WO2023231085A1 - 一种投影系统以及头戴设备 - Google Patents

一种投影系统以及头戴设备 Download PDF

Info

Publication number
WO2023231085A1
WO2023231085A1 PCT/CN2022/099790 CN2022099790W WO2023231085A1 WO 2023231085 A1 WO2023231085 A1 WO 2023231085A1 CN 2022099790 W CN2022099790 W CN 2022099790W WO 2023231085 A1 WO2023231085 A1 WO 2023231085A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
adjustment module
beam adjustment
projection system
polarizing element
Prior art date
Application number
PCT/CN2022/099790
Other languages
English (en)
French (fr)
Inventor
赵云
鲁公涛
饶轶
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023231085A1 publication Critical patent/WO2023231085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house

Definitions

  • the present application relates to the technical field of optical equipment, and more specifically, the present application relates to a projection system and a head-mounted device.
  • the architecture of the traditional LCOS AR optical machine includes the lighting part and the imaging part.
  • the lighting part includes collimation components and shaping components.
  • the lighting part collimates and shapes the light emitted by the light source so that the light spot matches the LCOS chip.
  • the function of the imaging part is to propagate the image on the LCOS chip into the waveguide.
  • a separate shaping component is required to shape the light, and a separate imaging component is required for final imaging, so this directly results in the inability to further reduce the size of the projection system.
  • One purpose of this application is to provide a new technology solution for a projection system and a head-mounted device.
  • Projection systems include:
  • Light source components polarizing components, beam adjustment modules and reflective components
  • the beam adjustment module has an optical axis, and the light source assembly is located on a first side of the optical axis;
  • the light emitted by the light source component is transmitted to the beam adjustment module through the polarizing element, and at least the central ray of the light is incident on the first side of the optical axis to the beam adjustment module and is shaped;
  • the light incident on the beam adjustment module is reflected back to the beam adjustment module by the reflective component, and at least the central ray of the reflected light emerges from the second side of the optical axis and is imaged, and then is reflected by the polarizing element and output .
  • the beam adjustment module includes a lens assembly, the lens assembly shapes the light incident on the beam adjustment module, and the lens assembly images the light reflected to the beam adjustment module.
  • the beam adjustment module further includes a first phase retarder located between the polarizing element and the reflective component.
  • the beam adjustment module further includes a brightness adjuster located between the polarizing element and the reflective component.
  • the beam adjustment module includes a lens assembly, a first phase retarder and a brightness adjuster, the first phase retarder, the lens assembly and the brightness adjuster are disposed between the polarizing element and the between reflective parts.
  • the brightness adjuster includes a second phase retarder and a third phase retarder, the second phase retarder is fixedly set, and the third phase retarder is movable;
  • the second phase retardation plate has a first fast axis
  • the third phase retardation plate has a second fast axis
  • the third phase retardation plate rotates relative to the second phase retardation plate to adjust the first fast axis. axis and the second fast axis.
  • the light source assembly includes a light source and a reflective bowl. After the light emitted by the light source is reflected by the reflective bowl, the light is transmitted parallel to the optical axis and then transmitted to the beam adjustment module through the polarizing element.
  • the projection system further includes an optical waveguide plate, which includes a coupling-in area and an out-coupling area; the light reflected by the polarizing element is transmitted to the coupling-in area and then passes through the optical waveguide. The film is transmitted to the coupling area, and finally the light is output through the coupling area.
  • an optical waveguide plate which includes a coupling-in area and an out-coupling area
  • a head-mounted device includes the projection system as described in the first aspect.
  • a projection system which achieves the purpose of reducing the volume of the projection system.
  • Figure 1 shows a schematic structural diagram of the projection system of the present application.
  • Figure 2 shows the optical path structure diagram of the projection system of this application.
  • Figure 3 shows a schematic structural diagram of the light source assembly.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • the existing AR opto-mechanical architecture includes an illumination part and an imaging part.
  • the illumination part includes a shaping component, which shapes the optics emitted by the light source.
  • the imaging part includes an imaging component, which realizes image imaging. Therefore, in the existing AR opto-mechanical architecture, separate shaping components and separate imaging components are required to process the light accordingly. After such an arrangement, the size of the existing AR opto-mechanical architecture cannot be further reduced.
  • the projection system includes: a light source component 1 , a polarizing element 2 , a beam adjustment module 3 and a reflective component 4 .
  • the beam adjustment module 3 has an optical axis, and the light source assembly 1 is located on the first side of the optical axis.
  • the light emitted by the light source assembly 1 is transmitted to the beam adjustment module 3 through the polarizing element 2 , and at least the central ray of the light is incident on the beam adjustment module 3 from the first side of the optical axis and is shaped.
  • the light incident on the beam adjustment module 3 is reflected back to the beam adjustment module 3 by the reflective component 4 , and at least the central ray of the reflected light emerges from the second side of the optical axis and is imaged, and then passes through the polarizing element 2 reflection and output.
  • FIG. 1 shows a schematic structural diagram of the projection system.
  • Figure 2 shows the light schematic diagram of the projection system.
  • the thick black line in Figure 2 shows the light transmission path diagram, and the dotted line in Figure 2 shows the optical axis of the beam adjustment module 3.
  • the light emitted by the light source component 1 is transmitted to the beam adjustment module 3 through the transmission of the polarizing element 2.
  • the beam adjustment module 3 shapes the incident light; the shaped light is reflected by the reflective component 4 , the reflected light carries image information, so that the shaped light returns to the beam adjustment module 3 for transmission and exit. Therefore, in this embodiment, there is no separate shaping component in the light source component 1, but the same set of beam adjustment modules 3 is used for the light shaping components and the image imaging components (that is, the beam adjustment module 3 has both a light shaping function and a light shaping component). It also has image imaging function), reducing the size of the projection system.
  • this embodiment limits the installation position of the light source component 1, that is, the light source component 1 is offset relative to the optical axis of the beam adjustment module 3, so that the light emitted by the light source component 1 does not go straight in and out. Instead, at least the central ray of the incident light rays is incident from the first side of the beam adjustment module 3, and at least the central ray of the reflected light rays is emitted from the second side of the beam adjustment module 3, where the first side and the second side are located on the optical axis. Different sides.
  • the incident light enters the beam adjustment module 3 along the optical axis direction. If the incident light enters the beam adjustment module 3 along the optical axis direction, the incident light enters along the optical axis direction and is reflected by the reflective component 4 Finally, the reflected optics are also emitted along the direction of the optical axis, and the incident light and reflected light are overlapped. In this way, the beam adjustment module 3 can only play an imaging role in the image, but cannot shape the light.
  • the light source assembly 1 is offset relative to the optical axis of the beam adjustment module 3 so that at least the central ray in the incident light ray and at least the central ray in the reflected light ray are transmitted without overlapping, so that the incident light ray is offset relative to the optical axis.
  • the incident light can be shaped with the help of the first side of the beam adjustment module 3
  • the reflected light is transmitted on the second side of the beam adjustment module 3
  • the second side of the beam adjustment module 3 can shape the light with image information The light is imaged.
  • the installation position of the light source assembly 1 is limited so that the shaping of light and the imaging of light share a set of beam adjustment modules 3, avoiding the need to separately set up a shaping component in the light source assembly 1 to adjust the beam. Shaping reduces the size of the projection system.
  • the projection system includes a polarizing element 2, which is disposed on the transmission path of light.
  • the polarizing element 2 can be a polarizing reflector.
  • a polarizing reflector can selectively reflect or transmit light.
  • a polarizing reflector reflects S light and transmits P light.
  • the light emitted by the light source assembly 1 is natural light, which contains 50% P light and 50% S light.
  • the polarizing reflector can reflect the S light in the light emitted by the light source assembly 1, and only retain the P light, so that the P light is transmitted through the polarizing reflector, is shaped in the beam adjustment module 3, and can continue to propagate in the projection system.
  • the polarizing reflector is arranged between the light source assembly 1 and the beam adjustment module 3.
  • the light emitted from the second side of the beam adjustment module 3 is reflected by the polarizing reflector, and then the reflected light is output, and the output light is received by the human eye 6 .
  • the reflective member 4 reflects light.
  • the reflective component 4 may be a light valve component.
  • light valve components are polarized spectroscopic components.
  • the light valve component includes but is not limited to an LCOS display screen, and may also be an LCD display screen.
  • optical axis is the central axis of the beam adjustment module 3 .
  • the light is incident from the first side of the optical axis, that is, the light is incident from the first side of the beam adjustment module 3 .
  • the light source component 1 is offset relative to the optical axis, so the light emitted by the light source component 1 does not perpendicularly incident on the reflective component 4 (LCOS chip), but exists at a certain angle, and the angle is about 10 ° ⁇ 15°.
  • This embodiment limits the angle between the light incident on the first side of the beam adjustment module 3 and the optical axis of the beam adjustment module 3, so that the first side of the beam adjustment module 3 can shape the incident light. If the angle is too large or too small, the first side of the beam adjustment module 3 will have an impact on the shaping effect of the incident light. That is, if the angle is too large or too small, the incident light cannot be adjusted according to the shape of the first side of the beam adjustment module 3.
  • the structure (specifically, the lens structure) is reshaped.
  • the light incident on the reflective component 4 is P light (because the light emitted by the light source component 1 passes through the polarizing element 2 for the first time and transmits the P light), it is modulated by the reflective component 4 (LCOS chip).
  • the light that generates the image is S light, and the polarizing element 2 outputs the S light generated by the reflective component 4 (LCOS chip).
  • the light reflected by the reflective component 4 also has the same angle. After the reflected light is imaged by the beam adjustment module 3, it will reach the polarizing element 2; if the light incident from the first side of the beam adjustment module 3 is different from If the angle between the optical axes of the beam adjustment module 3 is too large or too small, the angle between the reflected light and the optical axis will also be too small or too large. If the angle is too small or too large, the reflected light will The optics cannot accurately reach the polarizing element 2.
  • the beam adjustment module 3 includes a lens assembly 32 that shapes the light incident on the beam adjustment module 3 , and the lens assembly 32 32 images the light reflected to the beam adjustment module 3 .
  • the beam adjustment module 3 includes a lens assembly 32 (that is, a lens module).
  • the lens assembly 32 has two functions. One is to shape the light emitted by the light source assembly 1, and to shape the circular light emitted by the light source assembly 1.
  • the light spot is shaped into a rectangular spot to fit the effective area of the reflective component 4 (LCOS chip); the second is to complete the imaging effect and clearly transmit the image generated on the reflective component 4 (LCOS chip).
  • the light source component 1 is offset relative to the optical axis of the lens component 32 .
  • the light emitted by the light source component 1 is transmitted through the polarizing element 2 and then enters the first side of the lens component 32 .
  • the first side of the lens component 32 is opposite to the optical axis of the lens component 32 .
  • the light emitted by the light source assembly 1 is shaped; the shaped light is reflected by the reflective component 4, and the reflected light is transmitted through the second side of the lens component 32, so that the image generated on the reflective component 4 (LCOS chip) is clearly transmitted.
  • the lens assembly 32 includes a first lens 321, a second lens 322, a third lens 323 and a fourth lens 324 that are sequentially arranged along the optical axis.
  • the fourth lens 324 is disposed close to the reflective component 4 . This embodiment reduces the size of the projection system by setting four lenses to shape the light and clearly transmit the image generated on the reflective component 4 (LCOS chip).
  • the first surface of the first lens 321 is a convex surface
  • the second surface of the first lens 321 is a flat surface
  • the optical power of the first lens 321 is is positive
  • the first surface of the second lens 322 is a convex surface
  • the second surface of the second lens 322 is a flat surface
  • the optical power of the second lens 322 is positive
  • the third surface of the third lens 323 is positive.
  • One side is a flat surface, and the second surface of the third lens 323 is a convex surface; the optical power of the third lens 323 is positive; the first surface of the fourth lens 324 is a convex surface, and the fourth lens 324 The second surface is a convex surface, and the optical power of the fourth lens 324 is positive.
  • the second surface of the above-mentioned lens is the surface close to the reflective component 4 .
  • the first lens 321, the second lens 322 and the third lens 323 are convex cylindrical lenses.
  • the first lens 321, the second lens 322 and the third lens 323 are shaped convex cylindrical lenses.
  • the fourth lens 324 is a lenticular lens.
  • the lenticular lens is mainly used to collect the reshaped light, and during the imaging process, the lenticular lens and other lenses transmit the image.
  • the focal length range of the first lens 321 is: 7mm-10mm;
  • the focal length range of the second lens 322 is: -9mm ⁇ -6mm; the focal length range of the third lens 323 is: 3mm-5mm; the focal length range of the fourth lens 324 is: 6mm-8mm.
  • the focal length range of the first lens 321, the second lens 322, the third lens 323 and the fourth lens 324 is limited so that the light incident on the lens assembly 32 forms a uniform light, and the incident light is Shaping; and limiting the focal length range of the first lens 321, the second lens 322, the third lens 323 and the fourth lens 324 so that the image generated on the reflective component 4 (LCOS chip) is clearly transmitted.
  • the lens parameters of the first lens 321, the second lens 322, the third lens 323 and the fourth lens 324 can refer to Table 1 to Table 3.
  • the surface structures of the first lens 321 , the second lens 322 , the third lens 323 and the fourth lens 324 are defined so that the light incident on the lens assembly 32 forms a uniform light, and the incident light is shaping; and defining the surface structure of the first lens 321, the second lens 322, the third lens 323 and the fourth lens 324 so that the image generated on the reflective component 4 (LCOS chip) is clearly transmitted.
  • the beam adjustment module 3 further includes a first phase retarder 31 located between the polarizing element 2 and the reflective component 4 between.
  • a first phase retarder 31 is provided between the polarizing element 2 and the reflective component 4.
  • the first phase retarder 31 may be a quarter-wave plate.
  • a first phase retarder 31 is disposed between the polarizing element 2 and the reflective component 4, which serves to improve the contrast of the projection system.
  • the reflective component 4 (LCOS chip) serves as the image source, and the reflective component 4 (LCOS chip) converts the incident P light into S light through phase modulation.
  • the reflective component 4 (LCOS chip) converts the incident P light into S light through phase modulation.
  • P light cannot be converted 100% into S light, which will cause the dark field brightness of the picture to increase and the contrast to decrease.
  • a first phase retarder 31 is provided between the polarizing element 2 and the reflective component 4.
  • the fast axis of the first phase retarder 31 By fine-tuning the fast axis of the first phase retarder 31 (called the direction of the light vector with slow propagation speed in the phase retarder) Slow axis.
  • the direction of the light vector with the fastest propagation speed in the phase retardation film is called the fast axis.
  • the P light can be modulated in advance to ensure that the modulated P light is reflected by the reflective component 4 (LCOS chip). , will become 100% S light to improve the optical-mechanical contrast.
  • the beam adjustment module 3 includes a lens assembly 32 and a first phase retarder 31 .
  • the first phase retarder 31 may be located between the lens assembly 32 and the polarizing element 2 , or the first phase retarder 31 may be Located between lens assembly 32 and reflective component 4.
  • the first phase retarder 31 and the lens assembly 32 are not particularly limited, as long as they are arranged along the optical axis of the beam adjustment module 3 (that is, the optical axis of the lens assembly 32).
  • the beam adjustment module 3 further includes a brightness adjuster 33 located between the polarizing element 2 and the reflective component 4 .
  • the beam adjustment module 3 also includes a brightness adjuster 33.
  • the projection system will detect the brightness of the external environment in real time. When it is located in a bright outdoor environment, the brightness adjuster 33 adjusts the brightness so that the brightness into the eyes is the highest. When the environment is dark indoors or at night, the brightness adjuster 33 adjusts the brightness to appropriately reduce the eye brightness and improve the comfort of the projection system.
  • the beam adjustment module 3 includes a lens assembly 32 and a brightness adjuster 33.
  • the brightness adjuster 33 can be located between the lens assembly 32 and the polarizing element 2, or the brightness adjuster 33 can be located between the lens assembly 32 and the reflective element. between parts 4.
  • the brightness adjuster 33 and the lens assembly 32 are not particularly limited, as long as they are arranged along the optical axis of the beam adjustment module 3 (that is, the optical axis of the lens assembly 32).
  • the beam adjustment module 3 includes a lens assembly 32, a first phase retarder 31 and a brightness adjuster 33.
  • the first phase retarder 31, the lens assembly 32 and the The brightness adjuster 33 is provided between the polarizing element 2 and the reflective component 4 .
  • the beam adjustment module 3 includes a first phase retarder 31 , a brightness adjuster 33 , and a lens assembly 32 , wherein the first phase retarder 31 , the brightness adjuster 33 , and the lens assembly 32 are along the optical axis of the lens assembly 32 Setting, the position order of these three can be interchanged, and they do not have to be arranged in the order shown in Figure 1 and Figure 2.
  • the brightness adjuster 33 includes a second phase retardation film 331 and a third phase retardation film 332.
  • the second phase retardation film 331 is fixedly arranged, and the third phase retardation film 332 is fixedly arranged.
  • the second phase retardation plate 331 has a first fast axis
  • the third phase retardation plate 332 has a second fast axis
  • the third phase retardation plate 332 rotates relative to the second phase retardation plate 331 to adjust the The angle between the first fast axis and the second fast axis.
  • the brightness adjuster 33 is composed of two circular phase retardation plates, each phase retardation plate having a fast axis.
  • one phase retarder plate is fixedly set and the other phase retarder plate can rotate around the center of the circle.
  • the other phase retarder rotates so that the fast axes of the two phase retarders coincide, all light can pass through.
  • the other phase retarder is rotated so that the fast axes of the two phase retarders are 90° perpendicular, all light cannot pass through.
  • the brightness of the light is adjusted through the angle between the fast axes of the two phase retarders.
  • the projection system will detect the brightness of the external environment in real time.
  • the fast axes of the two phase retarders coincide, so that the brightness into the eyes is the highest;
  • one of the phase retarders wraps around The center of the circle is rotated so that the fast axes of the two phase retarders have a certain angle.
  • the angle is less than 90°, which appropriately reduces the brightness into the eyes and improves the comfort of the AR machine.
  • the light source assembly 1 includes a light source 11 and a reflective bowl 12. After the light emitted by the light source 11 is reflected by the reflective bowl 12, the light is transmitted parallel to the optical axis. , and then transmitted to the beam adjustment module 3 through the polarizing element 2 .
  • the light source 11 includes three light sources 11 , where the three light sources 11 include a first light source 11 , a second light source 11 and a third light source 11 , where the first light source 11 , the second light source 11 and the third light source 11 are all LEDs.
  • the light source emits light of three colors: red, green, and blue respectively.
  • the light source 11 emits light, and the light source 11 itself emits light at a relatively large angle, so a collimating device is required to shrink the light angle.
  • a CPC Complex Parabolic Concentrator
  • the large-angle light emitted by the LED light source will illuminate the inner wall of the reflective bowl 12. After being reflected by the reflective bowl 12, it will propagate vertically downward to achieve the effect of light collimation.
  • the projection system further includes an optical waveguide 5, which includes a coupling-in area 51 and an out-coupling area 52; the light reflected by the polarizing element 2 is transmitted to the coupling-in area. 51, and then transmitted to the coupling area 52 through the optical waveguide 5, and finally the light is output through the coupling area 52.
  • an optical waveguide 5 which includes a coupling-in area 51 and an out-coupling area 52; the light reflected by the polarizing element 2 is transmitted to the coupling-in area. 51, and then transmitted to the coupling area 52 through the optical waveguide 5, and finally the light is output through the coupling area 52.
  • the light reflected by the polarizing element 2 is not directly transmitted to the human eye 6, but an optical waveguide 5 is provided on the transmission path of the light, and the light reflected by the polarizing element 2 passes through the optical waveguide 5. After output, it is transmitted to the human eye 6.
  • a head-mounted device includes the projection system as described in the first aspect.
  • the head mounted device includes the projection system as described in the first aspect.
  • AR headsets for example, the head-mounted device is an AR optical machine.

Abstract

一种投影系统以及头戴设备。投影系统包括:光源组件(1)、偏振元件(2)、光束调整模块(3)和反射部件(4);光束调整模块(3)具有光轴,光源组件(1)位于光轴的第一侧;光源组件(1)发出的光线经过偏振元件(2)透射至光束调整模块(3)并被整形,且光线中至少中心光线从光轴的第一侧入射至光束调整模块(3);入射至光束调整模块(3)的光线被反射部件(4)反射至光束调整模块(3)并成像,且反射光线中至少中心光线从光轴的第二侧出射,进而经过偏振元件(2)的反射并输出。

Description

一种投影系统以及头戴设备 技术领域
本申请涉及光学设备技术领域,更具体地,本申请涉及一种投影系统以及头戴设备。
背景技术
随着成像技术的进步,人们对沉浸式体验的需求越来越高,近年来VR/AR技术的发展,逐渐满足人们对视觉体验的追求。头戴式设备能解放人们的双手,降低对屏幕的依赖,同时营造更好的视觉效果。
传统LCOS AR光机的架构包括照明部分和成像部分。照明部分内包括准直部件和整形部件,照明部分将光源发出的光线进行准直和整形,使光斑匹配LCOS芯片。成像部分的作用是将LCOS芯片上的图像传播至波导片内。在传统LCOS AR光机中,需要单独的整形部件对光线进行整形,以及需要单独的成像部件进行最终成像,因此这直接导致投影系统体积无法进一步缩小。
发明内容
本申请的一个目的是提供一种投影系统以及头戴设备新技术方案。
根据本申请实施例的第一方面,提供了一种投影系统。投影系统包括:
光源组件、偏振元件、光束调整模块和反射部件;
所述光束调整模块具有光轴,所述光源组件位于所述光轴的第一侧;
所述光源组件发出的光线经过所述偏振元件透射至所述光束调整模块,且光线中至少中心光线从光轴的第一侧入射至所述光束调整模块被整形;
入射至所述光束调整模块的光线被所述反射部件反射回所述光束调整模块,且反射光线中至少中心光线从光轴的第二侧出射并成像,进而经过所述偏振元件的反射并输出。
可选地,所述光束调整模块包括透镜组件,所述透镜组件对入射至所述光束调整模块的光线进行整形,且所述透镜组件对反射至所述光束调整模块的光线进行成像。
可选地,所述光束调整模块还包括第一相位延迟片,所述第一相位延迟片位于所述偏振元件和所述反射部件之间。
可选地,所述光束调整模块还包括亮度调节器,所述亮度调节器位于所述偏振元件与所述反射部件之间。
可选地,所述光束调整模块包括透镜组件、第一相位延迟片和亮度调节器,所述第一相位延迟片、所述透镜组件和所述亮度调节器设置在所述偏振元件和所述反射部件之间。
可选地,所述亮度调节器包括第二相位延迟片和第三相位延迟片,所述第二相位延迟片固定设置,所述第三相位延迟片活动设置;
所述第二相位延迟片具有第一快轴,所述第三相位延迟片具有第二快轴,所述第三相位延迟片相对所述第二相位延迟片旋转,以调整所述第一快轴和所述第二快轴之间的角度。
可选地,所述光源组件包括光源和反射碗,所述光源发出的光线被所述反射碗反射后,光线平行于光轴传输,进而经过所述偏振元件透射至所述光束调整模块。
可选地,所述投影系统还包括光波导片,所述光波导片包括耦入区和耦出区;经过所述偏振元件反射的光线传输至所述耦入区,进而经过所述光波导片传输至所述耦出区,最后光线经过所述耦出区输出。
根据本申请实施例第二方面,提供了一种头戴设备。所述头戴设备包括如第一方面所述的投影系统。
在本申请实施例中,提供了一种投影系统,实现了缩小投影系统的体的目的。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其他特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1所示为本申请投影系统的结构示意图。
图2所示为本申请投影系统的光路结构图。
图3所示为光源组件的结构示意图。
附图标记说明:
1、光源组件;11、光源;12、反射碗;2、偏振元件;3、光束调整模块;31、第一相位延迟片;32、透镜组件;321、第一透镜;322、第二透镜;323、第三透镜;324、第四透镜;33、亮度调节器;331、第二相位延迟片;332、第三相位延迟片;4、反射部件;5、光波导片;51、耦入区;52、耦出区;6、人眼。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其他例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
现有的AR光机架构包括照明部分和成像部分,其中照明部分包括整 形部件,整形部件对光源发出的光学进行整形,成像部分包括成像部件,成像部件实现图像成像。因此在现有的AR光机架构,需要单独的整形部件和单独的成像部件对光线进行对应处理,这样子设置后,现有的AR光机架构的体积无法进一步缩小。
基于上述技术问题,本申请提供了一种投影系统。参照图1-图3所示,投影系统包括:光源组件1、偏振元件2、光束调整模块3和反射部件4。所述光束调整模块3具有光轴,所述光源组件1位于所述光轴的第一侧。所述光源组件1发出的光线经过所述偏振元件2透射至所述光束调整模块3,且光线中至少中心光线从光轴的第一侧入射至所述光束调整模块3被整形。入射至所述光束调整模块3的光线被所述反射部件4反射回所述光束调整模块3,且反射光线中至少中心光线从光轴的第二侧出射并成像,进而经过所述偏振元件2的反射并输出。
在该实施例中,图1所示为投影系统的结构示意图。图2所示为投影系统的光线示意图。其中图2中粗黑线所示为光线传输光路图,图2中点划线所示为光束调整模块3的光轴。
参照图1和图2所示,光源组件1发出的光线经过偏振元件2的透射传输至光束调整模块3,光束调整模块3对入射的光线进行整形处理;整形处理后的光线被反射部件4反射,被反射后的光线携带图像信讯,使得整形处理后的光线重新回到光束调整模块3传输并出射。因此在该实施例中,没有在光源组件1中单独设置整形组件,而是对光线整形的部件和对图像成像的部件采用同一套光束调整模块3(即光束调整模块3既具有光线整形作用,又具有图像成像作用),缩小了投影系统的体积。
具体地,本实施例对光源组件1的设置位置进行限定,即光源组件1相对于光束调整模块3的光轴是偏置设置的,使得光源组件1发出的光线并非是直进直出的,而是入射光线中的至少中心光线从光束调整模块3的第一侧入射,反射光线中的至少中心光线从光束调整模块3的第二侧出射,其中第一侧和第二侧位于光轴的不同侧。
现有技术中,入射的光线是沿光轴方向进入光束调整模块3的,若入射的光线沿光轴方向进入光束调整模块3中,这样入射的光线沿光轴方 向入射,被反射部件4反射后,反射的光学也是沿光轴方向出射,入射光线和反射光线重叠设置,这样光束调整模块3只能够起到对图像成像作用,而无法实现对光线的整形作用。
本申请实施例对光源组件1相对于光束调整模块3的光轴偏置设置,使得至少入射光线中的中心光线和至少反射光线中的中心光线不重叠传输,这样入射光线相对于光轴是偏轴传输的,入射光线可以借助光束调整模块3的第一侧对光线进行整形,反射光线在光束调整模块3的第二侧进行传输,光束调整模块3的第二侧能够对带有图像信讯的光线进行成像。
因此在本申请实施例中,对光源组件1的设置位置进行限定,使得对光线的整形和对光线的成像共用一套光束调整模块3,避免在光源组件1中单独的设置整形部件对光束进行整形,缩小了投影系统体积的作用。
在该实施例中,投影系统包括偏振元件2,偏振元件2设置在光线的传输光路上。例如偏振元件2可以是偏振反射器。偏振反射器可以对光线进行选择性的反射或者透射,例如偏振反射器反射S光,并透射P光。具体地,光源组件1发出的光线为自然光,其包含50%的P光与50%的S光。偏振反射器可以将光源组件1发出光线中的S光反射,只保留P光,使P光经过偏振反射器的透射,在光束调整模块3中进行整形处理,并可以在投影系统中继续传播。以及偏振反射器设置在光源组件1和光束调整模块3之间,从光束调整模块3的第二侧出射的光线被偏振反射器反射,进而被反射的光线输出,输出的光线被人眼6接收。
在该实施例中,反射部件4对光线进行反射处理。例如反射部件4可以是光阀部件。例如光阀部件属于极化分光式部件。例如光阀部件包括但不限定是LCOS显示屏,也可以是LCD显示屏。
需要说明的是,光轴是光束调整模块3的中心轴。
在一个可选的实施例中,参照图2所示,从光轴的第一侧入射的光线与所述光轴之间存在夹角,所述夹角范围为10°~15°。
在该实施例中,光线从光轴的第一侧入射,也即是光线是从光束调整模块3的第一侧入射的。从光束调整模块3的第一侧入射的光线与光束调整模块3的光轴之间存在夹角,夹角范围为10°~15°。
具体地,光源组件1相对于光轴是偏置放置的,因此光源组件1发出的光线并不会垂直入射到反射部件4(LCOS芯片)上,而是存在一定的角度,该角度约为10°~15°。本实施例对光束调整模块3的第一侧入射的光线与光束调整模块3的光轴之间存在夹角进行限定,使得光束调整模块3的第一侧能够对入射的光线进行整形处理。若夹角过大或者过小,则光束调整模块3的第一侧对入射光线的整形效果有影响,即若夹角过大或者过小,入射光线无法根据光束调整模块3的第一侧的结构(具体地是指透镜结构)对其进行整形处理。
具体地,入射到反射部件4(LCOS芯片)上的光线为P光(由于光源组件1发出的光线第一次经过偏振元件2,透过了P光),经过反射部件4(LCOS芯片)调制,生成图像的光线为S光,偏振元件2会将反射部件4(LCOS芯片)产生的S光输出。
反射部件4(LCOS芯片)反射后的光线也存在同样的夹角,反射后的光线经过光束调整模块3成像后,会到达偏振元件2;若从光束调整模块3的第一侧入射的光线与光束调整模块3的光轴之间存在的夹角过大或者过小,反射后的光线与光轴之间的夹角也会过小或者过大,若夹角过小或者过大,反射后的光学则无法准确地到达偏振元件2。
在一个实施例中,参照图1和图2所示,所述光束调整模块3包括透镜组件32,所述透镜组件32对入射至所述光束调整模块3的光线进行整形,且所述透镜组件32对反射至所述光束调整模块3的光线进行成像。
在该实施例中,光束调整模块3包括了透镜组件32(也即镜头模组),其中该透镜组件32具有两个作用,一是整形光源组件1发出的光线,将光源组件1发出的圆形光斑整形为矩形光斑,以适配反射部件4(LCOS芯片)的有效区;二是完成成像的效果,将反射部件4(LCOS芯片)上产生的图像清晰的传输。
具体地,光源组件1相对于透镜组件32的光轴偏置设置,光源组件1发出的光线经过偏振元件2的透射,进而入射至透镜组件32的第一侧,透镜组件32的第一侧对光源组件1发出的光线进行整形;整形后的光线被反射部件4反射,反射后的光线经过透镜组件32的第二侧的传输,使 得反射部件4(LCOS芯片)上产生的图像清晰的传输。
在一个可选的实施例中,参照图1和图2所示,所述透镜组件32包括沿光轴依次设置的第一透镜321、第二透镜322、第三透镜323和第四透镜324,所述第四透镜324靠近所述反射部件4设置。本实施例通过设置四个透镜对光线进行整形和将反射部件4(LCOS芯片)上产生的图像清晰的传输,缩小了投影系统的体积。
在一个可选的实施例中,沿光轴方向,所述第一透镜321的第一面为凸面,所述第一透镜321的第二面为平面,所述第一透镜321的光焦度为正;所述第二透镜322的第一面为凸面,所述第二透镜322的第二面为平面;所述第二透镜322的光焦度为正;所述第三透镜323的第一面为平面,所述第三透镜323的第二面为凸面;所述第三透镜323的光焦度为正;所述第四透镜324的第一面为凸面,所述第四透镜324的第二面为凸面,所述第四透镜324的光焦度为正。其中上述透镜的第二面均为靠近所述反射部件4的表面。
在该实施例中,第一透镜321、第二透镜322和第三透镜323为凸柱透镜,具体地,第一透镜321、第二透镜322和第三透镜323为整形凸柱透镜。第四透镜324为双凸透镜,双凸透镜主要用于汇聚来自整形后的光,以及在成像过程中,双凸透镜其其他透镜传递图像。
在一个可选的实施例中,所述第一透镜321的焦距范围为:7mm-10mm;
所述第二透镜322的焦距范围为:-9mm~-6mm;所述第三透镜323的焦距范围为:3mm-5mm;所述第四透镜324的焦距范围为:6mm-8mm。
在该实施例中,对第一透镜321、第二透镜322、第三透镜323和第四透镜324的焦距范围进行限定,使得入射至透镜组件32的光线形成均匀化光线,对入射的光线进行整形;以及对第一透镜321、第二透镜322、第三透镜323和第四透镜324的焦距范围进行限定,使得反射部件4(LCOS芯片)上产生的图像清晰的传输。
在一个具体的实施例中,第一透镜321、第二透镜322、第三透镜323和第四透镜324的透镜参数可以参照表1-表3。
表1:
Figure PCTCN2022099790-appb-000001
表2:
Figure PCTCN2022099790-appb-000002
表3:
Figure PCTCN2022099790-appb-000003
Figure PCTCN2022099790-appb-000004
在该实施例中,对第一透镜321、第二透镜322、第三透镜323和第四透镜324的面型结构进行限定,使得入射至透镜组件32的光线形成均匀化光线,对入射的光线进行整形;以及对第一透镜321、第二透镜322、第三透镜323和第四透镜324的面型结构进行限定,使得反射部件4(LCOS芯片)上产生的图像清晰的传输。
在一个实施例中,参照图1和图2所示,所述光束调整模块3还包括第一相位延迟片31,所述第一相位延迟片31位于所述偏振元件2和所述反射部件4之间。
在该实施例中,在偏振元件2和反射部件4之间设置有第一相位延迟片31,例如第一相位延迟片31可以是四分之一波片。在偏振元件2和反射部件4之间设置有第一相位延迟片31,其作用为提高投影系统的对比度。
具体地,反射部件4(LCOS芯片)作为图像源,反射部件4(LCOS芯片)会通过相位调制,将入射的P光转换成S光,但由于不同反射部件4(LCOS芯片)的生产工艺差异,不能将P光百分之百的转换成S光,这会造成画面暗场亮度上升,对比度下降。
为了提升投影系统的对比度,在偏振元件2和反射部件4之间设置有第一相位延迟片31,通过微调第一相位延迟片31快轴(称相位延迟片 中传播速度慢的光矢量方向为慢轴。称相位延迟片中传播速度快的光矢量方向为快轴。)与P光的夹角,可以提前调制P光,保证调制后的P光经过反射部件4(LCOS芯片)的反射后,会变成百分百的S光,以提高光机对比度。
在一个具体的实施例中,光束调整模块3包括透镜组件32和第一相位延迟片31,第一相位延迟片31可以位于透镜组件32和偏振元件2之间,或者第一相位延迟片31可以位于透镜组件32和反射部件4之间。本实施例对第一相位延迟片31和透镜组件32的不作特别限定,只要两者沿着光束调整模块3的光轴(即透镜组件32的光轴)方向设置即可。
在一个实施例中,参照图1和图2所示,所述光束调整模块3还包括亮度调节器33,所述亮度调节器33位于所述偏振元件2与所述反射部件4之间。
在该实施例中,光束调整模块3还包括亮度调节器33,投影系统会实时探测外界环境光亮度,当位于室外明亮环境时,亮度调节器33对亮度进行调节,使入眼亮度最高,当位于室内或夜晚暗环境时,亮度调节器33对亮度进行调节,适当的降低入眼亮度,提高投影系统舒适性。
在一个具体的实施例中,光束调整模块3包括透镜组件32和亮度调节器33,亮度调节器33可以位于透镜组件32和偏振元件2之间,或者亮度调节器33可以位于透镜组件32和反射部件4之间。本实施例对亮度调节器33和透镜组件32的不作特别限定,只要两者沿着光束调整模块3的光轴(即透镜组件32的光轴)方向设置即可。
在一个实施例中,所述光束调整模块3包括透镜组件32、第一相位延迟片31和亮度调节器33,沿光轴方向,所述第一相位延迟片31、所述透镜组件32和所述亮度调节器33设置在所述偏振元件2和所述反射部件4之间。
在该实施例中,光束调整模块3包括第一相位延迟片31、亮度调节器33、透镜组件32,其中第一相位延迟片31、亮度调节器33、透镜组件32沿透镜组件32的光轴设置,这三者的位置顺序可以互换,并不是必须图1和图2所示出的顺序排布。
在一个实施例中,参照图1和图2所示,所述亮度调节器33包括第二相位延迟片331和第三相位延迟片332,所述第二相位延迟片331固定设置,所述第三相位延迟片332活动设置;
所述第二相位延迟片331具有第一快轴,所述第三相位延迟片332具有第二快轴,所述第三相位延迟片332相对所述第二相位延迟片331转动,以调整所述第一快轴和所述第二快轴之间的角度。
在该实施例中,亮度调节器33由两片圆形的相位延迟片组成,每个相位延迟片都具有快轴。在两个相位延迟片中,一个相位延迟片被固定设置,另一个相位延迟片可以绕圆心旋转。当另外一个相位延迟片旋转,使得两个相位延迟片的快轴重合时,所有光线都可以通过。当另外一个相位延迟片旋转,使得两个相位延迟片的快轴为90°垂直时,所有光线均无法通过。
因此通过两个相位延迟片的快轴之间的角度,对光线的亮度进行调整。具体地,投影系统会实时探测外界环境光亮度,当位于室外明亮环境时,两个相位延迟片的快轴重合,使入眼亮度最高;当位于室内或夜晚暗环境时,其中一个相位延迟片绕圆心旋转,使两个相位延迟片的快轴具有一定夹角,该夹角小于90°,适当的降低入眼亮度,提高AR整机舒适性。
在一个实施例中,参照图1和图3所示,所述光源组件1包括光源11和反射碗12,所述光源11发出的光线被所述反射碗12反射后,光线平行于光轴传输,进而经过所述偏振元件2透射至所述光束调整模块3。
具体地,光源11包括三个光源11,其中三个光源11包括第一光源11、第二光源11和第三光源11,其中第一光源11、第二光源11和第三光源11均为LED灯源,分别发出红、绿、蓝三个颜色的光线。其中光源11发出光线,光源11本身发光角度较大,因此需要准直器件,收缩光线角度。在该实施例中,在光源11上方设置CPC(复合抛物面聚光器)反射碗12。
当在光源11上设置反射碗12,LED灯源发出的大角度光线会照射到反射碗12内壁上,被反射碗12反射后,垂直向下方传播,达到光线准直的效果。
在一个实施例中,所述投影系统还包括光波导片5,所述光波导片5包括耦入区51和耦出区52;经过所述偏振元件2反射的光线传输至所述耦入区51,进而经过所述光波导片5传输至所述耦出区52,最后光线经过所述耦出区52输出。
在该实施例中,被偏振元件2反射的光线并没有直接传输至人眼6,而是在光线的传输光路上设置有光波导片5,被偏振元件2反射的光线经过光波导片5的输出后传输至人眼6。
根据本申请实施例第二方面,提供了一种头戴设备。所述头戴设备包括如第一方面所述的投影系统。例如头戴设备AR头戴设备。例如头戴设备是AR光机。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过示例对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (9)

  1. 一种投影系统,其特征在于,包括:光源组件(1)、偏振元件(2)、光束调整模块(3)和反射部件(4);
    所述光束调整模块(3)具有光轴,所述光源组件(1)位于所述光轴的第一侧;
    所述光源组件(1)发出的光线经过所述偏振元件(2)透射至所述光束调整模块(3),且光线中至少中心光线从光轴的第一侧入射至所述光束调整模块(3)被整形;
    入射至所述光束调整模块(3)的光线被所述反射部件(4)反射回所述光束调整模块(3),且反射光线中至少中心光线从光轴的第二侧出射并成像,进而经过所述偏振元件(2)的反射并输出。
  2. 根据权利要求1所述的投影系统,其特征在于,所述光束调整模块(3)包括透镜组件(32),所述透镜组件(32)对入射至所述光束调整模块(3)的光线进行整形,且所述透镜组件(32)对反射至所述光束调整模块(3)的光线进行成像。
  3. 根据权利要求1或2所述的投影系统,其特征在于,所述光束调整模块(3)还包括第一相位延迟片(31),所述第一相位延迟片(31)位于所述偏振元件(2)和所述反射部件(4)之间。
  4. 根据权利要求1或2所述的投影系统,其特征在于,所述光束调整模块(3)还包括亮度调节器(33),所述亮度调节器(33)位于所述偏振元件(2)与所述反射部件(4)之间。
  5. 根据权利要求1所述的投影系统,其特征在于,所述光束调整模块(3)包括透镜组件(32)、第一相位延迟片(31)和亮度调节器(33),所述第一相位延迟片(31)、所述透镜组件(32)和所述亮度调节器(33)设置在所述偏振元件(2)和所述反射部件(4)之间。
  6. 根据权利要求5所述的投影系统,其特征在于,所述亮度调节器(33)包括第二相位延迟片(331)和第三相位延迟片(332),所述第二相位延迟片(331)固定设置,所述第三相位延迟片(332)活动设置;
    所述第二相位延迟片(331)具有第一快轴,所述第三相位延迟片(332)具有第二快轴,所述第三相位延迟片(332)相对所述第二相位延迟片(331)旋转,以调整所述第一快轴和所述第二快轴之间的角度。
  7. 根据权利要求1所述的投影系统,其特征在于,所述光源组件(1)包括光源(11)和反射碗(12),所述光源(11)发出的光线被所述反射碗(12)反射后,光线平行于光轴传输,进而经过所述偏振元件(2)透射至所述光束调整模块(3)。
  8. 根据权利要求1所述的投影系统,其特征在于,所述投影系统还包括光波导片(5),所述光波导片(5)包括耦入区(51)和耦出区(52);经过所述偏振元件(2)反射的光线传输至所述耦入区(51),进而经过所述光波导片(5)传输至所述耦出区(52),最后光线经过所述耦出区(52)输出。
  9. 一种头戴设备,其特征在于,所述头戴设备包括如权利要求1-8任一项所述的投影系统。
PCT/CN2022/099790 2022-05-30 2022-06-20 一种投影系统以及头戴设备 WO2023231085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210604142.3A CN115167067A (zh) 2022-05-30 2022-05-30 一种投影系统以及头戴设备
CN202210604142.3 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231085A1 true WO2023231085A1 (zh) 2023-12-07

Family

ID=83483417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099790 WO2023231085A1 (zh) 2022-05-30 2022-06-20 一种投影系统以及头戴设备

Country Status (2)

Country Link
CN (1) CN115167067A (zh)
WO (1) WO2023231085A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140268330A1 (en) * 2013-03-15 2014-09-18 Christie Digital Systems Canada Inc. Imaging with shaped highlight beam
CN207380430U (zh) * 2017-11-23 2018-05-18 赣州德浩智汇电子科技股份有限公司 一种激光投影仪
CN110781848A (zh) * 2019-10-30 2020-02-11 Oppo广东移动通信有限公司 屏下指纹识别装置、电子设备
CN112068389A (zh) * 2019-06-11 2020-12-11 宁波舜宇车载光学技术有限公司 模块化投影系统及其投影方法
CN212484059U (zh) * 2020-10-10 2021-02-05 舜宇光学(浙江)研究院有限公司 合色照明装置、微型投影光引擎以及电子设备
CN112930468A (zh) * 2018-11-08 2021-06-08 成都频泰鼎丰企业管理中心(有限合伙) 三维测量设备
CN216449827U (zh) * 2021-04-27 2022-05-06 深圳珑璟光电科技有限公司 一种近眼显示系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI524128B (zh) * 2011-12-09 2016-03-01 銘異科技股份有限公司 投影系統
CN109557754A (zh) * 2017-09-26 2019-04-02 深圳光峰科技股份有限公司 光源系统及投影设备
CN110928121B (zh) * 2018-09-20 2022-03-25 深圳光峰科技股份有限公司 光源系统及投影设备
CN109188692A (zh) * 2018-09-21 2019-01-11 歌尔智能科技有限公司 光学系统及头戴显示设备
CN113031381B (zh) * 2021-03-05 2022-03-04 青岛海信激光显示股份有限公司 光源组件和投影设备
CN112987473A (zh) * 2021-04-13 2021-06-18 杭州灵伴科技有限公司 一种微型投影显示装置以及具有它的ar显示系统
CN114967311B (zh) * 2022-04-28 2023-10-20 歌尔光学科技有限公司 一种投影系统以及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140268330A1 (en) * 2013-03-15 2014-09-18 Christie Digital Systems Canada Inc. Imaging with shaped highlight beam
CN207380430U (zh) * 2017-11-23 2018-05-18 赣州德浩智汇电子科技股份有限公司 一种激光投影仪
CN112930468A (zh) * 2018-11-08 2021-06-08 成都频泰鼎丰企业管理中心(有限合伙) 三维测量设备
CN112068389A (zh) * 2019-06-11 2020-12-11 宁波舜宇车载光学技术有限公司 模块化投影系统及其投影方法
CN110781848A (zh) * 2019-10-30 2020-02-11 Oppo广东移动通信有限公司 屏下指纹识别装置、电子设备
CN212484059U (zh) * 2020-10-10 2021-02-05 舜宇光学(浙江)研究院有限公司 合色照明装置、微型投影光引擎以及电子设备
CN216449827U (zh) * 2021-04-27 2022-05-06 深圳珑璟光电科技有限公司 一种近眼显示系统

Also Published As

Publication number Publication date
CN115167067A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US9645480B2 (en) Light source module and projection apparatus having the same
US10386710B2 (en) Projector and illumination system thereof
CN1669066B (zh) 具有反射镜和偏振转换器的偏振光源系统
US10754162B2 (en) Projection apparatus and head-mounted display device
JP2001215613A (ja) プロジェクタ
JP2002328430A (ja) 画像表示装置
US20180259840A1 (en) Projection system
JP2019113842A (ja) 投影装置
WO2017101460A1 (zh) 一种合光系统及其投影照明光路
TW201349840A (zh) 立體投影光源系統
TWI440958B (zh) 立體投影光源系統
CN112731749B (zh) 激光投影设备
US9057881B2 (en) Illumination system for a projection apparatus and projection apparatus
WO2023231085A1 (zh) 一种投影系统以及头戴设备
TW200615685A (en) Optical system for projection and projector therewith
US20180348613A1 (en) Projector, Illumination System, and Wavelength Conversion Device
TWI669563B (zh) 投影模組
WO2023082468A1 (zh) 一种反向分布照明的ar光机及ar眼镜
CN210894973U (zh) 一种激光光源系统
CN210428067U (zh) 一种蓝紫光led节能投影机及其投影膜
JP2001125198A (ja) 照明用光源及びそれを用いた液晶プロジェクター
CN214751290U (zh) 一种可调整f#的照明光路结构
WO2021232677A1 (zh) 复用光源折叠光路的双目光学显示系统及可穿戴设备
TWI834299B (zh) 一種近眼顯示裝置
US20240069423A1 (en) Projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944404

Country of ref document: EP

Kind code of ref document: A1