A1 - 双环路小型压水堆应急余热排出系统 - Google Patents

双环路小型压水堆应急余热排出系统 Download PDF

Info

Publication number
WO2023231358A1
WO2023231358A1 PCT/CN2022/137179 CN2022137179W WO2023231358A1 WO 2023231358 A1 WO2023231358 A1 WO 2023231358A1 CN 2022137179 W CN2022137179 W CN 2022137179W WO 2023231358 A1 WO2023231358 A1 WO 2023231358A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
steam
loop
pipeline
water supply
Prior art date
Application number
PCT/CN2022/137179
Other languages
English (en)
French (fr)
Inventor
鞠培玲
南金秋
张立德
帅剑云
芮旻
谭璞
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Publication of WO2023231358A1 publication Critical patent/WO2023231358A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the technical field of nuclear power, and more specifically, the invention relates to a double-loop small pressurized water reactor emergency waste heat removal system.
  • the nuclear power plant needs to use a specially designed safety system to ensure the emergency shutdown of the reactor, the export of core waste heat and the integrity of the containment to limit the further development of the accident and reduce the consequences of the accident.
  • the emergency waste heat removal system one of the dedicated safety systems, is often used as a cooling method to remove the core waste heat. Therefore, the design of the emergency waste heat removal system is based on the reactor design.
  • second-generation and third-generation nuclear power plants generally adopt active emergency waste heat removal systems.
  • the emergency waste heat removal function of some reactors is realized by active auxiliary water supply systems and steam atmospheric emission systems.
  • each loop mainly includes an auxiliary water supply storage tank, an electric auxiliary water supply pump, a steam-driven water supply pump and corresponding pipelines and valves.
  • the auxiliary feed water pump is used to supply the desalted water in the auxiliary feed water tank to the secondary side of the steam generator, and the generated steam is discharged to the final heat sink-the atmosphere, thereby taking away the waste heat of the reactor.
  • the active components such as auxiliary water pumps
  • the active components need to be designed redundantly to reduce the failure probability of the system.
  • the above-mentioned emergency waste heat removal system is characterized by high heat removal efficiency and sufficient cold sources, which can quickly remove the waste heat from the reactor core in a short period of time.
  • the above-mentioned emergency waste heat removal system needs to be equipped with a good water treatment device and a large-capacity auxiliary water supply storage tank. Therefore, the configuration of the emergency waste heat removal system is complex, requires large space, and has high water requirements. Its use in small offshore pressurized water reactors far away from the land is limited.
  • the object of the present invention is to overcome at least one defect in the prior art and provide an emergency waste heat removal system for a small pressurized water reactor so as to cooperate with a steam generator to discharge core waste heat under reactor accident conditions.
  • the present invention provides a double-loop small pressurized water reactor emergency waste heat removal system, which includes:
  • the first loop includes a first steam generator, a first main steam pipeline, a first main steam isolation valve, a first condenser, a first water delivery tank, a first condensate suction pump, and a first backstop connected in sequence. valve, first main feedwater isolation valve, first main feedwater check valve, and first main feedwater line; and
  • the second circuit includes a second steam generator, a second main steam pipeline, a second main steam isolation valve, a second condenser, a second water delivery tank, a second condensate suction pump, and a second backstop connected in sequence.
  • the emergency waste heat discharge system of the first steam generator includes a first loop and a first redundant loop.
  • the first redundant loop includes the second steam communication pipeline, the second steam communication isolation valve, The second condenser, the second water delivery tank, the second condensed water suction pump, the second feed water connection isolation valve, the second feed water connection check valve and the second feed water connection pipeline;
  • the emergency waste heat discharge system of the second steam generator includes a second loop and a second redundant loop.
  • the second redundant loop includes the first steam communication pipeline, the first steam communication isolation valve, the The first condenser, the first water delivery tank, the first condensed water suction pump, the first feed water connection isolation valve, the first feed water connection check valve and the first feed water connection pipeline.
  • the first main steam pipeline is connected to the second main steam isolation valve and the second condenser through a second steam communication pipeline.
  • the second main steam pipeline is connected to the pipeline between the first main steam isolation valve and the first condenser through a first steam communication pipeline;
  • the first main water supply pipeline is connected through a second water supply communication pipeline
  • the pipeline between the second check valve and the second main water supply isolation valve, the second main water supply pipeline connects the first check valve and the first main water supply isolation valve through a first water supply connecting pipeline lines between valves.
  • a first steam communication isolation valve is provided on the first steam communication pipeline, and a second steam communication isolation valve is provided on the second steam communication pipeline. valve.
  • a first water supply connection isolation valve and a first water supply connection check valve are provided on the first water supply connection pipeline, and the second water supply connection pipeline is There is a second water supply connection isolation valve and a second water supply connection check valve.
  • a first cooler is provided between the first water transfer tank and the first condensate water suction pump, and the second water transfer tank
  • a second cooler is provided between the tank and the second condensate suction pump.
  • the first loop and the equipment on the corresponding side are equipped with column A power
  • the second loop and the equipment on the corresponding side are equipped with column B power
  • the systems on both sides Mutually redundant and physically isolated in space.
  • the first steam generator and the second steam generator are located in the containment vessel.
  • the double-loop small pressurized water reactor emergency waste heat removal system is designed as a "full pressure" system with the same pressure as the primary circuit.
  • the first main steam isolation valve and the first main feed water isolation valve are first opened , and then start the first condensate suction pump to inject the desalted water in the first water transfer tank into the secondary side of the first steam generator through the first main water supply line, and the injected desalted water is
  • the waste heat of the reactor core is heated to generate steam.
  • the steam then enters the first condenser through the first main steam pipeline and is condensed into water by the cooling water of the shell side equipment of the first condenser.
  • the condensed water flows back to the third condenser by gravity.
  • a water transfer tank after further cooling by the first cooler provided downstream of the first water transfer tank, is sent back to the secondary side of the first steam generator by the first condensed water suction pump to be heated to generate steam. , forming a closed circulation loop with heat on the secondary side.
  • the redundant loop corresponding to the first steam generator is started, and another row of intact second steam generators is used.
  • the circuit power distribution opens the second steam communication isolation valve and the second water supply communication isolation valve on the corresponding side, so that the first steam generator uses the second steam communication pipeline, the second water supply communication pipeline and the The second loop connection forms a redundant thermal loop.
  • the dual-loop small pressurized water reactor emergency waste heat removal system of the present invention is designed for dual steam generators and adopts a closed secondary side circulation cooling loop.
  • Each steam generator has two rows of mutually redundant emergency waste heat discharge circuits to avoid setting up redundant components in a single series to meet the single failure criterion. Therefore, the limited desalted water in the water transfer tank can be used as circulating cooling
  • the medium can cooperate with the steam generator to discharge the core waste heat under reactor accident conditions, which not only simplifies the system and saves layout space, but also reduces the system water requirements. It can be especially suitable for small marine pressurized water reactors in marine environments where fresh water is scarce. , which improves the economy and applicability of the system in use on small marine pressurized water reactors.
  • Figure 1 is a schematic diagram of the double-loop small pressurized water reactor emergency waste heat removal system of the present invention.
  • Figure 2 is a schematic diagram of a working state of the double-loop small pressurized water reactor emergency waste heat removal system of the present invention.
  • Figure 3 is a schematic diagram of another working state of the double-loop small pressurized water reactor emergency waste heat removal system of the present invention.
  • 20--Second loop 21--Second steam generator; 22--Second main steam pipeline; 23--Second main steam isolation valve; 24--Second condenser; 25--Second water delivery box; 26--second cooler; 27--second condensate suction pump; 28--second check valve; 29--second main feed water isolation valve; 210--second main feed water check valve ; 211--The second main water supply pipeline; 212--The second steam connection pipeline; 213--The second steam connection isolation valve; 214--The second water supply connection isolation valve; 215--The second water supply connection check valve; 216--Second water supply connecting pipeline.
  • the present invention provides a double-loop small pressurized water reactor emergency waste heat removal system, which includes:
  • the first circuit 10 includes a first steam generator 11, a first main steam pipeline 12, a first main steam isolation valve 13, a first condenser 14, a first water delivery tank 15, and a first condensed water suction connected in sequence.
  • the second circuit 20 includes a second steam generator 21, a second main steam pipeline 22, a second main steam isolation valve 23, a second condenser 24, a second water delivery tank 25, and a second condensed water suction connected in sequence.
  • the emergency waste heat discharge system of the first steam generator 11 includes a first loop 10 and a first redundant loop.
  • the first redundant loop includes a second steam connection pipeline 212, a second steam connection isolation valve 213, a second condenser 24, the second water delivery tank 25, the second condensate suction pump 27, the second feed water connection isolation valve 214, the second feed water connection check valve 215 and the second feed water connection pipeline 216;
  • the emergency waste heat discharge system of the second steam generator 21 includes a second loop 20 and a second redundant loop.
  • the second redundant loop includes a first steam connection pipeline 112, a first steam connection isolation valve 113, a first condenser 14, The first water delivery tank 15 , the first condensate water suction pump 17 , the first feed water communication isolation valve 114 , the first feed water communication check valve 115 and the first feed water communication pipeline 116 .
  • the first main steam line 12 is connected to the pipeline between the second main steam isolation valve 23 and the second condenser 24 through the second steam connection line 212
  • the second main steam line 22 is connected to the second main steam isolation valve 23 through the first steam connection line 112
  • the first main water supply pipeline 111 connects the pipeline between the second check valve 28 and the second main water supply isolation valve 29 through the second water supply connecting pipeline 216
  • the second main water supply line 211 connects the pipeline between the first check valve 18 and the first main water supply isolation valve 19 through the first water supply communication line 116 .
  • the first steam communication pipeline 112 is provided with a first steam communication isolation valve 113
  • the second steam communication pipeline 212 is provided with a second steam communication isolation valve. 213.
  • the first water supply connection pipeline 116 is provided with a first water supply connection isolation valve 114 and a first water supply connection check valve 115.
  • the second water supply connection pipeline 216 is provided with a second water supply connection isolation valve 214 and a second water supply connection check valve 214. Stop valve 215.
  • a first cooler 16 is provided between the first water transfer tank 15 and the first condensate water suction pump 17, and the second water transfer tank 25 and A second cooler 26 is provided between the second condensed water suction pumps 27 .
  • the arrangement of the first cooler 16 and the second cooler 26 can further reduce the temperature of the condensed water and increase the subcooling degree of the inlet water of the downstream first condensed water suction pump 17 and the second condensed water suction pump 27, effectively This prevents cavitation problems in the first condensate suction pump 17 and the second condensate suction pump 27 under transient operating conditions, further improving the safety of the system.
  • the first steam generator 11 and the second steam generator 21 are located in the containment, and the main loop and redundant circuit of the secondary side waste heat removal system are
  • the power distribution method is divided according to the spatial layout.
  • the first circuit 10 and the equipment on the corresponding side are equipped with column A power
  • the second circuit 20 and the equipment on the corresponding side are equipped with column B power.
  • the systems on both sides are mutually redundant, and the physical space can be realized Isolation meets the requirement that the loss of one power supply series between redundant series will not cause the loss of system functions, and effectively prevents common cause failures in the system's power distribution.
  • the double-loop small pressurized water reactor emergency waste heat removal system is designed as a "full pressure" system with the same pressure as the primary circuit.
  • the system can contain the primary reactor coolant without overpressure, effectively preventing the leakage of radioactive products and improving the safety of the power plant.
  • the secondary side waste heat discharge main circuit of the corresponding column will be put into operation first; if the main circuit fails and is unavailable, the redundant circuit of the corresponding column will be activated to perform the waste heat discharge function.
  • the secondary side waste heat removal system first opens the first main steam isolation valve 13 and the first main feed water isolation. Valve 19, and then start the first condensate suction pump 17 to inject the desalted water in the first water transfer tank 15 into the secondary side of the first steam generator 11 through the first main water supply line 111.
  • the injected desalted water is received by the reactor core
  • the waste heat is heated to generate steam, and the steam enters the first condenser 14 through the first main steam pipeline 12, and is condensed into water by the cooling water of the shell side equipment of the first condenser 14.
  • the condensed water flows back to the first water delivery tank 15 by gravity, and passes through After the downstream first cooler 16 further cools down, the first condensate suction pump 17 returns it to the secondary side of the first steam generator 11 to be heated to generate steam, thus forming a closed circulation loop with heat on the secondary side, which continuously generates steam.
  • the reactor core waste heat in the primary loop is directed to the heat sink, the equipment cooling water. Please refer to the arrow direction shown in Figure 2 for the operating route of the first loop 10.
  • the dual-loop small pressurized water reactor emergency waste heat removal system of the present invention is designed for dual steam generators and adopts a closed secondary side circulation cooling circuit.
  • the limited desalted water in the water transfer tank as a circulating cooling medium, it can cooperate with the steam generator to discharge the waste heat of the reactor core under reactor accident conditions, which not only simplifies the system and saves layout space, but also reduces the system water requirements. It is especially suitable for small pressurized water reactors on ships in marine environments with scarce fresh water, which improves the economy and applicability of the system on small pressurized water reactors on ships.

Abstract

一种双环路小型压水堆应急余热排出系统,包括第一回路(10)和第二回路(20),分别包括蒸汽发生器(11,21)、主蒸汽管线(12,22)、主蒸汽隔离阀(13,23)、冷凝器(14,24)、输水箱(15,25)、冷凝水抽吸泵(17,27)、逆止阀(18,28)、主给水隔离阀(19,29)、主给水逆止阀(110,210)和主给水管线(111,211),第一蒸汽发生器(11)的应急余热排出系统包括第一回路(10)和包含第二蒸汽连通管线(212)、第二蒸汽连通隔离阀(213)、第二冷凝器(24)、第二输水箱(25)、第二冷凝水抽吸泵(27)、第二给水连通隔离阀(214)、第二给水连通逆止阀(215)和第二给水连通管线(216)的第一冗余回路;第二蒸汽发生器的应急余热排出系统包括第二回路(20)和包含第一蒸汽连通管线(112)、第一蒸汽连通隔离阀(113)、第一冷凝器(14)、第一输水箱(15)、第一冷凝水抽吸泵(17)、第一给水连通隔离阀(114)、第一给水连通逆止阀(115)和第一给水连通管线(116)的第二冗余回路。

Description

双环路小型压水堆应急余热排出系统 技术领域
本发明属于核电技术领域,更具体地说,本发明涉及一种双环路小型压水堆应急余热排出系统。
背景技术
发生核电事故后,核电厂需要通过专设的安全系统来保证反应堆紧急停堆、堆芯余热导出和安全壳完整,以限制事故的进一步发展,减轻事故后果。传统的压水堆核电厂在发生正常排热路径失效事故时,经常利用专设安全系统之一的应急余热排出系统作为冷却手段来导出堆芯余热,因此应急余热排系统的设计是反应堆设计的关键技术之一。
目前,二代和三代核电站普遍采用能动的应急余热排出系统,例如,一些反应堆应急余热排出功能利用能动的辅助给水系统和蒸汽大气排放系统来实现,一般设置三个环路和对应的三台蒸汽发生器,每个环路主要包括辅助给水贮存箱、电动辅助给水泵、汽动给水泵和相应的管路、阀门。利用辅助给水泵将辅助给水箱中的除盐水供给蒸汽发生器二次侧,将产生的蒸汽排往最终的热阱--大气,从而带走反应堆余热。为了满足单一故障准则,还需要将其中的能动部件(如辅助给水泵)进行冗余设计,从而降低系统的失效概率。
上述应急余热排出系统的特点是排热效率高,配备的冷源充足,能够在短时间内快速带走堆芯余热。但是,上述应急余热排出系统需要配备良好的水处理装置和大容积的辅助给水贮存箱。因此,应急余热排出系统的配置复杂,空间需求大,用水要求高,在远离陆地的海上小型压水堆中使用受到限制。
有鉴于此,确有必要提供一种小型压水堆应急余热排出系统,以在反应堆事故工况下能够协同蒸汽发生器排出堆芯余热。
发明内容
本发明的发明目的在于:克服现有技术中的至少一个缺陷,提供一种小型压水堆应急余热排出系统,以在反应堆事故工况下能够协同蒸汽发生器排出堆芯余热。
为了实现上述发明目的,本发明提供了一种双环路小型压水堆应急余热排出系统,其包括:
第一回路,包括依次连接的第一蒸汽发生器、第一主蒸汽管线、第一主蒸汽隔离阀、第一冷凝器、第一输水箱、第一冷凝水抽吸泵、第一逆止阀、第一主给水隔离阀、第一主给水逆止阀和第一主给水管线;以及
第二回路,包括依次连接的第二蒸汽发生器、第二主蒸汽管线、第二主蒸汽隔离阀、第二冷凝器、第二输水箱、第二冷凝水抽吸泵、第二逆止阀、第二主给水隔离阀、第二主给水逆止阀和第二主给水管线;
其中,所述第一蒸汽发生器的应急余热排出系统包括第一回路和第一冗余回路,所述第一冗余回路包括所述第二蒸汽连通管线、所述第二蒸汽连通隔离阀、所述第二冷凝器、所述第二输水箱、所述第二冷凝水抽吸泵、所述第二给水连通隔离阀、所述第二给水连通逆止阀和所述第二给水连通管线;
所述第二蒸汽发生器的应急余热排出系统包括第二回路和第二冗余回路,所述第二冗余回路包括所述第一蒸汽连通管线、所述第一蒸汽连通隔离阀、所述第一冷凝器、所述第一输水箱、所述第一冷凝水抽吸泵、所述第一给水连通隔离阀、所述第一给水连通逆止阀和所述第一给水连通管线。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述第一主蒸汽管线通过第二蒸汽连通管线连接所述第二主蒸汽隔离阀和所述第二冷凝器之间的管线,所述第二主蒸汽管线通过第一蒸汽连通管线连接所述第一主蒸汽隔离阀和所述第一冷凝器之间的管线;所述第一主给水管线通过第二给水连通管线连接所述第二逆止阀和所述第二主给水隔离阀之间的管线,所述第二 主给水管线通过第一给水连通管线连接所述第一逆止阀和所述第一主给水隔离阀之间的管线。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述第一蒸汽连通管线上设有第一蒸汽连通隔离阀,所述第二蒸汽连通管线上设有第二蒸汽连通隔离阀。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述第一给水连通管线上设有第一给水连通隔离阀和第一给水连通逆止阀,所述第二给水连通管线上设有第二给水连通隔离阀和第二给水连通逆止阀。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述第一输水箱和所述第一冷凝水抽吸泵之间设有第一冷却器,所述第二输水箱和所述第二冷凝水抽吸泵之间设有第二冷却器。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述第一回路及对应侧的设备配A列电,所述第二回路及对应侧设备配B列电,两侧系统相互冗余且空间上可实体隔离。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述第一蒸汽发生器和所述第二蒸汽发生器位于安全壳内。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述双环路小型压水堆应急余热排出系统设计成与一回路压力相同的“全压”系统。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,在所述第一回路的正常启动的过程中,首先开启所述第一主蒸汽隔离阀和所述第一主给水隔离阀,然后启动所述第一冷凝水抽吸泵将所述第一输水箱内的除盐水通过所述第一主给水管线注入所述第一蒸汽发生器的二次侧,注入的除盐水受堆芯余热加热产生蒸汽,蒸汽再通过所述第一主蒸汽管线进入所述第一冷凝器,被所述第一冷凝器壳侧设备冷却水冷凝为水,冷凝水依靠重力回流至所述第一输水箱,经过设置于所述第一输水箱下游的第一冷却器进一步降温后,由所述 第一冷凝水抽吸泵送回所述第一蒸汽发生器二次侧受热产生蒸汽,形成二次侧的闭式循环带热回路。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,当所述第一回路不可用时,启动所述第一蒸汽发生器对应的冗余回路,利用另一列完好的所述第二回路配电打开对应侧的所述第二蒸汽连通隔离阀、所述第二给水连通隔离阀,使所述第一蒸汽发生器利用所述第二蒸汽连通管线、所述第二给水连通管线与所述第二回路连接形成冗余的带热回路。
相对于现有技术,本发明双环路小型压水堆应急余热排出系统针对双蒸汽发生器设计,采用封闭式的二次侧循环冷却回路,第一回路和第二回路之间设有连通管线,使任一蒸汽发生器都具有两列互为冗余的应急余热排出回路,避免单个系列为满足单一故障准则而设置冗余部件,因此,可通过利用输水箱内有限的除盐水作为循环冷却介质,在反应堆事故工况下能够协同蒸汽发生器排出堆芯余热,不仅简化了系统、节约布置空间,而且降低了系统用水要求,可特别适用于淡水稀缺的海洋环境下的船用小型压水堆,提高了该系统在船用小型压水堆上使用的经济性和适用性。
附图说明
下面结合附图和具体实施方式,对本发明双环路小型压水堆应急余热排出系统及其技术效果进行详细说明,其中:
图1为本发明双环路小型压水堆应急余热排出系统的示意图。
图2为本发明双环路小型压水堆应急余热排出系统一个工作状态的示意图。
图3为本发明双环路小型压水堆应急余热排出系统另一个工作状态的示意图。
图中:
10--第一回路;11--第一蒸汽发生器;12--第一主蒸汽管线;13--第一主蒸汽 隔离阀;14--第一冷凝器;15--第一输水箱;16--第一冷却器;17--第一冷凝水抽吸泵;18--第一逆止阀;19--第一主给水隔离阀;110--第一主给水逆止阀;111--第一主给水管线;112--第一蒸汽连通管线;113--第一蒸汽连通隔离阀;114--第一给水连通隔离阀;115--第一给水连通逆止阀;116--第一给水连通管线;
20--第二回路;21--第二蒸汽发生器;22--第二主蒸汽管线;23--第二主蒸汽隔离阀;24--第二冷凝器;25--第二输水箱;26--第二冷却器;27--第二冷凝水抽吸泵;28--第二逆止阀;29--第二主给水隔离阀;210--第二主给水逆止阀;211--第二主给水管线;212--第二蒸汽连通管线;213--第二蒸汽连通隔离阀;214--第二给水连通隔离阀;215--第二给水连通逆止阀;216--第二给水连通管线。
具体实施方式
为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参照图1所示,本发明提供了一种双环路小型压水堆应急余热排出系统,其包括:
第一回路10,包括依次连接的第一蒸汽发生器11、第一主蒸汽管线12、第一主蒸汽隔离阀13、第一冷凝器14、第一输水箱15、第一冷凝水抽吸泵17、第一逆止阀18、第一主给水隔离阀19、第一主给水逆止阀110和第一主给水管线111;以及
第二回路20,包括依次连接的第二蒸汽发生器21、第二主蒸汽管线22、第二主蒸汽隔离阀23、第二冷凝器24、第二输水箱25、第二冷凝水抽吸泵27、第二逆止阀28、第二主给水隔离阀29、第二主给水逆止阀210和第二主给水管线211;
第一蒸汽发生器11的应急余热排出系统包括第一回路10和第一冗余回路, 第一冗余回路包括第二蒸汽连通管线212、第二蒸汽连通隔离阀213、第二冷凝器24、第二输水箱25、第二冷凝水抽吸泵27、第二给水连通隔离阀214、第二给水连通逆止阀215和第二给水连通管线216;
第二蒸汽发生器21的应急余热排出系统包括第二回路20和第二冗余回路,第二冗余回路包括第一蒸汽连通管线112、第一蒸汽连通隔离阀113、第一冷凝器14、第一输水箱15、第一冷凝水抽吸泵17、第一给水连通隔离阀114、第一给水连通逆止阀115和第一给水连通管线116。
具体地,第一主蒸汽管线12通过第二蒸汽连通管线212连接第二主蒸汽隔离阀23和第二冷凝器24之间的管线,第二主蒸汽管线22通过第一蒸汽连通管线112连接第一主蒸汽隔离阀13和第一冷凝器14之间的管线;第一主给水管线111通过第二给水连通管线216连接第二逆止阀28和第二主给水隔离阀29之间的管线,第二主给水管线211通过第一给水连通管线116连接第一逆止阀18和第一主给水隔离阀19之间的管线。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,第一蒸汽连通管线112上设有第一蒸汽连通隔离阀113,第二蒸汽连通管线212上设有第二蒸汽连通隔离阀213,第一给水连通管线116上设有第一给水连通隔离阀114和第一给水连通逆止阀115,第二给水连通管线216上设有第二给水连通隔离阀214和第二给水连通逆止阀215。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,第一输水箱15和第一冷凝水抽吸泵17之间设有第一冷却器16,第二输水箱25和第二冷凝水抽吸泵27之间设有第二冷却器26。第一冷却器16和第二冷却器26的设置,可以进一步降低冷凝水的温度,增大下游第一冷凝水抽吸泵17和第二冷凝水抽吸泵27入口水的过冷度,有效预防瞬态工况下第一冷凝水抽吸泵17和第二冷凝水抽吸泵27出现气蚀问题,进一步提高系统的安全性。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,第一蒸 汽发生器11和第二蒸汽发生器21位于安全壳内,二次侧余热排出系统的主回路及冗余回路的配电方式按照空间布置方式进行划分,第一回路10及对应侧的设备配A列电,第二回路20及对应侧设备配B列电,两侧系统相互冗余,且空间上可以实现实体隔离,满足冗余系列之间一个供电系列的丧失不会造成系统功能丧失的要求,有效防止系统在配电上出现共因失效。
根据本发明双环路小型压水堆应急余热排出系统的一个实施方式,所述双环路小型压水堆应急余热排出系统设计成与一回路压力相同的“全压”系统,当发生蒸汽发生器传热管破裂(SGTR)事故时,系统可以包容一回路反应堆冷却剂,不会超压,有效防止放射性产物外泄,提高了电厂的安全性。
以下结合图2和图3所示,详细描述本发明双环路小型压水堆应急余热排出系统的工作原理:
在发生反应堆正常排热路径失效工况下,优先投运对应列的二次侧余热排出主回路;若主回路故障不可用,则启动对应列的冗余回路执行余热排出功能。
请参照图2所示,以第一回路10为例进行说明,二次侧余热排出系统在第一回路10的正常启动的过程中,首先开启第一主蒸汽隔离阀13和第一主给水隔离阀19,然后启动第一冷凝水抽吸泵17将第一输水箱15内的除盐水通过第一主给水管线111注入第一蒸汽发生器11的二次侧,注入的除盐水受堆芯余热加热产生蒸汽,蒸汽再通过第一主蒸汽管线12进入第一冷凝器14,被第一冷凝器14壳侧设备冷却水冷凝为水,冷凝水依靠重力回流至第一输水箱15,经过下游第一冷却器16进一步降温后,由第一冷凝水抽吸泵17送回第一蒸汽发生器11二次侧受热产生蒸汽,以此形成二次侧的闭式循环带热回路,不断将一回路的堆芯余热带至热阱--设备冷却水,第一回路10的运行路线请参照图2所示的箭头方向。
请参照图3所示,以第一回路10为例进行说明,当二次侧余热排出系统的第一回路10因失电(A列电)、设备单一故障或管道破裂等事故不可用时,此时, 启动第一蒸汽发生器11对应列的冗余回路,利用另一列完好的第二回路20所配电(B列电)打开对应侧的第二蒸汽连通隔离阀213、第二给水连通隔离阀214),使第一蒸汽发生器11利用第二蒸汽连通管线212、第二给水连通管线216与第二回路20连接形成冗余的带热回路,其具体运行路线请参照图3所示的箭头方向。
结合以上对本发明实施方式的详细描述可以看出,相对于现有技术,本发明双环路小型压水堆应急余热排出系统针对双蒸汽发生器设计,采用封闭式的二次侧循环冷却回路,第一回路10和第二回路20之间设有连通管线,使任一蒸汽发生器都具有两列互为冗余的应急余热排出回路,避免单个系列为满足单一故障准则而设置冗余部件,因此,可通过利用输水箱内有限的除盐水作为循环冷却介质,在反应堆事故工况下能够协同蒸汽发生器排出堆芯余热,不仅简化了系统、节约布置空间,而且降低了系统用水要求,可特别适用于淡水稀缺的海洋环境下的船用小型压水堆,提高了该系统在船用小型压水堆上使用的经济性和适用性。
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种双环路小型压水堆应急余热排出系统,其特征在于,包括:
    第一回路,包括依次连接的第一蒸汽发生器、第一主蒸汽管线、第一主蒸汽隔离阀、第一冷凝器、第一输水箱、第一冷凝水抽吸泵、第一逆止阀、第一主给水隔离阀、第一主给水逆止阀和第一主给水管线;以及
    第二回路,包括依次连接的第二蒸汽发生器、第二主蒸汽管线、第二主蒸汽隔离阀、第二冷凝器、第二输水箱、第二冷凝水抽吸泵、第二逆止阀、第二主给水隔离阀、第二主给水逆止阀和第二主给水管线;
    其中,所述第一蒸汽发生器的应急余热排出系统包括第一回路和第一冗余回路,所述第一冗余回路包括所述第二蒸汽连通管线、所述第二蒸汽连通隔离阀、所述第二冷凝器、所述第二输水箱、所述第二冷凝水抽吸泵、所述第二给水连通隔离阀、所述第二给水连通逆止阀和所述第二给水连通管线;
    所述第二蒸汽发生器的应急余热排出系统包括第二回路和第二冗余回路,所述第二冗余回路包括所述第一蒸汽连通管线、所述第一蒸汽连通隔离阀、所述第一冷凝器、所述第一输水箱、所述第一冷凝水抽吸泵、所述第一给水连通隔离阀、所述第一给水连通逆止阀和所述第一给水连通管线。
  2. 根据权利要求1所述的双环路小型压水堆应急余热排出系统,其特征在于,所述第一主蒸汽管线通过第二蒸汽连通管线连接所述第二主蒸汽隔离阀和所述第二冷凝器之间的管线,所述第二主蒸汽管线通过第一蒸汽连通管线连接所述第一主蒸汽隔离阀和所述第一冷凝器之间的管线;所述第一主给水管线通过第二给水连通管线连接所述第二逆止阀和所述第二主给水隔离阀之间的管线,所述第二主给水管线通过第一给水连通管线连接所述第一逆止阀和所述第一主给水隔离阀之间的管线。
  3. 根据权利要求2所述的双环路小型压水堆应急余热排出系统,其特征在于,所述第一蒸汽连通管线上设有第一蒸汽连通隔离阀,所述第二蒸汽连通管 线上设有第二蒸汽连通隔离阀。
  4. 根据权利要求2所述的双环路小型压水堆应急余热排出系统,其特征在于,所述第一给水连通管线上设有第一给水连通隔离阀和第一给水连通逆止阀,所述第二给水连通管线上设有第二给水连通隔离阀和第二给水连通逆止阀。
  5. 根据权利要求2所述的双环路小型压水堆应急余热排出系统,其特征在于,所述第一输水箱和所述第一冷凝水抽吸泵之间设有第一冷却器,所述第二输水箱和所述第二冷凝水抽吸泵之间设有第二冷却器。
  6. 根据权利要求1所述的双环路小型压水堆应急余热排出系统,其特征在于,所述第一回路及对应侧的设备配A列电,所述第二回路及对应侧设备配B列电,两侧系统相互冗余且空间上可实体隔离。
  7. 根据权利要求1所述的双环路小型压水堆应急余热排出系统,其特征在于,所述第一蒸汽发生器和所述第二蒸汽发生器位于安全壳内。
  8. 根据权利要求1所述的双环路小型压水堆应急余热排出系统,其特征在于,所述双环路小型堆应急余热排出系统设计成与一回路压力相同的全压系统。
  9. 根据权利要求1所述的双环路小型压水堆应急余热排出系统,其特征在于,在所述第一回路的正常启动的过程中,首先开启所述第一主蒸汽隔离阀和所述第一主给水隔离阀,然后启动所述第一冷凝水抽吸泵将所述第一输水箱内的除盐水通过所述第一主给水管线注入所述第一蒸汽发生器的二次侧,注入的除盐水受堆芯余热加热产生蒸汽,蒸汽再通过所述第一主蒸汽管线进入所述第一冷凝器,被所述第一冷凝器壳侧设备冷却水冷凝为水,冷凝水依靠重力回流至所述第一输水箱,经过设置于所述第一输水箱下游的第一冷却器进一步降温后,由所述第一冷凝水抽吸泵送回所述第一蒸汽发生器二次侧受热产生蒸汽,形成二次侧的闭式循环带热回路。
  10. 根据权利要求1所述的双环路小型压水堆应急余热排出系统,其特征在于,当所述第一回路不可用时,启动所述第一蒸汽发生器对应的冗余回路,利 用另一列完好的所述第二回路配电打开对应侧的所述第二蒸汽连通隔离阀、所述第二给水连通隔离阀,使所述第一蒸汽发生器利用所述第二蒸汽连通管线、所述第二给水连通管线与所述第二回路连接形成冗余的带热回路。
PCT/CN2022/137179 2022-06-02 2022-12-07 双环路小型压水堆应急余热排出系统 WO2023231358A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210620537.2A CN115083631A (zh) 2022-06-02 2022-06-02 双环路小型压水堆应急余热排出系统
CN202210620537.2 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023231358A1 true WO2023231358A1 (zh) 2023-12-07

Family

ID=83250264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137179 WO2023231358A1 (zh) 2022-06-02 2022-12-07 双环路小型压水堆应急余热排出系统

Country Status (2)

Country Link
CN (1) CN115083631A (zh)
WO (1) WO2023231358A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115083631A (zh) * 2022-06-02 2022-09-20 中广核研究院有限公司 双环路小型压水堆应急余热排出系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867548A (zh) * 2012-09-27 2013-01-09 中国核电工程有限公司 一种能动与非能动相结合的二次侧堆芯热量导出装置
CN102903402A (zh) * 2012-09-27 2013-01-30 中国核电工程有限公司 一种先进的二次侧堆芯热量导出装置
US20140016734A1 (en) * 2012-07-13 2014-01-16 Korea Atomic Energy Research Institute Passive safety system of integral reactor
CN104952495A (zh) * 2015-06-26 2015-09-30 上海核工程研究设计院 一种双堆核电站二次侧余热排出系统
CN105070327A (zh) * 2015-08-31 2015-11-18 上海核工程研究设计院 一种核电站二次侧的长期余热排出系统
CN105070329A (zh) * 2015-08-31 2015-11-18 上海核工程研究设计院 一种核电站二次侧非能动余热排出系统
CN114234173A (zh) * 2021-12-17 2022-03-25 华能山东石岛湾核电有限公司 一种核电站蒸汽发生器冷却系统
CN115083631A (zh) * 2022-06-02 2022-09-20 中广核研究院有限公司 双环路小型压水堆应急余热排出系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140016734A1 (en) * 2012-07-13 2014-01-16 Korea Atomic Energy Research Institute Passive safety system of integral reactor
CN102867548A (zh) * 2012-09-27 2013-01-09 中国核电工程有限公司 一种能动与非能动相结合的二次侧堆芯热量导出装置
CN102903402A (zh) * 2012-09-27 2013-01-30 中国核电工程有限公司 一种先进的二次侧堆芯热量导出装置
CN104952495A (zh) * 2015-06-26 2015-09-30 上海核工程研究设计院 一种双堆核电站二次侧余热排出系统
CN105070327A (zh) * 2015-08-31 2015-11-18 上海核工程研究设计院 一种核电站二次侧的长期余热排出系统
CN105070329A (zh) * 2015-08-31 2015-11-18 上海核工程研究设计院 一种核电站二次侧非能动余热排出系统
CN114234173A (zh) * 2021-12-17 2022-03-25 华能山东石岛湾核电有限公司 一种核电站蒸汽发生器冷却系统
CN115083631A (zh) * 2022-06-02 2022-09-20 中广核研究院有限公司 双环路小型压水堆应急余热排出系统

Also Published As

Publication number Publication date
CN115083631A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023231358A1 (zh) 双环路小型压水堆应急余热排出系统
CN107767973B (zh) 核电厂乏燃料水池补充冷却装置
GB2521549A (en) Combined active and passive secondary-side reactor core heat removal apparatus
CN107403650B (zh) 海上浮动核电站的二次侧非能动余热排出系统
WO2016078285A1 (zh) 二次侧非能动佘热导出系统
CN105957567B (zh) 一种蒸汽发生器二次侧非能动余热排出系统
US11894151B2 (en) Integrated reactor system having passive removal of residual heat
CN111081399B (zh) 核电厂应急堆芯冷却系统
CN113808764B (zh) 安全壳内堆芯余热导出方法和系统
KR101594440B1 (ko) 정지냉각계통 및 이를 구비하는 원전
CN105070329A (zh) 一种核电站二次侧非能动余热排出系统
JPS60254000A (ja) 蒸気発生器用緊急給水設備
CN103776016A (zh) 一种采用直流蒸汽发生器反应堆的启停系统
CN113421661A (zh) 一种防止蒸汽发生器满溢的系统
CN210956182U (zh) 安全注入系统及核电系统
CN207250149U (zh) 海上浮动核电站的二次侧非能动余热排出系统
CN205038971U (zh) 一种核电站二次侧的长期余热排出系统
WO2022135455A1 (zh) 优化母管设计的安全注入系统
CN205038972U (zh) 一种核电站二次侧非能动余热排出系统
CN105070327A (zh) 一种核电站二次侧的长期余热排出系统
JP2014010113A (ja) 原子力プラントの非常用炉心冷却設備
CN202947115U (zh) 一种采用直流蒸汽发生器反应堆的启停系统
JP2017120226A (ja) 冷却設備及び原子力プラント
CN115083630A (zh) 小型压水堆二次侧余热排出系统
CN104952496A (zh) 一种浮动核电站的应急给水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944659

Country of ref document: EP

Kind code of ref document: A1