WO2023082468A1 - 一种反向分布照明的ar光机及ar眼镜 - Google Patents

一种反向分布照明的ar光机及ar眼镜 Download PDF

Info

Publication number
WO2023082468A1
WO2023082468A1 PCT/CN2022/072736 CN2022072736W WO2023082468A1 WO 2023082468 A1 WO2023082468 A1 WO 2023082468A1 CN 2022072736 W CN2022072736 W CN 2022072736W WO 2023082468 A1 WO2023082468 A1 WO 2023082468A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display screen
optical machine
array
rgb
Prior art date
Application number
PCT/CN2022/072736
Other languages
English (en)
French (fr)
Inventor
蒋厚强
邓家裕
朱以胜
Original Assignee
深圳市光舟半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光舟半导体技术有限公司 filed Critical 深圳市光舟半导体技术有限公司
Publication of WO2023082468A1 publication Critical patent/WO2023082468A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the field of optical display technology, in particular to an AR optical machine and AR glasses for reverse distributed lighting.
  • near-eye display is the key to its technology, and imaging quality and thinness are the main considerations.
  • the near-eye display system is generally composed of an image far and near optical transmission system, and the image frame emitted by the image source is transmitted to the human eye through the optical transmission system.
  • AR needs to have a certain transmittance, so that the wearer can see the external environment while seeing the image.
  • AR glasses use diffractive waveguide technology, such as Microsoft's HoloLens 1st and 2nd generation, Magic Leap's AR glasses and so on. Due to the low efficiency of light wave diffraction and the selectivity of gratings to wavelengths, AR glasses mostly use 2-3 layers of waveguides to achieve color display. Strong color uniformity, but low transmittance and increased wearing weight. In order to improve the wearing experience, a single-layer diffractive waveguide can be used to realize color display. However, the current single-layer waveguide is not well compatible with the color light of the three bands, and it is prone to uneven color formation.
  • the embodiment of the present application provides an AR light machine and AR glasses with reverse distributed illumination, which aims to compensate the uneven light output part of RGB three color lights through reverse distributed illumination based on a single-layer diffractive waveguide, so as to produce better The color uniformity improves the wearing experience.
  • An embodiment of the present application provides an AR optical machine for reverse distributed lighting, including an optical machine body, an optical machine display screen is provided on the optical machine body, and a An optomechanical light source that provides illumination for the optomechanical display screen, a beam splitter that provides polarized illumination for the optomechanical display screen is provided in front of the optomechanical display screen, and a beam splitter for the optomechanical display screen is provided in front of the beam splitter An optomechanical projection lens for pixel unit collimation on the display screen;
  • the luminous color of the optomechanical light source is RGB three-color light, and the lighting mode is non-uniform lighting.
  • a diffusion sheet for diffusing light beams is arranged between the optomechanical display screen and the optomechanical light emitting source.
  • the optomechanical light source is an LED light box with an opening downward
  • the LED light box is set at an angle of 90° to the optomechanical display screen
  • the LED light box is parallel to the light RGB three-color LED chips are arranged on the side of the display screen of the machine
  • the rest of the LED light box is a reflective surface of the LED light box for reflecting the light beams of the RGB three-color LED chips.
  • RGB three-color LED chips there are two RGB three-color LED chips, and the two RGB three-color LED chips are mirror-symmetrically mounted on two sides of the LED light box.
  • the AR optical machine includes a left-eye optical machine and a right-eye optical machine
  • the red LED chip in the RGB three-color LED chips is arranged on the left side of the optical machine display screen, and the green light chip in the RGB three-color LED chips is arranged in the opposite position.
  • the blue light chip in the RGB three-color LED chip is set on the right side of the optical-mechanical display screen;
  • the red LED chip in the RGB three-color LED chips is arranged on the right side of the optical machine display screen, and the green light chip in the RGB three-color LED chips is arranged in the opposite position.
  • the blue light chip among the RGB three-color LED chips is arranged on the left side relative to the optomechanical display screen.
  • the optomechanical light source is an LED array light source, and the LED array light source includes a red light array, a green light array and a blue light array, and the LED array light source is set at an angle of 90° to the optomechanical display screen .
  • the AR optical machine includes a left-eye optical machine and a right-eye optical machine
  • the red light array is arranged on the left side relative to the optical machine display screen
  • the green light array is arranged at the middle position relative to the optical machine display screen
  • the blue light array is arranged on the left side relative to the optical machine display screen.
  • the red light array is arranged at the right side relative to the optical machine display screen
  • the green light array is arranged at the middle position relative to the optical machine display screen
  • the blue light array is arranged at a position opposite to the optical machine display screen.
  • the left position of the optomechanical display is arranged at the right side relative to the optical machine display screen.
  • the LED array light source is a 3 ⁇ 3 array, a 6 ⁇ 6 array or a 9 ⁇ 9 array.
  • each diffusion sheet corresponds to one of the RGB three-color light beams; wherein, the diffusion sheet corresponding to the red light beam is a low-diffusion-angle diffusion sheet, which corresponds to the green light beam.
  • the corresponding diffusion sheet is a high diffusion angle diffusion sheet, and the diffusion sheet corresponding to the blue light beam is a low diffusion angle diffusion sheet.
  • the diffusion sheet is a lens array.
  • each lens array corresponds to one of the RGB three-color light beams; wherein, the lens array corresponding to the red light beam is a long focal length lens array, corresponding to the green light beam The lens array is a short focal length lens array, and the lens array corresponding to the blue light beam is a long focal length lens array.
  • the optomechanical display screen is an LCOS display panel or a DMD display panel
  • the beam splitter is a polarizing beam splitter
  • the embodiment of the present application also provides AR glasses, which adopt the AR optical machine for reverse distributed illumination as described in any one of the above items.
  • the embodiment of the present application provides an AR optical machine and AR glasses with reverse distributed lighting.
  • the AR optical machine includes an optical machine body, and an optical machine display is arranged on the optical machine body.
  • An optomechanical light source for providing illumination for the optomechanical display screen is provided, and a beam splitter providing polarized illumination for the optomechanical display screen is provided in front of the optomechanical display screen, and the front of the beam splitter
  • An optomechanical projection lens for collimating pixel units of the optomechanical display screen is provided; the light emitting color of the optomechanical light source is RGB three-color light, and the illumination mode is non-uniform illumination.
  • a single-layer diffractive waveguide is used as the AR substrate, and the uneven light output part of RGB three colors is compensated by reverse distributed lighting, thereby producing better color uniformity and improving wearing experience.
  • FIG. 1 is a schematic structural diagram of an AR optical machine for reverse distributed lighting provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an LED light box in an AR light machine for reverse distributed lighting provided by an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an LED array light source in an AR light machine for reverse distributed lighting provided by an embodiment of the present application
  • FIG. 4 is another structural schematic diagram of an LED array light source in an AR light machine for reverse distributed lighting provided by an embodiment of the present application
  • Fig. 5 is a schematic diagram of the RGB brightness of the optical machine display screen of an AR light machine with reverse distributed illumination provided by the embodiment of the present application;
  • FIG. 6 is another schematic diagram of RGB luminance of an optical machine display screen in an AR light machine with reverse distributed illumination provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an AR optical machine for reverse distributed lighting provided by an embodiment of the present application.
  • the AR optical machine includes an optical machine body 100 on which an optical machine Display screen 500, the top of the optical mechanical display screen 500 is provided with an optical mechanical light source 200A for providing illumination for the optical mechanical display screen, and the front of the optical mechanical display screen 500 is provided with a light source for the optical mechanical display screen 500 provides a beam splitter 400 for polarized illumination, and the front of the beam splitter 400 is provided with an optomechanical projection lens 300 for collimating pixel units of the optomechanical display screen 500;
  • the light emitting color of the optomechanical light emitting source 200A is RGB three-color light, and the lighting mode is non-uniform lighting.
  • the AR optical machine includes an optical machine body 100 , a projection lens 300 , an optical machine light source 200A (or 200B, as shown in FIG. 4 ), a beam splitter 400 and an optical machine display 500 .
  • the light beam emitted by the optomechanical light source 200A is polarized by the beam splitter 400 and then reflected onto the optomechanical display 500. Due to the position setting of the three-color LEDs, a light beam is generated on the optomechanical display 500. color separation.
  • the blue light (B) has a higher brightness on the left side of the optical machine display 500 and gradually decreases toward the right;
  • the green light (G) has higher brightness on both sides of the optical machine display 500 and gradually declines toward the middle;
  • the red light (R) The brightness is higher on the right side of the optomechanical display screen 500 and gradually decreases toward the left side.
  • the image information carried by the light beam is coupled into the waveguide plate through the beam splitter 400 and the projection lens 300, and is diffracted under the action of the grating and propagated by total internal reflection.
  • the diffraction efficiency of blue light (B) gradually decreases along the left side of the screen, the high brightness value on the left side of the original screen gradually decreases, and the overall brightness variance shrinks; the diffraction efficiency of green light (G) gradually decreases along the two sides of the screen.
  • the white picture projected by it is uniform in color, but when it passes through the pupil dilation and propagation of the diffraction waveguide, the color gradually shifts, specifically, the red light moves away The direction of the entrance pupil is shifted, and the blue light cannot be effectively transmitted to the center of the exit pupil, resulting in color separation of the white picture of the exit pupil, and the white picture of the right eye becomes a color separation picture of red-green-blue.
  • the AR optical machine uses a single-chip diffractive waveguide as the AR substrate, and compensates the uneven light output part of the RGB three colors through reverse distributed lighting, thereby producing better color uniformity and improving wearability. experience.
  • a diffusion sheet 600 for diffusing light beams is disposed between the optomechanical display screen 500 and the optomechanical light emitting source 200A.
  • the light beam emitted by the optomechanical light emitting source 200A (200B in FIG. 4 ) is diffused by the diffusion sheet 600 , thereby changing the brightness distribution on the optomechanical display screen 500 .
  • non-uniform illumination is used to realize the color compensation of the single-layer diffractive waveguide.
  • the optomechanical light source 200A (or 200B) and the diffusion sheet 600 are controlled.
  • the range of color compensation improve the color uniformity of the single-layer diffractive waveguide.
  • the optomechanical light emitting source 200A is an LED light box with an opening downward, and the LED light box and the optomechanical display screen 500 are arranged at an angle of 90°.
  • the side of the LED light box parallel to the light-mechanical display screen 500 is provided with RGB three-color LED chips (211A and 212A in FIG. 2 ), and the remaining surfaces of the LED light box are for reflecting RGB three-color LED chips Reflective surfaces of LED light boxes for chip beams (221A, 222A, and 223A in FIG. 2).
  • the two RGB three-color LED chips 211A and 212A are mirror-symmetrically mounted on two sides of the LED light box.
  • the LED light box is used as the light-mechanical light source 200A, and the LED light box includes the RGB three-color LED chips 211A and 212A of the LED light source and three reflective surfaces 221A, 222A and 222A of the LED light box. 223A, the three reflective surfaces 221A, 222A and 223A of the LED light box uniformly mix the RGB light sources emitted by the RGB three-color LED chips 211A and 212A. This structure can greatly compress the light source structure and reduce the size of the light machine.
  • the AR optical machine includes a left-eye optical machine and a right-eye optical machine
  • the red LED chips in the RGB three-color LED chips 211A and 212A are arranged on the left side of the optical machine display screen 500, and the RGB three-color LED chips 211A and 212A
  • the green chip of the LED is arranged in the middle position relative to the optical-mechanical display screen 500, and the blue-light chip in the RGB three-color LED chips 211A and 212A is arranged in the right position relative to the optical-mechanical display screen 500;
  • the red LED chips in the RGB three-color LED chips 211A and 212A are arranged on the right side of the optical machine display screen 500, and the RGB three-color LED chips 211A and 212A
  • the green chip of the LED is set at the middle position relative to the optical-mechanical display screen 500
  • the blue-light chip of the RGB three-color LED chips 211A and 212A is set at the left position relative to the optical-mechanical display screen 500 .
  • the AR optical machines are divided into left-eye optical machines and right-eye optical machines. And according to the position of the left-eye light machine and the position of the right-eye light machine, the positions of the three color LED chips in the RGB three-color LED chips 211A and 212A are correspondingly set, so as to ensure the overall imaging color uniformity of the AR light machine.
  • the light beams are polarized by the beam splitter 400 and then reflected to the optical machine display screen 500. Due to the position setting of the three-color LEDs and the The role of the diffuser produces color separation on the optical-mechanical display 500.
  • blue light (B) has a higher brightness on the left side of the optical-mechanical display 500 and gradually decreases toward the right;
  • green light (G) has a higher brightness on the optical-mechanical display 500 The brightness on both sides of the 500 is higher, and gradually declines toward the middle; the red light (R) has higher brightness on the right side of the optical-mechanical display 500, and gradually decreases toward the left.
  • the image information carried by the light beam is coupled into the waveguide plate through the beam splitter 400 and the projection lens 300, and is diffracted by the action of the grating and propagated by total internal reflection.
  • the diffraction efficiency of blue light (B) gradually decreases along the left side of the screen, the high brightness value on the left side of the original screen gradually decreases, and the variance of the overall brightness decreases
  • the diffraction efficiency of green light (G) gradually decreases along the two sides of the screen, The high luminance values on both sides of the original image gradually decrease, and the overall luminance variance decreases
  • the diffraction efficiency of red light (R) gradually decreases along the right side of the image, the high luminance values on the right side of the original image gradually decrease, and the overall luminance variance decreases.
  • the optomechanical light source is an LED array light source 200B
  • the LED array light source 200B includes a red light array 210B, a green light array 220B and a blue light array 230B, and the LED array The light source 200B is set at an angle of 90° to the optomechanical display screen 500 .
  • the LED array light source 200B is used as the optomechanical light source, and the LED array light source 200B is specifically divided into a red light array 210B that emits a red light beam, a green light array 220B that emits a green light beam, and a green light array that emits a green light beam. Blue light array 230B of blue light beams.
  • the LED array light source 200B is a 3 ⁇ 3 array, a 6 ⁇ 6 array or a 9 ⁇ 9 array.
  • the number of light sources is increased by setting the number of arrays, so that the control effect can be more obvious.
  • the LED array light source 200B can be set to individually control the brightness of each chip, so as to adapt to different diffraction waveguides, so as to better improve the compensation effect and improve the color of the exit pupil beam Uniformity.
  • the AR optical machine includes a left-eye optical machine and a right-eye optical machine
  • the red light array 210B is arranged on the left side relative to the optical machine display screen 500, the green light array 220B is arranged in the middle position relative to the optical machine display screen 500, and the blue light array 230B Set on the right side relative to the optomechanical display screen 500;
  • the red light array 210B is arranged on the right side relative to the optical machine display screen 500
  • the green light array 220B is arranged in the middle position relative to the optical machine display screen 500
  • the blue light array 230B It is arranged on the left side relative to the optomechanical display screen 500 .
  • the color separation of the white picture of the right exit pupil is from left to right so as to be red light, green light and blue light. Therefore, the optical machine light source 200B uses the uneven distribution method, wherein the red light focuses on the right part of the optical machine display 500 to compensate for the low brightness of the red light on the right side of the exit pupil; the green light focuses on illuminating the two sides of the optical machine display 500 to compensate for the The problem of low brightness of the green light on the left and right sides of the pupil light; the blue light focuses on illuminating the left part of the optical machine display 500 to compensate for the low brightness of the blue light on the left side of the pupil light.
  • the left exit pupil is the opposite of the right exit pupil.
  • the LED array light source 200B emits light beams, which are polarized by the beam splitter 400 and then reflected to the optical machine display screen 500 .
  • color separation occurs on the optical-mechanical display screen 500, in particular, the brightness of blue light (B) is higher on the left side of the optical-mechanical display screen 500, and gradually decreases toward the right; the brightness of green light (G) is on both sides of the optical-mechanical display screen 500 Higher, gradually descending toward the middle; red light (R) has higher brightness on the right side of the optical-mechanical display 500, and gradually decreases toward the left.
  • the image information carried by the light beam is coupled into the waveguide plate through the beam splitter 400 and the projection lens 300, and is diffracted by the action of the grating and propagated by total internal reflection.
  • the diffraction efficiency of blue light (B) gradually decreases along the left side of the screen, the high brightness value on the left side of the original screen gradually decreases, and the variance of the overall brightness decreases
  • the diffraction efficiency of green light (G) gradually decreases along the two sides of the screen, The high luminance values on both sides of the original image gradually decrease, and the overall luminance variance decreases
  • the diffraction efficiency of red light (R) gradually decreases along the right side of the image, the high luminance values on the right side of the original image gradually decrease, and the overall luminance variance decreases.
  • each diffusion sheet 600 corresponds to one of the RGB three-color light beams; wherein, the diffusion sheet 600 corresponding to the red light beam is a diffuser with a low diffusion angle.
  • the diffusion sheet 600 corresponding to the green light beam is a high diffusion angle diffusion sheet, and the diffusion sheet 600 corresponding to the blue light beam is a low diffusion angle diffusion sheet.
  • a diffuser 600 is provided for each neutral color light emitted by the optomechanical light source 200A (or 200B), that is, the light emitted by the optomechanical light source is RGB three-color light, so the Three diffusion sheets 600 are provided.
  • the optomechanical light source is the LED light box 200A
  • the diffusion sheet 600 corresponding to the red LED chip is a low diffusion angle diffusion sheet
  • the diffusion sheet 600 corresponding to the green LED chip is a high diffusion angle diffusion sheet
  • the diffusion sheet 600 corresponding to the blue LED chip is a low diffusion angle diffusion sheet.
  • the diffusion sheet 600 corresponding to the red LED array 210B is a low diffusion angle diffusion sheet
  • the diffusion sheet 600 corresponding to the green LED array 220B is a high diffusion sheet.
  • Diffusion angle diffusion sheet the diffusion sheet 600 corresponding to the blue LED array 230B is a low diffusion angle diffusion sheet.
  • the angles of the high-diffusion-angle diffuser and the low-diffusion-angle diffuser can be set according to the characteristics of the specific waveguide used.
  • the diffuser 600 is a lens array.
  • a lens array is used to diffuse the light beam emitted by the optomechanical light emitting source 200A (or 200B), thereby changing the brightness distribution on the optomechanical display screen 500 .
  • each lens array corresponds to one of the RGB three-color light beams; wherein, the lens array corresponding to the red light beam is a long-focus lens array , the lens array corresponding to the green light beam is a short focal length lens array, and the lens array corresponding to the blue light beam is a long focal length lens array.
  • a lens array is correspondingly provided for each neutral color light emitted by the optomechanical light emitting source 200A (or 200B).
  • the optomechanical light source is the LED light box 200A (or the LED array light source 2200B
  • the lens array corresponding to the red light beam is a long focal length lens array
  • the lens array corresponding to the green light beam is The short focal length lens array
  • the lens array corresponding to the blue light beam is a long focal length lens array.
  • the focal lengths of the long focal length lens array and the short focal length lens array can be set according to the characteristics of the specific waveguide.
  • the optomechanical display screen 500 is an LCOS display panel or a DMD display panel
  • the beam splitter 400 is a polarization beam splitter.
  • an LCOS display panel or a DMD display panel is used as the optomechanical display screen 500.
  • LCOS display is a reflective new display technology that organically combines LCD and CMOS integrated circuits.
  • LCOS has a large screen and high brightness.
  • the DMD display panel adopts DMD chips, and 800,000 to 1 million small mirrors are densely arranged on the DMD chips, and each small mirror can be independently flipped 10 degrees in the positive and negative directions. And can flip 65,000 times per second.
  • the light source is reflected by these small mirrors onto the screen to directly form an image. Its optical path is also considerably simpler and smaller.
  • Polarization Beam Splitter (PBS/PBC) is used to couple two beams of orthogonally polarized light into one optical fiber or to couple a single output containing orthogonal linearly polarized light into two optical fiber outputs, and can also be used in reverse to combine Two orthogonally polarized beams input from the polarization-maintaining fiber branch are coupled into a single-mode output fiber, which can be used to combine the power of the pump laser and improve the extinction ratio of the fiber laser.
  • PBS/PBC Polarization Beam Splitter
  • the single-layer waveguide is designed based on the green light of 520nm, while reconciling the red light of 635nm and the blue light of 450nm, so that the color separation phenomenon shown in Figure 5 will appear.
  • Figure 5 is a schematic diagram of RGB luminance on the horizontal axis of the white screen on the right exit pupil. It is easy to see that the peak brightness of green light is located in the center of the screen, while the brightness on both sides is lower; the peak brightness of red light is located on the left side of the screen, and the brightness on the right side of the screen Lower; the peak brightness of blue light is on the right side of the frame, and the brightness is lower on the left side of the frame.
  • the present embodiment uses uneven illumination to compensate for color unevenness caused by the problem of diffraction efficiency.
  • FIG 6 is a schematic diagram of the horizontal axis RGB brightness of the uneven illumination on the LCOS display panel of this embodiment, comparing Figure 5 and Figure 6, it can be seen that the brightness areas of the same color light are complementary, for example, for red light, the exit pupil surface
  • the brightness peak of the red light is on the left side.
  • the brightness of the red light on the right side of the LCOS display panel is higher in terms of illumination, so that it can still maintain a relatively high level after being attenuated by the waveguide plate, so as to compensate for the original brightness.
  • the red light on the right side of the pupil image is blank to maintain a relatively stable brightness curve.
  • the embodiment of the present application also provides AR glasses, which adopt the above-mentioned AR optical machine for reverse distributed lighting.

Abstract

一种反向分布照明的AR光机及AR眼镜,该AR光机包括光机本体(100),光机本体(100)上设置有光机显示屏(500),光机显示屏(500)的上方设置有用于为光机显示屏(500)提供照明的光机发光源(200A),光机显示屏(500)的前方设置有为光机显示屏(500)提供偏振照明的分束器(400),分束器(400)的前方设置有为光机显示屏(500)进行像素单元准直的光机投影镜头(300);光机发光源(200A)的发光色为RGB三色光,且照明方式为非均匀照明。通过采用单层衍射波导作为AR基板,通过反向分布式照明来补偿RGB三种色光的不均匀出光部分,从而产生较好的色彩均匀性,提高佩戴体验。

Description

一种反向分布照明的AR光机及AR眼镜
本申请是以申请号为202111331365.9、申请日为2021年11月11日的中国专利申请为基础,并主张其优先权,该申请的全部内容在此作为整体引入本申请中。
技术领域
本申请涉及光学显示技术领域,特别涉及一种反向分布照明的AR光机及AR眼镜。
背景技术
随着成像技术的进步,人们对沉浸式体验的需求越来越高,近年来VR/AR技术的发展,逐渐满足人们对视觉体验的追求。头戴式设备能解放人们的双手,降低对屏幕的依赖,同时营造更好的视觉效果。对于头戴式设备,近眼显示是其技术的关键,成像质量和轻薄性则是主要的考虑因素。近眼显示系统一般由图像远近光传输系统组成,图像源发出的图像画面,通过光学传输系统传递到人眼中。在此,区别于VR对外部环境的阻断,AR则需要有一定透过率,使佩戴者在看到图像画面的同时,可以看到外界的环境。
对于光学传输系统,业界有很多种方案,例如,自由空间光学、自由曲面光学及显示光波导等。其中,光波导技术由于其大eye box的特点,及其轻薄的特性,明显优于其他光学方案,成为当前的主流路径。
目前主流的AR眼镜大多采用衍射光波导技术,例如Microsoft的HoloLens一代和二代、Magic Leap公司的AR眼镜等等。由于光波衍射的低效率及光栅对波长的选择性,AR眼镜大多采用2~3层的波导来实现彩色显示,每层波导传播一种色光,最终在出瞳时合束,这种方法拥有较强的色彩均匀性,但透过率较低,且增加了佩戴重量。为了提高佩戴体验,可采用单层衍射波导实现彩色显示,然而目前单层波导无法很好地兼容三种波段的色光,容易出现成色不均匀的情况。
申请内容
本申请实施例提供了一种反向分布照明的AR光机及AR眼镜,旨在基于单层衍射波导,通过反向分布式照明来补偿RGB三种色光的不均匀出光部分,从而产生较好的色彩均匀性,提高佩戴体验。
本申请实施例提供了一种反向分布照明的AR光机,包括光机本体,所述光机本体上设置有光机显示屏,所述光机显示屏的上方设置有用于为所述光机显示屏提供照明的光机发光源,所述光机显示屏的前方设置有为所述光机显示屏提供偏振照明的分束器,所述分束器的前方设置有为所述光机显示屏进行像素单元准直的光机投影镜头;
所述光机发光源的发光色为RGB三色光,且照明方式为非均匀照明。
进一步的,所述光机显示屏和所述光机发光源之间设置有用于扩散光束的扩散片。
进一步的,所述光机发光源为向下设置有开口的LED光盒,所述LED光盒与所述光机显示屏呈90°夹角设置,且所述LED光盒平行于所述光机显示屏的侧面设置有RGB三色LED芯片,所述LED光盒的其余面为用于反射RGB三色LED芯片光束的LED光盒反射面。
进一步的,所述RGB三色LED芯片设置有两个,且两个RGB三色LED芯片镜像对称安装于所述LED光盒的两个侧面上。
进一步的,所述AR光机包括左眼光机和右眼光机;
在所述左眼光机中,所述RGB三色LED芯片中的红光LED芯片设置在相对所述光机显示屏的左侧位置,所述RGB三色LED芯片中的绿光芯片设置在相对所述光机显示屏的中间位置,所述RGB三色LED芯片中的蓝光芯片设置在相对所述光机显示屏的右侧位置;
在所述右眼光机中,所述RGB三色LED芯片中的红光LED芯片设置在相对所述光机显示屏的右侧位置,所述RGB三色LED芯片中的绿光芯片设置在相对所述光机显示屏的中间位置,所述RGB三色LED芯片中的蓝光芯片设置在相对所述光机显示屏的左侧位置。
进一步的,所述光机发光源为LED阵列光源,所述LED阵列光源包括红光阵列、绿光阵列和蓝光阵列,且所述LED阵列光源与所述光机显示屏呈90°夹角设置。
进一步的,所述AR光机包括左眼光机和右眼光机;
在所述左眼光机中,所述红光阵列设置在相对所述光机显示屏的左侧位置,绿光阵列设置在相对所述光机显示屏的中间位置,蓝光阵列设置在相对所述光机显示屏的右侧位置;
在所述右眼光机中,所述红光阵列设置在相对所述光机显示屏的右侧位置,绿光阵列设置在相对所述光机显示屏的中间位置,蓝光阵列设置在相对所述光机显示屏的左侧位置。
进一步的,所述LED阵列光源为3×3阵列、6×6 阵列或者9×9阵列。
进一步的,所述扩散片设置有3个,每一扩散片分别与RGB三色光中的一种色光光束对应;其中,与红光光束对应的扩散片为低扩散角扩散片,与绿光光束对应的扩散片为高扩散角扩散片,与蓝光光束对应的扩散片为低扩散角扩散片。
进一步的,所述扩散片为透镜阵列。
进一步的,所述透镜阵列设置有3个,每一透镜阵列分别与RGB三色光中的一种色光光束对应;其中,与红光光束对应的透镜阵列为长焦距透镜阵列,与绿光光束对应的透镜阵列为短焦距透镜阵列,与蓝光光束对应的透镜阵列为长焦距透镜阵列。
进一步的,所述光机显示屏为LCOS显示面板或者DMD显示面板,所述分束器为偏振分束器。
本申请实施例还提供了一种AR眼镜,采用如上任一项所述的反向分布照明的AR光机。
本申请实施例提供了一种反向分布照明的AR光机及AR眼镜,该AR光机包括光机本体,所述光机本体上设置有光机显示屏,所述光机显示屏的上方设置有用于为所述光机显示屏提供照明的光机发光源,所述光机显示屏的前方设置有为所述光机显示屏提供偏振照明的分束器,所述分束器的前方设置有为所述光机显示屏进行像素单元准直的光机投影镜头;所述光机发光源的发光色为RGB三色光,且照明方式为非均匀照明。本申请实施例通过采用单层衍射波导作为AR基板,通过反向分布式照明来补偿RGB三种色光的不均匀出光部分,从而产生较好的色彩均匀性,提高佩戴体验。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种反向分布照明的AR光机的结构示意图;
图2为本申请实施例提供的一种反向分布照明的AR光机中LED光盒的结构示意图;
图3为本申请实施例提供的一种反向分布照明的AR光机中LED阵列光源的结构示意图;
图4为本申请实施例提供的一种反向分布照明的AR光机中LED阵列光源的另一结构示意图;
图5为本申请实施例提供的一种反向分布照明的AR光机中光机显示屏的RGB亮度示意图;
图6为本申请实施例提供的一种反向分布照明的AR光机中光机显示屏的另一RGB亮度示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和 “包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/ 或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
下面请参见图1,图1为本申请实施例提供的一种反向分布照明的AR光机的结构示意图,该AR光机包括光机本体100,所述光机本体100上设置有光机显示屏500,所述光机显示屏500的上方设置有用于为所述光机显示屏提供照明的光机发光源200A,所述光机显示屏500的前方设置有为所述光机显示屏500提供偏振照明的分束器400,所述分束器400的前方设置有为所述光机显示屏500进行像素单元准直的光机投影镜头300;
所述光机发光源200A的发光色为RGB三色光,且照明方式为非均匀照明。
本实施例中,所述AR光机包括光机本体100,投影镜头300,光机发光源200A(或200B,如图4所示),分束器400和光机显示屏500。所述光机发光源200A发出的光束经所述分束器400起偏后反射到所述光机显示屏500上,由于3色LED的位置设定,在所述光机显示屏500上产生色彩分离。例如,蓝光(B)在光机显示屏500左侧亮度较高,朝右逐渐降低;绿光(G)在光机显示屏500两侧亮度较高,朝中间逐渐下滑;红光(R)在光机显示屏500右侧亮度较高,朝左侧逐渐降低。
光机显示屏500加载出图像后,光束携带图像信息经所述分束器400和投影镜头300耦合到波导片内,在光栅的作用下产生衍射并利用全内反射进行传播。例如,在此过程中,蓝光(B)的衍射效率沿画面左侧逐渐下降,原画面左侧的高亮度值逐渐降低,整体亮度方差缩小;绿光(G)的衍射效率沿画面两侧逐渐下降,原画面两侧的高亮度值逐渐降低,整体亮度方差缩小;红光(R)的衍射效率沿画面右侧逐渐下降,原画面右侧的高亮度值逐渐降低,整体亮度方差缩小。
由于光栅的低衍射效率和对波长的选择性,单层衍射波导难以同时兼容RGB三种色光,一般情况下会出现红光偏移过度,蓝光传播距离不够的问题,从而产生远离光机的一侧色彩偏红,接近光机的一侧色彩偏蓝的情况。以右眼光机为例,对于一般的投影仪来说,其投影的白画面是成色均匀的,而当其通过衍射波导的扩瞳与传播后,色彩逐渐发生偏移,具体为红光朝远离入瞳的方向偏移,蓝光则无法有效地传播到出瞳中心,导致出瞳白画面产生色彩分离,右眼白画面变成红-绿-蓝的分色画面。而在本实施例中,所述AR光机采用单片衍射波导作为AR基板,通过反向分布式照明来补偿RGB三种色光的不均匀出光部分,从而产生较好的色彩均匀性,提高佩戴体验。
在一实施例中,结合图4所示,所述光机显示屏500和所述光机发光源200A之间设置有用于扩散光束的扩散片600。
本实施例中,通过所述扩散片600对光机发光源200A(图4中为200B)发出的光束进行扩散,从而改变所述光机显示屏500上的亮度分布。
本实施例利用非均匀照明实现对单层衍射波导的色彩补偿,通过光机发光源200A(或者200B)与扩散片600的结合,控制不同色光的亮度峰值在光机显示屏500上的坐标,以精确控制色彩补偿的范围,提高单层衍射波导的色彩均匀性。
在一实施例中,如图2所示,所述光机发光源200A为向下设置有开口的LED光盒,所述LED光盒与所述光机显示屏500呈90°夹角设置,且所述LED光盒平行于所述光机显示屏500的侧面设置有RGB三色LED芯片(图2中的211A和212A),所述LED光盒的其余面为用于反射RGB三色LED芯片光束的LED光盒反射面(图2中的221A、222A和223A)。
进一步的,在一实施例中,所述RGB三色LED芯片设置有两个,且两个RGB三色LED芯片211A和212A镜像对称安装于所述LED光盒的两个侧面上。
本实施例中,采用所述LED光盒作为所述光机发光源200A,所述LED光盒包括所述LED光源RGB三色LED芯片211A和212A和三个LED光盒反射面221A、222A和223A,三个LED光盒反射面221A、222A和223A将RGB三色LED芯片211A和212A发出的RGB三种光源均匀混光,这种结构能大幅压缩光源结构,降低光机尺寸。
在一实施例中,所述AR光机包括左眼光机和右眼光机;
在所述左眼光机中,所述RGB三色LED芯片211A和212A中的红光LED芯片设置在相对所述光机显示屏500的左侧位置,所述RGB三色LED芯片211A和212A中的绿光芯片设置在相对所述光机显示屏500的中间位置,所述RGB三色LED芯片211A和212A中的蓝光芯片设置在相对所述光机显示屏500的右侧位置;
在所述右眼光机中,所述RGB三色LED芯片211A和212A中的红光LED芯片设置在相对所述光机显示屏500的右侧位置,所述RGB三色LED芯片211A和212A中的绿光芯片设置在相对所述光机显示屏500的中间位置,所述RGB三色LED芯片211A和212A中的蓝光芯片设置在相对所述光机显示屏500的左侧位置。
由于AR眼镜出瞳的色彩分布是呈镜像对称的,因此两侧光机的LED分布也得是镜像对称,故本实施例分别将所述AR光机细化为左眼光机和右眼光机,并根据左眼光机的位置和右眼光机的位置对应设置所述RGB三色LED芯片211A和212A中的三种色光LED芯片的位置,从而保证AR光机的整体成像色彩均匀化。
以右眼光机为例,所述RGB三色LED芯片211A和212A发出光束后,光束经所述分束器400起偏后反射到光机显示屏500上,由于3色LED的位置设定及扩散片的作用,在光机显示屏500上产生色彩分离,特别地,蓝光(B)在光机显示屏500左侧亮度较高,朝右逐渐降低;绿光(G)在光机显示屏500两侧亮度较高,朝中间逐渐下滑;红光(R)在光机显示屏500右侧亮度较高,朝左侧逐渐降低。
光机显示屏500加载出图像后,光束携带图像信息经分束器400和投影镜头300耦合到波导片内,在光栅的作用下产生衍射并利用全内反射进行传播。在此过程中,蓝光(B)的衍射效率沿画面左侧逐渐下降,原画面左侧的高亮度值逐渐降低,整体亮度方差缩小;绿光(G)的衍射效率沿画面两侧逐渐下降,原画面两侧的高亮度值逐渐降低,整体亮度方差缩小;红光(R)的衍射效率沿画面右侧逐渐下降,原画面右侧的高亮度值逐渐降低,整体亮度方差缩小。
在一实施例中,如图3所示,所述光机发光源为LED阵列光源200B,所述LED阵列光源200B包括红光阵列210B、绿光阵列220B和蓝光阵列230B,且所述LED阵列光源200B与所述光机显示屏500呈90°夹角设置。
本实施例中,采用所述LED阵列光源200B作为所述光机发光源,所述LED阵列光源200B具体分为发出红光光束的红光阵列210B、发出绿光光束的绿光阵列220B和发出蓝光光束的蓝光阵列230B。
进一步的,在一实施例中,所述LED阵列光源200B为3×3阵列、6×6 阵列或者9×9阵列。
本实施例中,通过设置阵列数,来提高光源数量,从而可让调控效果更明显。为了更好地应对不同波导片的衍射效果,LED阵列光源200B可设为每个芯片均能单独控制亮度,从而适配不同的衍射波导,以更好地提高补偿效果,提高出瞳光束的色彩均匀性。
在一实施例中,所述AR光机包括左眼光机和右眼光机;
在所述左眼光机中,所述红光阵列210B设置在相对所述光机显示屏500的左侧位置,绿光阵列220B设置在相对所述光机显示屏500的中间位置,蓝光阵列230B设置在相对所述光机显示屏500的右侧位置;
在所述右眼光机中,所述红光阵列210B设置在相对所述光机显示屏500的右侧位置,绿光阵列220B设置在相对所述光机显示屏500的中间位置,蓝光阵列230B设置在相对所述光机显示屏500的左侧位置。
本实施例中,右侧出瞳的白画面色彩分离从左到右以此为红光、绿光和蓝光,因此,所述光机发光源200B便采用蓝光、绿光和红光的不均匀分布的方式,其中,红光着重照明光机显示屏500右侧部分,以补偿出瞳光右侧红光亮度偏低的问题;绿光着重照明光机显示屏500两侧部分,以补偿出瞳光左右两侧绿光亮度较低的问题;蓝光着重照明光机显示屏500左侧部分,以补偿出瞳光左侧蓝光亮度较低的问题。左侧出瞳则与右侧出瞳相反。
以右眼光机为例,所述LED阵列光源200B发出光束,光束经所述分束器400起偏后反射到光机显示屏500上,由于3色LED的位置设定及扩散片600的作用,在光机显示屏500上产生色彩分离,特别地,蓝光(B)在光机显示屏500左侧亮度较高,朝右逐渐降低;绿光(G)在光机显示屏500两侧亮度较高,朝中间逐渐下滑;红光(R)在光机显示屏500右侧亮度较高,朝左侧逐渐降低。
光机显示屏500加载出图像后,光束携带图像信息经分束器400和投影镜头300耦合到波导片内,在光栅的作用下产生衍射并利用全内反射进行传播。在此过程中,蓝光(B)的衍射效率沿画面左侧逐渐下降,原画面左侧的高亮度值逐渐降低,整体亮度方差缩小;绿光(G)的衍射效率沿画面两侧逐渐下降,原画面两侧的高亮度值逐渐降低,整体亮度方差缩小;红光(R)的衍射效率沿画面右侧逐渐下降,原画面右侧的高亮度值逐渐降低,整体亮度方差缩小。
在一实施例中,所述扩散片600设置有3个,每一扩散片600分别与RGB三色光中的一种色光光束对应;其中,与红光光束对应的扩散片600为低扩散角扩散片,与绿光光束对应的扩散片600为高扩散角扩散片,与蓝光光束对应的扩散片600为低扩散角扩散片。
本实施例中,对所述光机发光源200A(或200B)发出的每一中色光均对应设置一扩散片600,也就是说,所述光机发光源发出的为RGB三色光,因此对应设置3个扩散片600。当所述光机发光源为所述LED光盒200A时,其中的红光LED芯片对应的扩散片600为低扩散角扩散片,绿光LED芯片对应的扩散片600为高扩散角扩散片,蓝光LED芯片对应的扩散片600为低扩散角扩散片。同样的,当所述光机发光源为所述LED阵列光源200B时,其中的红光LED阵列210B对应的扩散片600为低扩散角扩散片,绿光LED阵列220B对应的扩散片600为高扩散角扩散片,蓝光LED阵列230B对应的扩散片600为低扩散角扩散片。在具体的应用场景中,所述高扩散角扩散片和低扩散角扩散片的角度均可以依据具体采用波导的特性进行设置。
在一实施例中,所述扩散片600为透镜阵列。
本实施例中,采用透镜阵列对所述光机发光源200A(或200B)发出的光束进行扩散,从而改变所述光机显示屏500上的亮度分布。
进一步的,在一实施例中,所述透镜阵列设置有3个,每一透镜阵列分别与RGB三色光中的一种色光光束对应;其中,与红光光束对应的透镜阵列为长焦距透镜阵列,与绿光光束对应的透镜阵列为短焦距透镜阵列,与蓝光光束对应的透镜阵列为长焦距透镜阵列。
本实施例中,对所述光机发光源200A(或200B)发出的每一中色光均对应设置一透镜阵列。具体来说,不论所述光机发光源为所述LED光盒200A(或者为LED阵列光源2200B时,其中的红光光束对应的透镜阵列为长焦距透镜阵列,绿光光束对应的透镜阵列为短焦距透镜阵列,蓝光光束对应的透镜阵列为长焦距透镜阵列。在具体的应用场景中,所述长焦距透镜阵列和短焦距透镜阵列的焦距均可以依据具体采用波导的特性进行设置。
在一实施例中,所述光机显示屏500为LCOS显示面板或者DMD显示面板,所述分束器400为偏振分束器。
本实施例中,采用LCOS显示面板或者DMD显示面板作为所述光机显示屏500,LCOS显示是LCD与CMOS集成电路有机结合的反射型新型显示技术,LCOS作为新型显示器件具备大屏幕、高亮度、高分辨率、省电等诸多优势,DMD显示面板采用DMD芯片,DMD芯片上密密麻麻地排列了80万至100万面小镜子,而且每个小镜子都可以独立向正负方向翻转10度,并可以每秒钟翻转65000次。光源通过这些小镜子反射到屏幕上直接形成图像。其光学路径也相当简单,体积更小。偏振分束器(PBS/PBC)用于将两束正交偏振光耦合入一根光纤中或将含正交线偏振光的单一输出分别耦合到两个光纤输出中,也可以反向应用将两束从保偏光纤分支输入的正交偏振光束耦合到一根单模输出光纤中,可用于泵浦激光器的功率合束,提高光纤激光器的消光比。
在一具体实施例中,针对单层衍射波导的色彩不均匀问题,由于光栅对波长的选择性,同一个光栅对不同波长的衍射效率是不一样的。通常单层波导以520nm的绿光为设计基准,同时调和635nm的红光和450nm的蓝光,如此便会出现图5所示的色光分离现象。
图5为右侧出瞳白画面横轴的RGB亮度示意图,容易看出,绿光的亮度峰值位于画面中心,而两侧亮度较低;红光的亮度峰值位于画面左侧,画面右侧亮度较低;蓝光的亮度峰值位于画面的右侧,画面左侧亮度较低。针对这种现象,本实施例采用不均匀照明来补偿因为衍射效率问题而导致的色彩不均匀。
图6是本实施例在LCOS显示面板上的不均匀照明的横轴RGB亮度示意图,对比图5和图6,可以看出相同色光的亮度区域是互补的,例如对于红光,出瞳面上红光的亮度峰值偏左,本实施例就在照明上给予LCOS显示面板右侧更高的红光亮度,使其经过波导片的衰减后仍然能维持一个相对比较高的水平,以补偿原出瞳图像右侧的红光空白,以此维持一个比较平稳的亮度曲线。因此对于蓝光,则在照明上给予LCOS显示面板左侧更高的蓝光亮度;对于绿光,则在照明上给予LCOS显示面板两侧更高的绿光亮度。为了达成该目的,需要令三色LED光源以一定的顺序排列,并配合三种扩散片,使照明亮度在LCOS显示面板两侧集中,中间分散。
本申请实施例还提供了一种AR眼镜,采用如上所述的反向分布照明的AR光机。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的状况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (13)

  1. 一种反向分布照明的AR光机,其特征在于,包括光机本体,所述光机本体上设置有光机显示屏,所述光机显示屏的上方设置有用于为所述光机显示屏提供照明的光机发光源,所述光机显示屏的前方设置有为所述光机显示屏提供偏振照明的分束器,所述分束器的前方设置有为所述光机显示屏进行像素单元准直的光机投影镜头;
    所述光机发光源的发光色为RGB三色光,且照明方式为非均匀照明。
  2. 根据权利要求1所述的反向分布照明的AR光机,其特征在于,所述光机显示屏和所述光机发光源之间设置有用于扩散光束的扩散片。
  3. 根据权利要求2所述的反向分布照明的AR光机,其特征在于,所述光机发光源为向下设置有开口的LED光盒,所述LED光盒与所述光机显示屏呈90°夹角设置,且所述LED光盒平行于所述光机显示屏的侧面设置有RGB三色LED芯片,所述LED光盒的其余面为用于反射RGB三色LED芯片光束的LED光盒反射面。
  4. 根据权利要求3所述的反向分布照明的AR光机,其特征在于,所述RGB三色LED芯片设置有两个,且两个RGB三色LED芯片镜像对称安装于所述LED光盒的两个侧面上。
  5. 根据权利要求4所述的反向分布照明的AR光机,其特征在于,所述AR光机包括左眼光机和右眼光机;
    在所述左眼光机中,所述RGB三色LED芯片中的红光LED芯片设置在相对所述光机显示屏的左侧位置,所述RGB三色LED芯片中的绿光芯片设置在相对所述光机显示屏的中间位置,所述RGB三色LED芯片中的蓝光芯片设置在相对所述光机显示屏的右侧位置;
    在所述右眼光机中,所述RGB三色LED芯片中的红光LED芯片设置在相对所述光机显示屏的右侧位置,所述RGB三色LED芯片中的绿光芯片设置在相对所述光机显示屏的中间位置,所述RGB三色LED芯片中的蓝光芯片设置在相对所述光机显示屏的左侧位置。
  6. 根据权利要求2所述的反向分布照明的AR光机,其特征在于,所述光机发光源为LED阵列光源,所述LED阵列光源包括红光阵列、绿光阵列和蓝光阵列,且所述LED阵列光源与所述光机显示屏呈90°夹角设置。
  7. 根据权利要求6所述的反向分布照明的AR光机,其特征在于,所述AR光机包括左眼光机和右眼光机;
    在所述左眼光机中,所述红光阵列设置在相对所述光机显示屏的左侧位置,绿光阵列设置在相对所述光机显示屏的中间位置,蓝光阵列设置在相对所述光机显示屏的右侧位置;
    在所述右眼光机中,所述红光阵列设置在相对所述光机显示屏的右侧位置,绿光阵列设置在相对所述光机显示屏的中间位置,蓝光阵列设置在相对所述光机显示屏的左侧位置。
  8. 根据权利要求6所述的反向分布照明的AR光机,其特征在于,所述LED阵列光源为3×3阵列、6×6 阵列或者9×9阵列。
  9. 根据权利要求2所述的反向分布照明的AR光机,其特征在于,所述扩散片设置有3个,每一扩散片分别与RGB三色光中的一种色光光束对应;其中,与红光光束对应的扩散片为低扩散角扩散片,与绿光光束对应的扩散片为高扩散角扩散片,与蓝光光束对应的扩散片为低扩散角扩散片。
  10. 根据权利要求2所述的反向分布照明的AR光机,其特征在于,所述扩散片为透镜阵列。
  11. 根据权利要求10所述的反向分布照明的AR光机,其特征在于,所述透镜阵列设置有3个,每一透镜阵列分别与RGB三色光中的一种色光光束对应;其中,与红光光束对应的透镜阵列为长焦距透镜阵列,与绿光光束对应的透镜阵列为短焦距透镜阵列,与蓝光光束对应的透镜阵列为长焦距透镜阵列。
  12. 根据权利要求1所述的反向分布照明的AR光机,其特征在于,所述光机显示屏为LCOS显示面板或者DMD显示面板,所述分束器为偏振分束器。
  13. 一种AR眼镜,其特征在于,采用如权利要求1~12任一项所述的反向分布照明的AR光机。
PCT/CN2022/072736 2021-11-11 2022-01-19 一种反向分布照明的ar光机及ar眼镜 WO2023082468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111331365.9 2021-11-11
CN202111331365.9A CN114035326B (zh) 2021-11-11 2021-11-11 一种反向分布照明的ar光机及ar眼镜

Publications (1)

Publication Number Publication Date
WO2023082468A1 true WO2023082468A1 (zh) 2023-05-19

Family

ID=80143953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072736 WO2023082468A1 (zh) 2021-11-11 2022-01-19 一种反向分布照明的ar光机及ar眼镜

Country Status (2)

Country Link
CN (1) CN114035326B (zh)
WO (1) WO2023082468A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935823B (zh) * 2022-06-16 2023-06-30 深圳市光舟半导体技术有限公司 一种彩色ar光机、眼镜及色彩均匀性补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716226A (zh) * 2014-09-16 2017-05-24 微软技术许可有限责任公司 用于衍射波导显示器的紧凑型投影光引擎
US10088685B1 (en) * 2015-10-19 2018-10-02 Meta Company Apparatuses, methods and systems for multiple focal distance display
CN110221511A (zh) * 2019-05-15 2019-09-10 深圳市瞐客科技有限公司 一种新型高效微投影光学架构
US20190278091A1 (en) * 2010-10-04 2019-09-12 Gerard Dirk Smits System and method for 3-d projection and enhancements for interactivity
CN111103655A (zh) * 2020-01-10 2020-05-05 深圳珑璟光电技术有限公司 一种用于衍射光波导的六边形柱状结构
CN113625386A (zh) * 2021-08-10 2021-11-09 Oppo广东移动通信有限公司 光学装置和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190278091A1 (en) * 2010-10-04 2019-09-12 Gerard Dirk Smits System and method for 3-d projection and enhancements for interactivity
CN106716226A (zh) * 2014-09-16 2017-05-24 微软技术许可有限责任公司 用于衍射波导显示器的紧凑型投影光引擎
US10088685B1 (en) * 2015-10-19 2018-10-02 Meta Company Apparatuses, methods and systems for multiple focal distance display
CN110221511A (zh) * 2019-05-15 2019-09-10 深圳市瞐客科技有限公司 一种新型高效微投影光学架构
CN111103655A (zh) * 2020-01-10 2020-05-05 深圳珑璟光电技术有限公司 一种用于衍射光波导的六边形柱状结构
CN113625386A (zh) * 2021-08-10 2021-11-09 Oppo广东移动通信有限公司 光学装置和电子设备

Also Published As

Publication number Publication date
CN114035326B (zh) 2022-09-30
CN114035326A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
JP7362828B2 (ja) 空間光変調器を照明するための方法、デバイス、およびシステム
CN109407313B (zh) 一种衍射波导显示装置
CN205787362U (zh) 光波导元件、二维扩展光波导器件、平视显示装置及照明装置
JP2022160457A (ja) ウェアラブルディスプレイのための照明装置
CN103975267B (zh) 用于头戴式显示器的紧凑照明模块
US7710655B2 (en) Display with image-guiding substrate
US8116006B2 (en) Image display apparatus and head mount display
WO2019179136A1 (zh) 显示装置及显示方法
US20200192111A1 (en) Image device with a compact homogenizer
CN113703091A (zh) 光波导系统和近眼显示器
CN215813430U (zh) 光波导系统和近眼显示器
WO2023082468A1 (zh) 一种反向分布照明的ar光机及ar眼镜
CN116520626A (zh) 光学投影系统以及电子设备
JP2001305477A (ja) 虚像表示装置
CN113589635B (zh) 照明系统及投影装置
CN218824990U (zh) 一种光机系统及近眼显示设备
CN218767589U (zh) 微型投影系统
US11320727B2 (en) Light source module and projection apparatus
CN114935823A (zh) 一种彩色ar光机、眼镜及色彩均匀性补偿方法
CN116880069A (zh) 投影光学系统以及投影设备
TW202208935A (zh) 波導的製作方法以及具有波導的頭戴式顯示裝置
CN111983806A (zh) 用于可穿戴显示器的照明系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891280

Country of ref document: EP

Kind code of ref document: A1